Science.gov

Sample records for surface force measurements

  1. Casimir force measurements from silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  2. Surface force measurement of ultraviolet nanoimprint lithography materials

    NASA Astrophysics Data System (ADS)

    Taniguchi, Jun; Hasegawa, Masayuki; Amemiya, Hironao; Kobayashi, Hayato

    2016-02-01

    Ultraviolet nanoimprint lithography (UV-NIL) has advantages such as room-temperature operation, high through-put, and high resolution. In the UV-NIL process, the mold needs a release coating material to prevent adhesion of the transfer resin. Usually, fluorinated silane coupling agents are used as release coating materials. To evaluate the release property, surface force analyzer equipment was used. This equipment can measure the surface forces between release-coated or noncoated mold material surfaces and UV-cured resin surfaces in the solid state. Lower surface forces were measured when a release coating was used on the mold material surface.

  3. Influence of Nanoscale Surface Roughness on Colloidal Force Measurements.

    PubMed

    Zou, Yi; Jayasuriya, Sunil; Manke, Charles W; Mao, Guangzhao

    2015-09-29

    Forces between colloidal particles determine the performances of many industrial processes and products. Colloidal force measurements conducted between a colloidal particle AFM probe and particles immobilized on a flat substrate are valuable in selecting appropriate surfactants for colloidal stabilization. One of the features of inorganic fillers and extenders is the prevalence of rough surfaces-even the polymer latex particles, often used as model colloidal systems including the current study, have rough surfaces albeit at a much smaller scale. Surface roughness is frequently cited as the reason for disparity between experimental observations and theoretical treatment but seldom verified by direct evidence. This work reports the effect of nanoscale surface roughness on colloidal force measurements carried out in the presence of surfactants. We applied a heating method to reduce the mean surface roughness of commercial latex particles from 30 to 1 nm. We conducted force measurements using the two types of particles at various salt and surfactant concentrations. The surfactants used were pentaethylene glycol monododecyl ether, Pluronic F108, and a styrene/acrylic copolymer, Joncryl 60. In the absence of the surfactant, nanometer surface roughness affects colloidal forces only in high salt conditions when the Debye length becomes smaller than the surface roughness. The adhesion is stronger between colloids with higher surface roughness and requires a higher surfactant concentration to be eliminated. The effect of surface roughness on colloidal forces was also investigated as a function of the adsorbed surfactant layer structure characterized by AFM indentation and dynamic light scattering. We found that when the layer thickness exceeds the surface roughness, the colloidal adhesion is less influenced by surfactant concentration variation. This study demonstrates that surface roughness at the nanoscale can influence colloidal forces significantly and should be taken

  4. Capillary-force measurement on SiC surfaces.

    PubMed

    Sedighi, M; Svetovoy, V B; Palasantzas, G

    2016-06-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ∼4-14 nm mainly due to sphere morphology, the relative humidity (RH) ∼0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH∼40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads. PMID:27415337

  5. Capillary-force measurement on SiC surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-06-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ˜4-14 nm mainly due to sphere morphology, the relative humidity (RH) ˜0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH˜40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads.

  6. Capillary-force measurement on SiC surfaces.

    PubMed

    Sedighi, M; Svetovoy, V B; Palasantzas, G

    2016-06-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ∼4-14 nm mainly due to sphere morphology, the relative humidity (RH) ∼0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH∼40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads.

  7. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    PubMed

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  8. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  9. A Simple Instrument for Measuring Surface Forces in Liquids

    NASA Astrophysics Data System (ADS)

    Hannon, James; Tromp, Rudolf; Haight, Richard; Ellis, Arthur

    2015-03-01

    We have constructed a simple instrument to measure the interaction force between two surfaces in solution, or in vacuum. Specifically, we measure the interaction between a lens and a thin silicon cantilever. Either the lens, or the cantilever (or both) can be coated with the species of interest. When the lens is brought close to the cantilever surface, the force of interaction causes the cantilever to bend. By measuring the deflection as a function of the distance between the lens and cantilever, the long-range interactions between the two surfaces can be determined. Our approach includes three important innovations. First, a commercial lens with a radius of ~ 1 cm is used for one surface. The relatively large radius of curvature enhances force sensitivity of the method. Second, we use optical interference (Newton's Rings) to determine the distance between lens and cantilever with ~ 1 nm accuracy. Third, we make use of thin crystalline cantilevers (100 μm thick) whose elastic properties can be easily measured. We have achieved a force sensitivity F / R better than 0.001 mN/m. I will discuss the theory of operation of the new instrument and describe measurements made on SiO2 and metal oxide surfaces in water.

  10. Drag force and surface roughness measurements on freshwater biofouled surfaces.

    PubMed

    Andrewartha, J; Perkins, K; Sargison, J; Osborn, J; Walker, G; Henderson, A; Hallegraeff, G

    2010-05-01

    The detrimental effect of biofilms on skin friction for near wall flows is well known. The diatom genera Gomphonema and Tabellaria dominated the biofilm mat in the freshwater open channels of the Tarraleah Hydropower Scheme in Tasmania, Australia. A multi-faceted approach was adopted to investigate the drag penalty for biofouled 1.0 m x 0.6 m test plates which incorporated species identification, drag measurement in a recirculating water tunnel and surface characterisation using close-range photogrammetry. Increases in total drag coefficient of up to 99% were measured over clean surface values for biofouled test plates incubated under flow conditions in a hydropower canal. The effective roughness of the biofouled surfaces was found to be larger than the physical roughness; the additional energy dissipation was caused in part by the vibration of the biofilms in three-dimensions under flow conditions. The data indicate that there was a roughly linear relationship between the maximum peak-to-valley height of a biofilm and the total drag coefficient.

  11. Young's moduli of surface-bound liposomes by atomic force microscopy force measurements.

    PubMed

    Brochu, Heïdi; Vermette, Patrick

    2008-03-01

    Mechanical properties of layers of intact liposomes attached by specific interactions on solid surfaces were studied by atomic force microscopy (AFM) force measurements. Force-distance measurements using colloidal probe tips were obtained over liposome layers and used to calculate Young's moduli by using the Hertz contact theory. A classical Hertz model and a modified Hertz one have been used to extract Young's moduli from AFM force curves. The modified model, proposed by Dimitriadis, is correcting for the finite sample thickness since Hertz's classical model is assuming that the sample is infinitely thick. Values for Young's moduli of 40 and 8 kPa have been obtained using the Hertz model for one and three layers of intact liposomes, respectively. Young's moduli of approximately 3 kPa have been obtained using the corrected Hertz model for both one and three layers of surface-bound liposomes. Compression work performed by the colloidal probe to compress these liposome layers has also been calculated.

  12. Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers.

    PubMed

    Schäffer, Erik; Nørrelykke, Simon F; Howard, Jonathon

    2007-03-27

    Optical tweezers are widely used to measure molecular forces in biology. Such measurements are often influenced by a nearby surface that can perturb both the calibration of the tweezers as well as the hydrodynamic forces acting on microspheres to which the biomolecules are attached. In this study, we have used a very stable optical tweezers setup employing a recently developed calibration method (Tolić-Nørrelykke, S. F.; Schäffer, E.; Howard, J.; Pavone, F. S.; Jülicher, F.; Flyvbjerg, H. Rev. Sci. Instrum. 2006, 77 (10), 103101) to determine how the calibration of the tweezers and the forces on the microspheres depend on the height above the surface. We show that the displacement sensitivity of the tweezers is modulated by a standing light wave between the microsphere and the surface. We measured the dependence of the drag coefficient on height and compared it to exact and closed-form solutions to the Navier-Stokes equations. Also, we measured the surface force gradients in different salt solutions and for different surface blocking methods. For a given blocking method, our data suggest that microspheres can experience attractive and/or repulsive forces close to surfaces. For example, a Teflon layer reduces attractive interactions, and the presence of casein can lead to long-range repulsive interactions. These measurements are a prerequisite for the accurate measurement of normal forces with respect to an interface that occur in biological molecules held between surfaces.

  13. Global Aerosol Radiative Forcing using Satellite and Surface Measurements

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Christopher, S. A.

    2007-12-01

    Over the industrial period, aerosols have increased due to human activities and their effects on climate are the largest source of uncertainty in the current IPCC estimates of global climate forcing due to human activities. Inhomogeneous distribution of aerosols in space and time poses a challenge in their characterization and requires global measurements to assess their effects and reduce the associated uncertainties. In this paper we use global measurements from both satellite and ground based observations for one year time period to estimate the shortwave aerosol radiative forcing (SWARF) at the top-of-atmosphere (TOA) and discuss the associated uncertainties. For this, aerosol properties (optical depth) derived from AErosol RObotic NETwork (AERONET), a federation of ground-based remote sensing instruments, are used in this paper in conjunction with measurements of the TOA shortwave flux from CERES instrument (onboard Terra satellite). High spectral and spatial resolution observations from Imager (MODIS) will be used to identify clear sky conditions within CERES foot print and GOCART results will also be used for separating aerosol types. Global aerosol forcing and corresponding radiative forcing efficiencies will be presented as a function of major aerosol types [including anthropogenic (sulfate, soot, black carbon) and natural (dust) aerosols], region and season. This study should serve as a useful constraint for both numerical modeling simulations and satellite based estimates of SWARF.

  14. Global Aerosol Radiative Forcing Using Satellite and Surface Measurements

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Christopher, S. A.

    2008-05-01

    Over the industrial period, aerosols have increased due to human activities and their effects on climate are the largest source of uncertainty in the current IPCC estimates of global climate forcing due to human activities. Inhomogeneous distribution of aerosols in space and time poses a challenge in characterizing their properties and requires global measurements to assess their effects and reduce the associated uncertainties. In this paper we use global measurements from both satellite and ground based observations for one year time period to estimate the shortwave aerosol radiative forcing (SWARF) at the top-of-atmosphere (TOA) and discuss the associated uncertainties. For this, aerosol properties (optical depth) derived from AErosol RObotic NETwork (AERONET), a federation of ground-based remote sensing instruments, are used in this paper in conjunction with measurements of the TOA shortwave flux from CERES instrument (onboard Terra satellite). High spectral and spatial resolution observations from Imager (MODIS) is used to identify clear sky conditions within CERES foot print and GOCART results will also be used for separating aerosol types. Global aerosol forcing and corresponding radiative forcing efficiencies will be presented as a function of major aerosol types [including anthropogenic (sulfate, soot, black carbon) and natural (dust) aerosols], region and season. This study should serve as a useful constraint for both numerical modeling simulations and satellite based estimates of SWARF.

  15. Kelvin probe force microscopy of metallic surfaces used in Casimir force measurements

    NASA Astrophysics Data System (ADS)

    Behunin, R. O.; Dalvit, D. A. R.; Decca, R. S.; Genet, C.; Jung, I. W.; Lambrecht, A.; Liscio, A.; López, D.; Reynaud, S.; Schnoering, G.; Voisin, G.; Zeng, Y.

    2014-12-01

    Kelvin probe force microscopy at normal pressure was performed by two different groups on the same Au-coated planar sample used to measure the Casimir interaction in a sphere-plane geometry. The obtained voltage distribution was used to calculate the separation dependence of the electrostatic pressure Pres(D ) in the configuration of the Casimir experiments. In the calculation it was assumed that the potential distribution in the sphere has the same statistical properties as the measured one, and that there are no correlation effects on the potential distributions due to the presence of the other surface. The result of this calculation, using the currently available knowledge, is that Pres(D ) does not explain the magnitude or the separation dependence of the difference Δ P (D ) between the measured Casimir pressure and the one calculated using a Drude model for the electromagnetic response of Au. We discuss in the conclusions the points which have to be checked out by future work, including the influence of pressure and a more accurate determination of the patch distribution, in order to confirm these results.

  16. Surface force measurements and simulations of mussel-derived peptide adhesives on wet organic surfaces

    PubMed Central

    Levine, Zachary A.; Rapp, Michael V.; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H.; Mittal, Jeetain; Waite, J. Herbert; Israelachvili, Jacob N.; Shea, Joan-Emma

    2016-01-01

    Translating sticky biological molecules—such as mussel foot proteins (MFPs)—into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue’s molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces. PMID:27036002

  17. Surface force measurements and simulations of mussel-derived peptide adhesives on wet organic surfaces.

    PubMed

    Levine, Zachary A; Rapp, Michael V; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H; Mittal, Jeetain; Waite, J Herbert; Israelachvili, Jacob N; Shea, Joan-Emma

    2016-04-19

    Translating sticky biological molecules-such as mussel foot proteins (MFPs)-into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue's molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces.

  18. Probing surface charge potentials of clay basal planes and edges by direct force measurements.

    PubMed

    Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe

    2008-11-18

    The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the

  19. Simultaneous measurement of human joint force, surface electromyograms, and functional MRI-measured brain activation.

    PubMed

    Liu, J Z; Dai, T H; Elster, T H; Sahgal, V; Brown, R W; Yue, G H

    2000-08-15

    Functional magnetic resonance imaging (fMRI) has been increasingly used in studying human brain function given its non-invasive feature and good spatial resolution. However, difficulties in acquiring data from peripheral (e.g. information from muscle) during fMRI studies of motor function hinder interpretation of fMRI data and designing more sophisticated investigations. Here we describe a system that was designed to concurrently measure handgrip force, surface electromyograms (EMG) of finger flexor and extensor muscles, and fMRI of human brain. The system included a pressure transducer built in a hydraulic environment, a heavily shielded EMG recording element, and a visual feedback structure for online monitoring of force and/or EMG signal, by the subject positioned in the scanner during an fMRI experiment. System evaluation and subsequent fMRI motor function studies have indicated that by using this system, high quality force and EMG signals can be recorded without sacrificing the quality of the fMRI data. PMID:10967361

  20. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    NASA Astrophysics Data System (ADS)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  1. Hydrodynamic drag-force measurement and slip length on microstructured surfaces.

    PubMed

    Maali, A; Pan, Y; Bhushan, B; Charlaix, E

    2012-06-01

    In this paper, a drainage experiment of water between a borosilicate sphere and a microstructured surface constituted by regularly spaced pillars is presented. The microstructured surface has two parts: on one part the liquid forms a Cassie interface and on the second it forms a Wenzel interface. The measured hydrodynamic drag force is larger on the Cassie part compared to the Wenzel part. Furthermore, for the Cassie part, from the hydrodynamic drag force measurements on a pillar and between pillars the corresponding local slip lengths have been extracted. The area average slip length on the surface is in agreement with the value expected by Philip's equation.

  2. Preparing contamination-free mica substrates for surface characterization, force measurements, and imaging.

    PubMed

    Israelachvili, Jacob N; Alcantar, Norma A; Maeda, Nobuo; Mates, Thomas E; Ruths, Marina

    2004-04-27

    Due to its perfect cleavage that provides large areas of molecularly smooth, chemically inert surfaces, mica is the most commonly used natural substrate in measurements with the surface forces apparatus (SFA), in atomic force microscopy (AFM), and in many adsorption studies. However, preparing mica surfaces that are truly clean is not easy since mica is a high-energy surface that readily adsorbs water, organic contaminants, and gases from the atmosphere. Mica can also become charged on cleaving, which makes it prone to picking up oppositely charged particles or mica flakes from the surroundings. High refractive index particles, such as metals, will adhere to mica through van der Waals forces. Recent articles have demonstrated that particle contamination is obtained when inappropriate cutting and handling procedures for the mica are used. In this paper, we show that both particle and other critical contamination is easy to detect and provide proper steps to take during the sample preparation process. PMID:15875391

  3. Influence of surface penetration on measured fluid force on a hand model.

    PubMed

    Kudo, Shigetada; Vennell, Ross; Wilson, Barry; Waddell, Neil; Sato, Yohei

    2008-12-01

    The purpose of this study was to quantify the effect of wave drag due to surface penetration on drag and lift forces (C(d) and C(l)) acting on a hand model. The values of C(d) and C(l) had been acquired to gain the hydrodynamic characteristics of the swimmer's hand and predict force on the swimmer's hand. These values have also been used to benchmark computational fluid dynamics analysis. Because the previous studies used a hand/forearm model which penetrated the water's surface, the values of C(d) and C(l) include the effect of the surface wave on the model. Wave formation causes pressure differences between the frontal and rear sides of a surface-penetrating model as a result of depressions and elevations in the water's surface. This may be considered as wave drag due to surface penetration. Fluid forces due to wave drag on the forearm should not be included in the measured C(d) and C(l) of a swimmer's hand that does not sweep near the water's surface. Two hand/forearm models are compared, one with the hand rigidly connected to the forearm. The other model was constructed to isolate the fluid forces acting on the hand from the influence of wave drag on the forearm. The measurements showed that the effect of wave drag on the hand model caused large increases in the values of C(d), up to 46-98% with lesser increases in C(l) of 2-12% depending on the hand orientation. The present study provides an improved method to determine the values of C(d) and C(l) that eliminates the effect of wave drag on a hand/forearm model by isolating the measurement of fluid forces on the forearm of the hand/forearm model in order to separately acquire the forces on the hand.

  4. Impact force measurement of a spherical body dropping onto a water surface.

    PubMed

    Araki, R; Takita, A; Ishima, T; Kawashima, H; Pornsuwancharoen, N; Punthawanunt, S; Carcasona, E; Fujii, Y

    2014-07-01

    We propose a method for measuring the impact force of a spherical body dropping onto a water surface. The velocity of the center of gravity of a metal spherical body, in which a cube corner prism is embedded so that its optical center coincides with the center of gravity of the sphere, is accurately measured using an optical interferometer. The acceleration, displacement, and inertial force of the sphere are calculated from the velocity. The sphere is also observed using a high-speed camera. The uncertainty in measuring the instantaneous value of the impact force with a sampling interval of approximately 1 ms is estimated to be 8 mN, which corresponds to 0.8% of the maximum force of approximately 1.0 N.

  5. Interactions of biopolymers with silica surfaces: Force measurements and electronic structure calculation studies

    NASA Astrophysics Data System (ADS)

    Kwon, Kideok D.; Vadillo-Rodriguez, Virginia; Logan, Bruce E.; Kubicki, James D.

    2006-08-01

    Pull-off forces were measured between a silica colloid attached to an atomic force microscope (AFM) cantilever and three homopolymer surfaces representing constituents of extracellular polymeric substances (EPS). The pull-off forces were -0.84 (±0.16), -0.68 (±0.15), and -2.37 (±0.31) nN as measured in water for dextran, phosphorylated dextran, and poly- L-lysine, respectively. Molecular orbital and density functional theory methods (DFT) were applied to analyze the measured pull-off forces using dimer clusters representing interactions between the three polymers and silica surfaces. Binding energies for each dimer were calculated with basis set superposition error (BSSE) and interpolated using corrections for silica surface hydroxyl density and silica charge density. The binding energies were compared with the normalized pull-off forces with the effective silica surface area contacting the polymer surfaces. The predicted binding energies at a -0.064 C/m 2 silica surface charge density corresponding to circum-neutral pH were -0.055, -0.029, and -0.338 × 10 -18 J/nm 2 for the dimers corresponding to the silica surface with dextran, phosphorylated dextran, and poly- L-lysine, respectively. Polarizable continuum model (PCM) calculations with different solvents, silanol vibrational frequency calculations, and orbital interaction analysis based on natural bonding orbital (NBO) showed that phosphate groups formed stronger H-bonds with neutral silanols than hydroxyl and amino functional groups of polymers, implying that phosphate containing polymers would play important roles in EPS binding to silica surfaces.

  6. Measurement of surface adhesion force of adhesion promoter and release layer for UV-nanoimprint lithography.

    PubMed

    Choi, Dae-Geun; Lee, Dong-Il; Kim, Ki-Don; Jeong, Jun-Ho; Choi, Jun-Hyuk; Lee, Eung-Sug

    2009-02-01

    In this work, we investigated the effect of surface treatment as release layer and adhesion promoter for UV-Nanoimprint lithography and measured the surface adhesion force by using tensile separation force of Instron equipment. Several Self-Assembled Monolayers (SAMs) of 3-Acryloxypropyl methyl dichlorosilane (APMDS) 3-Aminopropyl-triethoxysilane (APTS), and 3-Glycidoxypropyltrimethoxysilane (GPTS) as adhesion promoters and (1H,1H,2H,2H-perfluorooctyl)trichlorosilane (FOTS) as release layer were fabricated by vapor deposition method and were compared with oxygen plasma treatment. APMDS could strongly improve the adhesion force between UV-curable acrylate resin and silicon substrate because of strong covalent bonding. Finally, we could successfully fabricate various imprint patterns by using proper surface treatment of SAMs.

  7. Mixed-SAM surfaces monitoring CTX-protein part I: Using atomic force microscope measurements.

    PubMed

    Chang, Joe-Ming; Tseng, Fan-Gang; Chieng, Ching-Chang

    2010-12-01

    Fast and efficient detection of Cobra cardiotoxin (CTX) protein molecules on biochip surfaces is an example of application in biotechnology. One potential application of mixed self assembled monolayers (SAMs) as chip surfaces yield different binding affinities of the CTX proteins, a series of studies on the interaction force between CTX proteins and the mixed SAMs surfaces formed from mixtures of two thiols with the same/different chain lengths and/or with the same/different terminal groups will be investigated. In these dual papers, the mixed SAMs of n-alkinethiol SAMs of different chain lengths are chosen as the first examples of this series due to the simple functions of the mixed SAMs surface structure. Thus, the adhesion force measurements of CTX protein molecules on mixed SAMs of n-alkinethiol SAMs of different chain lengths: 1-decanethiol (C9) and 1-hexanethiol (C5) with different mixing ratios are developed and conducted using atomic force microscope (AFM). There are two major tasks in Part I of the dual papers: the development of the AFM measurements providing reliable information, and selection of the surface with highest binding affinity among this mixed SAMs group. Results indicate that the adhesion forces for CTX protein molecules on mixed SAMs with mixing ratio (χ(C9)) of 0.25, 0.5, 0.75 and 1, are 1.26, 1.8, 1.38, and 1.25 folds respectively, compared with the adhesion force of CTX protein molecules on the C5 surface only. Therefore, the SAM surfaces of χ(C9) = 0.5 is the best choice as a biomaterial sensor of this group of mixed SAMs because the strongest binding force and highest efficiency. Effects of the loading force of the AFM operation, the radius of curvature of the AFM tip, and the AFM tip endurance as well as control experiments were examined to ensure the quantitative determination of adhesion force for AFM measurement. The physical mechanism of protein adsorption on SAM surfaces will be studied and analyzed by molecular dynamics (MD

  8. Surface summertime radiative forcing by shallow cumuli at the Atmospheric Radiation Measurement Southern Great Plains site

    SciTech Connect

    Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Mills Jr., David L.

    2011-01-08

    Although shallow cumuli are common over large areas of the globe, their impact on the surface radiative forcing has not been carefully evaluated. This study addresses this shortcoming by analyzing data from days with shallow cumuli collected over eight summers (2000-2007) at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (collectively ACRF) Southern Great Plains site. During periods with clouds, the average shortwave and longwave radiative forcings are 45.5 W m-2 and +11.6 W m-2, respectively. The forcing has been defined so that a negative (positive) forcing indicates a surface cooling (warming). On average, the shortwave forcing is negative, however, instances with positive shortwave forcing are observed approximately 20% of the time. These positive values of shortwave forcing are associated with three-dimensional radiative effects of the clouds. The three-dimensional effects are shown to be largest for intermediate cloud amounts. The magnitude of the three-dimensional effects decreased with averaging time, but it is not negligibly small even for large averaging times as long as four hours.

  9. Determination of anisotropic surface characteristics of different phyllosilicates by direct force measurements.

    PubMed

    Yan, Lujie; Englert, Alexandre H; Masliyah, Jacob H; Xu, Zhenghe

    2011-11-01

    To fundamentally understand the electrokinetic behavior of clay minerals, it is necessary to study the anisotropic surface charge properties of clay surfaces. In this study, two 2:1 layer natural minerals, talc and muscovite, were chosen as representatives of magnesium and aluminum phyllosilicate minerals, respectively. The molecularly smooth basal planes of both platy minerals were obtained by cleavage along the basal planes, while suitable edge surfaces were prepared by an ultramicrotome cutting technique. Silicon nitride atomic force microscopy tip was used as a probe to study the interaction forces between the tip and clay basal/edge surfaces in aqueous solutions of various pH values. The measured interaction force profiles between the tip and clay basal/edge surfaces were fitted with the classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, which allows direct determination of electrical surface potential of talc and muscovite surfaces. The surface potential of muscovite basal planes was found to be significantly more negative than the basal plane of talc, both being pH insensitive. In contrast, the surface potential of edge surfaces was highly pH-dependent, exhibiting a point of zero charge (PZC) at pH 7.5 and 8.1 for edges of muscovite and talc, respectively. The observed differences in surface potential of basal planes and edge surfaces for both talc and muscovite are closely related to their crystal structure and ionization characteristics. The protonation reactivity and the contribution of each surface group to the surface charging behavior are modeled using their protonation constants.

  10. Interaction and Viscoelastic Deformation of Polymeric Surfaces Measured with the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Attard, Phil

    2007-03-01

    Methods are described for the measurement and analysis of deformable surfaces with the atomic force microscope (AFM). It is shown how to obtain the zero of separation and how to calibrate the photo-diode for quantitative force measurement [1]. The properties of viscoelastic materials (relaxation times, Youngs moduli) may be extracted by modeling particular sorts of force measurements [2]. Results are shown for a biopolymer agar [3], and for a polyelectrolyte polydimethylsiloxane [4], both of which are viscoelastic, and for polystyrene, which is elastic [5]. The potential for using the AFM as a nanorheometer is discussed. [1] P. Attard, ``Friction, Adhesion, and Deformation: Dynamic Measurements with the Atomic Force Microscope'', J. Adhesion Sci. Technol. 16, 753--791 (2002). [2] P. Attard, ``Interaction and Deformation of Viscoelastic Particles. Non-adhesive Particles'', Phys. Rev. E 63, 061604 (2001) [3] J. W. G. Tyrrell and P. Attard, ``A Viscoelastic Study Using and Atomic Force Microscope Modified to Operate as a Nanorheometer'', Langmuir 19, 5254--5260 (2003) [4] G. S. Gillies, C. A. Prestidge, and P. Attard, ``An AFM Study of the Deformation and Nano-rheology of Cross-Linked PDMS Droplets'', Langmuir 18, 1674--1679 (2002) [5] M. W. Rutland, J. W. G. Tyrrell, and P. Attard, ``Analysis of Atomic Force Microscopy Data for Deformable Materials'', J. Adhesion Sci. Technol. 18, 1199--1216 (2004)

  11. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM

    SciTech Connect

    Zhang, Wen; Chen, Yongsheng

    2011-01-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite ( -Fe2 O3 ) and corundum ( -Al2 O3 ) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3 0.7 nN to 0.8 0.4 nN as hematite NPs increased from 26 nm to 98 nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson Kendall Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed.

  12. Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose.

    PubMed

    Cranston, Emily D; Gray, Derek G; Rutland, Mark W

    2010-11-16

    Polyelectrolyte multilayer films containing nanocrystalline cellulose (NCC) and poly(allylamine hydrochloride) (PAH) make up a new class of nanostructured composite with applications ranging from coatings to biomedical devices. Moreover, these materials are amenable to surface force studies using colloid-probe atomic force microscopy (CP-AFM). For electrostatically assembled films with either NCC or PAH as the outermost layer, surface morphology was investigated by AFM and wettability was examined by contact angle measurements. By varying the surrounding ionic strength and pH, the relative contributions from electrostatic, van der Waals, steric, and polymer bridging interactions were evaluated. The ionic cross-linking in these films rendered them stable under all solution conditions studied although swelling at low pH and high ionic strength was inferred. The underlying polymer layer in the multilayered film was found to dictate the dominant surface forces when polymer migration and chain extension were facilitated. The precontact normal forces between a silica probe and an NCC-capped multilayer film were monotonically repulsive at pH values where the material surfaces were similarly and fully charged. In contrast, at pH 3.5, the anionic surfaces were weakly charged but the underlying layer of cationic PAH was fully charged and attractive forces dominated due to polymer bridging from extended PAH chains. The interaction with an anionic carboxylic acid probe showed similar behavior to the silica probe; however, for a cationic amine probe with an anionic NCC-capped film, electrostatic double-layer attraction at low pH, and electrostatic double-layer repulsion at high pH, were observed. Finally, the effect of the capping layer was studied with an anionic probe, which indicated that NCC-capped films exhibited purely repulsive forces which were larger in magnitude than the combination of electrostatic double-layer attraction and steric repulsion, measured for PAH

  13. Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction.

    PubMed

    Baykara, Mehmet Z; Dagdeviren, Omur E; Schwendemann, Todd C; Mönig, Harry; Altman, Eric I; Schwarz, Udo D

    2012-01-01

    Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation.In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface.

  14. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces

    PubMed Central

    O'Dell, Dakota; Adam, Ian S.; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-01-01

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically “pushing” a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques. PMID:26855473

  15. Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus.

    PubMed

    Benz, Marcel; Chen, Nianhuan; Israelachvili, Jacob

    2004-10-01

    Hyaluronan is believed to have an important function in the boundary biolubrication of articular cartilage. Using a Surface Forces Apparatus, we tested the tribological properties of surface bound, rather than "free" hyaluronan. The grafting process of the polyelectrolyte included either a biological route via an HA-binding protein or a chemical reaction to covalently bind the polymer to a lipid bilayer coated surface. In another reaction, we constructed a surface with covalently grafted hylan (crosslinked hyaluronan). We studied the normal and shear forces between these surfaces. None of the systems demonstrated comparable lubrication to that found between cartilage surfaces except at very low loads. Both grafted hyaluronan and hylan generated coefficients of friction between 0.15 and 0.3. Thus, the polysaccharide, which is a constituent of the lamina splendens (outermost cartilage layer), is not expected to be the responsible molecule for the great lubricity of cartilage; however, it may contribute to the load bearing and wear protection of these surfaces. This was concluded from the results with hylan, where a thin gel layer was sufficient to shield the underlying surfaces from damage even at applied pressures of over 200 atmospheres during shear. Our study shows that a low coefficient of friction is not a requirement for, or necessarily a measure of, wear protection. PMID:15368250

  16. The Effect of Surface Contamination on Adhesive Forces as Measured by Contact Mechanics

    SciTech Connect

    EMERSON,JOHN A.; GIUNTA,RACHEL K.; MILLER,GREGORY V.; SORENSEN,CHRISTOPHER R.; PEARSON,RAYMOND A.

    2000-12-18

    The contact adhesive forces between two surfaces, one being a soft hemisphere and the other being a hard plate, can readily be determined by applying an external compressive load to mate the two surfaces and subsequently applying a tensile load to peel the surfaces apart. The contact region is assumed the superposition of elastic Hertzian pressure and of the attractive surface forces that act only over the contact area. What are the effects of the degree of surface contamination on adhesive forces? Clean aluminum surfaces were coated with hexadecane as a controlled contaminant. The force required to pull an elastomeric hemisphere from a surface was determined by contact mechanics, via the JKR model, using a model siloxane network for the elastomeric contact sphere. Due to the dispersive nature of the elastomer surface, larger forces were required to pull the sphere from a contaminated surface than a clean aluminum oxide surface.

  17. Non-additivity of molecule-surface van der Waals potentials from force measurements

    PubMed Central

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G.; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F. Stefan

    2014-01-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction. PMID:25424490

  18. Non-additivity of molecule-surface van der Waals potentials from force measurements.

    PubMed

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F Stefan

    2014-11-26

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  19. Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy.

    PubMed

    Li, Shengming; Zhou, Yusheng; Zi, Yunlong; Zhang, Gong; Wang, Zhong Lin

    2016-02-23

    Kelvin probe force microscopy (KPFM), a characterization method that could image surface potentials of materials at the nanoscale, has extensive applications in characterizing the electric and electronic properties of metal, semiconductor, and insulator materials. However, it requires deep understanding of the physics of the measuring process and being able to rule out factors that may cause artifacts to obtain accurate results. In the most commonly used dual-pass KPFM, the probe works in tapping mode to obtain surface topography information in a first pass before lifting to a certain height to measure the surface potential. In this paper, we have demonstrated that the tapping-mode topography scan pass during the typical dual-pass KPFM measurement may trigger contact electrification between the probe and the sample, which leads to a charged sample surface and thus can introduce a significant error to the surface potential measurement. Contact electrification will happen when the probe enters into the repulsive force regime of a tip-sample interaction, and this can be detected by the phase shift of the probe vibration. In addition, the influences of scanning parameters, sample properties, and the probe's attributes have also been examined, in which lower free cantilever vibration amplitude, larger adhesion between the probe tip and the sample, and lower cantilever spring constant of the probe are less likely to trigger contact electrification. Finally, we have put forward a guideline to rationally decouple contact electrification from the surface potential measurement. They are decreasing the free amplitude, increasing the set-point amplitude, and using probes with a lower spring constant.

  20. Drift reduction in a scanning electrostatic force microscope for surface profile measurement

    NASA Astrophysics Data System (ADS)

    Jia, Zhigang; Ito, So; Goto, Shigeaki; Hosobuchi, Keiichiro; Shimizu, Yuki; Gao, Wei

    2014-09-01

    The influence of drifts on the measurement results of an electrostatic force microscope (EFM) based on a dual-height method for surface profile measurement is analyzed. Two types of drifts and their influence on the EFM measurement are discussed by computer simulation. It is figured out that the mechanical drift has a larger impact compared to the resonance frequency drift for the specific EFM with the conventional round-trip scan mode. It is also verified that the profile reconstruction algorithm of the dual-height method for separating the electric property distribution and the surface profile of the surface has an effect of magnifying the drift error in the result of surface profile measurement, which is a much more significant measurement of uncertainty sources for the developed EFM compared with an ordinary scanning probe microscope (SPM). A new vertical reciprocating scan (VRS) mode is then employed to reduce the influences of the drifts. The feasibility of the VRS mode is demonstrated by computer simulation and measurement experiments with a diffraction grating.

  1. Non-additivity of molecule-surface van der Waals potentials from force measurements

    NASA Astrophysics Data System (ADS)

    Tautz, Stefan

    2014-03-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Their description as an inherently quantum mechanical phenomenon was developed for single atoms and homogeneous macroscopic bodies by London, Casimir, and Lifshitz. For intermediate-sized objects like organic molecules an atomistic description is required, but explicit first principles calculations are very difficult since correlations between many interacting electrons have to be considered. Hence, semi-empirical correction schemes are often used that simplify the vdW interaction to a sum over atom-pair potentials. A similar gap exists between successful measurements of vdW and Casimir forces for single atoms on the one hand and macroscopic bodies on the other, as comparable experiments for molecules are absent. I will present experiments in which long-range vdW potentials between a series of related molecules and a metal surface have been determined experimentally. The experiments rely on the extremely sensitive force detection of an atomic force microscope in combination with its molecular manipulation capabilities. The results allow us to confirm the asymptotic force law and to quantify the non-additive part of the vdW interaction which is particularly challenging for theory. In the present case, cooperative effects account for 10% of the total interaction. This effect is of general validity in molecules and thus relevant at the intersection of chemistry, physics, biology, and materials science.

  2. Measuring the van der Waals forces between a Rydberg atom and a metallic surface

    SciTech Connect

    Anderson, A.; Haroche, S.; Hinds, E.A.; Jhe, W.; Meschede, D.

    1988-05-01

    We have observed the deflection of Rydberg atoms towards a metallic surface by the van der Waals force. Cs and Na atoms in states of principal quantum number n were sent between two parallel gold-coated mirrors, spaced by a gap w (2.1 ..mu..mless than or equal towless than or equal to8.5 ..mu..m). We measured the value n/sub m/ at which the transmission cuts off and from the variation of n/sub m/ versus w, we obtained a measure of the atom-surface interaction. For 12

  3. Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Munday, Jeremy N.

    2016-06-01

    Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two common classes of topography-coupled artifacts are shown to be avoidable with H-KPFM. A second implementation of H-KPFM is also introduced, in which the voltage signal is amplified by the first cantilever resonance for enhanced sensitivity. The enhanced temporal resolution of H-KPFM can enable the imaging of many dynamic processes, such as such as electrochromic switching, phase transitions, and device degredation (battery, solar, etc), which take place over seconds to minutes and involve changes in electric potential at nanometer lengths.

  4. Defect localization in fibre-reinforced composites by computing external volume forces from surface sensor measurements

    NASA Astrophysics Data System (ADS)

    Binder, F.; Schöpfer, F.; Schuster, T.

    2015-02-01

    We suggest a prospective method for detecting and visualizing defects in fibre-reinforced composites by computing external volume forces from measurements acquired by sensors that are integrated on the surface of the structure. Anisotropic materials like carbon fibre-reinforced composites are widely used in light weight construction which can exhibit damages that are not optically detectable. The key idea of our method is the interpretation of defects in such structures as if they were induced by an external volume force. This idea is based on the observation that a propagating elastic wave interferes with a damaged area by reflecting the wave. In that sense a damage can be seen as an additional source. Thus identifying the external volume force which has caused this wave is supposed to reveal the location of the defect. This approach leads to the inverse problem of determining the inhomogeneity of a hyperbolic initial-boundary value problem. We tackle this ill-posed problem by minimizing a Tikhonov functional which takes the oberservation points of our surface measurements into account. In the article we address the solvability of the direct problem, state and analyze the PDE-based optimization problem that aims for computing the external force and develop a numerical realization of its solution using the conjugate gradient method. First numerical results for a simple model case with different sensor adjustments show that the defects in fact are detectable. In that sense this article might be seen as starting point of future research which should comprehend deeper numerical studies and analysis of the problem.

  5. Evading surface and detector frequency noise in harmonic oscillator measurements of force gradients

    NASA Astrophysics Data System (ADS)

    Moore, Eric W.; Lee, SangGap; Hickman, Steven A.; Harrell, Lee E.; Marohn, John A.

    2010-07-01

    We introduce and demonstrate a method of measuring small force gradients acting on a harmonic oscillator in which the force-gradient signal of interest is used to parametrically up-convert a forced oscillation below resonance into an amplitude signal at the oscillator's resonance frequency. The approach, which we demonstrate in a mechanically detected electron spin resonance experiment, allows the force-gradient signal to evade detector frequency noise by converting a slowly modulated frequency signal into an amplitude signal.

  6. A Graphene Surface Force Balance

    PubMed Central

    2014-01-01

    We report a method for transferring graphene, grown by chemical vapor deposition, which produces ultraflat graphene surfaces (root-mean-square roughness of 0.19 nm) free from polymer residues over macroscopic areas (>1 cm2). The critical step in preparing such surfaces involves the use of an intermediate mica template, which itself is atomically smooth. We demonstrate the compatibility of these model surfaces with the surface force balance, opening up the possibility of measuring normal and lateral forces, including friction and adhesion, between two graphene sheets either in contact or across a liquid medium. The conductivity of the graphene surfaces allows forces to be measured while controlling the surface potential. This new apparatus, the graphene surface force balance, is expected to be of importance to the future understanding of graphene in applications from lubrication to electrochemical energy storage systems. PMID:25171130

  7. A simple atomic force microscopy calibration method for direct measurement of surface energy on nanostructured surfaces covered with molecularly thin liquid films.

    PubMed

    Brunner, Ralf; Etsion, Izhak; Talke, Frank E

    2009-05-01

    A simple calibration method is described for the determination of surface energy by atomic force microscopy (AFM) pull-off force measurements on nanostructured surfaces covered with molecularly thin liquid films. The method is based on correlating pull-off forces measured in arbitrary units on a nanostructured surface with pull-off forces measured on macroscopically smooth dip-coated gauge surfaces with known surface energy. The method avoids the need for complex calibration of the AFM cantilever stiffness and the determination of the radius of curvature of the AFM tip. Both of the latter measurements are associated with indirect and less accurate measurements of surface energy based on various contact mechanics adhesion models.

  8. Surface EMG and intra-socket force measurement to control a prosthetic device

    NASA Astrophysics Data System (ADS)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  9. Surface force measurements between titanium dioxide surfaces prepared by atomic layer deposition in electrolyte solutions reveal non-DLVO interactions: influence of water and argon plasma cleaning.

    PubMed

    Walsh, Rick B; Evans, Drew; Craig, Vincent S J

    2014-03-01

    Surface force measurements between titania surfaces in electrolyte solutions have previously revealed an unexplained long-range repulsive force at high pH, not described by Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Here, the surface forces between titania surfaces produced by atomic layer deposition (ALD) and cleaned using a variety of methods have been measured to determine the influence of the cleaning protocol on the measured forces and test the hypothesis that water plasma cleaning of the surface results in non-DLVO forces at high pH. For argon plasma and water plasma cleaned surfaces, a diffuse double layer repulsion and van der Waals attraction is observed near the isoelectric point. At high pH, the force remained repulsive up until contact, and no van der Waals attraction or adhesion was observed. Differences in the measured forces are explained by modification of the surface chemistry during cleaning, which alters the density of charged groups on the surface, but this cannot explain the observed disagreement with DLVO theory at high pH. PMID:24548170

  10. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration

    SciTech Connect

    Andersson, Martin; Madgavkar, Ashwin; Stjerndahl, Maria; Wu, Yanrong; Tan, Weihong; Duran, Randy; Niehren, Stefan; Mustafa, Kamal; Arvidson, Kristina; Wennerberg, Ann

    2007-07-15

    Optical tweezers were used to study the interaction and attachment of human bone cells to various types of medical implant materials. Ideally, the implant should facilitate cell attachment and promote migration of the progenitor cells in order to decrease the healing time. It is therefore of interest, in a controlled manner, to be able to monitor the cell adhesion process. Results from such studies would help foresee the clinical outcome of integrating medical implants. The interactions between two primary cell culture models, human gingival fibroblasts and bone forming human osteoblast cells, and three different implant materials, glass, titanium, and hydroxyapatite, were studied. A novel type of optical tweezers, which has a newly designed quadrant detector and a powerful 3 W laser was constructed and force calibrated using two different methods: one method in which the stiffness of the optical trap was obtained by monitoring the phase lag between the trap and the moved object when imposing a forced oscillation on the trapped object and another method in which the maximum trapping force was derived from the critical velocity at which the object escapes the trap. Polystyrene beads as well as cells were utilized for the calibrations. This is the first time that cells have been used directly for these types of force calibrations and, hence, direct measurements of forces exerted on cells can be performed, thus avoiding the difficulties often encountered when translating the results obtained from cell measurements to the calibrations obtained with reference materials. This more straightforward approach represents an advantage in comparison to established methods.

  11. Measurement of the effect of playground surface materials on hand impact forces during upper limb fall arrests.

    PubMed

    Choi, Woochol J; Kaur, Harjinder; Robinovitch, Stephen N

    2014-04-01

    Distal radius fractures are common on playgrounds. Yet current guidelines for the selection of playground surface materials are based only on protection against fall-related head injuries. We conducted "torso release" experiments to determine how common playground surface materials affect impact force applied to the hand during upper limb fall arrests. Trials were acquired for falls onto a rigid surface, and onto five common playground surface materials: engineered wood fiber, gravel, mulch, rubber tile, and sand. Measures were acquired for arm angles of 20 and 40 degrees from the vertical. Playground surface materials influenced the peak resultant and vertical force (P<.001), but not the peak horizontal force (P=.159). When compared with the rigid condition, peak resultant force was reduced 17% by sand (from 1039 to 864 N), 16% by gravel, 7% by mulch, 5% by engineered wood fiber, and 2% by rubber tile. The best performing surface provided only a 17% reduction in peak resultant force. These results help to explain the lack of convincing evidence from clinical studies on the effectiveness of playground surface materials in preventing distal radius fractures during playground falls, and highlight the need to develop playground surface materials that provide improved protection against these injuries.

  12. Simultaneous measurements of molecular forces and electro-optical properties of a confined 5CB liquid crystal film using a surface forces apparatus.

    PubMed

    Kristiansen, Kai; Zeng, Hongbo; Zappone, Bruno; Israelachvili, Jacob N

    2015-04-01

    Using a surface forces apparatus (SFA), we studied the forces associated with the reorientation of molecules of a common nematic thermotropic liquid crystal, 4'-n-pentyl-4-cyanobiphenyl (5CB), confined between two conducting (silver) surfaces and its optical behavior under the influence of electric fields with varying magnitudes and field directions. A transient attractive force was observed due to partial reorientations of the liquid crystal molecules and the flow of free ions, in addition to a stronger constant capacitance attraction between the silver surfaces. At the same time, the optical properties of the liquid crystals were observed perpendicular to the silver surfaces. Observations of shifts and fluctuations of the extraordinary wave of the (multiple beam) interference fringes measure the refractive index of the director component parallel to the surface, which is sensitive to tilt motion (or reorientation) of the liquid crystal molecules that provided details of the anisotropic orientations of the molecules and domains. Any lateral differential refractive index change is easily observed by optical microscopy. The optical microscope imaging showed that the changes in the optical properties are due to convective flow at domain boundaries of the liquid crystal molecules (and possible free ions) between the two charged surfaces. At low electric fields, propagation of domain boundaries was observed, while at higher electric fields, hexagonal patterns of flowing molecules were observed. The interplay of the force measurements and optical observations reveal a complex dynamic behavior of liquid crystals subjected to varying electric fields in confined spaces.

  13. Measurement of the friction between single polystyrene nanospheres and silicon surface using atomic force microscopy.

    PubMed

    Guo, Dan; Li, Jingnan; Chang, Li; Luo, Jianbin

    2013-06-11

    In the present work, the individual nanoparticles have been manipulated on a silicon surface, using atomic force microscope (AFM) techniques. As a model system, near-spherical polystyrene nanoparticles with radii from 28.85 nm to 228.2 nm were deposited on a nanosmooth silicon wafer. Experiments demonstrated that when the normal force is above a threshold load, nanoparticles could steadily be pushed by the tip of the AFM along the defined pathway. The tests allow us to quantitatively study the interfacial friction between the nanoparticle and the surface. It was found that the friction could be affected by various factors such as the load, the particle size, and the surface treatment. The results showed that the friction between particles and substrate is proportional to the two-third power of the radius, which is in agreement with the Hertzian theory. It can also be seen that the ratio between the kinetic and the static friction was slightly changed from 0.3 to 0.6, depending on the size of the particles. However, the value of the ratio was little affected by other factors such as the particles' location, the tip normal force and the surface modification. The results provided new insights into the intriguing friction phenomenon on the nanoscale.

  14. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity.

    PubMed

    Shi, Chen; Cui, Xin; Xie, Lei; Liu, Qingxia; Chan, Derek Y C; Israelachvili, Jacob N; Zeng, Hongbo

    2015-01-27

    A combination of atomic force microscopy (AFM) and reflection interference contrast microscopy (RICM) was used to measure simultaneously the interaction force and the spatiotemporal evolution of the thin water film between a bubble in water and mica surfaces with varying degrees of hydrophobicity. Stable films, supported by the repulsive van der Waals-Casimir-Lifshitz force were always observed between air bubble and hydrophilic mica surfaces (water contact angle, θ(w) < 5°) whereas bubble attachment occurred on hydrophobized mica surfaces. A theoretical model, based on the Reynolds lubrication theory and the augmented Young-Laplace equation including the effects of disjoining pressure, provided excellent agreement with experiment results, indicating the essential physics involved in the interaction between air bubble and solid surfaces can be elucidated. A hydrophobic interaction free energy per unit area of the form: WH(h) = -γ(1 - cos θ(w))exp(-h/D(H)) can be used to quantify the attraction between bubble and hydrophobized solid substrate at separation, h, with γ being the surface tension of water. For surfaces with water contact angle in the range 45° < θ(w) < 90°, the decay length DH varied between 0.8 and 1.0 nm. This study quantified the hydrophobic interaction in asymmetric system between air bubble and hydrophobic surfaces, and provided a feasible method for synchronous measurements of the interaction forces with sub-nN resolution and the drainage dynamics of thin films down to nm thickness.

  15. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity.

    PubMed

    Shi, Chen; Cui, Xin; Xie, Lei; Liu, Qingxia; Chan, Derek Y C; Israelachvili, Jacob N; Zeng, Hongbo

    2015-01-27

    A combination of atomic force microscopy (AFM) and reflection interference contrast microscopy (RICM) was used to measure simultaneously the interaction force and the spatiotemporal evolution of the thin water film between a bubble in water and mica surfaces with varying degrees of hydrophobicity. Stable films, supported by the repulsive van der Waals-Casimir-Lifshitz force were always observed between air bubble and hydrophilic mica surfaces (water contact angle, θ(w) < 5°) whereas bubble attachment occurred on hydrophobized mica surfaces. A theoretical model, based on the Reynolds lubrication theory and the augmented Young-Laplace equation including the effects of disjoining pressure, provided excellent agreement with experiment results, indicating the essential physics involved in the interaction between air bubble and solid surfaces can be elucidated. A hydrophobic interaction free energy per unit area of the form: WH(h) = -γ(1 - cos θ(w))exp(-h/D(H)) can be used to quantify the attraction between bubble and hydrophobized solid substrate at separation, h, with γ being the surface tension of water. For surfaces with water contact angle in the range 45° < θ(w) < 90°, the decay length DH varied between 0.8 and 1.0 nm. This study quantified the hydrophobic interaction in asymmetric system between air bubble and hydrophobic surfaces, and provided a feasible method for synchronous measurements of the interaction forces with sub-nN resolution and the drainage dynamics of thin films down to nm thickness. PMID:25514470

  16. Force-Measuring Clamps

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark

    2003-01-01

    Force-measuring clamps have been invented to facilitate and simplify the task of measuring the forces or pressures applied to clamped parts. There is a critical need to measure clamping forces or pressures in some applications for example, while bonding sensors to substrates or while clamping any sensitive or delicate parts. Many manufacturers of adhesives and sensors recommend clamping at specific pressures while bonding sensors or during adhesive bonding between parts in general. In the absence of a force-measuring clamp, measurement of clamping force can be cumbersome at best because of the need for additional load sensors and load-indicating equipment. One prior method of measuring clamping force involved the use of load washers or miniature load cells in combination with external power sources and load-indicating equipment. Calibrated spring clamps have also been used. Load washers and miniature load cells constitute additional clamped parts in load paths and can add to the destabilizing effects of loading mechanisms. Spring clamps can lose calibration quickly through weakening of the springs and are limited to the maximum forces that the springs can apply. The basic principle of a force-measuring clamp can be implemented on a clamp of almost any size and can enable measurement of a force of almost any magnitude. No external equipment is needed because the component(s) for transducing the clamping force and the circuitry for supplying power, conditioning the output of the transducers, and displaying the measurement value are all housed on the clamp. In other words, a force-measuring clamp is a complete force-application and force-measurement system all in one package. The advantage of unitary packaging of such a system is that it becomes possible to apply the desired clamping force or pressure with precision and ease.

  17. A method for the direct measurement of surface tension of collected atmospherically relevant aerosol particles using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hritz, Andrew D.; Raymond, Timothy M.; Dutcher, Dabrina D.

    2016-08-01

    Accurate estimates of particle surface tension are required for models concerning atmospheric aerosol nucleation and activation. However, it is difficult to collect the volumes of atmospheric aerosol required by typical instruments that measure surface tension, such as goniometers or Wilhelmy plates. In this work, a method that measures, ex situ, the surface tension of collected liquid nanoparticles using atomic force microscopy is presented. A film of particles is collected via impaction and is probed using nanoneedle tips with the atomic force microscope. This micro-Wilhelmy method allows for direct measurements of the surface tension of small amounts of sample. This method was verified using liquids, whose surface tensions were known. Particles of ozone oxidized α-pinene, a well-characterized system, were then produced, collected, and analyzed using this method to demonstrate its applicability for liquid aerosol samples. It was determined that oxidized α-pinene particles formed in dry conditions have a surface tension similar to that of pure α-pinene, and oxidized α-pinene particles formed in more humid conditions have a surface tension that is significantly higher.

  18. Measurement of interaction forces between fibrinogen coated probes and mica surface with the atomic force microscope: The pH and ionic strength effect.

    PubMed

    Tsapikouni, Theodora S; Allen, Stephanie; Missirlis, Yannis F

    2008-01-01

    The study of protein-surface interactions is of great significance in the design of biomaterials and the evaluation of molecular processes in tissue engineering. The authors have used atomic force microscopy (AFM) to directly measure the force of attraction/adhesion of fibrinogen coated tips to mica surfaces and reveal the effect of the surrounding solution pH and ionic strength on this interaction. Silica colloid spheres were attached to the AFM cantilevers and, after plasma deposition of poly(acrylic acid), fibrinogen molecules were covalently bound on them with the help of the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in the presence of N-hydroxysulfosuccinimide (sulfo-NHS). The measurements suggest that fibrinogen adsorption is controlled by the screening of electrostatic repulsion as the salt concentration increases from 15 to 150 mM, whereas at higher ionic strength (500 mM) the hydration forces and the compact molecular conformation become crucial, restricting adsorption. The protein attraction to the surface increases at the isoelectric point of fibrinogen (pH 5.8), compared with the physiological pH. At pH 3.5, apart from fibrinogen attraction to the surface, evidence of fibrinogen conformational changes is observed, as the pH and the ionic strength are set back and forth, and these changes may account for fibrinogen aggregation in the protein solution at this pH.

  19. Measurement of the Casimir force between a spherical gold tip and Si(111)-(7 × 7) surfaces

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki; Higashino, Kazuhiko; Sueoka, Kazuhisa

    2016-08-01

    We have performed the measurement of Casimir force between a spherical Au tip and an atomically flat Si(111)-(7 × 7) surface at tip–sample distances ranging from 15 to 50 nm in an ultrahigh vacuum of 1.5 × 10‑8 Pa by frequency-modulation atomic force microscopy. Atomically flat Si(111) surfaces provided by the ultrahigh-vacuum condition and a degassed Au tip reduce the contact potential difference that must be compensated. These experimental conditions led to the elucidation of the distance dependence of the Casimir force down to the distance of 15 nm. The observed distance dependence still follows a theory provided by Chen et al. [Phys. Rev. A 74, 022103 (2006)] within these distances.

  20. Atomic force microscopy of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand

    NASA Astrophysics Data System (ADS)

    Kane, D. M.; Naidoo, N.; Staib, G. R.

    2010-10-01

    Atomic force microscopy (AFM) study is used to measure the surface topology and roughness of radial and capture spider silks on the micro- and nanoscale. This is done for silks of the orb weaver spider Argiope keyserlingi. Capture silk has a surface roughness that is five times less than that for radial silk. The capture silk has an equivalent flatness of λ /100 (5-6 nm deep surface features) as an optical surface. This is equivalent to a very highly polished optical surface. AFM does show the number of silk fibers that make up a silk thread but geometric distortion occurs during sample preparation. This prevented AFM from accurately measuring the silk topology on the microscale in this study.

  1. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  2. Effect of the charge and roughness of surfaces on normal and friction forces measured in aqueous solutions.

    PubMed

    McNamee, Cathy E; Higashitani, Ko

    2013-04-23

    We used the atomic force microscope (AFM) to determine how the roughness and charge on a surface affect the adhesion and friction when measured against a smooth surface (colloid probe) in an aqueous solution. The effect of roughness was investigated by coating TiO2 crystal substrates with TiO2 nano- or micro-sized particles, where an increase in the particle size increased the RMS roughness of the substrate. The charge of the substrate was varied by changing the pH of the aqueous solution. Force-separation curves and friction-load data were measured for the smooth colloid probe-rough substrate systems. The adhesion and friction between two surfaces in solution were seen to depend on the surface charge and roughness. A noncharged surface gave the greatest adhesion, while a charged surface gave weaker adhesions. Increasing the roughness of the surface resulted in a stronger adhesion. The magnitude and range of the adhesions were not affected by the measuring velocity in the case of a noncharged substrate but decreased with an increasing velocity for charged surfaces. The friction was seen not to depend on roughness in the case of a noncharged surface. However, in the case of a charged surface, the friction decreased with an increased roughness for low loads and then showed no dependence on the surface roughness for high loads. The results of this experiment show that the adhesion and friction of a system can be decreased via the roughness and charge of the substrate and the ion types in the solution.

  3. Forces between blank surfaces as measured by the colloidal probe technique and by optical tweezers--a comparison.

    PubMed

    Elmahdy, Mahdy M; Drechsler, Astrid; Gutsche, Christof; Synytska, Alla; Uhlmann, Petra; Kremer, Friedrich; Stamm, Manfred

    2009-11-17

    The well-established atomic force microscopy (AFM)-based colloidal probe technique (CPT) and optical tweezers (OT) are combined to measure the interaction forces between blank SiO(2) surfaces in aqueous ionic solutions (CaCl(2)) of varying concentration at pH 7. Spherical colloids (SiO(2), diameter approximately 4.63 +/- 0.05 microm) taken out of the same batch are used by both methods. In the case of CPT, a single colloid is glued to a cantilever, and the interaction forces with a plain SiO(2) surface are determined in dependence on the concentration of the surrounding medium. For the OT studies, two colloids (one fixed to a micropipet by capillary action, the other held with the optical trap) are approached to each other in nanometer steps, and the resulting forces are measured for the same media as in the CPT experiment. Both techniques fit well to each other and enable one to cover interaction energies ranging from 10(-5) to 1 mN/m. The experimental data are well described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory revealing that the effective surface charge density changes slightly with concentration.

  4. Oriented covalent immobilization of antibodies for measurement of intermolecular binding forces between zipper-like contact surfaces of split inteins.

    PubMed

    Sorci, Mirco; Dassa, Bareket; Liu, Hongwei; Anand, Gaurav; Dutta, Amit K; Pietrokovski, Shmuel; Belfort, Marlene; Belfort, Georges

    2013-06-18

    In order to measure the intermolecular binding forces between two halves (or partners) of naturally split protein splicing elements called inteins, a novel thiol-hydrazide linker was designed and used to orient immobilized antibodies specific for each partner. Activation of the surfaces was achieved in one step, allowing direct intermolecular force measurement of the binding of the two partners of the split intein (called protein trans-splicing). Through this binding process, a whole functional intein is formed resulting in subsequent splicing. Atomic force microscopy (AFM) was used to directly measure the split intein partner binding at 1 μm/s between native (wild-type) and mixed pairs of C- and N-terminal partners of naturally occurring split inteins from three cyanobacteria. Native and mixed pairs exhibit similar binding forces within the error of the measurement technique (~52 pN). Bioinformatic sequence analysis and computational structural analysis discovered a zipper-like contact between the two partners with electrostatic and nonpolar attraction between multiple aligned ion pairs and hydrophobic residues. Also, we tested the Jarzynski's equality and demonstrated, as expected, that nonequilibrium dissipative measurements obtained here gave larger energies of interaction as compared with those for equilibrium. Hence, AFM coupled with our immobilization strategy and computational studies provides a useful analytical tool for the direct measurement of intermolecular association of split inteins and could be extended to any interacting protein pair.

  5. Evidence for water structuring forces between surfaces

    SciTech Connect

    Stanley, Christopher B; Rau, Dr. Donald

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  6. Extracting local surface charges and charge regulation behavior from atomic force microscopy measurements at heterogeneous solid-electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Cunlu; Ebeling, Daniel; Siretanu, Igor; van den Ende, Dirk; Mugele, Frieder

    2015-10-01

    We present a method to determine the local surface charge of solid-liquid interfaces from Atomic Force Microscopy (AFM) measurements that takes into account shifts of the adsorption/desorption equilibria of protons and ions as the cantilever tip approaches the sample. We recorded AFM force distance curves in dynamic mode with sharp tips on heterogeneous silica surfaces partially covered by gibbsite nano-particles immersed in an aqueous electrolyte with variable concentrations of dissolved NaCl and KCl at pH 5.8. Forces are analyzed in the framework of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in combination with a charge regulation boundary that describes adsorption and desorption reactions of protons and ions. A systematic method to extract the equilibrium constants of these reactions by simultaneous least-squared fitting to experimental data for various salt concentrations is developed and is shown to yield highly consistent results for silica-electrolyte interfaces. For gibbsite-electrolyte interfaces, the surface charge can be determined, yet, an unambiguous identification of the relevant surface speciation reactions is not possible, presumably due to a combination of intrinsic chemical complexity and heterogeneity of the nano-particle surfaces.

  7. Surface ionization state and nanoscale chemical composition of UV-irradiated poly(dimethylsiloxane) probed by chemical force microscopy, force titration, and electrokinetic measurements.

    PubMed

    Song, Jing; Duval, Jérôme F L; Stuart, Martien A Cohen; Hillborg, Henrik; Gunst, Ullrich; Arlinghaus, Heinrich F; Vancso, G Julius

    2007-05-01

    The surface chemistry and ionization state of cross-linked poly(dimethylsiloxane) (PDMS) exposed to UV/ozone were studied as a function of treatment time. Various complementary and independent experimental techniques were utilized, which yielded information on the macroscopic as well as the nanometric scale. The average chemical composition of the PDMS surface was quantitatively investigated by time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that the top 1-2 nm surface layer was dominated by silanol groups (-SiOH) for which the concentration increased with increasing treatment dose. The lateral distributions of the silanol groups were analyzed on the nanometer scale by means of atomic force microscopy (AFM) with chemically functionalized tip probes in aqueous buffer solutions at varying pHs. Spatially dependent pull-off force curves (also called "force volume" imaging) indicated the presence of strong chemical heterogeneity of the probed surface. This heterogeneity took the form of patches of silanol functionalities with high local concentration surrounded by a matrix of predominantly hydrophobic domains at low pH. The average pull-off forces for the entire surface scanned were significantly reduced for pH values larger than a characteristic pK(a) constant (in the range between 4.5 and 5.5). The extent of the decrease in the pull-off force and the particular value of pK(a) were found to be a function of treatment time and to differ from the commonly reported values for silanol functional groups on a homogeneous silica surface. These dependences were ascribed to the evoking of a protonation/deprotonation process of the surface silanol groups which was sensitive to the hydrophobic/hydrophilic balance of their close molecular environment. Intermolecular hydrogen bonding may also account for the shifts in the surface pK(a). Furthermore, depending on the nature of the electrolyte, a third effect related to double layer composition, as determined

  8. Correlating steric hydration forces with water dynamics through surface force and diffusion NMR measurements in a lipid-DMSO-H2O system.

    PubMed

    Schrader, Alex M; Donaldson, Stephen H; Song, Jinsuk; Cheng, Chi-Yuan; Lee, Dong Woog; Han, Songi; Israelachvili, Jacob N

    2015-08-25

    Dimethyl sulfoxide (DMSO) is a common solvent and biological additive possessing well-known utility in cellular cryoprotection and lipid membrane permeabilization, but the governing mechanisms at membrane interfaces remain poorly understood. Many studies have focused on DMSO-lipid interactions and the subsequent effects on membrane-phase behavior, but explanations often rely on qualitative notions of DMSO-induced dehydration of lipid head groups. In this work, surface forces measurements between gel-phase dipalmitoylphosphatidylcholine membranes in DMSO-water mixtures quantify the hydration- and solvation-length scales with angstrom resolution as a function of DMSO concentration from 0 mol% to 20 mol%. DMSO causes a drastic decrease in the range of the steric hydration repulsion, leading to an increase in adhesion at a much-reduced intermembrane distance. Pulsed field gradient NMR of the phosphatidylcholine (PC) head group analogs, dimethyl phosphate and tetramethylammonium ions, shows that the ion hydrodynamic radius decreases with increasing DMSO concentration up to 10 mol% DMSO. The complementary measurements indicate that, at concentrations below 10 mol%, the primary effect of DMSO is to decrease the solvated volume of the PC head group and that, from 10 mol% to 20 mol%, DMSO acts to gradually collapse head groups down onto the surface and suppress their thermal motion. This work shows a connection between surface forces, head group conformation and dynamics, and surface water diffusion, with important implications for soft matter and colloidal systems.

  9. Correlating steric hydration forces with water dynamics through surface force and diffusion NMR measurements in a lipid–DMSO–H2O system

    PubMed Central

    Schrader, Alex M.; Donaldson, Stephen H.; Song, Jinsuk; Cheng, Chi-Yuan; Lee, Dong Woog; Han, Songi; Israelachvili, Jacob N.

    2015-01-01

    Dimethyl sulfoxide (DMSO) is a common solvent and biological additive possessing well-known utility in cellular cryoprotection and lipid membrane permeabilization, but the governing mechanisms at membrane interfaces remain poorly understood. Many studies have focused on DMSO–lipid interactions and the subsequent effects on membrane-phase behavior, but explanations often rely on qualitative notions of DMSO-induced dehydration of lipid head groups. In this work, surface forces measurements between gel-phase dipalmitoylphosphatidylcholine membranes in DMSO–water mixtures quantify the hydration- and solvation-length scales with angstrom resolution as a function of DMSO concentration from 0 mol% to 20 mol%. DMSO causes a drastic decrease in the range of the steric hydration repulsion, leading to an increase in adhesion at a much-reduced intermembrane distance. Pulsed field gradient NMR of the phosphatidylcholine (PC) head group analogs, dimethyl phosphate and tetramethylammonium ions, shows that the ion hydrodynamic radius decreases with increasing DMSO concentration up to 10 mol% DMSO. The complementary measurements indicate that, at concentrations below 10 mol%, the primary effect of DMSO is to decrease the solvated volume of the PC head group and that, from 10 mol% to 20 mol%, DMSO acts to gradually collapse head groups down onto the surface and suppress their thermal motion. This work shows a connection between surface forces, head group conformation and dynamics, and surface water diffusion, with important implications for soft matter and colloidal systems. PMID:26261313

  10. Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements.

    PubMed

    Danov, Krassimir D; Kralchevsky, Peter A; Radulova, Gergana M; Basheva, Elka S; Stoyanov, Simeon D; Pelan, Eddie G

    2015-08-01

    The hydrophobins are proteins that form the most rigid adsorption layers at liquid interfaces in comparison with all other investigated proteins. The mixing of hydrophobin HFBII with other conventional proteins is expected to reduce the surface shear elasticity and viscosity, E(sh) and η(sh), proportional to the fraction of the conventional protein. However, the experiments show that the effect of mixing can be rather different depending on the nature of the additive. If the additive is a globular protein, like β-lactoglobulin and ovalbumin, the surface rigidity is preserved, and even enhanced. The experiments with separate foam films indicate that this is due to the formation of a bilayer structure at the air/water interface. The more hydrophobic HFBII forms the upper layer adjacent to the air phase, whereas the conventional globular protein forms the lower layer that faces the water phase. Thus, the elastic network formed by the adsorbed hydrophobin remains intact, and even reinforced by the adjacent layer of globular protein. In contrast, the addition of the disordered protein β-casein leads to softening of the HFBII adsorption layer. Similar (an even stronger) effect is produced by the nonionic surfactant Tween 20. This can be explained with the penetration of the hydrophobic tails of β-casein and Tween 20 between the HFBII molecules at the interface, which breaks the integrity of the hydrophobin interfacial elastic network. The analyzed experimental data for the surface shear rheology of various protein adsorption layers comply with a viscoelastic thixotropic model, which allows one to determine E(sh) and η(sh) from the measured storage and loss moduli, G' and G″. The results could contribute for quantitative characterization and deeper understanding of the factors that control the surface rigidity of protein adsorption layers with potential application for the creation of stable foams and emulsions with fine bubbles or droplets.

  11. Contact sensing from force measurements

    NASA Technical Reports Server (NTRS)

    Bicchi, Antonio; Salisbury, J. K.; Brock, David L.

    1993-01-01

    This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.

  12. Surface forces: Surface roughness in theory and experiment

    SciTech Connect

    Parsons, Drew F. Walsh, Rick B.; Craig, Vincent S. J.

    2014-04-28

    A method of incorporating surface roughness into theoretical calculations of surface forces is presented. The model contains two chief elements. First, surface roughness is represented as a probability distribution of surface heights around an average surface height. A roughness-averaged force is determined by taking an average of the classic flat-surface force, weighing all possible separation distances against the probability distributions of surface heights. Second the model adds a repulsive contact force due to the elastic contact of asperities. We derive a simple analytic expression for the contact force. The general impact of roughness is to amplify the long range behaviour of noncontact (DLVO) forces. The impact of the elastic contact force is to provide a repulsive wall which is felt at a separation between surfaces that scales with the root-mean-square (RMS) roughness of the surfaces. The model therefore provides a means of distinguishing between “true zero,” where the separation between the average centres of each surface is zero, and “apparent zero,” defined by the onset of the repulsive contact wall. A normal distribution may be assumed for the surface probability distribution, characterised by the RMS roughness measured by atomic force microscopy (AFM). Alternatively the probability distribution may be defined by the histogram of heights measured by AFM. Both methods of treating surface roughness are compared against the classic smooth surface calculation and experimental AFM measurement.

  13. Wearable ballistocardiography: preliminary methods for mapping surface vibration measurements to whole body forces.

    PubMed

    Wiens, Andrew; Etemadi, Mozziyar; Klein, Liviu; Roy, Shuvo; Inan, Omer T

    2014-01-01

    The recent resurgence of ballistocardiogram (BCG) measurement and interpretation technologies has led to a wide range of powerful tools available for unobtrusively assessing mechanical aspects of cardiovascular health at home. Researchers have demonstrated a multitude of modern BCG measurement modalities, including beds, chairs, weighing scales, and wearable approaches. However, many modalities produce significant variations in the morphology of the measured BCG, creating confusion in the analysis and interpretation of the signals. This paper creates a framework for comparing wearable BCG measurements to whole body measurements--such as taken with a weighing scale system--to eventually allow the same analysis and interpretation tools that have been developed for whole body systems to be applied in the future to wearable systems. To the best of our knowledge, it represents the first attempt to morphologically compare vertical acceleration recordings measured on different locations on the torso to whole body displacements measured by BCG instrumentation. PMID:25571158

  14. Wearable Ballistocardiography: Preliminary Methods for Mapping Surface Vibration Measurements to Whole Body Forces

    PubMed Central

    Wiens, Andrew; Etemadi, Mozziyar; Klein, Liviu; Roy, Shuvo; Inan, Omer T.

    2015-01-01

    The recent resurgence of ballistocardiogram (BCG) measurement and interpretation technologies has led to a wide range of powerful tools available for unobtrusively assessing mechanical aspects of cardiovascular health at home. Researchers have demonstrated a multitude of modern BCG measurement modalities, including beds, chairs, weighing scales, and wearable approaches. However, many modalities produce significant variations in the morphology of the measured BCG, creating confusion in the analysis and interpretation of the signals. This paper creates a framework for comparing wearable BCG measurements to whole body measurements—such as taken with a weighing scale system—to eventually allow the same analysis and interpretation tools that have been developed for whole body systems to be applied in the future to wearable systems. To the best of our knowledge, it represents the first attempt to morphologically compare vertical acceleration recordings measured on different locations on the torso to whole body displacements measured by BCG instrumentation. PMID:25571158

  15. Attractive forces between hydrophobic solid surfaces measured by AFM on the first approach in salt solutions and in the presence of dissolved gases.

    PubMed

    Azadi, Mehdi; Nguyen, Anh V; Yakubov, Gleb E

    2015-02-17

    Interfacial gas enrichment of dissolved gases (IGE) has been shown to cover hydrophobic solid surfaces in water. The atomic force microscopy (AFM) data has recently been supported by molecular dynamics simulation. It was demonstrated that IGE is responsible for the unexpected stability and large contact angle of gaseous nanobubbles at the hydrophobic solid-water interface. Here we provide further evidence of the significant effect of IGE on an attractive force between hydrophobic solid surfaces in water. The force in the presence of dissolved gas, i.e., in aerated and nonaerated NaCl solutions (up to 4 M), was measured by the AFM colloidal probe technique. The effect of nanobubble bridging on the attractive force was minimized or eliminated by measuring forces on the first approach of the AFM probe toward the flat hydrophobic surface and by using high salt concentrations to reduce gas solubility. Our results confirm the presence of three types of forces, two of which are long-range attractive forces of capillary bridging origin as caused by either surface nanobubbles or gap-induced cavitation. The third type is a short-range attractive force observed in the absence of interfacial nanobubbles that is attributed to the IGE in the form of a dense gas layer (DGL) at hydrophobic surfaces. Such a force was found to increase with increasing gas saturation and to decrease with decreasing gas solubility.

  16. Nanonet Force Microscopy for Measuring Cell Forces.

    PubMed

    Sheets, Kevin; Wang, Ji; Zhao, Wei; Kapania, Rakesh; Nain, Amrinder S

    2016-07-12

    The influence of physical forces exerted by or felt by cells on cell shape, migration, and cytoskeleton arrangement is now widely acknowledged and hypothesized to occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Our previous work using the non-electrospinning Spinneret-based Tunable Engineered Parameters' suspended fibers has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to focal adhesion cluster lengths. Here, we present the development and application of a suspended nanonet platform for measuring C2C12 mouse myoblast forces attached to fibers of three diameters (250, 400, and 800 nm) representing a wide range of structural stiffness (3-50 nN/μm). The nanonet force microscopy platform measures cell adhesion forces in response to symmetric and asymmetric external perturbation in single and cyclic modes. We find that contractility-based, inside-out forces are evenly distributed at the edges of the cell, and that forces are dependent on fiber structural stiffness. Additionally, external perturbation in symmetric and asymmetric modes biases cell-fiber failure location without affecting the outside-in forces of cell-fiber adhesion. We then extend the platform to measure forces of (1) cell-cell junctions, (2) single cells undergoing cyclic perturbation in the presence of drugs, and (3) cancerous single-cells transitioning from a blebbing to a pseudopodial morphology. PMID:27410747

  17. Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

    PubMed Central

    Mesa, Fredy; Chamorro, William; Vallejo, William; Baier, Robert; Dittrich, Thomas; Grimm, Alexander; Lux-Steiner, Martha C

    2012-01-01

    Summary Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased. PMID:22497001

  18. Force, Surface Pressure, and Flowfield Measurements on a Slender Missile Configuration with Square Cross-Section at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Birch, Trevor J.; Allen, Jerry M.

    2004-01-01

    A wind-tunnel investigation of a square cross-section missile configuration has been conducted to obtain force and moment measurements, surface pressure measurements, and vapor screen flow visualization photographs for comparison with computational fluid dynamics studies conducted under the auspices of The Technical Cooperation Program (TTCP). Tests were conducted on three configurations which included: (1) body alone, (2) body plus tail fins mounted on the missile corners, and (3) body plus tail fins mounted on the missile side. This test was conducted in test section #2 of the NASA Langley Unitary Plan Wind Tunnel at Mach numbers of 2.50 and 4.50 and at a Reynolds number of 4 million per ft. The data were obtained over an angle of attack range from -4 deg. to 24 deg. and roll angles from 0 deg. to 45 deg., i.e., from a diamond shape (as viewed from the rear) at a roll angle of 0 deg. to a square shape at 45 deg.

  19. Influence of Radioactivity on Surface Interaction Forces

    SciTech Connect

    Walker, Mark E; McFarlane, Joanna; Glasgow, David C; Chung, Eunhyea; Taboada Serrano, Patricia L; Yiacoumi, Sotira; Tsouris, Costas

    2010-01-01

    Although some differences have been observed, the transport behavior of radioactive aerosol particles has often been assumed to be analogous to the behavior of nonradioactive aerosols in dispersion models. However, radioactive particles can become electrostatically charged as a result of the decay process. Theories have been proposed to describe this self-charging phenomenon, which may have a significant effect on how these particles interact with one another and with charged surfaces in the environment. In this study, atomic force microscopy (AFM) was employed to quantify surface forces between a particle and a planar surface and to compare measurements with and without the involvement of radioactivity. The main objective of this work is to assess directly the effects of radioactivity on the surface interactions of radioactive aerosols via the measurement of the adhesion force. The adhesion force between a silicon nitride AFM tip and an activated gold substrate was measured so that any possible effects due to radioactivity could be observed. The adhesion force between the tip and the gold surface increased significantly when the gold substrate (25 mm{sup 2} surface area) was activated to a level of approximately 0.6 mCi. The results of this investigation will prompt further work into the effects of radioactivity in particle-surface interactions.

  20. Influence of radioactivity on surface interaction forces.

    PubMed

    Walker, M E; McFarlane, J; Glasgow, D C; Chung, E; Taboada-Serrano, P; Yiacoumi, S; Tsouris, C

    2010-10-15

    Although some differences have been observed, the transport behavior of radioactive aerosol particles has often been assumed to be analogous to the behavior of nonradioactive aerosols in dispersion models. However, radioactive particles can become electrostatically charged as a result of the decay process. Theories have been proposed to describe this self-charging phenomenon, which may have a significant effect on how these particles interact with one another and with charged surfaces in the environment. In this study, atomic force microscopy (AFM) was employed to quantify surface forces between a particle and a planar surface and to compare measurements with and without the involvement of radioactivity. The main objective of this work is to assess directly the effects of radioactivity on the surface interactions of radioactive aerosols via the measurement of the adhesion force. The adhesion force between a silicon nitride AFM tip and an activated gold substrate was measured so that any possible effects due to radioactivity could be observed. The adhesion force between the tip and the gold surface increased significantly when the gold substrate (25 mm(2) surface area) was activated to a level of approximately 0.6 mCi. The results of this investigation will prompt further work into the effects of radioactivity in particle-surface interactions.

  1. Surface potential measurement of fullerene derivative/copper phthalocyanine on indium tin oxide electrode by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Satoh, Nobuo; Yamaki, Michio; Noda, Kei; Katori, Shigetaka; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2015-08-01

    We have investigated the organic semiconductor thin films deposited by vacuum evaporation deposition using intersecting metal shadow masks on indium tin oxide (ITO) electrode/glass substrates to simulate organic solar cells by simultaneous observation with dynamic force microscopy (DFM)/Kelvin-probe force microscopy (KFM). The energy band diagram was depicted by simultaneously obtaining topographic and surface potential images of the same area using DFM/KFM. We considered the charge behavior at the interface having band bending in the phenyl-C61-butyric acid methyl ester (PCBM) film.

  2. Measuring Your Force

    ERIC Educational Resources Information Center

    Gee, David E.

    2005-01-01

    This article talks about the force behind education leaders. With all the challenges facing public education today, it is difficult to remain focused and to remember why one chartered this particular leadership course. Perhaps someone respected encouraged one to take this path long ago. Perhaps this kind of service to the nation and its future…

  3. Measurement of the interaction forces at various pH levels by using AFM for the interpretation of DNA adsorption on silanized surfaces

    NASA Astrophysics Data System (ADS)

    Han, Seung Pil; Suga, Kosaku; Fujihara, Masamichi; Park, Byung-Eun

    2014-09-01

    Various surfaces have been used for deoxyribonucleic acid (DNA) immobilization, one example being a silanized surface. This is useful for determining DNA lengths and, thus, locating specific gene sequences in DNA by using fluorescence microscopy and scanning probe microscopy. In this study, we deposited DNA by using the molecular combing method and, we used fluorescence microscopy to study how the chain lengths of n-alkylsilanes affected the surface density of DNA deposited on the silanized surfaces in a tris-ethylenediaminetetraacetic acid (TE) buffer. The forces between a cleaned silicon-nitride (Si3N4) tip and each substrate surface in aqueous buffers at various pH levels (1.0 ~ 9.0) were also studied by using atomic force microscopy to measure the force-distance curves. We explain why the density of lambda bacteriophage DNA (λ-DNA) deposited by using the molecular combing method at pH 8 was lower on the silanized surface with the shorter alkyl chain than it was on the silanized surface with the longer alkyl chain in terms of the electrical double layer (EDL) and the adhesive force.

  4. Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements

    NASA Astrophysics Data System (ADS)

    Baykara, Mehmet Z.; Todorović, Milica; Mönig, Harry; Schwendemann, Todd C.; Ünverdi, Özhan; Rodrigo, Lucia; Altman, Eric I.; Pérez, Rubén; Schwarz, Udo D.

    2013-04-01

    The influence of defects on the local structural, electronic, and chemical properties of a surface oxide on Cu(100) were investigated using atomic resolution three-dimensional force mapping combined with tunneling current measurements and ab initio density functional theory. Results reveal that the maximum attractive force between tip and sample occurs above the oxygen atoms; theory indicates that the tip, in this case, terminates in a Cu atom. Meanwhile, simultaneously acquired tunneling current images emphasize the positions of Cu atoms, thereby, providing species-selective contrast in the two complementary data channels. One immediate outcome is that defects due to the displacement of surface copper are exposed in the current maps, even though force maps only reflect a well-ordered oxygen sublattice. The exact nature of the defects is confirmed by the simulations, which also reveal that the arrangement of the oxygen atoms is not disrupted by the copper displacement. In addition, the experimental force maps uncover a position-dependent modulation of the attractive forces between the surface oxygen and the copper-terminated tips, which is found to reflect the surface's inhomogeneous chemical and structural environment. As a consequence, the demonstrated method has the potential to directly probe how defects affect surface chemical interactions.

  5. Ductile cutting of silicon microstructures with surface inclination measurement and compensation by using a force sensor integrated single point diamond tool

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng

    2016-02-01

    This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method.

  6. COOLING FORCE MEASUREMENTS IN CELSIUS.

    SciTech Connect

    GALNANDER, B.; FEDOTOV, A.V.; LITVINENKO, V.N.; ET AL.

    2005-09-18

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  7. Charge heterogeneity of surfaces: mapping and effects on surface forces.

    PubMed

    Drelich, Jaroslaw; Wang, Yu U

    2011-07-11

    The DLVO theory treats the total interaction force between two surfaces in a liquid medium as an arithmetic sum of two components: Lifshitz-van der Waals and electric double layer forces. Despite the success of the DLVO model developed for homogeneous surfaces, a vast majority of surfaces of particles and materials in technological systems are of a heterogeneous nature with a mosaic structure composed of microscopic and sub-microscopic domains of different surface characteristics. In such systems, the heterogeneity of the surface can be more important than the average surface character. Attractions can be stronger, by orders of magnitude, than would be expected from the classical mean-field DLVO model when area-averaged surface charge or potential is employed. Heterogeneity also introduces anisotropy of interactions into colloidal systems, vastly ignored in the past. To detect surface heterogeneities, analytical tools which provide accurate and spatially resolved information about material surface chemistry and potential - particularly at microscopic and sub-microscopic resolutions - are needed. Atomic force microscopy (AFM) offers the opportunity to locally probe not only changes in material surface characteristic but also charges of heterogeneous surfaces through measurements of force-distance curves in electrolyte solutions. Both diffuse-layer charge densities and potentials can be calculated by fitting the experimental data with a DLVO theoretical model. The surface charge characteristics of the heterogeneous substrate as recorded by AFM allow the charge variation to be mapped. Based on the obtained information, computer modeling and simulation can be performed to study the interactions among an ensemble of heterogeneous particles and their collective motions. In this paper, the diffuse-layer charge mapping by the AFM technique is briefly reviewed, and a new Diffuse Interface Field Approach to colloid modeling and simulation is briefly discussed.

  8. Design and realization of controllable measuring force profilometer

    NASA Astrophysics Data System (ADS)

    Pan, Wen; Wang, Shuzhen; Chang, Suping

    2010-08-01

    In this paper the mechanical model of measuring rod of traditional stylus profilometer is established and the analysis results show that the measuring force is changed with rotation angle of the measuring rod. The impact on profile measurement of unsteady measuring force and the necessity of measuring surface of different materials with different constant measuring force are also discussed. The mechanical relations between the measuring rod and the surface are simplified by the structural change of measuring rod and a gravity center adjustment device. A voice coil motor (VCM) is added into the measuring system to control the measuring force. By adjusting the current in the coil of the VCM in real time, the measuring force can be controlled. With the controllable force, different workpieces can be measured by using different constant measuring force and the measurement results of different workpieces are given.

  9. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, S.T.; Niemann, R.C.

    1999-03-30

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

  10. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, Scott T.; Niemann, Ralph C.

    1999-01-01

    A device for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed.

  11. Biomolecular interactions measured by atomic force microscopy.

    PubMed

    Willemsen, O H; Snel, M M; Cambi, A; Greve, J; De Grooth, B G; Figdor, C G

    2000-12-01

    Atomic force microscopy (AFM) is nowadays frequently applied to determine interaction forces between biological molecules. Starting with the detection of the first discrete unbinding forces between ligands and receptors by AFM only several years ago, measurements have become more and more quantitative. At the same time, theories have been developed to describe and understand the dynamics of the unbinding process and experimental techniques have been refined to verify this theory. In addition, the detection of molecular recognition forces has been exploited to map and image the location of binding sites. In this review we discuss the important contributions that have led to the development of this field. In addition, we emphasize the potential of chemically well-defined surface modification techniques to further improve reproducible measurements by AFM. This increased reproducibility will pave the way for a better understanding of molecular interactions in cell biology.

  12. Detecting chameleons through Casimir force measurements

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Shaw, Douglas; Mota, David F.

    2007-12-15

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models.

  13. Covalent Immobilization of Microtubules on Glass Surfaces for Molecular Motor Force Measurements and Other Single-Molecule Assays

    PubMed Central

    Nicholas, Matthew P.; Rao, Lu; Gennerich, Arne

    2014-01-01

    Rigid attachment of microtubules (MTs) to glass cover slip surfaces is a prerequisite for a variety of microscopy experiments in which MTs are used as substrates for MT-associated proteins, such as the molecular motors kinesin and cytoplasmic dynein. We present an MT-surface coupling protocol in which aminosilanized glass is formylated using the cross-linker glutaraldehyde, fluorescence-labeled MTs are covalently attached, and the surface is passivated with highly pure beta-casein. The technique presented here yields rigid MT immobilization while simultaneously blocking the remaining glass surface against nonspecific binding by polystyrene optical trapping microspheres. This surface chemistry is straightforward and relatively cheap and uses a minimum of specialized equipment or hazardous reagents. These methods provide a foundation for a variety of optical tweezers experiments with MT-associated molecular motors and may also be useful in other assays requiring surface-immobilized proteins. PMID:24633798

  14. Covalent immobilization of microtubules on glass surfaces for molecular motor force measurements and other single-molecule assays.

    PubMed

    Nicholas, Matthew P; Rao, Lu; Gennerich, Arne

    2014-01-01

    Rigid attachment of microtubules (MTs) to glass cover slip surfaces is a prerequisite for a variety of microscopy experiments in which MTs are used as substrates for MT-associated proteins, such as the molecular motors kinesin and cytoplasmic dynein. We present an MT-surface coupling protocol in which aminosilanized glass is formylated using the cross-linker glutaraldehyde, fluorescence-labeled MTs are covalently attached, and the surface is passivated with highly pure beta-casein. The technique presented here yields rigid MT immobilization while simultaneously blocking the remaining glass surface against nonspecific binding by polystyrene optical trapping microspheres. This surface chemistry is straightforward and relatively cheap and uses a minimum of specialized equipment or hazardous reagents. These methods provide a foundation for a variety of optical tweezers experiments with MT-associated molecular motors and may also be useful in other assays requiring surface-immobilized proteins. PMID:24633798

  15. Forces and Holes in Liquid Surfaces and Soap Films: A Simple Measurement of a Not-So-Simple Effect

    ERIC Educational Resources Information Center

    Gratton, Luigi M.; Oss, Stefano

    2004-01-01

    In this article we show how to verify that in a fluid surface or film the value of the surface tension (i.e. the free energy per unit area) does not depend on the area of the film itself. The experimental evidence discussed can be obtained extremely simply yet with great accuracy. This experiment is important in that it leads to a deeper…

  16. Surface potential measurement on contact resistance of amorphous-InGaZnO thin film transistors by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Han, Zhiheng; Xu, Guangwei; Wang, Wei; Lu, Congyan; Lu, Nianduan; Ji, Zhuoyu; Li, Ling; Liu, Ming

    2016-07-01

    Contact resistance plays an important role in amorphous InGaZnO (a-IGZO) thin film transistors (TFTs). In this paper, the surface potential distributions along the channel have been measured by using Kelvin probe force microscopy (KPFM) on operating a-IGZO TFTs, and sharp potential drops at the edges of source and drain were observed. The source and drain contact resistances can be extracted by dividing sharp potential drops with the corresponding drain to source current. It is found that the contact resistances could not be neglected compared with the whole channel resistances in the a-IGZO TFT, and the contact resistances decrease remarkably with increasing gate biased voltage. Our results suggest that the contact resistances can be controlled by tuning the gate biased voltage. Moreover, a transition from gradual channel approximation to space charge region was observed through the surface potential map directly when TFT operating from linear regime to saturation regime.

  17. Casimir forces from conductive silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  18. Direct measurements of drag forces in C. elegans crawling locomotion.

    PubMed

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S

    2014-10-21

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm's body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode's body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode.

  19. Dynamics of gecko locomotion: a force-measuring array to measure 3D reaction forces.

    PubMed

    Dai, Zhendong; Wang, Zhouyi; Ji, Aihong

    2011-03-01

    Measuring the interaction between each foot of an animal and the substrate is one of the most effective ways to understand the dynamics of legged locomotion. Here, a new facility - the force-measuring array (FMA) - was developed and applied to measure 3D reaction forces of geckos on different slope surfaces. The FMA consists of 16 3D sensors with resolution to the mN level. At the same time the locomotion behaviour of geckos freely moving on the FMA was recorded by high speed camera. The reaction forces acting on the gecko's individual feet measured by the FMA and correlated with locomotion behaviour provided enough information to reveal the mechanical and dynamic secrets of gecko locomotion. Moreover, dynamic forces were also measured by a force platform and correlated with locomotion behaviour. The difference between the forces measured by the two methods is discussed. From the results we conclude that FMA is the best way to obtain true reaction forces acting on the gecko's individual feet.

  20. Endothelial Surface Protrusion by a Point Force.

    PubMed

    Chen, Yong; Lu, Lan; Shao, Jin-Yu

    2016-03-01

    During leukocyte rolling on the endothelium, surface protrusion and membrane tether extraction occur consecutively on leukocytes. Both surface protrusion and tether extraction of leukocytes stabilize leukocyte rolling. Tethers can also be extracted from endothelial cells (ECs), but surface protrusion of ECs has never been confirmed to exist. In this study, we examined EC surface protrusion with the micropipette aspiration technique. We found that, like leukocytes, surface protrusion on an EC did exist when a point force was imposed. Both the protrusional stiffness and the crossover force of EC surface protrusion were dependent on the force loading rate and the cytoskeletal integrity, but neither of them was dependent on tumor necrosis factor α stimulation. Temperature (37°C) affected the protrusional stiffness only at small force loading rates. When a neutrophil was employed to directly impose the pulling force on the EC, simultaneous surface protrusion from both cells occurred, and it can be modeled as two springs connected in series, although the spring constants should be adjusted according to the force loading rate. Therefore, EC surface protrusion is an important aspect of leukocyte rolling, and it should not be ignored when leukocyte rolling stability is studied systematically.

  1. New surface forces apparatus using two-beam interferometry

    SciTech Connect

    Kawai, Hiroshi; Sakuma, Hiroshi; Mizukami, Masashi; Abe, Takashi; Fukao, Yasuhiro; Tajima, Haruo; Kurihara, Kazue

    2008-04-15

    We designed a new surface forces apparatus for measuring the interactions between two nontransparent substrates and/or in nontransparent liquids. The small displacement of a surface, the bottom one in this study, was measured by the two-beam (twin path) interferometry technique using the phase difference between the laser light reflected by the fixed mirror and that by the mirror on the back of the bottom surface unit. It is possible to determine the distance with a resolution of 1 nm in the working range of 5 {mu}m. This apparatus was successfully applied to measure the forces between mica surfaces in pure water and aqueous KBr solutions.

  2. Correlation of nanoscale behaviour of forces and macroscale surface wettability.

    PubMed

    Rana, Abhimanyu; Patra, Abhijeet; Annamalai, Meenakshi; Srivastava, Amar; Ghosh, Siddhartha; Stoerzinger, Kelsey; Lee, Yueh-Lin; Prakash, Saurav; Jueyuan, Reuben Yeo; Goohpattader, Partho S; Satyanarayana, Nalam; Gopinadhan, Kalon; Dykas, Michal M; Poddar, Kingshuk; Saha, Surajit; Sarkar, Tarapada; Kumar, Brijesh; Bhatia, Charanjit S; Giordano, Livia; Shao-Horn, Yang; Venkatesan, T

    2016-08-25

    In this manuscript, we demonstrate a method based on atomic force microscopy which enables local probing of surface wettability. The maximum pull-off force, obtained from force spectroscopy shows a remarkable correlation with the macroscopically observed water contact angle, measured over a wide variety of surfaces starting from hydrophilic, all the way through to hydrophobic ones. This relationship, consequently, facilitates the establishment of a universal behaviour. The adhesion forces scale with the polar component of surface energy. However, no such relation could be established with the dispersive component. Hence, we postulate that the force(s) which enable us to correlate the force spectroscopy data measured on the nanoscale to the macroscopic contact angle are primarily arising from electrostatic-dipole-dipole interactions at the solid-liquid interface. London forces play less of a role. This effect in is line with density functional theory (DFT) calculations suggesting a higher degree of hydroxylation of hydrophilic surfaces. This result shows that molecular simulations and measurements on an atomic scale can be extrapolated to macroscopic surface wetting problems. PMID:27510557

  3. Hydration force between mica surfaces in aqueous KCl electrolyte solution.

    PubMed

    Leng, Yongsheng

    2012-03-27

    Liquid-vapor molecular dynamics simulations are performed to study the interaction forces between two mica surfaces in an aqueous KCl electrolyte solution. Strong repulsive hydration force is obtained within a distance of ~2 nm between the two mica surfaces, which cannot be explained by the continuum theory of double-layer repulsion. We find that this short-range repulsive hydration force is much stronger than the double-layer force between mica surfaces. Whereas the simulation system is much smaller than the surface force measurement system, fundamental mechanisms of repulsive hydration force are revealed. In particular, important features of the step-like force oscillatory behavior during normal compression and force hysteresis during retraction are observed. Detailed analysis of the ionic density distributions shows that the "forced adsorption" of diffusive K(+) ions onto mica surfaces during compression and the subsequent "slow desorption" of the absorbed K(+) ions from mica surfaces upon retraction are responsible for the hysteresis phenomenon. From a mechanics point of view, we attribute the load bearing capacity of the dense electrolyte to the very hard hydration shells of K(+) metal ions under confinement. We find that the hydrated K(+) ions and Cl(-) co-ions remain very diffusive in the aqueous film. Water molecules in the hydration layer are also very fluidic, in the sense that the diffusion constant of water molecules is less than its bulk value by at most 3 orders of magnitude under the extreme confinement. PMID:22369483

  4. Nanoscale adhesive forces between silica surfaces in aqueous solutions.

    PubMed

    Troncoso, Paula; Saavedra, Jorge H; Acuña, Sergio M; Jeldres, Ricardo; Concha, Fernando; Toledo, Pedro G

    2014-06-15

    Nanoscale adhesive forces between a colloidal silica probe and a flat silica substrate were measured with an atomic force microscope (AFM) in a range of aqueous NaCl, CaCl2, and AlCl3 solutions, with concentrations ranging from 10(-)(6) to 10(-)(2) M at pH ∼5.1. Notably, the measured force curves reveal large pull-off forces in water which increase in electrolyte solutions, with jump-off-contact occurring as a gradual detachment of the probe from the flat substrate rather than as a sharp discontinuous jump. The measured force curves also show that the number and size of the steps increase with concentration and notably with electrolyte valence. For the higher concentration and valence the steps become jumps. We propose that these nanoscale adhesive forces between mineral surfaces in aqueous solutions may arise from newly born cavities or persistent subnanometer bubbles. Formation of cavities or nanobubbles cannot be observed directly in our experiments; however, we cannot disregard them as responsible for the discontinuities in the measured force data. A simple model based on several cavities bridging the two surfaces we show that is able to capture all the features in the measured force curves. The silica surfaces used are clean but not intentionally hydroxylated, as contact angle measurements show, and as such may be responsible for the cavities.

  5. Unsteady Aerodynamic Force Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  6. Interfacial force microscopy: Application to polymer surfaces

    SciTech Connect

    HOUSTON,JACK E.; WINTER,R.M.

    2000-05-16

    Scanning-probe microscopies (SPM) are presently widely used in remarkably diverse applications and, as evidenced by this symposium these techniques are rapidly expanding into the important areas of polymer surfaces and interfaces. The Atomic Force Microscope (AFM) is presently the most widely used of the scanning-probe techniques. However, the AFM's range of application suffers from an inherent mechanical instability in its deflection force sensor. The instability problem has been overcome by the development of the Interfacial Force Microscope (IFM), which utilizes a force-feedback sensor concept. In the following, the authors present several examples of polymer applications to illustrate the utility of the IFM sensor concept.

  7. Spatially resolved force spectroscopy of bacterial surfaces using force-volume imaging.

    PubMed

    Gaboriaud, Fabien; Parcha, Bhargava S; Gee, Michelle L; Holden, James A; Strugnell, Richard A

    2008-04-01

    Force spectroscopy using the atomic force microscope (AFM) is a powerful technique for measuring physical properties and interaction forces at microbial cell surfaces. Typically for such a study, the point at which a force measurement will be made is located by first imaging the cell using AFM in contact mode. In this study, we image the bacterial cell Shewanella putrefaciens for subsequent force measurements using AFM in force-volume mode and compare this to contact-mode images. It is known that contact-mode imaging does not accurately locate the apical surface and periphery of the cell since, in contact mode, a component of the applied load laterally deforms the cell during the raster scan. Here, we illustrate that contact-mode imaging does not accurately locate the apical surface and periphery of the cell since, in contact mode, a component of the applied load laterally deforms the cell during the raster scan. This is an artifact due to the deformability and high degree of curvature of bacterial cells. We further show that force-volume mode imaging avoids the artifacts associated with contact-mode imaging due to surface deformation since it involves the measurement of a grid of individual force profiles. The topographic image is subsequently reconstructed from the zero-force height (the contact distance between the AFM tip and the surface) at each point on the cell surface. We also show how force-volume measurements yield applied load versus indentation data from which mechanical properties of the cell such as Young's modulus, cell turgor pressure and elastic and plastic energies can be extracted.

  8. Surface Biology of DNA by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hansma, Helen G.

    2001-10-01

    The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.

  9. Surface forces of colloidal particles from micrometer to nanometer

    NASA Astrophysics Data System (ADS)

    Cho, Jeong-Min

    2003-10-01

    Surface forces of colloidal particles play critical roles in the macroscopic behavior of particulate systems such as dispersion and coagulation, adhesion and coating, and the rheological behavior of ceramic slurries. As particle size is decreased from micrometer to nanometer range, surface forces are increasingly important. Polyelectrolytes are the chemical additives commonly used to efficiently control the stabilization of the colloidal system. Their conformations on the solid surfaces as well as the interactions between the adsorbed polyelectrolytes are important issues in colloidal processing. Most experimental and theoretical approaches to the surface forces are based on particle sizes in the micrometer range. However, nanoparticles at close proximity or high solids loading are expected to show different behavior than what can be estimated from conventional theories such as continuum or mean field theories. My study examined the effect of pH, ionic strength, and molecular weight of the polyelectrolytes on the surface forces of colloidal particles by the interplay with the adsorption, turbidity, and direct surface force measurement in terms of the conformation on the solid surfaces. The colloid probe technique based on atomic force microscopy (AFM) is well established for micron size particles; and could be extended for nanosize particles by using carbon nanotubes as proximal probes. Nanotubes with their high aspect ratio avoid the contribution from cone shapes that happens with AFM tips. The difference in particle size significantly influences surface forces for sterically dispersed colloidal systems.

  10. Force-Control Algorithm for Surface Sampling

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Quadrelli, Marco B.; Phan, Linh

    2008-01-01

    A G-FCON algorithm is designed for small-body surface sampling. It has a linearization component and a feedback component to enhance performance. The algorithm regulates the contact force between the tip of a robotic arm attached to a spacecraft and a surface during sampling.

  11. Atomic force microscopy measurements of intermolecular binding forces.

    PubMed

    Misevic, Gradimir N; Karamanos, Yannis; Misevic, Nikola J

    2009-01-01

    Atomic force microscopy (AFM) measurements of intermolecular binding strength between a single pair of complementary cell adhesion molecules in physiological solutions provided the first quantitative evidence for their cohesive function. This novel AFM-based nanobiotechnology opens a molecular mechanic approach for studying structure- to function-related properties of any type of individual biological macromolecules. The presented example of Porifera cell adhesion glyconectin proteoglycans showed that homotypic carbohydrate to carbohydrate interactions between two primordial proteoglycans can hold the weight of 1,600 cells. Thus, glyconectin type carbohydrates, as the most peripheral cell surface molecules of sponges (today's simplest living Metazoa), are proposed to be the primary cell adhesive molecules essential for the evolution of the multicellularity.

  12. Feasibility of measuring antigen-antibody interaction forces using a scanning force microscope.

    PubMed

    Stuart, J K; Hlady, V

    1999-08-31

    The molecular affinity scanning force microscopy (MASFM) described in this study was developed in an effort to test the possibility of antigen-antibody binding measurement using force-separation distance profiles. The MASFM configuration was comprised of a spherical glass bead as an MASFM probe, to which the fluorescein antigen has been covalently attached, and a silicon dioxide-based substrate, to which the antifluorescyl IgG antibody was covalently bound. The bead was glued to the tip of a commercial SFM cantilever. Adhesion forces have been measured between two different specific antigen-antibody pairs and between nonspecific surfaces bearing only glycidoxypropylsilane immobilization chemistry. In force-separation (F-s) measurements, nonspecific forces displayed relatively few force discontinuities and mean adhesion forces lower than those found for specific antigen-antibody measurements. Force-separation profiles measured between specific antigen-antibody pairs showed many discontinuities and had higher mean forces. Positive controls revealed that the mean forces were slightly reduced by the addition of free ligand. The magnitude of mean forces did not correlate with the respective activation enthalpies of the proteins, as would be expected. At lower force values the force histograms for the specific pairs and for positive controls were indistinguishable. None of the force-separation data sets could fit a Poisson discrete-force model. This statistical analysis showed a large relative contribution from nonspecific interactions. It is concluded that the use of the large sphere as an SFM probe is counterproductive: while the large sphere does sample a larger number of specific interactions during each measurement, it also samples at the same time a large proportion of nonspecific forces. The presence of the nonspecific force contributions is likely due to the deformation of the polymerized GPS spacer layer which is thought to be delaminated from the surface upon

  13. Measuring the structure of thin soft matter films under confinement: A surface-force type apparatus for neutron reflection, based on a flexible membrane approach

    SciTech Connect

    Vos, Wiebe M. de; Mears, Laura L. E.; Richardson, Robert M.; Cosgrove, Terence; Prescott, Stuart W.; Dalgliesh, Robert M.

    2012-11-15

    A unique surface force type apparatus that allows the investigation of a confined thin film using neutron reflection is described. The central feature of the setup consists of a solid substrate (silicon) and a flexible polymer membrane (Melinex{sup Registered-Sign }). We show that inflation of the membrane against the solid surface provides close and even contact between the interfaces over a large surface area. Both heavy water and air can be completely squeezed out from between the flexible film and the solid substrate, leaving them in molecular contact. The strength of confinement is controlled by the pressure used to inflate the membrane. Dust provides a small problem for this approach as it can get trapped between membrane and substrate to prevent a small part of the membrane from making good contact with the substrate. This results in the measured neutron reflectivity containing a small component of an unwanted reflection, between 10% and 20% at low confining pressures (1 bar) and between 1% and 5% at high confining pressures (5 bar). However, we show that this extra signal does not prevent good and clear information on the structure of thin films being extracted from the neutron reflectivity. The effects of confinement are illustrated with data from a poly(vinyl pyrollidone) gel layer in water, a polyelectrolyte multilayer in water, and with data from a stack of supported lipid-bilayers swollen with D{sub 2}O vapor. The data demonstrates the potential of this apparatus to provide information on the structure of thin films under confinement for a known confining pressure.

  14. Rigid two-axis MEMS force plate for measuring cellular traction force

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidetoshi; Jung, Uijin G.; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-10-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µm  ×  15 µm  ×  5 µm base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m-1 and less than 0.05 µN, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µN over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement.

  15. Controlling adhesion force by means of nanoscale surface roughness.

    PubMed

    Ramakrishna, Shivaprakash N; Clasohm, Lucy Y; Rao, Akshata; Spencer, Nicholas D

    2011-08-16

    Control of adhesion is a crucial aspect in the design of microelectromechanical and nanoelectromechanical devices. To understand the dependence of adhesion on nanometer-scale surface roughness, a roughness gradient has been employed. Monomodal roughness gradients were fabricated by means of silica nanoparticles (diameter ∼12 nm) to produce substrates with varying nanoparticle density. Pull-off force measurements on the gradients were performed using (polyethylene) colloidal-probe microscopy under perfluorodecalin, in order to restrict interactions to van der Waals forces. The influence of normal load on pull-off forces was studied and the measured forces compared with existing Hamaker-approximation-based models. We observe that adhesion force reaches a minimum value at an optimum particle density on the gradient sample, where the mean particle spacing becomes comparable with the diameter of the contact area with the polyethylene sphere. We also observe that the effect on adhesion of increasing the normal load depends on the roughness of the surface.

  16. Graphene thickness dependent adhesion force and its correlation to surface roughness

    SciTech Connect

    Pourzand, Hoorad; Tabib-Azar, Massood

    2014-04-28

    In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesion force measurement results.

  17. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  18. Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems

    SciTech Connect

    Kweon, Hyojin; Yiacoumi, Sotira; Tsouris, Costas

    2011-01-01

    The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

  19. The impact of rubbing fabric type on surface roughness and tribological properties of some semi-alicyclic polyimides evaluated from atomic force measurements

    NASA Astrophysics Data System (ADS)

    Stoica, Iuliana; Barzic, Andreea Irina; Hulubei, Camelia

    2013-03-01

    The morphology of some polyimides (PI) prepared from a flexible and alicyclic dianhydride, in combination with aromatic diamines was investigated in detail before and after rubbing with two types of fabric: cotton velvet (CV) and cellulose diacetate velvet (CDV). Atomic force microscopy was employed to evaluate the correlation between rubbing-induced grooves in PI film and size/flexibility of textile fibers. For both samples surface isotropy decreased appreciatively with 91% after patterning since the appearance of ordered nanostructures in the direction of rubbing. The angular spectra reveal the generation of a surface anisotropy after rubbing process and a higher surface regularity and uniformity when using CV. This result is confirmed by decrease of texture direction index with 75% and of surface texture aspect ratio with 89%. These parameters together with the rubbing fiber characteristics are key factors in controlling liquid crystal alignment on patterned PI surfaces.

  20. Force measurements in aerodynamics using piezoelectric multicomponent force transducers

    NASA Astrophysics Data System (ADS)

    Schewe, G.

    The present paper is concerned with a device for the measurement of steady and unsteady aerodynamic forces in a wind tunnel test. The paper represents a continuation of an article written by Schewe (1982) about a multicomponent balance consisting of piezoelectric force transducers for a high-pressure wind tunnel. Advantages of the piezoelectric force-measuring technique compared to other techniques are related to the high rigidity of the quartz crystal sensor elements, taking into account low interference (cross talk) for multicomponent measurements, high natural frequency, and broad dynamic range. It is pointed out that the limitations with respect to quasi-static measurements imposed by the drift of the zero point are not as extensive as generally believed, while drift correction methods improve the measurement accuracy.

  1. Force Measurements in Vibration and Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Scharton, T. D.

    1996-01-01

    The advent of triaxial, piezoelectric force gages and the associated signal processing is a precursor to several dynamics testing innovations. This new technology is applicable to spacecraft programs that JPL manages. An application of force measurement is force limiting (when testing spacecraft in random vibration tests). Base-drive and acoustic modal testing is a potential application.

  2. Large Surface Measuring Machine

    NASA Astrophysics Data System (ADS)

    Egdall, Mark; Breidenthal, Robert S.

    1983-09-01

    A new surface measuring concept developed under government contract at Itek Optical Systems has been previously reported by Allen Greenleaf. The method uses four steerable distance-measuring interferometers at the corners of a tetrahedron to determine the posi-tions of a retroreflecting target at various locations on the surface being measured. A small wooden breadboard had been built and tested, demonstrating the feasibility of the concept. This paper reports the building of a scaled-up prototype surface measuring machine to allow the measurement of large aspheric surfaces. A major advantage of the device is that, unlike conventional interferometry, it provides surface measurement in absolute coordinates, thus allowing direct determination of radius of curvature. In addition, the device is self-calibrating. Measurements of a 24-inch mirror have been made with the new machine, giving repeatability of 4 µ m peak sag in the curvature and accuracy of 0.7 μm rms in the surface figure at best focus. The device is currently being used in the production grinding of large aspheric mirrors at Itek. The device is potentially scalable to other industries where highly accurate measurement of unusual surfaces is required.

  3. Quantifying mineral surface energy by scanning force microscopy.

    PubMed

    Sauerer, Bastian; Stukan, Mikhail; Abdallah, Wael; Derkani, Maryam H; Fedorov, Maxim; Buiting, Jan; Zhang, Zhenyu J

    2016-06-15

    Fundamental understanding of the wettability of carbonate formations can potentially be applied to the development of oil recovery strategies in a complex carbonate reservoir. In the present study, surface energies of representative carbonate samples were evaluated by direct quantitative force measurements, using scanning force microscopy (SFM) at sub-micron scale, to develop a reliable method to predict reservoir wettability. Local adhesion force measurements were conducted on appropriate calcite and dolomite samples and performed in air as well as in the presence of polar and nonpolar fluids. This study demonstrated that, by comparing measurements of adhesion forces between samples of the same mineral in different fluids, it is feasible to determine the surface energy of a given mineral as well as its polar and nonpolar components. The derived values are in agreement with literature. A proof-of-principle protocol has been established to quantify surface energy using SFM-based adhesion measurements. This novel methodology complements the conventional contact angle measurement technique, where surface energy can only be examined at large length scale. The reported methodology has great potential for further optimization into a new standard method for fast and accurate surface energy determination, and hence provides a new tool for reservoir rock wettability characterization. PMID:27054773

  4. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  5. Knee joint forces: prediction, measurement, and significance

    PubMed Central

    D’Lima, Darryl D.; Fregly, Benjamin J.; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W.

    2011-01-01

    Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461

  6. Surface cleanliness measurement procedure

    DOEpatents

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  7. Measurement of Casimir Force between Monolithic Silicon Microstructures

    NASA Astrophysics Data System (ADS)

    Tang, Lu; Chan, Ho Bun; Zou, Jie; Marcet, Zsolt; Bao, Yiliang; Rodriguez, Alejandro; Reid, Homer; McCauley, Alexander; Johnson, Steven; Kravchenko, Ivan

    2014-03-01

    We present measurements of the Casimir force between silicon components in a near-planar geometry. We create the device from a silicon-on-insulator wafer using microfabrication. It contains a force-sensing micromechanical beam and an electrostatic comb actuator for controlling the distance. The two lithographically-defined micromechanical components are on the same silicon substrate and are automatically aligned after fabrication. Thus, we can achieve a high degree of parallelism between the two interacting surfaces. We employ a magneto-motive technique to measure the shift in the resonance frequency of the force sensing beam. Periodic Lorentz forces are exerted on the beam when an ac current is applied in a perpendicular magnetic field. As the movable electrode is pushed towards the silicon beam by the comb drives, the Casimir force increases. The force gradient is proportional to the resonance frequency shift of the beam. After the calibration using electrostatic forces and balancing the residual voltage, we measure the Casimir force gradient. Our results are in reasonable agreement with theoretical calculations, considering possible contributions of patch potentials. Apart from providing a compact platform for Casimir force measurements, this scheme also opens new opportunities for the measurement of Casimir force in complex geometries.

  8. The boundary lubrication of chemically grafted and cross-linked hyaluronic acid in phosphate buffered saline and lipid solutions measured by the surface forces apparatus.

    PubMed

    Yu, Jing; Banquy, Xavier; Greene, George W; Lowrey, Daniel D; Israelachvili, Jacob N

    2012-01-31

    High molecular weight hyaluronic acid (HA) is present in articular joints and synovial fluid at high concentrations; yet despite numerous studies, the role of HA in joint lubrication is still not clear. Free HA in solution does not appear to be a good lubricant, being negatively charged and therefore repelled from most biological, including cartilage, surfaces. Recent enzymatic experiments suggested that mechanically or physically (rather than chemically) trapped HA could function as an "adaptive" or "emergency" boundary lubricant to eliminate wear damage in shearing cartilage surfaces. In this work, HA was chemically grafted to a layer of self-assembled amino-propyl-triethoxy-silane (APTES) on mica and then cross-linked. The boundary lubrication behavior of APTES and of chemically grafted and cross-linked HA in both electrolyte and lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) solutions was tested with a surface forces apparatus (SFA). Despite the high coefficient of friction (COF) of μ ≈ 0.50, the chemically grafted HA gel significantly improved the lubrication behavior of HA, particularly the wear resistance, in comparison to free HA. Adding more DOPC lipid to the solution did not improve the lubrication of the chemically grafted and cross-linked HA layer. Damage of the underlying mica surface became visible at higher loads (pressure >2 MPa) after prolonged sliding times. It has generally been assumed that damage caused by or during sliding, also known as "abrasive friction", which is the main biomedical/clinical/morphological manifestation of arthritis, is due to a high friction force and, therefore, a large COF, and that to prevent surface damage or wear (abrasion) one should therefore aim to reduce the COF, which has been the traditional focus of basic research in biolubrication, particularly in cartilage and joint lubrication. Here we combine our results with previous ones on grafted and cross-linked HA on lipid bilayers, and lubricin

  9. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  10. Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei)

    PubMed Central

    McConney, Michael E.; Schaber, Clemens F.; Julian, Michael D.; Eberhardt, William C.; Humphrey, Joseph A.C.; Barth, Friedrich G.; Tsukruk, Vladimir V.

    2009-01-01

    The micromechanical properties of spider air flow hair sensilla (trichobothria) were characterized with nanometre resolution using surface force spectroscopy (SFS) under conditions of different constant deflection angular velocities (rad s−1) for hairs 900–950 μm long prior to shortening for measurement purposes. In the range of angular velocities examined (4×10−4−2.6×10−1 rad s−1), the torque T (Nm) resisting hair motion and its time rate of change (Nm s−1) were found to vary with deflection velocity according to power functions. In this range of angular velocities, the motion of the hair is most accurately captured by a three-parameter solid model, which numerically describes the properties of the hair suspension. A fit of the three-parameter model (3p) to the experimental data yielded the two torsional restoring parameters, S 3p=2.91×10−11 Nm rad−1 and =2.77×10−11 Nm rad−1 and the damping parameter R 3p=1.46×10−12 Nm s rad−1. For angular velocities larger than 0.05 rad s−1, which are common under natural conditions, a more accurate angular momentum equation was found to be given by a two-parameter Kelvin solid model. For this case, the multiple regression fit yielded S 2p=4.89×10−11 Nm rad−1 and R 2p=2.83×10−14 Nm s rad−1 for the model parameters. While the two-parameter model has been used extensively in earlier work primarily at high hair angular velocities, to correctly capture the motion of the hair at both low and high angular velocities it is necessary to employ the three-parameter model. It is suggested that the viscoelastic mechanical properties of the hair suspension work to promote the phasic response behaviour of the sensilla. PMID:19091682

  11. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique for estimating aerosol radiative forcing from spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, R. R.

    2015-12-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. In this study we look into the approach where ground based spectral radiation flux measurements along with an RT model is used to estimate radiative forcing. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and 3nm resolution for around 54 clear-sky days during which AOD range was around 0.1 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. All the measurements were made in the campus of Indian Institute of Science which is in the heart of Bangalore city. The primary study involved in understanding the sensitivity of spectral flux to change in the mass concentration of individual aerosol species (Optical properties of Aerosols and Clouds -OPAC classified aerosol species) using the SBDART RT model. This made us clearly distinguish the region of influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves an iterative process where the mixture of aerosol species are changed in OPAC model and RT model is run as long as the mixture which mimics the measured spectral flux within 2-3% deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model aerosol radiative forcing is estimated. The new method is limited to clear sky scenes and its accuracy to derive an optically equivalent aerosol mixture reduces when diffuse component of flux increases. Our analysis also showed that direct component of spectral flux is

  12. Laser Photon Force Measurements using a CW Laser

    NASA Technical Reports Server (NTRS)

    Gray, Perry; Edwards, David L.; Carruth, M. Ralph, Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The photon force resulting from the non-damaging impact of laser derived photons on a metallic target was measured using a vacuum compatible microbalance. This experiment quantitatively verified that the force resulting from laser photons impacting a reflective surface is measurable and predictable. The photon wavelength is 1064 mn and the laser is a multi-mode 30OW Nd YAG continuous wave (CW) laser.

  13. Retention force measurement of telescopic crowns.

    PubMed

    Bayer, Stefan; Stark, Helmut; Mues, Sebastian; Keilig, Ludger; Schrader, Anja; Enkling, Norbert

    2010-10-01

    This study deals with the determination of the retentive force between primary and secondary telescopic crowns under clinical conditions. Forty-three combined fixed-removable prostheses with a total of 140 double crowns were used for retention force measurement of the telescopic crowns prior to cementation. The crowns had a preparation of 1-2°. A specifically designed measuring device was used. The retentive forces were measured with and without lubrication by a saliva substitute. The measured values were analyzed according to the type of tooth (incisors, canines, premolars, and molars). Additionally, a comparison between lubricated and unlubricated telescopic crowns was done. As maximum retention force value 29.98 N was recorded with a telescopic crown on a molar, while the minimum of 0.08 N was found with a specimen on a canine. The median value of retention force of all telescopic crowns reached 1.93 N with an interquartile distance of 4.35 N. No statistically significant difference between lubricated and unlubricated specimens was found. The results indicate that retention force values of telescopic crowns, measured in clinical practice, are often much lower than those cited in the literature. The measurements also show a wide range. Whether this proves to be a problem for the patient's quality of life or not can however only be established by a comparison of the presented results with a follow-up study involving measurement of intraoral retention and determination by e.g. oral health impact profile.

  14. Influence of surface potential on the adhesive force of radioactive gold surfaces.

    PubMed

    Kweon, Hyojin; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2013-09-24

    Radioactive particles may acquire surface potential through self-charging, and thus can behave differently from natural aerosols in atmospheric systems with respect to aggregation, deposition, resuspension, and transport to areas surrounding a radioactive source. This work focuses on the adhesive force between radioactive particles and metallic surfaces, which relates to the deposition and resuspension of particles on surrounding surfaces. Scanning surface potential microscopy was employed to measure the surface potential of radioactive gold foil. Atomic force microscopy was used to investigate the adhesive force for gold that acquired surface charge either by irradiation or by application of an equivalent electrical bias. Overall, the adhesive force increases with increasing surface potential or relative humidity. However, a behavior that does not follow the general trend was observed for the irradiated gold at a high decay rate. A comparison between experimental measurements and calculated values revealed that the surface potential promotes adhesion. The contribution of the electrostatic force at high levels of relative humidity was lower than the one found using theoretical calculations due to the effects caused by enhanced adsorption rate of water molecules under a high surface charge density. The results of this study can be used to provide a better understanding of the behavior of radioactive particles in atmospheric systems.

  15. Gage measures electrical connector pin retention force

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The retention force of a female connector pin is measured by observing the action of a calibrated spring in a gage consisting of housing, a plunger terminating in a male subminiature connector pin, and the tension spring.

  16. Three dimensional nanofabrication using surface forces

    PubMed Central

    Cho, Jeong-Hyun; Azam, Anum; Gracias, David H.

    2010-01-01

    We describe strategies to curve, rotate, align and bond precisely patterned two dimensional (2D) nanoscale panels using forces derived from a minimization of surface area of liquefying or coalescing metallic grains. We demonstrate the utility of this approach by discussing variations in template size, patterns and material composition. The strategy provides a solution path to overcome the limitation of inherently two dimensional lithographic processes by transforming 2D templates into mechanically robust and precisely patterned nanoscale curved structures and polyhedra with considerable versatility in material composition. PMID:20507147

  17. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique of estimating aerosol radiative forcing from high resolution spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, Roshan

    2016-04-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. We look into the approach where ground based spectral radiation flux measurement is made and along with an Radtiative transfer (RT) model, radiative forcing is estimated. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and a 3nm resolution during around 54 clear-sky days during which AOD range was around 0.01 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. The primary study involved in understanding the sensitivity of spectral flux due to change in individual aerosol species (Optical properties of Aerosols and Clouds (OPAC) classified aerosol species) using the SBDART RT model. This made us clearly distinguish the influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves matching different combinations of aerosol species in OPAC model and RT model as long as the combination which gives the minimum root mean squared deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model, aerosol radiative forcing is estimated. Also an alternate method to estimate the spectral SSA is discussed. Here, the RT model, the observed spectral flux and spectral AOD is used. Spectral AOD is input to RT model and SSA is varied till the minimum root mean squared difference between observed and simulated spectral flux from RT model is obtained. The methods discussed are limited to clear sky scenes and its accuracy to derive

  18. Micromechanical apparatus for measurement of forces

    DOEpatents

    Tanner, Danelle Mary; Allen, James Joe

    2004-05-25

    A new class of micromechanical dynamometers has been disclosed which are particularly suited to fabrication in parallel with other microelectromechanical apparatus. Forces in the microNewton regime and below can be measured with such dynamometers which are based on a high-compliance deflection element (e.g. a ring or annulus) suspended above a substrate for deflection by an applied force, and one or more distance scales for optically measuring the deflection.

  19. Reliable measurements of interfacial slip by colloid probe atomic force microscopy. II. Hydrodynamic force measurements.

    PubMed

    Zhu, Liwen; Attard, Phil; Neto, Chiara

    2011-06-01

    Here we report a new study on the boundary conditions for the flow of a simple liquid in a confined geometry obtained by measuring hydrodynamic drainage forces with colloid probe atomic force microscopy (AFM). In this work, we provide experimental data obtained using a best practice experimental protocol and fitted with a new theoretical calculation (Zhu, L.; Attard, P.; Neto, C. Langmuir 2010, submitted for publication, preceding paper). We investigated the hydrodynamic forces acting on a silica colloid probe approaching a hydrophobized silicon surface in a single-component viscous Newtonian liquid (di-n-octylphthalate), a partially wetting system. The measured average slip lengths were in the range of 24-31 nm at approach velocities of between 10 and 80 μm/s. Using our experimental approach, the presence of nanoparticle contaminants in the system can be indentified, which is important because it has been shown that nanoparticles lead to a large apparent slip length. Under our stringent control of experimental conditions, the measurement of the slip length is reproducible and independent of the spring constant of the cantilever.

  20. Measurement and analysis of forces in grinding of silicon nitride

    SciTech Connect

    Jahanmir, S.; Hwang, T.; Whitenton, E.P.; Job, L.S.; Evans, C.J.

    1995-12-31

    Using an instrumented surface grinder, the two components of grinding forces (normal and tangential) were measured for different types of silicon nitride ceramics. The influences of grinding parameters, such as down feed and table speed, and grinding fluids on forces were determined. In addition to these measurements, the specific grinding energy defined as the energy per unit volume of removed material was calculated. This parameter and the measured forces were then analyzed to determine possible correlations with mechanical properties of the silicon nitrides. It was found that, in general, the grinding forces and the specific grinding energy increase with the hardness. Both the grinding forces and the specific grinding energy were influenced by the grinding fluid and the grinding parameters. The implication of these results on the mechanisms of material removal in grinding of silicon nitride and the possible tribological effects are discussed.

  1. Phoretic Force Measurement for Microparticles Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. J.; Zheng, R.

    1999-01-01

    This theoretical and experimental investigation of the collisional interactions between gas molecules and solid and liquid surfaces of microparticles involves fundamental studies of the transfer of energy, mass and momentum between gas molecules and surfaces. The numerous applications include particle deposition on semiconductor surfaces and on surfaces in combustion processes, containerless processing, the production of nanophase materials, pigments and ceramic precursors, and pollution abatement technologies such as desulfurization of gaseous effluents from combustion processes. Of particular emphasis are the forces exerted on microparticles present in a nonuniform gas, that is, in gaseous surroundings involving temperature and concentration gradients. These so-called phoretic forces become the dominant forces when the gravitational force is diminished, and they are strongly dependent on the momentum transfer between gas molecules and the surface. The momentum transfer, in turn, depends on the gas and particle properties and the mean free path and kinetic energy of the gas molecules. The experimental program involves the particle levitation system shown. A micrometer size particle is held between two heat exchangers enclosed in a vacuum chamber by means of ac and dc electric fields. The ac field keeps the particle centered on the vertical axis of the chamber, and the dc field balances the gravitational force and the thermophoretic force. Some measurements of the thermophoretic force are presented in this paper.

  2. Atomic force microscopy study of tooth surfaces.

    PubMed

    Farina, M; Schemmel, A; Weissmüller, G; Cruz, R; Kachar, B; Bisch, P M

    1999-03-01

    Atomic force microscopy (AFM) was used to study tooth surfaces in order to compare the pattern of particle distribution in the outermost layer of the tooth surfaces. Human teeth and teeth from a rodent (Golden hamster), from a fish (piranha), and from a grazing mollusk (chiton) with distinct feeding habits were analyzed in terms of particle arrangement, packing, and size distribution. Scanning electron microscopy and transmission electron microscopy were used for comparison. It was found that AFM gives high-contrast, high-resolution images and is an important tool as a source of complementary and/or new structural information. All teeth were cleaned and some were etched with acidic solutions before analysis. It was observed that human enamel (permanent teeth) presents particles tightly packed in the outer surface, whereas enamel from the hamster (continuously growing teeth) shows particles of less dense packing. The piranha teeth have a thin cuticle covering the long apatite crystals of the underlying enameloid. This cuticle has a rough surface of particles that have a globular appearance after the brief acidic treatment. The similar appearance of the in vivo naturally etched tooth surface suggests that the pattern of globule distribution may be due to the presence of an organic material. Elemental analysis of this cuticle indicated that calcium, phosphorus, and iron are the main components of the structure while electron microdiffraction of pulverized cuticle particles showed a pattern consistent with hydroxyapatite. The chiton mineralized tooth cusp had a smooth surface in an unabraded region and a very rough structure with the magnetite crystals (already known to make part of the structure) protruding from the surface. It was concluded that the structures analyzed are optimized for efficiency in feeding mechanism and life span of the teeth.

  3. Measurement of tool forces in diamond turning

    SciTech Connect

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  4. Fusion of intraoperative force sensoring, surface reconstruction and biomechanical modeling

    NASA Astrophysics Data System (ADS)

    Röhl, S.; Bodenstedt, S.; Küderle, C.; Suwelack, S.; Kenngott, H.; Müller-Stich, B. P.; Dillmann, R.; Speidel, S.

    2012-02-01

    Minimally invasive surgery is medically complex and can heavily benefit from computer assistance. One way to help the surgeon is to integrate preoperative planning data into the surgical workflow. This information can be represented as a customized preoperative model of the surgical site. To use it intraoperatively, it has to be updated during the intervention due to the constantly changing environment. Hence, intraoperative sensor data has to be acquired and registered with the preoperative model. Haptic information which could complement the visual sensor data is still not established. In addition, biomechanical modeling of the surgical site can help in reflecting the changes which cannot be captured by intraoperative sensors. We present a setting where a force sensor is integrated into a laparoscopic instrument. In a test scenario using a silicone liver phantom, we register the measured forces with a reconstructed surface model from stereo endoscopic images and a finite element model. The endoscope, the instrument and the liver phantom are tracked with a Polaris optical tracking system. By fusing this information, we can transfer the deformation onto the finite element model. The purpose of this setting is to demonstrate the principles needed and the methods developed for intraoperative sensor data fusion. One emphasis lies on the calibration of the force sensor with the instrument and first experiments with soft tissue. We also present our solution and first results concerning the integration of the force sensor as well as accuracy to the fusion of force measurements, surface reconstruction and biomechanical modeling.

  5. Measurement of surface microtopography

    NASA Technical Reports Server (NTRS)

    Wall, S. D.; Farr, T. G.; Muller, J.-P.; Lewis, P.; Leberl, F. W.

    1991-01-01

    Acquisition of ground truth data for use in microwave interaction modeling requires measurement of surface roughness sampled at intervals comparable to a fraction of the microwave wavelength and extensive enough to adequately represent the statistics of a surface unit. Sub-centimetric measurement accuracy is thus required over large areas, and existing techniques are usually inadequate. A technique is discussed for acquiring the necessary photogrammetric data using twin film cameras mounted on a helicopter. In an attempt to eliminate tedious data reduction, an automated technique was applied to the helicopter photographs, and results were compared to those produced by conventional stereogrammetry. Derived root-mean-square (RMS) roughness for the same stereo-pair was 7.5 cm for the automated technique versus 6.5 cm for the manual method. The principal source of error is probably due to vegetation in the scene, which affects the automated technique but is ignored by a human operator.

  6. The Kilogram and Measurements of Mass and Force

    PubMed Central

    Jabbour, Z. J.; Yaniv, S. L.

    2001-01-01

    This paper describes the facilities, measurement capabilities, and ongoing research activities in the areas of mass and force at the National Institute of Standards and Technology (NIST). The first section of the paper is devoted to mass metrology and starts with a brief historical perspective on the developments that led to the current definition of the kilogram. An overview of mass measurement procedures is given with a brief discussion of current research on alternative materials for mass standards and surface profiles of the U.S. national prototype kilograms. A brief outlook into the future possible redefinition of the unit of mass based on fundamental principles is included. The second part of this paper focuses on the unit of force and describes the realization of the unit, measurement procedures, uncertainty in the realized force, facilities, and current efforts aimed at the realization of small forces. PMID:27500016

  7. The Kilogram and Measurements of Mass and Force.

    PubMed

    Jabbour, Z J; Yaniv, S L

    2001-01-01

    This paper describes the facilities, measurement capabilities, and ongoing research activities in the areas of mass and force at the National Institute of Standards and Technology (NIST). The first section of the paper is devoted to mass metrology and starts with a brief historical perspective on the developments that led to the current definition of the kilogram. An overview of mass measurement procedures is given with a brief discussion of current research on alternative materials for mass standards and surface profiles of the U.S. national prototype kilograms. A brief outlook into the future possible redefinition of the unit of mass based on fundamental principles is included. The second part of this paper focuses on the unit of force and describes the realization of the unit, measurement procedures, uncertainty in the realized force, facilities, and current efforts aimed at the realization of small forces.

  8. Measurement of complex surfaces

    SciTech Connect

    Brown, G.M.

    1993-05-01

    Several of the components used in coil fabrication involve complex surfaces and dimensions that are not well suited to measurements using conventional dimensional measuring equipment. Some relatively simple techniques that are in use in the SSCL Magnet Systems Division (MSD) for incoming inspection will be described, with discussion of their suitability for specific applications. Components that are submitted for MSD Quality Assurance (QA) dimensional inspection may be divided into two distinct categories; the first category involves components for which there is an approved drawing and for which all nominal dimensions are known; the second category involves parts for which `reverse engineering` is required, the part is available but there are no available drawings or dimensions. This second category typically occurs during development of coil end parts and coil turn filler parts where it is necessary to manually shape the part and then measure it to develop the information required to prepare a drawing for the part.

  9. Measuring pulsatile forces on the human cranium.

    PubMed

    Goldberg, Cory S; Antonyshyn, Oleh; Midha, Rajiv; Fialkov, Jeffrey A

    2005-01-01

    The cyclic stresses in the cranium caused by pulsation of the brain play an important role in the design of materials for cranioplasty, as well as craniofacial development. However, these stresses have never been quantified. In this study, the force in the epidural space against the cranium was measured intraoperatively in 10 patients using a miniature force probe. Heart and ventilatory rates computed from the force tracing correlated closely with the corresponding measured values in the patients, confirming that the forces measured were indeed a result of brain pulsation. The mean outward systolic normal and tangential stresses were 54.2 kilo-Pascals (kPa) and 345.4 kPa, respectively. The systolic shear stress was 199.8 kPa. Through mechanotransduction, these stresses play a role in cranial development. The calculated yield stress of a cranioplasty repair was 0.4 MPa, which is within one order of magnitude of the known strength of common calcium-phosphate cements. This indicates a possible relation of these pulsatile forces and occult failure of calcium-phosphate cement cranioplasties through material fatigue.

  10. Measuring the Drag Force on a Falling Ball

    NASA Astrophysics Data System (ADS)

    Cross, Rod; Lindsey, Crawford

    2014-03-01

    The effect of the aerodynamic drag force on an object in flight is well known and has been described in this and other journals many times. At speeds less than about 1 m/s, the drag force on a sphere is proportional to the speed and is given by Stokes' law. At higher speeds, the drag force is proportional to the velocity squared and is usually small compared with the gravitational force if the object mass is large and its speed is low. In order to observe a significant effect, or to measure the terminal velocity, experiments are often conducted with very light objects such as a balloon or coffee filter3 or muffin cup,4 or are conducted in a liquid rather than in air. The effect of the drag force can also be increased by increasing the surface area of the object.

  11. Simplified fundamental force and mass measurements

    NASA Astrophysics Data System (ADS)

    Robinson, I. A.

    2016-08-01

    The watt balance relates force or mass to the Planck constant h, the metre and the second. It enables the forthcoming redefinition of the unit of mass within the SI by measuring the Planck constant in terms of mass, length and time with an uncertainty of better than 2 parts in 108. To achieve this, existing watt balances require complex and time-consuming alignment adjustments limiting their use to a few national metrology laboratories. This paper describes a simplified construction and operating principle for a watt balance which eliminates the need for the majority of these adjustments and is readily scalable using either electromagnetic or electrostatic actuators. It is hoped that this will encourage the more widespread use of the technique for a wide range of measurements of force or mass. For example: thrust measurements for space applications which would require only measurements of electrical quantities and velocity/displacement.

  12. Genetically encoded force sensors for measuring mechanical forces in proteins

    PubMed Central

    Wang, Yuexiu; Sachs, Frederick

    2011-01-01

    There are three sources of free energy for cells: chemical potential, electrical potential and mechanical potential. There is little known about the last one since there have not been simple ways to measure stress in proteins in cells. we have now developed genetically encoded force sensors to assess the stress in fibrous proteins in living cells. These FReT based fluorescence sensors can be read out at video rates and provide real time maps of the stress distribution in cells, tissues and animals. The sensors can be inserted into specific proteins and in general do not disturb the normal function or anatomy. The original sensors used mutant GFPs linked by elastic linkers. These sensors provide a linear output with applied stress but the response is linear in strain. To improve contrast and dynamic range we have now developed a new class of sensors that are smaller making them less invasive, and have much higher intrinsic sensitivity since force modulates the angle between the donor and acceptor much more than the distance between them. Known as cpstFRET, the probe shows improved biocompatibility, wider dynamic range and higher sensitivity. PMID:21966553

  13. Surface texture generation during cylindrical milling in the aspect of cutting force variations

    NASA Astrophysics Data System (ADS)

    Wojciechowski, S.; Twardowski, P.; Pelic, M.

    2014-03-01

    The work presented here concentrates on surface texture analysis, after cylindrical milling of hardened steel. Cutting force variations occurring in the machining process have direct influence on the cutter displacements and thus on the generated surface texture. Therefore, in these experiments, the influence of active number of teeth (zc) on the cutting force variations was investigated. Cutting forces and cutter displacements were measured during machining process (online) using, namely piezoelectric force dynamometer and 3D laser vibrometer. Surface roughness parameters were measured using stylus surface profiler. The surface roughness model including cutting parameters (fz, D) and cutting force variations was also developed. The research revealed that in cylindrical milling process, cutting force variations have immediate influence on surface texture generation.

  14. Intermodulation electrostatic force microscopy for imaging surface photo-voltage

    SciTech Connect

    Borgani, Riccardo Forchheimer, Daniel; Thorén, Per-Anders; Haviland, David B.; Bergqvist, Jonas; Inganäs, Olle

    2014-10-06

    We demonstrate an alternative to Kelvin Probe Force Microscopy for imaging surface potential. The open-loop, single-pass technique applies a low-frequency AC voltage to the atomic force microscopy tip while driving the cantilever near its resonance frequency. Frequency mixing due to the nonlinear capacitance gives intermodulation products of the two drive frequencies near the cantilever resonance, where they are measured with high signal to noise ratio. Analysis of this intermodulation response allows for quantitative reconstruction of the contact potential difference. We derive the theory of the method, validate it with numerical simulation and a control experiment, and we demonstrate its utility for fast imaging of the surface photo-voltage on an organic photo-voltaic material.

  15. Interface corrective force measurements in Boston brace treatment.

    PubMed

    van den Hout, J A A M; van Rhijn, L W; van den Munckhof, R J H; van Ooy, A

    2002-08-01

    Brace application has been reported to be effective in treating idiopathic adolescent scoliosis. The exact working mechanism of a thoracolumbo spinal orthosis is a result of different mechanisms and is not completely understood. One of the supposed working mechanisms is a direct compressive force working through the brace upon the body and thereby correcting the scoliotic deformity, achieving optimal fit of the individual orthosis. In this study we measured these direct forces exerted by the pads in a Boston brace in 16 patients with idiopathic adolescent scoliosis, using the electronic PEDAR measuring device (Novel, Munich, Germany). This is designed as an in-shoe measuring system consisting of two shoe insoles (size 8 1/2), wired to a computer, recording static and dynamic pressure distribution under the plantar surface of the foot. After positioning the inserts between the lumbar and thoracic pads and the body, we measured the forces acting upon the body in eight different postures. In all positions the mean corrective force through the lumbar brace pad was larger than the mean corrective force over the thoracic brace pad. Some changes in body posture resulted in statistically significant alterations in the exerted forces. There was no significant correlation between the magnitude of the compressive force over the lumbar and thoracic brace-pad and the degree of correction of the major curve. Comparing the corrective forces in a relatively new (<6 months) and old (>6 months) brace, there was no statistically relevant difference, although the corrective force was slightly larger in the new braces. We think that the use of this pressure measurement device is practicable and of value for studies of the working mechanism of brace treatment, and in the future it might be of help in achieving optimal fit of the individual orthosis.

  16. Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor

    SciTech Connect

    Xie Hui; Vitard, Julien; Haliyo, Sinan; Regnier, Stephane

    2008-03-15

    We present here a method to calibrate the lateral force in the atomic force microscope. This method makes use of an accurately calibrated force sensor composed of a tipless piezoresistive cantilever and corresponding signal amplifying and processing electronics. Two ways of force loading with different loading points were compared by scanning the top and side edges of the piezoresistive cantilever. Conversion factors between the lateral force and photodiode signal using three types of atomic force microscope cantilevers with rectangular geometries (normal spring constants from 0.092 to 1.24 N/m and lateral stiffness from 10.34 to 101.06 N/m) were measured in experiments using the proposed method. When used properly, this method calibrates the conversion factors that are accurate to {+-}12.4% or better. This standard has less error than the commonly used method based on the cantilever's beam mechanics. Methods such of this allow accurate and direct conversion between lateral forces and photodiode signals without any knowledge of the cantilevers and the laser measuring system.

  17. Trends of measured climate forcing agents

    PubMed Central

    Hansen, James E.; Sato, Makiko

    2001-01-01

    The growth rate of climate forcing by measured greenhouse gases peaked near 1980 at almost 5 W/m2 per century. This growth rate has since declined to ≈3 W/m2 per century, largely because of cooperative international actions. We argue that trends can be reduced to the level needed for the moderate “alternative” climate scenario (≈2 W/m2 per century for the next 50 years) by means of concerted actions that have other benefits, but the forcing reductions are not automatic “co-benefits” of actions that slow CO2 emissions. Current trends of climate forcings by aerosols remain very uncertain. Nevertheless, practical constraints on changes in emission levels suggest that global warming at a rate +0.15 ± 0.05°C per decade will occur over the next several decades. PMID:11752424

  18. Trends of Measured Climate Forcing Agents

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Einaudi, Franco (Technical Monitor)

    2002-01-01

    The growth rate of climate forcing by measured greenhouse gases peaked near 1980 at almost 5 W/sq m per century. This growth rate has since declined to approximately equal to 3 W/sq m per century, largely because of cooperative international actions. We argue that trends can be reduced to the level needed for the moderate "alternative" climate scenario (approximately equal to 2 W/M2 per century for the next 50 years) by means of concerted actions that have other benefits, but the forcing reductions are not automatic "co-benefits" of actions that slow CO2 emissions. Current trends of climate forcings by aerosols remain very uncertain. Nevertheless, practical constraints on changes in emission levels suggest that global warming at a rate + 0.15 +/- 0.05 C per decade will occur over the next several decades.

  19. Influence of atmospheric forcing parameters on land surface simulation

    NASA Astrophysics Data System (ADS)

    Nayak, H. P.; Mandal, M.; Bhattacharya, A.

    2015-12-01

    The quality of atmospheric forcing plays important role on land surface simulation using decoupled land surface modeling system. In the present study, the influence of the various atmospheric forcing parameters on land surface simulation is assessed through sensitivity experiments. Numerical experiments are conducted towards preparation of land surface analysis for the period Jan-2011 - Dec-2013 using offline 2D-Noah land surface model (LSM) based land data assimilation system (LDAS) over Indian region (5 - 39N, 60 - 100E) hereafter referred as LDASI. The surface temperature, specific humidity, horizontal winds and pressure as atmospheric forcing parameters are derived from Modern-Era Retrospective Analysis for Research and Applications (MERRA). The downward (solar and thermal) radiation and precipitation is obtained from European Centre for Medium Range Forecast (ECMWF) and Tropical Rainfall Measuring Mission (TRMM) respectively. The sensitivity experiments are conducted by introducing perturbation in one atmospheric forcing parameter at a time keeping the other parameters unchanged. Influence of temperature, specific humidity, downward (shortwave and long wave) radiation, rain-rate and wind speed is investigated by conducted 13 numerical experiments. It is observed that the land surface analysis from LDASI is most sensitive to the downward longwave radiation and least sensitive to wind speed. The analysis is also substantially influenced by the surface air temperature. The annual mean soil moisture at 5 cm is decreased by 12-15% if the downward long-wave radiation is increased by 20% and it is increased by 15% if the downward long-wave radiation is decreased by 20%. The influence is even more in the Himalayan region but the increase in long-wave radiation leads to increase in soil moisture and similar influence on decrease because downward long-wave radiation leads glacier melting. The annual mean soil temperature in the analysis is increased by 2.2 K if surface

  20. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  1. A voice coil motor based measuring force control system for tactile scanning profiler

    NASA Astrophysics Data System (ADS)

    Feng, Shengdong; Liu, Xiaojun; Chen, Liangzhou; Zhou, Liping; Lu, Wenlong

    2015-02-01

    In tactile scanning profiler, the measuring force would change in a wide range when it was used for profile measurement in a large range, which could possibly destroy the measured surface. To solve the problem, measuring force control system for tactile scanning profiler was needed. In the paper, a voice coil motor-based measuring force control system for tactile scanning profiler was designed. In the design, a low stiffness coefficient spring was used to provide contact force, while a voice coil motor (VCM) to balance the spring force so that the contact force could be kept for constant measuring force. A VCM was designed specially, and for active measuring force control, a precision current source circuit under the control of a DSP unit was designed to drive the VCM. The performance of voice coil motor based measuring force control system had been tested, and its good characteristics were verified.

  2. The extended surface forces apparatus. IV. Precision static pressure control.

    PubMed

    Schurtenberger, E; Heuberger, M

    2011-10-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under ambient conditions. The surface separation is thus pre-adjusted to approximately ~3 μm before sliding the apparatus into the autoclave. Inside the autoclave, the surface separation can be further controlled with a magnetic drive at sub-Ångstrom precision over a 14 μm range. The autoclave pressure can then be set and maintained between 20 mbar and 170 bars with few mbar precision. The autoclave is connected to a specially designed pressurization system to precondition the fluids. The temperature can be controlled between -20 and 60 °C with few mK precision. We demonstrate the operation of the instrument in the case of gaseous or liquid carbon dioxide. Thanks to a consequent decoupling of the eSFA mechanical loop from the autoclave structure, the obtained measurement stability and reproducibility, at elevated pressures, is comparable to the one established for the conventional eSFA, operated under ambient conditions. PMID:22047307

  3. Surface Roughness Model Based on Force Sensors for the Prediction of the Tool Wear

    PubMed Central

    de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel

    2014-01-01

    In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained. PMID:24714391

  4. Surface roughness model based on force sensors for the prediction of the tool wear.

    PubMed

    de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel

    2014-04-04

    In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained.

  5. Measuring Forces of Bacterial Biofilms on Substrates

    NASA Astrophysics Data System (ADS)

    Cooley, Benjamin; Gordon, Vernita

    2010-10-01

    Biofilms are multicellular aggregates of microorganisms with distinct gene expression and often complex spatial structure. Understanding the forces exerted by bacterial biofilms on their substrates could help in understanding damage they cause in industrial settings and to living tissue in biofilm infections. Here we propose a series of experiments to study the forces between biofilms and substrates using rheological and micro-rheological techniques. Polystyrene tracer beads embedded in agar gels can be mapped over the course of biofilm development, and these timelapse motions will show the strain in the substrate. Meanwhile, measurements of the Brownian motion of selected tracer beads can yield information about the microstructure of the agar. For instance, the extent of the Brownian motion will be increased if the agar is stretched apart or broken down. Additionally, tracers in the biofilms themselves would permit the study of the rheology of the biofilms throughout their development.

  6. Measured long-range repulsive Casimir-Lifshitz forces.

    PubMed

    Munday, J N; Capasso, Federico; Parsegian, V Adrian

    2009-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces. However, as recognized in the theories of Casimir, Polder and Lifshitz, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies. Here we show experimentally that, in accord with theoretical prediction, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir-Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction. PMID:19129843

  7. Measured long-range repulsive Casimir–Lifshitz forces

    PubMed Central

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian

    2014-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843

  8. Combining the effect of crops surface albedo variability on the radiative forcing together with crop GHG budgets calculated from in situ flux measurements in a life cycle assessment approach: methodology and results

    NASA Astrophysics Data System (ADS)

    Ceschia, E.; Ferlicoq, M.; Brut, A.; Tallec, T.

    2013-12-01

    The carbon and GHG budgets (GHGB) of the 2 crop sites with contrasted management located in South West France was estimated over a complete rotation by combining a classical LCA approach with on site CO2 flux measurements. At both sites, carbon inputs (organic fertilization, seeds), carbon exports (harvest) and net ecosystem production (NEP), measured with the eddy covariance technique, were estimated. The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analyzed for all site-years, and the effect of management on NECB was assessed. To account for GHG fluxes that were not directly measured on site, we estimated the emissions caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHGB for a range of cropping systems and management regimes. N2O emissions were calculated following the IPCC (2007) guidelines or and CH4 emissions were assumed to be negligible. Albedo was calculated continuously using the short wave incident and reflected radiation measurements in the field from CNR1 sensors. Rapid changes in surface albedo typical from those ecosystems and resulting from management and crop phenology were analysed. The annual radiative forcing for each plot was estimated by calculating the difference between a mean annual albedo for each crop and a reference bare soil albedo value calculated over 5 years for each plot. To finalize the radiative forcing calculation, the method developed by Muñoz et al (2010) using up and down atmospheric transmittance had to be corrected so it would only account for up-going atmospheric transmittance. Annual differences in radiative forcing between crops were then converted in g C equivalent m-2 in order to add this effect to the GHG budget of each crop within a rotation. This methodology could be applied to all ICOS/NEON cropland sites. We found that the differences in radiative

  9. Uncertainty quantification in nanomechanical measurements using the atomic force microscope.

    PubMed

    Wagner, Ryan; Moon, Robert; Pratt, Jon; Shaw, Gordon; Raman, Arvind

    2011-11-11

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7-20 GPa. A key result is that multiple replicates of force-distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials. PMID:21992899

  10. Uncertainty quantification in nanomechanical measurements using the atomic force microscope.

    PubMed

    Wagner, Ryan; Moon, Robert; Pratt, Jon; Shaw, Gordon; Raman, Arvind

    2011-11-11

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7-20 GPa. A key result is that multiple replicates of force-distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials.

  11. Mapping of surface-immobilized DNA with force-based atomic force microscopy.

    PubMed

    Lee, Yoonhee; Kwon, Sung Hong; Kim, Youngkyu; Lee, Jong-Bong; Park, Joon Won

    2013-04-16

    Single-stranded 50-mer, 100-mer, and 150-mer DNAs were immobilized on a surface, and force-based atomic force microscopy (AFM) was employed to examine their behavior. A complementary 20-mer probe DNA on an AFM tip was used for the measurements. High-resolution maps were generated, and relevant parameters, including the force, stretching distance, unbinding probability, cluster size, and degree of distortion, were analyzed. Due to thermal drift, the cluster shape became increasingly distorted as the scan speed was decreased and as the map area was reduced. The cluster radius increased with the number of base (N), and the radius was proportional to N(0.6) (r = 0.977) and N(0.53) (r = 0.991). Due to the effect of the pulling angle, the apparent values of the stretching distance and the unbinding force decreased as the AFM probe was moved away from the center position; these values can be described as a function of sin θ.

  12. Direct Measurements of Drag Forces in C. elegans Crawling Locomotion

    PubMed Central

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S.

    2014-01-01

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm’s body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode’s body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode. PMID:25418179

  13. Trends of measured climate forcing agents

    NASA Astrophysics Data System (ADS)

    Hansen, James E.; Sato, Makiko

    2001-12-01

    * National Aeronautics and Space Administration, Goddard Institute for Space Studies, New York, NY 10025; and Center for Climate Systems Research, Columbia University Earth Institute, New York, NY 10025 Contributed by James E. Hansen, October 16, 2001 The growth rate of climate forcing by measured greenhouse gases peaked near 1980 at almost 5 W/m2 per century. This growth rate has since declined to 3 W/m2 per century, largely because of cooperative international actions. We argue that trends can be reduced to the level needed for the moderate "alternative" climate scenario (≈2 W/m2 per century for the next 50 years) by means of concerted actions that have other benefits, but the forcing reductions are not automatic "co-benefits" of actions that slow CO2 emissions. Current trends of climate forcings by aerosols remain very uncertain. Nevertheless, practical constraints on changes in emission levels suggest that global warming at a rate +0.15 ± 0.05°C per decade will occur over the next several decades.

  14. Spatial Patterns of Radiative Forcing and Surface Temperature Response

    NASA Astrophysics Data System (ADS)

    Shindell, D. T.

    2014-12-01

    Examination of radiative forcing (RF), a key measure of changes in the energy balance of the Earth, facilitates understanding of the role of various drivers of climate change. For short-lived compounds, the RF can be highly inhomogeneous geographically. The relationship between the spatial patterns of RF and climate response is poorly characterized, however. Here we examine the relationship between RF and surface temperature response in the latest generation of climate models. We find that the geographic distribution of historical changes in aerosol and ozone RF strongly influences the response, leading to substantial regional differences with respect to the response to quasi-uniform well-mixed greenhouse gases (WMGHG). In particular, the response in the Northern Hemisphere (NH) extratropics and tropics follows the forcing in those regions fairly closely. There is a stronger global sensitivity to historical aerosol plus ozone RF than to WMGHG RF with equivalent global mean value, as noted previously [D T Shindell, 2014] and a stronger response in much of the NH extratropics, especially in and downwind of industrialized areas. The enhanced response is shown to be particularly large over land plus polar ocean areas, where transient response occurs more rapidly and strong snow and ice albedo feedbacks operate. This response is not attributable to greater forcing over those regions, but rather appears to reflect a broad sensitivity of NH extratropical land areas to NH extratropical forcing. The models show substantial diversity in the enhancement of land+polar ocean response to aerosols plus ozone relative to WMGHG, and for ocean response some models show reduced sensitivity to aerosols plus ozone (though the multi-model mean shows an enhancement), suggesting that different representations of land and ocean adjustment timescales and regional heat transport contribute greatly to the differences in response to inhomogeneous forcing. In addition, areas with greatest

  15. Surface roughness measurements

    NASA Technical Reports Server (NTRS)

    Howard, Thomas G.

    1994-01-01

    The Optics Division is currently in the research phase of producing grazing-incidence mirrors to be used in x-ray detector applications. The traditional method of construction involves labor-intensive glass grinding. This also culminates in a relatively heavy mirror. For lower resolution applications, the mirrors may be of a replicated design which involves milling a mandrel as a negative of the final shape and electroplating the cylindrical mirror onto it. The mirror is then separated from the mandrel by cooling. The mandrel will shrink more than the 'shell' (mirror) allowing it to be pulled from the mandrel. Ulmer (2) describes this technique and its variations in more detail. To date, several mirrors have been tested at MSFC by the Optical Fabrication Branch by focusing x-ray energy onto a detector with limited success. Little is known about the surface roughness of the actual mirror. Hence, the attempt to gather data on these surfaces. The test involves profiling the surface of a sample, replicating the surface as described above, and then profiling the replicated surface.

  16. The relation between the surface electromyogram and muscular force.

    PubMed Central

    Milner-Brown, H S; Stein, R B

    1975-01-01

    1. Motor units in the first dorsal interosseus muscle of normal human subjects were recorded by needle electrodes, together with the surface electromyogram (e.m.g.). The wave form contributed by each motor unit to the surface e.m.g. was determined by signal averaging. 2. The peak-to-peak amplitude of the wave form contributed to the surface e.m.g. by a motor unit increased approximately as the square root of the threshold force at which the unit was recruited. The peak-to-peak duration of the wave form was independent of the threshold force. 3. Large and small motor units are uniformly distributed throughout this muscle, and the muscle fibres making up a motor unit may be widely dispersed. 4. The rectified surface e.m.g. was computed as a function of force, based on the sample of motor units recorded. The largest contribution of motor unit recruitment occurs at low force levels, while the contribution of increased firing rate becomes more important at higher force levels. 5. Possible bases for the common experimental observation that the mean rectified surface e.m.g. varies linearly with the force generated by a muscle are discussed. E.m.g. potentials and contractile responses may both sum non-linearly at moderate to high force levels, but in such a way that the rectified surface e.m.g. is still approximately linearly related to the force produced by the muscle. PMID:1133787

  17. Nanoscale study of cartilage surfaces using atomic force microscopy.

    PubMed

    Wang, Meiling; Peng, Zhongxiao; Watson, Jolanta A; Watson, Gregory S; Yin, Ling

    2012-12-01

    Articulating cartilage wear plays an important role in cartilage degeneration and osteoarthritis (OA) progression. This study investigated the changes of mechanical properties and surface roughness of sheep cartilages with wear progression at a nanometre scale. Young sheep's rear legs were subjected to a series of wear tests to generate worn cartilage samples to simulate the OA progression. Atomic force microscopy (AFM) was used to determine the effective indentation modulus and to measure the surface morphology of moist cartilage surfaces. The study has found that the mean effective indentation modulus values of worn cartilages were lower than that of healthy cartilage as the control sample. A medium-to-strong correlation between the effective indentation modulus values and the OA grades has been found. The relation between surface topography and effective indentation modulus values of the cartilage surfaces with OA progression was weakly correlated. The method established in this study can be implemented to investigate the effective indentation modulus values of clinical osteoarthritic cartilages and to assist in the understanding and assessment of OA.

  18. Surface Polarity Of Beta-hmx Crystal And The Related Adhesive Forces With Estane Binder

    SciTech Connect

    Yang, Lu; Hanson, David E

    2008-01-01

    Here we present the results on the study of surface properties of {beta}-HMX crystal utilizing molecular simulations. The surface polarity of three principal crystal surfaces are investigated by measuring the water contact angles. The calculated contact angles agree excellently with the values measured by experiment and show that the surface polarity of three crystal surfaces are different. The free energies and forces of detaching an Estane chain with and without nitroplasticizer from the three principal crystal surfaces were calculated using umbrella sampling technique. We find that the detaching free energy/force increases with the increasing HMX surface polarity. In addition, our results also show that nitroplasticizer plays an important role in the adhesion forces between Estane and HMX surfaces.

  19. Force field measurements within the exclusion zone of water.

    PubMed

    Chen, Chi-Shuo; Chung, Wei-Ju; Hsu, Ian C; Wu, Chien-Ming; Chin, Wei-Chun

    2012-01-01

    Water molecules play critical roles in many biological functions, such as protein dynamics, enzymatic activities, and cellular responses. Previous nuclear magnetic resonance and neutron scattering studies have shown that water molecules bind to specific sites on surfaces and form localized clusters. However, most current experimental techniques cannot measure dynamic behaviors of ordered water molecules on cell-size (10 μm) scale. Recently, the long-distance effect of structured water has been demonstrated by Pollack and his colleagues. Namely, there is a structured water layer near the hydrophilic surface that can exclude solutes (Zheng et al, Adv Colloid Interface Sci 127:19-27, 2006; Pollack 2006, Adv Colloid Interface Sci 103:173-196, 2003). The repelling forces of water clusters inside this exclusion region are investigated in this study. With a laser tweezers system, we found the existence of an unexpected force fields inside the solute-free exclusion zone near a Nafion surface. Our results suggest that the water clusters could transduce mechanical signals on the micrometer range within the exclusion zone. This unexpected inhomogeneous force field near the hydrophilic surface would provide a new insight into cellular activities, leading to a potential new physical chemistry mechanism for cell biology. PMID:23277674

  20. Atomic force microscopy, lateral force microscopy, and transmission electron microscopy investigations and adhesion force measurements for elucidation of tungsten removal mechanisms

    SciTech Connect

    Stein, D.J.; Cecchi, J.L.; Hetherington, D.L.

    1999-09-01

    We investigated various interactions between alumina and tungsten films that occur during chemical mechanical polishing (CMP). Atomic force microscopy surface topography measurements of post-CMP tungsten indicate that the roughness of the tungsten is independent of polish pressure and rotation rate. Pure mechanical abrasion is therefore an unlikely mechanism of material removal during CMP. Transmission electron microscopy images corroborate these results. The adhesion force between alumina and tungsten was measured in solution. The adhesive force increased with KIO{sub 3} concentration. Friction forces were measured in solution using lateral force microscopy. The friction force in buffered solutions was independent of KIO{sub 3} concentration. These results indicate that interactions other than purely mechanical interactions exist during CMP. {copyright} {ital 1999 Materials Research Society.}

  1. Strong Casimir force reduction through metallic surface nanostructuring

    PubMed Central

    Intravaia, Francesco; Koev, Stephan; Jung, Il Woong; Talin, A. Alec; Davids, Paul S.; Decca, Ricardo S.; Aksyuk, Vladimir A.; Dalvit, Diego A. R.; López, Daniel

    2013-01-01

    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force has a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction. PMID:24071657

  2. Strong Casimir force reduction through metallic surface nanostructuring

    NASA Astrophysics Data System (ADS)

    Intravaia, Francesco; Koev, Stephan; Jung, Il Woong; Talin, A. Alec; Davids, Paul S.; Decca, Ricardo S.; Aksyuk, Vladimir A.; Dalvit, Diego A. R.; López, Daniel

    2013-09-01

    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force has a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction.

  3. A Simple Apparatus for Electrostatic Force Measurement.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1981-01-01

    Describes the construction of an apparatus that demonstrates that electrostatic forces can be large and also gives some idea of dependence of electrostatic forces between charged parallel discs on potential differences and separation. (CS)

  4. Chemical force titrations of functionalized Si(111) surfaces.

    PubMed

    Mengistu, Tadesse Z; Goel, Vishya; Horton, J Hugh; Morin, Sylvie

    2006-06-01

    Chemical force titrations-plots of the adhesive force between an atomic force microscope tip and sample as a function of pH-were acquired on alkyl monolayer-derivatized Si(111) surfaces. Gold-coated AFM tips modified with thioalkanoic acid self-assembled monolayers (SAM) were employed. Alkyl monolayer-derivatized Si(111) surfaces terminated with methyl, carboxyl, and amine groups were produced via hydrosilylation reactions between 1-alkene reagents and H-terminated silicon. The functionalized surfaces were characterized using standard surface science techniques (AFM, FTIR, and XPS). Titration of the methyl-terminated surface using the modified (carboxyl-terminated) atomic force microscope tip resulted in a small pH-independent hydrophobic interaction. Titration of the amine-terminated surface using the same tip resulted in the determination of a surface pKa of 5.8 for the amine from the pH value from the maximum in the force titration curve. A pK(1/2) of 4.3 was determined for the carboxyl-terminated Si(111) in a similar way. These results will be discussed in relation to the modified Si(111) surface chemistry and organic layer structure, as well as with respect to existing results on Au surfaces modified with SAMs bearing the same functional groups.

  5. A force vector and surface orientation sensor for intelligent grasping

    NASA Technical Reports Server (NTRS)

    Mcglasson, W. D.; Lorenz, R. D.; Duffie, N. A.; Gale, K. L.

    1991-01-01

    The paper discusses a force vector and surface orientation sensor suitable for intelligent grasping. The use of a novel four degree-of-freedom force vector robotic fingertip sensor allows efficient, real time intelligent grasping operations. The basis of sensing for intelligent grasping operations is presented and experimental results demonstrate the accuracy and ease of implementation of this approach.

  6. Surface Gravity and Hawking Temperature from Entropic Force Viewpoint

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; D'Ascenzo, N.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; D'Errico, M.; di Canto, A.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, T.; Dube, S.; Ebina, K.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Ketchum, W.; Keung, J.; Kietzman, B.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Lovas, L.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.

    We consider a freely falling holographic screen for the Schwarzschild and Reissner-Nordström black holes and evaluate the entropic force à la Verlinde. When the screen crosses the event horizon, the temperature of the screen agrees to the Hawking temperature and the entropic force gives rise to the surface gravity for both of the black holes.

  7. Diamagnetic Levitation Cantilever System for the Calibration of Normal Force Atomic Force Microscopy Measurements

    NASA Astrophysics Data System (ADS)

    Torres, Jahn; Yi, Jin-Woo; Murphy, Colin; Kim, Kyung-Suk

    2011-03-01

    In this presentation we report a novel technique for normal force calibration for Atomic Force Microcopy (AFM) adhesion measurements known as the diamagnetic normal force calibration (D-NFC) system. The levitation produced by the repulsion between a diamagnetic graphite sheet and a set of rare-earth magnets is used in order to produce an oscillation due to an unstable mechanical moment produced by a silicon cantilever supported on the graphite. The measurement of the natural frequency of this oscillation allows for the calculation of the stiffness of the system to three-digit accuracy. The D-NFC response was proven to have a high sensitivity for the structure of water molecules collected on its surface. This in turns allows for the study of the effects of coatings on the structure of surface water. This work was supported by the Coatings/Biofouling Program and the Maritime Sensing Program of the Office of Naval Research as well as the ILIR Program of the Naval Undersea Warfare Center DIVNPT.

  8. Direct measurement of depletion and hydrodynamic forces in solutions of a reversible supramolecular polymer.

    PubMed

    Knoben, W; Besseling, N A M; Stuart, M A Cohen

    2007-05-22

    In this paper, the investigation of surface forces in semidilute solutions of a nonadsorbing hydrogen-bonded reversible supramolecular polymer is described. Colloidal probe atomic force microscopy was used for direct measurement of depletion forces. Hydrodynamic drag on the AFM cantilever with the colloidal probe was measured both far away from and close to the planar substrate surface. The results indicate that the presence of the depletion layer causes slip at the surfaces with a large apparent slip length. Our analysis explains how the presence of slip enables the measurement of (relatively weak) depletion forces in solutions with a high viscosity by significantly reducing the hydrodynamic forces. The range and magnitude of the measured depletion forces are qualitatively in agreement with previous experiments and theoretical predictions. Due to the relatively large experimental error, no quantitative conclusions can be drawn. Depletion-induced phase separation of suspensions of stearylated silica particles was also observed. Phase separation becomes more pronounced with increasing polymer concentration.

  9. Measurements of the rotordynamic shroud forces for centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  10. Molecular interaction forces generated during protein adsorption to well-defined polymer brush surfaces.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-03-17

    The molecular interaction forces generated during the adsorption of proteins to surfaces were examined by the force-versus-distance (f-d) curve measurements of atomic force microscopy using probes modified with appropriate molecules. Various substrates with polymer brush layers bearing zwitterionic, cationic, anionic, and hydrophobic groups were systematically prepared by surface-initiated atom transfer radical polymerization. Surface interaction forces on these substrates were analyzed by the f-d curve measurements using probes with the same polymer brush layer as the substrate. Repulsive forces, which decreased depending on the ionic strength, were generated between cationic or anionic polyelectrolyte brush layers; these were considered to be electrostatic interaction forces. A strong adhesive force was detected between hydrophobic polymer brush layers during retraction; this corresponded to the hydrophobic interaction between two hydrophobic polymer layers. In contrast, no significant interaction forces were detected between zwitterionic polymer brush layers. Direct interaction forces between proteins and polymer brush layers were then quantitatively evaluated by the f-d curve measurements using protein-immobilized probes consisting of negatively charged albumin and positively charged lysozyme under physiological conditions. In addition, the amount of protein adsorbed on the polymer brush layer was quantified by surface plasmon resonance measurements. Relatively large amounts of protein adsorbed to the polyelectrolyte brush layers with opposite charges. It was considered that the detachment of the protein after contact with the polymer brush layer hardly occurred due to salt formation at the interface. Both proteins adsorbed significantly on the hydrophobic polymer brush layer, which was due to hydrophobic interactions at the interface. In contrast, the zwitterionic polymer brush layer exhibited no significant interaction force with proteins and suppressed

  11. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-09-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  12. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    PubMed Central

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  13. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy.

    PubMed

    Black, Jennifer M; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R; Guo, Daqiang; Okatan, M Baris; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  14. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy.

    PubMed

    Black, Jennifer M; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R; Guo, Daqiang; Okatan, M Baris; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Feng, Guang; Balke, Nina

    2016-09-02

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  15. Surface modifications with Lissajous trajectories using atomic force microscopy

    SciTech Connect

    Cai, Wei; Yao, Nan

    2015-09-14

    In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.

  16. Measuring shear force transmission across a biomimetic glycocalyx

    NASA Astrophysics Data System (ADS)

    Bray, Isabel; Young, Dylan; Scrimgeour, Jan

    Human blood vessels are lined with a low-density polymer brush known as the glycocalyx. This brush plays an active role in defining the mechanical and biochemical environment of the endothelial cell in the blood vessel wall. In addition, it is involved in the detection of mechanical stimuli, such as the shear stress from blood flowing in the vessel. In this work, we construct a biomimetic version of the glycocalyx on top of a soft deformable substrate in order to measure its ability to modulate the effects of shear stress at the endothelial cell surface. The soft substrate is stamped on to a glass substrate and then enclosed inside a microfluidic device that generates a controlled flow over the substrate. The hydrogel chemistry has been optimized so that it reliably stamps into a defined shape and has consistent mechanical properties. Fluorescent microbeads embedded in the gel allow measurement of the surface deformation, and subsequently, calculation of the shear force at the surface of the soft substrate. We investigate the effect of the major structural elements of the glycocalyx, hyaluronic acid and charged proteoglycans, on the magnitude of the shear force transmitted to the surface of the hydrogel.

  17. Measuring forces between protein fibers by microscopy.

    PubMed

    Jones, Christopher W; Wang, J C; Briehl, R W; Turner, M S

    2005-04-01

    We propose a general scheme for measuring the attraction between mechanically frustrated semiflexible fibers by measuring their thermal fluctuations and shape. We apply this analysis to a system of sickle hemoglobin (HbS) fibers that laterally attract one another. These fibers appear to "zip" together before reaching mechanical equilibrium due to the existence of cross-links into a dilute fiber network. We are also able to estimate the rigidities of the fibers. These rigidities are found to be consistent with sickle hemoglobin "single" fibers 20 nm in diameter, despite recent experiments indicating that fiber bundling sometimes occurs. Our estimate of the magnitude of the interfiber attraction for HbS fibers is in the range 8 +/- 7 kBT/microm, or 4 +/- 3 k(B)T/microm if the fibers are assumed, a priori to be single fibers (such an assumption is fully consistent with the data). This value is sufficient to bind the fibers, overcoming entropic effects, although extremely chemically weak. Our results are compared to models for the interfiber attraction that include depletion and van der Waals forces. This technique should also facilitate a similar analysis of other filamentous protein assembles in the future, including beta-amyloid, actin, and tubulin.

  18. Initial bioadhesion on surfaces in the oral cavity investigated by scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Schwender, N.; Huber, K.; Marrawi, F. Al; Hannig, M.; Ziegler, Ch.

    2005-09-01

    Scanning force microscopy (SFM) was used to measure the adhesion forces between BSA, a saliva protein, and two dental surfaces, natural enamel and a filling material (Dyract AP™). Measurements were taken in phosphate buffered aqueous solutions (PBS). Forces were resolved down to the piconewton regime. The dependency of the adhesion force on the interaction time, pH-value and substrate surface was monitored. In a further step, surface samples were fixed on an enamel brace and carried for a defined time in the oral cavity. The formed biofilm, called pellicle, shows a different morphology on the different substrates. This can be explained by the above-mentioned substrate dependence of the adhesion force.

  19. Measurement of cell traction forces with ImageJ.

    PubMed

    Martiel, Jean-Louis; Leal, Aldo; Kurzawa, Laetitia; Balland, Martial; Wang, Irene; Vignaud, Timothée; Tseng, Qingzong; Théry, Manuel

    2015-01-01

    The quantification of cell traction forces requires three key steps: cell plating on a deformable substrate, measurement of substrate deformation, and the numerical estimation of the corresponding cell traction forces. The computing steps to measure gel deformation and estimate the force field have somehow limited the adoption of this method in cell biology labs. Here we propose a set of ImageJ plug-ins so that every lab equipped with a fluorescent microscope can measure cell traction forces.

  20. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan; Moon, Robert; Pratt, Jon; Shaw, Gordon; Raman, Arvind

    2011-11-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7-20 GPa. A key result is that multiple replicates of force-distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials. This work is a partial contribution of the USDA Forest Service and NIST, agencies of the US government, and is not subject to copyright.

  1. Tools for measuring surface cleanliness

    DOEpatents

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  2. Cantilevers orthodontics forces measured by fiber sensors

    NASA Astrophysics Data System (ADS)

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  3. Surface roughtness and its influence on particle adhesion using atomic force microscope techniques

    SciTech Connect

    Gady, B.; Schaefer, D.; Reifenberger, R.; Rimai, D.; DeMejo, L.P.

    1996-12-31

    The surface force interactions between individual 8 {mu}m diameter spheres and atomically flat substrates have been systematically investigated using atomic force techniques. The lift-off force of glass, polystyrene and tin particles from atomically smooth mica and highly oriented pyrolytic graphite substrates was determined as a function of the applied loading force in an inert nitrogen environment. While the relative magnitudes of the measured lift-off force was found to scale as expected between the various systems studied, the absolute values were a factor of {approximately}50 smaller than expected from the Johnson, Kendall, and Roberts theory. The surface topography of representative spheres was characterized with atomic force microscopy, allowing a quantitative assessment of the role that surface roughness plays in the adhesion of micrometer-size particles to substrates. Taking into account the radius of curvature of the asperities measured from the atomic force scans, agreement between the measured and theoretical estimates for the lift-off forces was improved, with the corrected experimental forces about a factor of 3 smaller than theoretical expectations.

  4. Atomic force microscopy characterization of the surface wettability of natural fibres

    NASA Astrophysics Data System (ADS)

    Pietak, Alexis; Korte, Sandra; Tan, Emelyn; Downard, Alison; Staiger, Mark P.

    2007-01-01

    Natural fibres represent a readily available source of ecologically friendly and inexpensive reinforcement in composites with degradable thermoplastics, however chemical treatments of fibres are required to prepare feasible composites. It is desirable to characterize the surface wettability of fibres after chemical treatment as the polarity of cellulose-based fibres influences compatibility with a polymer matrix. Assessment of the surface wettability of natural fibres using conventional methods presents a challenge as the surfaces are morphologically and chemically heterogeneous, rough, and can be strongly wicking. In this work it is shown that under atmospheric conditions the adhesion force between an atomic force microscopy (AFM) tip and the fibre surface can estimate the water contact angle and surface wettability of the fibre. AFM adhesion force measurements are suitable for the more difficult surfaces of natural fibres and in addition allow for correlations between microstructural features and surface wettability characteristics.

  5. Dynamometer for measuring machining forces in two perpendicular directions

    NASA Technical Reports Server (NTRS)

    Sutherland, I. A.

    1974-01-01

    Published report discusses development of two-component force dynamometer which is used for dynamic measurement of machining forces in cutting and thrust directions. Resulting data suggest that faster metal-cutting machines may be developed that have reduced vibrations.

  6. Measuring the Magnetic Force on a Current-Carrying Conductor.

    ERIC Educational Resources Information Center

    Herreman, W.; Huysentruyt, R.

    1995-01-01

    Describes a fast and simple method for measuring the magnetic force acting on a current-carrying conductor using a digital balance. Discusses the influence of current intensity and wire length on the magnetic force on the conductor. (JRH)

  7. A Simple Method for Measuring Linguopalatal Contact Force During Speech

    NASA Astrophysics Data System (ADS)

    Tsuji, Ryunosuke; Matsumuta, Masafumi; Niikawa, Takuya; Nohara, Kanji; Tachimura, Takashi; Wada, Takeshi; Chihara, Kunihiro

    This paper proposes a using probe for measuring of contact force between tongue and palatal, during speech. We developed a 0.03 mm-thick stainless steel tongue force probe with a 3x5 mm force sensor at the tip. Linguopalatal contact force was measured by inserting the probe into the oral cavity. Contact force was measured at the following three locations. Based on the coordinate and measurement obtained at the three points, the action point of tongue force was calculated by the weighted mean. Linguopalatal contact force was measured in four adult men and women without articulation disorder and in three adult men with articulation disorders. Results showed that the action point of tongue force in subjects with articulation disorders was further toward the pharynx than that in subjects without articulation disorders. Linguopalatal contact pressure was then measured again by asking the subjects with articulation disorders to wear a palatal augmentation prosthesis (PAP) to compensate for insufficient linguopalatal contact force. The action point of tongue force became better approximated to that of subjects without articulation disorders. Given these results, our simple method for measuring linguopalatal contact force using a tongue force probe appears to be a promising tool for speech therapists treating articulation disorders.

  8. Compact cantilever force probe for plasma pressure measurements

    SciTech Connect

    Nedzelskiy, I. S.; Silva, C.; Fernandes, H.; Duarte, P.; Varandas, C. A. F.

    2007-12-15

    A simple, compact cantilever force probe (CFP) has been developed for plasma pressure measurements. It is based on the pull-in phenomenon well known in microelectromechanical-system electrostatic actuators. The probe consists of a thin (25 {mu}m) titanium foil cantilever (38 mm of length and 14 mm of width) and a fixed electrode separated by a 0.75 mm gap. The probe is shielded by brass box and enclosed into boron nitride housing with a 9 mm diameter window for exposing part of cantilever surface to the plasma. When the voltage is applied between the cantilever and the electrode, an attractive electrostatic force is counterbalanced by cantilever restoring spring force. At some threshold (pull-in) voltage the system becomes unstable and the cantilever abruptly pulls toward the fixed electrode until breakdown occurs between them. The threshold voltage is sensitive to an additional externally applied force, while a simple detection of breakdown occurrence can be used to measure that threshold voltage value. The sensitivity to externally applied forces obtained during calibration is 0.28 V/{mu}N (17.8 V/Pa for pressure). However, the resolution of the measurements is {+-}0.014 mN ({+-}0.22 Pa) due to the statistical scattering in measured pull-in voltages. The diagnostic temporal resolution is {approx}10 ms, being determined by the dynamics of pull-in process. The probe has been tested in the tokamak ISTTOK edge plasma, and a plasma force of {approx}0.07 mN (plasma pressure {approx}1.1 Pa) has been obtained near the leading edge of the limiter. This value is in a reasonable agreement with the estimations using local plasma parameters measured by electrical probes. The use of the described CFP is limited by a heat flux of Q{approx}10{sup 6} W/m{sup 2} due to uncontrollable rise of the cantilever temperature ({delta}T{approx}20 deg. C) during CFP response time.

  9. Study of DNA adsorption on mica surfaces using a surface force apparatus

    NASA Astrophysics Data System (ADS)

    Kan, Yajing; Tan, Qiyan; Wu, Gensheng; Si, Wei; Chen, Yunfei

    2015-02-01

    We report our studies on the adsorption properties of double-stranded DNA molecules on mica surfaces in a confined environment using a surface force apparatus. Specifically, we studied the influence of cation species and concentrations on DNA adsorption properties. Our results indicated that divalent cations (Mg2+ and Co2+) preferred to form uniform and moderately dense DNA layers on a mica substrate. By measuring the interactions between DNA-coated mica and bare mica in an aqueous solution, obvious adhesion was observed in a cobalt chloride solution, possibly due to the ion-correlation attraction between negatively charged DNA and the mica surface. Furthermore, the interaction differences that were observed with MgCl2 and CoCl2 solutions reveal that the specific adsorption behaviors of DNA molecules on a mica substrate were mediated by these two salts. Our results are helpful to elucidate the dynamics of DNA binding on a solid substrate.

  10. Study of DNA adsorption on mica surfaces using a surface force apparatus.

    PubMed

    Kan, Yajing; Tan, Qiyan; Wu, Gensheng; Si, Wei; Chen, Yunfei

    2015-02-13

    We report our studies on the adsorption properties of double-stranded DNA molecules on mica surfaces in a confined environment using a surface force apparatus. Specifically, we studied the influence of cation species and concentrations on DNA adsorption properties. Our results indicated that divalent cations (Mg(2+) and Co(2+)) preferred to form uniform and moderately dense DNA layers on a mica substrate. By measuring the interactions between DNA-coated mica and bare mica in an aqueous solution, obvious adhesion was observed in a cobalt chloride solution, possibly due to the ion-correlation attraction between negatively charged DNA and the mica surface. Furthermore, the interaction differences that were observed with MgCl2 and CoCl2 solutions reveal that the specific adsorption behaviors of DNA molecules on a mica substrate were mediated by these two salts. Our results are helpful to elucidate the dynamics of DNA binding on a solid substrate.

  11. A new transducer system for direct motor unit force measurement.

    PubMed

    Turkawski, S J; van Ruijven, L J; van Kuyen, M; Schreurs, A W; Weijs, W A

    1996-11-01

    A new transducer was developed for in situ measurement of the force vector in a complex muscle. The transducer measures the magnitude, and the line of action of a force in a single plane. The dynamic range of the transducer is 0-5 N. This range includes the small forces developed by an active motor unit and the relatively large passive force of a whole muscle. In this study we present the details of the transducer design and specifications, and describe its application in the measurement of motor unit forces of the rabbit masseter muscle. PMID:8894930

  12. Surface deformation effects induced by radiation pressure and electrostriction forces in dielectric solids

    NASA Astrophysics Data System (ADS)

    Astrath, N. G. C.; Lukasievicz, G. V. B.; Malacarne, L. C.; Bialkowski, S. E.

    2013-06-01

    The surface displacement produced by radiation pressure and electrostriction forces is investigated considering the commonly accepted theories proposed by Minkowski and Abraham for the energy-momentum tensor. The contributions are modeled considering each effect separately assuming non-absorbing and absorbing solids and the thermoelastic deformation equations are solved numerically. We show that the surface deformation profiles as calculated by the Minkowski or Abraham momenta give different surface curvature, which could in principle be detected by measuring the surface displacement. Finally, an all-optical pump-probe photothermal method to detect the radiation pressure and electrostriction forces in transparent dielectric solids is proposed.

  13. Artefacts for optical surface measurement

    NASA Astrophysics Data System (ADS)

    Robson, Stuart; Beraldin, J.-Angelo; Brownhill, Andrew; MacDonald, Lindsay

    2011-07-01

    Flexible manufacturing technologies are supporting the routine production of components with freeform surfaces in a wide variety of materials and surface finishes. Such surfaces may be exploited for both aesthetic and performance criteria for a wide range of industries, for example automotive, aircraft, small consumer goods and medial components. In order to ensure conformance between manufactured part and digital design it is necessary to understand, validate and promote best practice of the available measurement technologies. Similar, but currently less quantifiable, measurement requirements also exist in heritage, museum and fine art recording where objects can be individually hand crafted to extremely fine levels of detail. Optical 3D measurement systems designed for close range applications are typified by one or more illumination sources projecting a spot, line or structured light pattern onto a surface or surfaces of interest. Reflections from the projected light are detected in one or more imaging devices and measurements made concerning the location, intensity and optionally colour of the image. Coordinates of locations on the surface may be computed either directly from an understanding of the illumination and imaging geometry or indirectly through analysis of the spatial frequencies of the projected pattern. Regardless of sensing configuration some independent means is necessary to ensure that measurement capability will meet the requirements of a given level of object recording and is consistent for variations in surface properties and structure. As technologies mature, guidelines for best practice are emerging, most prominent at the current time being the German VDI/VDE 2634 and ISO/DIS 10360-8 guidelines. This considers state of the art capabilities for independent validation of optical non-contact measurement systems suited to the close range measurement of table top sized manufactured or crafted objects.

  14. Infrared Aerosol Radiative Forcing at the Surface and the Top of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Markowicz, Krzysztof M.; Flatau, Piotr J.; Vogelmann, Andrew M.; Quinn, Patricia K.; Welton, Ellsworth J.

    2003-01-01

    We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).

  15. Viscosity effects on hydrodynamic drainage force measurements involving deformable bodies.

    PubMed

    Dagastine, Raymond R; Webber, Grant B; Manica, Rogerio; Stevens, Geoffrey W; Grieser, Franz; Chan, Derek Y C

    2010-07-20

    Dynamic force measurements have been made between an oil drop and a silica particle in surfactant and sucrose solutions with viscosities that range up to 50 times that of water. These conditions provide variations in the shear rate and the relative time scales of droplet deformation and hydrodynamic drainage in a soft matter system. The results obtained indicate that soft deformable boundaries have a natural response that limits the maximum shear rate that can be sustained in thin films compared to shear rates that can be attained in films bounded by rigid boundaries. In addition, to extend boundary slip studies on rigid surfaces, we use a smooth deformable droplet surface to probe the dependence of the boundary slip on fluid viscosity without the added complications of surface roughness or heterogeneity. Imposing a Navier slip model to characterize possible slip at the deformable oil-sucrose solution interface gives results that are consistent with a slip length of no larger than 10 nm over the range of solution viscosity studied, although an immobile (zero slip length) condition at the oil-sucrose solution interface is perfectly adequate. In high viscosity solutions, cantilever motion at high scan rates induces a significant cantilever deflection. A method has been developed to account for this effect in order to extract the correct dynamic force between the deformable drop and the particle. PMID:20578751

  16. Unbinding forces and energies between a siRNA molecule and a dendrimer measured by force spectroscopy.

    PubMed

    Dumitru, Andra C; Herruzo, Elena T; Rausell, Estrella; Ceña, Valentin; Garcia, Ricardo

    2015-12-21

    We have measured the intermolecular forces between small interference RNA (siRNA) and polyamidoamine dendrimers at the single molecular level. A single molecule force spectroscopy approach has been developed to measure the unbinding forces and energies between a siRNA molecule and polyamidoamine dendrimers deposited on a mica surface in a buffer solution. We report three types of unbinding events which are characterized by forces and free unbinding energies, respectively, of 28 pN, 0.709 eV; 38 pN, 0.722 eV; and 50 pN, 0.724 eV. These events reflect different possible electrostatic interactions between the positive charges of one or two dendrimers and the negatively charged phosphate groups of a single siRNA. We have evidence of a high binding affinity of siRNA towards polyamidoamine dendrimers that leads to a 45% probability of measuring specific unbinding events.

  17. Muscle forces during locomotion in kangaroo rats: force platform and tendon buckle measurements compared.

    PubMed

    Biewener, A A; Blickhan, R; Perry, A K; Heglund, N C; Taylor, C R

    1988-07-01

    The muscle forces and stresses occurring during normal locomotor activity in kangaroo rats are compared with the peak isometric force developed by the same muscles in situ. Two methods were used simultaneously to determine the stresses (force/cross-sectional area) acting in the ankle extensors during steady-speed hopping and during jumps when animals were startled: a direct measurement using a force buckle surgically implanted around a tendon; and an indirect measurement using a force platform/ciné analysis technique. We obtained essentially the same values with the two techniques. We found that at slow speeds (0.7 m s-1) the ankle extensor muscles of kangaroo rats exerted 20% of the maximum isometric force developed when the muscles were stimulated via the tibial nerve. This increased to 53% at higher speeds (1.9 m s-1). At the animals's preferred hopping speed (1.5 m s-1), peak force was approximately 40% of maximum isometric force. In jumps when animals were startled, peak forces as high as 175% of the maximal elicited isometric force were recorded. These high forces always occurred when the muscles were being stretched. It appears that kangaroo rats utilize nearly the entire range of muscle force possible during normal locomotor events (i.e. up to 175% of maximum isometric force when muscles are stretched).

  18. Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria.

    PubMed

    Preedy, Emily; Perni, Stefano; Nipiĉ, Damijan; Bohinc, Klemen; Prokopovich, Polina

    2014-08-12

    It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 μm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates.

  19. Subminiature transducers for measuring forces and deformation of heart muscle

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Osher, J. V.; Lewis, G. W.; Silver, R. H.; Duran, E. N.

    1975-01-01

    Two subminiature transducers, one measuring muscle forces and one measuring muscle displacement, can be inserted into heart muscle without interfering with it. Probe, approximately 1 mm (0.04 in), causes no damage to heart muscle. Probe can be rotated to different positions to measure muscle forces from various directions.

  20. Measuring the Forces Between Magnetic Dipoles

    NASA Astrophysics Data System (ADS)

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-09-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  1. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  2. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur E.; Götzen, Jan; Hölscher, Hendrik; Altman, Eric I.; Schwarz, Udo D.

    2016-02-01

    Atomic force microscopy (AFM) and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip-sample contact are used; control of the tip’s vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential’s nonlinear nature, however, achieving reliable control of the tip-sample distance is challenging, so much so that despite its power vacuum-based noncontact AFM has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator’s response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip-sample interaction force measurement.

  3. Interlaboratory comparison of traceable atomic force microscope pitch measurements

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald; Chernoff, Donald A.; Wang, Shihua; Vorburger, Theodore V.; Tan, Siew Leng; Orji, Ndubuisi G.; Fu, Joseph

    2010-06-01

    The National Institute of Standards and Technology (NIST), Advanced Surface Microscopy (ASM), and the National Metrology Centre (NMC) of the Agency for Science, Technology, and Research (A*STAR) in Singapore have completed a three-way interlaboratory comparison of traceable pitch measurements using atomic force microscopy (AFM). The specimen being used for this comparison is provided by ASM and consists of SiO2 lines having a 70 nm pitch patterned on a silicon substrate. NIST has a multifaceted program in atomic force microscope (AFM) dimensional metrology. One component of this effort is a custom in-house metrology AFM, called the calibrated AFM (C-AFM). The NIST C-AFM has displacement metrology for all three axes traceable to the 633 nm wavelength of the iodine-stabilized He-Ne laser - a recommended wavelength for realization of the SI (Système International d'Unités, or International System of Units) meter. NIST used the C-AFM to participate in this comparison. ASM used a commercially available AFM with an open-loop scanner, calibrated by a 144 nm pitch transfer standard. In a prior collaboration with Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, ASM's transfer standard was calibrated using PTB's traceable optical diffractometry instrument. Thus, ASM's measurements are also traceable to the SI meter. NMC/A*STAR used a large scanning range metrological atomic force microscope (LRM-AFM). The LRM-AFM integrates an AFM scanning head into a nano-stage equipped with three built-in He-Ne laser interferometers so that its measurement related to the motion on all three axes is directly traceable to the SI meter. The measurements for this interlaboratory comparison have been completed and the results are in agreement within their expanded uncertainties and at the level of a few parts in 104.

  4. Intermolecular Casimir-Polder forces in water and near surfaces.

    PubMed

    Thiyam, Priyadarshini; Persson, Clas; Sernelius, Bo E; Parsons, Drew F; Malthe-Sørenssen, Anders; Boström, Mathias

    2014-09-01

    The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO(2) and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.

  5. Nanoscale Cell Wall Deformation Impacts Long-Range Bacterial Adhesion Forces on Surfaces

    PubMed Central

    Chen, Yun; Harapanahalli, Akshay K.; Busscher, Henk J.; Norde, Willem

    2014-01-01

    Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of different short- and long-range forces. Here we present a new atomic force microscopy (AFM)-based method to derive long-range bacterial adhesion forces from the dependence of bacterial adhesion forces on the loading force, as applied during the use of AFM. The long-range adhesion forces of wild-type Staphylococcus aureus parent strains (0.5 and 0.8 nN) amounted to only one-third of these forces measured for their more deformable isogenic Δpbp4 mutants that were deficient in peptidoglycan cross-linking. The measured long-range Lifshitz-Van der Waals adhesion forces matched those calculated from published Hamaker constants, provided that a 40% ellipsoidal deformation of the bacterial cell wall was assumed for the Δpbp4 mutants. Direct imaging of adhering staphylococci using the AFM peak force-quantitative nanomechanical property mapping imaging mode confirmed a height reduction due to deformation in the Δpbp4 mutants of 100 to 200 nm. Across naturally occurring bacterial strains, long-range forces do not vary to the extent observed here for the Δpbp4 mutants. Importantly, however, extrapolating from the results of this study, it can be concluded that long-range bacterial adhesion forces are determined not only by the composition and structure of the bacterial cell surface but also by a hitherto neglected, small deformation of the bacterial cell wall, facilitating an increase in contact area and, therewith, in adhesion force. PMID:24212582

  6. Probing the interaction between air bubble and sphalerite mineral surface using atomic force microscope.

    PubMed

    Xie, Lei; Shi, Chen; Wang, Jingyi; Huang, Jun; Lu, Qiuyi; Liu, Qingxia; Zeng, Hongbo

    2015-03-01

    The interaction between air bubbles and solid surfaces plays important roles in many engineering processes, such as mineral froth flotation. In this work, an atomic force microscope (AFM) bubble probe technique was employed, for the first time, to directly measure the interaction forces between an air bubble and sphalerite mineral surfaces of different hydrophobicity (i.e., sphalerite before/after conditioning treatment) under various hydrodynamic conditions. The direct force measurements demonstrate the critical role of the hydrodynamic force and surface forces in bubble-mineral interaction and attachment, which agree well with the theoretical calculations based on Reynolds lubrication theory and augmented Young-Laplace equation by including the effect of disjoining pressure. The hydrophobic disjoining pressure was found to be stronger for the bubble-water-conditioned sphalerite interaction with a larger hydrophobic decay length, which enables the bubble attachment on conditioned sphalerite at relatively higher bubble approaching velocities than that of unconditioned sphalerite. Increasing the salt concentration (i.e., NaCl, CaCl2) leads to weakened electrical double layer force and thereby facilitates the bubble-mineral attachment, which follows the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory by including the effects of hydrophobic interaction. The results provide insights into the basic understanding of the interaction mechanism between bubbles and minerals at nanoscale in froth flotation processes, and the methodology on probing the interaction forces of air bubble and sphalerite surfaces in this work can be extended to many other mineral and particle systems.

  7. Measuring Surface Water From Space

    NASA Astrophysics Data System (ADS)

    Partsch, J.; Alsdorf, D.; Rodriguez, E.; Lettenmaier, D.; Mognard, N.; Participants, T.

    2006-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface fresh water discharge and changes in storage globally. For example, we are unable to answer such basic questions as "What is the spatial and temporal variability of water stored on and near the surface of all continents?" Furthermore, key societal issues, such as the susceptibility of life to flood hazards, cannot be answered with the current global, in-situ networks designed to observe river discharge at points but not flood events. The measurements required to answer these hydrologic questions are surface water area, the elevation of the water surface (h), its slope (dh/dx), and temporal change (dh/dt). Advances in remote sensing hydrology, particularly over the past 10 years and even more recently, have demonstrated that these hydraulic variables can be measured reliably from orbiting platforms. Measurements of inundated area have been used to varying degrees of accuracy as proxies for discharge, but are successful only when in-situ data are available for calibration and fail to indicate the dynamic topography of water surfaces. Radar altimeters have a rich, multi-decadal history of successfully measuring elevations of the ocean surface and are now also accepted as capable tools for measuring h along orbital profiles crossing fresh water bodies. However, altimeters are profiling tools which, because of their orbital spacings, miss too many fresh water bodies to be useful hydrologically. High spatial resolution images of dh/dt have been observed with interferometric synthetic aperture radar (SAR), but the method requires emergent vegetation to scatter radar pulses back to the receiving antenna. Essentially, existing spaceborne methods have been used to measure components of surface water hydraulics, but none of the technologies can singularly supply the water volume and hydraulic measurements that are needed to accurately model the

  8. Measuring surface water from space

    NASA Astrophysics Data System (ADS)

    Alsdorf, Douglas E.; RodríGuez, Ernesto; Lettenmaier, Dennis P.

    2007-06-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface freshwater discharge and changes in storage globally. For example, we are unable to answer such basic questions as "What is the spatial and temporal variability of water stored on and near the surface of all continents?" Furthermore, key societal issues, such as the susceptibility of life to flood hazards, cannot be answered with the current global, in situ networks designed to observe river discharge at points but not flood events. The measurements required to answer these hydrologic questions are surface water area, the elevation of the water surface (h), its slope (∂h/∂x), and temporal change (∂h/∂t). Advances in remote sensing hydrology, particularly over the past 10 years and even more recently, have demonstrated that these hydraulic variables can be measured reliably from orbiting platforms. Measurements of inundated area have been used to varying degrees of accuracy as proxies for discharge but are successful only when in situ data are available for calibration; they fail to indicate the dynamic topography of water surfaces. Radar altimeters have a rich, multidecadal history of successfully measuring elevations of the ocean surface and are now also accepted as capable tools for measuring h along orbital profiles crossing freshwater bodies. However, altimeters are profiling tools, which, because of their orbital spacings, miss too many freshwater bodies to be useful hydrologically. High spatial resolution images of ∂h/∂t have been observed with interferometric synthetic aperture radar, but the method requires emergent vegetation to scatter radar pulses back to the receiving antenna. Essentially, existing spaceborne methods have been used to measure components of surface water hydraulics, but none of the technologies can singularly supply the water volume and hydraulic measurements that are needed to accurately model

  9. Lateral optical force on chiral particles near a surface

    PubMed Central

    Wang, S. B.; Chan, C. T.

    2014-01-01

    Light can exert radiation pressure on any object it encounters and that resulting optical force can be used to manipulate particles. It is commonly assumed that light should move a particle forward and indeed an incident plane wave with a photon momentum ħk can only push any particle, independent of its properties, in the direction of k. Here we demonstrate, using full-wave simulations, that an anomalous lateral force can be induced in a direction perpendicular to that of the incident photon momentum if a chiral particle is placed above a substrate that does not break any left–right symmetry. Analytical theory shows that the lateral force emerges from the coupling between structural chirality (the handedness of the chiral particle) and the light reflected from the substrate surface. Such coupling induces a sideway force that pushes chiral particles with opposite handedness in opposite directions. PMID:24598792

  10. Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy.

    PubMed

    Popa, Ionel; Kosuri, Pallav; Alegre-Cebollada, Jorge; Garcia-Manyes, Sergi; Fernandez, Julio M

    2013-01-01

    Here we describe a protocol for using force-clamp spectroscopy to precisely quantify the effect of force on biochemical reactions. A calibrated force is used to control the exposure of reactive sites in a single polyprotein substrate composed of repeated domains. The use of polyproteins allows the identification of successful single-molecule recordings from unambiguous mechanical unfolding fingerprints. Biochemical reactions are then measured directly by detecting the length changes of the substrate held at a constant force. We present the layout of a force-clamp spectrometer along with protocols to design and conduct experiments. These experiments measure reaction kinetics as a function of applied force. We show sample data of the force dependency of two different reactions, protein unfolding and disulfide reduction. These data, which can be acquired in just a few days, reveal mechanistic details of the reactions that currently cannot be resolved by any other technique.

  11. Force dependency of biochemical reactions measured by single molecule force-clamp spectroscopy

    PubMed Central

    Popa, Ionel; Kosuri, Pallav; Alegre-Cebollada, Jorge; Garcia-Manyes, Sergi; Fernandez, Julio M.

    2015-01-01

    Here we describe a protocol for using force-clamp spectroscopy to precisely quantify the effect of force on biochemical reactions. A calibrated force is used to control the exposure of reactive sites in a single polyprotein substrate composed of repeated domains. The use of polyproteins allows the identification of successful single-molecule recordings from unambiguous mechanical unfolding fingerprints. Biochemical reactions are then measured directly by detecting the length changes of the substrate held at a constant force. We present the layout of a force-clamp spectrometer along with protocols to design and conduct experiments. These experiments measure reaction kinetics as a function of applied force. We show sample data of the force dependency of two different reactions, protein unfolding and disulfide reduction. These data, which can be acquired in just a few days, reveal mechanistic details of the reactions that currently cannot be resolved by any other technique. PMID:23744288

  12. "Magic" surface clustering of borazines driven by repulsive intermolecular forces.

    PubMed

    Kervyn, Simon; Kalashnyk, Nataliya; Riello, Massimo; Moreton, Ben; Tasseroul, Jonathan; Wouters, Johan; Jones, Tim S; De Vita, Alessandro; Costantini, Giovanni; Bonifazi, Davide

    2013-07-15

    It's a kind of magic: Hydroxy pentaaryl borazine molecules self-assemble into small clusters (see structure) on Cu(111) surfaces, whereas with symmetric hexaaryl borazine molecules large islands are obtained. Simulations indicate that the observed "magic" cluster sizes result from long-range repulsive Coulomb forces arising from the deprotonation of the B-OH groups of the hydroxy pentaaryl borazine.

  13. Microsystems for cellular force measurement: a review

    NASA Astrophysics Data System (ADS)

    Rayne Zheng, Xiaoyu; Zhang, Xin

    2011-05-01

    Microsystems are providing key advances in studying single cell mechanical behavior. The mechanical interaction of cells with their extracellular matrix is fundamentally important for cell migration, division, phagocytosis and aptoptosis. This review reports the development of microsystems on studying cell forces. Microsystems provide advantages of studying single cells since the scale of cells is on the micron level. The components of microsystems provide culture, loading, guiding, trapping and on chip analysis of cellular mechanical forces. This paper gives overviews on how MEMS are advancing in the field of cell biomechno sensory systems. It presents different materials, and mode of studying cell mechanics. Finally, we comment on the future directions and challenges on the state of art techniques.

  14. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms

    PubMed Central

    Cuesta, Eduardo; Telenti, Alejandro; Patiño, Hector; González-Madruga, Daniel; Martínez-Pellitero, Susana

    2015-01-01

    This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs). The development is based on the use of strain gauges located on the surface of the CMAs’ hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D). The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact) and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements. PMID:26057038

  15. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms.

    PubMed

    Cuesta, Eduardo; Telenti, Alejandro; Patiño, Hector; González-Madruga, Daniel; Martínez-Pellitero, Susana

    2015-01-01

    This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs). The development is based on the use of strain gauges located on the surface of the CMAs' hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D). The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact) and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements. PMID:26057038

  16. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms.

    PubMed

    Cuesta, Eduardo; Telenti, Alejandro; Patiño, Hector; González-Madruga, Daniel; Martínez-Pellitero, Susana

    2015-06-05

    This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs). The development is based on the use of strain gauges located on the surface of the CMAs' hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D). The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact) and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements.

  17. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram; van den Ende, Dirk; Mugele, Frieder; Siretanu, Igor

    2016-02-01

    Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the surface charge and ζ -potential of these surfaces. However, because of the macroscopic averaging character these techniques cannot do justice to the role of local heterogeneities on the surfaces. In this work, we use dynamic atomic force microscopy (AFM) to determine the distribution of surface charge on the two (gibbsite-like and silica-like) basal planes of kaolinite nanoparticles immersed in aqueous electrolyte with a lateral resolution of approximately 30 nm. The surface charge density is extracted from force-distance curves using DLVO theory in combination with surface complexation modeling. While the gibbsite-like and the silica-like facet display on average positive and negative surface charge values as expected, our measurements reveal lateral variations of more than a factor of two on seemingly atomically smooth terraces, even if high resolution AFM images clearly reveal the atomic lattice on the surface. These results suggest that simple surface complexation models of clays that attribute a unique surface chemistry and hence homogeneous surface charge densities to basal planes may miss important aspects of real clay surfaces.

  18. Spatial spectrograms of vibrating atomic force microscopy cantilevers coupled to sample surfaces

    SciTech Connect

    Wagner, Ryan; Raman, Arvind; Proksch, Roger

    2013-12-23

    Many advanced dynamic Atomic Force Microscopy (AFM) techniques such as contact resonance, force modulation, piezoresponse force microscopy, electrochemical strain microscopy, and AFM infrared spectroscopy exploit the dynamic response of a cantilever in contact with a sample to extract local material properties. Achieving quantitative results in these techniques usually requires the assumption of a certain shape of cantilever vibration. We present a technique that allows in-situ measurements of the vibrational shape of AFM cantilevers coupled to surfaces. This technique opens up unique approaches to nanoscale material property mapping, which are not possible with single point measurements alone.

  19. Adhesive Force of a Spider Mite, Tetranychus urticae, to a Flat Smooth Surface

    NASA Astrophysics Data System (ADS)

    Mizutani, Katsumi; Egashira, Kai; Toukai, Tadashi; Ogushi, Jun

    The adhesion of a spider mite to a surface of a flat smooth plate is investigated as a model for micromachine parts to adhere to and move on such surfaces. The measurement of adhesive force is carried out under various conditions in which plate material, surface roughness of a plate and environmental humidity are differed. The adhesion mechanism is also discussed. Of the forces acting between a spider mite and a surface, one from dispersion interaction is the most dominant because (1) there is a high correlation between the adhesive force and the dispersion force component of surface energy with adhesive forces of 8.2µN for glass, 9.7µN for mica, 9.9µN for silicon and 12.1µN for gold, and because (2) high humidity and high surface roughness reduce the adhesive force. For strong adhesion based on work of adhesion, spider mites have tenent hairs with a bell-shaped end.

  20. Hydrophobic, electrostatic, and dynamic polymer forces at silicone surfaces modified with long-chain bolaform surfactants.

    PubMed

    Rapp, Michael V; Donaldson, Stephen H; Gebbie, Matthew A; Das, Saurabh; Kaufman, Yair; Gizaw, Yonas; Koenig, Peter; Roiter, Yuri; Israelachvili, Jacob N

    2015-05-01

    Surfactant self-assembly on surfaces is an effective way to tailor the complex forces at and between hydrophobic-water interfaces. Here, the range of structures and forces that are possible at surfactant-adsorbed hydrophobic surfaces are demonstrated: certain long-chain bolaform surfactants-containing a polydimethylsiloxane (PDMS) mid-block domain and two cationic α, ω-quarternary ammonium end-groups-readily adsorb onto thin PDMS films and form dynamically fluctuating nanostructures. Through measurements with the surface forces apparatus (SFA), it is found that these soft protruding nanostructures display polymer-like exploration behavior at the PDMS surface and give rise to a long-ranged, temperature- and rate-dependent attractive bridging force (not due to viscous forces) on approach to a hydrophilic bare mica surface. Coulombic interactions between the cationic surfactant end-groups and negatively-charged mica result in a rate-dependent polymer bridging force during separation as the hydrophobic surfactant mid-blocks are pulled out from the PDMS interface, yielding strong adhesion energies. Thus, (i) the versatile array of surfactant structures that may form at hydrophobic surfaces is highlighted, (ii) the need to consider the interaction dynamics of such self-assembled polymer layers is emphasized, and (iii) it is shown that long-chain surfactants can promote robust adhesion in aqueous solutions. PMID:25504803

  1. Force Measurement on the GLAST Delta II Flight

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kaufman, Daniel

    2009-01-01

    This viewgraph presentation reviews the interface force measurement at spacecraft separation of GLAST Delta II. The contents include: 1) Flight Force Measurement (FFM) Background; 2) Team Members; 3) GLAST Mission Overview; 4) Methodology Development; 5) Ground Test Validation; 6) Flight Data; 7) Coupled Loads Simulation (VCLA & Reconstruction); 8) Basedrive Simulation; 9) Findings; and 10) Summary and Conclusions.

  2. Atomically resolved graphitic surfaces in air by atomic force microscopy.

    PubMed

    Wastl, Daniel S; Weymouth, Alfred J; Giessibl, Franz J

    2014-05-27

    Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip-sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.

  3. Atomically resolved graphitic surfaces in air by atomic force microscopy.

    PubMed

    Wastl, Daniel S; Weymouth, Alfred J; Giessibl, Franz J

    2014-05-27

    Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip-sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments. PMID:24746062

  4. Recent Investments by NASA's National Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  5. Impact of Thermal Gradients on Wind Tunnel Force Measurements

    NASA Technical Reports Server (NTRS)

    Hereford, James; Parker, Peter A.; Rhew, Ray D.

    1999-01-01

    In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external meters. Thermal gradients can complicate the process, however. Thermal gradients on the balance cause differential expansion (or contraction) of various parts of the balance that induce a strain that is detected by the strain gages and is indistinguishable from an external applied force. The thermal gradients can result when testing is done at elevated temperatures or at cryogenic temperatures such as at the National Transonic Facility (NTF) at NASA Langley Research Center (LaRC).

  6. A device for measuring compression force in mammography.

    PubMed

    Thiele, D L; Simeoni, R J; Panaretos, S

    1993-03-01

    Compression in mammography is an accepted technique for improving image quality and reducing dose, but excessive compression can cause pain and other undesirable effects. Therefore, maximum compression force should be measured in a quality assurance programme. A compression force meter, based on a load cell design, has been constructed and used to make compression force measurements on three GE Senographe 600T mammography machines. These measurements show that the conversion from pneumatic pressure (as indicated on the machine) to applied compression force is given by Compression Force (N) = (79.0 +/- 0.9) x Pneumatic Pressure (bars) + (12.2 +/- 4.0). Using this equation and pneumatic pressure settings on nine GE Senographe 600T units in our quality assurance programme, the maximum compression force in clinical use ranges from 102 to 150 N with a mean of 126 N. This is lower than guidelines used in the United States and the United Kingdom. PMID:8470999

  7. Calculation of Excavation Force for ISRU on Lunar Surface

    NASA Technical Reports Server (NTRS)

    Zeng, Xiangwu (David); Burnoski, Louis; Agui, Juan H.; Wilkinson, Allen

    2007-01-01

    Accurately predicting the excavation force that will be encountered by digging tools on the lunar surface is a crucial element of in-situ resource utilization (ISRU). Based on principles of soil mechanics, this paper develops an analytical model that is relatively simple to apply and uses soil parameters that can be determined by traditional soil strength tests. The influence of important parameters on the excavation force is investigated. The results are compared with that predicted by other available theories. Results of preliminary soil tests on lunar stimulant are also reported.

  8. Specific ion adsorption and surface forces in colloid science.

    PubMed

    Lima, E R A; Horinek, D; Netz, R R; Biscaia, E C; Tavares, F W; Kunz, W; Boström, M

    2008-02-14

    Mean-field theories that include nonelectrostatic interactions acting on ions near interfaces have been found to accommodate many experimentally observed ion specific effects. However, it is clear that this approach does not fully account for the liquid molecular structure and hydration effects. This is now improved by using parametrized ionic potentials deduced from recent nonprimitive model molecular dynamics (MD) simulations in a generalized Poisson-Boltzmann equation. We investigate how ion distributions and double layer forces depend on the choice of background salt. There is a strong ion specific double layer force set up due to unequal ion specific short-range potentials acting between ions and surfaces. PMID:18205350

  9. Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces.

    PubMed Central

    Rau, D C; Parsegian, V A

    1992-01-01

    Rather than acting by modifying van der Waals or electrostatic double layer interactions or by directly bridging neighboring molecules, polyvalent ligands bound to DNA double helices appear to act by reconfiguring the water between macromolecular surfaces to create attractive long range hydration forces. We have reached this conclusion by directly measuring the repulsive forces between parallel B-form DNA double helices pushed together from the separations at which they have self organized into hexagonal arrays of parallel rods. For all of the wide variety of "condensing agents" from divalent Mn to polymeric protamines, the resulting intermolecular force varies exponentially with a decay rate of 1.4-1.5 A, exactly one-half that seen previously for hydration repulsion. Such behavior qualitatively contradicts the predictions of all electrostatic double layer and van der Waals force potentials previously suggested. It fits remarkably well with the idea, developed and tested here, that multivalent counterion adsorption reorganizes the water at discrete sites complementary to unadsorbed sites on the apposing surface. The measured strength and range of these attractive forces together with their apparent specificity suggest the presence of a previously unexpected force in molecular organization. Images FIGURE 1 PMID:1540693

  10. Magnetic tweezers: micromanipulation and force measurement at the molecular level.

    PubMed Central

    Gosse, Charlie; Croquette, Vincent

    2002-01-01

    Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. PMID:12023254

  11. Analysis of simulated scanning of atomic-scale silicon surface by atomic force microscopy.

    PubMed

    Lin, Zone-Ching; Liu, Shih-Che

    2008-01-01

    This study constructs a contact-mode atomic force microscopy (AFM) simulation measurement model with constant force mode to simulate and analyze the outline scanning measurement by AFM. The simulation method is that when the probe passes the surface of sample, the action force of the atom of sample received by the atom of the probe can be calculated by using Morse potential. Through calculation, the equivalent force on the cantilever of probe can be acquired. By using the deflection angle equation for the cantilever of probe developed and inferred by this study, the deflection angle of receiving action force can be calculated. On the measurement point, as the deflection angle reaches a fixed deflection angle, the scan height of this simulation model can be acquired. By scanning in the right order, the scan curve of the simulation model can be obtained. By using this simulation measurement model, this study simulates and analyzes the scanning of atomic-scale surface outline. Meanwhile, focusing on the tip radii of different probes, the concept of sensitivity analysis is employed to investigate the effects of the tip radius of probe on the atomic-scale surface outline. As a result, it is found from the simulation on the atomic-scale surface that within the simulation scope of this study, when the tip radius of probe is greater than 12 nm, the effects of single atom on the scan curve of AFM can be better decreased or eliminated.

  12. Parallel force measurement with a polymeric microbeam array using an optical microscope and micromanipulator.

    PubMed

    Sasoglu, F Mert; Bohl, Andrew J; Allen, Kathleen B; Layton, Bradley E

    2009-01-01

    An image analysis method and its validation are presented for tracking the displacements of parallel mechanical force sensors. Force is measured using a combination of beam theory, optical microscopy, and image analysis. The primary instrument is a calibrated polymeric microbeam array mounted on a micromanipulator with the intended purpose of measuring traction forces on cell cultures or cell arrays. One application is the testing of hypotheses involving cellular mechanotransduction mechanisms. An Otsu-based image analysis code calculates displacement and force on cellular or other soft structures by using edge detection and image subtraction on digitally captured optical microscopy images. Forces as small as 250+/-50 nN and as great as 25+/-2.5 microN may be applied and measured upon as few as one or as many as hundreds of structures in parallel. A validation of the method is provided by comparing results from a rigid glass surface and a compliant polymeric surface.

  13. A Revised Force Restore Model for Land Surface Modeling.

    NASA Astrophysics Data System (ADS)

    Ren, Diandong; Xue, Ming

    2004-11-01

    To clarify the definition of the equation for the temperature toward which the soil skin temperature is restored, the prediction equations in the commonly used force restore model for soil temperature are rederived from the heat conduction equation. The derivation led to a deep-layer temperature, commonly denoted T2, that is defined as the soil temperature at depth πd plus a transient term, where d is the e-folding damping depth of soil temperature diurnal oscillations. The corresponding prediction equation for T2 has the same form as the commonly used one except for an additional term involving the lapse rate of the “seasonal mean” soil temperature and the damping depth d. A term involving the same also appears in the skin temperature prediction equation, which also includes a transient term. In the literature, T2 was initially defined as the short-term (over several days) mean of the skin temperature, but in practice it is often used as the deep-layer temperature. Such inconsistent use can lead to drift in T2 prediction over a several-day period, as is documented in this paper. When T2 is properly defined and initialized, large drift in T2 prediction is avoided and the surface temperature prediction is usually improved. This is confirmed by four sets of experiments, each for a period during each season of 2000, that are initialized using and verified against measurements of the Oklahoma Atmospheric Surface-Layer Instrumentation System (OASIS) project.


  14. Measurements of growth cone adhesion to culture surfaces by micromanipulation

    PubMed Central

    1994-01-01

    Neurons were grown on plastic surfaces that were untreated, or treated with polylysine, laminin, or L1 and their growth cones were detached from their culture surface by applying known forces with calibrated glass needles. This detachment force was taken as a measure of the force of adhesion of the growth cone. We find that on all surfaces, lamellipodial growth cones require significantly greater detachment force than filopodial growth cones, but this differences is, in general, due to the greater area of lamellipodial growth cones compared to filopodial growth cones. That is, the stress (force/unit area) required for detachment was similar for growth cones of lamellipodial and filopodial morphology on all surfaces, with the exception of lamellipodial growth cones on L1-treated surfaces, which had a significantly lower stress of detachment than on other surfaces. Surprisingly, the forces required for detachment (760-3,340 mudynes) were three to 15 times greater than the typical resting axonal tension, the force exerted by advancing growth cones, or the forces of retraction previously measured by essentially the same method. Nor did we observe significant differences in detachment force among growth cones of similar morphology on different culture surfaces, with the exception of lamellipodial growth cones on L1-treated surfaces. These data argue against the differential adhesion mechanism for growth cone guidance preferences in culture. Our micromanipulations revealed that the most mechanically resistant regions of growth cone attachment were confined to quite small regions typically located at the ends of filopodia and lamellipodia. Detached growth cones remained connected to the substratum at these regions by highly elastic retraction fibers. The closeness of contact of growth cones to the substratum as revealed by interference reflection microscopy (IRM) did not correlate with our mechanical measurements of adhesion, suggesting that IRM cannot be used as a

  15. The role of deformable structured surfaces on viscous forces during peeling

    NASA Astrophysics Data System (ADS)

    Dhong, Charles; Frechette, Joelle

    It is known that tree frogs are able to adhere well in flooded environments, presumably due to their interconnected network of drainage channels formed by hexagonal epithelial cells in their toe pads. To investigate this effect, a patterned surface of hexagonally arranged cylindrical posts was brought close to a stationary substrate in a submerged, viscous fluid via a normal load, and then peeled off to measure a retraction force. Because these structured surfaces were made from PDMS, they are able to deform throughout the process. We find that these deformable surfaces further reduce the work required to peel apart the two surfaces, even when compared to previous studies in the same system with rigid structures, and we isolated these contributions independent of conservative forces. We then conducted experiments to compare the effect of deformation on the viscous forces and conservative forces. We find that there are several regimes where deformation either increases or decreases the retraction force since we have found that elasticity decreases retraction forces when considering viscous contributions but is also known to increase adhesion in the context of conservative forces. Office of Naval Research, National Science Foundation, Hopkins Extreme Materials Institute.

  16. A measurable force driven by an excitonic condensate

    SciTech Connect

    Hakioğlu, T.; Özgün, Ege; Günay, Mehmet

    2014-04-21

    Free energy signatures related to the measurement of an emergent force (≈10{sup −9}N) due to the exciton condensate (EC) in Double Quantum Wells are predicted and experiments are proposed to measure the effects. The EC-force is attractive and reminiscent of the Casimir force between two perfect metallic plates, but also distinctively different from it by its driving mechanism and dependence on the parameters of the condensate. The proposed experiments are based on a recent experimental work on a driven micromechanical oscillator. Conclusive observations of EC in recent experiments also provide a strong promise for the observation of the EC-force.

  17. An ABS control logic based on wheel force measurement

    NASA Astrophysics Data System (ADS)

    Capra, D.; Galvagno, E.; Ondrak, V.; van Leeuwen, B.; Vigliani, A.

    2012-12-01

    The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficient.

  18. A non-integral, axial-force measuring element

    NASA Astrophysics Data System (ADS)

    Ringel, M.; Levin, D.; Seginer, A.

    1989-10-01

    A new approach to the measurement of the axial force is presented. A nonintegral axial-force measuring element, housed within the wind-tunnel model, avoids the interactions that are caused by nonlinear elastic phenomena characteristic of integral balances. The new design overcomes other problems, such as friction, misalignment and relative motion between metric elements, that plagued previous attempts at separate measurement of the axial force. Calibration and test results prove the ability of the new approach to duplicate and even surpass the results of much more complicated and expensive integral balances. The advantages of the new design make it the best known solution for particular measurement problems.

  19. Physical forces exerted by microbubbles on a surface in a traveling wave field.

    PubMed

    Brems, S; Hauptmann, M; Camerotto, E; Mertens, P W; Heyns, M; Struyf, H; De Gendt, S

    2014-02-01

    The effect of a wave with a varying traveling component on the bubble activity as well as the physical force generated by microbubbles on a surface has been studied. The acoustic emission from a collection of bubbles is measured in a 928 kHz sound field. Particle removal tests on a surface, which actually measures the applied physical force by the bubbles on that surface, indicate a very strong dependence on the angle of incidence. In other words, when the traveling wave component is maximized, the average physical force applied by microbubbles reaches a maximum. Almost complete particle removal for 78 nm silica particles was obtained for a traveling wave, while particle removal efficiency was reduced to only a few percent when a standing wave was applied. This increase in particle removal for a traveling wave is probably caused by a decrease in bubble trapping at nodes and antinodes in a standing wave field.

  20. NASA Langley Research Center Force and Strain Measurement Capabilities

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.

    1999-01-01

    Direct measurements of forces and moments are some of the most important data acquired during aerodynamic testing. This paper deals with the force and strain measurement capabilities at the Langley Research Center (LaRC). It begins with a progressive history of LaRC force measurement developments beginning in the 1940's and ends with the center's current capabilities. Various types of force and moment transducers used at LaRC are discussed including six-component sting mounted balances, semi-span balances, hinge moment balances, flow-through balances, rotor balances, and many other unique transducers. Also discussed are some unique strain-gage applications, such as those used in extreme environments. The final topics deal with the LaRC's ability to perform custom calibrations and our current levels of effort in the area of force and strain measurement.

  1. Are External Knee Load and EMG Measures Accurate Indicators of Internal Knee Contact Forces during Gait?

    PubMed Central

    Meyer, Andrew J.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Colwell, Clifford W.; Fregly, Benjamin J.

    2013-01-01

    Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle EMG signals) would be clinically valuable. This study quantifies how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. PMID:23280647

  2. Surface flow measurements from drones

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  3. Optical measurements on contaminated surfaces

    NASA Technical Reports Server (NTRS)

    Bonham, T. E.; Schmitt, R. J.; Linford, R. M. F.

    1975-01-01

    A bidirectional reflectometer system was developed for in situ measurements of the changes in spectral reflectance of surfaces contaminated with films of organic materials. The system permits experiments with films of controlled thickness in an environment that simulates the thermal, radiation, and vacuum conditions of space. The mechanical and optical construction of the reflectometer are discussed in detail, and actual data curves are used to illustrate its operation and performance.

  4. Temporal Modulations of Contact Force during Haptic Surface Exploration.

    PubMed

    Mueller, Stephanie; Martin, Sven; Schwarz, Michael; Grunwald, Martin

    2016-01-01

    Individuals constantly modulate their exploratory movements and adapt their internal hypotheses to incoming sensory information to achieve a thorough and realistic percept. Perception depends on the exploratory movements as well as influencing them. While this seems to be common sense, scientifically we know very little about the temporal dynamics during haptic exploration. To address this, we investigated the exploratory force modulations of two groups of healthy young adults during the exploration of grated surfaces with differing detection difficulty during successive (n = 20) and random stimulus presentation (n = 20). Results showed that exploratory force depended on stimulus properties and increased with increasing detection difficulty. Both experiments yielded the same direction of results with slightly smaller effects in the random stimulus presentation group. Across exploration time average fingertip force also increased. The biggest increase occurred systematically at the beginning (within the first 40 percent) of exploration time per stimulus indicating that most critical information is received during the initial contact phase and is directly transformed into the exploration procedure and force application. Furthermore, video-analyses and comparisons to our high temporal resolution data revealed strong dynamic changes in pressure application during test stimulus exploration with differences in the force dynamics and exploration strategies of simple and difficult stimuli. PMID:27073843

  5. Surface Instability of Liquid Propellant under Vertical Oscillatory Forcing

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    Fluid motion in a fuel tank produced during thrust oscillations can circulate sub-cooled hydrogen near the liquid-vapor interface resulting in increased condensation and ullage pressure collapse. The first objective of this study is to validate the capabilities of a Computational Fluid Dynamics (CFD) tool, CFD-ACE+, in modeling the fundamental interface transition physics occurring at the propellant surface. The second objective is to use the tool to assess the effects of thrust oscillations on surface dynamics. Our technical approach is to first verify the CFD code against known theoretical solutions, and then validate against existing experiments for small scale tanks and a range of transition regimes. A 2D axisymmetric, multi-phase model of gases, liquids, and solids is used to verify that CFD-ACE+ is capable of modeling fluid-structure interaction and system resonance in a typical thrust oscillation environment. Then, the 3D mode is studied with an assumed oscillatory body force to simulate the thrust oscillating effect. The study showed that CFD modeling can capture all of the transition physics from solid body motion to standing surface wave and to droplet ejection from liquid-gas interface. Unlike the analytical solutions established during the 1960 s, CFD modeling is not limited to the small amplitude regime. It can extend solutions to the nonlinear regime to determine the amplitude of surface waves after the onset of instability. The present simulation also demonstrated consistent trends from numerical experiments through variation of physical properties from low viscous fluid to high viscous fluids, and through variation of geometry and input forcing functions. A comparison of surface wave patterns under various forcing frequencies and amplitudes showed good agreement with experimental observations. It is concluded that thrust oscillations can cause droplet formation at the interface, which results in increased surface area and enhanced heat transfer

  6. Direct measurements of the frequency-dependent dielectrophoresis force.

    PubMed

    Wei, Ming-Tzo; Junio, Joseph; Ou-Yang, H Daniel

    2009-01-01

    Dielectrophoresis (DEP), the phenomenon of directed motion of electrically polarizable particles in a nonuniform electric field, is promising for applications in biochemical separation and filtration. For colloidal particles in suspension, the relaxation of the ionic species in the shear layer gives rise to a frequency-dependent, bidirectional DEP force in the radio frequency range. However, quantification methods of the DEP force on individual particles with the pico-Newton resolution required for the development of theories and design of device applications are lacking. We report the use of optical tweezers as a force sensor and a lock-in phase-sensitive technique for analysis of the particle motion in an amplitude modulated DEP force. The coherent detection and sensing scheme yielded not only unprecedented sensitivity for DEP force measurements, but also provided a selectivity that clearly distinguishes the pure DEP force from all the other forces in the system, including electrophoresis, electro-osmosis, heat-induced convection, and Brownian forces, all of which can hamper accurate measurements through other existing methods. Using optical tweezers-based force transducers already developed in our laboratory, we have results that quantify the frequency-dependent DEP force and the crossover frequency of individual particles with this new experimental method. PMID:19693384

  7. Nonadditivity of van der Waals forces on liquid surfaces

    NASA Astrophysics Data System (ADS)

    Venkataram, Prashanth S.; Whitton, Jeremy D.; Rodriguez, Alejandro W.

    2016-09-01

    We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational formulation of the Young-Laplace equation and predict the equilibrium shapes of liquid-vacuum interfaces near solid gratings. We show that commonly employed methods of computing vdW interactions based on additive Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, can result in large discrepancies in the shapes and behaviors of liquid surfaces compared to exact methods.

  8. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces.

    PubMed

    Aman, Zachary M; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2014-12-01

    Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall.

  9. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces.

    PubMed

    Aman, Zachary M; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2014-12-01

    Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall. PMID:25332072

  10. Annual Cycle of Cloud Forcing of Surface Radiation Budget

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.; Gupta, Shashi K.

    2006-01-01

    The climate of the Earth is determined by its balance of radiation. The incoming and outgoing radiation fluxes are strongly modulated by clouds, which are not well understood. The Earth Radiation Budget Experiment (Barkstrom and Smith, 1986) provided data from which the effects of clouds on radiation at the top of the atmosphere (TOA) could be computed (Ramanathan, 1987). At TOA, clouds increase the reflected solar radiation, tending to cool the planet, and decrease the OLR, causing the planet to retain its heat (Ramanathan et al., 1989; Harrison et al., 1990). The effects of clouds on radiation fluxes are denoted cloud forcing. These shortwave and longwave forcings counter each other to various degrees, so that in the tropics the result is a near balance. Over mid and polar latitude oceans, cloud forcing at TOA results in large net loss of radiation. Here, there are large areas of stratus clouds and cloud systems associated with storms. These systems are sensitive to surface temperatures and vary strongly with the annual cycle. During winter, anticyclones form over the continents and move to the oceans during summer. This movement of major cloud systems causes large changes of surface radiation, which in turn drives the surface temperature and sensible and latent heat released to the atmosphere.

  11. Surface characterization by atomic force microscopy of sterilized PLGA microspheres.

    PubMed

    Dorati, Rossella; Patrini, Maddalena; Perugini, Paola; Pavanetto, Franca; Stella, Angiolino; Modena, Tiziana; Genta, Ida; Conti, Bice

    2006-03-01

    Atomic force microscopy (AFM) is recognized a suitable and powerful technique for surface and morphological analysis. Even if until now this technique has not been frequently used in the pharmaceutical field, it can contribute to an accurate morphologic characterization of microspheres and nanospheres. In this work, atomic force microscopy has been used to perform the surface characterization of sterilized microspheres. The aim is to investigate the morphologic modifications induced by gamma irradiation on poly(lactide-co-glycolide) microspheres loaded with ovalbumin and to compare the results obtained by AFM to those obtained by scanning electron microscopy (SEM). The results obtained show that, with respect to SEM, AFM can give some additional information regarding the modifications induced by gamma-irradiation on microspheres surface morphology. The significant changes in surface roughness after irradiation are indicative of damage due to gamma-irradiation. The unchanged surface roughness values calculated for microspheres containing PEG in their matrix, suggest that this polymer exerts a protective effect towards gamma-irradiation. PMID:16754370

  12. Direct measurement of the forces generated by an undulatory microswimmer

    NASA Astrophysics Data System (ADS)

    Schulman, Rafael; Backholm, Matilda; Ryu, William; Dalnoki-Veress, Kari

    2014-11-01

    C. elegans is a millimeter-sized nematode which has served as a model organism in biology for several decades, primarily due to its simple anatomy. Employing an undulatory form of locomotion, this worm is capable of propelling itself through various media. Using a micropipette deflection technique, in conjunction with high speed imaging, we directly measure the time-varying forces generated by C. elegans. We observe excellent agreement between our measured forces and the predictions of resistive force theory, through which we determine the drag coefficients of the worm. We also perform the direct force measurements at controlled distances from a single solid boundary as well as between two solid boundaries. We extract the drag coefficients of the worm to quantify the influence of the boundary on the swimming and the hydrodynamic forces involved.

  13. Piconewton force measurement using a nanometric photonic crystal diaphragm.

    PubMed

    Jo, Wonuk; Digonnet, Michel J F

    2014-08-01

    A compact force fiber sensor capable of measuring forces at the piconewton level is reported. It consists of a miniature Fabry-Perot cavity fabricated at the tip a single-mode fiber, in which the external reflector is a compliant photonic-crystal diaphragm that deflects when subjected to a force. In the laboratory environment, this sensor was able to detect a force of only ∼4  pN generated by the radiation pressure of a laser beam. Its measured minimum detectable force (MDF) at 3 kHz was as weak as 1.3  pN/√Hz. In a quiet environment, the measured noise was ∼16 times lower, and the MDF predicted to be ∼76  fN/√Hz. PMID:25078221

  14. Sensor for direct measurement of interaction forces in probe microscopy

    NASA Astrophysics Data System (ADS)

    Degertekin, F. L.; Onaran, A. G.; Balantekin, M.; Lee, W.; Hall, N. A.; Quate, C. F.

    2005-11-01

    We introduce a sensor for direct measurement of tip-sample interaction forces in probe microscopy. The sensor uses a micromachined membrane structure built on a transparent substrate with an integrated diffraction grating for optical interferometric detection, and a built-in electrostatic actuator. To demonstrate our concept for this sensor, we measured the force curves between an atomic force microscope (AFM) cantilever tip and a micromachined aluminum sensor membrane built on a quartz substrate. We also measured transient interaction forces exerted on the sensor membrane during each cycle of the vibrating AFM cantilever. These agree well with the temporal response of the sensor to a short force pulse applied by our integrated electrostatic actuator. With the addition of an integrated tip, this structure may be used for scanning probe microscopy with a bandwidth limited by the membrane dynamics.

  15. Measuring Drag Force in Newtonian Liquids

    ERIC Educational Resources Information Center

    Mawhinney, Matthew T.; O'Donnell, Mary Kate; Fingerut, Jonathan; Habdas, Piotr

    2012-01-01

    The experiments described in this paper have two goals. The first goal is to show how students can perform simple but fundamental measurements of objects moving through simple liquids (such as water, oil, or honey). In doing so, students can verify Stokes' law, which governs the motion of spheres through simple liquids, and see how it fails at…

  16. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  17. Sensitivity of Force Specifications to the Errors in Measuring the Interface Force

    NASA Technical Reports Server (NTRS)

    Worth, Daniel

    1999-01-01

    Force-Limited Random Vibration Testing has been applied in the last several years at NASA/GSFC for various programs at the instrument and system level. Different techniques have been developed over the last few decades to estimate the dynamic forces that the test article under consideration will encounter in the operational environment. Some of these techniques are described in the handbook, NASA-HDBK-7004, and the monograph, NASA-RP-1403. A key element in the ability to perform force-limited testing is multi-component force gauges. This paper will show how some measurement and calibration errors in force gauges are compensated for w en tie force specification is calculated. The resulting notches in the acceleration spectrum, when a random vibration test is performed, are the same as the notches produced during an uncompensated test that has no measurement errors. The paper will also present the results of tests that were used to validate this compensation. Knowing that the force specification can compensate for some measurement errors allows tests to continue after force gauge failures or allows dummy gauges to be used in places that are inaccessible.

  18. Vehicle lateral state estimation based on measured tyre forces.

    PubMed

    Tuononen, Ari J

    2009-01-01

    Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements. PMID:22291535

  19. Vehicle Lateral State Estimation Based on Measured Tyre Forces

    PubMed Central

    Tuononen, Ari J.

    2009-01-01

    Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements. PMID:22291535

  20. Report of the Task Force on Institutional Effectiveness Measures.

    ERIC Educational Resources Information Center

    Arizona State Board of Directors for Community Colleges, Phoenix.

    The Task Force on Institutional Effectiveness Measures was formed by the State Board of Directors for Community Colleges of Arizona to develop a statewide plan for systematically demonstrating the degree to which community colleges accomplish their diverse missions. Two subgroups were formed in the Task Force on transfer and college programs and…

  1. What Does the Force Concept Inventory Actually Measure?

    ERIC Educational Resources Information Center

    Huffman, Douglas; Heller, Patricia

    1995-01-01

    The Force Concept Inventory (FCI) is a 29-question, multiple-choice test designed to assess students' Newtonian and non-Newtonian conceptions of force. Presents an analysis of FCI results as one way to determine what the inventory actually measures. (LZ)

  2. Evaluation of a force plate system for measuring center of pressure in railroad ballast.

    PubMed

    Xu, Hang; Merryweather, Andrew; Bloswick, Donald

    2016-05-01

    Traditional biomechanical analyses have focused primarily on the human gait across hard, flat surfaces and provide little information about human locomotion as a function of work environment or terrain. The purpose of this study was evaluation of a force plate system for measure of center of pressure (COP) in railroad ballast by comparing its accuracy across three surface conditions (hard surface, mainline ballast and walking ballast) with two configurations (level and 7° cross-slope). Custom walkways and an isolation fixture were developed to rigidly attach a force plate beneath ballast surfaces to collect the COP. The difference in COP location (ΔCOPx, y, z) between the force plate system and a calibration system (motion capture derived) were compared using repeated-measures analysis of variance. Results indicate that the effects of surface condition and configuration were not significant for ΔCOPx, y, z and no differences were found among the three surface conditions during pairwise comparison, though ΔCOPx, y, z were different between the center and corners of the force plate in ballasts for both level and cross-slope configurations. The system presented in this study demonstrates the feasibility of measuring the COP by using an isolation-fixture force plate to expand the scope of biomechanical studies on ballast surfaces that are level or cross-slope. PMID:27131198

  3. Sensitive Measurement of Forces at the Micron Scale Using Bloch Oscillations of Ultracold Atoms

    SciTech Connect

    Carusotto, I.; Pitaevskii, L.; Stringari, S.; Modugno, G.; Inguscio, M.

    2005-08-26

    We show that Bloch oscillations of ultracold fermionic atoms in the periodic potential of an optical lattice can be used for a sensitive measurement of forces at the micrometer length scale, e.g., in the vicinity of a dielectric surface. In particular, the proposed approach allows us to perform a local and direct measurement of the Casimir-Polder force which is, for realistic experimental parameters, as large as 10{sup -4} gravity.

  4. Sensitive measurement of forces at the micron scale using Bloch oscillations of ultracold atoms.

    PubMed

    Carusotto, I; Pitaevskii, L; Stringari, S; Modugno, G; Inguscio, M

    2005-08-26

    We show that Bloch oscillations of ultracold fermionic atoms in the periodic potential of an optical lattice can be used for a sensitive measurement of forces at the micrometer length scale, e.g., in the vicinity of a dielectric surface. In particular, the proposed approach allows us to perform a local and direct measurement of the Casimir-Polder force which is, for realistic experimental parameters, as large as 10(-4) gravity.

  5. Effect of aluminium sulphate on interactions between silica surfaces studied by atomic force microscopy.

    PubMed

    Donose, Bogdan C; Nguyen, Anh V; Evans, Geoffrey M; Yan, Yaode

    2007-08-01

    Surface interaction forces between different types of silica surfaces (pure silica beads, borosilicate glass beads, polished silicon wafers and fused silica slides) were measured by atomic force microscopy (AFM) in solutions of aluminium sulphate (alum) in order to understand the role of hydrated aluminium species on the coagulation of negatively charged oxide colloids in drinking water treatment. The alum coagulant concentration used in this study was 150 microM aluminium. The alum solutions were prepared from analytical grade Al2(SO4)3.16H2O. It was found that the presence of aluminium sulphate at a concentration close to the values typically used in industrial scale water treatment applications generally induced strong, long-range repulsive forces between the various types of surfaces studied. At this alum concentration streaming potential measurements indicated reversal in the sign of the surface charge. It was also found that whenever borosilicate glass beads were used, the interaction force became strongly attractive when the AFM cell was flushed with deionised water. It was argued that this attraction occurred because of the charge nonuniformity of the aluminium hydrates adsorbed at the glass surface. A mechanism was proposed to explain the observed interaction phenomena based on the deduced microstructure of the adsorbed surface layers and to rationalise the new findings for applications in drinking water treatment.

  6. Long Term Surface Salinity Measurements

    NASA Technical Reports Server (NTRS)

    Schmitt, Raymond W.; Brown, Neil L.

    2005-01-01

    Our long-term goal is to establish a reliable system for monitoring surface salinity around the global ocean. Salinity is a strong indicator of the freshwater cycle and has a great influence on upper ocean stratification. Global salinity measurements have potential to improve climate forecasts if an observation system can be developed. This project is developing a new internal field conductivity cell that can be protected from biological fouling for two years. Combined with a temperature sensor, this foul-proof cell can be deployed widely on surface drifters. A reliable in-situ network of surface salinity sensors will be an important adjunct to the salinity sensing satellite AQUARIUS to be deployed by NASA in 2009. A new internal-field conductivity cell has been developed by N Brown, along with new electronics. This sensor system has been combined with a temperature sensor to make a conductivity - temperature (UT) sensor suitable for deployment on drifters. The basic sensor concepts have been proven on a high resolution CTD. A simpler (lower cost) circuit has been built for this application. A protection mechanism for the conductivity cell that includes antifouling protection has also been designed and built. Mr. A.Walsh of our commercial partner E-Paint has designed and delivered time-release formulations of antifoulants for our application. Mr. G. Williams of partner Clearwater Instrumentation advised on power and communication issues and supplied surface drifters for testing.

  7. Reflectance measurements from particulate surfaces

    NASA Astrophysics Data System (ADS)

    Peltoniemi, J.; Gritsevich, M.; Hakala, T.; Penttilä, A.; Eskelinen, J.; Dagsson-Waldhauserova, P.; Arnalds, O.; Guirado, D.; Muinonen, K.

    2014-07-01

    Asteroids consists of, e.g., metals and rocky materials, and comets consist of, e.g., icy and rocky materials and dust. Their surfaces can be covered by small particles. To certain extent, these surfaces can resemble some natural or artificial surfaces on the Earth, such as snow layers, sand, gravels, or silt. By measuring the reflectance from such surfaces, one can gain better understanding on how to interpret astronomical observations of asteroids and comets. Even if not completely analogous, these samples and measurements provide a strict test bed for the scattering models applied to interpret observations of small Solar System bodies. FIGIFIGO (Finnish Geodetic Institute's Field Gonio-spectro-polari- radiometer) can measure the bidirectional reflectance factor (BRF) of surface targets of a diameter of around 10 cm, in a selected angular range and resolution, in the spectral range of 400-2400 nm, at about 10-nm resolution, including linear polarisation (Stokes I, Q, and U, or reflection coefficient matrix elements R_{11}, R_{12}, and R_{13}). Using FIGIFIGO, over 500 samples have been measured over the past years, including over 100 snow samples and almost 100 samples resembling sand, silt, soil, dust, or gravel. For planetary studies, especially interesting are dark volcanic ash and silt samples from Eyjafjallajökull and Grímsvönt eruptions. These have been measured loose and compressed, smooth and rough, purely and deposited on snow. Further single-scattering measurements using the Granada setup and measurements using the Univ. Helsinki integrating sphere complement the picture. Generally, we have observed that the reflectance from volcanic materials behaves mostly as expected and modelled. BRF shows typical bowl shape with strong phase-angle dependence. Spectral features are smooth, with slight angular dependence. Polarisation depends strongly on the phase angle, weaker on other angles defining the scattering geometry, and smoothly on the wavelength. There

  8. Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings.

    PubMed

    Cheng, Mengjiao; Song, Mengmeng; Dong, Hongyu; Shi, Feng

    2015-04-01

    Nanomaterials with superhydrophobic properties are promising as drag-reducing coatings. However, debates regarding whether superhydrophobic surfaces are favorable for drag reduction require further clarification. A quantified water adhesive force measurement is proposed as a metric and its effectiveness demonstrated using three typical superhydrophobic coatings on model ships with in situ sailing tests. PMID:25418808

  9. Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings.

    PubMed

    Cheng, Mengjiao; Song, Mengmeng; Dong, Hongyu; Shi, Feng

    2015-04-01

    Nanomaterials with superhydrophobic properties are promising as drag-reducing coatings. However, debates regarding whether superhydrophobic surfaces are favorable for drag reduction require further clarification. A quantified water adhesive force measurement is proposed as a metric and its effectiveness demonstrated using three typical superhydrophobic coatings on model ships with in situ sailing tests.

  10. Direct force measurement between bio-colloidal Giardia lamblia cysts and colloidal silicate glass particles.

    PubMed

    Virtanen, Anne-Mari J; Considine, Robert F; Dixon, David R; Fong, Celesta; Drummond, Calum J

    2012-12-11

    Force-separation measurements between Giardia lamblia cysts and an inorganic oxide (silicate glass) have been obtained by using an atomic force microscope (AFM). The cysts are compressible on the scale of the loads applied during force measurement, with the surface compressibility expressed in terms of an interfacial spring constant (K(int)). The force of interaction prior to this Hookean region, on approach, is long-range and repulsive. The long-range force has been compared to models of the electrical double layer as well as an electrosteric layer. The comparison has led to the conclusion that the cyst surface can be described as a polyelectrolyte brush at intermediate separations (5-115 nm from linear compliance) with an electrical double layer often observed at larger separations. The dependence of the interaction force on surface retraction suggests that tethering between the cyst and siliceous surface can occur. The variation of the interaction with pH and upon variation with ionic strength has also been assessed. The information gained from the measurement of the interaction between G. lamblia and this model sandlike surface informs water treatment processes. Similar studies have been performed by us for the Cryptosporidium parvum (C. parvum) oocyst system to which this work is compared.

  11. 3D force and displacement sensor for SFA and AFM measurements.

    PubMed

    Kristiansen, Kai; McGuiggan, Patricia; Carver, Greg; Meinhart, Carl; Israelachvili, Jacob

    2008-02-19

    A new device has been designed, and a prototype built and tested, that can simultaneously measure the displacements and/or the components of a force in three orthogonal directions. The "3D sensor" consists of four or eight strain gauges attached to the four arms of a single cross-shaped force-measuring cantilever spring. Finite element modeling (FEM) was performed to optimize the design configuration to give desired sensitivity of force, displacement, stiffness, and resonant frequency in each direction (x, y, and z) which were tested on a "mesoscale" device and found to agree with the predicted values to within 4-10%. The device can be fitted into a surface forces apparatus (SFA), and a future smaller "microscale" microfabricated version can be fitted into an atomic force microscope (AFM) for simultaneous measurements of the normal and lateral (friction) forces between a tip (or colloidal bead probe) and a surface, and the topography of the surface. Results of the FEM analysis are presented, and approximate equations derived using linear elasticity theory are given for the sensitivity in each direction. Initial calibrations and measurements of thin film rheology (lubrication forces) using the "mesoscale" prototype show the device to function as expected.

  12. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Balke, Nina; Jesse, Stephen; Yu, Pu; Carmichael, Ben; Kalinin, Sergei V.; Tselev, Alexander

    2016-10-01

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ˜1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.

  13. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.

    PubMed

    Balke, Nina; Jesse, Stephen; Yu, Pu; Ben Carmichael; Kalinin, Sergei V; Tselev, Alexander

    2016-10-21

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ∼1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques. PMID:27631885

  14. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.

    PubMed

    Balke, Nina; Jesse, Stephen; Yu, Pu; Ben Carmichael; Kalinin, Sergei V; Tselev, Alexander

    2016-10-21

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ∼1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.

  15. Quantum metrology. Optically measuring force near the standard quantum limit.

    PubMed

    Schreppler, Sydney; Spethmann, Nicolas; Brahms, Nathan; Botter, Thierry; Barrios, Maryrose; Stamper-Kurn, Dan M

    2014-06-27

    The Heisenberg uncertainty principle sets a lower bound on the noise in a force measurement based on continuously detecting a mechanical oscillator's position. This bound, the standard quantum limit, can be reached when the oscillator subjected to the force is unperturbed by its environment and when measurement imprecision from photon shot noise is balanced against disturbance from measurement back-action. We applied an external force to the center-of-mass motion of an ultracold atom cloud in a high-finesse optical cavity and measured the resulting motion optically. When the driving force is resonant with the cloud's oscillation frequency, we achieve a sensitivity that is a factor of 4 above the standard quantum limit and consistent with theoretical predictions given the atoms' residual thermal disturbance and the photodetection quantum efficiency.

  16. Measuring Drag Force in Newtonian Liquids

    NASA Astrophysics Data System (ADS)

    Mawhinney, Matthew T.; O'Donnell, Mary Kate; Fingerut, Jonathan; Habdas, Piotr

    2012-03-01

    The experiments described in this paper have two goals. The first goal is to show how students can perform simple but fundamental measurements of objects moving through simple liquids (such as water, oil, or honey). In doing so, students can verify Stokes' law, which governs the motion of spheres through simple liquids, and see how it fails at higher object speeds. Moreover, they can qualitatively study fluid patterns at various object speeds (Reynolds numbers). The second goal is to help students make connections between physics and other sciences. Specifically, the results of these experiments can be used to help students understand the role of fluid motion in determining the shape of an organism, or where it lives. At Saint Josephs University we have developed these experiments as part of a newly developed course in biomechanics where both physics and biology undergraduate students bring their ideas and expertise to enrich a shared learning environment.

  17. Method for measuring surface temperature

    DOEpatents

    Baker, Gary A.; Baker, Sheila N.; McCleskey, T. Mark

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  18. Measuring surface fluxes in CAPE

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; D-Shah, T.; Nie, Dalin

    1992-01-01

    Two stations (site 1612 and site 2008) were operated by the University of Georgia group from 6 July 1991 to 18 August 1991. The following data were collected continuously: surface energy fluxes (i.e., net radiation, soil heat fluxes, sensible heat flux and latent heat flux), air temperature, vapor pressure, soil temperature (at 1 cm depth), and precipitation. Canopy reflectance and light interception data were taken three times at each site between 6 July and 18 August. Soil moisture content was measured twice at each site.

  19. La force de Casimir et les plasmons de surface

    NASA Astrophysics Data System (ADS)

    Intravaia, F.; Lambrecht, A.; Reynaud, S.

    2004-11-01

    La présence de fluctuations irréductibles de champ dans le vide est une prédiction importante de la théorie quantique. Ces fluctuations ont de nombreux effets bien connus, dont l'archétype est la force de Casimir apparaîssant entre deux miroirs placés dans le vide par suite de la pression de radiation du vide. Elle a été récemment mesurée avec une précision de l'ordre du %. De nombreux travaux sont consacrés à l'évaluation théorique de cette force en visant une précision du même ordre. Ici nous étudions la force de Casimir dans la configuration de deux miroirs métalliques plans parallèles à température nulle. En supposant les miroirs décrits par un modèle plasma nous interprétons la force de Casimir comme le résultat de l'interaction entre les plasmons de surface des deux miroirs.

  20. Attractive surface force in the presence of dissolved gas: a molecular approach.

    PubMed

    Bratko, Dusan; Luzar, Alenka

    2008-02-19

    Despite widespread evidence of the influence of dissolved air on hydrophobic interaction, the mechanisms of observed effects are still unknown. Although some experiments indicate that adsorbed gases can modify the structure of water next to hydrophobic surfaces, gas effects on measured forces have been observed only at large surface separations. Gas-specific depletion of water at a hydrophobic surface has been detected but was not reproduced in subsequent measurements. We use computer simulations to study short-ranged hydrophobic attraction in the absence and presence of dissolved gas and monitor gas adsorption at molecular resolution inaccessible in experiments. Although we observe a significant accumulation of dissolved gases at hydrophobic surfaces, even in supersaturated gas solutions surface concentrations remain too low to induce any significant change in the local structure of water and short-range surface forces. We present direct calculations of the hydrophobic force between model hydrocarbon plates at separations between 1.5 and 4 nm. Although stronger, the calculated solvation force has a similar decay rate as deduced from recent surface force apparatus measurements at a somewhat lower contact angle. Within the statistical uncertainty, short-range attraction is not affected by the presence of dissolved nitrogen, even in supersaturated solution with a gas fugacity as high as 30 atm. Comparisons of the adsorption behavior of N2, O2, CO2, and Ar reveal similar features in contrast to the peculiar suppression of water depletion reported for an Ar solution in a neutron reflectivity experiment. Our calculations reveal a notable difference between pathways to the capillary evaporation of pure water and gas-phase nucleation in confined supersaturated gas solutions. PMID:17979305

  1. Influence of ultrathin water layer on the van der Waals/Casimir force between gold surfaces

    SciTech Connect

    Palasantzas, G.; Zwol, P. J. van; Svetovoy, V. B.

    2009-06-15

    In this paper we investigate the influence of ultrathin water layer ({approx}1-1.5 nm) on the van der Waals/Casimir force between gold surfaces. Adsorbed water is inevitably present on gold surfaces at ambient conditions as jump-up-to contact during adhesion experiments demonstrate. Calculations based on the Lifshitz theory give very good agreement with the experiment in the absence of any water layer for surface separations d > or approx. 10 nm. However, a layer of thickness h < or approx. 1.5 nm is allowed by the error margin in force measurements. At shorter separations, d < or approx. 10 nm, the water layer can have a strong influence as calculations show for flat surfaces. Nonetheless, in reality the influence of surface roughness must also be considered, and it can overshadow any water layer influence at separations comparable to the total sphere-plate rms roughness w{sub shp}+w.

  2. Icing Research Tunnel (IRT) Force Measurement System (FMS)

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.

    2012-01-01

    An Electronics Engineer at the Glenn Research Center (GRC), requested the NASA Engineering and Safety Center (NESC) provide technical support for an evaluation of the existing force measurement system (FMS) at the GRC's Icing Research Tunnel (IRT) with the intent of developing conceptual designs to improve the tunnel's force measurement capability in order to better meet test customer needs. This report contains the outcome of the NESC technical review.

  3. Flight of a Rufous Hummingbird Robotic Model-Force Measurements

    NASA Astrophysics Data System (ADS)

    Chavez Alarcon, Ramiro; Bocanegra Evans, Humberto; Ferreira de Sousa, Paulo; Tobalske, Bret; Allen, James

    2008-11-01

    Aerodynamic force data was measured on a 2-DOF scaled robotic hummingbird model for both hovering and translational flight. Experiments were conducted in a large water channel facility at New Mexico State University. Reynolds and Strouhal numbers for the experiment are in the range of 3600 and 0.97, respectively. Forces are directly measured using strain gages and compared with phase-locked PIV results.

  4. Flight Force Measurements on a Spacecraft to Launch Vehicle Interface

    NASA Astrophysics Data System (ADS)

    Kaufman, Daniel S.; Gordon, Scott A.

    2012-07-01

    For several years we had wanted to measure interface forces between a launch vehicle and the Payload. Finally in July 2006 a proposal was made and funded to evaluate the use of flight force measurements (FFM) to improve the loads process of a Spacecraft in its design and test cycle. A NASA/Industry team was formed, the core Team consisted of 20 people. The proposal identified two questions that this assessment would attempt to address by obtaining the flight forces. These questions were: 1) Is flight correlation and reconstruction with acceleration methods sufficient? 2) How much can the loads and therefore the design and qualification be reduced by having force measurements? The objective was to predict the six interface driving forces between the Spacecraft and the Launch Vehicle throughout the boost phase. Then these forces would be compared with reconstructed loads analyses for evaluation in an attempt to answer them. The paper will present the development of a strain based force measurement system and also an acceleration method, actual flight results, post flight evaluations and lessons learned.

  5. Response of the surface tropical Atlantic Ocean to wind forcing

    NASA Astrophysics Data System (ADS)

    Castellanos, Paola; Pelegrí, Josep L.; Campos, Edmo J. D.; Rosell-Fieschi, Miquel; Gasser, Marc

    2015-05-01

    We use 10 years of satellite data (sea level pressure, surface winds and absolute dynamic topography [ADT]) together with Argo-inferred monthly-mean values of near-surface velocity and water transport, to examine how the tropical system of near-surface zonal currents responds to wind forcing. The data is analyzed using complex Hilbert empirical orthogonal functions, confirming that most of the variance has annual periodicity, with maximum amplitudes in the region spanned by the seasonal displacement of the Inter-Tropical Convergence Zone (ITCZ). The ADT mirrors the shape of the upper isopycnals, hence becoming a good indicator of the amount of water stored in the upper ocean. Within about 3° from the Equator, where the Coriolis force is small, there is year-long meridional Ekman-transport divergence that would lead to the eastward transport of the Equatorial Undercurrent and its northern and southern branches. Beyond 3° of latitude, and at least as far as 20°, the convergence of the Ekman transport generally causes a poleward positive ADT gradient, which sustains the westward South Equatorial Current (SEC). The sole exception occurs in summer, between 8°N and 12°N, when an Ekman-transport divergence develops and depletes de amount of surface water, resulting in an ADT ridge-valley system which reverses the ADT gradient and drives the eastward North Equatorial Countercurrent (NECC) at latitudes 4-9°N; in late fall, divergence ceases and the NECC drains the ADT ridge, so the ADT gradient again becomes positive and the SEC reappears. The seasonal evolution of a tilted ITCZ controls the surface water fluxes: the wind-induced transports set the surface divergence-convergence, which then drive the ADT and, through the ADT gradients, create the geostrophic jets that close the water balance.

  6. Imaging the condensation and evaporation of molecularly thin ethanol films with surface forces apparatus

    SciTech Connect

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Zhang, Di; Ni, Zhonghua E-mail: yunfeichen@seu.edu.cn; Yi, Hong; Chen, Yunfei E-mail: yunfeichen@seu.edu.cn

    2014-01-15

    A new method for imaging condensation and evaporation of molecularly thin ethanol films is reported. It is found that the first adsorbed layer of ethanol film on mica surface behaves as solid like structure that cannot flow freely. With the increase of exposure time, more ethanol molecules condense over the mica surface in the saturated ethanol vapor condition. The first layer of adsorbed ethanol film is about 3.8 Å thick measured from the surface forces apparatus, which is believed to be the average diameter of ethanol molecules while they are confined in between two atomically smooth mica surfaces.

  7. Probing biofouling resistant polymer brush surfaces by atomic force microscopy based force spectroscopy.

    PubMed

    Schön, Peter; Kutnyanszky, Edit; ten Donkelaar, Bas; Santonicola, M Gabriella; Tecim, Tugba; Aldred, Nick; Clare, Anthony S; Vancso, G Julius

    2013-02-01

    The protein repellency and biofouling resistance of zwitterionic poly(sulfobetaine methacrylate)(pSBMA) brushes grafted via surface initiated polymerization (SIP) from silicon and glass substrata was assessed using atomic force microscopy (AFM) adherence experiments. Laboratory settlement assays were conducted with cypris larvae of the barnacle Balanus amphitrite. AFM adherence includes the determination of contact rupture forces when AFM probe tips are withdrawn from the substratum. When the surface of the AFM tip is modified, adherence can be assessed with chemical specifity using a method known as chemical force microscopy (CFM). In this study, AFM tips were chemically functionalized with (a) fibronectin- here used as model for a nonspecifically adhering protein - and (b) arginine-glycine-aspartic acid (RGD) peptide motifs covalently attached to poly(methacrylic acid) (PMAA) brushes as biomimics of cellular adhesion receptors. Fibronectin functionalized tips showed significantly reduced nonspecific adhesion to pSBMA-modified substrata compared to bare gold (2.3±0.75 nN) and octadecanethiol (ODT) self-assembled monolayers (1.3±0.75 nN). PMAA and PMAA-RGD modified probes showed no significant adhesion to pSBMA modified silicon substrata. The results gathered through AFM protein adherence studies were complemented by laboratory fouling studies, which showed no adhesion of cypris larvae of Balanus amphitrite on pSBMA. With regard to its unusually high non-specific adsorption to a wide variety of materials the behavior of fibronectin is analogous to the barnacle cyprid temporary adhesive that also binds well to surfaces differing in polarity, charge and free energy. The antifouling efficacy of pSBMA may, therefore, be directly related to the ability of this surface to resist nonspecific protein adsorption. PMID:23138001

  8. Development of living cell force sensors for the interrogation of cell surface interactions

    NASA Astrophysics Data System (ADS)

    Brown, Scott Chang

    The measurement of cell surface interactions, or cell interaction forces, are critical for the early diagnosis and prevention of disease, the design of targeted drug and gene delivery vehicles, the development of next-generation implant materials, and much more. However, the technologies and devices that are currently available are highly limited with respect to the dynamic force range over which they can measure cell-cell or cell-substratum interactions, and with their ability to adequately mimic biologically relevant systems. Consequently, research efforts that involve cell surface interactions have been limited. In this dissertation, existing tools for research at the nanoscale (i.e., atomic force microscopy microcantilevers) are modified to develop living cell force sensors that allow for the highly sensitive measurement of cell-mediated interactions over the entire range of forces expected in biotechnology (and nano-biotechnology) research (from a single to millions of receptor-ligand bonds). Several force sensor motifs have been developed that can be used to measure interactions using single adherent cells, single suspension culture cell, and cell monolayers (tissues) over a wide range of interaction conditions (e.g., approach velocity, shear rate, contact time) using a conventional atomic force microscope. This new tool has been applied to study the pathogenesis of spontaneous pneumothorax and the interaction of cells with 14 man-made interfaces. Consequently, a new hypothesis of the interactions that manifest spontaneous pneumothorax has been developed. Additionally, these findings have the potential to lead to the development of tools for data mining materials and surfaces for unique cell interactions that could have an immense societal impact.

  9. Efficient parametrization of complex molecule-surface force fields.

    PubMed

    Gao, David Z; Federici Canova, Filippo; Watkins, Matthew B; Shluger, Alexander L

    2015-06-15

    We present an efficient scheme for parametrizing complex molecule-surface force fields from ab initio data. The cost of producing a sufficient fitting library is mitigated using a 2D periodic embedded slab model made possible by the quantum mechanics/molecular mechanics scheme in CP2K. These results were then used in conjunction with genetic algorithm (GA) methods to optimize the large parameter sets needed to describe such systems. The derived potentials are able to well reproduce adsorption geometries and adsorption energies calculated using density functional theory. Finally, we discuss the challenges in creating a sufficient fitting library, determining whether or not the GA optimization has completed, and the transferability of such force fields to similar molecules.

  10. Efficient parametrization of complex molecule-surface force fields.

    PubMed

    Gao, David Z; Federici Canova, Filippo; Watkins, Matthew B; Shluger, Alexander L

    2015-06-15

    We present an efficient scheme for parametrizing complex molecule-surface force fields from ab initio data. The cost of producing a sufficient fitting library is mitigated using a 2D periodic embedded slab model made possible by the quantum mechanics/molecular mechanics scheme in CP2K. These results were then used in conjunction with genetic algorithm (GA) methods to optimize the large parameter sets needed to describe such systems. The derived potentials are able to well reproduce adsorption geometries and adsorption energies calculated using density functional theory. Finally, we discuss the challenges in creating a sufficient fitting library, determining whether or not the GA optimization has completed, and the transferability of such force fields to similar molecules. PMID:25891018

  11. Surface forces between titanium dioxide surfaces in the presence of cationic surfactant as a function of surfactant concentration, electrolyte concentration, and pH.

    PubMed

    Walsh, Rick B; Wu, Bo; Howard, Shaun C; Craig, Vincent S J

    2014-03-18

    Titanium dioxide (titania) surfaces produced by atomic layer deposition (ALD) are suitable for surfactant adsorption and surface force measurements. Adsorption isotherms for cetyltrimethylammonium bromide (CTAB) on ALD titanium dioxide surfaces were measured using optical reflectometry (OR), and surface force measurements between ALD titanium dioxide surfaces in aqueous CTAB solutions were measured using the colloid probe technique at different pH and electrolyte concentrations. Measurements were performed at a range of concentrations below and above the common intersection point (CIP) where adsorption is dominated by electrostatic and hydrophobic interactions, respectively. An examination of surfactant adsorption above and below the isoelectric point (IEP) was performed. Interestingly, significant levels of adsorption were observed below the IEP where the electrostatic interactions are unfavorable. The adsorption results are used to interpret the force data, which is dependent upon the amount of surfactant adsorbed and the electrolyte concentration and pH. The surface force data is compared to DLVO theory. Poor fits are obtained when Lifshitz theory is used to describe the dispersion forces. However, all of the data are fit well with a dispersion force of reduced magnitude. The kinetics of adsorption was measured and reveals very slow adsorption kinetics below the critical micelle concentration as a result of the monomer-by-monomer formation of aggregates on the surface.

  12. Apparatus for measuring the force of gravity on freely falling electrons

    NASA Technical Reports Server (NTRS)

    Witteborn, F. C.; Fairbank, W. M.

    1977-01-01

    An apparatus and data analysis technique for measuring the gravitational force on freely falling electrons are described. The measurement required that all forces acting on the electrons be uniform and measurable to about ten to the negative 11th power eV/m. The electrical force along the axis of the 5-cm-diam, vertical copper tube used in the experiment was found to be about six times ten to the negative 11th power eV/m when the tube was cooled to 4.2 K. Forces on electrons due to magnetic field gradients were reduced well below the electrical ones by selecting only ground state electrons for measurement. The absence, at 4.2 K, of much stronger electric fields, which were expected to arise from the patch effect and from differential lattice components, contrasts strongly with measurements of electric fields near metal surfaces made at room temperature.

  13. Video measurements of instantaneous forces of flapping wing vehicles

    NASA Astrophysics Data System (ADS)

    Jennings, Alan; Mayhew, Michael; Black, Jonathan

    2015-12-01

    Flapping wings for small aerial vehicles have revolutionary potential for maneuverability and endurance. Ornithopters fail to achieve the performance of their biological equivalents, despite extensive research on how animals fly. Flapping wings produce peak forces due to the stroke reversal of the wing. This research demonstrates in-flight measurements of an ornithopter through the use of image processing, specifically measuring instantaneous forces. Results show that the oscillation about the flight path is significant, being about 20% of the mean velocity and up to 10 g's. Results match forces with deformations of the wing to contrast the timing and wing shape of the upstroke and the downstroke. Holding the vehicle fixed (e.g. wind tunnel testing or simulations) structural resonance is affected along with peak forces, also affecting lift. Non-contact, in-flight measurements are proposed as the best method for matching the flight conditions of flapping wing vehicles.

  14. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  15. Novel Low-Cost Sensor for Human Bite Force Measurement.

    PubMed

    Fastier-Wooller, Jarred; Phan, Hoang-Phuong; Dinh, Toan; Nguyen, Tuan-Khoa; Cameron, Andrew; Öchsner, Andreas; Dao, Dzung Viet

    2016-01-01

    This paper presents the design and development of a low cost and reliable maximal voluntary bite force sensor which can be manufactured in-house by using an acrylic laser cutting machine. The sensor has been designed for ease of fabrication, assembly, calibration, and safe use. The sensor is capable of use within an hour of commencing production, allowing for rapid prototyping/modifications and practical implementation. The measured data shows a good linear relationship between the applied force and the electrical resistance of the sensor. The output signal has low drift, excellent repeatability, and a large measurable range of 0 to 700 N. A high signal-to-noise response to human bite forces was observed, indicating the high potential of the proposed sensor for human bite force measurement. PMID:27509496

  16. Novel Low-Cost Sensor for Human Bite Force Measurement

    PubMed Central

    Fastier-Wooller, Jarred; Phan, Hoang-Phuong; Dinh, Toan; Nguyen, Tuan-Khoa; Cameron, Andrew; Öchsner, Andreas; Dao, Dzung Viet

    2016-01-01

    This paper presents the design and development of a low cost and reliable maximal voluntary bite force sensor which can be manufactured in-house by using an acrylic laser cutting machine. The sensor has been designed for ease of fabrication, assembly, calibration, and safe use. The sensor is capable of use within an hour of commencing production, allowing for rapid prototyping/modifications and practical implementation. The measured data shows a good linear relationship between the applied force and the electrical resistance of the sensor. The output signal has low drift, excellent repeatability, and a large measurable range of 0 to 700 N. A high signal-to-noise response to human bite forces was observed, indicating the high potential of the proposed sensor for human bite force measurement. PMID:27509496

  17. Phoretic and Radiometric Force Measurements on Microparticles in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. James

    1996-01-01

    Thermophoretic, diffusiophoretic and radiometric forces on microparticles are being measured over a wide range of gas phase and particle conditions using electrodynamic levitation of single particles to simulate microgravity conditions. The thermophoretic force, which arises when a particle exists in a gas having a temperature gradient, is measured by levitating an electrically charged particle between heated and cooled plates mounted in a vacuum chamber. The diffusiophoretic force arising from a concentration gradient in the gas phase is measured in a similar manner except that the heat exchangers are coated with liquids to establish a vapor concentration gradient. These phoretic forces and the radiation pressure force acting on a particle are measured directly in terms of the change in the dc field required to levitate the particle with and without the force applied. The apparatus developed for the research and the experimental techniques are discussed, and results obtained by thermophoresis experiments are presented. The determination of the momentum and energy accommodation coefficients associated with molecular collisions between gases molecules and particles and the measurement of the interaction between electromagnetic radiation and small particles are of particular interest.

  18. Easy and direct method for calibrating atomic force microscopy lateral force measurements.

    PubMed

    Liu, Wenhua; Bonin, Keith; Guthold, Martin

    2007-06-01

    We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young's modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever's lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement.

  19. Easy and direct method for calibrating atomic force microscopy lateral force measurements

    PubMed Central

    Liu, Wenhua; Bonin, Keith; Guthold, Martin

    2010-01-01

    We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young’s modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever’s lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement. PMID:17614616

  20. Designing an experiment to measure cellular interaction forces

    NASA Astrophysics Data System (ADS)

    McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.

    2013-09-01

    Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.

  1. Adhesion of melanoma cells to the surfaces of microspheres studied by atomic force microscopy.

    PubMed

    Shinto, Hiroyuki; Aso, Yuki; Fukasawa, Tomonori; Higashitani, Ko

    2012-03-01

    It is of fundamental importance to understand the mechanism of adhesion between a mammalian cell and a material surface. In the present study, we have used atomic force microscopy (AFM) to measure the interaction forces between the murine melanoma cells and the single polystyrene microspheres of different surface chemistries in serum-free culture media: the unmodified hydrophobic polystyrene (bare/PS) and the carboxyl-modified polystyrene (COOH/PS). The cell-microsphere interaction forces have been also measured in the culture media containing the free Arg-Gly-Asp (RGD) peptides as an integrin inhibitor. In the absence of free RGD peptides, the adhesion force for COOH/PS was larger than that for bare/PS. The adhesion force for COOH/PS decreased with increasing the concentration of free RGD peptides added in the culture media and then became almost constant at the RGD concentrations larger than 0.5 mg/mL, whereas that for bare/PS remained very small regardless of the RGD concentration. In addition, the effects of the microsphere diameter and the contact time on the adhesion forces were investigated. On the basis of the AFM results, possible mechanism of cell-microsphere adhesion will be discussed.

  2. Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.

    PubMed

    Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S

    2001-01-01

    The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature. PMID:12203646

  3. Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.

    PubMed

    Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S

    2001-01-01

    The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature.

  4. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces.

    PubMed

    Schrader, Alex M; Cheng, Chi-Yuan; Israelachvili, Jacob N; Han, Songi

    2016-07-28

    Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relative to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity.

  5. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces

    PubMed Central

    Schrader, Alex M.; Cheng, Chi-Yuan; Han, Songi

    2016-01-01

    Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relative to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity. PMID:27475340

  6. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces

    NASA Astrophysics Data System (ADS)

    Schrader, Alex M.; Cheng, Chi-Yuan; Israelachvili, Jacob N.; Han, Songi

    2016-07-01

    Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relative to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity.

  7. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces.

    PubMed

    Schrader, Alex M; Cheng, Chi-Yuan; Israelachvili, Jacob N; Han, Songi

    2016-07-28

    Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relative to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity. PMID:27475340

  8. Deconvolution Kalman filtering for force measurements of revolving wings

    NASA Astrophysics Data System (ADS)

    Vester, R.; Percin, M.; van Oudheusden, B.

    2016-09-01

    The applicability of a deconvolution Kalman filtering approach is assessed for the force measurements on a flat plate undergoing a revolving motion, as an alternative procedure to correct for test setup vibrations. The system identification process required for the correct implementation of the deconvolution Kalman filter is explained in detail. It is found that in the presence of a relatively complex forcing history, the DK filter is better suited to filter out structural test rig vibrations than conventional filtering techniques that are based on, for example, low-pass or moving-average filtering. The improvement is especially found in the characterization of the generated force peaks. Consequently, more reliable force data is obtained, which is vital to validate semi-empirical estimation models, but is also relevant to correlate identified flow phenomena to the force production.

  9. Large differences in tropical aerosol forcing at the top of the atmosphere and Earth's surface

    PubMed

    Satheesh; Ramanathan

    2000-05-01

    The effect of radiative forcing by anthropogenic aerosols is one of the largest sources of uncertainty in climate predictions. Direct observations of the forcing are therefore needed, particularly for the poorly understood tropical aerosols. Here we present an observational method for quantifying aerosol forcing to within +/-5 per cent. We use calibrated satellite radiation measurements and five independent surface radiometers to quantify the aerosol forcing simultaneously at the Earth's surface and the top of the atmosphere over the tropical northern Indian Ocean. In winter, this region is covered by anthropogenic aerosols of sulphate, nitrate, organics, soot and fly ash from the south Asian continent. Accordingly, mean clear-sky solar radiative heating for the winters of 1998 and 1999 decreased at the ocean surface by 12 to 30 Wm(-2), but only by 4 to 10 Wm(-2) at the top of the atmosphere. This threefold difference (due largely to solar absorption by soot) and the large magnitude of the observed surface forcing both imply that tropical aerosols might slow down the hydrological cycle.

  10. Surface effect on the nonlinear forced vibration of cantilevered nanobeams

    NASA Astrophysics Data System (ADS)

    Dai, H. L.; Zhao, D. M.; Zou, J. J.; Wang, L.

    2016-06-01

    The nonlinear forced vibration behavior of a cantilevered nanobeam is investigated in this paper, essentially considering the effect due to the surface elastic layer. The governing equation of motion for the nano-cantilever is derived, with consideration of the geometrical nonlinearity and the effects of additional flexural rigidity and residual stress of the surface layer. Then, the nonlinear partial differential equation (PDE) is discretized into a set of nonlinear ordinary differential equations (ODEs) by means of the Galerkin's technique. It is observed that surface effects on the natural frequency of the nanobeam is of significance, especially for the case when the aspect ratio of the nanobeam is large. The nonlinear resonant dynamics of the nanobeam system is evaluated by varying the excitation frequency around the fundamental resonance, showing that the nanobeam would display hardening-type behavior and hence the frequency-response curves bend to the right in the presence of positive residual surface stress. However, with the negative residual surface stress, this hardening-type behavior can be shifted to a softening-type one which becomes even more evident with increase of the aspect ratio parameter. It is also demonstrated that the combined effects of the residual stress and aspect ratio on the maximum amplitude of the nanobeam may be pronounced.

  11. Fiber optic micro sensor for the measurement of tendon forces

    PubMed Central

    2012-01-01

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements. PMID:23033868

  12. Direct measurement of depletion and hydrodynamic forces in solutions of a reversible supramolecular polymer.

    PubMed

    Knoben, W; Besseling, N A M; Stuart, M A Cohen

    2007-05-22

    In this paper, the investigation of surface forces in semidilute solutions of a nonadsorbing hydrogen-bonded reversible supramolecular polymer is described. Colloidal probe atomic force microscopy was used for direct measurement of depletion forces. Hydrodynamic drag on the AFM cantilever with the colloidal probe was measured both far away from and close to the planar substrate surface. The results indicate that the presence of the depletion layer causes slip at the surfaces with a large apparent slip length. Our analysis explains how the presence of slip enables the measurement of (relatively weak) depletion forces in solutions with a high viscosity by significantly reducing the hydrodynamic forces. The range and magnitude of the measured depletion forces are qualitatively in agreement with previous experiments and theoretical predictions. Due to the relatively large experimental error, no quantitative conclusions can be drawn. Depletion-induced phase separation of suspensions of stearylated silica particles was also observed. Phase separation becomes more pronounced with increasing polymer concentration. PMID:17439251

  13. Measurement of interaction forces between lignin and cellulose as a function of aqueous electrolyte solution conditions.

    PubMed

    Notley, Shannon M; Norgren, Magnus

    2006-12-19

    The interaction between a lignin film and a cellulose sphere has been measured using the colloidal probe force technique as a function of aqueous electrolyte solution conditions. The lignin film was first studied for its roughness and stability using atomic force microscopy imaging and quartz crystal microbalance measurements, respectively. The film was found to be smooth and stable in the pH range of 3.5-9 and in ionic strengths up to and including 0.01 M. This range of ionic strength and pH was hence used to measure the surface force profiles between lignin and cellulose. Under these solution conditions, the measured forces behaved according to DLVO theory. The force-distance curves could be fitted between the limits of constant charge and constant potential, and the surface potential of the lignin films was determined as a function of pH. At a pH greater than 9.5, a short range steric repulsion was observed, indicating that the film was swelling to a large extent but did not dissolve. Thus, lignin films prepared in this manner are suitable for a range of surface force studies.

  14. Support force measures of midsized men in seated positions.

    PubMed

    Bush, Tamara Reid; Hubbard, Robert P

    2007-02-01

    Two areas not well researched in the field of seating mechanics are the distribution of normal and shear forces, and how those forces change with seat position. The availability of these data would be beneficial for the design and development of office, automotive and medical seats. To increase our knowledge in the area of seating mechanics, this study sought to measure the normal and shear loads applied to segmental supports in 12 seated positions, utilizing three inclination angles and four levels of seat back articulation that were associated with automotive driving positions. Force data from six regions, including the thorax, sacral region, buttocks, thighs, feet, and hand support were gathered using multi-axis load cells. The sample contained 23 midsized subjects with an average weight of 76.7 kg and a standard deviation of 4.2 kg, and an average height of 1745 mm with a standard deviation of 19 mm. Results were examined in terms of seat back inclination and in terms of torso articulation for relationships between seat positions and support forces. Using a repeated measures analysis, significant differences (p<0.05) were identified for normal forces relative to all inclination angles except for forces occurring at the hand support. Other significant differences were observed between normal forces behind the buttocks, pelvis, and feet for torso articulations. Significant differences in the shear forces occurred under the buttocks and posterior pelvis during changes in seat back inclination. Significant differences in shear forces were also identified for torso articulations. These data suggest that as seat back inclination or torso articulation change, significant shifts in force distribution occur.

  15. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1985-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  16. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  17. Shortwave spectral radiative forcing of cumulus clouds from surface observations

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Berg, L. K.; Long, C. N.; Flynn, C.

    2011-04-01

    The spectral changes of the shortwave total, direct and diffuse cloud radiative forcing (CRF) at surface are examined for the first time using spectrally resolved all-sky flux observations and clear-sky fluxes. The latter are computed applying a physically based approach, which accounts for the spectral changes of aerosol optical properties and surface albedo. Application of this approach to 13 summertime days with single-layer continental cumuli demonstrates: (i) the substantial contribution of the diffuse component to the total CRF, (ii) the well-defined spectral variations of total CRF in the visible spectral region, and (iii) the strong statistical relationship between spectral (500 nm) and shortwave broadband values of total CRF. Our results suggest that the framework based on the visible narrowband fluxes can provide important radiative quantities for rigorous evaluation of radiative transfer parameterizations and also can be applied for estimation of the shortwave broadband CRF.

  18. Surface Forcing from CH4 at the North Slope of Alaska and Southern Great Plains Sites

    NASA Astrophysics Data System (ADS)

    Collins, W.; Feldman, D.; Turner, D. D.

    2014-12-01

    Recent increases in atmospheric CH4 have been spatially heterogeneous as indicated by in situ flask measurements and space-borne remote-sensing retrievals from the AIRS instrument, potentially leading to increased radiative forcing. We present detailed, specialized measurements at the DOE ARM North Slope of Alaska (NSA) and Southern Great Plains (SGP) sites to derive the time-series of both CH4 atmospheric concentrations and associated radiative implications at highly-contrasting natural and anthropogenic sources. Using a combination of spectroscopic measurements, in situ observations, and ancillary data for the atmospheric thermodynamic state from radiosondes and cloud-clearing from active sounders, we can separate out the contribution of CH4 to clear-sky downwelling radiance spectra and its infrared surface forcing. The time-series indicates year-to-year variation in shoulder season increases of CH4 concentration and forcing at NSA and large signals from anthropogenic activity at SGP.

  19. Chemical force microscopy study of adhesive properties of polypropylene films: influence of surface polarity and medium.

    PubMed

    Gourianova, Svetlana; Willenbacher, Norbert; Kutschera, Michael

    2005-06-01

    The adhesive properties of untreated and corona treated polypropylene (PP) films were studied in polar (water) and nonpolar (hexadecane) liquid medium by using chemical force microscopy. A gold-coated colloidal probe was sequentially modified with self-assembled monolayers (SAMs) of omega-functionalized alkanethiols. The same colloidal probe was used for the force measurements, to avoid influence of determination accuracy of the spring constant and sphere radius on the obtained results. The thermodynamic work of adhesion was determined from the measured pull-off force using the Johnson-Kendall-Roberts (JKR) adhesion theory. Rabinovich's model was applied for the consideration of an effect of roughness when calculating the work of adhesion. It was found that the work of adhesion correlates with the hydrophilic properties of the PP surface and SAMs as well as with the polarity of the liquid medium. The observed correlations agree well with those found for the work of adhesion calculated from contact angle measurement.

  20. Leukocyte-endothelium interaction: measurement by laser tweezers force spectroscopy.

    PubMed

    Wang, Shi-Kang; Chiu, Jeng-Jiann; Lee, Ming-Rou; Chou, Shih-Chin; Chen, Li-Jing; Hwang, Ned H C

    2006-09-01

    Leukocyte adhesion to vascular endothelium is an initial step of many inflammatory diseases. Although the atomic force microscopy (AFM) measurements of leukocyte-endothelial interaction have been recently introduced. with cell adhesion force unbinding curves (CAFUC). We obtained pico-Newton force in the initial interaction between a single living THP-1 cell and HUVEC monolayer using a custom-built laser tweezers (LT) system. The measured quantities included the non-linear force-distance relationship, and the effect of yielding in cell detachment. It is possible to introduce a time scale into the LT cell-detachment experiments for further exploration and more detailed information on the viscoelastic properties of living cells. PMID:16960761

  1. Suture Forces in Undersized Mitral Annuloplasty: Novel Device and Measurements

    PubMed Central

    Siefert, Andrew; Pierce, Eric; Lee, Madonna; Jensen, Morten; Aoki, Chikashi; Takebayashi, Satoshi; Gorman, Robert; Gorman, Joseph; Yoganathan, Ajit

    2014-01-01

    Purpose: Demonstrate the first use of a novel technology for quantifying suture forces on annuloplasty rings to better understand the mechanisms of ring dehiscence. Description: Force transducers were developed, attached to a size 24 Physio™ ring, and implanted in the mitral annulus of an ovine animal. Ring suture forces were measured after implantation and for cardiac cycles reaching peak left ventricular pressures (LVP) of 100, 125, and 150 mmHg. Evaluation: After implanting the undersized ring to the flaccid annulus, the mean suture force was 2.0±0.6 N. During cyclic contraction, anterior ring suture forces were greater than posterior ring suture forces at peak LVPs of 100 mmHg (4.9±2.0 N vs. 2.1±1.1 N), 125 mmHg (5.4±2.3 N vs. 2.3±1.2 N), and 150 mmHg (5.7±2.4 N vs. 2.4±1.1 N). The largest force was 7.4 N at 150 mmHg. Conclusions: Preliminary results demonstrate trends in annuloplasty suture forces and their variation with location and LVP. Future studies will significantly contribute to clinical knowledge by elucidating the mechanisms of ring dehiscence while improving annuloplasty ring design and surgical repair techniques. PMID:24996707

  2. Hydrodynamic effects in fast AFM single-molecule force measurements.

    PubMed

    Janovjak, Harald; Struckmeier, Jens; Müller, Daniel J

    2005-02-01

    Atomic force microscopy (AFM) allows the critical forces that unfold single proteins and rupture individual receptor-ligand bonds to be measured. To derive the shape of the energy landscape, the dynamic strength of the system is probed at different force loading rates. This is usually achieved by varying the pulling speed between a few nm/s and a few microm/s, although for a more complete investigation of the kinetic properties higher speeds are desirable. Above 10 microm/s, the hydrodynamic drag force acting on the AFM cantilever reaches the same order of magnitude as the molecular forces. This has limited the maximum pulling speed in AFM single-molecule force spectroscopy experiments. Here, we present an approach for considering these hydrodynamic effects, thereby allowing a correct evaluation of AFM force measurements recorded over an extended range of pulling speeds (and thus loading rates). To support and illustrate our theoretical considerations, we experimentally evaluated the mechanical unfolding of a multi-domain protein recorded at 30 microm/s pulling speed. PMID:15257425

  3. Adhesion forces measured at the level of a terminal plate of the fly's seta.

    PubMed Central

    Langer, Mattias G.; Ruppersberg, J. Peter; Gorb, Stanislav

    2004-01-01

    The attachment pads of fly legs are covered with setae, each ending in small terminal plates coated with secretory fluid. A cluster of these terminal plates contacting a substrate surface generates strong attractive forces that hold the insect on smooth surfaces. Previous research assumed that cohesive forces and molecular adhesion were involved in the fly attachment mechanism. The main elements that contribute to the overall attachment force, however, remained unknown. Multiple local force-volume measurements were performed on individual terminal plates by using atomic force microscopy. It was shown that the geometry of a single terminal plate had a higher border and considerably lower centre. Local adhesion was approximately twice as strong in the centre of the plate as on its border. Adhesion of fly footprints on a glass surface, recorded within 20 min after preparation, was similar to adhesion in the centre of a single attachment pad. Adhesion strongly decreased with decreasing volume of footprint fluid, indicating that the layer of pad secretion covering the terminal plates is crucial for the generation of a strong attractive force. Our data provide the first direct evidence that, in addition to Van der Waals and Coulomb forces, attractive capillary forces, mediated by pad secretion, are a critical factor in the fly's attachment mechanism. PMID:15539345

  4. Sensitivity of Force Specifications to the Errors in Measuring the Interface Force

    NASA Technical Reports Server (NTRS)

    Worth, Daniel

    2000-01-01

    Force-Limited Random Vibration Testing has been applied in the last several years at the NASA Goddard Space Flight Center (GSFC) and other NASA centers for various programs at the instrument and spacecraft level. Different techniques have been developed over the last few decades to estimate the dynamic forces that the test article under consideration will encounter in the flight environment. Some of these techniques are described in the handbook, NASA-HDBK-7004, and the monograph, NASA-RP-1403. This paper will show the effects of some measurement and calibration errors in force gauges. In some cases, the notches in the acceleration spectrum when a random vibration test is performed with measurement errors are the same as the notches produced during a test that has no measurement errors. The paper will also present the results Of tests that were used to validate this effect. Knowing the effect of measurement errors can allow tests to continue after force gauge failures or allow dummy gauges to be used in places that are inaccessible to a force gage.

  5. Direct measurements of controlled aerodynamic forces on a wire-suspended axisymmetric body

    NASA Astrophysics Data System (ADS)

    Abramson, Philip; Vukasinovic, Bojan; Glezer, Ari

    2011-06-01

    A novel in-line miniature force transducer is developed for direct measurements of the net aerodynamic forces and moments on a bluff body. The force transducers are integrated into each of the eight mounting wires that are utilized for suspension of an axisymmetric model in a wind tunnel having minimal wake interference. The aerodynamic forces and moments on the model are altered by induced active local attachment of the separated base flow. Fluidic control is effected by an array of four integrated aft-facing synthetic jet actuators that emanate from narrow, azimuthally segmented slots, equally distributed around the perimeter of the circular tail end. The jet orifices are embedded within a small backward-facing step that extends into a Coanda surface. The altered flow dynamics associated with both quasi-steady and transitory asymmetric activation of the flow control effect is characterized by direct force and PIV measurements.

  6. Field measurement of basal forces generated by erosive debris flows

    USGS Publications Warehouse

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  7. Spiral Defects in Motility Assays: A Measure of Motor Protein Force

    NASA Astrophysics Data System (ADS)

    Bourdieu, L.; Duke, T.; Elowitz, M. B.; Winkelmann, D. A.; Leibler, S.; Libchaber, A.

    1995-07-01

    In a commonly used motility assay, cytoskeletal filaments are observed as they glide over a surface coated with motor proteins. Defects in the motion frequently interrupt the flow of filaments. Examination of one such defect, in which a filament adopts a spiral form and rotates about a fixed point, provides a simple measure of the force exerted by the motor proteins. We demonstrate the universality of this approach by estimating the elementary forces of both myosin and kinesin.

  8. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.

    PubMed

    Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David

    2015-02-11

    Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.

  9. Note: Electrical resolution during conductive atomic force microscopy measurements under different environmental conditions and contact forces

    SciTech Connect

    Lanza, M.; Porti, M.; Nafria, M.; Aymerich, X.; Whittaker, E.; Hamilton, B.

    2010-10-15

    Conductive atomic force microscopy experiments on gate dielectrics in air, nitrogen, and UHV have been compared to evaluate the impact of the environment on topography and electrical measurements. In current images, an increase of the lateral resolution and a reduction of the conductivity were observed in N{sub 2} and, especially, in UHV (where current depends also on the contact force). Both effects were related to the reduction/elimination of the water layer between the tip and the sample in N{sub 2}/UHV. Therefore, since current measurements are very sensitive to environmental conditions, these factors must be taken into consideration when comparisons between several experiments are performed.

  10. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    SciTech Connect

    Pierce, Eric M

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  11. Getting Physical with Your Chemistry: Mechanically Investigating Local Structure and Properties of Surfaces with the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Heinz, William F.; Hoh, Jan H.

    2005-01-01

    Atomic force microscope (AFM) investigates mechanically the chemical properties of individual molecules, surfaces, and materials using suitably designed probes. The current state of the art of AFM in terms of imaging, force measurement, and sample manipulation and its application to physical chemistry is discussed.

  12. A Scheme for Solving the Plane-Plane Challenge in Force Measurements at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Siria, Alessandro; Huant, Serge; Auvert, Geoffroy; Comin, Fabio; Chevrier, Joel

    2010-08-01

    Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB) and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a “gedanken” surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.

  13. A scheme for solving the plane-plane challenge in force measurements at the nanoscale.

    PubMed

    Siria, Alessandro; Huant, Serge; Auvert, Geoffroy; Comin, Fabio; Chevrier, Joel

    2010-05-19

    Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB) and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a "gedanken" surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.

  14. Numerical study of the hydrodynamic drag force in atomic force microscopy measurements undertaken in fluids.

    PubMed

    Méndez-Méndez, J V; Alonso-Rasgado, M T; Faria, E Correia; Flores-Johnson, E A; Snook, R D

    2014-11-01

    When atomic force microscopy (AFM) is employed for in vivo study of immersed biological samples, the fluid medium presents additional complexities, not least of which is the hydrodynamic drag force due to viscous friction of the cantilever with the liquid. This force should be considered when interpreting experimental results and any calculated material properties. In this paper, a numerical model is presented to study the influence of the drag force on experimental data obtained from AFM measurements using computational fluid dynamics (CFD) simulation. The model provides quantification of the drag force in AFM measurements of soft specimens in fluids. The numerical predictions were compared with experimental data obtained using AFM with a V-shaped cantilever fitted with a pyramidal tip. Tip velocities ranging from 1.05 to 105 μm/s were employed in water, polyethylene glycol and glycerol with the platform approaching from a distance of 6000 nm. The model was also compared with an existing analytical model. Good agreement was observed between numerical results, experiments and analytical predictions. Accurate predictions were obtained without the need for extrapolation of experimental data. In addition, the model can be employed over the range of tip geometries and velocities typically utilized in AFM measurements.

  15. Atomic Force Microscopy and Infrared Spectroscopy Studies of Hydrogen Baked Si Surfaces

    NASA Astrophysics Data System (ADS)

    Vatel, Olivier; Verhaverbeke, Steven; Bender, Hugo; Caymax, Matty; Chollet, Frederic; Vermeire, Bert; Mertens, Paul; André, Elie; Heyns, Marc

    1993-10-01

    A H2 pre-bake at temperatures over 1050°C is typically used prior to Si epitaxial growth. In this study surface microroughness probed with tapping mode Atomic Force Microscopy (AFM) is correlated with multiple internal reflection infrared spectroscopy measurements for the different steps involved before epitaxy. A novel sample preparation technique was used for the multiple internal reflection set-up. A strong correlation was found between the presence of surface terraces and the IR double monohydride peaks for H2 annealed Si surfaces. We therefore put forward that the terraces are due to the H2 pre-bake step. These terraces remain after epitaxial deposition.

  16. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory

    SciTech Connect

    Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal; Popescu, Mihail N.

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  17. Forces Applied by Cilia Measured on Explants from Mucociliary Tissue

    PubMed Central

    Teff, Zvi; Priel, Zvi; Gheber, Levi A.

    2007-01-01

    Forces applied by intact mucus-propelling cilia were measured for the first time that we know of using a combined atomic force microscopy (AFM) and electrooptic system. The AFM probe was dipped into a field of beating cilia and its time-dependent deflection was recorded as it was struck by the cilia while the electrooptic system simultaneously and colocally measured the frequency to ensure that no perturbation was induced by the AFM probe. Using cilia from frog esophagus, we measured forces of ∼0.21 nN per cilium during the effective stroke. This value, together with the known internal structure of these cilia, leads to the conclusion that most dynein arms along the length of the axoneme contribute to the effective stroke of these cilia. PMID:17142280

  18. Direct thrust force measurement of pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Wahid, Mazlan Abdul; Faiz, M. Z. Ahmad; Saqr, Khalid M.

    2012-06-01

    In this paper we present the result of High-Speed Reacting Flow Laboratory (HiREF) pulse detonation engine (PDE) experimental study on direct thrust measurement. The thrust force generated by the repetitive detonation from a 50 mm inner diameter and 600 mm length tube was directly measured using load cell. Shchelkin spiral was used as an accelerator for the Deflagration to Detonation Transition (DDT) phenomenon. Propane-oxygen at stoichiometric condition was used as the combustible fuel-air mixture for the PDE. The PDE was operated at the operation frequency of 3Hz during the test. The amount of thrust force that was measured during the test reaching up to 70N. These values of thrust force were found to be fluctuating and its combustion phenomenon has been analyzed and discussed.

  19. Seasonal slope surface deformation measured with TLS

    NASA Astrophysics Data System (ADS)

    Fan, L.; Smethurst, J.; Powrie, W.; Sellaiya, A.

    2014-03-01

    In temperate European climates, soil water removal due to vegetation transpiration peaks in summer and soil rewetting from higher levels of precipitation occurs in winter. In clays of high plasticity, the seasonal cycles of drying and wetting cause the soil to experience a volumetric change, resulting in seasonal shrinking and swelling. For a clay slope exhibiting volume change, such behaviour can lead to excessive deformation and could contribute to strain-softening and progressive slope failure. This can in turn cause traffic disruption and loss of life if roads and railways are founded on or surrounded by such slopes. This paper discusses the driving forces of seasonal surface movement, in particular the role of vegetation, and presents the use of Terrestrial Laser Scanning (TLS) to measure the surface movement of a lightly vegetated London Clay slope near Newbury, UK. Two TLS scans were carried out in early and late summer respectively, representing relative wet and dry conditions of the slope. Continuous field measurements of soil water content in upper layers of the slope were obtained from TDR ThetaProbes already installed at the site. The water content data are used to support the results obtained from TLS by indicating the likely volumetric change in the soil due to loss of water.

  20. Bacterial turgor pressure can be measured by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Arnoldi, Markus; Fritz, Monika; Bäuerlein, Edmund; Radmacher, Manfred; Sackmann, Erich; Boulbitch, Alexei

    2000-07-01

    We report a study of the deformability of a bacterial wall with an atomic force microscope (AFM). A theoretical expression is derived for the force exerted by the wall on the cantilever as a function of the depths of indentation generated by the AFM tip. Evidence is provided that this reaction force is a measure for the turgor pressure of the bacterium. The method was applied to magnetotactic bacteria of the species Magnetospirillum gryphiswaldense. Force curves were generated on the substrate and on the bacteria while scanning laterally. With the mechanical properties so gained we obtained the spring constant of the bacterium as a whole. Making use of our theoretical results we determined the turgor pressure to be in the range of 85 to 150 kPa.

  1. Measurement of transmitted blast force-time histories

    SciTech Connect

    Dr. Benjamin Langhorst; Corey Cook; James Schondel; Dr. Henry S. Chu

    2010-03-01

    A simple, reliable, and cost effective method is presented for the measurement of transmitted force behind a panel subjected to blast loads. Sensors were designed for a specific blast environment and successfully used to measure transmitted blast force behind solid polyethylene plates of thickness 0.125 and 0.25 inches. Experimental data was collected and examined to reveal consistent differences in the response of different thicknesses of otherwise identical panels. Finally, recommendations are made for future design, construction and use of similar sensors.

  2. A novel transparent dielectric elastomer sensor for compressive force measurements

    NASA Astrophysics Data System (ADS)

    Liang, Yiming; Wan, Bile; Li, Guorui; Xie, Yuhan; Li, Tiefeng

    2016-04-01

    Dielectric elastomer sensors show great potential for wearable electronics and mechatronic applications. However, these sensors have some deficiencies in their appearance and low sensitivity to compressive force measurements. We demonstrate a novel dielectric elastomer sensor enabled by ionic liquid that has fully transparent appearance, low resistivity and the capacity of actuation at large-scale frequencies. We investigate the basic mechanical behaviors of the sensor experimentally. It is noted that the sensor has a remarkable sensitivity to measure compressive force, which is higher than the existing stacked dielectric elastomer sensors.

  3. Drag force measurement: A means for determining hysteresis loss

    SciTech Connect

    Garshelis, Ivan J.; Tollens, Stijn P. L.; Kari, Ryan J.; Vandenbossche, Lode P.; Dupre, Luc R.

    2006-04-15

    A method for determining hysteresis losses in thin strips of soft magnetic materials is described. It is based on the measurement of a drag force which arises with the movement of the sample through the strong field existing in the space near a permanent magnet. Not associated with macro eddy currents, the force is shown to originate from the magnetic hysteresis of the material, having, in fact, an amplitude equal to the product of hysteresis loss and the area of the sample cross section. Correlation within 18% with the measurements made by conventional methods is shown for a wide range of experimental materials.

  4. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    PubMed Central

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of −3.0 ± 0.4 nN and −330 ± 43 aJ (10−18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  5. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    NASA Astrophysics Data System (ADS)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-11-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10-18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  6. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles.

    PubMed

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B; Chen, Wenli

    2015-11-20

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10(-18) J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  7. Cellular force measurements using single-spaced polymeric microstructures: isolating cells from base substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Chew Lim, Chee; Sawyer, Douglas B.; Liao, Ronglih; Zhang, Xin

    2005-09-01

    Mechanical force is one of the most important parameters in cellular physiological behavior. To quantify the cellular force locally and more precisely, soft material probes, such as bulk polymeric surfaces or raised individual polymeric structures, have been developed which are deformable by the cell. The extent of deformation and the elastic properties of the probes allow for calculation of the mechanical forces exerted by the cell. Bulk polymeric surfaces have the disadvantage of requiring computational intensive calculations due to the continuous distortion of a large area, and investigators have attempted to address this problem by using raised polymeric structures to simplify the derivation of cellular mechanical force. These studies, however, have ignored the possibility of formation of local adhesions of the cell to the underlying base substrate, which could result in inaccurate cellular force measurements. Clearly, there is a need to develop polymeric structures that can efficiently isolate the cells from the underlying base substrate, in order to eliminate the continuous distortion problem. In this paper, we demonstrate the measurement of cellular force in isolated cardiac myocytes using single-spaced polymeric microstructures. Each structure is 2 µm in diameter and single-spaced packed. This geometry of the structures successfully isolates the cells from the underlying substrate. Displacement of the structures was measured in areas underneath the attached cell and at areas in close proximity to the cell. The results show that the individual structures underneath the cell were significantly displaced whereas no substantial strain in the underlying base substrate was detected. The mechanical force of the cell was derived from the displacements of individual structures upon multiplication with the locally determined spring constant. The force distribution reveals a parallel alignment as well as a periodic motion of the contractile units of the myocyte. The

  8. General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces.

    PubMed

    Antonini, C; Carmona, F J; Pierce, E; Marengo, M; Amirfazli, A

    2009-06-01

    The shortcomings of the current formulation for calculating the adhesion force for drops and bubbles with noncircular contact lines are discussed. A general formulation to evaluate the adhesion force due to surface forces is presented. Also, a novel methodology, that is, IBAFA, image based adhesion force analysis, was developed to allow implementation of the general formulation. IBAFA is based on the use of multiple profile images of a drop. The images are analyzed (1) to accurately reconstruct the contact line shape, which is analytically represented by a Fourier cosine series, and (2) to measure contact angles at multiple locations along the contact line and determine the contact angle distribution based on a linear piecewise interpolation routine. The contact line shape reconstruction procedure was validated with both actual experiments and simulated experiments. The procedure for the evaluation of the adhesion force was tested using simulated experiments with synthetic drops of known shapes. A comparison with current methods showed that simplifying assumptions (e.g., elliptical contact line or linear contact angle distribution) used in these methods result in errors up to 76% in the estimated adhesion force. However, the drop adhesion force evaluated using IBAFA results in small errors on the order of 1%.

  9. Asymmetric electrostatic and hydrophobic-hydrophilic interaction forces between mica surfaces and silicone polymer thin films.

    PubMed

    Donaldson, Stephen H; Das, Saurabh; Gebbie, Matthew A; Rapp, Michael; Jones, Louis C; Roiter, Yuri; Koenig, Peter H; Gizaw, Yonas; Israelachvili, Jacob N

    2013-11-26

    We have synthesized model hydrophobic silicone thin films on gold surfaces by a two-step covalent grafting procedure. An amino-functionalized gold surface reacts with monoepoxy-terminated polydimethylsiloxane (PDMS) via a click reaction, resulting in a covalently attached nanoscale thin film of PDMS, and the click chemistry synthesis route provides great selectivity, reproducibility, and stability in the resulting model hydrophobic silicone thin films. The asymmetric interaction forces between the PDMS thin films and mica surfaces were measured with the surface forces apparatus in aqueous sodium chloride solutions. At an acidic pH of 3, attractive interactions are measured, resulting in instabilities during both approach (jump-in) and separation (jump-out from adhesive contact). Quantitative analysis of the results indicates that the Derjaguin-Landau-Verwey-Overbeek theory alone, i.e., the combination of electrostatic repulsion and van der Waals attraction, cannot fully describe the measured forces and that the additional measured adhesion is likely due to hydrophobic interactions. The surface interactions are highly pH-dependent, and a basic pH of 10 results in fully repulsive interactions at all distances, due to repulsive electrostatic and steric-hydration interactions, indicating that the PDMS is negatively charged at high pH. We describe an interaction potential with a parameter, known as the Hydra parameter, that can account for the extra attraction (low pH) due to hydrophobicity as well as the extra repulsion (high pH) due to hydrophilic (steric-hydration) interactions. The interaction potential is general and provides a quantitative measure of interfacial hydrophobicity/hydrophilicity for any set of interacting surfaces in aqueous solution.

  10. Aerosol Forcing During INDOEX and ACE-Asia as Determined From Aircraft and Grou nd Measurements

    NASA Astrophysics Data System (ADS)

    Marsden, D. C.; Valero, F. P.; Bush, B. C.; Pope, S. K.; Leitner, A. S.

    2002-12-01

    A suite of radiometers was flown on the NCAR C-130 aircraft throughout the INDOEX and ACE-Asia experiments to measure broadband and spectral irradiances. Identical instruments were placed in the zenith and nadir positions, allowing net flux and optical depth to be determined. The radiative forcing efficiency (aerosol forcing per unit optical depth) was determined below the aerosol layer, i.e. at an altitude of about 40 meters. This was measured in the spectral range s 220 to 3910 nm (total solar forcing) and 680 to 3300 nm (near infrared) and in seven spectral channels covering contiguously the visible range from 400 to 700 nm. Surface measurements of solar insolation as well as aerosol column optical depth were made at Kaashidoo, Maldives (INDOEX) and at Cheju Island, South Korea (ACE-Asia). These measurements, in conjunction with aerosol-free model simulations, are used to determine the radiative forcing at the surface for the visible, near-infrared, and total solar spectral bandpasses. During INDOEX the diurnally averaged broadband surface aerosol radiative forcing was -72.2+/- 5.5 W m-2 per unit optical depth at 500 nm with roughly half being contributed from the visible (-38.5+/- 4.0 W m-2). The corresponding results during ACE-Asia were: broadband -73.1+/- 9.7 W m-2, visible -41.7+/- 4.7 W m-2, and near infrared -36.3+/- -5.6 W m-2.

  11. Surface forces and protein adsorption on dextran- and polyethylene glycol-modified polydimethylsiloxane.

    PubMed

    Farrell, Megan; Beaudoin, Stephen

    2010-12-01

    Dextran and polyethylene glycol (PEG) are often covalently bound to the surface of polydimethylsiloxane (PDMS) for the purpose of modifying its hydrophilicity and biocompatibility. In this work, the effects of the dextran and PEG on the morphology, wetting, and surface charge of the resulting surfaces were quantified and correlated with changes in the amount of fibrinogen and albumin adsorbed from aqueous solution. PDMS films were functionalized in a microwave oxygen plasma to create surface hydroxyl groups that were subsequently aminated by incubation in a (3-aminopropyl)trimethoxysilane (APTES) solution. Oxidized dextran and PEG-aldehyde were linked to the surface amines via reductive amination. This process resulted in low surface coverage of immobilized PEG in the end-on conformation and a more uniform and dense distribution of side-on immobilized dextran. The immobilized dextran reduced the contact angle of the PDMS film from 109° to 80° and neutralized the zeta potential over the pH range from 3 to 11. An atomic force microscope was used to measure the interaction force between the modified PDMS and a model hydrophobic surface (polystyrene latex) and a model hydrophilic surface (silica) in aqueous solution to show that van der Waals and hydrophobic attractive forces are the dominant forces for protein adsorption in this system. The PEG- and dextran-modified PDMS were exposed to BSA and fibrinogen to test their resistance to protein adsorption. The coatings were ineffective at reducing the adsorption of either molecule, and the dextran-modification of the PDMS caused more BSA to adsorb than in the case of the unmodified PDMS. PMID:20801620

  12. A laboratory apparatus to measure clast-bed contact forces

    NASA Astrophysics Data System (ADS)

    Cohen, D.

    2007-12-01

    Glacier dynamics, sediment transport, and erosion are controlled in part by processes occurring at the interface between basal ice and bedrock. One critical parameter is the contact force between a clast and the bedrock. This force affects many processes such as basal friction which regulates sliding speed, slip resistance which influences basal shear stress and may cause micro-seismic events associated with slip instabilities, abrasion which controls rates of erosion, landscape evolution, and production of sediments. Despite field and laboratory evidences indicating that contact forces may be up to one order of magnitude higher than estimated from leading theories, no studies have yet measured with precision the magnitude of contact forces and how contact forces vary as a function of key glaciological variables such as basal melt rate and effective pressure. An apparatus was designed to make two independent measurements: (1) the contact force between a clast and a hard bed as a function of melt rate and effective pressure; (2) the drag force on an identical clast away from the bed as a function of the ice speed. The contact force differs from the drag force because of the presence of the bed which modifies the ice flow field. Measurement (2) is necessary to estimate the rheological properties of the ice and to quantify wall- (bed) effects on the drag force. The apparatus consists of a hydraulic press that pressurizes an ice cylinder, 24~cm high and 20~cm in diameter, to 1.0 - 1.5~MPa. The ice cylinder is contained inside a polycarbonate vessel. Above and below the ice cylinder are three disks: an aluminum disk sandwiched between two Delrin disks. The aluminum disks are hollow and used to circulate a fluid at a controlled temperature. The Delrin disks are used to isolate the ice from the cold room and to control the flow of heat to the ice block. The ice is kept at the melting temperature by circulating a fluid in channels inside the polycarbonate vessel and in the

  13. The measurement of surface gravity.

    PubMed

    Crossley, David; Hinderer, Jacques; Riccardi, Umberto

    2013-04-01

    This review covers basic theory and techniques behind the use of ground-based gravimetry at the Earth's surface. The orientation is toward modern instrumentation, data processing and interpretation for observing surface, land-based, time-variable changes to the geopotential. The instrumentation side is covered in some detail, with specifications and performance of the most widely used models of the three main types: the absolute gravimeters (FG5, A10 from Micro-g LaCoste), superconducting gravimeters (OSG, iGrav from GWR instruments), and the new generation of spring instruments (Micro-g LaCoste gPhone, Scintrex CG5 and Burris ZLS). A wide range of applications is covered, with selected examples from tides and ocean loading, atmospheric effects on gravity, local and global hydrology, seismology and normal modes, long period and tectonics, volcanology, exploration gravimetry, and some examples of gravimetry connected to fundamental physics. We show that there are only a modest number of very large signals, i.e. hundreds of µGal (10(-8) m s(-2)), that are easy to see with all gravimeters (e.g. tides, volcanic eruptions, large earthquakes, seasonal hydrology). The majority of signals of interest are in the range 0.1-5.0 µGal and occur at a wide range of time scales (minutes to years) and spatial extent (a few meters to global). Here the competing effects require a careful combination of different gravimeter types and measurement strategies to efficiently characterize and distinguish the signals. Gravimeters are sophisticated instruments, with substantial up-front costs, and they place demands on the operators to maximize the results. Nevertheless their performance characteristics such as drift and precision have improved dramatically in recent years, and their data recording ability and ruggedness have seen similar advances. Many subtle signals are now routinely connected with known geophysical effects such as coseismic earthquake displacements, post

  14. The measurement of surface gravity.

    PubMed

    Crossley, David; Hinderer, Jacques; Riccardi, Umberto

    2013-04-01

    This review covers basic theory and techniques behind the use of ground-based gravimetry at the Earth's surface. The orientation is toward modern instrumentation, data processing and interpretation for observing surface, land-based, time-variable changes to the geopotential. The instrumentation side is covered in some detail, with specifications and performance of the most widely used models of the three main types: the absolute gravimeters (FG5, A10 from Micro-g LaCoste), superconducting gravimeters (OSG, iGrav from GWR instruments), and the new generation of spring instruments (Micro-g LaCoste gPhone, Scintrex CG5 and Burris ZLS). A wide range of applications is covered, with selected examples from tides and ocean loading, atmospheric effects on gravity, local and global hydrology, seismology and normal modes, long period and tectonics, volcanology, exploration gravimetry, and some examples of gravimetry connected to fundamental physics. We show that there are only a modest number of very large signals, i.e. hundreds of µGal (10(-8) m s(-2)), that are easy to see with all gravimeters (e.g. tides, volcanic eruptions, large earthquakes, seasonal hydrology). The majority of signals of interest are in the range 0.1-5.0 µGal and occur at a wide range of time scales (minutes to years) and spatial extent (a few meters to global). Here the competing effects require a careful combination of different gravimeter types and measurement strategies to efficiently characterize and distinguish the signals. Gravimeters are sophisticated instruments, with substantial up-front costs, and they place demands on the operators to maximize the results. Nevertheless their performance characteristics such as drift and precision have improved dramatically in recent years, and their data recording ability and ruggedness have seen similar advances. Many subtle signals are now routinely connected with known geophysical effects such as coseismic earthquake displacements, post

  15. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy.

    PubMed

    Razvag, Yair; Gutkin, Vitaly; Reches, Meital

    2013-08-13

    This article describes single-molecule force spectroscopy measurements of the interaction between individual amino acid residues and inorganic surfaces in an aqueous solution. In each measurement, there is an amino acid residue, lysine, glutamate, phenylalanine, leucine, or glutamine, and each represents a class of amino acids (positively or negatively charged, aromatic, nonpolar, and polar). Force-distance curves measured the interaction of the individual amino acid bound to a silicon atomic force microscope (AFM) tip with a silcon substrate, cut from a single-crystal wafer, or mica. Using this method, we were able to measure low adhesion forces (below 300 pN) and could clearly determine the strength of interactions between the individual amino acid residues and the inorganic substrate. In addition, we observed how changes in the pH and ionic strength of the solution affected the adsorption of the residues to the substrates. Our results pinpoint the important role of hydrophobic interactions among the amino acids and the substrate, where hydrophobic phenylalanine exhibited the strongest adhesion to a silicon substrate. Additionally, electrostatic interactions also contributed to the adsorption of amino acid residues to inorganic substrates. A change in the pH or ionic strength values of the buffer altered the strength of interactions among the amino acids and the substrate. We concluded that the interplay between the hydrophobic forces and electrostatic interactions will determine the strength of adsorption among the amino acids and the surface. Overall, these results contribute to our understanding of the interaction at the organic-inorganic interface. These results may have implications for our perception of the specificity of peptide binding to inorganic surfaces. Consequently, it would possibly lead to a better design of composite materials and devices.

  16. Precise control of surface electrostatic forces on polymer brush layers with opposite charges for resistance to protein adsorption.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2016-10-01

    Various molecular interaction forces are generated during protein adsorption process on material surfaces. Thus, it is necessary to control them to suppress protein adsorption and the subsequent cell and tissue responses. A series of binary copolymer brush layers were prepared via surface-initiated atom transfer radical polymerization, by mixing the cationic monomer unit and anionic monomer unit randomly in various ratios. Surface characterization revealed that the constructed copolymer brush layers exhibited an uniform super-hydrophilic nature and different surface potentials. The strength of the electrostatic interaction forces operating on these mixed-charge copolymer brush surfaces was evaluated quantitatively using force-versus-distance (f-d) curve measurements by atomic force microscopy (AFM) and probes modified by negatively charged carboxyl groups or positively charged amino groups. The electrostatic interaction forces were determined based on the charge ratios of the copolymer brush layers. Notably, the surface containing equivalent cationic/anionic monomer units hardly interacted with both the charged groups. Furthermore, the protein adsorption force and the protein adsorption mass on these surfaces were examined by AFM f-d curve measurement and surface plasmon resonance measurement, respectively. To clarify the influence of the electrostatic interaction on the protein adsorption behavior on the surface, three kinds of proteins having negative, positive, and relatively neutral net charges under physiological conditions were used in this study. We quantitatively demonstrated that the amount of adsorbed proteins on the surfaces would have a strong correlation with the strength of surface-protein interaction forces, and that the strength of surface-protein interaction forces would be determined from the combination between the properties of the electrostatic interaction forces on the surfaces and the charge properties of the proteins. Especially, the

  17. Saharan Dust Aerosol Radiative Forcing Measured from Space.

    NASA Astrophysics Data System (ADS)

    Li, F.; Vogelmann, A. M.; Ramanathan, V.

    2004-07-01

    This study uses data collected from the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments to determine Saharan dust broadband shortwave aerosol radiative forcing over the Atlantic Ocean near the African coast (15° 25°N, 45° 15°W). The clear-sky aerosol forcing is derived directly from these data, without requiring detailed information about the aerosol properties that are not routinely observed such as chemical composition, microphysical properties, and their height variations. To determine the diurnally averaged Saharan dust radiative forcing efficiency (i.e., broadband shortwave forcing per unit optical depth at 550 nm, W m-2 τ-1a), two extreme seasons are juxtaposed: the high-dust months [June August (JJA)] and the low-dust months [November January (NDJ)]. It is found that the top-of-atmosphere (TOA) diurnal mean forcing efficiency is -35 ± 3 W m-2 τ-1a for JJA, and -26 ± 3 W m-2 τ-1a for NDJ. These efficiencies can be fit by reducing the spectrally varying aerosol single-scattering albedo such that its value at 550 nm is reduced from 0.95 ± 0.04 for JJA to about 0.86 ± 0.04 for NDJ. The lower value for the low-dust months might be influenced by biomass-burning aerosols that were transported into the study region from equatorial Africa. Although the high-dust season has a greater (absolute value of the) TOA forcing efficiency, the low-dust season may have a greater surface forcing efficiency. Extrapolations based on model calculations suggest the surface forcing efficiencies to be about -65 W m-2 τ-1a for the high-dust season versus -81 W m-2 τ-1a for the low-dust season. These observations indicate that the aerosol character within a region can be readily modified, even immediately adjacent to a powerful source region such as the Sahara. This study provides important observational constraints for models of dust radiative forcing.


  18. Study of flow in a smectic liquid crystal in the X-ray Surface Forces Apparatus

    SciTech Connect

    Idziak, S.H.J.; Koltover, I.; Israelachvilli, J.N.; Safinya, C.R.; Liang, K.S.

    1995-03-01

    We describe the newly invented X-ray Surface Forces Apparatus (X-SFA) which allows the simultaneous measurement of forces and collective structures of confined complex fluids under static and flow conditions. The structure of the smectic liquid crystal 8CB (4-cyano-4{prime}-octylbiphenyl) confined between two mica surfaces with separation ranging from 4000 to 20,000 {angstrom} was measured. At small gaps and no shear, the smectic layers take on distinct stable orientations, including the bulk forbidden {open_quotes}b{close_quotes} orientation, which persist under low shear ({dot {gamma}} {<=} 30 s{sup -1}). However, at higher shear rates ({dot {gamma}} = 360 s{sup -1}), the shear acts to dramatically order and align the smectic layers into a single {open_quotes}a{close_quotes} orientation.

  19. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    SciTech Connect

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari; Kawamura, Ryuzo; Tamura, Masato; Matsui, Hirofumi; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Chikashi

    2014-08-15

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.

  20. Measuring and Understanding Forces on Atomic Length Scales with the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Cleveland, Jason Paul

    Most microscopes can be used with little understanding of how they work--much can be learned looking through a light microscope without ever knowing what a photon is or who Maxwell was--and the Atomic Force Microscope (AFM) is no exception. Many AFM images don't look much different from a mountainous landscape, and much is learned interpreting them as such; however, to really push a microscope to its limits means understanding the interactions creating the contrast in the picture. For a Scanning Electron Microscope, this means understanding how electrons interact with matter, for an AFM it means understanding forces. The focus of this thesis is understanding the forces acting (especially in liquids) between tip and sample in AFM and a better understanding the instrument itself. Chapters I, II and VI involve better characterizing and improving the most important part of the AFM, the tiny cantilever used to measure forces. Chapter I describes a solution to one of the most basic problems that must be solved before forces can be accurately measured--measuring the stiffness of these cantilevers. Many limitations in AFM are set by physical characteristics of the cantilever itself, such as resonance frequency, spring constant, and quality factor. If an external force can be applied to the cantilever, feedback can be used to improve these characteristics. Chapter II shows how to do this using a magnetically applied external force, which has the advantage of working in liquids. These physical characteristics also change drastically when the cantilever is immersed in fluid. The resonance frequency of common cantilevers drops by as much as a factor of six in going from air to water. Chapter VI studies these changes and shows how further miniaturization of cantilevers can improve imaging speeds and signal-to-noise ratio. Early in its career, the AFM was heralded as having atomic resolution, but as the field matured researchers realized that the contact area between tip and

  1. The Analog Atomic Force Microscope: Measuring, Modeling, and Graphing for Middle School

    ERIC Educational Resources Information Center

    Goss, Valerie; Brandt, Sharon; Lieberman, Marya

    2013-01-01

    using an analog atomic force microscope (A-AFM) made from a cardboard box and mailing tubes. Varying numbers of ping pong balls inside the tubes mimic atoms on a surface. Students use a dowel to make macroscale measurements similar to those of a nanoscale AFM tip as it…

  2. Measurement of impact force, simulation of fall and hip fracture.

    PubMed

    Gardner, T N; Simpson, A H; Booth, C; Sprukkelhorst, P; Evans, M; Kenwright, J; Evans, J G

    1998-01-01

    It has been shown that the incidence of hip fracture in the elderly may be influenced by the type of floor covering commonly used in homes for the elderly. This study describes the development of a method for modelling a fall during a hip fracture event, to examine the influence of different floors on impact force. An impact transducer is dropped in free fall through a smooth plastic tube. The impactor nose of the transducer models the curvature of the greater trochanter, and a steel spring is used to simulate the compliance of the skeletal structure. A weight, which corresponds to one-sixteenth of average body mass, compresses the spring and applies force to the impactor nose on striking the floor. The temporal variation in the force of impact with the floor is measured by the transducer to within 0.41 percent (SD = 0.63%, n = 10). Five common floor coverings were tested over a concrete floor slab (vinyl, loop carpet and pile carpet--both with and without underpad). ANOVA analysis showed that the differences between mean forces for each floor covering were highly significant (p > 0.001), with the thicker coverings producing 7 percent lower forces. The transducer may be used to examine the correlation between impact force and fracture incidence for a variety of different floors in homes for the elderly.

  3. Force Exertion Capacity Measurements in Haptic Virtual Environments

    ERIC Educational Resources Information Center

    Munih, Marko; Bardorfer, Ales; Ceru, Bojan; Bajd, Tadej; Zupan, Anton

    2010-01-01

    An objective test for evaluating functional status of the upper limbs (ULs) in patients with muscular distrophy (MD) is presented. The method allows for quantitative assessment of the UL functional state with an emphasis on force exertion capacity. The experimental measurement setup and the methodology for the assessment of maximal exertable force…

  4. Ultra-sensitive force measurement using optically levitated microspheres

    NASA Astrophysics Data System (ADS)

    Rider, Alexander; Moore, David; Gratta, Giorgio

    2015-04-01

    We have demonstrated a novel technique for measuring microscopic forces acting on optically levitated dielectric microspheres. The radiation field at the focus of a laser beam is used to levitate a microsphere in a harmonic trap where its displacement can be determined by the pattern of scattered light. Optical levitation isolates the microsphere from the surrounding environment at high vacuum, making thermal noise negligible. We have demonstrated a preliminary sensitivity of 5 ×10-17NHz - 1 / 2 for forces acting on 5 μm microspheres and expect to be able to improve this by several orders of magnitude once non-fundamental sources of noise are eliminated. The electric charge of a microsphere can be determined by applying an electric field and measuring the resulting force. We have demonstrated the ability to discharge the microspheres with single electron precision, which eliminates the most significant electrostatic backgrounds from force measurements. As a demonstration of this technique we have searched for the presence of unknown charged particles with charge > 5 ×10-5 e bound in our microspheres. Here we discuss the apparatus, the charged particle search, and outline our plans for future measurements including gravity at μm length scales.

  5. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  6. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  7. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  8. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  9. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  10. Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms.

    PubMed

    Khare, Siddharth M; Awasthi, Anjali; Venkataraman, V; Koushika, Sandhya P

    2015-01-01

    Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semi-automated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of ∼1 μN on an individual pillar and a total average force of ∼7.68 μN. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4 Hz applying an average force of ∼1.58 μN on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces

  11. Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms

    PubMed Central

    Khare, Siddharth M.; Awasthi, Anjali; Venkataraman, V.; Koushika, Sandhya P.

    2015-01-01

    Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semi-automated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of ∼1 μN on an individual pillar and a total average force of ∼7.68 μN. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4 Hz applying an average force of ∼1.58 μN on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces

  12. Phase separated BEC for high-sensitivity force measurement.

    PubMed

    Bhongale, S G; Timmermans, Eddy

    2008-05-01

    A trapped, phase separated, two component Bose-Einstein condensate (BEC) can be configured to give a single BEC bubble that floats freely in the surrounding BEC. We point out that this system gives a unique template to carry out mesoscopic quantum studies and to detect weak forces. We demonstrate the detection capabilities by proposing and studying a "quantum level" for fundamental quantum fluctuation studies and for mapping the potential energy landscape near a surface with exquisite accuracy.

  13. The exterior source surface for force-free fields. [solar atmosphere magnetic field model

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1978-01-01

    Consideration is given to the exterior source surface for force-free fields. The spherical harmonic expansion is presented for boundary values on two concentric spheres. An upper limit on a constant which measures the strength of coronal currents is found to be a function of the lowest multipole moment of the prescribed boundary values. The solar atmosphere is in the class of magnetic fields for which the study is applicable.

  14. A transducer for measuring force on surgical sutures

    PubMed Central

    Witte, Thomas H.; Cheetham, Jonathan; Rawlinson, Jeremy J.; Soderholm, L. Vince; Ducharme, Norm G.

    2010-01-01

    The objective of this study was to validate, both in vitro and in an ex vivo model, a technique for the measurement of forces exerted on surgical sutures. For this purpose, a stainless steel E-type buckle force transducer was designed and constructed. A strain gauge was mounted on the central beam of the transducer to measure transducer deformation. The transducer was tested and calibrated on a single strand of surgical suture during cyclic loading. Further validation was performed using a previously published cadaveric model of laryngoplasty in the horse. Linear regression of transducer output with actual force during calibration tests resulted in mean R2 values of 1.00, 0.99, and 0.99 for rising slope, falling slope, and overall slope, respectively. The R2 was not less than 0.96 across an average of 75 cycles per test. The difference between rising slope and falling slope was 4%. Over 45 846 samples, the predicted force from transducer output showed a mean error of 4%. In vitro validation produced an adjusted R2 of 0.99 when the force on the suture was regressed against translaryngeal pressure in a mixed-effects model. E-type buckle force transducers showed a highly linear output over a physiological force range when applied to surgical suture in vitro and in an ex vivo model of laryngoplasty. With appropriate calibration and short-term in vivo implantation, these transducers may advance our knowledge of the mechanisms of success and failure of techniques, such as laryngoplasty, that use structural suture implants. PMID:21197230

  15. Measured capillary forces on spheres at particle-laden interfaces.

    PubMed

    He, Wei; Şenbil, Nesrin; Dinsmore, A D

    2015-07-01

    We measure capillary forces on particles at fluid interfaces in order to assess the key parameters that yield effective stabilizing particles. In our experiments, a millimeter-scale particle is attached to a cantilever, which is used to pull the particle perpendicular to the interface. Simultaneously, we image from the side to measure the cantilever's deflection and thus the pulling force, as well as the height of the particle and the shape of the interface. We find that the peak force on a particle at an interface crowded with other particles is consistently smaller than the force at a clean interface. This result is independent of the difference in fluid mass densities, the material of the target sphere, and the capillary charge of the free particles. We attribute the force reduction to the perturbation of interface shape due to the constraints at the boundaries of the free particles. The results should be helpful in designing particles to stabilize droplets in new oil dispersants or in other applications. PMID:26035631

  16. Designing an optical bendloss sensor for clinical force measurement

    NASA Astrophysics Data System (ADS)

    Linders, David R.; Wang, Wei-Chih; Nuckley, David J.

    2009-03-01

    In current physical medicine, specific manual forces are applied to patients for diagnosis, treatment, and evaluation, but these forces remain largely qualitiative. No universal tool exists to measure these forces and display them in real-time. To provide real-time quantitative feedback to clinicians, we have developed a disposable glove with a force sensor embedded in the fingertips or palm. The sensor is based on the fiberoptic bendloss effect whereby light intensity from an infrared source is attenuated as the fiber is bent between a series of corrugated teeth. The sensor fabricated has a very low profile (10 × 7 × 1 mm) and has demonstrated high sensitivity, accuracy, range, and durability. Forces as low as 0.1 N and up to 90 N have been measured with high signal to noise ratios. Good agreement with theoretical predictions of bendloss has been demonstrated. Current trials have obtained data from 20 ACL reconstruction patients demonstrating a significant increase in range of motion recovery for patients who consistently stretch at home over those who do not.

  17. Enclosed Electronic System for Force Measurements in Knee Implants

    PubMed Central

    Forchelet, David; Simoncini, Matteo; Arami, Arash; Bertsch, Arnaud; Meurville, Eric; Aminian, Kamiar; Ryser, Peter; Renaud, Philippe

    2014-01-01

    Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors. PMID:25196007

  18. Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control

    PubMed Central

    Kumar, Shalki; Lily, Kuo; Sen, H. Tutkun; Iordachita, Iulian; Kazanzides, Peter

    2016-01-01

    Objective Acoustic radiation force (ARF)-based approaches to measure tissue elasticity require transmission of a focused high-energy acoustic pulse from a stationary ultrasound probe and ultrasound-based tracking of the resulting tissue displacements to obtain stiffness images or shear wave speed estimates. The method has established benefits in biomedical applications such as tumor detection and tissue fibrosis staging. One limitation, however, is the dependence on applied probe pressure, which is difficult to control manually and prohibits standardization of quantitative measurements. To overcome this limitation, we built a robot prototype that controls probe contact forces for shear wave speed quantification. Methods The robot was evaluated with controlled force increments applied to a tissue-mimicking phantom and in vivo abdominal tissue from three human volunteers. Results The root-mean-square error between the desired and measured forces was 0.07 N in the phantom and higher for the fatty layer of in vivo abdominal tissue. The mean shear wave speeds increased from 3.7 to 4.5 m/s in the phantom and 1.0 to 3.0 m/s in the in vivo fat for compressive forces ranging from 2.5 to 30 N. The standard deviation of shear wave speeds obtained with the robotic approach were low in most cases (< 0.2 m/s) and comparable to that obtained with a semiquantitative landmark-based method. Conclusion Results are promising for the introduction of robotic systems to control the applied probe pressure for ARF-based measurements of tissue elasticity. Significance This approach has potential benefits in longitudinal studies of disease progression, comparative studies between patients, and large-scale multidimensional elasticity imaging. PMID:26552071

  19. Interfacial aqueous solutions dielectric constant measurements using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Teschke, O.; Ceotto, G.; de Souza, E. F.

    2000-08-01

    The exchange of the volume of a region of the electric double layer of a mica surface immersed in aqueous solutions, with a dielectric constant ɛDL, by a nanosized radius tip, with a dielectric constant ɛTip, is responsible for the repulsion at large distances from the surface (starting at ˜100 nm, diffuse layer) and followed by an attraction when the tip is immersed in the inner layer (˜10 nm). The calculated dielectric constant as a function of the distance to the charged interface obtained by fitting the force versus distance curves, allows the mapping of the inner layer dielectric constant profiles with a nanometer resolution.

  20. Measuring electric fields from surface contaminants with neutral atoms

    SciTech Connect

    Obrecht, J. M.; Wild, R. J.; Cornell, E. A.

    2007-06-15

    In this paper we demonstrate a technique of utilizing magnetically trapped neutral {sup 87}Rb atoms to measure the magnitude and direction of stray electric fields emanating from surface contaminants. We apply an alternating external electric field that adds to (or subtracts from) the stray field in such a way as to resonantly drive the trapped atoms into a mechanical dipole oscillation. The growth rate of the oscillation's amplitude provides information about the magnitude and sign of the stray field gradient. Using this measurement technique, we are able to reconstruct the vector electric field produced by surface contaminants. In addition, we can accurately measure the electric fields generated from adsorbed atoms purposely placed onto the surface and account for their systematic effects, which can plague a precision surface-force measurement. We show that baking the substrate can reduce the electric fields emanating from adsorbate and that the mechanism for reduction is likely surface diffusion, not desorption.

  1. Dynamics of a disturbed sessile drop measured by atomic force microscopy (AFM).

    PubMed

    McGuiggan, Patricia M; Grave, Daniel A; Wallace, Jay S; Cheng, Shengfeng; Prosperetti, Andrea; Robbins, Mark O

    2011-10-01

    A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r ∼ 20-30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liquid surface, the meniscus rises onto it because of capillary forces. Although the microsphere volume is 6 orders of magnitude smaller than the drop, it excites the normal resonance modes of the liquid interface. The sphere is pinned at the interface, whose small (<100 nm) oscillations are readily measured with AFM. Resonance oscillation frequencies were measured for drop volumes between 5 and 200 μL. The results for the two lowest normal modes are quantitatively consistent with continuum calculations for the natural frequency of hemispherical drops with no adjustable parameters. The method may enable sensitive measurements of volume, surface tension, and viscosity of small drops.

  2. Molecular dynamics simulation of free and forced BSA adsorption on a hydrophobic graphite surface.

    PubMed

    Mücksch, Christian; Urbassek, Herbert M

    2011-11-01

    The adsorption of bovine serum albumin (BSA) onto a hydrophobic graphite surface is studied using molecular-dynamics simulation. In addition to the free, that is, unsteered, adsorption, we also investigate forced adsorption, in which the action of an AFM tip pushing the protein with constant force to the surface is modeled. Using an implicit inviscid water model, the adsorption dynamics and energetics are monitored for two different initial protein orientations toward the surface. In all cases, we find that the protein partially unfolds and spreads on the surface. The spreading is in agreement with the well-known high biocompatibility of graphite-based implants. The denaturation is, however, greatly enhanced in the case of forced adsorption. We follow the position of the so-called lipid-binding pocket found in subdomain IIIA (Sudlow site II) during adsorption and find that it is tilted and moved toward the graphite surface in all cases, in agreement with its hydrophobic character. The relevance of our findings for the common measurement procedure of studying protein adhesion using AFM experiments is discussed.

  3. Existence of hydration forces in the interaction between apoferritin molecules adsorbed on silica surfaces.

    PubMed

    Valle-Delgado, J J; Molina-Bolívar, J A; Galisteo-González, F; Gálvez-Ruiz, M J; Feiler, A; Rutland, M W

    2005-10-11

    The atomic force microscope, together with the colloid probe technique, has become a very useful instrument to measure interaction forces between two surfaces. Its potential has been exploited in this work to study the interaction between protein (apoferritin) layers adsorbed on silica surfaces and to analyze the effect of the medium conditions (pH, salt concentration, salt type) on such interactions. It has been observed that the interaction at low salt concentrations is dominated by electrical double layer (at large distances) and steric forces (at short distances), the latter being due to compression of the protein layers. The DLVO theory fits these experimental data quite well. However, a non-DLVO repulsive interaction, prior to contact of the protein layers, is observed at high salt concentration above the isoelectric point of the protein. This behavior could be explained if the presence of hydration forces in the system is assumed. The inclusion of a hydration term in the DLVO theory (extended DLVO theory) gives rise to a better agreement between the theoretical fits and the experimental results. These results seem to suggest that the hydration forces play a very important role in the stability of the proteins in the physiological media.

  4. Effect of permanent-magnet irregularities in levitation force measurements.

    SciTech Connect

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  5. Surface tension-like forces determine bacterial shapes: Streptococcus faecium.

    PubMed

    Koch, A L; Higgins, M L; Doyle, R J

    1981-03-01

    The same tendency that causes soap bubbles to achieve a minimum surface area for the volume enclosed seems to account for many of the features of growth and division of bacteria, including both bacilli and cocci. It is only necessary to assume that growth takes place in zones and that only in these zones does the tension caused by hydrostatic pressure create the strain that forces the cell to increase the wall area. The stress developed by osmotic pressure creates strains that significantly lower the free energy of bond splitting by hydrolysis or transfer. We believe this is sufficient to make growing wall have some of the properties ordinarily associated with surface tension. The feature common to all bacterial cell wall growth is that peptidoglycan is inserted under strain-free conditions. Only after the covalent links have been formed are the intervening stressed peptide bonds cleaved so that the new unit supports the stress due to hydrostatic pressure. The present paper analyses the growth of Streptococcus faecium in these terms. This is a particularly simple case and detailed data concerning morphology are available. The best fit to the data is achieved by assuming that growth takes place in a narrow region near the splitting septum and that the septal material is already under tension as it is externalized and is twice as thick as the external wall throughout the development of the nascent poles. Constancy of the ratio of hydrostatic pressure to the effective surface tension, P/T, is also consistent with electron microscopic observations. PMID:7320694

  6. Use of force-measuring transducers in manipulator control

    SciTech Connect

    Kress, R.L.; Jansen, J.F.

    1991-01-01

    This paper investigates two types of control structures for mechanical manipulators using force-measuring transducers with each type targeting specific properties of the manipulator. One approach is to measure torque in the drive train of the manipulator to increase backdrivability, sensitivity, and stiffness. The second approach is to measure the forces and torques at the wrist of the manipulator. This force/torque vector is then used in a stiffness control algorithm which resolves dissimilar kinematics and increases sensitivity. Experiments with the Laboratory Telerobotic Manipulator (LTM) designed and built at Oak Ridge National Laboratory (ORNL) show how drive-train torque feedback can reduce the apparent friction in a manipulator drive train resulting from friction in gear boxes, bearings, and transmission components. For robotic operation, drive-train torque feedback can yield a significantly stiffer drive train. For teleoperated systems, drive-train torque feedback translates into improved backdrivability, better sensitivity, and improved stiffness. A 6-axis, wrist-mounted force-torque sensor was used in a Cartesian stiffness control algorithm implemented on the Center for Engineering Systems Advanced Research Manipulator (CESARm) located at ORNL. 9 refs., 7 figs., 3 tabs.

  7. Adhesion force measurements on the two wax layers of the waxy zone in Nepenthes alata pitchers

    PubMed Central

    Gorb, Elena V.; Purtov, Julia; Gorb, Stanislav N.

    2014-01-01

    The wax coverage of the waxy zone in Nepenthes alata pitchers consists of two clearly distinguishable layers, designated the upper and lower wax layers. Since these layers were reported to reduce insect attachment, they were considered to have anti-adhesive properties. However, no reliable adhesion tests have been performed with these wax layers. In this study, pull-off force measurements were carried out on both wax layers of the N. alata pitcher and on two reference polymer surfaces using deformable polydimethylsiloxane half-spheres as probes. To explain the results obtained, roughness measurements were performed on test surfaces. Micro-morphology of both surface samples and probes tested was examined before and after experiments. Pull-off forces measured on the upper wax layer were the lowest among surfaces tested. Here, contamination of probes by wax crystals detached from the pitcher surface was found. This suggests that low insect attachment on the upper wax layer is caused primarily by the breaking off of wax crystals from the upper wax layer, which acts as a separation layer between the insect pad and the pitcher surface. High adhesion forces obtained on the lower wax layer are explained by the high deformability of probes and the particular roughness of the substrate. PMID:24889352

  8. Adhesion force measurements on the two wax layers of the waxy zone in Nepenthes alata pitchers.

    PubMed

    Gorb, Elena V; Purtov, Julia; Gorb, Stanislav N

    2014-06-03

    The wax coverage of the waxy zone in Nepenthes alata pitchers consists of two clearly distinguishable layers, designated the upper and lower wax layers. Since these layers were reported to reduce insect attachment, they were considered to have anti-adhesive properties. However, no reliable adhesion tests have been performed with these wax layers. In this study, pull-off force measurements were carried out on both wax layers of the N. alata pitcher and on two reference polymer surfaces using deformable polydimethylsiloxane half-spheres as probes. To explain the results obtained, roughness measurements were performed on test surfaces. Micro-morphology of both surface samples and probes tested was examined before and after experiments. Pull-off forces measured on the upper wax layer were the lowest among surfaces tested. Here, contamination of probes by wax crystals detached from the pitcher surface was found. This suggests that low insect attachment on the upper wax layer is caused primarily by the breaking off of wax crystals from the upper wax layer, which acts as a separation layer between the insect pad and the pitcher surface. High adhesion forces obtained on the lower wax layer are explained by the high deformability of probes and the particular roughness of the substrate.

  9. Probing the contribution of different intermolecular forces to the adsorption of spheroproteins onto hydrophilic surfaces.

    PubMed

    Borges, João; Campiña, José M; Silva, A Fernando

    2013-12-27

    Protein adsorption is a delicate process, which results from the balance between the properties of proteins and their solid supports. Although the relevance of some of these parameters has been already unveiled, the precise involvement of electrostatics and other weaker intermolecular forces requires further comprehension. Aiming to contribute to this task, this work explores the attachment, rearrangement, and surface aggregation of a model spheroprotein, such as bovine β-lactoglobulin (β-LG), onto hydrophilic substrates prefunctionalized with different alkylthiol films. Thereby, a variety of electrostatic scenarios for the adsorption of β-LG could be recreated through the variation of the pH and the functional chemistry of the surfaces. The changes in surface mass density (plus associated water) and film flexibility were followed in situ with quartz crystal microbalance with dissipation monitoring. Film packing and aggregation were assessed by faradaic electrochemical measurements and ex situ atomic force microscopy and field effect scanning electron microscopy. In contrast to previous hypotheses arguing that electrostatic interactions between charged substrates and proteins would be the only driving force, a complex interplay between Coulombic and non-Coulombic intermolecular forces (which would depend upon the experimental conditions) has been suggested to explain the results.

  10. Atomic force microscopy measurement of leukocyte-endothelial interaction.

    PubMed

    Zhang, Xiaohui; Chen, Aileen; De Leon, Dina; Li, Hong; Noiri, Eisei; Moy, Vincent T; Goligorsky, Michael S

    2004-01-01

    Leukocyte adhesion to vascular endothelium is a key initiating step in the pathogenesis of many inflammatory diseases. In this study, we present real-time force measurements of the interaction between monocytic human promyelocytic leukemia cells (HL-60) cells and a monolayer of human umbilical vein endothelial cells (HUVECs) by using atomic force microscopy (AFM). The detachment of HL-60-HUVEC conjugates involved a series of rupture events with force transitions of 40-100 pN. The integrated force of these rupture events provided a quantitative measure of the adhesion strength on a whole cell level. The AFM measurements revealed that HL-60 adhesion is heightened in the borders formed by adjacent HUVECs. The average force and mechanical work required to detach a single HL-60 from the borders of a tumor necrosis factor-alpha-activated HUVEC layer were twice as high as those of the HUVEC bodies. HL-60 adhesion to the monolayer was significantly reduced by a monoclonal antibody against beta1-integrins and partially inhibited by antibodies against selectins ICAM-1 and VCAM-1 but was not affected by anti-alphaVbeta3. Interestingly, adhesion was also inhibited in a dose-dependent manner (IC50 approximately 100 nM) by a cyclic arginine-glycine-aspartic acid (cRGD) peptide. This effect was mediated via interfering with the VLA-4-VCAM-1 binding. In parallel measurements, transmigration of HL-60 cells across a confluent HUVEC monolayer was inhibited by the cRGD peptide and by both anti-beta1 and anti-alphaVbeta3 antibodies. In conclusion, these data demonstrate the role played by beta1-integrins in leukocyte-endothelial adhesion and transmigration and the role played by alphaVbeta3 in transmigration, thus underscoring the high efficacy of cRGD peptide in blocking both the adhesion and transmigration of monocytes. PMID:12969892

  11. Optical tweezers force measurements to study parasites chemotaxis

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  12. Photothermally excited force modulation microscopy for broadband nanomechanical property measurements

    SciTech Connect

    Wagner, Ryan Killgore, Jason P.

    2015-11-16

    We demonstrate photothermally excited force modulation microscopy (PTE FMM) for mechanical property characterization across a broad frequency range with an atomic force microscope (AFM). Photothermal excitation allows for an AFM cantilever driving force that varies smoothly as a function of drive frequency, thus avoiding the problem of spurious resonant vibrations that hinder piezoelectric excitation schemes. A complication of PTE FMM is that the sub-resonance cantilever vibration shape is fundamentally different compared to piezoelectric excitation. By directly measuring the vibrational shape of the cantilever, we show that PTE FMM is an accurate nanomechanical characterization method. PTE FMM is a pathway towards the characterization of frequency sensitive specimens such as polymers and biomaterials with frequency range limited only by the resonance frequency of the cantilever and the low frequency limit of the AFM.

  13. Breast Cancer EDGE Task Force Outcomes: Clinical Measures of Pain

    PubMed Central

    Harrington, Shana; Gilchrist, Laura; Sander, Antoinette

    2014-01-01

    Background Pain is one of the most commonly reported impairments after breast cancer treatment affecting anywhere from 16-73% of breast cancer survivors Despite the high reported incidence of pain from cancer and its treatments, the ability to evaluate cancer pain continues to be difficult due to the complexity of the disease and the subjective experience of pain. The Oncology Section Breast Cancer EDGE Task Force was created to evaluate the evidence behind clinical outcome measures of pain in women diagnosed with breast cancer. Methods The authors systematically reviewed the literature for pain outcome measures published in the research involving women diagnosed with breast cancer. The goal was to examine the reported psychometric properties that are reported in the literature in order to determine clinical utility. Results Visual Analog Scale, Numeric Rating Scale, Pressure Pain Threshold, McGill Pain Questionnaire, McGill Pain Questionnaire – Short Form, Brief Pain Inventory and Brief Pain Inventory – Short Form were highly recommended by the Task Force. The Task Force was unable to recommend two measures for use in the breast cancer population at the present time. Conclusions A variety of outcome measures were used to measure pain in women diagnosed with breast cancer. When assessing pain in women with breast cancer, researchers and clinicians need to determine whether a unidimensional or multidimensional tool is most appropriate as well as whether the tool has strong psychometric properties. PMID:25346950

  14. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    SciTech Connect

    Wang, R.; Williams, C. C.

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  15. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    NASA Astrophysics Data System (ADS)

    Wang, R.; Williams, C. C.

    2015-09-01

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  16. Heart cell contractions measured using a micromachined polysilicon force transducer

    NASA Astrophysics Data System (ADS)

    Lin, Gisela; Pister, Kristofer S. J.; Roos, Kenneth P.

    1995-09-01

    A microelectromechanical systems (MEMS) force transducer, with a volume less than one cubic millimeter, is being developed to measure forces generated by living, isolated cardiac muscle cells in order to resolve the complex mechanisms of muscle contraction. The force transducer consists of two movable clamps facing each other. Each clamp contains two vertical, parallel hinged polysilicon plates attached to a moveable shuttle, and the entire structure is suspended 2 micrometers above the substrate via support beams attached to the substrate at one end. Each end of a living rat heart cell is glued between a pair of vertical plates. Calcium is then introduced into the cell's nutrient bath and stimulates the cell to contract. Upon contraction the support beams bend, and the amount of deflection is translated to force via the known spring constant in the beams. Typcially the 70 micrometers long central portion of a 120 micrometers long cell will contract approximately 6-7 micrometers in full activating solution, resulting in forces up to 16 (mu) N. The average value obtained for Fmax per cross-sectional area was 21.8mN/mm2 which is comparable to the value found in other laboratories using standard transducer technology.

  17. Seasonal variation of surface and atmospheric cloud radiative forcing over the globe derived from satellite data

    NASA Technical Reports Server (NTRS)

    Gupta, Shashi K.; Staylor, W. Frank; Darnell, Wayne L.; Wilber, Anne C.; Ritchey, Nancy A.

    1993-01-01

    Global distributions of surface and atmospheric cloud radiative forcing parameters have been derived using parameterized radiation models with satellite meteorological data from the International Satellite Cloud Climatology Project, and directly measured top-of-atmosphere radiative fluxes from the Earth Radiation Budget Experiment. Specifically, shortwave, longwave, and total cloud forcing at the surface, and column-averaged values of longwave cloud forcing of the atmosphere were derived for the midseasonal months of April, July, and October 1985 and January 1986, covering a complete annual cycle. Seasonal variability is illustrated by comparing the results for July 1985 and January 1986, which represent the seasonal extremes. Surface shortwave cloud forcing is always negative, representing a cooling of the surface, with strongest cooling (-120 to -180 W/sq m) occurring over midlatitude storm tracks of the summer hemisphere. Surface longwave cloud forcing is always positive, representing a warming of the surface, with strongest warming (60 to 75 W/sq m) occurring over storm tracks of the winter hemisphere. Zonal averages show the entire summer hemisphere dominated by shortwave cooling, the middle and high latitudes of the winter hemisphere dominated by longwave warming, and a broad zone of transition in between. The globally averaged total cloud forcing amounts to a cooling throughout the year, ranging from a low of about -12 W/sq m for July 1985 to a high of about -25 W/sq m for January 1986. The longwave cloud forcing of the atmosphere shows a strong warming over deep convective regions in the tropics and a moderate cooling outside the tropics, amounting to a weak cooling (-2 to -5 W/sq m) in the global average. Comparisons of the results with general circulation model simulations show broad qualitative agreement regarding the locations of prominent warming and cooling regions. Quantitative comparisons, on the other hand, show significant differences between the

  18. Intracellular forces during guided cell growth on micropatterns using FRET measurement.

    PubMed

    Suffoletto, Kevin; Ye, Nannan; Meng, Fanjie; Verma, Deepika; Hua, Susan Z

    2015-02-26

    Interaction of cells with extracellular matrix (ECM) regulates cell shape, differentiation and polarity. This effect has been widely observed in cells grown on substrates with various patterned features, stiffness and surface chemistry. It has been postulated that mechanical confinement of cells by the substrate causes a redistribution of tension in cytoskeletal proteins resulting in cytoskeletal reorganization through force sensitive pathways. However, the mechanisms for force transduction during reorganization remain unclear. In this study, using FRET based force sensors we have measured tension in an actin cross-linking protein, α-actinin, and followed reorganization of actin cytoskeleton in real time in HEK cells grown on patterned substrates. We show that the patterned substrates cause a redistribution of tension in α-actinin that coincides with cytoskeleton reorganization. Higher tension was observed in portions of cells where they form bridges across inhibited regions of the patterned substrates; the attachment to the substrate is found to release tension. Real time measurements of α-actinin tension and F-actin arrangement show that an increase in tension coincides with formation of F-actin bundles at the cell periphery during cell-spreading across inhibited regions, suggesting that mechanical forces stimulate cytoskeleton enhancement. Rho-ROCK inhibitor (Y27632) causes reduction in actinin tension followed by retraction of bridged regions. Our results demonstrate that changes in cell shape and expansion over patterned surfaces is a force sensitive process that requires actomyosin contractile force involving Rho-ROCK pathway.

  19. ForceFit: a code to fit classical force fields to ab-initio potential energy surfaces

    SciTech Connect

    Henson, Neil Jon; Waldher, Benjamin; Kuta, Jadwiga; Clark, Aurora; Clark, Aurora E

    2009-01-01

    The ForceFit program package has been developed for fitting classical force field parameters based upon a force matching algorithm to quantum mechanical gradients of configurations that span the potential energy surface of the system. The program, which runs under Unix and is written in C++, is an easy to use, nonproprietary platform that enables gradient fitting of a wide variety of functional force field forms to quantum mechanical information obtained from an array of common electronic structure codes. All aspects of the fitting process are run from a graphical user interface, from the parsing of quantum mechanical data, assembling of a potential energy surface database, setting the force field and variables to be optimized, choosing a molecular mechanics code for comparison to the reference data, and finally, the initiation of a least squares minimization algorithm. Furthermore, the code is based on a modular templated code design that enables the facile addition of new functionality to the program.

  20. Measuring red blood cell aggregation forces using double optical tweezers.

    PubMed

    Fernandes, Heloise P; Fontes, Adriana; Thomaz, André; Castro, Vagner; Cesar, Carlos L; Barjas-Castro, Maria L

    2013-04-01

    Classic immunohematology approaches, based on agglutination techniques, have been used in manual and automated immunohematology laboratory routines. Red blood cell (RBC) agglutination depends on intermolecular attractive forces (hydrophobic bonds, Van der Walls, electrostatic forces and hydrogen bonds) and repulsive interactions (zeta potential). The aim of this study was to measure the force involved in RBC aggregation using double optical tweezers, in normal serum, in the presence of erythrocyte antibodies and associated to agglutination potentiator solutions (Dextran, low ionic strength solution [LISS] and enzymes). The optical tweezers consisted of a neodymium:yattrium aluminium garnet (Nd:YAG) laser beam focused through a microscope equipped with a minicam, which registered the trapped cell image in a computer where they could be analyzed using a software. For measuring RBC aggregation, a silica bead attached to RBCs was trapped and the force needed to slide one RBC over the other, as a function of the velocities, was determined. The median of the RBC aggregation force measured in normal serum (control) was 1 × 10(-3) (0.1-2.5) poise.cm. The samples analyzed with anti-D showed 2 × 10(-3) (1.0-4.0) poise.cm (p < 0.001). RBC diluted in potentiator solutions (Dextran 0.15%, Bromelain and LISS) in the absence of erythrocyte antibodies, did not present agglutination. High adherence was observed when RBCs were treated with papain. Results are in agreement with the imunohematological routine, in which non-specific results are not observed when using LISS, Dextran and Bromelain. Nevertheless, false positive results are frequently observed in manual and automated microplate analyzer using papain enzyme. The methodology proposed is simple and could provide specific information with the possibility of meansuration regarding RBC interaction.

  1. Lorentz force velocimetry based on time-of-flight measurements

    NASA Astrophysics Data System (ADS)

    Viré, Axelle; Knaepen, Bernard; Thess, André

    2010-12-01

    Lorentz force velocimetry (LFV) is a contactless technique for the measurement of liquid metal flowrates. It consists of measuring the force acting upon a magnetic system and arising from the interaction between an external magnetic field and the flow of an electrically conducting fluid. In this study, a new design is proposed so as to make the measurement independent of the fluid's electrical conductivity. It is made of one or two coils placed around a circular pipe. The forces produced on each coil are recorded in time as the liquid metal flows through the pipe. It is highlighted that the auto- or cross-correlation of these forces can be used to determine the flowrate. The reliability of the flowmeter is first investigated with a synthetic velocity profile associated with a single vortex ring, which is convected at a constant speed. This configuration is similar to the movement of a solid rod and enables a simple analysis of the flowmeter. Then, the flowmeter is applied to a realistic three-dimensional turbulent flow. In both cases, the influence of the coil radii, coil separation, and sign of the coil-carrying currents is systematically assessed. The study is entirely numerical and uses a second-order finite volume method. Two sets of simulations are performed. First, the equations of motion are solved without accounting for the effect of the magnetic field on the flow (kinematic simulations). Second, the Lorentz force is explicitly added to the momentum balance (dynamic simulations), and the influence of the external magnetic field on the flow is then quantified.

  2. Force measurements with optical tweezers inside living cells

    NASA Astrophysics Data System (ADS)

    Mas, Josep; Farré, Arnau; Sancho-Parramon, Jordi; Martín-Badosa, Estela; Montes-Usategui, Mario

    2014-09-01

    The force exerted by optical tweezers can be measured by tracking the momentum changes of the trapping beam, a method which is more general and powerful than traditional calibration techniques as it is based on first principles, but which has not been brought to its full potential yet, probably due to practical difficulties when combined with high-NA optical traps, such as the necessity to capture a large fraction of the scattered light. We show that it is possible to measure forces on arbitrary biological objects inside cells without an in situ calibration, using this approach. The instrument can be calibrated by measuring three scaling parameters that are exclusively determined by the design of the system, thus obtaining a conversion factor from volts to piconewtons that is theoretically independent of the physical properties of the sample and its environment. We prove that this factor keeps valid inside cells as it shows good agreement with other calibration methods developed in recent years for viscoelastic media. Finally, we apply the method to measuring the stall forces of kinesin and dynein in living A549 cells.

  3. Theory of non-equilibrium force measurements involving deformable drops and bubbles.

    PubMed

    Chan, Derek Y C; Klaseboer, Evert; Manica, Rogerio

    2011-07-11

    Over the past decade, direct force measurements using the Atomic Force Microscope (AFM) have been extended to study non-equilibrium interactions. Perhaps the more scientifically interesting and technically challenging of such studies involved deformable drops and bubbles in relative motion. The scientific interest stems from the rich complexity that arises from the combination of separation dependent surface forces such as Van der Waals, electrical double layer and steric interactions with velocity dependent forces from hydrodynamic interactions. Moreover the effects of these forces also depend on the deformations of the surfaces of the drops and bubbles that alter local conditions on the nanometer scale, with deformations that can extend over micrometers. Because of incompressibility, effects of such deformations are strongly influenced by small changes of the sizes of the drops and bubbles that may be in the millimeter range. Our focus is on interactions between emulsion drops and bubbles at around 100 μm size range. At the typical velocities in dynamic force measurements with the AFM which span the range of Brownian velocities of such emulsions, the ratio of hydrodynamic force to surface tension force, as characterized by the capillary number, is ~10(-6) or smaller, which poses challenges to modeling using direct numerical simulations. However, the qualitative and quantitative features of the dynamic forces between interacting drops and bubbles are sensitive to the detailed space and time-dependent deformations. It is this dynamic coupling between forces and deformations that requires a detailed quantitative theoretical framework to help interpret experimental measurements. Theories that do not treat forces and deformations in a consistent way simply will not have much predictive power. The technical challenges of undertaking force measurements are substantial. These range from generating drop and bubble of the appropriate size range to controlling the

  4. Hydrodynamic forces during the initial stage of body lifting from water surface

    NASA Astrophysics Data System (ADS)

    Vega-Martínez, Patricia; Rodríguez-Rodríguez, Javier; Korobkin, A.; Khabakhpasheva, Tatyana

    2015-11-01

    We consider the flow induced by a rigid flat plate, initially touching a horizontal water surface, when it starts to move upwards with constant acceleration. Negative hydrodynamic pressures on the wetted surface of the plate are allowed, thus the water follows the plate due to the resulting suction force. The acceleration of the plate and the plate length are such that gravity, surface tension and viscous effects can be neglected. Under these assumptions, the potential flow caused by the plate lifting is obtained by using the small-time expansion of the velocity potential. This small-time solution fails close to the plate edges, as it predicts there singular velocities and unbounded displacements of the free surface. It is shown that close to the plate edges the flow is non-linear and self-similar in the leading order. This nonlinear flow is computed by the boundary element method combined with a time-marching scheme. We also present the results of an experimental investigation aimed at measuring the hydrodynamic force felt by the plate. This force seems to be very weak, what suggests that cavitation occurs during these initial stages. Supported by the NICOP research grant N62909-13-1-N274, and the Spanish Ministry of Economy and Competitiveness, grant DPI2014-59292-C3-1-P.

  5. Lateral forces on circularly polarizable particles near a surface

    PubMed Central

    Rodríguez-Fortuño, Francisco J.; Engheta, Nader; Martínez, Alejandro; Zayats, Anatoly V.

    2015-01-01

    Optical forces allow manipulation of small particles and control of nanophotonic structures with light beams. While some techniques rely on structured light to move particles using field intensity gradients, acting locally, other optical forces can ‘push' particles on a wide area of illumination but only in the direction of light propagation. Here we show that spin–orbit coupling, when the spin of the incident circularly polarized light is converted into lateral electromagnetic momentum, leads to a lateral optical force acting on particles placed above a substrate, associated with a recoil mechanical force. This counterintuitive force acts in a direction in which the illumination has neither a field gradient nor propagation. The force direction is switchable with the polarization of uniform, plane wave illumination, and its magnitude is comparable to other optical forces. PMID:26581479

  6. Direct force measurement of single DNA-peptide interactions using atomic force microscopy.

    PubMed

    Chung, Ji W; Shin, Dongjin; Kwak, June M; Seog, Joonil

    2013-06-01

    The selective interactions between DNA and miniature (39 residues) engineered peptide were directly measured at the single-molecule level by using atomic force microscopy. This peptide (p007) contains an α-helical recognition site similar to leucine zipper GCN4 and specifically recognizes the ATGAC sequence in the DNA with nanomolar affinity. The average rupture force was 42.1 pN, which is similar to the unbinding forces of the digoxigenin-antidigoxigenin complex, one of the strongest interactions in biological systems. The single linear fit of the rupture forces versus the logarithm of pulling rates showed a single energy barrier with a transition state located at 0.74 nm from the bound state. The smaller koff compared with that of other similar systems was presumably due to the increased stability of the helical structure by putative folding residues in p007. This strong sequence-specific DNA-peptide interaction has a potential to be utilized to prepare well-defined mechanically stable DNA-protein hybrid nanostructures.

  7. Planetary boundary layer response to surface temperature anomalies forcing

    NASA Astrophysics Data System (ADS)

    Perrot, Xavier; Lapeyre, Guillaume; Plougonven, Riwal

    2015-04-01

    Recent studies showed that strong sea surface temperature (SST) fronts, on the scale of the western boundary currents, strongly affect the planetary boundary layer (PBL) but also all the troposphere. This renewed the interest of air-sea interactions at oceanic meso-scales. Mainly two mechanisms are proposed in the literature, the first one (due to Wallace et al 1989) is based on the destabilization of the PBL above SST anomalies, the second one (Lindzen and Nigam 1987) is based on the pressure anomalies linked to the atmosphere temperature adjustment to the SST. These two mechanisms predict different responses of the PBL to the SST. We did numerical simulations with a meso-scale atmospheric model (WRF) with the same configuration as the one described in Lambert et al 2013. The model is forced by a SST anomaly which is first a zonally or meridionally constant field and secondly a field of meso-scale structures. Firstly we studied the influence of the initial wind strength on the PBL response for the two different types of SST anomalies. We showed that the dominant mechanism can change according to weak or strong wind and to the orientation of the SST anomaly. Secondly after considering a dry atmosphere we switched on the humidity in our configuration. We studied how it influences the PBL response and whether the mechanism driving the PBL response is still the same as in the dry case.

  8. Protein crystallization on liquid surfaces: Forced versus natural crystallization

    NASA Astrophysics Data System (ADS)

    Hirsa, A.

    2005-11-01

    Two-dimensional crystallization of proteins has recently been reported where streptavidin protein dissolved in the bulk liquid anchors to binding sites on a biotinylated lipid monolayer initially spread on the liquid surface. Thermodynamic aspects investigated include the effects of subphase buffer and pH, dilution of bulk protein and monolayer. Here, we investigate three possible avenues where flow can influence protein crystallization: i) change the initial state of monolayer, ii) advect dissolved protein to the interface, iii) apply direct hydrodynamic force on the crystals at the interface. The flow system consists of a stationary open cylinder driven by constant rotation of the floor, in the axisymmetric flow regime with inertia. Direct imaging of the interface illuminated by forward scattering of a laser was utilized to avoid labeling proteins for conventional fluorescence microscopy. These images provide greater detail than Brewster angle microscopy. Scientific motivation is to use flow to probe protein structure, and the application is to make designer protein thin-films, e.g. for biosensors.

  9. Measurement of the Temperature Dependence of the Casimir-Polder Force

    SciTech Connect

    Obrecht, J. M.; Wild, R. J.; Cornell, E. A.; Antezza, M.; Stringari, S.; Pitaevskii, L. P.

    2007-02-09

    We report on the first measurement of a temperature dependence of the Casimir-Polder force. This measurement was obtained by positioning a nearly pure {sup 87}Rb Bose-Einstein condensate a few microns from a dielectric substrate and exciting its dipole oscillation. Changes in the collective oscillation frequency of the magnetically trapped atoms result from spatial variations in the surface-atom force. In our experiment, the dielectric substrate is heated up to 605 K, while the surrounding environment is kept near room temperature (310 K). The effect of the Casimir-Polder force is measured to be nearly 3 times larger for a 605 K substrate than for a room-temperature substrate, showing a clear temperature dependence in agreement with theory.

  10. Rabi interferometry and sensitive measurement of the Casimir-Polder force with ultracold gases

    SciTech Connect

    Chwedenczuk, Jan; Piazza, Francesco; Smerzi, Augusto; Pezze, Luca

    2010-09-15

    We show that Rabi oscillations of a degenerate fermionic or bosonic gas trapped in a double-well potential can be exploited for the interferometric measurement of external forces at micrometer length scales. The Rabi interferometer is less sensitive but easier to implement than the Mach-Zehnder, since it does not require dynamical beam-splitting or recombination processes. As an application we propose a measurement of the Casimir-Polder force acting between the atoms and a dielectric surface. We find that even if the interferometer is fed with a coherent state of relatively small number of atoms, and in the presence of realistic experimental noise, the force might be measured with a sensitivity sufficient to discriminate between thermal and zero-temperature regimes of the Casimir-Polder potential. Higher sensitivities can be reached with bosonic spin squeezed states.

  11. Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces.

    PubMed

    Horinek, D; Serr, A; Geisler, M; Pirzer, T; Slotta, U; Lud, S Q; Garrido, J A; Scheibel, T; Hugel, T; Netz, R R

    2008-02-26

    The hydrophobic effect, i.e., the poor solvation of nonpolar parts of molecules, plays a key role in protein folding and more generally for molecular self-assembly and aggregation in aqueous media. The perturbation of the water structure accounts for many aspects of protein hydrophobicity. However, to what extent the dispersion interaction between molecular entities themselves contributes has remained unclear. This is so because in peptide folding interactions and structural changes occur on all length scales and make disentangling various contributions impossible. We address this issue both experimentally and theoretically by looking at the force necessary to peel a mildly hydrophobic single peptide molecule from a flat hydrophobic diamond surface in the presence of water. This setup avoids problems caused by bubble adsorption, cavitation, and slow equilibration that complicate the much-studied geometry with two macroscopic surfaces. Using atomic-force spectroscopy, we determine the mean desorption force of a single spider-silk peptide chain as F = 58 +/- 8 pN, which corresponds to a desorption free energy of approximately 5 k(B)T per amino acid. Our all-atomistic molecular dynamics simulation including explicit water correspondingly yields the desorption force F = 54 +/- 15 pN. This observation demonstrates that standard nonpolarizable force fields used in classical simulations are capable of resolving the fine details of the hydrophobic attraction of peptides. The analysis of the involved energetics shows that water-structure effects and dispersive interactions give contributions of comparable magnitude that largely cancel out. It follows that the correct modeling of peptide hydrophobicity must take the intimate coupling of solvation and dispersive effects into account.

  12. Dynamic Forces in Spur Gears - Measurement, Prediction, and Code Validation

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Townsend, Dennis P.; Rebbechi, Brian; Lin, Hsiang Hsi

    1996-01-01

    Measured and computed values for dynamic loads in spur gears were compared to validate a new version of the NASA gear dynamics code DANST-PC. Strain gage data from six gear sets with different tooth profiles were processed to determine the dynamic forces acting between the gear teeth. Results demonstrate that the analysis code successfully simulates the dynamic behavior of the gears. Differences between analysis and experiment were less than 10 percent under most conditions.

  13. The measurement of surface gravity

    NASA Technical Reports Server (NTRS)

    Harrison, J. C.; Lacoste, L. J. B.

    1978-01-01

    LaCoste and Romberg G and D gravity meters are normally employed when attempting high precision measurement of gravity differences on land. The capabilities and limitations of these instruments are discussed.

  14. Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic-Atomic Force Microscopies

    NASA Technical Reports Server (NTRS)

    Cantrell, John H., Jr.; Cantrell, Sean A.

    2008-01-01

    A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.

  15. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    SciTech Connect

    Liu, Y.; Wu, W.; Jensen, M. P.; Toto, T.

    2011-07-21

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997-2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

  16. Development of Field Excavator with Embedded Force Measurement

    NASA Technical Reports Server (NTRS)

    Johnson, K.; Creager, C.; Izadnegahdar, A.; Bauman, S.; Gallo, C.; Abel, P.

    2012-01-01

    A semi-intelligent excavation mechanism was developed for use with the NASA-built Centaur 2 rover prototype. The excavator features a continuously rotatable large bucket supported between two parallel arms, both of which share a single pivot axis near the excavator base attached to the rover. The excavator is designed to simulate the collection of regolith, such as on the Moon, and to dump the collected soil into a hopper up to one meter tall for processing to extract oxygen. Because the vehicle can be autonomous and the terrain is generally unknown, there is risk of damaging equipment or using excessive power when attempting to extract soil from dense or rocky terrain. To minimize these risks, it is critical for the rover to sense the digging forces and adjust accordingly. It is also important to understand the digging capabilities and limitations of the excavator. This paper discusses the implementation of multiple strain gages as an embedded force measurement system in the excavator's arms. These strain gages can accurately measure and resolve multi-axial forces on the excavator. In order to validate these sensors and characterize the load capabilities, a series of controlled excavation tests were performed at Glenn Research Center with the excavator at various depths and cut angles while supported by a six axis load cell. The results of these tests are both compared to a force estimation model and used for calibration of the embedded strain gages. In addition, excavation forces generated using two different types of bucket edge (straight vs. with teeth) were compared.

  17. Tip-surface interactions at redox responsive poly(ferrocenylsilane) (PFS) interface by AFM-based force spectroscopy

    NASA Astrophysics Data System (ADS)

    Chung, Hong Jing; Song, Jing; Vancso, G. Julius

    2009-05-01

    Poly(ferrocenylsilanes) (PFS) belong to the class of redox responsive organometallic polymers. Atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS) was used earlier to study single chain PFS response and redox energy driven single chain PFS molecular motors. Here we present further AFM investigations of force interactions between tip and a grafted PFS surface under potential control in electrochemical redox cycles. Typical tip-Au interaction is considered as reference in the force measurements. First the electrostatic component in the diffused double layer (DL) in NaClO 4 electrolyte environment was considered for a "grafted to" PFS, which dominated the interplay between the tip and sample surface. The DL forces can also hinder the physisorption of PFS chain onto the tip when the voltage was applied at -0.1 V. On the other hand, if the tip contacted the PFS surface prior to the electrochemical process, physisorption of PFS chains governed the overall interaction regardless of subsequently applied surface potential. In addition, prolonged contact time, tc, may also contribute to the stability of tip-PFS bridging and detection of electrostatic forces between the tip-PFS interface. The results showed that tip-substrate interaction forces without PFS grafts have negligibly small force contributions under similar, electrochemically controlled, conditions used in single PFS chain based molecular motors.

  18. Temporal step fluctuations on a conductor surface: electromigration force, surface resistivity and low-frequency noise

    NASA Astrophysics Data System (ADS)

    Williams, E. D.; Bondarchuk, O.; Tao, C. G.; Yan, W.; Cullen, W. G.; Rous, P. J.; Bole, T.

    2007-10-01

    Scattering of charge carriers from surface structures will become an increasing factor in the resistivity as the structure decreases in size to the nanoscale. The effects of scattering at the most basic surface defect, a kink in a step edge, are here analyzed using the continuum step model. Using a Langevin analysis, it has been shown that the electromigration force on the atoms at the step edge causes changes in the temporal evolution of the step-edge. For an electromigration force acting perpendicular to the average step edge and mass-transport dominated by step-edge diffusion, significant deviations from the usual t1/4 scaling of the displacement correlation function occur dependent on a critical time τ and the direction of the force relative to the step edge (i.e. uphill or downhill). Experimental observations of step fluctuations on Ag(111) show the predicted changes among step fluctuations without current, and with current in the up- and down-hill directions for a current density of order 105 A cm-2. The results yield the magnitude of the electromigration force acting on kinked sites at the step-edge. This in turn yields the contribution of the fluctuating steps to the surface resistivity, which exceeds 1% of the bulk resistivity as wire diameters decrease below 10s of nanometres. The temporal fluctuations of kink density can thus also be related to resistivity noise. Relating the known fluctuation spectrum of the step displacements to fluctuations in their lengths, the corresponding resistivity noise is predicted to show spectral signatures of ~f-1/2 for step fluctuations governed by random attachment/detachment, and ~f-3/4 for step fluctuations governed by step-edge diffusion.

  19. Radial force development during root growth measured by photoelasticity

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Hartmann, Christian; Genet, Patricia

    2012-02-01

    The mechanical and topological properties of a soil like the global porosity and the distribution of void sizes greatly affect the development of a plant root, which in turn affects the shoot development. In particular, plant roots growing in heterogeneous medium like sandy soils or cracked substrates have to adapt their morphology and exert radial forces depending on the pore size in which they penetrate. We propose a model experiment in which a pivot root (chick-pea seeds) of millimetric diameter has to grow in a size-controlled gap δ (δ ranging 0.5-2.3 mm) between two photoelastic grains. By time-lapse imaging, we continuously monitored the root growth and the development of optical fringes in the photoelastic neighbouring grains when the root enters the gap. Thus we measured simultaneously and in situ the root morphological changes (length and diameter growth rates, circumnutation) as well as the radial forces the root exerts. Radial forces were increasing in relation with gap constriction and experiment duration but a levelling of the force was not observed, even after 5 days and for narrow gaps. The inferred mechanical stress was consistent with the turgor pressure of compressed cells. Therefore our set-up could be a basis for testing mechanical models of cellular growth.

  20. A contactless methodology of picking up micro-particles from rigid surfaces by acoustic radiation force.

    PubMed

    Jia, Kun; Yang, Keji; Fan, Zongwei; Ju, Bing-Feng

    2012-01-01

    Controlled movement and pick up of small object from a rigid surface is a primary challenge in many applications. In this paper, a contactless methodology of picking up micro-particles within deionized water from rigid surfaces by acoustic radiation force is presented. In order to achieve this, an acoustic radiation force was generated by 1.75 MHz transducers. A custom built setup facilitates the optimization of the sound field by varying the parameters such as sound source size and source position. The three-dimensional pressure distributions are measured and its relative sound field is also characterized accordingly. The standing wave field has been formed and it is mainly composed of two obliquely incident plane waves and their reflectors. We demonstrated the gripping and positioning of silica beads, SiO(2), and aluminum micro-particles of 100 μm to 500 μm in size with this method using acoustic radiation force. The acoustic radiation force generated is well controlled, contactless, and in the tens of nano-Newton range which allowed us to manipulate relative big micro objects such as MEMS components as well as moving objects such as living cells. The proposed method provided an alternative form of contactless operating environment with scalable dimensions suitable for the manipulating of small objects. This permits high-throughput processing and reduction in time required for MEMS assembling, cell biomechanics, and biotechnology applications.

  1. A contactless methodology of picking up micro-particles from rigid surfaces by acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Yang, Keji; Fan, Zongwei; Ju, Bing-Feng

    2012-01-01

    Controlled movement and pick up of small object from a rigid surface is a primary challenge in many applications. In this paper, a contactless methodology of picking up micro-particles within deionized water from rigid surfaces by acoustic radiation force is presented. In order to achieve this, an acoustic radiation force was generated by 1.75 MHz transducers. A custom built setup facilitates the optimization of the sound field by varying the parameters such as sound source size and source position. The three-dimensional pressure distributions are measured and its relative sound field is also characterized accordingly. The standing wave field has been formed and it is mainly composed of two obliquely incident plane waves and their reflectors. We demonstrated the gripping and positioning of silica beads, SiO2, and aluminum micro-particles of 100 μm to 500 μm in size with this method using acoustic radiation force. The acoustic radiation force generated is well controlled, contactless, and in the tens of nano-Newton range which allowed us to manipulate relative big micro objects such as MEMS components as well as moving objects such as living cells. The proposed method provided an alternative form of contactless operating environment with scalable dimensions suitable for the manipulating of small objects. This permits high-throughput processing and reduction in time required for MEMS assembling, cell biomechanics, and biotechnology applications.

  2. Interactions of hyaluronan grafted on protein surfaces studied using a quartz crystal microbalance and a surface force balance.

    PubMed

    Jiang, Lei; Han, Juan; Yang, Limin; Ma, Hongchao; Huang, Bo

    2015-10-01

    Vocal folds are complex and multilayer-structured where the main layer is widely composed of hyaluronan (HA). The viscoelasticity of HA is key to voice production in the vocal fold as it affects the initiation and maintenance of phonation. In this study a simple layer-structured surface model was set up to mimic the structure of the vocal folds. The interactions between two opposing surfaces bearing HA were measured and characterised to analyse HA's response to the normal and shear compression at a stress level similar to that in the vocal fold. From the measurements of the quartz crystal microbalance, atomic force microscopy and the surface force balance, the osmotic pressure, normal interactions, elasticity change, volume fraction, refractive index and friction of both HA and the supporting protein layer were obtained. These findings may shed light on the physical mechanism of HA function in the vocal fold and the specific role of HA as an important component in the effective treatment of the vocal fold disease. PMID:26274046

  3. Interactions of hyaluronan grafted on protein surfaces studied using a quartz crystal microbalance and a surface force balance.

    PubMed

    Jiang, Lei; Han, Juan; Yang, Limin; Ma, Hongchao; Huang, Bo

    2015-10-01

    Vocal folds are complex and multilayer-structured where the main layer is widely composed of hyaluronan (HA). The viscoelasticity of HA is key to voice production in the vocal fold as it affects the initiation and maintenance of phonation. In this study a simple layer-structured surface model was set up to mimic the structure of the vocal folds. The interactions between two opposing surfaces bearing HA were measured and characterised to analyse HA's response to the normal and shear compression at a stress level similar to that in the vocal fold. From the measurements of the quartz crystal microbalance, atomic force microscopy and the surface force balance, the osmotic pressure, normal interactions, elasticity change, volume fraction, refractive index and friction of both HA and the supporting protein layer were obtained. These findings may shed light on the physical mechanism of HA function in the vocal fold and the specific role of HA as an important component in the effective treatment of the vocal fold disease.

  4. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  5. Displacement sensor with controlled measuring force and its error analysis and precision verification

    NASA Astrophysics Data System (ADS)

    Yang, Liangen; Wang, Xuanze; Lv, Wei

    2011-05-01

    A displacement sensor with controlled measuring force and its error analysis and precision verification are discussed in this paper. The displacement sensor consists of an electric induction transducer with high resolution and a voice coil motor (VCM). The measuring principles, structure, method enlarging measuring range, signal process of the sensor are discussed. The main error sources such as parallelism error and incline of framework by unequal length of leaf springs, rigidity of measuring rods, shape error of stylus, friction between iron core and other parts, damping of leaf springs, variation of voltage, linearity of induction transducer, resolution and stability are analyzed. A measuring system for surface topography with large measuring range is constructed based on the displacement sensor and 2D moving platform. Measuring precision and stability of the measuring system is verified. Measuring force of the sensor in measurement process of surface topography can be controlled at μN level and hardly changes. It has been used in measurement of bearing ball, bullet mark, etc. It has measuring range up to 2mm and precision of nm level.

  6. Displacement sensor with controlled measuring force and its error analysis and precision verification

    NASA Astrophysics Data System (ADS)

    Yang, Liangen; Wang, Xuanze; Lv, Wei

    2010-12-01

    A displacement sensor with controlled measuring force and its error analysis and precision verification are discussed in this paper. The displacement sensor consists of an electric induction transducer with high resolution and a voice coil motor (VCM). The measuring principles, structure, method enlarging measuring range, signal process of the sensor are discussed. The main error sources such as parallelism error and incline of framework by unequal length of leaf springs, rigidity of measuring rods, shape error of stylus, friction between iron core and other parts, damping of leaf springs, variation of voltage, linearity of induction transducer, resolution and stability are analyzed. A measuring system for surface topography with large measuring range is constructed based on the displacement sensor and 2D moving platform. Measuring precision and stability of the measuring system is verified. Measuring force of the sensor in measurement process of surface topography can be controlled at μN level and hardly changes. It has been used in measurement of bearing ball, bullet mark, etc. It has measuring range up to 2mm and precision of nm level.

  7. Material transport in a convective surface mixed layer under weak wind forcing

    NASA Astrophysics Data System (ADS)

    Mensa, Jean A.; Özgökmen, Tamay M.; Poje, Andrew C.; Imberger, Jörg

    2015-12-01

    Flows in the upper ocean mixed layer are responsible for the transport and dispersion of biogeochemical tracers, phytoplankton and buoyant pollutants, such as hydrocarbons from an oil spill. Material dispersion in mixed layer flows subject to diurnal buoyancy forcing and weak winds (| u10 | = 5m s-1) are investigated using a non-hydrostatic model. Both purely buoyancy-forced and combined wind- and buoyancy-forced flows are sampled using passive tracers, as well as 2D and 3D particles to explore characteristics of horizontal and vertical dispersion. It is found that the surface tracer patterns are determined by the convergence zones created by convection cells within a time scale of just a few hours. For pure convection, the results displayed the classic signature of Rayleigh-Benard cells. When combined with a wind stress, the convective cells become anisotropic in that the along-wind length scale gets much larger than the cross-wind scale. Horizontal relative dispersion computed by sampling the flow fields using both 2D and 3D passive particles is found to be consistent with the Richardson regime. Relative dispersion is an order of magnitude higher and 2D surface releases transition to Richardson regime faster in the wind-forced case. We also show that the buoyancy-forced case results in significantly lower amplitudes of scale-dependent horizontal relative diffusivity, kD(ℓ), than those reported by Okubo (1970), while the wind- and buoyancy-forced case shows a good agreement with Okubo's diffusivity amplitude, and the scaling is consistent with Richardson's 4/3rd law, kD ∼ ℓ4/3. These modeling results provide a framework for measuring material dispersion by mixed layer flows in future observational programs.

  8. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.

    PubMed

    Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I

    2016-05-01

    The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity

  9. An analysis of the forces required to drag sheep over various surfaces.

    PubMed

    Harvey, J T; Culvenor, J; Payne, W; Cowley, S; Lawrance, M; Stuart, D; Williams, R

    2002-11-01

    Some occupational health and safety hazards associated with sheep shearing are related to shearing shed design. One aspect is the floor of the catching pen, from which sheep are caught and dragged to the shearing workstation. Floors can be constructed from various materials, and may be level or gently sloping. An experiment was conducted using eight experienced shearers as participants to measure the force exerted by a shearer when dragging a sheep. Results showed that significant changes in mean dragging force occurred with changes in both surface texture and slope. The mean dragging forces for different floor textures and slopes ranged from 359 N (36.6 kg) to 423N (43.2 kg), and were close to the maximum acceptable limits for pulling forces for the most capable of males. The best floor tested was a floor sloped at 1:10 constructed of timber battens oriented parallel to the path of the drag, which resulted in a mean dragging force 63.6N (15%) lower than the worst combination.

  10. Electrostatic force microscopy studies of surface defects on GaAs/Ge films

    SciTech Connect

    Xu, Q.; Hsu, J.W.

    1999-03-01

    We apply electrostatic force microscopy (EFM) to study defects in GaAs films grown on Ge. On a GaAs film with surface antiphase boundaries (APBs), we reproducibly measure the surface contact potential (SCP) at the APBs to be (30{plus_minus}5) mV higher than that of the domains, due to the surface Fermi level at APBs being pinned closer to the valence band maximum. On a thick film which contains buried APBs and wedge-shaped depressions on the surface, we find that the SCP of the wedge-shaped depressions is (25{plus_minus}5) mV lower than that of the GaAs surface. Hence, these wedge-shaped depressions have defect electronic states different from those of APBs. The capacitance gradient ({partial_derivative}C/{partial_derivative}z) contrasts on the two samples are also shown to arise from different origins. Factors that can affect the measured SCP and {partial_derivative}C/{partial_derivative}z values are discussed. We demonstrate a new application of EFM to distinguish different types of defects by measuring variations in relative SCP (thus the work function or position of Fermi level) and/or {partial_derivative}C/{partial_derivative}z on sample surfaces. The spatial resolutions of SCP and {partial_derivative}C/{partial_derivative}z are 30 nm, limited by the tip size. {copyright} {ital 1999 American Institute of Physics.}

  11. Single Molecule Force Measurement for Protein Synthesis on the Ribosome

    NASA Astrophysics Data System (ADS)

    Uemura, Sotaro

    2008-04-01

    The ribosome is a molecular machine that translates the genetic code described on the messenger RNA (mRNA) into an amino acid sequence through repetitive cycles of transfer RNA (tRNA) selection, peptide bond formation and translocation. Although the detailed interactions between the translation components have been revealed by extensive structural and biochemical studies, it is not known how the precise regulation of macromolecular movements required at each stage of translation is achieved. Here we demonstrate an optical tweezer assay to measure the rupture force between a single ribosome complex and mRNA. The rupture force was compared between ribosome complexes assembled on an mRNA with and without a strong Shine-Dalgarno (SD) sequence. The removal of the SD sequence significantly reduced the rupture force, indicating that the SD interactions contribute significantly to the stability of the ribosomal complex on the mRNA in a pre-peptidyl transfer state. In contrast, the post-peptidyl transfer state weakened the rupture force as compared to the complex in a pre-peptidyl transfer state and it was the same for both the SD-containing and SD-deficient mRNAs. The results suggest that formation of the first peptide bond destabilizes the SD interaction, resulting in the weakening of the force with which the ribosome grips an mRNA. This might be an important requirement to facilitate movement of the ribosome along mRNA during the first translocation step. In this article, we discuss about the above new results including the introduction of the ribosome translation mechanism and the optical tweezer method.

  12. Interfacial water dielectric-permittivity-profile measurements using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Teschke, O.; Ceotto, G.; de Souza, E. F.

    2001-07-01

    The arrangement of water molecules at charged aqueous interfaces is an important question in biology, electrochemistry, and geochemistry. Theoretical studies suggest that the molecules become arranged in several layers adjacent to a solid interface. Using atomic force microscopy we have measured the water dielectric-permittivity profile perpendicular to mica surfaces. The measured variable permittivity profile starting at ɛ~4 at the interface and increasing to ɛ=80 about 10 nm from the surface suggests a reorientation of water molecule dipoles in the presence of the mica interfacial charge.

  13. Interfacial water dielectric-permittivity-profile measurements using atomic force microscopy.

    PubMed

    Teschke, O; Ceotto, G; de Souza, E F

    2001-07-01

    The arrangement of water molecules at charged aqueous interfaces is an important question in biology, electrochemistry, and geochemistry. Theoretical studies suggest that the molecules become arranged in several layers adjacent to a solid interface. Using atomic force microscopy we have measured the water dielectric-permittivity profile perpendicular to mica surfaces. The measured variable permittivity profile starting at epsilon approximately 4 at the interface and increasing to epsilon=80 about 10 nm from the surface suggests a reorientation of water molecule dipoles in the presence of the mica interfacial charge. PMID:11461268

  14. Analyzing excitation forces acting on a plate based on measured acoustic pressure.

    PubMed

    Wu, Sean F; Zhou, Pan

    2016-07-01

    This paper presents a theoretical study on "seeing" through an elastic structure to uncover the root cause of sound and vibration by using nearfield acoustical holography (NAH) and normal modes expansion. This approach is of generality because vibro-acoustic responses on the surface of a vibrating structure can always be reconstructed, exactly or approximately. With these vibro-acoustic responses, excitation forces acting on the structure can always be determined, analytically or numerically, given any set of boundary conditions. As an example, the explicit formulations for reconstructing time-harmonic excitation forces, including point, line and surface forces, and their arbitrary combinations acting on a rectangular thin plate in vacuum mounted on an infinite baffle are presented. The reason for choosing this example is that the analytic solutions to vibro-acoustic responses are available, and in-depth analyses of results are possible. Results demonstrate that this approach allows one to identify excitation forces based on measured acoustic pressures and reveal their characteristics such as locations, types and amplitudes, as if one could "see" excitation forces acting behind the plate based on acoustic pressure measured on the opposite side. This approach is extendable to general elastic structures, except that in such circumstance numerical results must be sought. PMID:27475174

  15. Intra-session and inter-day reliability of forearm surface EMG during varying hand grip forces.

    PubMed

    Hashemi Oskouei, Alireza; Paulin, Michael G; Carman, Allan B

    2013-02-01

    Surface electromyography (EMG) is widely used to evaluate forearm muscle function and predict hand grip forces; however, there is a lack of literature on its intra-session and inter-day reliability. The aim of this study was to determine reliability of surface EMG of finger and wrist flexor muscles across varying grip forces. Surface EMG was measured from six forearm flexor muscles of 23 healthy adults. Eleven of these subjects undertook inter-day test-retest. Six repetitions of five randomized isometric grip forces between 0% and 80% of maximum force (MVC) were recorded and normalized to MVC. Intra- and inter-day reliability were calculated through the intraclass correlation coefficient (ICC) and standard error of measurement (SEM). Normalized EMG produced excellent intra-session ICC of 0.90 when repeated measurements were averaged. Intra-session SEM was low at low grip forces, however, corresponding normalized SEM was high (23-45%) due to the small magnitude of EMG signals. This may limit the ability to evaluate finer forearm muscle function and hand grip forces in daily tasks. Combining EMG of functionally related muscles improved intra-session SEM, improving within-subject reliability without taking multiple measurements. Removing and replacing electrodes inter-day produced poor ICC (ICC < 0.50) but did not substantially affect SEM.

  16. Frequency-dependent viscoelasticity measurement by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Nan; Wong, Kenneth Kar Ho; de Bruyn, John R.; Hutter, Jeffrey L.

    2009-02-01

    We demonstrate a new technique for investigating viscoelastic properties of soft materials using the atomic force microscope. A small oscillatory voltage is added to the deflection signal of the atomic force microscope causing a vertical oscillatory sample motion. Monitoring the amplitude and phase of this motion allows determination of the viscous and elastic moduli of the sample as a function of frequency during contact imaging. This technique is applied to suspended poly(vinyl alcohol) nanofibers and poly(vinyl alcohol) hydrogels, giving results similar to those measured using traditional static methods. However, the moduli of both the fibers and the hydrogels show a significant frequency dependence. The Young's modulus of the fibers increases with frequency, while for the viscoelastic hydrogels, the storage modulus dominates the mechanical response at low frequency whereas the loss modulus dominates at high frequency.

  17. Interaction forces between red cells agglutinated by antibody. II. Measurement of hydrodynamic force of breakup.

    PubMed Central

    Tha, S P; Shuster, J; Goldsmith, H L

    1986-01-01

    The expressions derived in the previous paper for the respective normal, F3, and shear forces, Fshear, acting along and perpendicular to the axis of a doublet of rigid spheres, were used to determine the hydrodynamic forces required to separate two red cell spheres of antigenic type B crosslinked by the corresponding antibody. Cells were sphered and swollen in isotonic buffered glycerol containing 8 X 10(-5) M sodium dodecyl sulfate, fixed in 0.085% glutaraldehyde, and suspended in aqueous glycerol (viscosity: 15-34 mPa s), containing 0.15 M NaCl and anti-B antibody from human hyperimmune antiserum at concentrations from 0.73 to 3.56 vol%. After incubating and mixing for 12 h, doublets were observed through a microscope flowing in a 178-micron tube by gravity feed between two reservoirs. Using a traveling microtube apparatus, the doublets were tracked in a constantly accelerating flow and the translational and rotational motions were recorded on videotape until breakup occurred. From a frame by frame replay of the tape, the radial position, velocity and orientation of the doublet were obtained and the normal and shear forces of separation at breakup computed. Both forces increased significantly with increasing antiserum concentration, the mean values of F3 increasing from 0.060 to 0.197 nN, and Fshear from 0.023 to 0.072 nN. There was no significant effect of glycerol viscosity on the forces of separation. It was not possible to determine whether the shear or normal force was responsible for doublet separation. Measurements of the mean dimensionless period of rotation, TG, of doublets in suspensions containing 0.73 and 2.40% antiserum undergoing steady flow were also made to test whether the spheres were rigidly linked or capable of some independent rotation. A fairly narrow distribution in TG about the value 15.64, predicted for rigidly-linked doublets, was obtained at both antiserum concentrations. Images FIGURE 1 PMID:3801572

  18. A Novel Method for Localizing Reporter Fluorescent Beads Near the Cell Culture Surface for Traction Force Microscopy

    PubMed Central

    Knoll, Samantha G.; Ali, M. Yakut; Saif, M. Taher A.

    2014-01-01

    PA gels have long been used as a platform to study cell traction forces due to ease of fabrication and the ability to tune their elastic properties. When the substrate is coated with an extracellular matrix protein, cells adhere to the gel and apply forces, causing the gel to deform. The deformation depends on the cell traction and the elastic properties of the gel. If the deformation field of the surface is known, surface traction can be calculated using elasticity theory. Gel deformation is commonly measured by embedding fluorescent marker beads uniformly into the gel. The probes displace as the gel deforms. The probes near the surface of the gel are tracked. The displacements reported by these probes are considered as surface displacements. Their depths from the surface are ignored. This assumption introduces error in traction force evaluations. For precise measurement of cell forces, it is critical for the location of the beads to be known. We have developed a technique that utilizes simple chemistry to confine fluorescent marker beads, 0.1 and 1 µm in diameter, in PA gels, within 1.6 μm of the surface. We coat a coverslip with poly-D-lysine (PDL) and fluorescent beads. PA gel solution is then sandwiched between the coverslip and an adherent surface. The fluorescent beads transfer to the gel solution during curing. After polymerization, the PA gel contains fluorescent beads on a plane close to the gel surface. PMID:25286326

  19. A Noncontact Force Sensor Based on a Fiber Bragg Grating and Its Application for Corrosion Measurement

    PubMed Central

    Pacheco, Clara J.; Bruno, Antonio C.

    2013-01-01

    A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range. PMID:23995095

  20. A noncontact force sensor based on a fiber Bragg grating and its application for corrosion measurement.

    PubMed

    Pacheco, Clara J; Bruno, Antonio C

    2013-01-01

    A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range. PMID:23995095

  1. Dynamic contact angle measurements on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyun; Kavehpour, H. Pirouz; Rothstein, Jonathan P.

    2015-03-01

    In this paper, the dynamic advancing and receding contact angles of a series of aqueous solutions were measured on a number of hydrophobic and superhydrophobic surfaces using a modified Wilhelmy plate technique. Superhydrophobic surfaces are hydrophobic surfaces with micron or nanometer sized surface roughness. These surfaces have very large static advancing contact angles and little static contact angle hysteresis. In this study, the dynamic advancing and dynamic receding contact angles on superhydrophobic surfaces were measured as a function of plate velocity and capillary number. The dynamic contact angles measured on a smooth hydrophobic Teflon surface were found to obey the scaling with capillary number predicted by the Cox-Voinov-Tanner law, θD3 ∝ Ca. The response of the dynamic contact angle on the superhydrophobic surfaces, however, did not follow the same scaling law. The advancing contact angle was found to remain constant at θA = 160∘, independent of capillary number. The dynamic receding contact angle measurements on superhydrophobic surfaces were found to decrease with increasing capillary number; however, the presence of slip on the superhydrophobic surface was found to result in a shift in the onset of dynamic contact angle variation to larger capillary numbers. In addition, a much weaker dependence of the dynamic contact angle on capillary number was observed for some of the superhydrophobic surfaces tested.

  2. Forces of Interaction between Surfaces Bearing Looped Polymer Brushes in Good Solvent.

    SciTech Connect

    Alonzo, Jose; Mays, Jimmy; Kilbey, II, S Michael

    2009-01-01

    In a previous publication we suggested [Huang et al., Macromolecules, 2008, 41, 1745-1752] that looped polymer brushes formed by tethering chains by both ends to a surface may exhibit a polydispersity-like effect due to a distribution of distances between tethering points, leading to segment density profiles dominated by a long and diffuse exponentially-decaying tail. To study this issue in more detail, the force profiles (forces of interaction as a function of separation distance) of a series of looped polymer brushes made by preferential adsorption of poly(2-vinylpyridine)-polystyrene-poly(2-vinylpyridine) (PVP-b-PS-b-PVP) triblock copolymers of varying molecular weight and asymmetry ratio are measured using the surface forces apparatus. The force profiles are analyzed using an equivalent diblock model, which considers the triblock copolymer brushes as being comprised of two diblock copolymers of half the PS molecular weight. While scaling the dependencies of the interaction energy and distance on molecular weight, the tethering density and segment size coalesce the measured force profiles to the universal profile, it is necessary to include polydispersity in the description of the equilibrium structure. This is done using the self-consistent field model of Milner et al. [Macromolecules, 1988, 21, 2610-2619]. For looped brushes formed from the symmetric and moderately symmetric triblock copolymers we find that the polydispersity due to molecular weight distribution effectively accounts for the observed force profiles. On the other hand, agreement between the measured and predicted force profiles of looped brushes formed from highly asymmetric copolymers at low degrees-of-compression is achieved only if a much smaller value of the polydispersity index is used in the fitting. The implication of these results is that the shape of the segment density profiles is not due to the previously proposed anchor-induced polydispersity arising due to loop formation; however in

  3. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  4. Direct force measurement of the stability of poly(ethylene glycol)-polyethylenimine graft films.

    PubMed

    Nnebe, Ijeoma M; Tilton, Robert D; Schneider, James W

    2004-08-15

    The stability and passivity of poly(ethylene glycol)-polyethylenimine (PEG-PEI) graft films are important for their use as antifouling coatings in a variety of biotechnology applications. We have used AFM colloidal-probe force measurements combined with optical reflectometry to characterize the surface properties and stability of PEI and dense PEG-PEI graft films on silica. Initial contact between bare silica probes and PEI-modified surfaces yields force curves that exhibit a long-range electrostatic repulsion and short-range attraction between the surfaces, indicating spontaneous desorption of PEI in the aqueous medium. Further transfer of PEI molecules to the probe occurs with subsequent application of forces between FR = 300 and 500 microN/m. The presence of PEG reduces the adhesive properties of the PEI surface and prevents transfer of PEI molecules to the probe with continuous contact, though an initial desorption of PEI still occurs. Glutaraldehyde crosslinking of the graft films prevents both the initial desorption and subsequent transfer of the PEI, resulting in sustained attractive interaction forces of electrostatic origin between the negatively charged probe and the positively charged copolymer graft films.

  5. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    SciTech Connect

    Wang, Yuliang Bi, Shusheng; Wang, Huimin

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  6. Measurement of solution viscosity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Nabil; Nino, Diego F.; Moy, Vincent T.

    2001-06-01

    We report on studies aimed at employing the atomic force microscope (AFM) to measure the viscosity of aqueous solutions. At ambient temperature, the AFM cantilever undergoes thermal fluctuations that are highly sensitive to the local environment. Here, we present measurements of the cantilever's resonant frequency in aqueous solutions of glycerol, sucrose, ethanol, sodium chloride, polyethylene glycol, and bovine plasma albumin. The measurements revealed that variations in the resonant frequency of the cantilever in the different solutions are largely dependent on the viscosity of the medium. An application of this technique is to monitor the progression of a chemical reaction where a change in viscosity is expected to occur. An example is demonstrated through monitoring of the hydrolysis of double stranded deoxyribonucleic acid by DNase I.

  7. Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit

    NASA Astrophysics Data System (ADS)

    Buchmann, L. F.; Schreppler, S.; Kohler, J.; Spethmann, N.; Stamper-Kurn, D. M.

    2016-07-01

    A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme called synodyne detection, which reveals complex squeezing and allows the accounting of measurement backaction. Even with the optomechanical system subject to continuous measurement, such detection allows the measurement of one component of an external force with sensitivity only limited by the mechanical oscillator's thermal occupation.

  8. Rheology of fluids measured by correlation force spectroscopy

    NASA Astrophysics Data System (ADS)

    Radiom, Milad; Robbins, Brian; Honig, Christopher D. F.; Walz, John Y.; Paul, Mark R.; Ducker, William A.

    2012-04-01

    We describe a method, correlation force spectrometry (CFS), which characterizes fluids through measurement of the correlations between the thermally stimulated vibrations of two closely spaced micrometer-scale cantilevers in fluid. We discuss a major application: measurement of the rheological properties of fluids at high frequency and high spatial resolution. Use of CFS as a rheometer is validated by comparison between experimental data and finite element modeling of the deterministic ring-down of cantilevers using the known viscosity of fluids. The data can also be accurately fitted using a harmonic oscillator model, which can be used for rapid rheometric measurements after calibration. The method is non-invasive, uses a very small amount of fluid, and has no actively moving parts. It can also be used to analyze the rheology of complex fluids. We use CFS to show that (non-Newtonian) aqueous polyethylene oxide solution can be modeled approximately by incorporating an elastic spring between the cantilevers.

  9. Transformation of body force localized near the surface of a half-space into equivalent surface stresses.

    PubMed

    Rouge, Clémence; Lhémery, Alain; Ségur, Damien

    2013-10-01

    An electromagnetic acoustic transducer (EMAT) or a laser used to generate elastic waves in a component is often described as a source of body force confined in a layer close to the surface. On the other hand, models for elastic wave radiation more efficiently handle sources described as distributions of surface stresses. Equivalent surface stresses can be obtained by integrating the body force with respect to depth. They are assumed to generate the same field as the one that would be generated by the body force. Such an integration scheme can be applied to Lorentz force for conventional EMAT configuration. When applied to magnetostrictive force generated by an EMAT in a ferromagnetic material, the same scheme fails, predicting a null stress. Transforming body force into equivalent surface stresses therefore, requires taking into account higher order terms of the force moments, the zeroth order being the simple force integration over the depth. In this paper, such a transformation is derived up to the second order, assuming that body forces are localized at depths shorter than the ultrasonic wavelength. Two formulations are obtained, each having some advantages depending on the application sought. They apply regardless of the nature of the force considered. PMID:24116402

  10. Significance of the Casimir force and surface roughness for actuation dynamics of MEMS

    NASA Astrophysics Data System (ADS)

    Broer, Wijnand; Palasantzas, George; Knoester, Jasper; Svetovoy, Vitaly B.

    2013-03-01

    Using the measured optical response and surface roughness topography as inputs, we perform realistic calculations of the combined effect of Casimir and electrostatic forces on the actuation dynamics of microelectromechanical systems (MEMS). In contrast with the expectations, roughness can influence MEMS dynamics, even at distances between bodies significantly larger than the root-mean-square roughness. This effect is associated with statistically rare high asperities that can be locally close to the point of contact. It is found that even though surface roughness appears to have a detrimental effect on the availability of stable equilibria, it ensures that those equilibria can be reached more easily than in the case of flat surfaces. Hence our findings play a principal role for the stability of microdevices such as vibration sensors, switches, and other related MEM architectures operating at distances below 100 nm.

  11. Surface texture measurement for dental wear applications

    NASA Astrophysics Data System (ADS)

    Austin, R. S.; Mullen, F.; Bartlett, D. W.

    2015-06-01

    The application of surface topography measurement and characterization within dental materials science is highly active and rapidly developing, in line with many modern industries. Surface measurement and structuring is used extensively within oral and dental science to optimize the optical, tribological and biological performance of natural and biomimetic dental materials. Although there has historically been little standardization in the use and reporting of surface metrology instrumentation and software, the dental industry is beginning to adopt modern areal measurement and characterization techniques, especially as the dental industry is increasingly adopting digital impressioning techniques in order to leverage CAD/CAM technologies for the design and construction of dental restorations. As dental treatment becomes increasingly digitized and reliant on advanced technologies such as dental implants, wider adoption of standardized surface topography and characterization techniques will become evermore essential. The dental research community welcomes the advances that are being made in surface topography measurement science towards realizing this ultimate goal.

  12. Yield stress and elasticity influence on surface tension measurements.

    PubMed

    Jørgensen, Loren; Le Merrer, Marie; Delanoë-Ayari, Hélène; Barentin, Catherine

    2015-07-01

    We have performed surface tension measurements on carbopol gels of different concentrations and yield stresses. Our setup, based on the force exerted by a capillary bridge on two parallel plates, allows us to measure an apparent surface tension of the complex fluid and to investigate the influence of flow history. More precisely the apparent surface tension measured after stretching the bridge is always higher than after compressing it. The difference between the two values is due to the existence of a yield stress in the fluid. The experimental observations are successfully reproduced with a simple elasto-plastic model. The shape of successive stretching-compression cycles can be described by taking into account the yield stress and the elasticity of the gel. We show that the surface tension γLV of yield stress fluids is the mean of the apparent surface tension values only if the elastic modulus is high compared to the yield stress. This work highlights that measurements of thermodynamic quantities are challenged by the fluid out-of-equilibrium state implied by jamming, even at small scales where the shape of the bridge is driven by surface energy. Therefore setups allowing for deformation in opposite directions are relevant for surface tension measurements on yield stress fluids.

  13. Hole-to-surface resistivity measurements.

    USGS Publications Warehouse

    Daniels, J.J.

    1983-01-01

    Hole-to-surface resistivity measurements over a layered volcanic tuff sequence illustrate procedures for gathering, reducing, and interpreting hole-to-surface resistivity data. The magnitude and direction of the total surface electric field resulting from a buried current source is calculated from orthogonal potential difference measurements for a grid of closely spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Resistivity anomalies can be enhanced by calculating the difference between apparent resistivities calculated from the total surface electric field and apparent resistivities for a layered earth model.-from Author

  14. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions.

    PubMed Central

    Müller, D J; Engel, A

    1997-01-01

    In biological applications of atomic force microscopy, the different surface properties of the biological sample and its support become apparent. Observed height differences between the biomolecule and its supporting surface are thus not only of structural origin, but also depend on the different sample-tip and support-tip interactions. This can result in negative or positive contributions to the measured height, effects that are described by the DLVO (Derjaguin, Landau, Verwey, Overbeek) theory. Experimental verification shows that the electrostatic interactions between tip and sample can strongly influence the result obtained. To overcome this problem, pH and electrolyte concentration of the buffer solution have to be adjusted to screen out electrostatic forces. Under these conditions, the tip comes into direct contact with the surface of support and biological system, even when low forces required to prevent sample deformation are applied. In this case, the measured height can be related to the thickness of the native biological structure. The observed height dependence of the macromolecules on electrolyte concentration makes it possible to estimate surface charge densities. Images FIGURE 1 FIGURE 2 FIGURE 8 FIGURE 10 FIGURE 11 PMID:9284330

  15. Roll Damping Derivatives from Generalized Lifting-Surface Theory and Wind Tunnel Forced-Oscillation Tests

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S; Murphy, Patrick C.

    2014-01-01

    Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.

  16. Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy.

    PubMed

    Martínez, Nicolás F; García, Ricardo

    2006-04-14

    By recording the phase angle difference between the excitation force and the tip response in amplitude modulation AFM it is possible to image compositional variations in heterogeneous samples. In this contribution we address some of the experimental issues relevant to perform phase contrast imaging measurements. Specifically, we study the dependence of the phase shift on the tip-surface separation, interaction regime, cantilever parameters, free amplitude and tip-surface dissipative processes. We show that phase shift measurements can be converted into energy dissipation values. Energy dissipation curves show a maximum (∼10 eV/cycle) with the amplitude ratio. Furthermore, energy dissipation maps provide a robust method to image material properties because they do not depend directly on the tip-surface interaction regime. Compositional contrast images are illustrated by imaging conjugated molecular islands deposited on silicon surfaces. PMID:21727409

  17. Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy.

    PubMed

    Martínez, Nicolás F; García, Ricardo

    2006-04-14

    By recording the phase angle difference between the excitation force and the tip response in amplitude modulation AFM it is possible to image compositional variations in heterogeneous samples. In this contribution we address some of the experimental issues relevant to perform phase contrast imaging measurements. Specifically, we study the dependence of the phase shift on the tip-surface separation, interaction regime, cantilever parameters, free amplitude and tip-surface dissipative processes. We show that phase shift measurements can be converted into energy dissipation values. Energy dissipation curves show a maximum (∼10 eV/cycle) with the amplitude ratio. Furthermore, energy dissipation maps provide a robust method to image material properties because they do not depend directly on the tip-surface interaction regime. Compositional contrast images are illustrated by imaging conjugated molecular islands deposited on silicon surfaces.

  18. Surface texture measurement for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Triantaphyllou, Andrew; Giusca, Claudiu L.; Macaulay, Gavin D.; Roerig, Felix; Hoebel, Matthias; Leach, Richard K.; Tomita, Ben; Milne, Katherine A.

    2015-06-01

    The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting.

  19. Surface forces in model oil-in-water emulsions stabilized by proteins.

    PubMed

    Dimitrova, Tatiana D; Leal-Calderon, Fernando; Gurkov, Theodor D; Campbell, Bruce

    2004-05-20

    We have employed two complementary techniques, namely, the magnetic chaining technique (MCT) and a variant of the Mysels cell to obtain data concerning the repulsive interaction profiles between protein layers formed at liquid-liquid interfaces. For BSA-stabilized systems, a long-ranged repulsion is operative. It is not of an electrostatic origin, but originates most probably from the formation of multiple protein layers at the interface. The interactions between beta-casein layers formed at the water/oil interface are governed by electrostatic repulsion. Due to the relatively large final thickness of approximately 20 nm, the van der Waals contribution to the total disjoining pressure is inferior. The oscillatory component is also negligible for the studied protein concentration of 0.1 wt.%. For both proteins, the extracted information describes the situation where the protein-covered surfaces are approached/manipulated in a quasi-static manner. We observe a very good agreement between the data obtained from MCT and Mysels cell. The comparison of our results with literature data from surface force apparatus (SFA) experiments reveals a substantial difference in the force laws existing between protein-stabilized liquid droplets and mica surfaces covered by proteins. We explain this discrepancy in terms of the different protein absorption on solid and liquid interfaces. We also measured the threshold force necessary to induce irreversible flocculation in beta-casein and beta-lactoglobulin (BLG) stabilized emulsions. Under similar conditions, the threshold flocculation force is higher for beta-casein than for BLG stabilized droplets. The flocs formed from BLG covered droplets are tight and remain without visible change for at least 48 h. We speculate that the flocculation is due to formation of protein aggregates between the approaching droplets. PMID:15072930

  20. Comparison of the lateral retention forces on sessile and pendant water drops on a solid surface

    NASA Astrophysics Data System (ADS)

    de la Madrid, Rafael; Whitehead, Taylor; Irwin, George M.

    2015-06-01

    We present a simple experiment that demonstrates how a water drop hanging from a Plexiglas surface (pendant drop) experiences a lateral retention force that is comparable to, and in some cases larger than, the lateral retention force on a drop resting on top of the surface (sessile drop). The experiment also affords a simple demonstration of the Coriolis effect in two dimensions.

  1. Molecular-scale quantitative charge density measurement of biological molecule by frequency modulation atomic force microscopy in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Umeda, Kenichi; Kobayashi, Kei; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi

    2015-07-01

    Surface charge distributions on biological molecules in aqueous solutions are essential for the interactions between biomolecules, such as DNA condensation, antibody-antigen interactions, and enzyme reactions. There has been a significant demand for a molecular-scale charge density measurement technique for better understanding such interactions. In this paper, we present the local electric double layer (EDL) force measurements on DNA molecules in aqueous solutions using frequency modulation atomic force microscopy (FM-AFM) with a three-dimensional force mapping technique. The EDL forces measured in a 100 mM KCl solution well agreed with the theoretical EDL forces calculated using reasonable parameters, suggesting that FM-AFM can be used for molecular-scale quantitative charge density measurements on biological molecules especially in a highly concentrated electrolyte.

  2. Proximity effect on hydrodynamic interaction between a sphere and a plane measured by force feedback microscopy at different frequencies

    NASA Astrophysics Data System (ADS)

    Carpentier, Simon; Rodrigues, Mario S.; Charlaix, Elisabeth; Chevrier, Joël

    2015-07-01

    In this article, we measure the viscous damping G″, and the associated stiffness G', of a liquid flow in sphere-plane geometry over a large frequency range. In this regime, the lubrication approximation is expected to dominate. We first measure the static force applied to the tip. This is made possible thanks to a force feedback method. Adding a sub-nanometer oscillation of the tip, we obtain the dynamic part of the interaction with solely the knowledge of the lever properties in the experimental context using a linear transformation of the amplitude and phase change. Using a Force Feedback Microscope (FFM), we are then able to measure simultaneously the static force, the stiffness, and the dissipative part of the interaction in a broad frequency range using a single AFM probe. Similar measurements have been performed by the Surface Force Apparatus (SFA) with a probe radius hundred times bigger. In this context, the FFM can be called nano-SFA.

  3. Unsteady force measurements in sphere flow from subcritical to supercritical Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Norman, A. K.; McKeon, B. J.

    2011-11-01

    The flow over a smooth sphere is examined in the Reynolds number range of 5.0 × 104 < Re < 5.0 × 105 via measurements of the fluctuating forces and particle image velocimetry measurements in a planar cut of the velocity field. Comprehensive studies of the statistics and spectra of the forces are presented for a range of subcritical and supercritical Reynolds numbers. While the subcritical lateral force spectra are dominated by activity corresponding to the large-scale vortex shedding frequency at a Strouhal number of approximately 0.18, there is no such peak apparent in the supercritical spectra, although resolution effects may become important in this region. Nor does the large-scale vortex shedding appear to have a significant effect on the drag force fluctuations at either sub- or super-critical Reynolds numbers. A simple double spring model is shown to capture the main features of the lateral force spectra. The low-frequency force fluctuations observed in earlier computational studies are shown to have important implications for statistical convergence, and in particular, the apparent mean side force observed in earlier studies. At least one thousand dimensionless time units are required for reasonable estimates of the second and higher moments below the critical Reynolds number and even more for supercritical flow, stringent conditions for computational studies. Lastly, investigation of the relationship between the motion of the instantaneous wake shape, defined via the local position where the streamwise velocity is equal to half the freestream value, and the in-plane lateral force for subcritical flow reveals a significant negative correlation throughout the near wake, which is shown to be related to a structure inferred to arise from the large-scale vortex shedding convecting downstream at 61% of the freestream velocity. In addition to its utility in understanding basic sphere flow, the apparatus is also a testbed that will be used in future studies

  4. Forces driving the attachment of Staphylococcus epidermidis to fibrinogen-coated surfaces.

    PubMed

    Herman, Philippe; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Geoghegan, Joan A; Vanzieleghem, Thomas; Foster, Timothy J; Hols, Pascal; Mahillon, Jacques; Dufrêne, Yves F

    2013-10-22

    Cell surface proteins of bacteria play essential roles in mediating the attachment of pathogens to host tissues and, therefore, represent key targets for anti-adhesion therapy. In the opportunistic pathogen Staphylococcus epidermidis , the adhesion protein SdrG mediates attachment of bacteria to the blood plasma protein fibrinogen (Fg) through a binding mechanism that is not yet fully understood. We report the direct measurement of the forces driving the adhesion of S. epidermidis to Fg-coated substrates using single-cell force spectroscopy. We found that the S. epidermidis -Fg adhesion force is of ~150 pN magnitude and that the adhesion strength and adhesion probability strongly increase with the interaction time, suggesting that the adhesion process involves time-dependent conformational changes. Control experiments with mutant bacteria lacking SdrG and substrates coated with the Fg β(6-20) peptide, instead of the full Fg protein, demonstrate that these force signatures originate from the rupture of specific bonds between SdrG and its peptide ligand. Collectively, our results are consistent with a dynamic, multi-step ligand-binding mechanism called "dock, lock, and latch".

  5. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    SciTech Connect

    Bietti, Sergio Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano; Fedorov, Alexey

    2014-09-21

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E{sub A}=1.31±0.15 eV, a diffusivity prefactor of D₀=0.53(×2.1±1) cm² s⁻¹ that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  6. Scanning-force techniques to monitor time-dependent changes in topography and adhesion force of proteins on surfaces.

    PubMed

    Mondon, M; Berger, S; Ziegler, C

    2003-04-01

    Scanning-force microscopy (SFM) investigations were conducted to probe the influences of the interactions of proteins with surfaces relevant in medicine. These interactions are an important feature in the area of biofilm formation. The adsorption of proteins leads to changes in topography, which was monitored for the build up of protein layers of hen egg-white lysozyme and bovine serum albumin (BSA) on mica in real time in phosphate-buffered aqueous solution over a time period of 10 min. Phase imaging was additionally applied to compare material contrasts and to evaluate this method for further application in this field. The adhesion forces that develop on a time scale below 20 s between a protein-modified SFM tip and titanium surfaces (TiO(2), TiAl6V4 and TiAl6Nb7) were investigated. The influences of the parameters loading force and interaction time between the protein and the surface were monitored as well as the influence of protein structure. The interaction time dependency of the adhesion force could be described with a kinetic model of two consecutive first-order reactions. For the maximal adhesion force a correlation to the ratio of the amino acids cysteine, proline and glycine has been proposed.

  7. Techniques for Measuring Surface Potentials in Space

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda Neergaard

    2015-01-01

    Materials exposed to the space plasma environment charge to a net potential relative to the ambient plasma. The charging process is due to differential currents to the material surface that results in a net surface charge density. While this process is termed "spacecraft surface charging" when applied to aerospace hardware, it also applies to the surfaces of astronomical objects in direct contact with the space plasma environment including a number of planetary bodies, asteroids, and dust particles. The ability to measure surface potentials is important to many techniques used in conducting fundamental heliospheric science, spacecraft engineering operations, and space technology development activities. This presentation provides a survey of current technologies used to measure surface potentials of spacecraft and planetary bodies with examples of their application to space science and technology programs.

  8. Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces

    PubMed Central

    Endlein, Thomas; Ji, Aihong; Samuel, Diana; Yao, Ning; Wang, Zhongyuan; Barnes, W. Jon P.; Federle, Walter; Kappl, Michael; Dai, Zhendong

    2013-01-01

    To live and clamber about in an arboreal habitat, tree frogs have evolved adhesive pads on their toes. In addition, they often have long and slender legs to facilitate not only long jumps, but also to bridge gaps between leaves when climbing. Both adhesive pads and long limbs are used in conjunction, as we will show in this study. Previous research has shown that tree frogs change from a crouched posture (where the limbs are close to the body) to a sprawled posture with extended limbs when clinging on to steeper inclines such as vertical or overhanging slopes. We investigated this change in posture in White's tree frogs (Litoria caerulea) by challenging the frogs to cling onto a tiltable platform. The platform consisted of an array of 24 three-dimensional force transducers, which allowed us to measure the ground reaction forces of the frogs during a tilt. Starting from a crouched resting position, the normal forces on the forelimbs changed sign and became increasingly negative with increasing slope angle of the platform. At about 106°±12°, tilt of the platform the frogs reacted by extending one or two of their limbs outwards. At a steeper angle (131°±11°), the frogs spread out all their limbs sideways, with the hindlimbs stretched out to their maximum reach. Although the extension was strongest in the lateral direction, limbs were significantly extended in the fore–aft direction as well. With the extension of the limbs, the lateral forces increased relative to the normal forces. The large contribution of the in-plane forces helped to keep the angle between the force vector and the platform small. The Kendall theory for the peeling of adhesive tape predicts that smaller peel angles lead to higher attachment forces. We compare our data with the predictions of the Kendall model and discuss possible implications of the sliding of the pads on the surface. The forces were indeed much larger for smaller angles and thus can be explained by peeling theory. PMID

  9. Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces.

    PubMed

    Endlein, Thomas; Ji, Aihong; Samuel, Diana; Yao, Ning; Wang, Zhongyuan; Barnes, W Jon P; Federle, Walter; Kappl, Michael; Dai, Zhendong

    2013-03-01

    To live and clamber about in an arboreal habitat, tree frogs have evolved adhesive pads on their toes. In addition, they often have long and slender legs to facilitate not only long jumps, but also to bridge gaps between leaves when climbing. Both adhesive pads and long limbs are used in conjunction, as we will show in this study. Previous research has shown that tree frogs change from a crouched posture (where the limbs are close to the body) to a sprawled posture with extended limbs when clinging on to steeper inclines such as vertical or overhanging slopes. We investigated this change in posture in White's tree frogs (Litoria caerulea) by challenging the frogs to cling onto a tiltable platform. The platform consisted of an array of 24 three-dimensional force transducers, which allowed us to measure the ground reaction forces of the frogs during a tilt. Starting from a crouched resting position, the normal forces on the forelimbs changed sign and became increasingly negative with increasing slope angle of the platform. At about 106° ± 12°, tilt of the platform the frogs reacted by extending one or two of their limbs outwards. At a steeper angle (131° ± 11°), the frogs spread out all their limbs sideways, with the hindlimbs stretched out to their maximum reach. Although the extension was strongest in the lateral direction, limbs were significantly extended in the fore-aft direction as well. With the extension of the limbs, the lateral forces increased relative to the normal forces. The large contribution of the in-plane forces helped to keep the angle between the force vector and the platform small. The Kendall theory for the peeling of adhesive tape predicts that smaller peel angles lead to higher attachment forces. We compare our data with the predictions of the Kendall model and discuss possible implications of the sliding of the pads on the surface. The forces were indeed much larger for smaller angles and thus can be explained by peeling theory.

  10. Measuring Light Reflectance of BGO Crystal Surfaces

    SciTech Connect

    Janecek, Martin; Moses, William

    2008-07-28

    A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal?s light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air- coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2? of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 10^5:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.

  11. A comparison of several surface finish measurement methods as applied to ground ceramic and metal surfaces

    SciTech Connect

    Blau, P.J.; Martin, R.L.; Riester, L.

    1996-01-01

    Surface finish is one of the most common measures of surface quality of ground ceramics and metal parts and a wide variety of methods and parameters have been developed to measure it. The purpose of this investigation was to compare the surface roughness parameters obtained on the same two specimens from three different types of measuring instruments: a traditional mechanical stylus system, a non-contact laser scanning system, and the atomic force microscope (two different AFM systems were compared). The same surface-ground silicon nitride and Inconel 625 alloy specimens were used for all measurements in this investigation. Significant differences in arithmetic average roughness, root-mean-square roughness, and peak-to-valley roughness were obtained when comparing data from the various topography measuring instruments. Non-contact methods agreed better with the others on the metal specimen than on the ceramic specimen. Reasons for these differences include the effective dimensions and geometry of the probe with respect to the surface topography; the reflectivity of the surface, and the type of filtering scheme Results of this investigation emphasize the importance of rigorously specifying the manner of surface roughness measurement when either reporting roughness data or when requesting that roughness data be provided.

  12. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  13. Surface temperature measurement in semitransparent media

    SciTech Connect

    Roissac, F.Z.; Osman, T.T.; Sacadura, J.F. )

    1993-12-01

    The surface temperature of a semitransparent wall, placed in a convective medium and exposed to external radiation (e.g., building window glasses) can be well approached using a remote sensing technique associated with a correction model. Radiometric measurement is first carried out on an opaque small size black target, which is glued on the concerned surface. This measurement can then be corrected to get the 'real' temperature through a model solving a combined conduction-radiation heat transfer problem. 13 refs.

  14. Surface dose measurement using TLD powder extrapolation

    SciTech Connect

    Rapley, P. . E-mail: rapleyp@tbh.net

    2006-10-01

    Surface/near-surface dose measurements in therapeutic x-ray beams are important in determining the dose to the dermal and epidermal skin layers during radiation treatment. Accurate determination of the surface dose is a difficult but important task for proper treatment of patients. A new method of measuring surface dose in phantom through extrapolation of readings from various thicknesses of thermoluminescent dosimeter (TLD) powder has been developed and investigated. A device was designed, built, and tested that provides TLD powder thickness variation to a minimum thickness of 0.125 mm. Variations of the technique have been evaluated to optimize precision with consideration of procedural ease. Results of this study indicate that dose measurements (relative to D{sub max}) in regions of steep dose gradient in the beam axis direction are possible with a precision (2 standard deviations [SDs]) as good as {+-} 1.2% using the technique. The dosimeter was developed and evaluated using variation to the experimental method. A clinically practical procedure was determined, resulting in measured surface dose of 20.4 {+-} 2% of the D{sub max} dose for a 10 x 10 cm{sup 2}, 80-cm source-to-surface distance (SSD), Theratron 780 Cobalt-60 ({sup 60}C) beam. Results obtained with TLD powder extrapolation compare favorably to other methods presented in the literature. The TLD powder extrapolation tool has been used clinically at the Northwestern Ontario Regional Cancer Centre (NWORCC) to measure surface dose effects under a number of conditions. Results from these measurements are reported. The method appears to be a simple and economical tool for surface dose measurement, particularly for facilities with TLD powder measurement capabilities.

  15. Forcing and response in simulated 20th and 21st century surface energy and precipitation trends

    NASA Astrophysics Data System (ADS)

    Andrews, Timothy

    2009-09-01

    A simple methodology is applied to a transient integration of the Met Office Hadley Centre Global Environmental Model version1 (UKMO-HadGEM1) fully coupled atmosphere-ocean general circulation model in order to separate forcing from climate response in simulated 20th century and future global mean surface energy and precipitation trends. Forcings include any fast responses that are caused by the forcing agent and that are independent of global temperature change. Results reveal that surface radiative forcing is dominated by shortwave forcing over the 20th and 21st centuries, which is strongly negative. However, when fast responses of surface turbulent heat fluxes are separated from climate feedbacks, and included in the forcing, net surface forcing becomes positive. The nonradiative forcings are the result of rapid surface and tropospheric adjustments and impact 20th century, as well as future, evaporation and precipitation trends. A comparison of energy balance changes in eight different climate models finds that all models exhibit a positive surface energy imbalance by the late 20th century. However, there is considerable disagreement in how this imbalance is partitioned between the longwave, shortwave, latent heat and sensible heat fluxes. In particular, all models show reductions in shortwave radiation absorbed at the surface by the late 20th century compared to the pre-industrial control state, but the spread of this reduction leads to differences in the sign of their latent heat flux changes and thus in the sign of their hydrological responses.

  16. Multi-dimensional modelling of electrostatic force distance curve over dielectric surface: Influence of tip geometry and correlation with experiment

    SciTech Connect

    Boularas, A. Baudoin, F.; Villeneuve-Faure, C.; Clain, S.; Teyssedre, G.

    2014-08-28

    Electric Force-Distance Curves (EFDC) is one of the ways whereby electrical charges trapped at the surface of dielectric materials can be probed. To reach a quantitative analysis of stored charge quantities, measurements using an Atomic Force Microscope (AFM) must go with an appropriate simulation of electrostatic forces at play in the method. This is the objective of this work, where simulation results for the electrostatic force between an AFM sensor and the dielectric surface are presented for different bias voltages on the tip. The aim is to analyse force-distance curves modification induced by electrostatic charges. The sensor is composed by a cantilever supporting a pyramidal tip terminated by a spherical apex. The contribution to force from cantilever is neglected here. A model of force curve has been developed using the Finite Volume Method. The scheme is based on the Polynomial Reconstruction Operator—PRO-scheme. First results of the computation of electrostatic force for different tip–sample distances (from 0 to 600 nm) and for different DC voltages applied to the tip (6 to 20 V) are shown and compared with experimental data in order to validate our approach.

  17. Free-molecule heat transfer in a conservative force field between parallel surfaces

    NASA Astrophysics Data System (ADS)

    Hardt, Steffen

    2016-05-01

    The heat flux between parallel surfaces is computed analytically assuming that heat is transferred by particles moving ballistically under the influence of a conservative force field. Particle reflection at the surfaces is governed by a Maxwell-type boundary condition. It is found that the force field can give rise to a substantial reduction, but also to an enhancement of the heat flux, depending on the ratio of the temperatures at the two surfaces. The influence of the accommodation coefficients is studied. An asymmetry introduced by the force field and/or the boundary conditions at the two surfaces causes a significant heat-flux rectification, characteristic for a thermal diode.

  18. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    SciTech Connect

    Ricchiazzi, P.; O'Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The ef