Biomechanics of pressure ulcer in body tissues interacting with external forces during locomotion.
Mak, Arthur F T; Zhang, Ming; Tam, Eric W C
2010-08-15
Forces acting on the body via various external surfaces during locomotion are needed to support the body under gravity, control posture, and overcome inertia. Examples include the forces acting on the body via the seating surfaces during wheelchair propulsion, the forces acting on the plantar foot tissues via the insole during gait, and the forces acting on the residual-limb tissues via the prosthetic socket during various movement activities. Excessive exposure to unwarranted stresses at the body-support interfaces could lead to tissue breakdowns commonly known as pressure ulcers, often presented as deep-tissue injuries around bony prominences or as surface damage on the skin. In this article, we review the literature that describes how the involved tissues respond to epidermal loading, taking into account both experimental and computational findings from in vivo and in vitro studies. In particular, we discuss related literature about internal tissue deformation and stresses, microcirculatory responses, and histological, cellular, and molecular observations.
Surface Stresses and a Force Balance at a Contact Line.
Liang, Heyi; Cao, Zhen; Wang, Zilu; Dobrynin, Andrey V
2018-06-26
Results of the coarse-grained molecular dynamics simulations are used to show that the force balance analysis at the triple-phase contact line formed at an elastic substrate has to include a quartet of forces: three surface tensions (surface free energies) and an elastic force per unit length. In the case of the contact line formed by a droplet on an elastic substrate an elastic force is due to substrate deformation generated by formation of the wetting ridge. The magnitude of this force f el is proportional to the product of the ridge height h and substrate shear modulus G. Similar elastic line force should be included in the force analysis at the triple-phase contact line of a solid particle in contact with an elastic substrate. For this contact problem elastic force obtained from contact angles and surface tensions is a sum of the elastic forces acting from the side of a solid particle and an elastic substrate. By considering only three line forces acting at the triple-phase contact line, one implicitly accounts the bulk stress contribution as a part of the resultant surface stresses. This "contamination" of the surface properties by a bulk contribution could lead to unphysically large values of the surface stresses in soft materials.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Kaukler, William; Whitaker, Ann (Technical Monitor)
2001-01-01
A Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. A mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. Ultimately, the goal is to measure the forces between a particle and the crystal-melt interface. Two modes of AFM operation are considered in this paper - a stationary and a "tapping" one. The continuous mechanics approach to model tip-surface interaction is presented. At microscopic levels, tip contamination and details of tip-surface interaction are modeled using a molecular dynamics approach for the case of polystyrene - succinonitrile contact. Integration of the mesoscale model with a molecular dynamic model is discussed.
Generation Mechanism of Work Hardened Surface Layer in Metal Cutting
NASA Astrophysics Data System (ADS)
Hikiji, Rikio; Kondo, Eiji; Kawagoishi, Norio; Arai, Minoru
Finish machining used to be carried out in grinding, but it is being replaced by cutting with very small undeformed chip thickness. In ultra precision process, the effects of the cutting conditions and the complicated factors on the machined surface integrity are the serious problems. In this research, work hardened surface layer was dealt with as an evaluation of the machined surface integrity and the effect of the mechanical factors on work hardening was investigated experimentally in orthogonal cutting. As a result, it was found that work hardened surface layer was affected not only by the shear angle varied under the cutting conditions and the thrust force of cutting resistance, but also by the thrust force acting point, the coefficient of the thrust force and the compressive stress equivalent to the bulk hardness. Furthermore, these mechanical factors acting on the depth of the work hardened surface layer were investigated with the calculation model.
Energy cost and pole forces during Nordic walking under different surface conditions.
Schiffer, Thorsten; Knicker, Axel; Dannöhl, Regine; Strüder, Heiko K
2009-03-01
The purpose of the study was to identify the effect of three different surfaces on energy consumption and the forces acting on the walking poles during ground contact in Nordic walking (NW). Thirteen female NW instructors (age = 26 +/- 4 yr, weight = 58.5 +/- 4.2 kg, height = 168.1 +/- 4.6 cm) volunteered in the study. The subjects walked a distance of 1200 m at a controlled, constant speed of 2.2 m x s(-1) on each of a concrete surface (C), an artificial athletics track (A), and a naturally grown soccer lawn (G). They used NW poles with inbuilt strain gauge force transducers to measure ground reaction forces acting along the long axes of the poles. Oxygen uptake, capillary blood lactate (La), HR, and RPE were measured before and after the tests. Impact forces, maximum forces, force rates during ground contact identified from the registered force time histories, displayed significant differences related to the surface conditions. However, force time integrals did not show surface-related differences. Relative oxygen consumption showed significant differences between NW on C and on G whereas no surface-related differences could be identified between the surface conditions for the parameters La, HR, and RPE. Our data indicate that the impulse that is generated by the poles on the subjects is identical between the varying surfaces. Because there are differences for the oxygen uptake between C and G, the main regulator for the propulsion must be the musculature of the lower extremities. The work of the upper extremities seems to be a luxury effort for Nordic walkers with a proper technique.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Kaukler, William F.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. At mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. The model of cantilever oscillations is applicable to both non-contact and "tapping" AFM. This model can be farther enhanced to describe nanoparticle manipulation by cantilever. At microscopic level tip contamination and details of tip-surface interaction can be simulated using molecular dynamics approach. Integration of mesoscale model with molecular dynamic model is discussed.
Suzuki, Yuma; Shimizu, Tetsuhide; Yang, Ming
2017-01-01
The quantitative evaluation of the biomolecules transport with multi-physics in nano/micro scale is demanded in order to optimize the design of microfluidics device for the biomolecules detection with high detection sensitivity and rapid diagnosis. This paper aimed to investigate the effectivity of the computational simulation using the numerical model of the biomolecules transport with multi-physics near a microchannel surface on the development of biomolecules-detection devices. The biomolecules transport with fluid drag force, electric double layer (EDL) force, and van der Waals force was modeled by Newtonian Equation of motion. The model validity was verified in the influence of ion strength and flow velocity on biomolecules distribution near the surface compared with experimental results of previous studies. The influence of acting forces on its distribution near the surface was investigated by the simulation. The trend of its distribution to ion strength and flow velocity was agreement with the experimental result by the combination of all acting forces. Furthermore, EDL force dominantly influenced its distribution near its surface compared with fluid drag force except for the case of high velocity and low ion strength. The knowledges from the simulation might be useful for the design of biomolecules-detection devices and the simulation can be expected to be applied on its development as the design tool for high detection sensitivity and rapid diagnosis in the future.
Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates
NASA Technical Reports Server (NTRS)
Walton, Otis R.; Johnson, Scott M.
2010-01-01
The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging. Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.
Method of Determining the Aerodynamic Characteristics of a Flying Vehicle from the Surface Pressure
NASA Astrophysics Data System (ADS)
Volkov, V. F.; Dyad'kin, A. A.; Zapryagaev, V. I.; Kiselev, N. P.
2017-11-01
The paper presents a description of the procedure used for determining the aerodynamic characteristics (forces and moments acting on a model of a flying vehicle) obtained from the results of pressure measurements on the surface of a model of a re-entry vehicle with operating retrofire brake rockets in the regime of hovering over a landing surface is given. The algorithm for constructing the interpolation polynomial over interpolation nodes in the radial and azimuthal directions using the assumption on the symmetry of pressure distribution over the surface is presented. The aerodynamic forces and moments at different tilts of the vehicle are obtained. It is shown that the aerodynamic force components acting on the vehicle in the regime of landing and caused by the action of the vertical velocity deceleration nozzle jets are negligibly small in comparison with the engine thrust.
Schwingel, Melanie; Bastmeyer, Martin
2013-01-01
Focal contacts act as mechanosensors allowing cells to respond to their biomechanical environment. Force transmission through newly formed contact sites is a highly dynamic process requiring a stable link between the intracellular cytoskeleton and the extracellular environment. To simultaneously investigate cellular traction forces in several individual maturing adhesion sites within the same cell, we established a custom-built multiple trap optical tweezers setup. Beads functionalized with fibronectin or RGD-peptides were placed onto the apical surface of a cell and trapped with a maximum force of 160 pN. Cells form adhesion contacts around the beads as demonstrated by vinculin accumulation and start to apply traction forces after 30 seconds. Force transmission was found to strongly depend on bead size, surface density of integrin ligands and bead location on the cell surface. Highest traction forces were measured for beads positioned on the leading edge. For mouse embryonic fibroblasts, traction forces acting on single beads are in the range of 80 pN after 5 minutes. If two beads were positioned parallel to the leading edge and with a center-to-center distance less than 10 µm, traction forces acting on single beads were reduced by 40%. This indicates a spatial and temporal coordination of force development in closely related adhesion sites. We also used our setup to compare traction forces, retrograde transport velocities, and migration velocities between two cell lines (mouse melanoma and fibroblasts) and primary chick fibroblasts. We find that maximal force development differs considerably between the three cell types with the primary cells being the strongest. In addition, we observe a linear relation between force and retrograde transport velocity: a high retrograde transport velocity is associated with strong cellular traction forces. In contrast, migration velocity is inversely related to traction forces and retrograde transport velocity. PMID:23372781
NASA Astrophysics Data System (ADS)
Walton, Otis R.
2007-04-01
This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.
NASA Technical Reports Server (NTRS)
Walton, Otis R.
2007-01-01
This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.
Dynamics of premelted liquid films
NASA Astrophysics Data System (ADS)
Worster, Grae
2005-11-01
On small scales, surface tension forces are enormously powerful. When such forces act on every grain of a fine soil, they can move mountains, quite literally, in a process called frost heave. In fact, it is not surface tension per se but the intermolecular forces that underlie surface tension that also cause frost heave in partially solidified soils. In detail, these forces cause the premelting of solids. For example, at temperatures below 0^oC, water is solid (ice) in bulk but remains liquid in thin films adjacent to surfaces in contact with many other materials, such as silica. The intermolecular forces, such as the van der Waals force, acting between the materials on either side of an interface can cause interfacial premelting and simultaneously produce a strong normal stress across the premelted film. Whether these stresses cause large-scale motions relies significantly on the fluid mechanics of the microscopic films. I shall introduce the fundamental thermodynamic principles of premelting and illustrate its fluid mechanical consequences with simple theoretical models and experimental results. Applications of these ideas include the rejection of particulate matter during solidification, with consequences for the fabrication of composite materials, the freezing of colloidal suspensions, with consequences for the cryopreservation of biological systems, and the evolution of grain boundaries, with consequences for the redistribution of climate proxies sequestered in the Earth's ice sheets.
Influence of boundary conditions on the hydrodynamic forces of an oscillating sphere
NASA Astrophysics Data System (ADS)
Mirauda, Domenica; Negri, Marco; Martinelli, Luca; Malavasi, Stefano
2018-06-01
The design of submerged structures in sea currents presents certain problems that are not only connected to the shape of the obstacle but also to the number of acting forces as well as the correct modelling of the structures dynamic response. Currently, the common approach is that of integrated numerical modelling, which considers the contribution of both current and structure. The reliability of such an approach is better verified with experimental tests performed on models of simple geometry. On the basis of these considerations, the present work analyses the hydrodynamic forces acting on a sphere, which is characterised by a low mass ratio and damping. The sphere is immersed in a free surface flow and can oscillate along the streamwise and transverse flow direction. It is located at three different positions inside the current: close to the channel bottom, near the free surface and in the middle, and equally distant from both the bottom and free surface. The obtained results for different boundaries and flow kinematic conditions show a relevant influence of the free surface on the hydrodynamic forces along both the streamwise and transverse flow directions.
Anisotropic particles near surfaces: Propulsion force and friction
NASA Astrophysics Data System (ADS)
Müller, Boris; Krüger, Matthias
2016-03-01
We theoretically study the phenomenon of propulsion through Casimir forces in thermal nonequilibrium. Using fluctuational electrodynamics, we derive a formula for the propulsion force for an arbitrary small object in two scenarios: (i) for the object being isolated, and (ii) for the object being close to a planar surface. In the latter case, the propulsion force (i.e., the force parallel to the surface) increases with decreasing distance, i.e., it couples to the near field. We numerically calculate the lateral force acting on a hot spheroid near a surface and show that it can be as large as the gravitational force, thus being potentially measurable in fly-by experiments. We close by linking our results to well-known relations of linear-response theory in fluctuational electrodynamics: Looking at the friction of the anisotropic object for constant velocity, we identify a correction term that is additional to the typically used approach.
Depth-dependent resistance of granular media to vertical penetration.
Brzinski, T A; Mayor, P; Durian, D J
2013-10-18
We measure the quasistatic friction force acting on intruders moving downwards into a granular medium. By utilizing different intruder geometries, we demonstrate that the force acts locally normal to the intruder surface. By altering the hydrostatic loading of grain contacts by a sub-fluidizing airflow through the bed, we demonstrate that the relevant frictional contacts are loaded by gravity rather than by the motion of the intruder itself. Lastly, by measuring the final penetration depth versus airspeed and using an earlier result for inertial drag, we demonstrate that the same quasistatic friction force acts during impact. Altogether this force is set by a friction coefficient, hydrostatic pressure, projectile size and shape, and a dimensionless proportionality constant. The latter is the same in nearly all experiments, and is surprisingly greater than one.
Mathematical model of the solar radiation force and torques acting on the components of a spacecraft
NASA Technical Reports Server (NTRS)
Georgevic, R. M.
1971-01-01
General expressions for the solar radiation force and torques are derived in the vectorial form for any given reflecting surface, provided that the reflecting characteristics of the surface, as well as the value of the solar constant, are known. An appropriate choice of a spacecraft-fixed frame of reference leads to relatively simple expressions for the solar radiation forces and torques in terms of the functions of the sun-spacecraft-earth angle.
Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.
Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M
2016-09-21
We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.
Wu, Haibin; Liu, Zezhou; Jagota, Anand; Hui, Chung-Yuen
2018-03-07
A line force acting on a soft elastic solid, say due to the surface tension of a liquid drop, can cause significant deformation and the formation of a kink close to the point of force application. Analysis based on linearized elasticity theory shows that sufficiently close to its point of application, the force is borne entirely by the surface stress, not by the elasticity of the substrate; this local balance of three forces is called Neumann's triangle. However, it is not difficult to imagine realistic properties for which this force balance cannot be satisfied. For example, if the line force corresponds to surface tension of water, the numerical values of (unstretched) solid-vapor and solid-liquid surface stresses can easily be such that their sum is insufficient to balance the applied force. In such cases conventional (or naïve) Neumann's triangle of surface forces must break down. Here we study how force balance is rescued from the breakdown of naïve Neumann's triangle by a combination of (a) large hyperelastic deformations of the underlying bulk solid, and (b) increase in surface stress due to surface elasticity (surface stiffening). For a surface with constant surface stress (no surface stiffening), we show that the linearized theory remains accurate if the applied force is less than about 1.3 times the solid surface stress. For a surface in which the surface stress increases linearly with the surface stretch, we find that the Neumann's triangle construction works well as long as we replace the constant surface stress in the naïve Neumann triangle by the actual surface stress underneath the line load.
NASA Astrophysics Data System (ADS)
Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha
2016-08-01
In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.
Hsi-Ping, Liu
1990-01-01
Impulse responses including near-field terms have been obtained in closed form for the zero-offset vertical seismic profiles generated by a horizontal point force acting on the surface of an elastic half-space. The method is based on the correspondence principle. Through transformation of variables, the Fourier transform of the elastic impulse response is put in a form such that the Fourier transform of the corresponding anelastic impulse response can be expressed as elementary functions and their definite integrals involving distance angular frequency, phase velocities, and attenuation factors. These results are used for accurate calculation of shear-wave arrival rise times of synthetic seismograms needed for data interpretation of anelastic-attenuation measurements in near-surface sediment. -Author
Effect of a surface tension imbalance on a partly submerged cylinder
NASA Astrophysics Data System (ADS)
Janssens, Stoffel; Chaurasia, Vikash; Fried, Eliot
We perform a force analysis of a circular cylinder which lays between a liquid-gas interface and acts as a barrier between a surfactant-free surface and a surfactant-loaded surface. The respective surfaces have uniform surface tensions γa and γb which generate a surface tension imbalance Δγ =γa -γb , also referred to as surface pressure. In addition to the general force analysis, we determine the effect of Δγ on the load-bearing capacity of a floating cylinder upon sinking for a specific set of parameters. Moreover, we demonstrate that Δγ induces a horizontal force component which in magnitude is equal to Δγ , when measured per unit length cylinder, and use an energetic argument to prove that this relation applies to prismatic bodies in general.
Real-time observation of slipping and rolling events in DLC wear nanoparticles.
Sato, Takaaki; Nabeya, Shinsuke; Menon, Vivek; Ishida, Tadashi; Kometani, Reo; Fujita, Hiroyuki
2018-08-10
Real-time observation of the actual contact area between surface interfaces at the nanoscale enables more precise examination of what happens during friction. We have combined micro electro mechanical system actuators and transmission electron microscopy (TEM) observation, to both apply and measure forces across nanoscale junctions and contacts. This custom-designed experimental system can measure the true surface area of a contact site from a lateral viewpoint, while simultaneously measuring the friction force. We scratched surfaces coated with diamond like carbon, a classical solid lubricant, and observed the formation of wear particles that slipped and rolled between the interface. TEM images showed that the shape of the surface at the nanoscale underwent permanent deformation when acted upon with forces as low as several tens of nano newtons. The results demonstrated the limitations of friction analyses relying on friction force measurements without real-time surface profiling.
40 CFR 1066.210 - Dynamometers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... to recreate the mechanical inertia and frictional forces that a vehicle exerts on road surfaces... drive axles may share a single drive roll. Use good engineering judgment to ensure that the dynamometer... engineering judgment. (3) The load applied by the dynamometer simulates forces acting on the vehicle during...
Surface Forces Apparatus Measurements of Interactions between Rough and Reactive Calcite Surfaces.
Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon E; Nilsen, Ola; Røyne, Anja
2018-06-26
nm-Range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the surface forces apparatus, we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC) and between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by atomic layer deposition. We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time, and this increase was correlated with a decrease of roughness at contacts, the parameter which could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm- to μm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over μm-sized areas and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.
Theory of nanobubble formation and induced force in nanochannels
NASA Astrophysics Data System (ADS)
Arai, Noriyoshi; Koishi, Takahiro; Ebisuzaki, Toshikazu
2017-10-01
This paper presents a fundamental theory of nanobubble formation and induced force in confined nanochannels. It is shown that nanobubble formation between hydrophobic plates can be predicted from their surface tension and geometry, with estimated values for the surface free energy and the force acting on the plates in good agreement with the results of molecular dynamics simulation and experimentation. When a bubble is formed between two plates, vertical attractive force and horizontal retract force due to the shifted plates are applied to the plates. The net force exerted on the plates is not dependent on the distance between them. The short-range force between hydrophobic surfaces due to hydrophobic interaction appears to correspond to the force estimated by our theory. We compared between experimental and theoretical values for the binding energy of a molecular motor system to validate our theory. The tendency that the binding energy increases as the size of the protein increases is consistent with the theory.
Forces acting between polishing tool and workpiece surface in magnetorheological finishing
NASA Astrophysics Data System (ADS)
Schinhaerl, Markus; Vogt, Christian; Geiss, Andreas; Stamp, Richard; Sperber, Peter; Smith, Lyndon; Smith, Gordon; Rascher, Rolf
2008-08-01
Magnetorheological finishing is a computer-controlled polishing technique that is used mainly in the field of high-quality optical lens production. The process is based on the use of a magnetorheological polishing fluid that is able, in a reversible manner, to change its viscosity from a liquid state to a solid state under the control of a magnetic field. This outstanding characteristic facilitates rapid control (in milliseconds) of the yield stress, and thus the pressure applied to the workpiece surface to be polished. A three-axis dynamometer was used to measure the forces acting between the magnetorheological fluid and the workpiece surface during determination of the material removal characteristic of the polishing tool (influence function). The results of a testing series using a QED Q22-X MRF polishing machine with a 50 mm wheel assembly show that the normal forces range from about 2 to 20 N. Knowledge of the forces is essential, especially when thin workpieces are to be polished and distortion becomes significant. This paper discusses, and gives examples of, the variation in the parameters experienced during a programme of experiments, and provides examples of the value of this work.
NASA Astrophysics Data System (ADS)
Matsuda, Tatsuya; Miura, Kinya; Sawada, Yayoi
2017-10-01
This study investigated the characteristics of wave forces loading on the detached structure that consisted of an upper structure and a pile foundation. In this study, structure stability was also considered on the results obtained from previous studies on the instability of seabed induced by wave force. When a wave force acted on the structure, an external force acted on the pile foundation as if pulling out the foundation on the outer harbor side and pushing it in on the inner harbor. The effective stress in seabed was increase so the pile foundation was considered to maintain sufficient bearing capacity. Subsequently, when the bearing capacity of the ground was decreased because the water pressure in the ground surface layer decreased, the pile foundation will be aggravated settled down. The external force acting on the pile foundation was not same on outer harbor and inner harbor with the form of the upper structure. As a result, we found that the strain will be generated on the structure.
Electrostatic effects on dust particles in space
NASA Astrophysics Data System (ADS)
Leung, Philip; Wuerker, Ralph
1992-02-01
The star scanner of the Magellan spacecraft experienced operational anomalies continuously during Magellan's journey to Venus. These anomalies were attributed to the presence of dust particles in the vicinity of the spacecraft. The dust particles, which were originated from the surface of thermal blankets, were liberated when the electrostatic force acting on them was of sufficient magnitude. In order to verify this hypothesis, an experimental program was initiated to study the mechanisms responsible for the release of dust particles from a spacecraft surface. In the experiments, dust particles were immersed in a plasma and/or subjected to ultra-violet irradiation. Results showed that the charging state of a dust particle was strongly dependent on the environment, and the charge on a dust particle was approximately 10(exp 3) elementary charges. Consequently, in the space environment, electrostatic force could be the most dominant force acting on a dust particle.
Gene regulation by mechanical forces
NASA Technical Reports Server (NTRS)
Oluwole, B. O.; Du, W.; Mills, I.; Sumpio, B. E.
1997-01-01
Endothelial cells are subjected to various mechanical forces in vivo from the flow of blood across the luminal surface of the blood vessel. The purpose of this review was to examine the data available on how these mechanical forces, in particular cyclic strain, affect the expression and regulation of endothelial cell function. Studies from various investigators using models of cyclic strain in vitro have shown that various vasoactive mediators such as nitric oxide and prostacyclin are induced by the effect of mechanical deformation, and that the expression of these mediators may be regulated at the transcription level by mechanical forces. There also seems to be emerging evidence that endothelial cells may also act as mechanotransducers, whereby the transmission of external forces induces various cytoskeletal changes and second messenger cascades. Furthermore, it seems these forces may act on specific response elements of promoter genes.
Detecting climate forcing and feedback signals in surface climate change
NASA Astrophysics Data System (ADS)
Davy, Richard; Esau, Igor
2015-04-01
The Earth has warmed in the last century and a large component of that warming has been attributed to the build-up of anthropogenic greenhouse gases. There are also numerous feedback processes which can introduce strong, regionalized asymmetries to the overall warming trend. These processes alter the surface energy budget, and thus affect the surface air temperature, which is one of the primary measures of how the climate is changing. However, the degree to which a given forcing or feedback process alters surface temperatures is contingent on the effective heat capacity of the atmosphere which is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, which can lead to a strongly amplified temperature response in shallow boundary layers. Therefore, if a climate forcing or feedback is acting across a wide range of conditions of the boundary layer, then this non-linear response of the surface climate to perturbations in the forcing must be accounted for in order to correctly assess the effect of the forcing on the surface climatology.
Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt
2017-01-01
Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.
SEAL FOR HIGH SPEED CENTRIFUGE
Skarstrom, C.W.
1957-12-17
A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.
1980-09-01
where 4BD represents the instantaneous effect of the body, while OFS represents the free surface disturbance generated by the body over all previous...acceleration boundary condition. This deter- mines the time-derivative of the body-induced component of the flow, 4BD (as well as OBD through integration...panel with uniform density ei acting over a surface of area Ai is replaced by a single point source with strength s i(t) - A i(a i(t n ) + (t-t n ) G( td
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brambilla, Sara; Speckart, Scott; Brown, Michael J.
Particles deposited on an outdoor surface can be resuspended by wind gusts, become airborne, and be inhaled if small enough. If toxic or infectious, these particles may be dangerous for the populace health. It is therefore important to determine under which weather conditions a deposit of particle could be resuspended to implement the best response actions and plan clean-up. To this scope, one needs to consider the competing forces acting on the particle keeping it attached to the surface (gravity and adhesion) or trying to remove it (aerodynamic forces, i.e., lift and drag). Here, this article reviews the current understandingmore » of the aforementioned forces for colloidal spherical particles and extends the existing theories to rod-shaped particles, representative for instance of Bacillus spores. In particular, for the adhesion force, the Derjaguin approximation was used and the adhesion force was computed from the radii of curvature of the particle and the surface at the point of closest approach. For the aerodynamic forces, we re-derived the equations for the drag and lift forces accounting for the shape of the particle. Both smooth and rough surfaces will be discussed, the former as idealized cases, the latter as more representative of real outdoor surfaces.« less
Brambilla, Sara; Speckart, Scott; Brown, Michael J.
2017-07-26
Particles deposited on an outdoor surface can be resuspended by wind gusts, become airborne, and be inhaled if small enough. If toxic or infectious, these particles may be dangerous for the populace health. It is therefore important to determine under which weather conditions a deposit of particle could be resuspended to implement the best response actions and plan clean-up. To this scope, one needs to consider the competing forces acting on the particle keeping it attached to the surface (gravity and adhesion) or trying to remove it (aerodynamic forces, i.e., lift and drag). Here, this article reviews the current understandingmore » of the aforementioned forces for colloidal spherical particles and extends the existing theories to rod-shaped particles, representative for instance of Bacillus spores. In particular, for the adhesion force, the Derjaguin approximation was used and the adhesion force was computed from the radii of curvature of the particle and the surface at the point of closest approach. For the aerodynamic forces, we re-derived the equations for the drag and lift forces accounting for the shape of the particle. Both smooth and rough surfaces will be discussed, the former as idealized cases, the latter as more representative of real outdoor surfaces.« less
Non-contact lateral force microscopy.
Weymouth, A J
2017-08-16
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Turbine interstage seal with self-balancing capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Jacob A; Jones, Russell B; Sexton, Thomas D
An interstage seal for a turbine of a gas turbine engine, the interstage seal having a seal carrier with an axial extending seal tooth movable with a stator of the engine, and a rotor with a seal surface that forms the interstage seal with the seal tooth, where a magnetic force produced by two magnets and a gas force produced by a gas pressure acting on the seal carrier forms a balancing force to maintain a close clearance of the seal without the seal tooth contacting the rotor seal surfaces during engine operation. In other embodiments, two pairs of magnetsmore » produce first and second magnetic forces that balance the seal in the engine.« less
Time domain characteristics of hoof-ground interaction at the onset of stance phase.
Burn, J F
2006-11-01
Little is known about the interaction of the hoof with the ground at the onset of stance phase although is it widely believed that high power collisions are involved in the aetiopathology of several conditions causing lameness. To answer 3 questions regarding the fundamental nature of hoof-ground collision: (1) is the collision process deterministic for ground surfaces that present a consistent mechanical interface (2) do collision forces act on the hoof in a small or large range of directions and (3) Is the hoof decelerated to near-zero velocity by the initial deceleration peak following ground contact? Hoof acceleration during the onset of stance phase was recorded using biaxial accelerometry for horses trotting on a tarmac surface and on a sand surface. Characteristics of the collision process were identified both from vector plots and time series representations of hoof acceleration, velocity and displacement. The response of the hoof to collision with smooth tarmac was predominantly deterministic and consistent with the response of a spring-damper system following shock excitation. The response to collision with sand was predominantly random. The deceleration peak following ground contact did not decelerate the hoof to near-zero velocity on tarmac but appeared to on sand. On both surfaces, collision forces acted on the hoof in a wide range of directions. The study suggests the presence of stiff, viscoelastic structures within the foot that may act as shock absorbers isolating the limb from large collision forces. The study indicates objectives for future in vivo and in vitro research into the shock absorbing mechanism within the equine foot; and the effects of shoe type and track surface properties on the collision forces experienced during locomotion. Studies of this nature should help to establish a link between musculoskeletal injury, hoof function and hoof-ground interaction if, indeed, one exists.
43 CFR 4.1351 - Preliminary finding by OSM.
Code of Federal Regulations, 2010 CFR
2010-10-01
... APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Request for...(c) of the Act, 30 U.s.c. 1260(c) (federal Program; Federal Lands Program; Federal Program for Indian... or has controlled surface coal mining and reclamation operations with a demonstrated pattern of...
Electro-Optical Platform for the Manipulation of Live Cells
2002-10-02
system, other physical forces may play a significant role. In particular, electroosmotic forces that cause fluid movement relative to a surface can...occur due to the mobility of ions in solution. Electroosmotic forces are commonly utilized in capillary electrophoretic separa- tion, where the capillary...fluid motion that acts to entrain particles to be separated.46 Thus, in the chamber presented here, the patterned anode can induce electroosmotic flow
Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent.
Federle, Walter; Baumgartner, Werner; Hölldobler, Bert
2004-01-01
Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.
A thickness-weighted average perspective of force balance in an idealized circumpolar current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringler, Todd Darwin; Saenz, Juan Antonio; Wolfram, Jr., Phillip Justin
The exact, three-dimensional thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is comprised of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic- and force-balance that is largely isolated from themore » underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half, and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity and zonal wind stress force are all zero. The net meridional transport, S f, within the surface layer is a small residual of its southward and northward TWA meridional flows. Furthermore, the mean meridional gradient of surface-layer buoyancy is advected by S f to balance the surface buoyancy fluxs.« less
A thickness-weighted average perspective of force balance in an idealized circumpolar current
Ringler, Todd Darwin; Saenz, Juan Antonio; Wolfram, Jr., Phillip Justin; ...
2016-11-22
The exact, three-dimensional thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is comprised of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic- and force-balance that is largely isolated from themore » underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half, and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity and zonal wind stress force are all zero. The net meridional transport, S f, within the surface layer is a small residual of its southward and northward TWA meridional flows. Furthermore, the mean meridional gradient of surface-layer buoyancy is advected by S f to balance the surface buoyancy fluxs.« less
Spontaneous lateral atomic recoil force close to a photonic topological material
NASA Astrophysics Data System (ADS)
Hassani Gangaraj, S. Ali; Hanson, George W.; Antezza, Mauro; Silveirinha, Mário G.
2018-05-01
We investigate the quantum recoil force acting on an excited atom close to the surface of a nonreciprocal photonic topological insulator (PTI). The main atomic emission channel is the unidirectional surface plasmon propagating at the PTI-vacuum interface, and we show that it enables a spontaneous lateral recoil force that scales at short distances as 1 /d4 , where d is the atom-PTI separation. Remarkably, the sign of the recoil force is polarization and orientation independent, and it occurs in a translation-invariant homogeneous system in thermal equilibrium. Surprisingly, the recoil force persists for very small values of the gyration pseudovector, which, for a biased plasma, corresponds to very low cyclotron frequencies. The ultrastrong recoil force is rooted in the quasihyperbolic dispersion of the surface plasmons. We consider both an initially excited atom and a continuous pump scenario, the latter giving rise to a steady lateral force whose direction can be changed at will by simply varying the orientation of the biasing magnetic field. Our predictions may be tested in experiments with cold Rydberg atoms and superconducting qubits.
Tarran, Robert; Grubb, Barbara R.; Gatzy, John T.; Davis, C. William; Boucher, Richard C.
2001-01-01
Two hypotheses have been proposed recently that offer different views on the role of airway surface liquid (ASL) in lung defense. The “compositional” hypothesis predicts that ASL [NaCl] is kept low (<50 mM) by passive forces to permit antimicrobial factors to act as a chemical defense. The “volume” hypothesis predicts that ASL volume (height) is regulated isotonically by active ion transport to maintain efficient mechanical mucus clearance as the primary form of lung defense. To compare these hypotheses, we searched for roles for: (1) passive forces (surface tension, ciliary tip capillarity, Donnan, and nonionic osmolytes) in the regulation of ASL composition; and (2) active ion transport in ASL volume regulation. In primary human tracheobronchial cultures, we found no evidence that a low [NaCl] ASL could be produced by passive forces, or that nonionic osmolytes contributed substantially to ASL osmolality. Instead, we found that active ion transport regulated ASL volume (height), and that feedback existed between the ASL and airway epithelia to govern the rate of ion transport and volume absorption. The mucus layer acted as a “reservoir” to buffer periciliary liquid layer height (7 μm) at a level optimal for mucus transport by donating or accepting liquid to or from the periciliary liquid layer, respectively. These data favor the active ion transport/volume model hypothesis to describe ASL physiology. PMID:11479349
van Vörden, Dennis; Möller, Rolf
2012-01-01
Summary Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force–distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle. PMID:22496993
Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT
2016-01-01
Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function. PMID:29805194
Investigating the generation of Love waves in secondary microseisms using 3D numerical simulations
NASA Astrophysics Data System (ADS)
Wenk, Stefan; Hadziioannou, Celine; Pelties, Christian; Igel, Heiner
2014-05-01
Longuet-Higgins (1950) proposed that secondary microseismic noise can be attributed to oceanic disturbances by surface gravity wave interference causing non-linear, second-order pressure perturbations at the ocean bottom. As a first approximation, this source mechanism can be considered as a force acting normal to the ocean bottom. In an isotropic, layered, elastic Earth model with plain interfaces, vertical forces generate P-SV motions in the vertical plane of source and receiver. In turn, only Rayleigh waves are excited at the free surface. However, several authors report on significant Love wave contributions in the secondary microseismic frequency band of real data measurements. The reason is still insufficiently analysed and several hypothesis are under debate: - The source mechanism has strongest influence on the excitation of shear motions, whereas the source direction dominates the effect of Love wave generation in case of point force sources. Darbyshire and Okeke (1969) proposed the topographic coupling effect of pressure loads acting on a sloping sea-floor to generate the shear tractions required for Love wave excitation. - Rayleigh waves can be converted into Love waves by scattering. Therefore, geometric scattering at topographic features or internal scattering by heterogeneous material distributions can cause Love wave generation. - Oceanic disturbances act on large regions of the ocean bottom, and extended sources have to be considered. In combination with topographic coupling and internal scattering, the extent of the source region and the timing of an extended source should effect Love wave excitation. We try to elaborate the contribution of different source mechanisms and scattering effects on Love to Rayleigh wave energy ratios by 3D numerical simulations. In particular, we estimate the amount of Love wave energy generated by point and extended sources acting on the free surface. Simulated point forces are modified in their incident angle, whereas extended sources are adapted in their spatial extent, magnitude and timing. Further, the effect of variations in the correlation length and perturbation magnitude of a random free surface topography as well as an internal random material distribution are studied.
NASA Astrophysics Data System (ADS)
Vincent, Abhilash
Due to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface properties (surface charges and surface chemistry) on their interactions with biomolecules (Cells, protein and DNA) could enhance the current understanding of NP cytotoxicity. Hence, it is highly beneficial to the nanotechnology community to bring more attention towards the enhancement of surface properties of NPs to make them more biocompatible and less toxic to biological systems. Surface functionalization of NPs using specific ligand biomolecules have shown to enhance the protein adsorption and cellular uptake through more favorable interaction pathways. Cerium oxide NPs (CNPs also known as nanoceria) are potential antioxidants in cell culture models and understanding the nature of interaction between cerium oxide NPs and biological proteins and cells are important due to their therapeutic application (especially in site specific drug delivery systems). The surface charges and surface chemistry of CNPs play a major role in protein adsorption and cellular uptake. Hence, by tuning the surface charges and by selecting proper functional molecules on the surface, CNPs exhibiting strong adhesion to biological materials can be prepared. By probing the nanoscale interaction forces acting between CNPs and protein molecules using Atomic Force Microscopy (AFM) based force-distance (F-D) spectroscopy, the mechanism of CNP-protein adsorption and CNP cellular uptake can be understood more quantitatively. The work presented in this dissertation is based on the application of AFM in studying the interaction forces as well as the mechanical properties of nanobiomaterials. The research protocol employed in the earlier part of the dissertation is specifically aimed to understand the operation of F-D spectroscopy technique. The elastic properties of thin films of silicon dioxide NPs were investigated using F-D spectroscopy in the high force regime of few 100 nN to 1 microN. Here, sol-gel derived porous nanosilica thin films of varying surface morphology, particle size and porosity were prepared through acid and base catalyzed process. AFM nanoindentation experiments were conducted on these films using the F-D spectroscopy mode and the nanoscale elastic properties of these films were evaluated. The major contribution of this dissertation is a study exploring the interaction forces acting between CNPs and transferrin proteins in picoNewton scale regime using the force-distance spectroscopy technique. This study projects the importance of obtaining appropriate surface charges and surface chemistry so that the NP can exhibit enhanced protein adsorption and NP cellular uptake.
Slithering on sand: kinematics and controls for success on granular media
NASA Astrophysics Data System (ADS)
Schiebel, Perrin E.; Zhang, Tingnan; Dai, Jin; Gong, Chaohui; Yu, Miao; Astley, Henry C.; Travers, Matthew; Choset, Howie; Goldman, Daniel I.
Previously, we studied the subsurfacelocomotion of undulatory sand-swimming snakes and lizards; using empirical drag response of GM to subsurface intrusion of simple objects allowed us to develop a granular resistive force theory (RFT) to model the locomotion and predict optimal movement patterns. However, our knowledge of the physics of GM at the surface is limited; this makes it impossible to determine how the desert-dwelling snake C. occipitalis moves effectively (0.45 +/-0.04 bodylengths/sec) on the surface of sand .We combine organism biomechanics studies, GM drag experiments, RFT calculations and tests of a physical model (a snake-like robot), to reveal how multiple factors acting together contribute to slithering on sandy surfaces. These include the kinematics--targeting an ideal waveform which maximizes speed while minimizing joint-level torque, the ability to modulate ground interactions by lifting body segments, and the properties of the GM. Based on the sensitive nature of the relationship between these factors, we hypothesize that having an element of force-based control, where the waveform is modulated in response to the forces acting between the body and the environment, is necessary for successful locomotion on yielding substrates.
Method for using magnetic particles in droplet microfluidics
NASA Technical Reports Server (NTRS)
Shah, Gaurav Jitendra (Inventor); Kim, Chang-Jin (Inventor)
2012-01-01
Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.
Analysis of Oblique Wave Interaction with a Comb-Type Caisson Breakwater
NASA Astrophysics Data System (ADS)
Wang, Xinyu; Liu, Yong; Liang, Bingchen
2018-04-01
This study develops an analytical solution for oblique wave interaction with a comb-type caisson breakwater based on linear potential theory. The fluid domain is divided into inner and outer regions according to the geometrical shape of breakwater. By using periodic boundary condition and separation of variables, series solutions of velocity potentials in inner and outer regions are developed. Unknown expansion coefficients in series solutions are determined by matching velocity and pressure of continuous conditions on the interface between two regions. Then, hydrodynamic quantities involving reflection coefficients and wave forces acting on breakwater are estimated. Analytical solution is validated by a multi-domain boundary element method solution for the present problem. Diffusion reflection due to periodic variations in breakwater shape and corresponding surface elevations around the breakwater are analyzed. Numerical examples are also presented to examine effects of caisson parameters on total wave forces acting on caissons and total wave forces acting on side plates. Compared with a traditional vertical wall breakwater, the wave force acting on a suitably designed comb-type caisson breakwater can be significantly reduced. This study can give a better understanding of the hydrodynamic performance of comb-type caisson breakwaters.
Non-additivity of molecule-surface van der Waals potentials from force measurements.
Wagner, Christian; Fournier, Norman; Ruiz, Victor G; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F Stefan
2014-11-26
Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.
Characterisation of dry powder inhaler formulations using atomic force microscopy.
Weiss, Cordula; McLoughlin, Peter; Cathcart, Helen
2015-10-15
Inhalation formulations are a popular way of treating the symptoms of respiratory diseases. The active pharmaceutical ingredient (API) is delivered directly to the site of action within the deep lung using an inhalation device such as the dry powder inhaler (DPI). The performance of the formulation and the efficiency of the treatment depend on a number of factors including the forces acting between the components. In DPI formulations these forces are dominated by interparticulate interactions. Research has shown that adhesive and cohesive forces depend on a number of particulate properties such as size, surface roughness, crystallinity, surface energetics and combinations of these. With traditional methods the impact of particulate properties on interparticulate forces could be evaluated by examining the bulk properties. Atomic force microscopy (AFM), however, enables the determination of local surface characteristics and the direct measurement of interparticulate forces using the colloidal probe technique. AFM is considered extremely useful for evaluating the surface topography of a substrate (an API or carrier particle) and even allows the identification of crystal faces, defects and polymorphs from high-resolution images. Additionally, information is given about local mechanical properties of the particles and changes in surface composition and energetics. The assessment of attractive forces between two bodies is possible by using colloidal probe AFM. This review article summarises the application of AFM in DPI formulations while specifically focussing on the colloidal probe technique and the evaluation of interparticulate forces. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Salbreux, Guillaume; Jülicher, Frank
2017-09-01
We derive a fully covariant theory of the mechanics of active surfaces. This theory provides a framework for the study of active biological or chemical processes at surfaces, such as the cell cortex, the mechanics of epithelial tissues, or reconstituted active systems on surfaces. We introduce forces and torques acting on a surface, and derive the associated force balance conditions. We show that surfaces with in-plane rotational symmetry can have broken up-down, chiral, or planar-chiral symmetry. We discuss the rate of entropy production in the surface and write linear constitutive relations that satisfy the Onsager relations. We show that the bending modulus, the spontaneous curvature, and the surface tension of a passive surface are renormalized by active terms. Finally, we identify active terms which are not found in a passive theory and discuss examples of shape instabilities that are related to active processes in the surface.
Magnetic skyrmion bubble motion driven by surface acoustic waves
Nepal, Rabindra; Güngördü, Utkan; Kovalev, Alexey A.
2018-03-12
Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.
Magnetic skyrmion bubble motion driven by surface acoustic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nepal, Rabindra; Güngördü, Utkan; Kovalev, Alexey A.
Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.
Modelling cell motility and chemotaxis with evolving surface finite elements
Elliott, Charles M.; Stinner, Björn; Venkataraman, Chandrasekhar
2012-01-01
We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction–diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html. PMID:22675164
NASA Technical Reports Server (NTRS)
Druyan, Leonard M.; Fulakeza, Matthew B.
2014-01-01
The Atlantic cold tongue (ACT) develops during spring and early summer near the Equator in the Eastern Atlantic Ocean and Gulf of Guinea. The hypothesis that the ACT accelerates the timing of West African monsoon (WAM) onset is tested by comparing two regional climate model (RM3) simulation ensembles. Observed sea surface temperatures (SST) that include the ACT are used to force a control ensemble. An idealized, warm SST perturbation is designed to represent lower boundary forcing without the ACT for the experiment ensemble. Summer simulations forced by observed SST and reanalysis boundary conditions for each of five consecutive years are compared to five parallel runs forced by SST with the warm perturbation. The article summarizes the sequence of events leading to the onset of the WAM in the Sahel region. The representation of WAM onset in RM3 simulations is examined and compared to Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Climatology Project (GPCP) and reanalysis data. The study evaluates the sensitivity of WAM onset indicators to the presence of the ACT by analysing the differences between the two simulation ensembles. Results show that the timing of major rainfall events and therefore theWAM onset in the Sahel are not sensitive to the presence of the ACT. However, the warm SST perturbation does increase downstream rainfall rates over West Africa as a consequence of enhanced specific humidity and enhanced northward moisture flux in the lower troposphere.
The effect of bracing availability on one-hand isometric force exertion capability.
Jones, Monica L H; Reed, Matthew P; Chaffin, Don B
2013-01-01
Environmental obstructions that workers encounter can kinematically limit the postures that they can achieve. However, such obstructions can also provide an opportunity for additional support by bracing with the hand, thigh or other body part. The reaction forces on bracing surfaces, which are in addition to those acting at the feet and task hand, are hypothesised to improve force exertion capability, and become required inputs to biomechanical analysis of tasks with bracing. The effects of kinematic constraints and associated bracing opportunities on isometric hand force were quantified in a laboratory study of 22 men and women. Analyses of one-hand maximal push, pull and lift tasks demonstrated that bracing surfaces available at the thighs and non-task hand enabled participants to exert an average of 43% more force at the task hand. Task hand force direction deviated significantly from the nominal direction for exertions performed with bracing at both medium and low task hand locations. This study quantifies the effect of bracing on kinematically constrained force exertions. Knowledge that appropriate bracing surfaces can substantially increase hand force is critical to the evaluation of task-oriented strength capability. Force estimates may also involve large off-axis components, which have clear implications for ergonomic analyses of manual tasks.
Enhanced optical gradient forces between coupled graphene sheets
Xu, Xinbiao; Shi, Lei; Liu, Yang; Wang, Zheqi; Zhang, Xinliang
2016-01-01
Optical gradient forces between monolayer infinite-width graphene sheets as well as single-mode graphene nanoribbon pairs of graphene surface plasmons (GSPs) at mid-infrared frequencies were theoretically investigated. Although owing to the strongly enhanced optical field, the normalized optical force, fn, can reach 50 nN/μm/mW, which is the largest fn as we know, the propagation loss is also large. But we found that by changing the chemical potential of graphene, fn and the optical propagation loss can be balanced. The total optical force acted on the nanoribbon waveguides can thus enhance more than 1 order of magnitude than that in metallic surface plasmons (MSPs) waveguides with the same length and the loss can be lower. Owing to the enhanced optical force and the significant neff tuning by varying the chemical potential of graphene, we also propose an ultra-compact phase shifter. PMID:27338252
Two-axis direct fluid shear stress sensor
NASA Technical Reports Server (NTRS)
Bajikar, Sateesh (Inventor); Scott, Michael A. (Inventor); Adcock, Edward E. (Inventor)
2011-01-01
A micro sized multi-axis semiconductor skin friction/wall shear stress induced by fluid flow. The sensor design includes a shear/strain transduction gimble connected to a force collecting plate located at the flow boundary surface. The shear force collecting plate is interconnected by an arm to offset the tortional hinges from the fluid flow. The arm is connected to the shear force collecting plate through dual axis torsional hinges with piezoresistive torsional strain gauges. These gauges are disposed on the tortional hinges and provide a voltage output indicative of applied shear stress acting on the force collection plate proximate the flow boundary surface. Offsetting the torsional hinges creates a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from small shear stress, or small displacement of the collecting plate. The design also isolates the torsional sensors from exposure to the fluid flow.
The optical stretcher: a novel laser tool to micromanipulate cells.
Guck, J; Ananthakrishnan, R; Mahmood, H; Moon, T J; Cunningham, C C; Käs, J
2001-01-01
When a dielectric object is placed between two opposed, nonfocused laser beams, the total force acting on the object is zero but the surface forces are additive, thus leading to a stretching of the object along the axis of the beams. Using this principle, we have constructed a device, called an optical stretcher, that can be used to measure the viscoelastic properties of dielectric materials, including biologic materials such as cells, with the sensitivity necessary to distinguish even between different individual cytoskeletal phenotypes. We have successfully used the optical stretcher to deform human erythrocytes and mouse fibroblasts. In the optical stretcher, no focusing is required, thus radiation damage is minimized and the surface forces are not limited by the light power. The magnitude of the deforming forces in the optical stretcher thus bridges the gap between optical tweezers and atomic force microscopy for the study of biologic materials. PMID:11463624
Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces.
An, Hongjie; Liu, Guangming; Craig, Vincent S J
2015-08-01
The observation by Atomic Force Microscopy of a range of nanophases on hydrophobic surfaces poses some challenging questions, not only related to the stability of these objects but also regarding their wetting properties. Spherical capped nanobubbles are observed to exhibit contact angles that far exceed the macroscopic contact angle measured for the same materials, whereas nanodroplets exhibit contact angles that are much the same as the macroscopic contact angle. Micropancakes are reported to consist of gas, in which case their wetting properties are mysterious. They should only be stable when the van der Waals forces act to thicken the film whereas for a gas, the van der Waals forces will always act to thin the film. Here we examine the available evidence and contribute some additional experiments in order to review our understanding of the wetting properties of these nanophases. We demonstrate that if in fact micropancakes consist of a contaminant their wetting properties can be explained, though the very high contact angles of nanobubbles remain unexplained. Copyright © 2014 Elsevier B.V. All rights reserved.
Phenomenological Model of Hydrophobic and Hydrophilic Interactions
NASA Astrophysics Data System (ADS)
Menshikov, L. I.; Menshikov, P. L.; Fedichev, P. O.
2017-12-01
Hydration forces acting between macroscopic bodies at distances L ≤ 3 nm in pure water are calculated based on the phenomenological model of polar liquids. It is shown that depending on the properties of the bodies, the interacting surfaces polarize the liquid differently, and wetting properties of the surfaces are completely characterized by two parameters. If the surfaces are hydrophilic, liquid molecules are polarized at right angles to the surfaces, and the interaction is the short-range repulsion (the forces of interaction decrease exponentially over the characteristic length λ ≈ 0.2 nm). The interaction between the hydrophobic surfaces is more diversified and has been studied less. For L ≤ 3 nm, the interaction exhibits universal properties, while for L ≤ 3 nm, it considerably depends on the properties of the surfaces and on the distances between them, as well as on the composition of the polar liquid. In full agreement with the available experimental results we find that if the interfaces are mostly hydrophobic, then the interaction is attractive and long-range (the interaction forces diminish exponentially with decay length 1.2 nm). In this case, the resultant polarization of water molecules is parallel to the surface. It is shown that hydration forces are determined by nonlinear effects of polarization of the liquid in the bulk or by analogous nonlinearity of the interaction of water with a submerged body. This means that the forces of interaction cannot be calculated correctly in the linear response approximation. The forces acting between hydrophobic or hydrophilic surfaces are of the entropy type or electrostatic, respectively. It is shown that hydrophobic and hydrophilic surfaces for L ≤ 3 nm repel each other. The calculated intensity of their interaction is in agreement with experimental data. We predict the existence of an intermediate regime in which a body cannot order liquid molecules, which results in a much weaker attraction that decreases in inverse proportion to the squared distance between the surfaces of bodies. The difference between the microscopic structures of liquids confined in nanovolumes from liquids in large volumes is considered. The proposed model is applicable for a quantitative description of the properties of water at temperatures T satisfying the condition 0 < ( T-T c )/ T c ≪ 1, where T c ≈ 230 K is the temperature of the ferroelectric phase transition observed in supercooled water. Under standard conditions, the model can be used for obtaining qualitative estimates.
Zbik, Marek S; Frost, Ray L
2010-06-15
The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using atomic force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concentrations and larger particle diameters (up to 5 microm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 001/020 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction. 2010 Elsevier Inc. All rights reserved.
Rolling Motion of a Ball Spinning about a Near-Vertical Axis
ERIC Educational Resources Information Center
Cross, Rod
2012-01-01
A ball that is projected forward without spin on a horizontal surface will slide for a short distance before it starts rolling. Sliding friction acts to decrease the translation speed v and it acts to increase the rotation speed [omega]. When v = R[omega], where R is the ball radius, the ball will start rolling and the friction force drops almost…
The study of dynamic force acted on water strider leg departing from water surface
NASA Astrophysics Data System (ADS)
Sun, Peiyuan; Zhao, Meirong; Jiang, Jile; Zheng, Yelong
2018-01-01
Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.
A theoretical study for mechanical contact between carbon nanotubes
NASA Astrophysics Data System (ADS)
Takagi, Yoshiteru; Uda, Tsuyoshi; Ohno, Takahisa
2005-03-01
We have theoretically investigated motions of single-walled carbon nanotubes (SWNTs) which are mounted on a flat substrate layer of SWNTs by tight-binding molecular dynamics simulations. One of the most interesting motions is the conversion of force and torque, where the force and torque acting initially on the mounted tube finally results in the lateral motion and rolling of the supporting tubes in the substrate. This motion is well understood in terms of the total energy surface of the SWNT/SWNT system. It is suggested that an undulation of the total energy surface plays a role as an atomic-scale gear tooth in the field of nanomechanics, in spite of the atomically smooth surface of SWNT.
Mechanical manipulation of magnetic nanoparticles by magnetic force microscopy
NASA Astrophysics Data System (ADS)
Liu, Jinyun; Zhang, Wenxiao; Li, Yiquan; Zhu, Hanxing; Qiu, Renxi; Song, Zhengxun; Wang, Zuobin; Li, Dayou
2017-12-01
A method has been developed in this work for the mechanical manipulation of magnetic nanoparticles (MNPs). A helical curve was designed as the capture path to pick up and remove the target nanoparticle on a mica surface by a magnetic probe based on the magnetic force microscope (MFM). There were magnetic, tangential and pushing forces acting on the target particle during the approaching process when the tip followed the helical curve as the capture path. The magnetic force was significant when the tip was closer to the particle. The target particle can be attached on the surface of the magnetic probe tip and then be picked up after the tip retracted from the mica surface. Theoretical analysis and experimental results were presented for the pick-up and removal of MNPs. With this method, the precision and flexibility of manipulation of MNPs were improved significantly compared to the pushing or sliding of the target object away from the corresponding original location following a planned path.
A model of motor performance during surface penetration: from physics to voluntary control.
Klatzky, Roberta L; Gershon, Pnina; Shivaprabhu, Vikas; Lee, Randy; Wu, Bing; Stetten, George; Swendsen, Robert H
2013-10-01
The act of puncturing a surface with a hand-held tool is a ubiquitous but complex motor behavior that requires precise force control to avoid potentially severe consequences. We present a detailed model of puncture over a time course of approximately 1,000 ms, which is fit to kinematic data from individual punctures, obtained via a simulation with high-fidelity force feedback. The model describes puncture as proceeding from purely physically determined interactions between the surface and tool, through decline of force due to biomechanical viscosity, to cortically mediated voluntary control. When fit to the data, it yields parameters for the inertial mass of the tool/person coupling, time characteristic of force decline, onset of active braking, stopping time and distance, and late oscillatory behavior, all of which the analysis relates to physical variables manipulated in the simulation. While the present data characterize distinct phases of motor performance in a group of healthy young adults, the approach could potentially be extended to quantify the performance of individuals from other populations, e.g., with sensory-motor impairments. Applications to surgical force control devices are also considered.
Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I
2016-05-09
The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity and the surface energy of lignin that facilitates the LW forces should be a priori to avoid nonproductive binding of cellulase to kraft lignin.
Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy.
Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M Baris; Kravchenko, Ivan I; Kalinin, Sergei V; Tselev, Alexander
2017-01-04
Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm -1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.
Isogeometric Analysis for Topology Optimization with a Phase Field Model
2011-09-01
surface force h and body force f . 2 Topology Optimization in the Minimum Compli- ance Case In this section we introduce the topology optimization...for a given material density function ρ, such that: −∇ · σ̃(ρ,u) = f in Ω, u = 0 on ΓD, σ̃(ρ,u)n̂ = h on ΓN , ρ given, (3) where ΓD ⊂ ∂Ω is the...force h is applied (traction or pressure); for the sake of simplicity we assume a null displacement on ΓD. Also, f is the body force acting in the
NASA Technical Reports Server (NTRS)
Marshall, J.; Weislogel, M.; Jacobson, T.
1999-01-01
The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single grain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three-dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction.
Analysis of capacitive force acting on a cantilever tip at solid/liquid interfaces
NASA Astrophysics Data System (ADS)
Umeda, Ken-ichi; Kobayashi, Kei; Oyabu, Noriaki; Hirata, Yoshiki; Matsushige, Kazumi; Yamada, Hirofumi
2013-04-01
Dielectric properties of biomolecules or biomembranes are directly related to their structures and biological activities. Capacitance force microscopy based on the cantilever deflection detection is a useful scanning probe technique that can map local dielectric constant. Here we report measurements and analysis of the capacitive force acting on a cantilever tip at solid/liquid interfaces induced by application of an alternating voltage to explore the feasibility of the measurements of local dielectric constant by the voltage modulation technique in aqueous solutions. The results presented here suggest that the local dielectric constant measurements by the conventional voltage modulation technique are basically possible even in polar liquid media. However, the cantilever deflection is not only induced by the electrostatic force, but also by the surface stress, which does not include the local dielectric information. Moreover, since the voltage applied between the tip and sample are divided by the electric double layer and the bulk polar liquid, the capacitive force acting on the apex of the tip are strongly attenuated. For these reasons, the lateral resolution in the local dielectric constant measurements is expected to be deteriorated in polar liquid media depending on the magnitude of dielectric response. Finally, we present the criteria for local dielectric constant measurements with a high lateral resolution in polar liquid media.
Drag Measurements over Embedded Cavities in a Low Reynolds Number Couette Flow
NASA Astrophysics Data System (ADS)
Gilmer, Caleb; Lang, Amy; Jones, Robert
2010-11-01
Recent research has revealed that thin-walled, embedded cavities in low Reynolds number flow have the potential to reduce the net viscous drag force acting on the surface. This reduction is due to the formation of embedded vortices allowing the outer flow to pass over the surface via a roller bearing effect. It is also hypothesized that the scales found on butterfly wings may act in a similar manner to cause a net increase in flying efficiency. In this experimental study, rectangular embedded cavities were designed as a means of successfully reducing the net drag across surfaces in a low Reynolds number flow. A Couette flow was generated via a rotating conveyor belt immersed in a tank of high viscosity mineral oil above which the plates with embedded cavities were placed. Drag induced on the plate models was measured using a force gauge and compared directly to measurements acquired over a flat plate. Various cavity aspect ratios and gap heights were tested in order to determine the conditions under which the greatest drag reductions occurred.
NASA Astrophysics Data System (ADS)
Jakosky, Bruce M.
1988-08-01
The long-term evolution of both the atmosphere and the surface of Mars can be understood by examining the history of volatiles in the Mars atmosphere, their non-atmospheric reservoirs, and the processes of exchange between the two. Clearly, the present state of both the surface and the atmosphere can only be seen, so that any inferences about the evolution of the climate system are just that, inferences. The processes which control the atmosphere and surface on a seasonal basis, however, are the same processes which can act on longer timescales; only the specific solar and atmospheric forcing will differ. Once the ability of each process to affect the seasonal behavior is understood, the long-timescale forcing may be applied to the various processes in order to clearly identify the ability of the processes to act over the entire history of Mars. The areas of surface-atmospheric interaction of Mars are addressed in the ongoing research. The climate system on Mars is controlled by processes involving the exchange between the surface and atmosphere, so it is important to understand the current behavior of those processes. This is especially so in light of the current interest in understanding Mars; the upcoming Mars Observer mission, and the potential for a future sample-return or human-exploration mission will focus emphasis on this area of Mars science.
Mechanics of deformations in terms of scalar variables
NASA Astrophysics Data System (ADS)
Ryabov, Valeriy A.
2017-05-01
Theory of particle and continuous mechanics is developed which allows a treatment of pure deformation in terms of the set of variables "coordinate-momentum-force" instead of the standard treatment in terms of tensor-valued variables "strain-stress." This approach is quite natural for a microscopic description of atomic system, according to which only pointwise forces caused by the stress act to atoms making a body deform. The new concept starts from affine transformation of spatial to material coordinates in terms of the stretch tensor or its analogs. Thus, three principal stretches and three angles related to their orientation form a set of six scalar variables to describe deformation. Instead of volume-dependent potential used in the standard theory, which requires conditions of equilibrium for surface and body forces acting to a volume element, a potential dependent on scalar variables is introduced. A consistent introduction of generalized force associated with this potential becomes possible if a deformed body is considered to be confined on the surface of torus having six genuine dimensions. Strain, constitutive equations and other fundamental laws of the continuum and particle mechanics may be neatly rewritten in terms of scalar variables. Giving a new presentation for finite deformation new approach provides a full treatment of hyperelasticity including anisotropic case. Derived equations of motion generate a new kind of thermodynamical ensemble in terms of constant tension forces. In this ensemble, six internal deformation forces proportional to the components of Irving-Kirkwood stress are controlled by applied external forces. In thermodynamical limit, instead of the pressure and volume as state variables, this ensemble employs deformation force measured in kelvin unit and stretch ratio.
Reducing forces during drilling brittle hard materials by using ultrasonic and variation of coolant
NASA Astrophysics Data System (ADS)
Schopf, C.; Rascher, R.
2016-11-01
The process of ultrasonic machining is especially used for brittle hard materials as the additional ultrasonic vibration of the tool at high frequencies and low amplitudes acts like a hammer on the surface. With this technology it is possible to drill holes with lower forces, therefor the machining can be done faster and the worktime is much less than conventionally. A three-axis dynamometer was used to measure the forces, which act between the tool and the sample part. A focus is set on the sharpness of the tool. The results of a test series are based on the Sauer Ultrasonic Grinding Centre. On the same machine it is possible to drill holes in the conventional way. Additional to the ultasonic Input the type an concentration of coolant is important for the Drilling-force. In the test there were three different coolant and three different concentrations tested. The combination of ultrasonic vibration and the right coolant and concentration is the best way to reduce the Forces. Another positive effect is, that lower drilling-forces produce smaller chipping on the edge of the hole. The way to reduce the forces and chipping is the main issue of this paper.
Effects of intraoral aging of arch-wires on frictional forces: An ex vivo study.
Kumar, Avinash; Khanam, Arifa; Ghafoor, Hajra
2016-01-01
Archwires act as gears to move teeth with light, continuous forces. However, the intraoral use of orthodontic archwires is liable to surface deposits which alter the mechanical properties of archwires, causing an increase in the friction coefficient. To evaluate the surface changes of the stainless steel archwires after 6 weeks of intraoral use and its influence on frictional resistance during sliding mechanics. As-received rectangular 0.019" × 0.025" stainless steel orthodontic archwires (control) were compared with the archwires retrieved after the final phase of leveling and alignment stage of orthodontic treatment collected after 6 weeks of intraoral exposure (test samples) from 10 patients undergoing treatment. The control and test samples were used to evaluate surface debris using Scanning Electron Microscopy, surface roughness was assessed using Atomic Force Microscope and frictional forces were measured using Instron Universal Testing Machine in the buccal inter-bracket region that slides through the molar tube for space closure. Unpaired t -test and Pearson correlation tests were used for statistical analysis ( P < 0.05 level of significance). Significant increase was observed in the level of debris ( P = 0.0001), surface roughness ( P = 0.0001), and friction resistance ( P = 0.001) of orthodontic archwires after their intraoral exposure. Significant positive correlations ( P < 0.05) were also observed between these three variables. Stainless steel test archwires showed a significant increase in the degree of debris and surface roughness, increasing the frictional forces between the archwire-bracket interfaces which would considerably reduce the normal orthodontic forces. Thus, continuing the same archwire after levelling and alignment for space closure is not recommended.
Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing
NASA Astrophysics Data System (ADS)
Morrison, A.; Hogg, A.; Ward, M.
2011-12-01
The southern limb of the ocean's meridional overturning circulation plays a key role in the Earth's response to climate change. The rise in atmospheric CO2 during glacial-interglacial transitions has been attributed to outgassing of enhanced upwelling water masses in the Southern Ocean. However a dynamical understanding of the physical mechanisms driving the change in overturning is lacking. Previous modelling studies of the Southern Ocean have focused on the effect of wind stress forcing on the overturning, while largely neglecting the response of the upper overturning cell to changes in surface buoyancy forcing. Using a series of eddy-permitting, idealised simulations of the Southern Ocean, we show that surface buoyancy forcing in the mid-latitudes is likely to play a significant role in setting the strength of the overturning circulation. Air-sea fluxes of heat and precipitation over the Antarctic Circumpolar Current region act to convert dense upwelled water masses into lighter waters at the surface. Additional fluxes of heat or freshwater thereby facilitate the meridional overturning up to a theoretical limit derived from Ekman transport. The sensitivity of the overturning to surface buoyancy forcing is strongly dependent on the relative locations of the wind stress profile, buoyancy forcing and upwelling region. The idealised model results provide support for the hypothesis that changes in upwelling during deglaciations may have been driven by changes in heat and freshwater fluxes, instead of, or in addition to, changes in wind stress. Morrison, A. K., A. M. Hogg, and M. L. Ward (2011), Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing,
Xu, Zhijun; Yang, Xiao; Wei, Qichao; Zhao, Weilong; Cui, Beiliang; Yang, Xiaoning; Sahai, Nita
2018-06-11
Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Though the water phase at the surface/water interface has been recognized as three types: free water in the bulk region, intermediate water phase and surface-bound water layers adjacent to the surface, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution to the free energy from the surface effect is thermodynamically favorable, thus acting as the dominant driving force for peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase at the solid/water interface, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, which is ascribed to the controlling contribution of peptide-surface interaction in the intermediate water phase and the surface-bound water layers are observed as the origin of bioresistance of solid surfaces towards the adsorption of charge-neutral peptides. The preferred peptide adsorption on the graphene, however, is dominated by the surface-induced component at the water layers adjacent to the surface. Our results further elucidate that the intermediate water phase significantly shortens the effective range of the surface dispersion force to guide the diffusion of the peptide to the interface, in sharp contrast to the observation in interfacial systems involving the strong water-surface interaction.
Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.
Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning
2016-03-01
Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found.
Investigation of dust transport on the lunar surface in laboratory plasmas
NASA Astrophysics Data System (ADS)
Wang, X.; Horanyi, M.; Robertson, S. H.
2009-12-01
There has been much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces acting on small lunar dust particles that are charged by UV radiation and solar wind plasma. To learn about the basic physical process, we investigated the dynamics of dust grains on a conducting surface in laboratory plasmas. The first experiment was conducted with a dust pile (JSC-Mars-1) sitting on a negatively biased surface in plasma. The dust pile spread and formed a diffusing dust ring. Dust hopping was confirmed by noticing grains on protruding surfaces. The electrostatic potential distributions measured above the dust pile show an outward pointing electrostatic force and a non-monotonic sheath above the dust pile, indicating a localized upward electrostatic force responsible for lifting dust off the surface. The second experiment was conducted with a dust pile sitting on an electrically floating conducting surface in plasma with an electron beam. Potential measurements show a horizontal electric field at the dust/surface boundary and an enhanced vertical electric field in the sheath above the dust pile when the electron beam current is set to be comparable to the Bohm ion current. Secondary electrons emitted from the surfaces play an important role in this case.
Dynamic, mechanical integration between nucleus and cell- where physics meets biology.
Dickinson, Richard B; Neelam, Srujana; Lele, Tanmay P
2015-01-01
Nuclear motions like rotation, translation and deformation suggest that the nucleus is acted upon by mechanical forces. Molecular linkages with the cytoskeleton are thought to transfer forces to the nuclear surface. We developed an approach to apply reproducible, known mechanical forces to the nucleus in spread adherent cells and quantified the elastic response of the mechanically integrated nucleus-cell. The method is sensitive to molecular perturbations and revealed new insight into the function of the LINC complex. While these experiments revealed elastic behaviors, turnover of the cytoskeleton by assembly/disassembly and binding/unbinding of linkages are expected to dissipate any stored mechanical energy in the nucleus or the cytoskeleton. Experiments investigating nuclear forces over longer time scales demonstrated the mechanical principle that expansive/compressive stresses on the nuclear surface arise from the movement of the cell boundaries to shape and position the nucleus. Such forces can shape the nucleus to conform to cell shapes during cell movements with or without myosin activity.
Dynamic, mechanical integration between nucleus and cell- where physics meets biology
Dickinson, Richard B; Neelam, Srujana; Lele, Tanmay P
2015-01-01
Nuclear motions like rotation, translation and deformation suggest that the nucleus is acted upon by mechanical forces. Molecular linkages with the cytoskeleton are thought to transfer forces to the nuclear surface. We developed an approach to apply reproducible, known mechanical forces to the nucleus in spread adherent cells and quantified the elastic response of the mechanically integrated nucleus-cell. The method is sensitive to molecular perturbations and revealed new insight into the function of the LINC complex. While these experiments revealed elastic behaviors, turnover of the cytoskeleton by assembly/disassembly and binding/unbinding of linkages are expected to dissipate any stored mechanical energy in the nucleus or the cytoskeleton. Experiments investigating nuclear forces over longer time scales demonstrated the mechanical principle that expansive/compressive stresses on the nuclear surface arise from the movement of the cell boundaries to shape and position the nucleus. Such forces can shape the nucleus to conform to cell shapes during cell movements with or without myosin activity. PMID:26338356
NASA Astrophysics Data System (ADS)
Elzbieciak-Wodka, Magdalena; Popescu, Mihail N.; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal
2014-03-01
Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10-21 J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.
Elzbieciak-Wodka, Magdalena; Popescu, Mihail N; Montes Ruiz-Cabello, F Javier; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal
2014-03-14
Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10(-21) J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.
Particle motion in atmospheric boundary layers of Mars and Earth
NASA Technical Reports Server (NTRS)
White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.
1975-01-01
To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina Wisinger; Jesse, Stephen; Carmichael, Ben D.
Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. Inmore » combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm –1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.« less
Quantification of In-Contact Probe-Sample Electrostatic Forces with Dynamic Atomic Force Microscopy.
Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M; Kravchenko, Ivan; Kalinin, Sergei; Tselev, Alexander
2016-12-13
Atomic Force Microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V/nm at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids. Copyright 2016 IOP Publishing Ltd.
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy
Balke, Nina Wisinger; Jesse, Stephen; Carmichael, Ben D.; ...
2017-01-04
Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. Inmore » combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm –1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.« less
Near Surface Vapor Bubble Layers in Buoyant Low Stretch Burning of Polymethylmethacrylate
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Tien, J. S.
1999-01-01
Large-scale buoyant low stretch stagnation point diffusion flames over solid fuel (polymethylmethacrylate) were studied for a range of aerodynamic stretch rates of 2-12/ sec which are of the same order as spacecraft ventilation-induced stretch in a microgravity environment. An extensive layer of polymer material above the glass transition temperature is observed. Unique phenomena associated with this extensive glass layer included substantial swelling of the burning surface, in-depth bubble formation, and migration and/or elongation of the bubbles normal to the hot surface. The bubble layer acted to insulate the polymer surface by reducing the effective conductivity of the solid. The reduced in-depth conduction stabilized the flame for longer than expected from theory neglecting the bubble layer. While buoyancy acts to move the bubbles deeper into the molten polymer, thermocapillary forces and surface regression both act to bring the bubbles to the burning surface. Bubble layers may thus be very important in low gravity (low stretch) burning of materials. As bubbles reached the burning surface, monomer fuel vapors jetted from the surface, enhancing burning by entraining ambient air flow. Popping of these bubbles at the surface can expel burning droplets of the molten material, which may increase the fire propagation hazards at low stretch rates.
The effect of workstation and task variables on forces applied during simulated meat cutting.
McGorry, Raymond W; Dempsey, Patrick G; O'Brien, Niall V
2004-12-01
The purpose of the study was to investigate factors related to force and postural exposure during a simulated meat cutting task. The hypothesis was that workstation, tool and task variables would affect the dependent kinetic variables of gripping force, cutting moment and the dependent kinematic variables of elbow elevation and wrist angular displacement in the flexion/extension and radial/ulnar deviation planes. To evaluate this hypothesis a 3 x 3 x 2 x 2 x 2 (surface orientation by surface height by blade angle by cut complexity by work pace) within-subject factorial design was conducted with 12 participants. The results indicated that the variables can act and interact to modify the kinematics and kinetics of a cutting task. Participants used greater grip force and cutting moment when working at a pace based on productivity. The interactions of the work surface height and orientation indicated that the use of an adjustable workstation could minimize wrist deviation from neutral and improve shoulder posture during cutting operations. Angling the knife blade also interacted with workstation variables to improve wrist and upper extremity posture, but this benefit must be weighed against the potential for small increases in force exposure.
Badal Tejedor, Maria; Nordgren, Niklas; Schuleit, Michael; Millqvist-Fureby, Anna; Rutland, Mark W
2017-11-21
Adhesion of the powders to the punches is a common issue during tableting. This phenomenon is known as sticking and affects the quality of the manufactured tablets. Defective tablets increase the cost of the manufacturing process. Thus, the ability to predict the tableting performance of the formulation blend before the process is scaled-up is important. The adhesive propensity of the powder to the tableting tools is mostly governed by the surface-surface adhesive interactions. Atomic force microscopy (AFM) colloidal probe is a surface characterization technique that allows the measurement of the adhesive interactions between two materials of interest. In this study, AFM steel colloidal probe measurements were performed on ibuprofen, MCC (microcrystalline cellulose), α-lactose monohydrate, and spray-dried lactose particles as an approach to modeling the punch-particle surface interactions during tableting. The excipients (lactose and MCC) showed constant, small, attractive, and adhesive forces toward the steel surface after a repeated number of contacts. In comparison, ibuprofen displayed a much larger attractive and adhesive interaction increasing over time both in magnitude and in jump-in/jump-out separation distance. The type of interaction acting on the excipient-steel interface can be related to a van der Waals force, which is relatively weak and short-ranged. By contrast, the ibuprofen-steel interaction is described by a capillary force profile. Even though ibuprofen is not highly hydrophilic, the relatively smooth surfaces of the crystals allow "contact flooding" upon contact with the steel probe. Capillary forces increase because of the "harvesting" of moisture-due to the fast condensation kinetics-leaving a residual condensate that contributes to increase the interaction force after each consecutive contact. Local asperity contacts on the more hydrophilic surface of the excipients prevent the flooding of the contact zone, and there is no such adhesive effect under the same ambient conditions. The markedly different behavior detected by force measurements clearly shows the sticky and nonsticky propensity of the materials and allows a mechanistic description.
Holding characteristics of planar objects suspended by near-field acoustic levitation
Matsuo; Koike; Nakamura; Ueha; Hashimoto
2000-03-01
The authors have found the acoustic levitation phenomenon where planar objects of 10 kg weight can be levitated near a vibration surface. This phenomenon has been studied for non-contact transportation. A circular planar object can be suspended without contacting a circular vibration plate. We have studied the holding force which acts horizontally on the levitated objects. The horizontal position of the object is stabilized by this force. In this paper, we discuss the effect of the radius of a levitated object, levitation distance, displacement amplitude of the vibration plate and the vibration mode on the suspending force.
How Pressure Became a Scalar, Not a Vector
NASA Astrophysics Data System (ADS)
Chalmers, Alan
2018-06-01
The gradual emergence of a science of hydrostatics during the course of the seventeenth century is testament to the fact that a technical concept of pressure that was up to the task was far from obvious. The first published version of a theory of hydrostatics containing the essentials of the modern theory appeared in book 2 of Isaac Newton's Principia. Newton derived the propositions of hydrostatics from a definition of a fluid as a medium unable to withstand a distorting force. Newton's reasoning required that pressure be understood as a force per unit area acting on either side of imaginary planes within the body of a fluid. For a fluid in equilibrium, the forces at some location within a fluid are independent of the orientation of such planes. As Newton came to realize, within the body of a liquid, pressure acts equally in all directions so that there is no resultant pressing in any direction. Pressure has an intensity but not a direction. In modern terms, it is a scalar, not a vector. Although earlier scholars such as Simon Stevin, Blaise Pascal, and Robert Boyle helped set the scene for Newton's innovations, they were unable to transcend the common sense of pressure as a directed force acting on the solid surfaces bounding a fluid.
How Pressure Became a Scalar, Not a Vector
NASA Astrophysics Data System (ADS)
Chalmers, Alan
2018-04-01
The gradual emergence of a science of hydrostatics during the course of the seventeenth century is testament to the fact that a technical concept of pressure that was up to the task was far from obvious. The first published version of a theory of hydrostatics containing the essentials of the modern theory appeared in book 2 of Isaac Newton's Principia. Newton derived the propositions of hydrostatics from a definition of a fluid as a medium unable to withstand a distorting force. Newton's reasoning required that pressure be understood as a force per unit area acting on either side of imaginary planes within the body of a fluid. For a fluid in equilibrium, the forces at some location within a fluid are independent of the orientation of such planes. As Newton came to realize, within the body of a liquid, pressure acts equally in all directions so that there is no resultant pressing in any direction. Pressure has an intensity but not a direction. In modern terms, it is a scalar, not a vector. Although earlier scholars such as Simon Stevin, Blaise Pascal, and Robert Boyle helped set the scene for Newton's innovations, they were unable to transcend the common sense of pressure as a directed force acting on the solid surfaces bounding a fluid.
Control surfaces of aquatic vertebrates: active and passive design and function.
Fish, Frank E; Lauder, George V
2017-12-01
Aquatic vertebrates display a variety of control surfaces that are used for propulsion, stabilization, trim and maneuvering. Control surfaces include paired and median fins in fishes, and flippers and flukes in secondarily aquatic tetrapods. These structures initially evolved from embryonic fin folds in fishes and have been modified into complex control surfaces in derived aquatic tetrapods. Control surfaces function both actively and passively to produce torque about the center of mass by the generation of either lift or drag, or both, and thus produce vector forces to effect rectilinear locomotion, trim control and maneuvers. In addition to fins and flippers, there are other structures that act as control surfaces and enhance functionality. The entire body can act as a control surface and generate lift for stability in destabilizing flow regimes. Furthermore, control surfaces can undergo active shape change to enhance their performance, and a number of features act as secondary control structures: leading edge tubercles, wing-like canards, multiple fins in series, finlets, keels and trailing edge structures. These modifications to control surface design can alter flow to increase lift, reduce drag and enhance thrust in the case of propulsive fin-based systems in fishes and marine mammals, and are particularly interesting subjects for future research and application to engineered systems. Here, we review how modifications to control surfaces can alter flow and increase hydrodynamic performance. © 2017. Published by The Company of Biologists Ltd.
High speed, self-acting shaft seal. [for use in turbine engines
NASA Technical Reports Server (NTRS)
Ludwig, L. P.; Hady, W. F. (Inventor)
1975-01-01
A high-speed, self-acting circumferential type shaft seal for use in turbine engines is disclosed. One or more conventional circumferential ring seals having a central aperture are mounted in a housing. In three of the four embodiments of the invention, a helical groove and one or more dam seals are cut in the inner cylindrical surface of the one or more ring seals. In a fourth embodiment, two or more lift pads are disposed in surface contact with the inner cylindrical surface of the seal rings. To the outside of the lift pads, two dam seals are cut in the inner cylindrical surface of two of the ring seals. In each of the embodiments, a net outward radial force was produced during rotation of the turbine causing the ring seals to lift out of contact with the turbine shaft to minimize wear of the ring seals.
Deposition mechanisms of TiO2 nanoparticles in a parallel plate system.
Chowdhury, Indranil; Walker, Sharon L
2012-03-01
In this study, a microscope-based technique was utilized to understand the fundamental mechanisms involved in deposition of TiO(2) nanoparticles (TNPs). Transport and deposition studies were conducted in a parallel plate (PP) flow chamber with TNP labeled with fluorescein isothiocyanate (FITC) for visualization. Attachment of FITC-labeled TNPs on surfaces is a function of a combination of parameters, including ionic strength (IS), pH and flowrate. Significantly higher deposition rates were observed at pH 5 versus pH 7. This is attributed to the conditions being chemically favorable for deposition at pH 5 as compared to pH 7, as predicted by DLVO theory. Additionally, deposition rates at pH 5 were reduced with IS below 10 mM due to the decrease in range of electrostatic attractive forces. Above 10 mM, aggregate size increased, resulting in higher deposition rates. At pH 7, no deposition was observed below 10 mM and above this concentration, deposition increased with IS. The impact of flowrate was also observed, with decreasing flowrate leading to greater deposition due to the reduction in drag force acting on the aggregate (regardless of pH). Comparisons between experimental and theoretical approximations indicate that non-DLVO type forces also play a significant role. This combination of observations suggest that the deposition of these model nanoparticles on glass surfaces was controlled by a combination of DLVO and non-DLVO-type forces, shear rate, aggregation state, and gravitational force acting on TNPs. Copyright © 2011 Elsevier Inc. All rights reserved.
Coupling between Buoyancy Forces and Electroconvective Instability near Ion-Selective Surfaces.
Karatay, Elif; Andersen, Mathias Bækbo; Wessling, Matthias; Mani, Ali
2016-05-13
Recent investigations have revealed that ion transport from aqueous electrolytes to ion-selective surfaces is subject to electroconvective instability that stems from coupling of hydrodynamics with electrostatic forces. These systems inherently involve fluid density variation set by salinity gradients. However, the coupling between the buoyancy effects and electroconvective instability has not yet been investigated although a wide range of electrochemical systems are naturally prone to these interplaying effects. In this study we thoroughly examine the interplay of gravitational convection and chaotic electroconvection. Our results reveal that buoyant forces can significantly influence the transport rates, otherwise set by electroconvection, when the Rayleigh number Ra of the system exceeds a value Ra∼1000. We show that buoyancy forces can significantly alter the flow patterns in these systems. When the buoyancy acts in the stabilizing direction, it limits the extent of penetration of electroconvection, but without eliminating it. When the buoyancy destabilizes the flow, it alters the electroconvective patterns by introducing upward and downward fingers of respectively light and heavy fluids.
An integrated CFD/experimental analysis of aerodynamic forces and moments
NASA Technical Reports Server (NTRS)
Melton, John E.; Robertson, David D.; Moyer, Seth A.
1989-01-01
Aerodynamic analysis using computational fluid dynamics (CFD) is most fruitful when it is combined with a thorough program of wind tunnel testing. The understanding of aerodynamic phenomena is enhanced by the synergistic use of both analysis methods. A technique is described for an integrated approach to determining the forces and moments acting on a wind tunnel model by using a combination of experimentally measured pressures and CFD predictions. The CFD code used was FLO57 (an Euler solver) and the wind tunnel model was a heavily instrumented delta wing with 62.5 deg of leading-edge sweep. A thorough comparison of the CFD results and the experimental data is presented for surface pressure distributions and longitudinal forces and moments. The experimental pressures were also integrated over the surface of the model and the resulting forces and moments are compared to the CFD and wind tunnel results. The accurate determination of various drag increments via the combined use of the CFD and experimental pressures is presented in detail.
Water entry and exit of horizontal circular cylinders
NASA Astrophysics Data System (ADS)
Greenhow, M.; Moyo, S.
This paper describes fully nonlinear two-dimensional numerical calculations of the free-surface deformations of initially calm water caused by the forced motion of totally or partially submerged horizontal circular cylinders. The paper considers the following. (i) Totally submerged cylinders moving with constant velocity in vertical, horizontal or combined motions. Results are compared with the small-time asymptotic solution obtained by Tyvand and Milohin 1995. Their results, which are taken to third-order (which is when gravity terms first appear in the expansions), are in excellent agreement with the numerical calculations for small times; beyond this only the numerical method gives accurate results until the free surface breaks or the cylinder emerges from the free surface. Breaking can occur during exit due to strongly negative pressures arising on the cylinder surface, or during the downwards motion causing a free-surface depression which closes up rapidly, forming splashes. Downwards motion is also shown to give rise to high-frequency waves in some cases. (ii) The free-surface deformations, pressures and forces acting on a cylinder in vertical or oblique forced motion during engulfment when it submerges from being initially half-submerged. The initial stages, when the cylinder still pierces the free surface, specify the initial conditions for a separate program for a completely submerged body, thereby allowing complete engulfment to be studied. The free surface closes up violently over the top of the cylinder resulting in jet flow, which, while difficult to handle numerically, has been shown to be insignificant for the bulk flow and the cylinder pressures and forces.
Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination
NASA Technical Reports Server (NTRS)
Marshall, J. A.; Luthcke, S. B.; Antreasian, P. G.; Rosborough, G. W.
1992-01-01
Geodetic satellites such as GEOSAT, SPOT, ERS-1, and TOPEX/Poseidon require accurate orbital computations to support the scientific data they collect. Until recently, gravity field mismodeling was the major source of error in precise orbit definition. However, albedo and infrared re-radiation, and spacecraft thermal imbalances produce in combination no more than a 6-cm radial root-mean-square (RMS) error over a 10-day period. This requires the development of nonconservative force models that take the satellite's complex geometry, attitude, and surface properties into account. For TOPEX/Poseidon, a 'box-wing' satellite form was investigated that models the satellite as a combination of flat plates arranged in a box shape with a connected solar array. The nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. In order to test the validity of this concept, 'micro-models' based on finite element analysis of TOPEX/Poseidon were used to generate acceleration histories in a wide variety of orbit orientations. These profiles are then compared to the box-wing model. The results of these simulations and their implication on the ability to precisely model the TOPEX/Poseidon orbit are discussed.
NASA Technical Reports Server (NTRS)
Nelson, Herbert C; Cunningham, Herbert J
1956-01-01
A Rayleigh type analysis involving chosen modes of the panel as degrees of freedom is used to treat the flutter of a two-dimensional flat panel supported at its leading and trailing edges and subjected to a middle-plane tensile force. The panel has a supersonic stream passing over its upper surface and still air below. The aerodynamic forces due to the supersonic stream are obtained from the theory for linearized two-dimensional unsteady flow and the forces due to the still air are obtained from acoustical theory. In order to study the effect of increasing the number of modes in the analysis, two and then four modes are employed. The modes used are the first four natural modes of the panel in a vacuum with no tensile force acting. The analysis includes these variables: Mach number, structural damping, tensile force, density of the still air, and edge fixity (clamped and pinned). For certain combinations of these variables, stability boundaries are obtained which can be used to determine the panel thickness required to prevent flutter for any panel material and altitude.
Lateral migration of a microdroplet under optical forces in a uniform flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Hyunjun; Chang, Cheong Bong; Jung, Jin Ho
2014-12-15
The behavior of a microdroplet in a uniform flow and subjected to a vertical optical force applied by a loosely focused Gaussian laser beam was studied numerically. The lattice Boltzmann method was applied to obtain the two-phase flow field, and the dynamic ray tracing method was adopted to calculate the optical force. The optical forces acting on the spherical droplets agreed well with the analytical values. The numerically predicted droplet migration distances agreed well with the experimentally obtained values. Simulations of the various flow and optical parameters showed that the droplet migration distance nondimensionalized by the droplet radius is proportionalmore » to the S number (z{sub d}/r{sub p} = 0.377S), which is the ratio of the optical force to the viscous drag. The effect of the surface tension was also examined. These results indicated that the surface tension influenced the droplet migration distance to a lesser degree than the flow and optical parameters. The results of the present work hold for the refractive indices of the mean fluid and the droplet being 1.33 and 1.59, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor
2014-03-14
Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. Thismore » value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.« less
NASA Astrophysics Data System (ADS)
Usui, Yuta; Kanemoto, Toshiaki; Hiraki, Koju
2013-12-01
The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem propellers and the double rotational armature type peculiar generator without the traditional stator. The front and the rear propellers counter-drive the inner and the outer armatures of the peculiar generator, respectively. The unit has the fruitful advantages that not only the output is sufficiently higher without supplementary equipment such as a gearbox, but also the rotational moment hardly act on the pillar because the rotational torque of both propellers/armatures are counter-balanced in the unit. This paper discusses experimentally the performances of the power unit and the effects of the propeller rotation on the sea surface. The axial force acting on the pillar increases naturally with the increase of not only the stream velocity but also the drag of the tandem propellers. Besides, the force vertical to the stream also acts on the pillar, which is induced from the Karman vortex street and the dominant frequencies appear owing to the front and the rear propeller rotations. The propeller rotating in close to the sea surface brings the abnormal wave and the amplitude increases as the stream velocity is faster and/or the drag is stronger.
Climate impact of anthropogenic aerosols on cirrus clouds
NASA Astrophysics Data System (ADS)
Penner, J.; Zhou, C.
2017-12-01
Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. However, the efficacy with which particles act to form cirrus particles in a model depends on the representation of updrafts. Here, we use a representation of updrafts based on observations of gravity waves, and follow ice formation/evaporation during both updrafts and downdrafts. We examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning and from aircraft particles that have previously formed ice in contrails. Results show that fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of -0.15±0.02 Wm-2 while aircraft aerosols that have been pre-activated within contrails exert a forcing of -0.20±0.06 Wm-2, but it is possible to decrease these estimates of forcing if a larger fraction of dust particles act as heterogeneous ice nuclei. In addition aircraft aerosols may warm the climate if a large fraction of these particles act as ice nuclei. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds. This assessment could therefore support climate models with high sensitivity to greenhouse gas forcing, while still allowing the models to fit the overall historical temperature change.
2012-06-01
Kaimal and Finnigan (1994), modified) Figure 2.2 illustrates the evolution from unstable CBL to a nocturnal Stable Bound- ary Layer ( SBL ) in the absence...mixed layer acts as a cap for the SBL . The SBL persists through the night until sunrise when surface heating resumes and a new unstable layer begins...to form at the surface, gradually returning to a CBL. 7 2.2.1 Dynamics of the stable boundary layer Because the SBL is stably stratified, buoyancy
Solar radiation pressure effects on the Helios spacecraft
NASA Technical Reports Server (NTRS)
Georgevic, R. M.
1976-01-01
A mathematical model of the solar radiation force and torques, developed for the Mariner 10 Venus/Mercury spacecraft mission, was used for a detailed analysis of the effects of solar light pressure on the Helios spacecraft. Due to the fact that the main body of the Helios spacecraft is a surface of enclosure, inside of which most of the reradiated thermal energy is lost, expressions for the portion of the solar radiation force, produced by the thermal reradiation, had to be given a different form. Hence the need for the derivation of a somewhat different theoretical model for the force acting on the main body of the spacecraft.
Nonflat equilibrium liquid shapes on flat surfaces.
Starov, Victor M
2004-01-15
The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.
A Simple 2-Transistor Touch or Lick Detector Circuit
ERIC Educational Resources Information Center
Slotnick, Burton
2009-01-01
Contact or touch detectors in which a subject acts as a switch between two metal surfaces have proven more popular and arguably more useful for recording responses than capacitance switches, photocell detectors, and force detectors. Components for touch detectors circuits are inexpensive and, except for some special purpose designs, can be easily…
NASA Astrophysics Data System (ADS)
Shi, Junqin; Chen, Juan; Fang, Liang; Sun, Kun; Sun, Jiapeng; Han, Jing
2018-03-01
The effect of water film on the nanoscratching behavior of monocrystalline Cu was studied by molecular dynamics (MD) simulation. The results indicate that the friction force acting on abrasive particle increases due to the resistance of water film accumulating ahead of particle, but the water film with lubrication decreases friction force acting on Cu surface. The accumulation of water molecules around particle causes the anisotropy of ridge and the surface damage around the groove, and the water molecules remaining in the groove lead to the non-regular groove structure. The dislocation evolution displays the re-organization of the dislocation network in the nanoscratching process. The evaluation of removal efficiency shows the number of removed Cu atoms decreases with water film thickness. It is considered that an appropriate rather than a high removal efficiency should be adopted to evaluate the polishing process in real (chemical mechanical polishing) CMP. These results are helpful to reveal the polishing mechanism under the effect of water film from physical perspective, which benefits the development of ultra-precision manufacture and miniaturized components, as well as the innovation of CMP technology.
Mechanotransduction across the cell surface and through the cytoskeleton
NASA Technical Reports Server (NTRS)
Wang, N.; Butler, J. P.; Ingber, D. E.
1993-01-01
Mechanical stresses were applied directly to cell surface receptors with a magnetic twisting device. The extracellular matrix receptor, integrin beta 1, induced focal adhesion formation and supported a force-dependent stiffening response, whereas nonadhesion receptors did not. The cytoskeletal stiffness (ratio of stress to strain) increased in direct proportion to the applied stress and required intact microtubules and intermediate filaments as well as microfilaments. Tensegrity models that incorporate mechanically interdependent struts and strings that reorient globally in response to a localized stress mimicked this response. These results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton. Mechanotransduction, in turn, may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytoskeleton.
NASA Astrophysics Data System (ADS)
Arnal, L.; Longo, G.; Stupar, P.; Castez, M. F.; Cattelan, N.; Salvarezza, R. C.; Yantorno, O. M.; Kasas, S.; Vela, M. E.
2015-10-01
Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04644k
NASA Astrophysics Data System (ADS)
Kim, Ho-Young
2016-11-01
Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Taylor, Lawrence W., Jr.
1987-01-01
A semi-empirical method is presented for the estimation of aerodynamic forces and moments acting on a steadily spinning (rotating) light airplane. The airplane is divided into wing, body, and tail surfaces. The effect of power is ignored. The strip theory is employed for each component of the spinning airplane to determine its contribution to the total aerodynamic coefficients. Then, increments to some of the coefficients which account for centrifugal effect are estimated. The results are compared to spin tunnel rotary balance test data.
Schrader, Alex M.; Donaldson, Stephen H.; Song, Jinsuk; Cheng, Chi-Yuan; Lee, Dong Woog; Han, Songi; Israelachvili, Jacob N.
2015-01-01
Dimethyl sulfoxide (DMSO) is a common solvent and biological additive possessing well-known utility in cellular cryoprotection and lipid membrane permeabilization, but the governing mechanisms at membrane interfaces remain poorly understood. Many studies have focused on DMSO–lipid interactions and the subsequent effects on membrane-phase behavior, but explanations often rely on qualitative notions of DMSO-induced dehydration of lipid head groups. In this work, surface forces measurements between gel-phase dipalmitoylphosphatidylcholine membranes in DMSO–water mixtures quantify the hydration- and solvation-length scales with angstrom resolution as a function of DMSO concentration from 0 mol% to 20 mol%. DMSO causes a drastic decrease in the range of the steric hydration repulsion, leading to an increase in adhesion at a much-reduced intermembrane distance. Pulsed field gradient NMR of the phosphatidylcholine (PC) head group analogs, dimethyl phosphate and tetramethylammonium ions, shows that the ion hydrodynamic radius decreases with increasing DMSO concentration up to 10 mol% DMSO. The complementary measurements indicate that, at concentrations below 10 mol%, the primary effect of DMSO is to decrease the solvated volume of the PC head group and that, from 10 mol% to 20 mol%, DMSO acts to gradually collapse head groups down onto the surface and suppress their thermal motion. This work shows a connection between surface forces, head group conformation and dynamics, and surface water diffusion, with important implications for soft matter and colloidal systems. PMID:26261313
Runway Rubber Removal Specification Development: Field Evaluation Procedures Development.
1984-07-01
removal was sufficient enough to restore full pave- ment skid resistance (based on tests with a DBV). With regard to high-pressure water rubber ...over a test surface, the rubber slider resists motion-. The force, parallel to the test surface, which acts on the slider registers an output on a dial...PROCEDURE 1. Check rubber shoe for wear . Replace when the edge is worn by more than 3/16 in as measured with a rule laid flat across the slider width. 2
Competing Thermodynamic and Dynamic Factors Select Molecular Assemblies on a Gold Surface
NASA Astrophysics Data System (ADS)
Haxton, Thomas K.; Zhou, Hui; Tamblyn, Isaac; Eom, Daejin; Hu, Zonghai; Neaton, Jeffrey B.; Heinz, Tony F.; Whitelam, Stephen
2013-12-01
Controlling the self-assembly of surface-adsorbed molecules into nanostructures requires understanding physical mechanisms that act across multiple length and time scales. By combining scanning tunneling microscopy with hierarchical ab initio and statistical mechanical modeling of 1,4-substituted benzenediamine (BDA) molecules adsorbed on a gold (111) surface, we demonstrate that apparently simple nanostructures are selected by a subtle competition of thermodynamics and dynamics. Of the collection of possible BDA nanostructures mechanically stabilized by hydrogen bonding, the interplay of intermolecular forces, surface modulation, and assembly dynamics select at low temperature a particular subset: low free energy oriented linear chains of monomers and high free energy branched chains.
The lift force on a drop in unbounded plane Poiseuille flow
NASA Technical Reports Server (NTRS)
Wohl, P. R.
1976-01-01
The lift force on a deformable liquid sphere moving in steady, plane Poiseuille-Stokes flow and subjected to an external body force is calculated. The results are obtained by seeking a solution to Stokes' equations for the motion of the liquids inside and outside the slightly perturbed sphere surface, as expansions valid for small values of the ratio of the Weber number to the Reynolds number. When the ratio of the drop and external fluid viscosities is small, the lift exerted on a neutrally buoyant drop is found to be approximately one-tenth of the magnitude of the force reported by Wohl and Rubinow acting on the same drop in unbounded Poiseuille flow in a tube. The resultant trajectory of the drop is calculated and displayed as a function of the external body force.
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Robertson, F. R.; Clayson, C. A.
2010-01-01
Recent investigations have examined observations in an attempt to determine when and how the ocean forces the atmosphere, and vice versa. These studies focus primarily on relationships between sea surface temperature anomalies and the turbulent and radiative surface heat fluxes. It has been found that both positive and negative feedbacks, which enhance or reduce sea surface temperature anomaly amplitudes, can be generated through changes in the surface boundary layer. Consequent changes in sea surface temperature act to change boundary layer characteristics through changes in static stability or turbulent fluxes. Previous studies over the global oceans have used coarse-resolution observational and model products such as ICOADS and the NCEP Reanalysis. This study focuses on documenting the atmosphere ocean feedbacks that exist in recently produced higher resolution products, namely the SeaFlux v1.0 product and the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA). It has been noted in recent studies that evidence of oceanic forcing of the atmosphere exists on smaller scales than the usually more dominant atmospheric forcing of the ocean, particularly in higher latitudes. It is expected that use of these higher resolution products will allow for a more comprehensive description of these small-scale ocean-atmosphere feedbacks. The SeaFlux intercomparisons have revealed large scatter between various surface flux climatologies. This study also investigates the uncertainty in surface flux feedbacks based on several of these recent satellite based climatologies
The Earth Gravitational Model 1996: The NCCS: Resource for Development, Resource for the Future
NASA Technical Reports Server (NTRS)
2002-01-01
For centuries, men have attempted to understand the climate system through observations obtained from Earth's surface. These observations yielded preliminary understanding of the ocean currents, tides, and prevailing winds using visual observation and simple mechanical tools as their instruments. Today's sensitive, downward-looking radar systems, called altimeters, onboard satellites can measure globally the precise height of the ocean surface. This surface is largely that of the equipotential gravity surface, called the geoid - the level surface to which the oceans would conform if there were no forces acting on them apart from gravity, as well as having a significant 1-2- meter-level signal arising from the motion of the ocean's currents.
Actin-based motility propelled by molecular motors
NASA Astrophysics Data System (ADS)
Upadyayula, Sai Pramod; Rangarajan, Murali
2012-09-01
Actin-based motility of Listeria monocytogenes propelled by filament end-tracking molecular motors has been simulated. Such systems may act as potential nanoscale actuators and shuttles useful in sorting and sensing biomolecules. Filaments are modeled as three-dimensional elastic springs distributed on one end of the capsule and persistently attached to the motile bacterial surface through an end-tracking motor complex. Filament distribution is random, and monomer concentration decreases linearly as a function of position on the bacterial surface. Filament growth rate increases with monomer concentration but decreases with the extent of compression. The growing filaments exert push-pull forces on the bacterial surface. In addition to forces, torques arise due to two factors—distribution of motors on the bacterial surface, and coupling of torsion upon growth due to the right-handed helicity of F-actin—causing the motile object to undergo simultaneous translation and rotation. The trajectory of the bacterium is simulated by performing a force and torque balance on the bacterium. All simulations use a fixed value of torsion. Simulations show strong alignment of the filaments and the long axis of the bacterium along the direction of motion. In the absence of torsion, the bacterial surface essentially moves along the direction of the long axis. When a small amount of the torsion is applied to the bacterial surface, the bacterium is seen to move in right-handed helical trajectories, consistent with experimental observations.
An analysis of the physiologic parameters of intraoral wear: a review
NASA Astrophysics Data System (ADS)
Lawson, Nathaniel C.; Janyavula, Sridhar; Cakir, Deniz; Burgess, John O.
2013-10-01
This paper reviews the conditions of in vivo mastication and describes a novel method of measuring in vitro wear. Methods: parameters of intraoral wear are reviewed in this analysis, including chewing force, tooth sliding distance, food abrasivity, saliva lubrication, and antagonist properties. Results: clinical measurement of mastication forces indicates a range of normal forces between 20 and 140 N for a single molar. During the sliding phase of mastication, horizontal movement has been measured between 0.9 and 2.86 mm. In vivo wear occurs by three-body abrasion when food particles are interposed between teeth and by two-body abrasion after food clearance. Analysis of food particles used in wear testing reveals that food particles are softer than enamel and large enough to separate enamel and restoration surfaces and act as a solid lubricant. In two-body wear, saliva acts as a boundary lubricant with a viscosity of 3 cP. Enamel is the most relevant antagonist material for wear testing. The shape of a palatal cusp has been estimated as a 0.6 mm diameter ball and the hardest region of a tooth is its enamel surface. pH values and temperatures have been shown to range between 2-7 and 5-55 °C in intraoral fluids, respectively. These intraoral parameters have been used to modify the Alabama wear testing method.
Atomic Force Microscopy of Biological Membranes
Frederix, Patrick L.T.M.; Bosshart, Patrick D.; Engel, Andreas
2009-01-01
Abstract Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes. PMID:19167286
3D Viscous Free-Surface Flow around a Combatant Ship Hull
NASA Astrophysics Data System (ADS)
Pacuraru, Florin; Lungu, Adrian; Maria, Viorel
2009-09-01
The prediction of the total drag experienced by an advancing ship is a complicated problem which requires a thorough understanding of the hydrodynamic forces acting on the hull, the physical processes from which these forces arise and their mutual interaction. A general numerical method to predict the hydrodynamic performance of a twin-propeller combatant ship hull is presented in the paper. For practical reasons, the technique couples a body forces method and a RANS-based finite volume solver to account for the interactions between the hull and the appendages mounted on it: propellers, rudders, shaft lines, bossings and brackets. The chimera approach has been found the most versatile way for grid generation of hull and appendages.
Spatially Synchronous Extinction of Species under External Forcing
NASA Astrophysics Data System (ADS)
Amritkar, R. E.; Rangarajan, Govindan
2006-06-01
More than 99% of the species that ever existed on the surface of the Earth are now extinct and their extinction on a global scale has been a puzzle. One may think that a species under an external threat may survive in some isolated locations leading to the revival of the species. Using a general model we show that, under a common external forcing, the species with a quadratic saturation term first undergoes spatial synchronization and then extinction. The effect can be observed even when the external forcing acts only on some locations provided the dynamics contains a synchronizing term. Absence of the quadratic saturation term can help the species to avoid extinction.
The Impact of Gulf Stream-Induced Diabatic Forcing on Coastal Mid-Atlantic Surface Cyclogenesis
NASA Astrophysics Data System (ADS)
Cione, Joseph Jerome
In this dissertation, numerical experiments were conducted using a mesoscale atmospheric model developed at North Carolina State University. Three sets of numerical experiments were conducted and were designed to: quantify the impact Gulf Stream frontal distance, initial surface air temperature and cold air outbreak timing each have on the subsequent development of the marine atmospheric boundary layer during periods of offshore cold advection; investigate critical processes associated with Gulf Stream -induced mesocyclogenesis and; elucidate the role SST gradients and surface fluxes of heat and moisture have on the intensification and track of propagating mesocyclonic systems within the highly baroclinic Gulf Stream region. A major finding from the offshore cold advection simulations is that the initial air-sea contrast is the dominant forcing mechanism linked to the offshore circulation development and marine boundary layer modification. Results from the mesocyclogenesis experiments indicate that surface cyclogenesis was simulated to occur along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) were maximized. Results from sensitivity experiments illustrate that changes in the Gulf Stream SST gradient pattern can act to alter the timing and degree of cyclonic development simulated, while the inclusion of surface fluxes and moist convective processes during the development phase act to strongly enhance the intensity and/or occurrence of simulated mesocyclogenesis. Both observational and numerical results from studies investigating the impact strong Gulf Stream SST gradients have on the development of pre-existing, propagating cyclonic systems show that the baroclinic nature of the low level environment near the circulation center (as well as the degree of simulated/observed surface cyclonic intensification) appear to be highly dependent upon the mesoscale storm track within the Gulf Stream frontal zone. Furthermore, the numerical storm track experiments conducted in this research illustrate that surfaces fluxes can act to significantly alter the storm track of the surface mesocyclone (in addition to impacting the overall intensification of the simulated cyclonic system). This work also presents the technique development and operational utilization of the recently devised Atlantic Surface Cyclone Intensification Index (ASCII). The index continues to be implemented by the National Weather Service at the Raleigh-Durham and surrounding coastal forecast offices, and to date, has been successfully utilized for 11 coastal winter storm events over the February 1994-January 1996 period.
Meltwater Evolution during Defrosting on Superhydrophobic Surfaces.
Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli
2018-01-10
Defrosting is essential for removing frost from engineering surfaces, but some fundamental issues are still unclear, especially for defrosting on superhydrophobic surfaces. Here, defrosting experiments on prepared superhydrophobic surfaces were conducted along with the investigation on meltwater evolution characteristics. According to the experiments, the typical meltwater evolution process on superhydrophobic surfaces can be divided into two stages: dewetting by edge curling and dewetting by shrinkage. The edge curling of a meltwater film is a distinct phenomenon and has been first reported in this work. Profiting from the ultralow adhesion of the superhydrophobic surface, edge curling is mainly attributed to two unbalanced forces (one at the interface between the ice slurry layer and pure water layer and the other in the triple phase line area) acting on the layered meltwater film. During the multi-meltwater evolution process, the nonbreaking of chained droplets on superhydrophobic surfaces is also an interesting phenomenon, which is controlled by the interaction between the surface tension and the retentive force because of contact angle hysteresis. An approximate criterion was then developed to explain and determine the status of chained droplets, and experimental data from various surfaces have validated the effectiveness of this criterion. This work may deepen the understanding of defrosting on superhydrophobic surfaces and promote antifrosting/icing applications in engineering.
Near Axisymmetric Partial Wetting Using Interface-Localized Liquid Dielectrophoresis.
Brabcova, Zuzana; McHale, Glen; Wells, Gary G; Brown, Carl V; Newton, Michael I; Edwards, Andrew M J
2016-10-25
The wetting of solid surfaces can be modified by altering the surface free energy balance between the solid, liquid, and vapor phases. Liquid dielectrophoresis (L-DEP) can produce wetting on normally nonwetting surfaces, without modification of the surface topography or chemistry. L-DEP is a bulk force acting on the dipoles of a dielectric liquid and is not normally considered to be a localized effect acting at the interface between the liquid and a solid or other fluid. However, if this force is induced by a nonuniform electric field across a solid-liquid interface, it can be used to enhance and control the wetting of a dielectric liquid. Recently, it was reported theoretically and experimentally that this approach can cause a droplet of oil to spread along parallel interdigitated electrodes thus forming a stripe of liquid. Here we show that by using spiral-shaped electrodes actuated with four 90° successive phase-shifted signals, a near axisymmetric spreading of droplets can be achieved. Experimental observations show that the induced wetting can achieve film formation, an effect not possible with electrowetting. We show that the spreading is reversible thus enabling a wide range of partial wetting droplet states to be achieved in a controllable manner. Furthermore, we find that the cosine of the contact angle has a quadratic dependence on applied voltage during spreading and deduce a scaling law for the dependence of the strength of the effect on the electrode size.
NASA Technical Reports Server (NTRS)
Marshall, J.; Weislogel, M.; Jacobson, T.
1999-01-01
The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single gain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three- dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction. Electrostatic forces are generally under-estimated for their role in causing agglomeration of dispersed grains in particulate clouds, or their role in affecting the internal frictional relationships in packed granular masses. We believe that electrostatic, in particular dipole-mediated processes, are pervasive and probably affect, at some level, everything from astrophysical-scale granular systems such as interstellar nebulae, protoplanetary dust and debris disks, planetary-scale systems such as debris palls from meteorite impact, volcanic eruptions, and aeolian dust storms, all the way to industrial-scale systems in mining, powder and grain processing, pharmaceuticals, and smoke-stack technologies. NASA must concern itself with the electrostatic behavior of dust and sand on Mars because of its potentially critical importance to human exploration. The motion and adhesion of martian surface materials will affect the design and performance of spacesuits, habitats, processing plants, solar panels, and any externally exposed equipment such as surface rovers or communication and weather stations. Additionally, the adhesion of dust and sand could greatly enhance contact with the potentially toxic components of the martian soil.
Mechanical regulation of T-cell functions
Chen, Wei; Zhu, Cheng
2013-01-01
Summary T cells are key players of the mammalian adaptive immune system. They experience different mechanical microenvironments during their life cycles, from the thymus, secondary lymph organs, and peripheral tissues that are free of externally applied force but display variable substrate rigidities, to the blood and lymphatic circulation systems where complicated hydrodynamic forces are present. Regardless of whether T cells are subject to external forces or generate their own internal forces, they response and adapt to different biomechanical cues to modulate their adhesion, migration, trafficking, and triggering of immune functions through mechanical regulation of various molecules that bear force. These include adhesive receptors, immunoreceptors, motor proteins, cytoskeletal proteins, and their associated molecules. Here we discuss the forces acting on various surface and cytoplasmic proteins of a T cell in different mechanical milieus. We review existing data on how force regulates protein conformational changes and interactions with counter molecules, including integrins, actin, and the T-cell receptor, and how each relates to T-cell functions. PMID:24117820
Collisional model of the drag force of granular impact
NASA Astrophysics Data System (ADS)
Stevens Bester, Cacey; Behringer, Robert P.
2017-06-01
A dense, dry granular target can cause a free-falling intruding object to come to an abrupt stop as its momentum is lost to the grains. An empirical force law describes this process, characterizing the stopping force as the sum of depth-dependent friction and velocity-dependent inertial drag. However, a complete interpretation of the stopping force, incorporating grain-scale interactions during impact, remains unresolved. Here, the momentum transfer is proposed to occur through sporadic, normal collisions with clusters of high force-carrying grains at the intruder's surface. To test this model in impact experiments, we determine the forces acting on an intruder decelerating through a dense granular medium using high-speed imaging of its trajectory. We vary the geometry of the impacting object to infer intruder-grain interactions. As a result, we connect the inertial drag to the effect of intruder shape based on the proposed collisional model. These impact studies serve as an approach to understand dynamic force transmission in granular media.
Momentum effects in steady nucleate pool boiling during microgravity.
Merte, Herman
2004-11-01
Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a matrix of three levels of heat flux and three levels of subcooling. In 26 of the total of 45 experiments conditions of steady-state pool boiling were achieved under certain combinations of heat flux and liquid subcooling. In many of the 26 cases, it was observed from the 16-mm movie films that a large vapor bubble formed, remaining slightly removed from the heater surface, and that subsequent vapor bubbles nucleate and grow on the heater surface. Coalescence occurs upon making contact with the large bubble, which thus acts as a vapor reservoir. Recently, measurements of the frequencies and sizes of the small vapor bubbles as they coalesced with the large bubble permitted computation of the associated momentum transfer. The transient forces obtained are presented here. Where these arise from the conversion of the surface energy in the small vapor bubble to kinetic energy acting away from the solid heater surface, they counter the Marangoni convection due to the temperature gradients normal to the heater surface. This Marangoni convection would otherwise impel the large vapor bubble toward the heater surface and result in dryout and unsteady heat transfer.
Simultaneous muscle force and displacement transducer
NASA Technical Reports Server (NTRS)
Feldstein, C.; Lewis, G. W.; Culler, V. H. (Inventor)
1980-01-01
A myocardial transducer for simultaneously measuring force and displacement within a very small area of myocardium is disclosed. The transducer comprised of an elongated body forked at one end to form an inverted Y shaped beam with each branch of the beam constituting a low compliant tine for penetrating the myocardium to a predetermined depth. Bonded to one of the low compliance tines is a small piezoresistive element for converting a force acting on the beam into an electrical signal. A third high compliant tine of the transducer, which measures displacement of the myocardium in a direction in line with the two low compliant tines, is of a length that just pierces the surface membrane. A small piezoresistive element is bonded to the third tine at its upper end where its bending is greatest. Displacement of the myocardium causes a deformation in curvature of the third tine, and the second small piezoresistive element bonded to the surface of its curved end converts its deformation into an electrical signal.
NASA Astrophysics Data System (ADS)
Nguyen, T. D.; Tran, V. T.; Fu, Y. Q.; Du, H.
2018-05-01
A method based on standing surface acoustic waves (SSAWs) is proposed to pattern and manipulate microparticles into a three-dimensional (3D) matrix inside a microchamber. An optical prism is used to observe the 3D alignment and patterning of the microparticles in the vertical and horizontal planes simultaneously. The acoustic radiation force effectively patterns the microparticles into lines of 3D space or crystal-lattice-like matrix patterns. A microparticle can be positioned precisely at a specified vertical location by balancing the forces of acoustic radiation, drag, buoyancy, and gravity acting on the microparticle. Experiments and finite-element numerical simulations both show that the acoustic radiation force increases gradually from the bottom of the chamber to the top, and microparticles can be moved up or down simply by adjusting the applied SSAW power. Our method has great potential for acoustofluidic applications, building the large-scale structures associated with biological objects and artificial neuron networks.
Lift and drag forces on an inclined plow moving over a granular surface.
Percier, Baptiste; Manneville, Sebastien; McElwaine, Jim N; Morris, Stephen W; Taberlet, Nicolas
2011-11-01
We studied the drag and lift forces acting on an inclined plate while it is dragged on the surface of a granular media, both in experiment and in numerical simulation. In particular, we investigated the influence of the horizontal velocity of the plate and its angle of attack. We show that a steady wedge of grains is moved in front of the plow and that the lift and drag forces are proportional to the weight of this wedge. These constants of proportionality vary with the angle of attack but not (or only weakly) on the velocity. We found a universal effective friction law that accounts for the dependence on all the above-mentioned parameters. The stress and velocity fields are calculated from the numerical simulations and show the existence of a shear band under the wedge and that the pressure is nonhydrostatic. The strongest gradients in stress and shear occur at the base of the plow where the dissipation rate is therefore highest.
Wedge disclination dipole in an embedded nanowire within the surface/interface elasticity
NASA Astrophysics Data System (ADS)
Shodja, Hossein M.; Rezazadeh-Kalehbasti, Shaghayegh; Gutkin, Mikhail Yu
2013-12-01
The elastic behavior of an arbitrary oriented wedge disclination dipole located inside a nanowire, which in turn is embedded in an infinite matrix, is studied within the surface/interface theory of elasticity. The corresponding boundary value problem is provided using complex potential functions. The potential functions are defined through modeling the wedge disclination in terms of an equivalent distribution of edge dislocations. The interface effects on the stress field and strain energy of the disclination dipole and image forces acting on it, the influence of relative shear moduli of the nanowire and the matrix, as well as the different characteristics of the interface are studied thoroughly. It is shown that the positive interface modulus leads to increased strain energy and extra repulsive forces on the disclination dipole. The noticeable effect of the negative interface modulus is the non-classical oscillations in the stress field of the disclination dipole and an extra attractive image force on it.
Exact Solution for Capillary Bridges Properties by Shooting Method
NASA Astrophysics Data System (ADS)
Qiang-Nian, Li; Jia-Qi, Zhang; Feng-Xi, Zhou
2017-04-01
The investigation of liquid bridge force acting between wet particles has great significance in many fields. In this article, the exact solution of capillary force between two unequal-sized spherical particles is investigated. Firstly, The Young-Laplace equation with moving boundary is converted into a set of ordinary differential equations with two fix point boundary using variable substitution technique, in which the gravity effects have been neglected. The geometry of the liquid bridge between two particles is solved by shooting method. After that, the gorge method is applied to calculate the capillary-bridge force that is consists of contributions from the capillary suction and surface tension. Finally, the effect of various parameters including distance between two spheres, radii of spheres, and contact angles on the capillary force are investigated. It is shown that the presented approach is an efficient and accurate algorithm for capillary force between two particles in complex situations.
Comparisons Between Experimental and Semi-theoretical Cutting Forces of CCS Disc Cutters
NASA Astrophysics Data System (ADS)
Xia, Yimin; Guo, Ben; Tan, Qing; Zhang, Xuhui; Lan, Hao; Ji, Zhiyong
2018-05-01
This paper focuses on comparisons between the experimental and semi-theoretical forces of CCS disc cutters acting on different rocks. The experimental forces obtained from LCM tests were used to evaluate the prediction accuracy of a semi-theoretical CSM model. The results show that the CSM model reliably predicts the normal forces acting on red sandstone and granite, but underestimates the normal forces acting on marble. Some additional LCM test data from the literature were collected to further explore the ability of the CSM model to predict the normal forces acting on rocks of different strengths. The CSM model underestimates the normal forces acting on soft rocks, semi-hard rocks and hard rocks by approximately 38, 38 and 10%, respectively, but very accurately predicts those acting on very hard and extremely hard rocks. A calibration factor is introduced to modify the normal forces estimated by the CSM model. The overall trend of the calibration factor is characterized by an exponential decrease with increasing rock uniaxial compressive strength. The mean fitting ratios between the normal forces estimated by the modified CSM model and the experimental normal forces acting on soft rocks, semi-hard rocks and hard rocks are 1.076, 0.879 and 1.013, respectively. The results indicate that the prediction accuracy and the reliability of the CSM model have been improved.
Robust tilt and lock mechanism for hopping actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salton, Jonathan R.; Buerger, Stephen; Dullea, Kevin J.
A tilt and lock apparatus that includes a tilt servomechanism, a spiral torsion spring, a lock wheel, and a lock hook is described herein. The spiral torsion spring is mechanically coupled to the tilt servomechanism and the lock wheel (which includes an opening). When a shaft is positioned through the opening, rotation of the lock wheel is in unison with rotation of the shaft. An external surface of the lock wheel includes one or more grooves. The lock hook includes a head that engages and disengages the grooves. The lock wheel is stationary when the head engages one of themore » grooves and is rotatable when the head disengages the grooves. The head and the grooves are geometrically aligned when engaged to prevent creation of a force that acts to disengage the head responsive to an applied force acting on the shaft.« less
Testing a new flux rope model using the HELCATS CME catalogue
NASA Astrophysics Data System (ADS)
Rouillard, Alexis Paul; Lavarra, Michael
2017-04-01
We present a magnetically-driven flux rope model that computes the forces acting on a twisted magnetic flux rope from the Sun to 1AU. This model assumes a more realistic flux rope geometry than assumed before by these types of models. The balance of force is computed in an analogous manner to the well-known Chen flux-rope model. The 3-D vector components of the magnetic field measured by a probe flying through the flux rope can be extracted for any flux rope orientation imposed near the Sun. We test this model through a parametric study and a systematic comparison of the model with the HELCATS catalogues (imagery and in situ). We also report on our investigations of other physical mechanisms such as the shift of flux-surfaces associated with the magnetic forces acting to accelerate the flux rope from the lower to upper corona. Finally, we present an evaluation of this model for space-weather predictions. This work was partly funded by the HELCATS project under the FP7 EU contract number 606692.
NASA Astrophysics Data System (ADS)
Ye, Qian; Lin, Haoze
2017-07-01
Though extensively used in calculating optical force and torque acting on a material object illuminated by laser, the Maxwell stress tensor (MST) method follows the electromagnetic linear and angular momentum balance that is usually derived in most textbooks for a continuous volume charge distribution in free space, if not resorting to the application of Noether’s theorem in electrodynamics. To cast the conservation laws into a physically appealing form involving the current densities of linear and angular momentum, on which the MST method is based, the divergence theorem is employed to transform a volume integral into a surface integral. When a material object of finite volume is put into the field, it brings about a discontinuity of field across its surface, due to the presence of induced surface charge and surface current. Ambiguity arises among students in whether the divergence theorem can still be directly used without any justification. By taking into account the effect of the induced surface charge and current, we present a simple pedagogical derivation for the MST method for calculating the optical force and torque on an object immersed in monochromatic optical field, without resorting to Noether’s theorem. Although the results turn out to be identical to those given in the standard textbooks, our derivation avoids the direct use of the divergence theorem on a discontinuous function.
Surface topographical effects on the structural growth of thick sputtered metal and alloy coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1974-01-01
Thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface structure of the nodules are characterized. Compositional changes within the coating were analyzed by X-ray dispersion miscroscopy. Defects in the surface finish act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. The nodule boundaries are very vulnerable to chemical etching, and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces.
Effect of surface topography on structural growth of thick sputtered films
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1974-01-01
Primarily thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica, glass, and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. Compositional changes within the coating were analyzed by X-ray dispersion microscopy. Defects in the surface finish act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. These nodules do not disappear after full annealing. Further, they have undesirable effects on mechanial properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces. These effects are illustrated by micrographs. Nodular growth within a coating can be minimized or eliminated by reducing the surface roughness.
NASA Astrophysics Data System (ADS)
Patil, Nitin; Venkataraman, Chandra; Muduchuru, Kaushik; Ghosh, Subimal; Mondal, Arpita
2018-05-01
Recent studies point to combined effects of changes in regional land-use, anthropogenic aerosol forcing and sea surface temperature (SST) gradient on declining trends in the South Asian monsoon (SAM). This study attempted disentangling the effects produced by changes in SST gradient from those by aerosol levels in an atmospheric general circulation model. Two pairs of transient ensemble simulations were made, for a 40-year period from 1971 to 2010, with evolving versus climatological SSTs and with anthropogenic aerosol emissions fixed at 1971 versus 2010, in each case with evolution of the other forcing element, as well as GHGs. Evolving SST was linked to a widespread feedback on increased surface temperature, reduced land-sea thermal contrast and a weakened Hadley circulation, with weakening of cross-equatorial transport of moisture transport towards South Asia. Increases in anthropogenic aerosol levels (1971 versus 2010), led to an intensification of drying in the peninsular Indian region, through several regional pathways. Aerosol forcing induced north-south asymmetries in temperature and sea-level pressure response, and a cyclonic circulation in the Bay of Bengal, leading to an easterly flow, which opposes the monsoon flow, suppressing moisture transport over peninsular India. Further, aerosol induced decreases in convection, vertically integrated moisture flux convergence, evaporation flux and cloud fraction, in the peninsular region, were spatially congruent with reduced convective and stratiform rainfall. Overall, evolution of SST acted through a weakening of cross-equatorial moisture flow, while increases in aerosol levels acted through suppression of Arabian Sea moisture transport, as well as, of convection and vertical moisture transport, to influence the suppression of SAM rainfall.
Monitoring the degrafting of polyelectrolyte brushes by using surface gradients
NASA Astrophysics Data System (ADS)
Ko, Yeongun; Genzer, Jan
Polymer brushes comprise densely grafted polymer chains on surfaces, which possess high stability and high concentration of reactive centers per unit area compared to physisorbed polymer film. Polymer brushes are employed in many applications, including anti-fouling surfaces, cell adhesive surfaces, responsive surfaces, low-friction surfaces, etc. Recently, researchers reported that charged (or chargeable) polymer brushes can be degrafted from substrate while incubated in buffer solutions. Based on previous experiments conducted in our group and by others, we assume that chain degrafting results from the hydrolysis of Si-O groups in head-group of the initiator and/or the ester groups in main body of the initiator. The kinetic of hydrolysis is affected by mechanical forces acting on the initiator. Those forces depend on the molecular weight and the grafting density of the brush, and the concentration and distribution of charges along the macromolecule (tuned by pH - for weak electrolytes - and concentration of external salt). In this work, we study the stability of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) brushes in two solvents (ethanol and water) at various pH values in water and under different levels of external salt concentration. National Science Foundation.
On the autonomous motion of active drops or bubbles.
Ryazantsev, Yuri S; Velarde, Manuel G; Guzman, Eduardo; Rubio, Ramón G; Ortega, Francisco; Montoya, Juan-Jose
2018-05-19
Thermo-capillary stresses on the surface of a drop can be the result of a non-isothermal surface chemical conversion of a reactant dissolved in the host fluid. The strength of heat production (with e.g. absorption) on the surface is ruled by the diffusion of the reactant and depends on the state of motion of the drop. Such thermo-capillary stresses can provoke the motion of the drop or its motionless state in the presence of an external body force. If in the balance of forces, including indeed viscous drag, the net resultant force vanishes there is the possibility of autonomous motion with constant velocity of the drop. Focusing on drops with radii in the millimeter range provided here is a quantitative study of the possibility of such autonomous motion when the drop, considered as active unit, is seat of endo- or exo-thermic reactive processes that dominate its motion. The framework is restricted to Stokes flows in the hydrodynamics, negligible heat Peclet number while the solute Peclet number is considered very high. A boundary layer approximation is used in the description of reactant diffusion. Those processes eventually end up in the action being expressed by surface tension gradients and the Marangoni effect. Explicit expressions of the force acting on the drop and the velocity fields inside and outside the drop are provided. Some significant particular cases are discussed to illustrate the usefulness of the theory. Copyright © 2018. Published by Elsevier Inc.
Ordered Self-Assembled Monolayers of Peptide Nucleic Acids with DNA Recognition Capability
NASA Astrophysics Data System (ADS)
Briones, C.; Mateo-Marti, E.; Gómez-Navarro, C.; Parro, V.; Román, E.; Martín-Gago, J. A.
2004-11-01
We report on the formation of ordered self-assembled monolayers (SAMs) of single-stranded peptide nucleic acids (ssPNA). In spite of their remarkable length (7nm) thiolated PNAs assemble standing up on gold surfaces similarly to the SAMs of short alkanethiols. SAMs of ssPNA recognize complementary nucleic acids, acting as specific biosensors that discriminate even a point mutation in target ssDNA. These results are obtained by surface characterization techniques that avoid labeling of the target molecule: x-ray photoemission, x-ray absorption and atomic force microscopy.
The Dugdale model for the compact specimen
NASA Technical Reports Server (NTRS)
Mall, S.; Newman, J. C., Jr.
1983-01-01
Plastic zone size and crack tip opening displacement (CTOD) equations were developed. Boundary collocation analyses were used to analyze the compact specimen subjected to various loading conditions (pin loads, concentrated forces, and uniform pressure acting on the crack surface). Stress intensity factor and crack surface displacement equations for some of these loadings were developed and used to obtain the Dugdale model. The results from the equations for plastic zone size and CTOD agreed well with numerical values calculated by Terada for crack length to width ratios greater than 0.4.
NASA Technical Reports Server (NTRS)
Iversen, J. D.; White, B. R.; Pollack, J. B.; Greeley, R.
1976-01-01
Results are reported for wind-tunnel experiments performed to determine the threshold friction speed of particles with different densities. Experimentally determined threshold speeds are plotted as a function of particle diameter and in terms of threshold parameter vs particle friction Reynolds number. The curves are compared with those of previous experiments, and an A-B curve is plotted to show differences in threshold speed due to differences in size distributions and particle shapes. Effects of particle diameter are investigated, an expression for threshold speed is derived by considering the equilibrium forces acting on a single particle, and other approximately valid expressions are evaluated. It is shown that the assumption of universality of the A-B curve is in error at very low pressures for small particles and that only predictions which take account of both Reynolds number and effects of interparticle forces yield reasonable agreement with experimental data. Effects of nonerodible surface roughness are examined, and threshold speeds computed with allowance for this factor are compared with experimental values. Threshold friction speeds on Mars are then estimated for a surface pressure of 5 mbar, taking into account all the factors considered.
Vertical drag force acting on intruders of different shapes in granular media
NASA Astrophysics Data System (ADS)
Zaidi, Ali Abbas; Müller, Christoph
2017-06-01
The penetration of large objects into granular media is encountered commonly both in nature (e.g. impacts of meteors and projectiles) and engineering applications (e.g. insertion of tractor blades into sand). The motion of the impacting intruder in granular media is resisted by a granular drag force. In this work, we assess the effect of intruder shape on the granular drag force using discrete element modelling (DEM). The following intruder shapes were modelled: spherical, conical, cylindrical and cubical. We observed that the drag force can be described well by a power-law relationship with intrusion depth, independent of the intruder shape. However, the exponent of the power-law expression increases with increasing "flatness" of the intruder's impacting surface due to an increasing fraction of the granular media affected by the impact of the intruder.
Simultaneous Soft Sensing of Tissue Contact Angle and Force for Millimeter-scale Medical Robots
Arabagi, Veaceslav; Gosline, Andrew; Wood, Robert J.; Dupont, Pierre E.
2013-01-01
A novel robotic sensor is proposed to measure both the contact angle and the force acting between the tip of a surgical robot and soft tissue. The sensor is manufactured using a planar lithography process that generates microchannels that are subsequently filled with a conductive liquid. The planar geometry is then molded onto a hemispherical plastic scaffolding in a geometric configuration enabling estimation of the contact angle (angle between robot tip tangent and tissue surface normal) by the rotation of the sensor around its roll axis. Contact force can also be estimated by monitoring the changes in resistance in each microchannel. Bench top experimental results indicate that, on average, the sensor can estimate the angle of contact to within ±2° and the contact force to within ±5.3 g. PMID:24241496
Pressure loadings in a rectangular cavity with and without a captive store
Barone, Matthew; Arunajatesan, Srinivasan
2016-05-31
Simulations of the flow past a rectangular cavity containing a model captive store are performed using a hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation model. Calculated pressure fluctuation spectra are validated using measurements made on the same configuration in a trisonic wind tunnel at Mach numbers of 0.60, 0.80, and 1.47. The simulation results are used to calculate unsteady integrated forces and moments acting on the store. Spectra of the forces and moments, along with correlations calculated for force/moment pairs, reveal that a complex relationship exists between the unsteady integrated forces and the measured resonant cavity modes, as indicated in the cavity wallmore » pressure measurements. As a result, the structure of identified cavity resonant tones is examined by visualization of filtered surface pressure fields.« less
On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanas'ev, A A; Rubinov, A N; Gaida, L S
2015-10-31
Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed. (nanophotonics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lower, Steven; Lamlertthon, Supaporn; Casillas-Ituarte, Nadia
Medical implants, like cardiovascular devices, improve the quality of life for countless individuals but may become infected with bacteria like Staphylococcus aureus. Such infections take the form of a bio-film, a structured community of bacterial cells adherent to the surface of a solid substrate. Every bio-film begins with an attractive force or bond between bacterium and substratum. We used atomic force microscopy to probe experimentally forces between a fibronectin-coated surface (i.e., proxy for an implanted cardiac device) and fibronectin-binding receptors on the surface of individual living bacteria from each of 80 clinical isolates of S. aureus. These isolates originated frommore » humans with infected cardiac devices (CDI; n = 26), uninfected cardiac devices (n = 20), and the anterior nares of asymptomatic subjects (n = 34). CDI isolates exhibited a distinct bindingforce signature and had speci!c single amino acid polymorphisms in fibronectin-binding protein A corresponding to E652D, H782Q, and K786N. In silico molecular dynamics simulations demonstrate that residues D652, Q782, and N786 in fibronectin-binding protein A form extra hydrogen bonds with fibronectin, complementing the higher binding force and energy measured by atomic force microscopy for the CDI isolates. This study is significant, because it links pathogenic bacteria biofilms from the length scale of bonds acting across a nanometer-scale space to the clinical presentation of disease at the human dimension.« less
The nature of cometary materials
NASA Technical Reports Server (NTRS)
Stephens, James
1989-01-01
Because cometary surfaces are likely to be far colder and of a different composition than planetary surfaces, there are some new considerations that must be examined in regards to placing instrumented packages or sample return devices on their surfaces. The qualitative analysis of the problem of attaching hardware to a comet and not being ejected back into space can be divided into two parts. The first problem is to pierce the mantle and obtain access to the icy core. Drilling through the mantle requires that the drilling forces be reacted. Reacting such forces probably requires attachment to the icy core below. Therefore, some kinetic impact piercing device is likely to be required as the first act of attachment. The second problem for a piercing device to overcome is the force produced by the impact kinetic energy that tries to eject the piercing device back into space. The mantle and icy core can absorb some of the impact kinetic energy in the form of fracture formation and friction energy. The energy that is not absorbed in these two ways is stored by the core as elastic deformation of the mantle and icy core. It is concluded that because the cometary materials are almost certainly brittle and the icy core is likely to be self lubricating, the elastic rebound and gas pressure expulsion forces must be counteracted by forces greater than those that may be provided by a piercing device or its capture devices (barbs).
Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces.
Boks, Niels P; Norde, Willem; van der Mei, Henny C; Busscher, Henk J
2008-10-01
Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F(prev)) and to detach adhering bacteria (F(det)) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the following three hypotheses. 1. A strong hydrodynamic shear force to prevent adhesion relates to a strong hydrodynamic shear force to detach an adhering organism. 2. A weak hydrodynamic shear force to detach adhering bacteria implies that more bacteria will be stimulated to detach by passing an air-liquid interface (an air bubble) through the flow chamber. 3. DLVO (Derjaguin, Landau, Verwey, Overbeek) interactions determine the characteristic hydrodynamic shear forces to prevent adhesion and to detach adhering micro-organisms as well as the detachment induced by a passing air-liquid interface. F(prev) varied from 0.03 to 0.70 pN, while F(det) varied from 0.31 to over 19.64 pN, suggesting that after initial contact, strengthening of the bond occurs. Generally, it was more difficult to detach bacteria from DDS-coated glass than from hydrophilic glass, which was confirmed by air bubble detachment studies. Calculated attractive forces based on the DLVO theory (F(DLVO)) towards the secondary interaction minimum were higher on glass than on DDS-coated glass. In general, all three hypotheses had to be rejected, showing that it is important to distinguish between forces acting parallel (hydrodynamic shear) and perpendicular (DLVO, air-liquid interface passages) to the substratum surface.
Young, Liane; Phillips, Jonathan
2011-05-01
When we evaluate moral agents, we consider many factors, including whether the agent acted freely, or under duress or coercion. In turn, moral evaluations have been shown to influence our (non-moral) evaluations of these same factors. For example, when we judge an agent to have acted immorally, we are subsequently more likely to judge the agent to have acted freely, not under force. Here, we investigate the cognitive signatures of this effect in interpersonal situations, in which one agent ("forcer") forces another agent ("forcee") to act either immorally or morally. The structure of this relationship allowed us to ask questions about both the "forcer" and the "forcee." Paradoxically, participants judged that the "forcer" forced the "forcee" to act immorally (i.e. X forced Y), but that the "forcee" was not forced to act immorally (i.e. Y was not forced by X). This pattern obtained only for human agents who acted intentionally. Directly changing participants' focus from one agent to another (forcer versus forcee) also changed the target of moral evaluation and therefore force attributions. The full pattern of judgments may provide a window into motivated moral reasoning and focusing bias more generally; participants may have been motivated to attribute greater force to the immoral forcer and greater freedom to the immoral forcee. Copyright © 2011 Elsevier B.V. All rights reserved.
Simon, Jonathan N.; Brown, Steve B.
2002-01-01
An apparatus and method for the collection of respirable particles and concentration of such particles into a small fluid volume. The apparatus captures and concentrates small (1-10 .mu.m) respirable particles into a sub-millileter volume of fluid. The method involves a two step operation, collection and concentration: wherein collection of particles is by a wetted surface having small vertical slits that act as capillary channels; and concentration is carried out by transfer of the collected particles to a small volume (sub-milliliter) container by centrifugal force whereby the particles are forced through the vertical slits and contact a non-wetted wall surface, and are deflected to the bottom where they are contained for analysis, such as a portable flow cytometer or a portable PCR DNA analysis system.
Simulation of synthetic gecko arrays shearing on rough surfaces
Gillies, Andrew G.; Fearing, Ronald S.
2014-01-01
To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features. PMID:24694893
NASA Astrophysics Data System (ADS)
Balastre, Marc; Tamashiro, Mario N.; Hernandez, Ernesto; Pincus, Philip; Tirrell, Matthew
2001-03-01
End-grafted polymers generated from the adsorption of asymmetric diblock copolymers on solid surface play an important role in many areas of science and technology. While the small insoluble block acts as an anchor, the charged soluble block confers useful properties to the surface. This study looks at tethered layers of poly(styrene sulfonate)/poly(t-butyl styrene) (PtBS-PSS) adsorbed on both mica (hydrophilic) and octadecyltriethoxysilane (OTE) modified mica (hydrophobic). Normal compressing forces at two different constant grafting densities (bare and modified mica) were measured with the surface force apparatus and compared with theoretical prediction. The effect of salt concentration (Cs) upon the thickness of the self-assembled layers (Lo) was measured in each case. For adsorption of diblock copolymers onto OTE the resulting scaling relationship is much closer to the brush theory, Lo Cs-1/3. This result suggests that the adsorbed amount on mica is not high enough to form a brush.
NASA Astrophysics Data System (ADS)
Yang, Zongyi; Liu, Wenli; Zhang, He; Jiang, Xinli; Min, Fanfei
2018-04-01
The study of the adsorption mechanism of 3-chloro-2-hydroxypropyl trimethylammonium chloride (CHPTA), which acts as an effective clay minerals hydration inhibitor, can provide an effective approach for the design of novel high-performance inhibitors with favorable molecular structures. Density functional theory (DFT) calculations were performed to investigate the adsorption mechanism of CHPTA on dry and hydrated montmorillonite (MMT) surfaces. The interactions between CHPTA, H2O, and MMT were systematically analyzed. It was found that CHPTA was mainly adsorbed on MMT by hydrogen bonds and especially electrostatic force and that the presence of Na ions favors the adsorption of CHPTA on the Na-(001) surface. In the presence of water molecules, the adsorption of CHPTA was promoted by H2O, which exhibited a cooperative adsorption effect by enhancing the MMT-CHPTA electrostatic force and by forming more hydrogen bonds and Hsbnd Cl bonds among CHPTA, H2O and MMT.
NASA Astrophysics Data System (ADS)
Nellist, Michael R.; Laskowski, Forrest A. L.; Qiu, Jingjing; Hajibabaei, Hamed; Sivula, Kevin; Hamann, Thomas W.; Boettcher, Shannon W.
2018-01-01
Heterogeneous electrochemical phenomena, such as (photo)electrochemical water splitting to generate hydrogen using semiconductors and/or electrocatalysts, are driven by the accumulated charge carriers and thus the interfacial electrochemical potential gradients that promote charge transfer. However, measurements of the "surface" electrochemical potential during operation are not generally possible using conventional electrochemical techniques, which measure/control the potential of a conducting electrode substrate. Here we show that the nanoscale conducting tip of an atomic force microscope cantilever can sense the surface electrochemical potential of electrocatalysts in operando. To demonstrate utility, we measure the potential-dependent and thickness-dependent electronic properties of cobalt (oxy)hydroxide phosphate (CoPi). We then show that CoPi, when deposited on illuminated haematite (α-Fe2O3) photoelectrodes, acts as both a hole collector and an oxygen evolution catalyst. We demonstrate the versatility of the technique by comparing surface potentials of CoPi-decorated planar and mesoporous haematite and discuss viability for broader application in the study of electrochemical phenomena.
NASA Astrophysics Data System (ADS)
Lin, C. W.; Wu, T. R.; Chuang, M. H.; Tsai, Y. L.
2015-12-01
The wind in Taiwan Strait is strong and stable which offers an opportunity to build offshore wind farms. However, frequently visited typhoons and strong ocean current require more attentions on the wave force and local scour around the foundation of the turbine piles. In this paper, we introduce an in-house, multi-phase CFD model, Splash3D, for solving the flow field with breaking wave, strong turbulent, and scour phenomena. Splash3D solves Navier-Stokes Equation with Large-Eddy Simulation (LES) for the fluid domain, and uses volume of fluid (VOF) with piecewise linear interface reconstruction (PLIC) method to describe the break free-surface. The waves were generated inside the computational domain by internal wave maker with a mass-source function. This function is designed to adequately simulate the wave condition under observed extreme events based on JONSWAP spectrum and dispersion relationship. Dirichlet velocity boundary condition is assigned at the upper stream boundary to induce the ocean current. At the downstream face, the sponge-layer method combined with pressure Dirichlet boundary condition is specified for dissipating waves and conducting current out of the domain. Numerical pressure gauges are uniformly set on the structure surface to obtain the force distribution on the structure. As for the local scour around the foundation, we developed Discontinuous Bi-viscous Model (DBM) for the development of the scour hole. Model validations were presented as well. The force distribution under observed irregular wave condition was extracted by the irregular-surface force extraction (ISFE) method, which provides a fast and elegant way to integrate the force acting on the surface of irregular structure. From the Simulation results, we found that the total force is mainly induced by the impinging waves, and the force from the ocean current is about 2 order of magnitude smaller than the wave force. We also found the dynamic pressure, wave height, and the projection area of the structure are the main factors to the total force. Detailed results and discussion are presented as well.
The Role of Contact Line (Pinning) Forces on Bubble Blockage in Microchannels.
Mohammadi, Mahshid; Sharp, Kendra V
2015-03-01
This paper highlights the influence of contact line (pinning) forces on the mobility of dry bubbles in microchannels. Bubbles moving at velocities less than the dewetting velocity of liquid on the surface are essentially dry, meaning that there is no thin liquid film around the bubbles. For these "dry" bubbles, contact line forces and a possible capillary pressure gradient induced by pinning act on the bubbles and resist motion. Without sufficient driving force (e.g., external pressure), a dry bubble is brought to stagnation. For the first time, a bipartite theoretical model that estimates the required pressure difference across the length of stagnant bubbles with concave and convex back interfaces to overcome the contact line forces and stimulate motion is proposed. To validate our theory, the pressure required to move a single dry bubble in square microchannels exhibiting contact angle hysteresis has been measured. The working fluid was deionized water. The experiments have been conducted on coated glass channels with different surface hydrophilicities that resulted in concave and convex back interfaces for the bubbles. The experimental results were in agreement with the model's predictions for square channels. The predictions of the concave and convex back models were within 19% and 27% of the experimental measurements, respectively.
Method of forming frozen spheres in a force-free drop tower
NASA Technical Reports Server (NTRS)
Kendall, J. M., Jr. (Inventor)
1982-01-01
Hollow glass spheres are shaped by the effects of surface tension acting on bubbles of glass in its molten state. A downwardly flowing stream of air accelerated at a one-G rate of acceleration is established through a drop bubbles on molten glass are introduced into the stream of air and frozen and as they are accelerated at a one-G rate of acceleration.
32 CFR 842.110 - Claims not payable.
Code of Federal Regulations, 2011 CFR
2011-07-01
... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION... International Agreements Claims Act. (4) The Air Force Admiralty Claims Act and the Admiralty Extensions Act. (5...) Claims from the combat activities of the armed forces during war or armed conflict. (c) Claims for...
Identification of surface domain structure on enamel crystals using polyamidoamine dendrimer
NASA Astrophysics Data System (ADS)
Chen, Haifeng; Clarkson, Brian H.; Orr, Bradford; Majoros, Istvan; Banaszak Holl, Mark M.
2002-03-01
The control of hydroxyapatite crystal nucleation and crystal growth is central to the mineralization and remineralization of enamel and dentin of teeth. However, the precise biomolecular mechanisms involved remain obscure. The intimate association between the crystal's surface and extracellular protein components implies a modulating role for organic crystal interactions probably mediated via specific crystal surface domains. These include lattice defects and specific stereochemical arrays on associated organic molecules. The nature of protein-crystal interaction depends upon the physical forces of attraction / repulsion between specific biomolecular groups and crystal surface domains. The proposed study is to utilize specific polyamidoamine (PAMAM) dendrimers, also known as “artificial proteins”, acting as nanoprobe. These will be used to probe specific surface domain on the surface of the naturally derived crystals of hydroxyapatite and to determine how control of growth and dissolution may be affected at the biomolecular level. The hydroxyapatite crystals are extracted from the maturation stage enamel of rats. Three types of PAMAM dendrimers, respectively with amine-, carboxylic acid and methyl-capped surface, will be applied in the study. The dendrimer binding on the surface of the hydoxyapatite crystals will be characterized using atomic force microscopy (AFM). The different dendrimer binding on the crystals will disclose the specific surface domain structure on the crystals, which is assumed to be important in binding the extracellular protein.
Magnetohydrodynamic drag reduction and its efficiency
NASA Astrophysics Data System (ADS)
Shatrov, V.; Gerbeth, G.
2007-03-01
We present results of direct numerical simulations of a turbulent channel flow influenced by electromagnetic forces. The magnetohydrodynamic Lorentz force is created by the interaction of a steady magnetic field and electric currents fed to the fluid via electrodes placed at the wall surface. Two different cases are considered. At first, a time-oscillating electric current and a steady magnetic field create a spanwise time-oscillating Lorentz force. In the second case, a stationary electric current and a steady magnetic field create a steady, mainly streamwise Lorentz force. Besides the viscous drag, the importance of the electromagnetic force acting on the wall is figured out. Regarding the energetic efficiency, it is demonstrated that in all cases a balance between applied and flow-induced electric currents improves the efficiency significantly. But even then, the case of a spanwise oscillating Lorentz force remains with a very low efficiency, whereas for the self-propelled regime in the case of a steady streamwise force, much higher efficiencies are found. Still, no set of parameters has yet been found for which an energetic breakthrough, i.e., a saved power exceeding the used power, is reached.
Magnetodynamic stability of a fluid cylinder under the Lundquist force-free magnetic field
NASA Astrophysics Data System (ADS)
Radwan, Ahmed E.; Halawa, Mohamed A.
1990-04-01
The magnetodynamic (in)stability of a conducting fluid cylinder subject to the capillarity and electromagnetic forces has been developed. The cylinder is pervaded by a uniform magnetic field but embedded in the Lundquist force-free varying field that allows for flowing a current surrounding the fluid. A general eigenvalue relation is derived based on a study of the equilibrium and perturbed states. The stability criterion is discussed analytically in general terms. The surface tension is destabilizing for small axisymmetric mode and stable for all others. The principle of the exchange of stability is allowed for the present problem due to the non-uniform behavior of the force-free field. Each of the axial and transverse force-free fields separately exerts a stabilizing influence in the most dangerous mode but the combined contribution of them is strongly destabilizing. Whether the model is acted upon the electromagnetic force (with the Lundquist field) the stability restrictions or/and the capillarity force are identified. Several reported works can be recovered as limiting cases with appropriate simplifications.
A more accurate modeling of the effects of actuators in large space structures
NASA Technical Reports Server (NTRS)
Hablani, H. B.
1981-01-01
The paper deals with finite actuators. A nonspinning three-axis stabilized space vehicle having a two-dimensional large structure and a rigid body at the center is chosen for analysis. The torquers acting on the vehicle are modeled as antisymmetric forces distributed in a small but finite area. In the limit they represent point torquers which also are treated as a special case of surface distribution of dipoles. Ordinary and partial differential equations governing the forced vibrations of the vehicle are derived by using Hamilton's principle. Associated modal inputs are obtained for both the distributed moments and the distributed forces. It is shown that the finite torquers excite the higher modes less than the point torquers. Modal cost analysis proves to be a suitable methodology to this end.
NASA Technical Reports Server (NTRS)
Zhuang, Fei
1989-01-01
Fluid-induced forces acting on a rotating impeller are known to cause rotor-dynamic problems in turbomachines. The forces generated by leakage flow along the front shroud surface of a centrifugal turbomachine impeller play an important role among these fluid-induced forces. The present research was aimed to gain a better understanding of these shroud forces. An experimental apparatus was designed and constructed to simulate the impeller shroud leakage flow. Hydrodynamic forces and steady and unsteady pressure distributions on the rotating shroud were measured as functions of eccentricity, width of shroud clearance, face seal clearance and shaft rotating speed. The forces measured from the dynamometer and manometers agreed well. The hydrodynamic force matrices were found skew-symmetric and statically unstable. This is qualitatively similar to the result of previous hydrodynamic volute force measurements. Nondimensionalized normal and tangential forces decrease slightly as Reynolds number increases. As the width of the shroud clearance decreases and/or the eccentricity increases, the hydrodynamic forces increase nonlinearly. There was some evidence found that increased front seal clearance could reduce the radial shroud forces and the relative magnitude of the destabilizing tangential force. Subharmonic pressure fluctuations were also observed which may adversely affect the behavior of the rotor system.
Evans, David W
2010-06-01
For centuries, techniques used to manipulate joints in the spine have been passed down from one generation of manipulators to the next. Today, spinal manipulation is in the curious position that positive clinical effects have now been demonstrated, yet the theoretical base underpinning every aspect of its use is still underdeveloped. An important question is posed in this masterclass: why do spinal manipulation techniques take the form they do? From the available literature, two factors appear to provide an answer: 1. Action of a force upon vertebrae. Any 'direct' spinal manipulation technique requires that the patient be orientated in such a way that force is applied perpendicular to the overlying skin surface so as to act upon the vertebrae beneath. If the vertebral motion produced by 'directly' applied force is insufficient to produce the desired effect (e.g. cavitation), then force must be applied 'indirectly', often through remote body segments such as the head, thorax, abdomen, pelvis, and extremities. 2. Spinal segment morphology. A new hypothesis is presented. Spinal manipulation techniques exploit the morphology of vertebrae by inducing rotation at a spinal segment, about an axis that is always parallel to the articular surfaces of the constituent zygapophysial joints. In doing so, the articular surfaces of one zygapophysial joint appose to the point of contact, resulting in migration of the axis of rotation towards these contacting surfaces, and in turn this facilitates gapping of the other (target) zygapophysial joint. Other variations in the form of spinal manipulation techniques are likely to depend upon the personal style and individual choices of the practitioner.
NASA Astrophysics Data System (ADS)
Orger, N. C.; Toyoda, K.; Cho, M.
2017-12-01
Lunar dust particles can be transported via several physical mechanisms above the surface, and the electrostatic dust lofting was suspected to be the responsible mechanism for the high-altitude lunar horizon glow above the terminator region. Most of the recent studies have shown that contact forces acting on the dust grains of sub-micrometer and micrometer sizes are much larger than the electrostatic forces resulting from the ambient plasma conditions; however, the electrostatic forces are strong enough to accelerate the lunar dust grains to high altitudes once the dust particles are separated from the surface by an initial mechanism. In this study our purpose is to investigate if the dust particles can be transported under the electrostatic forces after they are released from the surface by the micrometeorite impacts. It is expected to be the most of the dust grains will be launched from the elastic deformation regions, and the contact forces will be canceled after they are moved tens of nanometers. For the experiments, silica particles are used in a cavity with 2 cm diameter and 5 mm depth on the graphite plates. First, the dust particles are baked under an infrared lamp to release the absorbed atmospheric particles in the vacuum chamber. Second, the electron beam source emits electrons with 100 - 200 eV energies, and a Faraday cup measures the electron current in the vacuum chamber. Third, a laser beam is used to simulate micro-meteorite impacts, and the results are monitored with a high speed camera mostly focusing on the elastic deformation region. Therefore, this study investigates how the impacts modify the dust transportation as an initial mechanism for electrostatic dust lofting to high altitudes.
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Kamotani, Y.
2003-01-01
Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.
The Pressure Distribution over the Wings and Tail Surfaces of a PW-9 Pursuit Airplane in Flight
NASA Technical Reports Server (NTRS)
Rhode, Richard
1931-01-01
This report presents the results of an investigation to determine (1) the magnitude and distribution of aerodynamic loads over the wings and tail surfaces of a pursuit-type airplane in the maneuvers likely to impose critical loads on the various subassemblies of the airplane structure. (2) To study the phenomenon of center of pressure movement and normal force coefficient variation in accelerated flight, and (3) to measure the normal accelerations at the center of gravity, wing-tip, and tail, in order to determine the nature of the inertia forces acting simultaneously with the critical aerodynamic loads. The results obtained throw light on a number of important questions involving structural design. Some of the more interesting results are discussed in some detail, but in general the report is for the purpose of making this collection of airplane-load data obtained in flight available to those interested in airplane structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, Robert; Laugel, Nicolas; Yu, Jing
Applications of end-tethered polyelectrolyte “brushes” to modify solid surfaces have been developed and studied for their colloidal stabilization and high lubrication properties. Current efforts have expanded into biological realms and stimuli-responsive materials. Our work explores responsive and reversible aspects of polyelectrolyte brush behavior when polyelectrolyte chains interact with oppositely charged multivalent ions and complexes, which act as counterions. There is a significant void in the polyelectrolyte literature regarding interactions with multivalent species. This paper demonstrates that interactions between solid surfaces bearing negatively charged polyelectrolyte brushes are highly sensitive to the presence of trivalent lanthanum, La3+. Lanthanum cations have unique interactionsmore » with polyelectrolyte chains, in part due to their small size and hydration radius which results in a high local charge density. Using La3+ in conjunction with the surface forces apparatus (SFA), adhesion has been observed to reversibly appear and disappear upon the uptake and release, respectively, of these multivalent cations acting as counterions. In media of fixed ionic strength set by monovalent sodium salt, at I0 = 0.003 M and I0 = 0.3 M, the sign of the interaction forces between overlapping brushes changes from repulsive to attractive when La3+ concentrations reach 0.1 mol % of the total ion concentration. These results are also shown to be generally consistent with, but subtlety different from, previous polyelectrolyte brush experiments using trivalent ruthenium hexamine in the role of the multivalent counterion.« less
Heat Models of Asteroids and the YORP Effect
NASA Astrophysics Data System (ADS)
Golubov, O.
The Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) effect is a torque of light pressure recoil forces acting on an asteroid. We show how this torque can be expressed as an integral of a universal function over the surface of an asteroid, and discuss generalizations of this expression for the case of non-Lambert's scattering laws, non-convex shapes of asteroids, and non-zero heat conductivity. Then we discuss tangential YORP (TYORP), which appears due to uneven heat conductivity in stones lying on the surface of an asteroid. TYORP manifests itself as a drag, which pulls the surface in the tangential direction. Finally, we discuss relation and interplay between the normal YORP and the tangential YORP.
The role of oral hygiene: does toothbrushing harm?
Wiegand, Annette; Schlueter, Nadine
2014-01-01
Although toothbrushing is considered a prerequisite for maintaining good oral health, it also has the potential to have an impact on tooth wear, particularly with regard to dental erosion. Experimental studies have demonstrated that tooth abrasion can be influenced by a number of factors, including not only the physical properties of the toothpaste and toothbrush used but also patient-related factors such as toothbrushing frequency and force of brushing. While abrasion resulting from routine oral hygiene can be considered as physiological wear over time, intensive brushing might further harm eroded surfaces by removing the demineralised enamel surface layer. The effects of brushing on eroded dentine are not fully elucidated, particular under in vivo conditions. However, there are indications that brushing after an acid impact causes less additional hard tissue loss in dentine than in enamel. Toothbrushing frequency and force as well as toothbrush hardness were shown to act as co-factors in the multifactorial aetiology of non-cervical carious lesions. In vitro studies showed that toothbrushing abrasion is primarily related to the abrasivity of the toothpaste, while the toothbrush acts as a carrier, only modifying the effects of the toothpaste. The benefits of normal oral hygiene procedure exceed possible side effects by far, but excessive toothbrushing - especially of eroded teeth - might cause some harmful effects. © 2014 S. Karger AG, Basel.
Liquid phase sintered compacts in space
NASA Technical Reports Server (NTRS)
Mookherji, T. K.; Mcanelly, W. B.
1974-01-01
A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.
Performance of a novel micro force vector sensor and outlook into its biomedical applications
NASA Astrophysics Data System (ADS)
Meiss, Thorsten; Rossner, Tim; Minamisava Faria, Carlos; Völlmeke, Stefan; Opitz, Thomas; Werthschützky, Roland
2011-05-01
For the HapCath system, which provides haptic feedback of the forces acting on a guide wire's tip during vascular catheterization, very small piezoresistive force sensors of 200•200•640μm3 have been developed. This paper focuses on the characterization of the measurement performance and on possible new applications. Besides the determination of the dynamic measurement performance, special focus is put onto the results of the 3- component force vector calibration. This article addresses special advantageous characteristics of the sensor, but also the limits of applicability will be addressed. As for the special characteristics of the sensor, the second part of the article demonstrates new applications which can be opened up with the novel force sensor, like automatic navigation of medical or biological instruments without impacting surrounding tissue, surface roughness evaluation in biomedical systems, needle insertion with tactile or higher level feedback, or even building tactile hairs for artificial organisms.
Thermally induced stresses in boulders on airless body surfaces: Implications for breakdown
NASA Astrophysics Data System (ADS)
Molaro, Jamie; Byrne, Shane
2016-10-01
We investigate the role of thermally induced rock breakdown in the evolution of airless body surfaces. This process is driven by the propagation of microcracks due to stress caused by changes in temperature. Here we model the thermomechanical response of spherical lunar boulders of varying size to diurnal thermal forcing. Exploring the magnitude and distribution of induced stresses reveals a bimodal response. During sunrise, high stresses occur in the boulders' interiors that are associated with large-scale temperature gradients (developed due to overnight cooling). During sunset, high stresses occur at the boulders' exteriors due to the cooling and contraction of the surface. Both kinds of stresses are on the order of 10 MPa in 1 m boulders and decrease for smaller radii, suggesting that larger boulders break down more quickly. Boulders ≤30 cm exhibit a weak response to thermal forcing, suggesting a boulder-size threshold below which crack propagation may not occur. Boulders of any size buried by regolith are shielded from thermal breakdown.As boulders increase in size (>1 m), stresses increase to several 10s of MPa as the behavior of their surfaces approaches that of an infinite halfspace. The rate of stress-increase is rapid until the boulder reaches ~5 times the skin depth (~4 m) in size. Above this size, stresses only slowly increase as the surface loses thermal contact with the boulder center. Boulders between 3 m and 7 m have less volume of material to erode than larger boulders (> 10 m) but only moderately lower stresses, suggesting they may be preferentially broken down by this process.Stress orientations can yield insight into how breakdown may occur. Interior stresses act on a plane perpendicular to the path of the sun, driving the propagation of surface-parallel cracks and contributing to exfoliation of planar fragments. Exterior stresses act parallel to the boulder surface driving the propagation of surface-perpendicular cracks and contributing to granular disintegration. These two mechanisms likely work together to hasten disaggregation of the near-surface.We will present results for boulder stresses on the Moon and other airless bodies, and discuss implications for breakdown on these surfaces.
Symmetry breaking in actin gels - Implications for cellular motility
NASA Astrophysics Data System (ADS)
John, Karin; Peyla, Philippe; Misbah, Chaouqi
2007-03-01
The physical origin of cell motility is not fully understood. Recently minimal model systems have shown, that polymerizing actin itself can produce a motile force, without the help of motor proteins. Pathogens like Shigella or Listeria use actin to propel themselves forward in their host cell. The same process can be mimicked with polystyrene beads covered with the activating protein ActA, which reside in a solution containing actin monomers. ActA induces the growth of an actin gel at the bead surface. Initially the gel grows symmetrically around the bead until a critical size is reached. Subsequently one observes a symmetry breaking and the gel starts to grow asymmetrically around the bead developing a tail of actin at one side. This symmetry breaking is accompanied by a directed movement of the bead, with the actin tail trailing behind the bead. Force generation relies on the combination of two properties: growth and elasticity of the actin gel. We study this phenomenon theoretically within the framework of a linear elasticity theory and linear flux-force relationships for the evolution of an elastic gel around a hard sphere. Conditions for a parity symmetry breaking are identified analytically and illustrated numerically with the help of a phasefield model.
Conditions for Destabilizing Pickering emulsions using external electric fields
NASA Astrophysics Data System (ADS)
Hwang, Kyuho; Singh, Pushpendra; Aubry, Nadine
2009-11-01
Fine particles are readily adsorbed at fluid-fluid interfaces, and can be used as stabilizers in emulsion technology by preventing adjacent drops from coalescing with each other. We investigate a new technique to destabilize such emulsions, or Pickering emulsions, by applying an external electric field. Experiments show that the latter has two effects: (i) the drops elongate in the direction of the electric field, (ii) the local particle density varies on the drop surface due to the dielectrophoretic (DEP) force acting on the particles. It is shown that the latter is the dominant factor in the destabilization process. Particularly, the success of the method depends on the values of certain dimensionless parameters; specifically, the ratio of the work done by the dielectrophoretic force must be larger than the work done by the buoyant force. Moreover, drops do not coalesce through the regions where the particles locally cluster, whether those are gathered at the poles or at the equator of the drops. As particles move, particle-free openings form on the drop's surface, which allow for adjacent drops to merge. This process takes place even if the particles are fully packed on the drops' surfaces as particles get ejected from the clustering areas due to a buckling phenomenon.
Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun
2015-06-21
We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.
Computational Analysis of Stresses Acting on Intermodular Junctions in Thoracic Aortic Endografts
Prasad, Anamika; To, Lillian K.; Gorrepati, Madhu L.; Zarins, Christopher K.; Figueroa, C. Alberto
2011-01-01
Purpose: To evaluate the biomechanical and hemodynamic forces acting on the intermodular junctions of a multi-component thoracic endograft and elucidate their influence on the development of type III endoleak due to disconnection of stent-graft segments. Methods: Three-dimensional computer models of the thoracic aorta and a 4-component thoracic endograft were constructed using postoperative (baseline) and follow-up computed tomography (CT) data from a 69-year-old patient who developed type III endoleak 4 years after stent-graft placement. Computational fluid dynamics (CFD) techniques were used to quantitate the displacement forces acting on the device. The contact stresses between the different modules of the graft were then quantified using computational solid mechanics (CSM) techniques. Lastly, the intermodular junction frictional stability was evaluated using a Coulomb model. Results: The CFD analysis revealed that curvature and length are key determinants of the displacement forces experienced by each endograft and that the first 2 modules were exposed to displacement forces acting in opposite directions in both the lateral and longitudinal axes. The CSM analysis revealed that the highest concentration of stresses occurred at the junction between the first and second modules of the device. Furthermore, the frictional analysis demonstrated that most of the surface area (53%) of this junction had unstable contact. The predicted critical zone of intermodular stress concentration and frictional instability matched the location of the type III endoleak observed in the 4-year follow-up CT image. Conclusion: The region of larger intermodular stresses and highest frictional instability correlated with the zone where a type III endoleak developed 4 years after thoracic stent-graft placement. Computational techniques can be helpful in evaluating the risk of endograft migration and potential for modular disconnection and may be useful in improving device placement strategies and endograft design. PMID:21861748
Unsteady forces on a spherical particle accelerating or decelerating in an initially stagnant fluid
NASA Astrophysics Data System (ADS)
Keshav, Yashas Mudlapur Phaneesh
Flows with particles play an important role in a number of engineering applications. These include trajectories of droplets in sprays in fuel-injected-reciprocating-piston and gas-turbine engines, erosion of materials due to particle impact on a surface, and deposition of materials on surfaces by impinging droplets or particles that could solidify or bond on impact. For these applications, it is important to understand the forces that act on the particles so that their trajectories could be predicted. Considerable work has been done on understanding the forces acting on spherical particles, where the Reynolds numbers (Rep) based on the particle diameter and the relative speed between the particle and the fluid is less than unity. When Rep is larger than unity and when the particle is accelerating or decelerating, the added-mass effect and the Basset forces are not well understood. In this study, time-accurate numerical simulations were performed to study laminar incompressible flow induced by a single non-rotating rigid spherical particle that is accelerated or decelerated at a constant rate in an initially stagnant fluid, where the unsteady flow about the spherical particle is resolved. The Rep studied range from 0.01 to 100, and the acceleration number (Ac), where A c is the square of the relative velocity between the particle and the fluid divided by the acceleration times the particle diameter studied was in the range 2.13x-7 < |Ac |< 21337. Results obtained show the added mass effect for Rep up to 100 has the same functional form as those based on potential theory where the Rep is infinite and creeping flow where Rep is less than unity. The Basset force, however, differs considerably from those under creeping flow conditions and depends on Rep and the acceleration number (Ac). A model was developed to provide the magnitude of the added-mass effect and the Basset force in the range of Rep and Ac studied. Results obtained also show the effect of unsteadiness to become negligible when Ac reaches 80.
Force and moment rotordynamic coefficients for pump-impeller shroud surfaces
NASA Technical Reports Server (NTRS)
Childs, Dara W.
1987-01-01
Governing equations of motion are derived for a bulk-flow model of the leakage path between an impeller shroud and a pump housing. The governing equations consist of a path-momentum, a circumferential - momentum, and a continuity equation. The fluid annulus between the impeller shroud and pump housing is assumed to be circumferentially symmetric when the impeller is centered; i.e., the clearance can vary along the pump axis but does not vary in the circumferential direction. A perturbation expansion of the governing equations in the eccentricity ratio yields a set of zeroth and first-order governing equations. The zeroth-order equations define the leaking rate and the circumferential and path velocity distributions and pressure distributions for a centered impeller position. The first-order equations define the perturbations in the velocity and pressure distributions due to either a radial-displacement perturbation or a tilt perturbation of the impeller. Integration of the perturbed pressure and shear-stress distribution acting on the rotor yields the reaction forces and moments acting on the impeller face.
Movaghati, Sina; Moosavi-Movahedi, Ali Akbar; Khodagholi, Fariba; Digaleh, Hadi; Kachooei, Ehsan; Sheibani, Nader
2014-10-01
Protein aggregation is impacted by many factors including temperature, pH, and the presence of surfactants, electrolytes, and metal ions. The addition of sodium dodecyl sulphate (SDS) at different concentrations may play a significant role in the human serum albumin (HSA) fibrillation pathway. Here the heat induction of HSA fibrillation incubated with different concentrations of SDS was evaluated using a variety of techniques. These included ThT fluorescence, Congo red absorbance, circular dichroism, dynamic light scattering, and atomic force microscopy (AFM). To explore HSA surface properties, the surface tension of solutions was measured using Du Noüy Ring method tensiometry. In addition, the criteria of neurite outgrowth and complexity were monitored by exposing PC12 cells to different forms of HSA amyloid intermediates. ThT fluorescence kinetic studies indicated that SDS at low concentrations induced more fibrillation of HSA, while SDS at high concentrations inhibited the fibrillation of HSA. At higher SDS concentrations hydrophobic forces had a significant role whereas at lower SDS concentrations electrostatic forces were dominant. The cell culture studies demonstrated the significant impact of SDS concentration on HSA fibrillation and subsequent neuronal cell morphology. The HSA incubated with low concentrations of SDS inhibited neurite outgrowth and complexity of the PC12 cells, whereas high concentrations of SDS had lesser effect. Thus, SDS acts as a salt at lower concentrations, while at higher concentrations acts as a chaperon, with significant impact on fibrillation of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.
Interfacial instabilities in vibrated fluids
NASA Astrophysics Data System (ADS)
Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier
2016-07-01
Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced that leads to splitting (fluid separation). We investigate the interaction of these prominent interfacial instabilities in the absence of gravity, concentrating on harmonically vibrated rectangular containers of fluid. We compare vibroequilibria theory with direct numerical simulations and consider the effect of surfaces waves, which can excite sloshing motion of the vibroequilibria. We systematically investigate the saddle-node bifurcation experienced by a symmetric singly connected vibroequilibria solution, for sufficiently deep containers, as forcing is increased. Beyond this instability, the fluid rapidly separates into (at least) two distinct masses. Pronounced hysteresis is associated with this transition, even in the presence of gravity. The interaction of vibroequilibria and frozen waves is investigated in two-fluid systems. Preparations for a parabolic flight experiment on fluids vibrated at high frequencies are discussed.
The effect of dust lifting process on the electrical properties of the atmosphere
NASA Astrophysics Data System (ADS)
Esposito, Francesca; Molinaro, Roberto; Ionut Popa, Ciprian; Molfese, Cesare; Cozzolino, Fabio; Marty, Laurent; Taj-Eddine, Kamal; Di Achille, Gaetano; Silvestro, Simone; Ori, Gian Gabriele
2015-04-01
Airborne dust and aerosol particles affect climate by absorbing and scattering thermal and solar radiation and acting as condensation nuclei for the formation of clouds. So, they strongly influence the atmospheric thermal structure, balance and circulation. On Earth and Mars, this 'climate forcing' is one of the most uncertain processes in climate change predictions. Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. These processes are not confined to Earth, but occur also on Mars, Venus and Titan. It is clear that the knowledge of the atmospheric dust properties and the mechanisms of dust settling and raising into the atmosphere are important to understand planetary climate and surface evolution. On Mars the physical processes responsible for dust injection into the atmosphere are still poorly understood, but they likely involve saltation as on Earth. Saltation is a process where large sand grains are forced by the wind to move in ballistic trajectories on the soil surface. During these hops they hit dust particles, that are well bound to the soil due to interparticle cohesive forces, thus transferring to them the momentum necessary to be entrained into the atmosphere. Recently, it has been shown that this process is also responsible to generate strong electric fields in the atmosphere up to 100-150 kV/m. This enhanced electric force acts as a feedback in the dust lifting process, lowering the threshold of the wind friction velocity u* necessary to initiate sand saltation. It is an important aspect of dust lifting process that need to be well characterized and modeled. Even if literature reports several measurements of E-fields in dust devils events, very few reports deal with atmospheric electric properties during dust storms or isolated gusts. We present here preliminary results of an intense field test campaign we performed in the West Sahara during the 2013 and 2014 dust storm seasons. We collected a statistical meaningful set of data characterizing relationship between dust lifting and atmospheric E-field that had never been achieved so far.
Load estimation from photoelastic fringe patterns under combined normal and shear forces
NASA Astrophysics Data System (ADS)
Dubey, V. N.; Grewal, G. S.
2009-08-01
Recently there has been some spurt of interests to use photoelastic materials for sensing applications. This has been successfully applied for designing a number of signal-based sensors, however, there have been limited efforts to design image-based sensors on photoelasticity which can have wider applications in term of actual loading and visualisation. The main difficulty in achieving this is the infinite loading conditions that may generate same image on the material surface. This, however, can be useful for known loading situations as this can provide dynamic and actual conditions of loading in real time. This is particularly useful for separating components of forces in and out of the loading plane. One such application is the separation of normal and shear forces acting on the plantar surface of foot of diabetic patients for predicting ulceration. In our earlier work we have used neural networks to extract normal force information from the fringe patterns using image intensity. This paper considers geometric and various other statistical parameters in addition to the image intensity to extract normal as well as shear force information from the fringe pattern in a controlled experimental environment. The results of neural network output with the above parameters and their combinations are compared and discussed. The aim is to generalise the technique for a range of loading conditions that can be exploited for whole-field load visualisation and sensing applications in biomedical field.
A model to estimate the size of nanoparticle agglomerates in gas-solid fluidized beds
NASA Astrophysics Data System (ADS)
de Martín, Lilian; van Ommen, J. Ruud
2013-11-01
The estimation of nanoparticle agglomerates' size in fluidized beds remains an open challenge, mainly due to the difficulty of characterizing the inter-agglomerate van der Waals force. The current approach is to describe micron-sized nanoparticle agglomerates as micron-sized particles with 0.1-0.2-μm asperities. This simplification does not capture the influence of the particle size on the van der Waals attraction between agglomerates. In this paper, we propose a new description where the agglomerates are micron-sized particles with nanoparticles on the surface, acting as asperities. As opposed to previous models, here the van der Waals force between agglomerates decreases with an increase in the particle size. We have also included an additional force due to the hydrogen bond formation between the surfaces of hydrophilic and dry nanoparticles. The average size of the fluidized agglomerates has been estimated equating the attractive force obtained from this method to the weight of the individual agglomerates. The results have been compared to 54 experimental values, most of them collected from the literature. Our model approximates without a systematic error the size of most of the nanopowders, both in conventional and centrifugal fluidized beds, outperforming current models. Although simple, the model is able to capture the influence of the nanoparticle size, particle density, and Hamaker coefficient on the inter-agglomerate forces.
Particle separation by phase modulated surface acoustic waves.
Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L
2017-09-01
High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.
Scanning electron microscope investigation of the structural growth in thick sputtered coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.
1975-01-01
Sputtered S-Monel, silver, and 304 stainless steel coatings and molybdenum disulfide coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface morphology of the nodules are characterized. Compositional changes within the coating were analyzed by energy dispersive X-ray analysis. Defects in the surface finish act as preferential nucleation sites and form isolated overlapping and complex nodules and various unusual surface overgrowths on the coating. The nodule boundaries are very vulnerable to chemical etching and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces.
NASA Astrophysics Data System (ADS)
Kopelevich, Dmitry I.
2013-10-01
Transport of a fullerene-like nanoparticle across a lipid bilayer is investigated by coarse-grained molecular dynamics (MD) simulations. Potentials of mean force (PMF) acting on the nanoparticle in a flexible bilayer suspended in water and a bilayer restrained to a flat surface are computed by constrained MD simulations. The rate of the nanoparticle transport into the bilayer interior is predicted using one-dimensional Langevin models based on these PMFs. The predictions are compared with the transport rates obtained from a series of direct (unconstrained) MD simulations of the solute transport into the flexible bilayer. It is observed that the PMF acting on the solute in the flexible membrane underestimates the transport rate by more than an order of magnitude while the PMF acting on the solute in the restrained membrane yields an accurate estimate of the activation energy for transport into the flexible membrane. This paradox is explained by a coexistence of metastable membrane configurations for a range of the solute positions inside and near the flexible membrane. This leads to a significant reduction of the contribution of the transition state to the mean force acting on the solute. Restraining the membrane shape ensures that there is only one stable membrane configuration corresponding to each solute position and thus the transition state is adequately represented in the PMF. This mechanism is quite general and thus this phenomenon is expected to occur in a wide range of interfacial systems. A simple model for the free energy landscape of the coupled solute-membrane system is proposed and validated. This model explicitly accounts for effects of the membrane deformations on the solute transport and yields an accurate prediction of the activation energy for the solute transport.
32 CFR 806b.1 - Summary of revisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for the Air Force Privacy Program from Air Force Communications and Information Center to the Air Force Chief Information Officer; prescribes Air Force Visual Aid 33-276, Privacy Act Label as optional; adds the E-Gov Act of 2002 requirement for a Privacy Impact Assessment for all information systems that...
32 CFR 806b.1 - Summary of revisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for the Air Force Privacy Program from Air Force Communications and Information Center to the Air Force Chief Information Officer; prescribes Air Force Visual Aid 33-276, Privacy Act Label as optional; adds the E-Gov Act of 2002 requirement for a Privacy Impact Assessment for all information systems that...
32 CFR 806b.1 - Summary of revisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for the Air Force Privacy Program from Air Force Communications and Information Center to the Air Force Chief Information Officer; prescribes Air Force Visual Aid 33-276, Privacy Act Label as optional; adds the E-Gov Act of 2002 requirement for a Privacy Impact Assessment for all information systems that...
Direct Numerical Simulation of Oscillatory Flow Over a Wavy, Rough, and Permeable Bottom
NASA Astrophysics Data System (ADS)
Mazzuoli, Marco; Blondeaux, Paolo; Simeonov, Julian; Calantoni, Joseph
2018-03-01
The results of a direct numerical simulation of oscillatory flow over a wavy bottom composed of different layers of spherical particles are described. The amplitude of wavy bottom is much smaller in scale than typical bed forms such as sand ripples. The spherical particles are packed in such a way to reproduce a bottom profile observed during an experiment conducted in a laboratory flow tunnel with well-sorted coarse sand. The amplitude and period of the external forcing flow as well as the size of the particles are set equal to the experimental values and the computed velocity field is compared with the measured velocity profiles. The direct numerical simulation allows for the evaluation of quantities, which are difficult to measure in a laboratory experiment (e.g., vorticity, seepage flow velocity, and hydrodynamic force acting on sediment particles). In particular, attention is focused on the coherent vortex structures generated by the vorticity shed by both the spherical particles and the bottom waviness. Results show that the wavy bottom triggers transition to turbulence. Moreover, the forces acting on the spherical particles are computed to investigate the mechanisms through which they are possibly mobilized by the oscillatory flow. It was found that forces capable of mobilizing surface particles are strongly correlated with the particle position above the mean bed elevation and the passage of coherent vortices above them.
Surfactants for Bubble Removal against Buoyancy
Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi
2016-01-01
The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179
Surfactants for Bubble Removal against Buoyancy
NASA Astrophysics Data System (ADS)
Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi
2016-01-01
The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.
Viscous/Inviscid Interaction Analysis of the Aerodynamic Performance of the NACA 65-213 Airfoil.
1987-03-01
flows . The principal forces that act on the body are those which act directly on the mass of the fluid element, the bodi’ forces , and those which act...shall again consider a 2-D flow , as indicated in Figure.2-. The resultant force in the x- direction, for one unit length in z is F= ph.r~u + a(.10...x,+.a. Where fx is the body force per-unit mass in the x direction. The most conmmon body force for the flow fields is that of gravity. Equation 2.10
Surface topographical effects on the structural growth of thick sputtered metal and alloy coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1974-01-01
Thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface structure of the nodules are characterized. Compositional changes within the coating were analyzed by X-ray dispersion microscopy. Defects in the surface finish (i.e., scratches, inclusions, etc.) act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. The nodule boundaries are very vulnerable to chemical etching and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces. These effects are illustrated by micrographs. Nodular growth within a coating can be minimized or eliminated by reducing the surface roughness.
Wastewater Characterization Survey, Cannon Air Force Base, New Mexico
1993-05-01
Consultant, Water Qu 1ity Franch Chief, Bioenironmental Engineering Division Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden...aquatic food chain and/or storage in plant Water Act are followed; sewers. and animal tissues, can be magnified to 10. provides continuing technical train...continuously throughout the year in all food chains, will cause death, disease, be- face or ground water at a frequency and years; its upper surface
NASA Astrophysics Data System (ADS)
Korayem, Moharam Habibnejad; Nahavandi, Amir
2017-04-01
This paper investigates the vibration of a tapping-mode Atomic Force Microscope (AFM) cantilever covered with two whole piezoelectric layers in a liquid medium. The authors of this article have already modeled the vibration of a cantilever immersed in liquid over rough surfaces. Five new ideas have been considered for improving the results of the previous work. Mass and damping of a cantilever probe tip have been considered. Since the probe tip of an AFM cantilever has a mass, which can itself affect the natural frequency of vibration, the significance of this mass has been explored. Also, two hydrodynamic force models for analyzing the mass and damping added to a cantilever in liquid medium have been evaluated. In modeling the vibration of a cantilever in liquid, simplifications are made to the theoretical equations used in the modeling, which may make the obtained results different from those in the real case. So, two hydrodynamic force models are introduced and compared with each other. In addition to the already introduced DMT model, the JKR model has been proposed. The forces acting on a probe tip have attractive and repulsive effects. The attractive Van der Waals force can vary depending on the surface smoothness or roughness, and the repulsive contact force, which is independent of the type of surface roughness and usually varies with the hardness or softness of a surface. When the first mode is used in the vibration of an AFM cantilever, the changes of the existing physical parameters in the simulation do not usually produce a significant difference in the response. Thus, three cantilever vibration modes have been investigated. Finally, an analytical approach for obtaining the response of equations is presented which solves the resulting motion equation by the Laplace method and, thus, a time function is obtained for cantilever deflection is determined. Also, using the COMSOL software to model a cantilever in a liquid medium, the computed natural frequencies have been compared.
Effect of disjoining pressure on terminal velocity of a bubble sliding along an inclined wall.
Del Castillo, Lorena A; Ohnishi, Satomi; White, Lee R; Carnie, Steven L; Horn, Roger G
2011-12-15
The influence of salt concentration on the terminal velocities of gravity-driven single bubbles sliding along an inclined glass wall has been investigated, in an effort to establish whether surface forces acting between the wall and the bubble influence the latter's mobility. A simple sliding bubble apparatus was employed to measure the terminal velocities of air bubbles with radii ranging from 0.3 to 1.5 mm sliding along the interior wall of an inclined Pyrex glass cylinder with inclination angles between 0.6 and 40.1°. Experiments were performed in pure water, 10 mM and 100 mM KCl solutions. We compared our experimental results with a theory by Hodges et al. which considers hydrodynamic forces only, and with a theory developed by two of us which considers surface forces to play a significant role. Our experimental results demonstrate that the terminal velocity of the bubble not only varies with the angle of inclination and the bubble size but also with the salt concentration, particularly at low inclination angles of ∼1-5°, indicating that double-layer forces between the bubble and the wall influence the sliding behavior. This is the first demonstration that terminal velocities of sliding bubbles are affected by disjoining pressure. Copyright © 2011 Elsevier Inc. All rights reserved.
An experimental investigation of flow around a vehicle passing through a tornado
NASA Astrophysics Data System (ADS)
Suzuki, Masahiro; Obara, Kouhei; Okura, Nobuyuki
2016-03-01
Flow around a vehicle running through a tornado was investigated experimentally. A tornado simulator was developed to generate a tornado-like swirl flow. PIV study confirmed that the simulator generates two-celled vortices which are observed in the natural tornadoes. A moving test rig was developed to run a 1/40 scaled train-shaped model vehicle under the tornado simulator. The car contained pressure sensors, a data logger with an AD converter to measure unsteady surface pressures during its run through the swirling flow. Aerodynamic forces acting on the vehicle were estimated from the pressure data. The results show that the aerodynamic forces change its magnitude and direction depending on the position of the car in the swirling flow. The asymmetry of the forces about the vortex centre suggests the vehicle itself may deform the flow field.
On the crystallization of polymer composites with inorganic fullerene-like particles.
Enyashin, Andrey N; Glazyrina, Polina Yu
2012-05-21
The effect of a sulfide fullerene-like particle embedded into a polymer has been studied by molecular dynamics simulations on the nanosecond time scale using a mesoscopic Van der Waals force field evaluated for the case of a spherical particle. Even in this approach, neglecting the atomistic features of the surface, the inorganic particle acts as a nucleation agent facilitating the crystallization of the polymeric sample. A consideration of the Van der Waals force field of multi-walled sulfide nanoparticles suggests that in the absence of chemical interactions the size of the nanoparticle is dominating for the adhesion strength, while the number of sulfide layers composing the cage does not play a role.
Mechanics of wheel-soil interaction
NASA Technical Reports Server (NTRS)
Houland, H. J.
1973-01-01
An approximate theory for wheel-soil interaction is presented which forms the basis for a practical solution to the problem. It is shown that two fundamental observations render the problem determinate: (1) The line of action of the resultant of radial stresses acting at the wheel soil interface approximately bisects the wheel-soil contact angle for all values of slip. (2) A shear stress surface can be hypothesized. The influence of soil inertia forces is also evaluated. A concept of equivalent cohesion is introduced which allows a convenient experimental comparison for both cohesive and frictional soils. This theory compares favorably with previous analyses and experimental data, and shows that soil inertia forces influencing the motion of a rolling wheel can be significant.
Development of a non-linear simulation for generic hypersonic vehicles - ASUHS1
NASA Technical Reports Server (NTRS)
Salas, Juan; Lovell, T. Alan; Schmidt, David K.
1993-01-01
A nonlinear simulation is developed to model the longitudinal motion of a vehicle in hypersonic flight. The equations of motion pertinent to this study are presented. Analytic expressions for the aerodynamic forces acting on a hypersonic vehicle which were obtained from Newtonian Impact Theory are further developed. The control surface forces are further examined to incorporate vehicle elastic motion. The purpose is to establish feasible equations of motion which combine rigid body, elastic, and aeropropulsive dynamics for use in nonlinear simulations. The software package SIMULINK is used to implement the simulation. Also discussed are issues needing additional attention and potential problems associated with the implementation (with proposed solutions).
Application of dGNSS in Alpine Ski Racing: Basis for Evaluating Physical Demands and Safety
Gilgien, Matthias; Kröll, Josef; Spörri, Jörg; Crivelli, Philip; Müller, Erich
2018-01-01
External forces, such as ground reaction force or air drag acting on athletes' bodies in sports, determine the sport-specific demands on athletes' physical fitness. In order to establish appropriate physical conditioning regimes, which adequately prepare athletes for the loads and physical demands occurring in their sports and help reduce the risk of injury, sport-and/or discipline-specific knowledge of the external forces is needed. However, due to methodological shortcomings in biomechanical research, data comprehensively describing the external forces that occur in alpine super-G (SG) and downhill (DH) are so far lacking. Therefore, this study applied new and accurate wearable sensor-based technology to determine the external forces acting on skiers during World Cup (WC) alpine skiing competitions in the disciplines of SG and DH and to compare these with those occurring in giant slalom (GS), for which previous research knowledge exists. External forces were determined using WC forerunners carrying a differential global navigation satellite system (dGNSS). Combining the dGNSS data with a digital terrain model of the snow surface and an air drag model, the magnitudes of ground reaction forces were computed. It was found that the applied methodology may not only be used to track physical demands and loads on athletes, but also to simultaneously investigate safety aspects, such as the effectiveness of speed control through increased air drag and ski–snow friction forces in the respective disciplines. Therefore, the component of the ground reaction force in the direction of travel (ski–snow friction) and air drag force were computed. This study showed that (1) the validity of high-end dGNSS systems allows meaningful investigations such as characterization of physical demands and effectiveness of safety measures in highly dynamic sports; (2) physical demands were substantially different between GS, SG, and DH; and (3) safety-related reduction of skiing speed might be most effectively achieved by increasing the ski–snow friction force in GS and SG. For DH an increase in the ski–snow friction force might be equally as effective as an increase in air drag force. PMID:29559918
Thermocapillary flow with evaporation and condensation at low gravity. Part 2: Deformable surface
NASA Technical Reports Server (NTRS)
Schmidt, G. R.; Chung, T. J.; Nadarajah, A.
1995-01-01
The free surface behavior of a volatile wetting liquid at low gravity is studied using scaling and numerical techniques. An open cavity model, which was applied in part 1 to investigate fluid flow and heat transfer in non-deforming pores, is used to evaluate the influence of convection on surface morphology with length scales and subcooling/superheating limits of 1 less than or equal to D less than or equal to 10(exp 2) microns and approximately 1 K, respectively. Results show that the menisci shapes of highly wetting fluids are sensitive to thermocapillary flow and to a lesser extent the recoil force associated with evaporation and condensation. With subcooling, thermocapillarity produces a suction about the pore centerline that promotes loss of mechanical equilibrium, while condensation exerts an opposing force that under some conditions offsets this destabilizing influence. With superheating, thermocapillarity and evaporation act in the same direction and mutually foster surface stability. All of these trends are magnified by high capillary and Biot numbers, and the stronger circulation intensities associated with small contact angles. These phenomena strongly depend on the thermal and interfacial equilibrium between the liquid and vapor, and have important ramifications for systems designed to maintain a pressure differential across a porous surface.
Role of air-water interfaces in colloid transport in porous media: A review
NASA Astrophysics Data System (ADS)
Flury, Markus; Aramrak, Surachet
2017-07-01
Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface chemistry.
Clastic Pipes on Mars: Evidence for a Near Surface Groundwater System
NASA Astrophysics Data System (ADS)
Wheatley, D. F.; Chan, M. A.; Okubo, C. H.
2017-12-01
Clastic pipes, a type of vertical, columnar injectite, occur throughout the terrestrial stratigraphic record and are identified across many Martian terrains. Terrestrial pipe analogs can aid in identifying clastic pipes on Mars to understand their formation processes and their implications for a past near-surface groundwater system. On Earth, clastic pipes form through fluidization of overpressurized sediment. Fluidization occurs when the upward frictional (i.e., drag) forces of escaping fluids overpower the downward acting gravitational force. To create the forces necessary for pipe formation requires overpressurization of a body of water-saturated porous media overlain by a low permeability confining layer. As the pressure builds, the confining layer eventually fractures and the escaping fluids fluidize the porous sediment causing the sediment to behave like a fluid. These specific formation conditions record evidence of a violent release of fluid-suspended sediment including brecciation of the host and sealing material, internal outward grading/sorting that results in a coarser-grained commonly better cemented outer rind, traction structures, and a cylindrical geometry. Pipes form self-organized, dispersed spatial relationships due to the efficient diffusion of overpressured zones in the subsurface and the expulsion of sediment under pressure. Martian pipes occur across the northern lowlands, dichotomy boundary, and southern highlands in various forms of erosional relief ranging from newer eruption structures to eroded cylindrical/conical mounds with raised rims to highly eroded mounds/hills. Similar to terrestrial examples, Martian pipes form in evenly-spaced, self-organized arrangements. The pipes are typically internally massive with a raised outer rim (interpreted as a sorted, coarser-grained, better-cemented rim). This evidence indicates that Martian pipes formed through fluidization, which requires a near-surface groundwater system. Pipes create a window into the subsurface by excavating subsurface sediment and waters. After emplacement, pipes can also act as fluid conduits, channeling post-depositional fluid flow. The preferential porosity and flow paths may make the pipes an ideal exploration target for microbial life.
NASA Astrophysics Data System (ADS)
Roth, Mathias K.; MacMahan, Jamie; Reniers, Ad; Özgökmen, Tamay M.; Woodall, Kate; Haus, Brian
2017-04-01
Motivated by the Deepwater Horizon oil spill, the Surfzone and Coastal Oil Pathways Experiment obtained Acoustic Doppler Current Profiler (ADCP) Eulerian and GPS-drifter based Lagrangian "surface" (<1 m) flow observations in the northern Gulf of Mexico to describe the influence of small-scale river plumes on surface material transport pathways in the nearshore. Lagrangian paths are qualitatively similar to surface pathlines derived from non-traditional, near-surface ADCP velocities, but both differ significantly from depth-averaged subsurface pathlines. Near-surface currents are linearly correlated with wind velocities (r =0.76 in the alongshore and r =0.85 in the cross-shore) at the 95% confidence level, and are 4-7 times larger than theoretical estimates of wind and wave-driven surface flow in an un-stratified water column. Differences in near-surface flow are attributed to the presence of a buoyant river plume forced by winds from passing extratropical storms. Plume boundary fronts induce a horizontal velocity gradient where drifters deployed outside of the plume in oceanic water routinely converge, slow, and are re-directed. When the plume flows west parallel to the beach, the seaward plume boundary front acts as a coastal barrier that prevents 100% of oceanic drifters from beaching within 27 km of the inlet. As a result, small-scale, wind-driven river plumes in the northern Gulf of Mexico act as coastal barriers that prevent offshore surface pollution from washing ashore west of river inlets.
NASA Astrophysics Data System (ADS)
Zainal, Israa G.; Al-Shammari, Ahmed Majeed; Kachi, Wjeah
2018-05-01
Surface functionalization of magnetic iron oxide nanoparticles (NPs) is a kind of functional materials, which have been widely used in the biotechnology and catalysis. In this study, Nickel-Zinc ferrite nanoparticles was functionalized with amino propyl triethoxy silane (APTES) by silanization reaction and both non coated and organosilane-coated magnetite characterized by energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry, Fourier transformed infrared spectroscopy (FTIR) and atomic force microscopy. Basic groups of amino anchored on the external surface of the coated magnetite were observed. Our study procedure nanoparticles which have surface with free - NH2 groups which can carry out ionic interaction with carboxylic groups and act as a carrier of biological molecules, drugs and metals.
NASA Astrophysics Data System (ADS)
Yu, Bin; Lin, H.; Wu, Z. W.; Merryfield, W. J.
2018-03-01
The Asian-Bering-North American (ABNA) teleconnection index is constructed from the normalized 500-hPa geopotential field by excluding the Pacific-North American pattern contribution. The ABNA pattern features a zonally elongated wavetrain originating from North Asia and flowing downstream across Bering Sea and Strait towards North America. The large-scale teleconnection is a year-round phenomenon that displays strong seasonality with the peak variability in winter. North American surface temperature and temperature extremes, including warm days and nights as well as cold days and nights, are significantly controlled by this teleconnection. The ABNA pattern has an equivalent barotropic structure in the troposphere and is supported by synoptic-scale eddy forcing in the upper troposphere. Its associated sea surface temperature anomalies exhibit a horseshoe-shaped structure in the North Pacific, most prominent in winter, which is driven by atmospheric circulation anomalies. The snow cover anomalies over the West Siberian plain and Central Siberian Plateau in autumn and spring and over southern Siberia in winter may act as a forcing influence on the ABNA pattern. The snow forcing influence in winter and spring can be traced back to the preceding season, which provides a predictability source for this teleconnection and for North American temperature variability. The ABNA associated energy budget is dominated by surface longwave radiation anomalies year-round, with the temperature anomalies supported by anomalous downward longwave radiation and damped by upward longwave radiation at the surface.
NASA Astrophysics Data System (ADS)
Montes, C.; Kiang, N. Y.; Ni-Meister, W.; Yang, W.; Schaaf, C.; Aleinov, I. D.; Jonas, J.; Zhao, F. A.; Yao, T.; Wang, Z.; Sun, Q.; Carrer, D.
2016-12-01
Land surface albedo is a major controlling factor in vegetation-atmosphere transfers, modifying the components of the energy budget, the ecosystem productivity and patterns of regional and global climate. General Circulation Models (GCMs) are coupled to Dynamic Global Vegetation Models (DGVMs) to solve vegetation albedo by using simple schemes prescribing albedo based on vegetation classification, and approximations of canopy radiation transport for multiple plant functional types (PFTs). In this work, we aim at evaluating the sensitivity of the NASA Ent Terrestrial Biosphere Model (TBM), a demographic DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM, in estimating VIS and NIR surface albedo by using variable forcing leaf area index (LAI). The Ent TBM utilizes a new Global Vegetation Structure Dataset (GVSD) to account for geographically varying vegetation tree heights and densities, as boundary conditions to the gap-probability based Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010). Land surface and vegetation characteristics for the Ent GVSD are obtained from a number of earth observation platforms and algorithms, including the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), and vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three LAI products are used as input to ACTS/Ent TBM: MODIS MOD15A2H product (Yang et al., 2006), Beijing Normal University LAI (Yuan et al., 2011), and Global Data Sets of Vegetation (LAI3g) (Zhu et al. 2013). The sensitivity of the Ent TBM VIS and NIR albedo to the three LAI products is assessed, compared against the previous GISS GCM vegetation classification and prescribed Lambertian albedoes (Matthews, 1984), and against MODIS snow-free black-sky and white-sky albedo estimates. In addition, we test the sensitivity of the Ent/ACTS albedo to different sets of leaf spectral albedos derived from the literature.
A first course in optimum design of yacht sails
NASA Astrophysics Data System (ADS)
Sugimoto, Takeshi
1993-03-01
The optimum sail geometry is analytically obtained for the case of maximizing the thrust under equality and inequality constraints on the lift and the heeling moment. A single mainsail is assumed to be set close-hauled in uniform wind and upright on the flat sea surface. The governing parameters are the mast height and the gap between the sail foot and the sea surface. The lifting line theory is applied to analyze the aerodynamic forces acting on a sail. The design method consists of the variational principle and a feasibility study. Almost triangular sails are found to be optimum. Their advantages are discussed.
Mechanical Failure in Colloidal Gels
NASA Astrophysics Data System (ADS)
Kodger, Thomas Edward
When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form them.
A 3D visualization and simulation of the individual human jaw.
Muftić, Osman; Keros, Jadranka; Baksa, Sarajko; Carek, Vlado; Matković, Ivo
2003-01-01
A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple two-dimensional model of the jaw cannot explain the biomechanics, where the muscular forces through occlusion and condylar surfaces are in the state of 3D equilibrium. In the model all forces are resolved into components according to a selected coordinate system. The muscular forces act on the jaw, along with the necessary force level for chewing as some kind of mandible balance, preventing dislocation and loading of nonarticular tissues. In the work is used new approach to computer-generated animation of virtual 3D characters (called "Body SABA"), using in one object package of minimal costs and easy for operation.
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2001-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.
Characterisation of nanomaterial hydrophobicity using engineered surfaces
NASA Astrophysics Data System (ADS)
Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal
2017-03-01
Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.
WES feedback and the Atlantic Meridional Mode: observations and CMIP5 comparisons
NASA Astrophysics Data System (ADS)
Amaya, Dillon J.; DeFlorio, Michael J.; Miller, Arthur J.; Xie, Shang-Ping
2017-09-01
The Atlantic Meridional Mode (AMM) is the dominant mode of tropical SST/wind coupled variability. Modeling studies have implicated wind-evaporation-SST (WES) feedback as the primary driver of the AMM's evolution across the Atlantic basin; however, a robust coupling of the SST and winds has not been shown in observations. This study examines observed AMM growth, propagation, and decay as a result of WES interactions. Investigation of an extended maximum covariance analysis shows that boreal wintertime atmospheric forcing generates positive SST anomalies (SSTA) through a reduction of surface evaporative cooling. When the AMM peaks in magnitude during spring and summer, upward latent heat flux anomalies occur over the warmest SSTs and act to dampen the initial forcing. In contrast, on the southwestern edge of the SSTA, SST-forced cross-equatorial flow reduces the strength of the climatological trade winds and provides an anomalous latent heat flux into the ocean, which causes southwestward propagation of the initial atmosphere-forced SSTA through WES dynamics. Additionally, the lead-lag relationship of the ocean and atmosphere indicates a transition from an atmosphere-forcing-ocean regime in the northern subtropics to a highly coupled regime in the northern tropics that is not observed in the southern hemisphere. CMIP5 models poorly simulate the latitudinal transition from a one-way interaction to a two-way feedback, which may explain why they also struggle to reproduce spatially coherent interactions between tropical Atlantic SST and winds. This analysis provides valuable insight on how meridional modes act as links between extratropical and tropical variability and focuses future research aimed at improving climate model simulations.
Force measuring valve assemblies, systems including such valve assemblies and related methods
DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID
2012-04-17
Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.
Kinesin-microtubule interactions during gliding assays under magnetic force
NASA Astrophysics Data System (ADS)
Fallesen, Todd L.
Conventional kinesin is a motor protein capable of converting the chemical energy of ATP into mechanical work. In the cell, this is used to actively transport vesicles through the intracellular matrix. The relationship between the velocity of a single kinesin, as it works against an increasing opposing load, has been well studied. The relationship between the velocity of a cargo being moved by multiple kinesin motors against an opposing load has not been established. A major difficulty in determining the force-velocity relationship for multiple motors is determining the number of motors that are moving a cargo against an opposing load. Here I report on a novel method for detaching microtubules bound to a superparamagnetic bead from kinesin anchor points in an upside down gliding assay using a uniform magnetic field perpendicular to the direction of microtubule travel. The anchor points are presumably kinesin motors bound to the surface which microtubules are gliding over. Determining the distance between anchor points, d, allows the calculation of the average number of kinesins, n, that are moving a microtubule. It is possible to calculate the fraction of motors able to move microtubules as well, which is determined to be ˜ 5%. Using a uniform magnetic field parallel to the direction of microtubule travel, it is possible to impart a uniform magnetic field on a microtubule bound to a superparamagnetic bead. We are able to decrease the average velocity of microtubules driven by multiple kinesin motors moving against an opposing force. Using the average number of kinesins on a microtubule, we estimate that there are an average 2-7 kinesins acting against the opposing force. By fitting Gaussians to the smoothed distributions of microtubule velocities acting against an opposing force, multiple velocities are seen, presumably for n, n-1, n-2, etc motors acting together. When these velocities are scaled for the average number of motors on a microtubule, the force-velocity relationship for multiple motors follows the same trend as for one motor, supporting the hypothesis that multiple motors share the load.
Using Instrumental and Proxy Data to Determine the Causes of Fast and Slow Warming rates
NASA Astrophysics Data System (ADS)
Hegerl, G. C.; Schurer, A. P.; Obrochta, S.
2015-12-01
The recent warming 'hiatus' is subject to intense interest, with proposed causes including natural forcing and internal variability. We derive samples of all natural and interval variability from observations and a recent proxy reconstruction to investigate the likelihood that these two sources of variability could produce a hiatus or rapid warming in surface temperature. The likelihood is found to be consistent with that calculated previously for models and exhibits a similar spatial pattern, with an Interdecadal Pacific Oscillation-like structure, although with more signal in the Atlantic than in model patterns. The number and length of events increases if natural forcing is also considered, with volcanic forcing acting as a pacemaker for both fast and slow warming rates in model simulations of the last millennium, and, to a smaller extent, from observations. Big eruptions, such as Mount Tambora in 1815, or clusters of eruptions, may result in a hiatus of over 20 years. A striking finding is the smaller influence of volcanism on surface temperature warming rates in instrumental and proxy data than in climate models. This talk will discuss the possible reasons of this discrepancy.
Zhao, Hui; Bau, Haim H
2008-06-17
The polarization of, the forces acting on, and the electroosmotic flow field around a cylindrical particle of radius a* and uniform zeta potential zeta* submerged in an electrolyte solution and subjected to alternating electric fields are computed by solving the Poisson-Nernst-Planck (PNP) equations (the standard model). The dipole coefficient and the electrostatic and hydrodynamic forces are calculated as functions of the electric field's frequency, the solute concentration, and the particle's surface charge. The calculations are not restricted to small Debye screening lengths (lambdaD*). At relatively low frequencies, the polarization coefficient is nearly frequency-independent. As the frequency increases above D*/a*(2), where D* is the effective diffusion coefficient, the polarization coefficient initially increases, attains a maximum, and then decreases to an asymptotic value (when the frequency exceeds (1+Du)D*/lambdaD(*2), where Du is the Dukhin number). At low frequencies, when (lambdaD*/a*)(2)e(|zeta*F*/(2R*T*)|) < 1, the PNP calculations are in excellent agreement with the predictions of the Dukhin-Shilov (DS) low-frequency theory. At high frequencies, when lambda D*/a* < 1, the PNP calculations are in excellent agreement with the Maxwell-Wagner-O'Konski (MWO) theory.
Visualization and analysis of vortex-turbine intersections in wind farms.
Shafii, Sohail; Obermaier, Herald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth I
2013-09-01
Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. This paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life expectancy. Our methods have the potential to improve turbine design to save costs related to turbine operation and maintenance.
Thermosyphon Flooding Limits in Reduced Gravity Environments
NASA Technical Reports Server (NTRS)
Gibson, Marc A.; Jaworske, Donald A.; Sanzi, James L.; Ljubanovic, Damir
2012-01-01
Fission Power Systems have long been recognized as potential multi-kilowatt power solutions for lunar, Martian, and extended planetary surface missions. Current heat rejection technology associated with fission surface power systems has focused on titanium water thermosyphons embedded in carbon composite radiator panels. The thermosyphons, or wickless heat pipes, are used as a redundant and efficient way to spread the waste heat from the power conversion unit(s) over the radiator surface area where it can be rejected to space. It is well known that thermosyphon performance is reliant on gravitational forces to keep the evaporator wetted with the working fluid. One of the performance limits that can be encountered, if not understood, is the phenomenon of condenser flooding, otherwise known as evaporator dry out. This occurs when the gravity forces acting on the condensed fluid cannot overcome the shear forces created by the vapor escaping the evaporator throat. When this occurs, the heat transfer process is stalled and may not re-stabilize to effective levels without corrective control actions. The flooding limit in earth's gravity environment is well understood as experimentation is readily accessible, but when the environment and gravity change relative to other planetary bodies, experimentation becomes difficult. An innovative experiment was designed and flown on a parabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtain empirical data for analysis. The test data is compared to current correlation models for validation and accuracy.
NASA Astrophysics Data System (ADS)
Camargo, S. J.; Sobel, A. H.; Polvani, L. M.; Emanuel, K.; Previdi, M. J.
2017-12-01
Previous work has shown that aerosol cooling reduces tropical cyclone (TC) potential intensity (PI) more strongly than greenhouse gas warming increases it. This has the consequence that PI shows only small increases in simulations of the historical period despite considerable global warming over that period. We use CMIP5 models, as well as offline radiative kernels, to better understand this result. The outsize effect of aerosol forcing is a consequence of the fact that tropospheric aerosols act in the shortwave while greenhouse gases act in the longwave. Shortwave forcing has a greater impact on PI than does longwave, because of the differences in the response of the surface energy budget to the direct, temperature-independent component of the forcing. Shortwave forcing mainly drives the climate system in the surface, while greenhouse gases do so at the top of the atmosphere, so that net longwave flux associated with a temperature change can be small, especially at high temperature. Our kernel results also indicate that the temperature-dependent longwave feedback component is also greater by approximately a factor of two for the shortwave than the longwave forcing. Recent papers using observations and proxy reconstructions suggested a reduction of frequency, duration and intensity of Atlantic TCs in the years following volcanic eruptions. Observations show no significant reduction of TC activity in the first season after three large volcanic eruptions in the 20th Century, with the exception of the North Atlantic. The response to these volcanic eruptions cannot be separated from the coinciding El Niño events either in observations or in reanalysis. Both the NCAR Large Ensemble and CMIP5 models show a strong reduction in the PI following large volcanic eruptions. But, given that the models response to volcanic aerosols is known to be too strong, when a bias correction is considered, the PI signal after the volcanic eruptions becomes much smaller. Furthermore, there is no statistically significant reduction in TC activity for either the explicit synthetic downscaled CMIP5 storms following the volcanic eruptions. Therefore, there is little evidence of a global reduction of TC activity from direct volcanic aerosols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippov, A. V., E-mail: fav@triniti.ru; Derbenev, I. N.
The effect of the size of two charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma is analyzed within the linearized Poisson–Botzmann model. It is established that, under the interaction of two charged dielectric macroparticles in an equilibrium plasma, the forces acting on each particle turn out to be generally unequal. The forces become equal only in the case of conducting macroparticles or in the case of dielectric macroparticles of the same size and charge. They also turn out to be equal when the surface potentials of the macroparticles remain constant under the variation of interparticle distances. Formulasmore » are proposed that allow one to calculate the interaction force with a high degree of accuracy under the condition that the radii of macroparticles are much less than the screening length, which is usually satisfied in experiments with dusty plasmas.« less
Flow properties and hydrodynamic interactions of rigid spherical microswimmers
NASA Astrophysics Data System (ADS)
Adhyapak, Tapan Chandra; Jabbari-Farouji, Sara
2017-11-01
We analyze a minimal model for a rigid spherical microswimmer and explore the consequences of its extended surface on the interplay between its self-propulsion and flow properties. The model is the first order representation of microswimmers, such as bacteria and algae, with rigid bodies and flexible propelling appendages. The flow field of such a microswimmer at finite distances significantly differs from that of a point-force (Stokeslet) dipole. For a suspension of microswimmers, we derive the grand mobility matrix that connects the motion of an individual swimmer to the active and passive forces and torques acting on all the swimmers. Our investigation of the mobility tensors reveals that hydrodynamic interactions among rigid-bodied microswimmers differ considerably from those among the corresponding point-force dipoles. Our results are relevant for the study of collective behavior of hydrodynamically interacting microswimmers by means of Stokesian dynamics simulations at moderate concentrations.
Magnetohydrodynamic actuation of droplets for millimetric planar fluidic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmadi, A., E-mail: ali.ahmadi@ubc.ca; McDermid, C. M.; Markley, L.
2016-01-04
In this work, a magnetohydrodynamic method is proposed for the actuation of droplets in small-scale planar fluidic systems, providing an alternative to commonly used methods such as electrowetting-on-dielectric. Elementary droplet-based operations, including transport, merging, and mixing, are demonstrated. The forces acting on millimetric droplets are carefully investigated, with a primary focus on the magnetic actuation force and on the unbalanced capillary forces that arise due to hysteresis. A super-hydrophobic channel is 3D printed to guide the droplets, with thin wires installed as contact electrodes and permanent magnets providing a static magnetic field. It is shown that droplet motion is enhancedmore » by increasing the droplet size and minimizing the electrode contact surface. The effects of channel geometry on threshold voltage and minimum moveable droplet volume are characterized. Finally, the presence of electrolysis is investigated and mitigating strategies are discussed.« less
Second Law Violations by Means of a Stratification of Temperature Due to Force Fields
NASA Astrophysics Data System (ADS)
Trupp, Andreas
2002-11-01
In 1868 J.C. Maxwell proved that a perpetual motion machine of the second kind would become possible, if the equilibrium temperature in a vertical column of gas subject to gravity were a function of height. However, Maxwell had claimed that the temperature had to be the same at all points of the column. So did Boltzmann. Their opponent was Loschmidt. He claimed that the equilibrium temperature declined with height, and that a perpetual motion machine of the second kind operating by means of such column was compatible with the second law of thermodynamics. Extending the general idea behind Loschmidt's concept to other force fields, gravity can be replaced by molecular forces acting on molecules that try to escape from the surface of a liquid into the vapor space. Experiments proving the difference of temperature between the liquid and the vapor phase were conducted in the 19th century already.
Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G
2016-07-01
Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in egg yolk solutions. The results reveal how the interfacial rigidity, as well as the bubble/wall and drop/wall adhesion forces, can be quantified and controlled in relation to optimizing the properties of foams and emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.
Pereira, Maria J; Amaral, Joao S; Silva, Nuno J O; Amaral, Vitor S
2016-12-01
Determining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution. Enabling direct observation and mapping of thermal properties such as thermal conductivity, SThM is becoming a powerful tool with a critical role in several fields, from material science to device thermal management. We present an overview of the different thermal probes, followed by the contribution of SThM in three currently significant research topics. First, in thermal conductivity contrast studies of graphene monolayers deposited on different substrates, SThM proves itself a reliable technique to clarify the intriguing thermal properties of graphene, which is considered an important contributor to improve the performance of downscaled devices and materials. Second, SThM's ability to perform sub-surface imaging is highlighted by thermal conductivity contrast analysis of polymeric composites. Finally, an approach to induce and study local structural transitions in ferromagnetic shape memory alloy Ni-Mn-Ga thin films using localized nano-thermal analysis is presented.
Wong, J Y; Park, C K; Seitz, M; Israelachvili, J
1999-01-01
We have created phospholipid bilayers supported on soft polymer "cushions" which act as deformable substrates (see accompanying paper, Wong, J. Y., J. Majewski, M. Seitz, C. K. Park, J. N. Israelachvili, and G. S. Smith. 1999. Biophys. J. 77:1445-1457). In contrast to "solid-supported" membranes, such "soft-supported" membranes can exhibit more natural (higher) fluidity. Our bilayer system was constructed by adsorption of small unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles onto polyethylenimine (PEI)-supported Langmuir-Blodgett lipid monolayers on mica. We used the surface forces apparatus (SFA) to investigate the long-range forces, adhesion, and fusion of two DMPC bilayers both above and below their main transition temperature (T(m) approximately 24 degrees C). Above T(m), hemi-fusion activation pressures of apposing bilayers were considerably smaller than for solid-supported bilayers, e.g., directly supported on mica. After separation, the bilayers naturally re-formed after short healing times. Also, for the first time, complete fusion of two fluid (liquid crystalline) phospholipid bilayers was observed in the SFA. Below T(m) (gel state), very high pressures were needed for hemi-fusion and the healing process became very slow. The presence of the polymer cushion significantly alters the interaction potential, e.g., long-range forces as well as fusion pressures, when compared to solid-supported systems. These fluid model membranes should allow the future study of integral membrane proteins under more physiological conditions. PMID:10465756
Noncontact viscoelastic measurement of polymer thin films in a liquid medium using a long-needle AFM
NASA Astrophysics Data System (ADS)
Guan, Dongshi; Barraud, Chloe; Charlaix, Elisabeth; Tong, Penger
We report noncontact measurement of the viscoelastic property of polymer thin films in a liquid medium using frequency-modulation atomic force microscopy (FM-AFM) with a newly developed long-needle probe. The probe contains a long vertical glass fiber with one end adhered to a cantilever beam and the other end with a sharp tip placed near the liquid-film interface. The nanoscale flow generated by the resonant oscillation of the needle tip provides a precise hydrodynamic force acting on the soft surface of the thin film. By accurately measuring the mechanical response of the thin film, we obtain the elastic and loss moduli of the thin film using the linear response theory of elasto-hydrodynamics. The experiment verifies the theory and demonstrates its applications. The technique can be used to accurately measure the viscoelastic property of soft surfaces, such as those made of polymers, nano-bubbles, live cells and tissues. This work was supported by the Research Grants Council of Hong Kong SAR.
Contribution of Surface Thermal Forcing to Mixing in the Ocean
NASA Astrophysics Data System (ADS)
Wang, Fei; Huang, Shi-Di; Xia, Ke-Qing
2018-02-01
A critical ingredient of the meridional overturning circulation (MOC) is vertical mixing, which causes dense waters in the deep sea to rise throughout the stratified interior to the upper ocean. Here, we report a laboratory study aimed at understanding the contributions from surface thermal forcing (STF) to this mixing process. Our study reveals that the ratio of the thermocline thickness to the fluid depth largely determines the mixing rate and the mixing efficiency in an overturning flow driven by STF. By applying this finding to a hypothetical MOC driven purely by STF, we obtain a mixing rate of O(10-6 m2/s) and a corresponding meridional heat flux of O(10-2 petawatt, PW), which are far smaller than the values found for real oceans. These results provide quantitative support for the notion that STF alone is not sufficient to drive the MOC, which essentially acts as a heat conveyor belt powered by other energy sources.
2012-01-01
Implicit solvation is a mean force approach to model solvent forces acting on a solute molecule. It is frequently used in molecular simulations to reduce the computational cost of solvent treatment. In the first instance, the free energy of solvation and the associated solvent–solute forces can be approximated by a function of the solvent-accessible surface area (SASA) of the solute and differentiated by an atom–specific solvation parameter σiSASA. A procedure for the determination of values for the σiSASA parameters through matching of explicit and implicit solvation forces is proposed. Using the results of Molecular Dynamics simulations of 188 topologically diverse protein structures in water and in implicit solvent, values for the σiSASA parameters for atom types i of the standard amino acids in the GROMOS force field have been determined. A simplified representation based on groups of atom types σgSASA was obtained via partitioning of the atom–type σiSASA distributions by dynamic programming. Three groups of atom types with well separated parameter ranges were obtained, and their performance in implicit versus explicit simulations was assessed. The solvent forces are available at http://mathbio.nimr.mrc.ac.uk/wiki/Solvent_Forces. PMID:23180979
32 CFR 842.110 - Claims not payable.
Code of Federal Regulations, 2013 CFR
2013-07-01
... International Agreements Claims Act. (4) The Air Force Admiralty Claims Act and the Admiralty Extensions Act. (5... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION... providing employee benefits through insurance, local law, or custom and the United States pays for such...
32 CFR 842.110 - Claims not payable.
Code of Federal Regulations, 2010 CFR
2010-07-01
... International Agreements Claims Act. (4) The Air Force Admiralty Claims Act and the Admiralty Extensions Act. (5... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION... providing employee benefits through insurance, local law, or custom and the United States pays for such...
32 CFR 842.110 - Claims not payable.
Code of Federal Regulations, 2012 CFR
2012-07-01
... International Agreements Claims Act. (4) The Air Force Admiralty Claims Act and the Admiralty Extensions Act. (5... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION... providing employee benefits through insurance, local law, or custom and the United States pays for such...
32 CFR 842.110 - Claims not payable.
Code of Federal Regulations, 2014 CFR
2014-07-01
... International Agreements Claims Act. (4) The Air Force Admiralty Claims Act and the Admiralty Extensions Act. (5... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION... providing employee benefits through insurance, local law, or custom and the United States pays for such...
Directional motion of impacting drops on dual-textured surfaces.
Vaikuntanathan, V; Sivakumar, D
2012-09-01
In this work, we analyze the directional movement of impacting liquid drops on dual-textured solid surfaces comprising two different surface morphologies: a textured surface and a smooth surface. The dynamics of liquid drops impacting onto the junction line between the two parts of the dual-textured surfaces is studied experimentally for varying drop impact velocity. The dual-textured surfaces used here featured a variation in their textures' geometrical parameters as well as their surface chemistry. Two types of liquid drop differing in their surface tension were used. The impact process develops a net horizontal drop velocity towards the higher-wettability surface portion and results in a bulk movement of the impacting drop liquid. The final distance moved by the impacting drop from the junction line decreases with increasing impacting drop Weber number We. A fully theoretical model, employing a balance of forces acting at the drop contact line as well as energy conservation, is formulated to determine the variation, with We, of net horizontal drop velocity and subsequent movement of the impacting drop on the dual-textured surfaces.
Dynamic acoustic radiation force acting on cylindrical shells: theory and simulations.
Mitri, F G; Fatemi, M
2005-05-01
An object placed in an acoustic field is known to experience a force due to the transfer of momentum from the wave to the object itself. This force is known to be steady when the incident field is considered to be continuous with constant amplitude. One may define the dynamic (oscillatory) radiation force for a continuous wave-field whose intensity varies slowly with time. This paper extends the theory of the dynamic acoustic radiation force resulting from an amplitude-modulated progressive plane wave-field incident on solid cylinders to the case of solid cylindrical shells with particular emphasis on their thickness and contents of their hollow regions. A new factor corresponding to the dynamic radiation force is defined as Y(d) and stands for the dynamic radiation force per unit energy density and unit cross sectional surface. The results of numerical calculations are presented, indicating the ways in which the form of the dynamic radiation force function curves are affected by variations in the material mechanical parameters and by changes in the interior fluid inside the shell's hollow region. It was shown that the dynamic radiation force function Y(d) deviates from the static radiation force function for progressive waves Y(p) when the modulation frequency increases. These results indicate that the theory presented here is broader than the existing theory on cylinders.
76 FR 77498 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
... Force's notices for systems of records subject to the Privacy Act of 1974 (5 U.S.C. 552a), as amended... (HQ USAF/SG), Air Force Medical Service Chief Information Officer's Office (AFMS CIO's office), 5201... Air Force medical facilities. Documentation includes: Patient's medical history, physical examination...
75 FR 48954 - Arbitration Panel Decision Under the Randolph-Sheppard Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... and its implementing regulations concerning the food services at Wright-Patterson Air Force Base in... permit to operate snack and beverage vending machines throughout the Wright-Patterson Air Force Base, and... income from the vending machines at the Wright-Patterson Air Force Base pursuant to the Act and...
NASA Astrophysics Data System (ADS)
Suzuki, Masahiro; Nakade, Koji
A basic study of flow controls using air blowing was conducted to reduce unsteady aerodynamic force acting on trains running in tunnels. An air blowing device is installed around a model car in a wind tunnel. Steady and periodic blowings are examined utilizing electromagnetic valves. Pressure fluctuations are measured and the aerodynamic force acting on the car is estimated. The results are as follows: a) The air blowing allows reducing the unsteady aerodynamic force. b) It is effective to blow air horizontally at the lower side of the car facing the tunnel wall. c) The reduction rate of the unsteady aerodynamic force relates to the rate of momentum of the blowing to that of the uniform flow. d) The periodic blowing with the same frequency as the unsteady aerodynamic force reduces the aerodynamic force in a manner similar to the steady blowing.
NASA Technical Reports Server (NTRS)
Munk, Max; Cario, Gunther
1923-01-01
The data for the calculation of the air forces acting on the elevators, obtained from previous model experiments are not immediately applicable in practice, as the angle at which the control surfaces meet the air stream is, in general, still unknown. The air stream, when it reaches the elevator has already been deflected by the wings and although the velocity imparted to the air current by the wings is of negligible amount compared with the speed of flight, the air behind the wings has been deflected downwards, so that the elevators work in an airstream which is inclined in a downward direction. The angle at which the air stream meets the elevator surface is, therefore, different from, and, with the usual arrangement of elevators, less than the angle made by the elevator surfaces with the line of flight.
Effect of disjoining pressure on terminal velocity of a bubble sliding along an inclined wall
Del Castillo, Lorena A.; Ohnishi, Satomi; White, Lee R.; Carnie, Steven L.; Horn, Roger G.
2011-01-01
The influence of salt concentration on the terminal velocities of gravity-driven single bubbles sliding along an inclined glass wall has been investigated, in an effort to establish whether surface forces acting between the wall and the bubble influence the latter’s mobility. A simple sliding bubble apparatus was employed to measure the terminal velocities of air bubbles with radii ranging from 0.3 to 1.5 mm sliding along the interior wall of an inclined Pyrex glass cylinder with inclination angles between 0.6 and 40.1°. Experiments were performed in pure water, 10 mM and 100 mM KCl solutions. We compared our experimental results with a theory by Hodges et al. [1] which considers hydrodynamic forces only, and with a theory developed by two of us [2] which considers surface forces to play a significant role. Our experimental results demonstrate that the terminal velocity of the bubble not only varies with the angle of inclination and the bubble size but also with the salt concentration, particularly at low inclination angles of ∼1–5°, indicating that double-layer forces between the bubble and the wall influence the sliding behavior. This is the first demonstration that terminal velocities of sliding bubbles are affected by disjoining pressure. PMID:21924429
NASA Technical Reports Server (NTRS)
Kelly, W. D.; Wood, C. L.
1993-01-01
Discovery of geyser-like plumes on the surface of Triton was a highlight of Voyager 2's passage through the Neptune planetary system. Remarkable as these observations were, they were not entirely without precedent. Considering the confirmed predictions for the 1979 Voyager Jovian passage, it was logical to consider other solar system bodies beside Io where tidal effects could be a significant factor in surface processes. It was our intuition that the Neptune-Triton gravitational bond acting at high inclination to the Neptune equator and the fact that Neptune was a fluid body was significant oblateness would produce tidal and mechanical forces that could be transformed into thermal energy vented on Triton's surface. Prior to the Voyager flyby, others have noted that capture and evolution of Triton's orbit from extreme eccentricity to near circular state today would have resulted in significant tidal heating, but these analysts disregard current day forces. Our calculations indicate that the time varying forces between Neptune-Triton fall midway between those exerted in the Earth-Moon and Jupiter-Io systems, and considering the low level of other energy inputs, this source of internal energy should not be ignored when seeking an explanation for surface activity. In each planet-satellite case, residual or steady-state eccentricity causes time-varying stresses on internal satellite strata. In the case of Jupiter the residual eccentricity is due largely to Galilean satellite interactions, particularly Io-Europa, but in the case of Neptune-Triton, it is the effect of Triton's inclined orbit about an oblate primary.
Dielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays
2015-01-01
We experimentally demonstrate dielectrophoretic concentration of biological analytes on the surface of a gold nanohole array, which concurrently acts as a nanoplasmonic sensor and gradient force generator. The combination of nanohole-enhanced dielectrophoresis, electroosmosis, and extraordinary optical transmission through the periodic gold nanohole array enables real-time label-free detection of analyte molecules in a 5 μL droplet using concentrations as low as 1 pM within a few minutes, which is more than 1000 times faster than purely diffusion-based binding. The nanohole-based optofluidic platform demonstrated here is straightforward to construct, applicable to both charged and neutral molecules, and performs a novel function that cannot be accomplished using conventional surface plasmon resonance sensors. PMID:24646075
NASA Astrophysics Data System (ADS)
Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali
2015-10-01
Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.
Shaping tissues by balancing active forces and geometric constraints
NASA Astrophysics Data System (ADS)
Foolen, Jasper; Yamashita, Tadahiro; Kollmannsberger, Philip
2016-02-01
The self-organization of cells into complex tissues during growth and regeneration is a combination of physical-mechanical events and biochemical signal processing. Cells actively generate forces at all stages in this process, and according to the laws of mechanics, these forces result in stress fields defined by the geometric boundary conditions of the cell and tissue. The unique ability of cells to translate such force patterns into biochemical information and vice versa sets biological tissues apart from any other material. In this topical review, we summarize the current knowledge and open questions of how forces and geometry act together on scales from the single cell to tissues and organisms, and how their interaction determines biological shape and structure. Starting with a planar surface as the simplest type of geometric constraint, we review literature on how forces during cell spreading and adhesion together with geometric constraints impact cell shape, stress patterns, and the resulting biological response. We then move on to include cell-cell interactions and the role of forces in monolayers and in collective cell migration, and introduce curvature at the transition from flat cell sheets to three-dimensional (3D) tissues. Fibrous 3D environments, as cells experience them in the body, introduce new mechanical boundary conditions and change cell behaviour compared to flat surfaces. Starting from early work on force transmission and collagen remodelling, we discuss recent discoveries on the interaction with geometric constraints and the resulting structure formation and network organization in 3D. Recent literature on two physiological scenarios—embryonic development and bone—is reviewed to demonstrate the role of the force-geometry balance in living organisms. Furthermore, the role of mechanics in pathological scenarios such as cancer is discussed. We conclude by highlighting common physical principles guiding cell mechanics, tissue patterning and matrix organization under geometric constraints across multiple length and time scales.
76 FR 53421 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2011-0021] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to Add a System of Records... Federal Register Liaison Officer, Department of Defense. F084 AFHRA A System Name: Air Force Historical...
76 FR 3113 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
... Force's notices for systems of records subject to the Privacy Act of 1974 (5 U.S.C. 552a), as amended... Center; major commands; field operating agencies; Military Personnel Sections at Air Force installations... mailing addresses are published as an appendix to the Air Force's compilation of systems of records...
Two for the Price of One: Integration of NEPA and NHPA Procedures
2013-09-01
Air Force Base AFI Air Force Instruction AFPD Air Force Policy Directive AR Army Regulation AT/FP Anti-Terrorism/Force Protection BLM Bureau of...Magnuson-Stevens Fishery Conservation and Management Act NASA National Aeronautics and Space Administration NEPA National Environmental Policy Act...example, the US Forest Service (USFS), US Fish and Wildlife Service (FWS), and Bureau of Land Management ( BLM ) have programs which create military
8 CFR 216.5 - Waiver of requirement to file joint petition to remove conditions by alien spouse.
Code of Federal Regulations, 2013 CFR
2013-01-01
... act or threatened act of violence, including any forceful detention, which results or threatens to..., molestation, incest (if the victim is a minor) or forced prostitution shall be considered acts of violence... from police, judges, medical personnel, school officials and social service agency personnel. The...
8 CFR 216.5 - Waiver of requirement to file joint petition to remove conditions by alien spouse.
Code of Federal Regulations, 2012 CFR
2012-01-01
... act or threatened act of violence, including any forceful detention, which results or threatens to result in physical or mental injury. Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor) or forced prostitution shall be considered acts of violence...
8 CFR 216.5 - Waiver of requirement to file joint petition to remove conditions by alien spouse.
Code of Federal Regulations, 2014 CFR
2014-01-01
... act or threatened act of violence, including any forceful detention, which results or threatens to result in physical or mental injury. Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor) or forced prostitution shall be considered acts of violence...
Infrastructure Task Force National Environmental Policy Act Requirements - February 2011
This document summarizes in a matrix format the federal regulations requirements and guidance for complying with the National Environmental Policy Act for the Infrastructure Task Force federal partner agencies.
NASA Astrophysics Data System (ADS)
Huang, Shaoxiong; Akridge, Glen; Sears, Derek W. G.
Some of the most primitive solar system materials available for study in the laboratory are the ordinary chondrites, the largest meteorite class. The size and distribution of the chondrules (silicate beads) and metal, which leads to the definition of the H, L, and LL classes, suggest sorting before or during aggregation. We suggest that meteorite parent bodies (probably asteroids) had thick dusty surfaces during their early evolution that were easily mobilized by gases evolving from their interiors. Density and size sorting would have occurred in the surface layers as the upward drag forces of the gases (mainly water) acted against the downward force of gravity. The process is analogous to the industrially important process of fluidization and sorting in pyroclastic volcanics. We calculate that gas flow velocities and gas fluxes for the regolith of an asteroid-sized object heated by the impact of accreting objects or by 26Al would have been sufficient for fluidization. It can also explain, quantitatively in some cases, the observed metal-silicate sorting of ordinary chondrites, which has long been ascribed to processes occurring in the primordial solar nebula. Formation of the chondrites in the thick dynamic regolith is consistent with the major properties of chondritic meteorites (i.e., redox state, petrologic type, cooling rate, matrix abundance). These ideas have implications for the nature of asteroid surfaces and the virtual lack of asteroids with ordinary chondrite-like surfaces.
Expected orbit determination performance for the TOPEX/Poseidon mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nerem, R.S.; Putney, B.H.; Marshall, J.A.
1993-03-01
The TOPEX/Poseidon (T/P) mission, launched during the summer of 1992, has the requirement that the radial component of its orbit must be computed to an accuracy of 13 cm root-mean-square (rms) or better, allowing measurements of the sea surface height to be computed to similar accuracy when the satellite height is differenced with the altimeter measurements. This will be done by combining precise satellite tracking measurements with precise models of the forces acting on the satellite. The Space Geodesy Branch at Goddard Space Flight Center (GSFC), as part of the T/P precision orbit determination (POD) Team, has the responsibility withinmore » NASA for the T/P precise orbit computations. The prelaunch activities of the T/P POD Team have been mainly directed towards developing improved models of the static and time-varying gravitational forces acting on T/P and precise models for the non-conservative forces perturbing the orbit of T/P such as atmospheric drag, solar and Earth radiation pressure, and thermal imbalances. The radial orbit error budget for T/P allows 10 cm rms error due to gravity field mismodeling, 3 cm due to solid Earth and ocean tides, 6 cm due to radiative forces, and 3 cm due to atmospheric drag. A prelaunch assessment of the current modeling accuracies for these forces indicates that the radial orbit error requirements can be achieved with the current models, and can probably be surpassed once T/P tracking data are used to fine tune the models. Provided that the performance of the T/P spacecraft is nominal, the precise orbits computed by the T/P POD Team should be accurate to 13 cm or better radially.« less
Effect of water table dynamics on land surface hydrologic memory
NASA Astrophysics Data System (ADS)
Lo, Min-Hui; Famiglietti, James S.
2010-11-01
The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.
78 FR 5789 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2013-0002] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to delete a System of Records. SUMMARY: The Department of the Air Force is deleting a system of records notice in its existing inventory...
77 FR 60411 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID USAF-2012-0019] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to delete a system of records. SUMMARY: The Department of the Air Force is deleting a system of records notice in its existing inventory...
Passive levitation in alternating magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Louis; Christenson, Todd; Aronson, Eugene A.
2010-09-14
Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.
Passive levitation in alternating magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Louis; Christenson, Todd; Aronson, Eugene A
2009-06-16
Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.
76 FR 11213 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
...: The Department of the Air Force's notices for systems of records subject to the Privacy Act of 1974 (5... the Air Force's compilation of systems of records notices.'' * * * * * Categories of records in the... maintenance of the system: Delete entry and replace with ``10 U.S.C. 8013, Secretary of the Air Force; 10 U.S...
75 FR 78684 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
... Department of the Air Force's notices for systems of records subject to the Privacy Act of 1974 (5 U.S.C... system: Air Force Active duty, Reserve and National Guard military personnel, government civilians, and... Regulations; 10 U.S.C. 8013, Secretary of the Air Force; 31 U.S.C. 3512, Executive agency accounting and other...
Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.
Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo
2015-10-27
Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.
Fagan, Jeffrey A; Sides, Paul J; Prieve, Dennis C
2004-06-08
Electroosmotic flow in the vicinity of a colloidal particle suspended over an electrode accounts for observed changes in the average height of the particle when the electrode passes alternating current at 100 Hz. The main findings are (1) electroosmotic flow provides sufficient force to move the particle and (2) a phase shift between the purely electrical force on the particle and the particle's motion provides evidence of an E2 force acting on the particle. The electroosmotic force in this case arises from the boundary condition applied when faradaic reactions occur on the electrode. The presence of a potential-dependent electrode reaction moves the likely distribution of electrical current at the electrode surface toward uniform current density around the particle. In the presence of a particle the uniform current density is associated with a nonuniform potential; thus, the electric field around the particle has a nonzero radial component along the electrode surface, which interacts with unbalanced charge in the diffuse double layer on the electrode to create a flow pattern and impose an electroosmotic-flow-based force on the particle. Numerical solutions are presented for these additional height-dependent forces on the particle as a function of the current distribution on the electrode and for the time-dependent probability density of a charged colloidal particle near a planar electrode with a nonuniform electrical potential boundary condition. The electrical potential distribution on the electrode, combined with a phase difference between the electric field in solution and the electrode potential, can account for the experimentally observed motion of particles in ac electric fields in the frequency range from approximately 10 to 200 Hz.
Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites
NASA Astrophysics Data System (ADS)
Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus
2017-04-01
The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.
76 FR 10010 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-23
... inventory of records systems subject to the Privacy Act of 1974, (5 U.S.C. 552a), as amended. DATES: The...: The Department of the Air Force systems of records notices subject to the Privacy Act of 1974, (5 U.S... 78150-7412 and at Military Personnel Sections at Air Force Installations. Official mailing addresses are...
Relationship of forces acting on implant rods and degree of scoliosis correction.
Salmingo, Remel Alingalan; Tadano, Shigeru; Fujisaki, Kazuhiro; Abe, Yuichiro; Ito, Manabu
2013-02-01
Adolescent idiopathic scoliosis is a complex spinal pathology characterized as a three-dimensional spine deformity combined with vertebral rotation. Various surgical techniques for correction of severe scoliotic deformity have evolved and became more advanced in applying the corrective forces. The objective of this study was to investigate the relationship between corrective forces acting on deformed rods and degree of scoliosis correction. Implant rod geometries of six adolescent idiopathic scoliosis patients were measured before and after surgery. An elasto-plastic finite element model of the implant rod before surgery was reconstructed for each patient. An inverse method based on Finite Element Analysis was used to apply forces to the implant rod model such that it was deformed the same after surgery. Relationship between the magnitude of corrective forces and degree of correction expressed as change of Cobb angle was evaluated. The effects of screw configuration on the corrective forces were also investigated. Corrective forces acting on rods and degree of correction were not correlated. Increase in number of implant screws tended to decrease the magnitude of corrective forces but did not provide higher degree of correction. Although greater correction was achieved with higher screw density, the forces increased at some level. The biomechanics of scoliosis correction is not only dependent to the corrective forces acting on implant rods but also associated with various parameters such as screw placement configuration and spine stiffness. Considering the magnitude of forces, increasing screw density is not guaranteed as the safest surgical strategy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Is the thumb a fifth finger? A study of digit interaction during force production tasks
Olafsdottir, Halla; Zatsiorsky, Vladimir M.; Latash, Mark L.
2010-01-01
We studied indices of digit interaction in single- and multi-digit maximal voluntary contraction (MVC) tests when the thumb acted either in parallel or in opposition to the fingers. The peak force produced by the thumb was much higher when the thumb acted in opposition to the fingers and its share of the total force in the five-digit MVC test increased dramatically. The fingers showed relatively similar peak forces and unchanged sharing patterns in the four-finger MVC task when the thumb acted in parallel and in opposition to the fingers. Enslaving during one-digit tasks showed relatively mild differences between the two conditions, while the differences became large when enslaving was quantified for multi-digit tasks. Force deficit was pronounced when the thumb acted in parallel to the fingers; it showed a monotonic increase with the number of explicitly involved digits up to four digits and then a drop when all five digits were involved. Force deficit all but disappeared when the thumb acted in opposition to the fingers. However, for both thumb positions, indices of digit interaction were similar for groups of digits that did or did not include the thumb. These results suggest that, given a certain hand configuration, the central nervous system treats the thumb as a fifth finger. They provide strong support for the hypothesis that indices of digit interaction reflect neural factors, not the peripheral design of the hand. An earlier formal model was able to account for the data when the thumb acted in parallel to the fingers. However, it failed for the data with the thumb acting in opposition to the fingers. PMID:15322785
Rodriguez, Raul D; Lacaze, Emmanuelle; Jupille, Jacques
2012-10-01
A method to determine the van der Waals forces from phase-distance curves recorded by atomic force microscopy (AFM) in tapping mode is presented. The relationship between the phase shift and the tip-sample distance is expressed as a function of the product of the Hamaker constant by tip radius. Silica-covered silicon tips are used to probe silica-covered silicon substrate in dry conditions to avoid capillary effects. Tips being assumed spherical, radii are determined in situ by averaging profiles recorded in different directions on hematite nanocrystals acting as nanotemplates, thus accounting for tip anisotropy. Through a series of reproducible measurements performed with tips of various radii (including the in-situ characterization of a damaged tip), a value of (6.3±0.4)×10(-20) J is found for the Hamaker constant of interacting silica surfaces in air, in good agreement with tabulated data. The results demonstrate that the onset of the tip-surface interaction is dominated by the van der Waals forces and that the total force can be modeled in the framework of the harmonic approximation. Based on the tip radius and the Hamaker constant associated to the tip-substrate system, the model is quite flexible. Once the Hamaker constant is known, a direct estimate of the tip size can be achieved whereas when the tip size is known, a quantitative evaluation of the van der Waals force becomes possible on different substrates with a spatial resolution at the nanoscale. Copyright © 2012 Elsevier B.V. All rights reserved.
Microgravity Fluid Separation Physics: Experimental and Analytical Results
NASA Technical Reports Server (NTRS)
Shoemaker, J. Michael; Schrage, Dean S.
1997-01-01
Effective, low power, two-phase separation systems are vital for the cost-effective study and utilization of two-phase flow systems and flow physics of two-phase flows. The study of microgravity flows have the potential to reveal significant insight into the controlling mechanisms for the behavior of flows in both normal and reduced gravity environments. The microgravity environment results in a reduction in gravity induced buoyancy forces acting on the discrete phases. Thus, surface tension, viscous, and inertial forces exert an increased influence on the behavior of the flow as demonstrated by the axisymmetric flow patterns. Several space technology and operations groups have studied the flow behavior in reduced gravity since gas-liquid flows are encountered in several systems such as cabin humidity control, wastewater treatment, thermal management, and Rankine power systems.
Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)
Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín
2013-01-01
This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.
Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)
NASA Astrophysics Data System (ADS)
Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín.
2013-10-01
This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.
Viscous friction of hydrogen-bonded matter
NASA Astrophysics Data System (ADS)
Erbas, Aykut; Horinek, Dominik; Netz, Roland R.
2012-02-01
Amontons' law successfully describes friction between macroscopic solid bodies for a wide range of velocities and normal forces. For the diffusion and forced sliding of adhering or entangled macromolecules, proteins and biological complexes, temperature effects are invariably important and a similarly successful friction law at biological length and velocity scales is missing. Hydrogen bonds are key to the specific binding of bio-matter. Here we show that friction between hydrogen-bonded matter obeys in the biologically relevant low-velocity viscous regime a simple equations: the friction force is proportional to the number of hydrogen bonds, the sliding velocity, and a friction coefficient γHB. This law is deduced from atomistic molecular dynamics simulations for short peptide chains that are laterally pulled over hydroxylated substrates in the presence of water and holds for widely different peptides, surface polarities and applied normal forces. The value of γHB is extrapolated from simulations at sliding velocities in the range from v=10-2 m/s to 100 m/s by mapping on a simple stochastic model and turns out to be of the order of γHB˜10-8 kg/s. 3 hydrogen bonds act collectively.
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2004-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.
Orientation-controlled parallel assembly at the air-water interface
NASA Astrophysics Data System (ADS)
Park, Kwang Soon; Hao Hoo, Ji; Baskaran, Rajashree; Böhringer, Karl F.
2012-10-01
This paper presents an experimental and theoretical study with statistical analysis of a high-yield, orientation-specific fluidic self-assembly process on a preprogrammed template. We demonstrate self-assembly of thin (less than few hundred microns in thickness) parts, which is vital for many applications in miniaturized platforms but problematic for today's pick-and-place robots. The assembly proceeds row-by-row as the substrate is pulled up through an air-water interface. Experiments and analysis are presented with an emphasis on the combined effect of controlled surface waves and magnetic force. For various gap values between a magnet and Ni-patterned parts, magnetic force distributions are generated using Monte Carlo simulation and employed to predict assembly yield. An analysis of these distributions shows that a gradual decline in yield following the probability density function can be expected with degrading conditions. The experimentally determined critical magnetic force is in good agreement with a derived value from a model of competing forces acting on a part. A general set of design guidelines is also presented from the developed model and experimental data.
NASA Astrophysics Data System (ADS)
Hashimoto, Riho; Masuda, Arata; Chen, Hao; Kobayashi, Sou
2016-04-01
The purpose of this paper is to develop load assisting clothes for caregivers. Low back pain is one of the most major reasons for caregivers to leave their jobs. In this study, load assisting clothes which reduce the risks of low back pain of caregivers are designed and manufactured, targeting at the use in small care-houses and family caregiving. The load assisting clothes should have two functions. One is to reduce the compressive load acting on the lumbar spine as well as the tensile load on the lumbar muscles by providing an appropriate assisting force. The other is not to interfere with wearers' motion. The proposed approach in this study is to put elastic compressive members and tensioner belts integrated in the garment to provide the assisting forces without hindering natural movement and comfortable feeling. We study human musculoskeletal systems in the lumbar part, and consider to construct a parallel reinforcement of it on the body surface by embedding passive support structures. The arrangement of those elements is determined based on the study of the principal strain directions and the non-extension directions of the body surface to manage the appropriate assisting force without spoiling the mobility. The effectiveness of the proposed support principle is verified through experimental studies.
Tidal interaction of black holes and Newtonian viscous bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poisson, Eric
The tidal interaction of a (rotating or nonrotating) black hole with nearby bodies produces changes in its mass, angular momentum, and surface area. Similarly, tidal forces acting on a Newtonian, viscous body do work on the body, change its angular momentum, and part of the transferred gravitational energy is dissipated into heat. The equations that describe the rate of change of the black-hole mass, angular momentum, and surface area as a result of the tidal interaction are compared with the equations that describe how the tidal forces do work, torque, and produce heat in the Newtonian body. The equations aremore » strikingly similar, and unexpectedly, the correspondence between the Newtonian-body and black-hole results is revealed to hold in near-quantitative detail. The correspondence involves the combination k{sub 2}{tau} of 'Love quantities' that incorporate the details of the body's internal structure; k{sub 2} is the tidal Love number, and {tau} is the viscosity-produced delay between the action of the tidal forces and the body's reaction. The combination k{sub 2}{tau} is of order GM/c{sup 3} for a black hole of mass M; it does not vanish, in spite of the fact that k{sub 2} is known to vanish individually for a nonrotating black hole.« less
NASA Astrophysics Data System (ADS)
Jayaraman, Balaji; Brasseur, James; Haupt, Sue; Lee, Jared
2016-11-01
LES of the "canonical" daytime atmospheric boundary layer (ABL) over flat topography is developed as an equilibrium ABL with steady surface heat flux, Q0 and steady unidirectional "geostrophic" wind vector Vg above a capping inversion. A strong inversion layer in daytime ABL acts as a "lid" that sharply separates 3D "microscale" ABL turbulence at the O(10) m scale from the quasi-2D "mesoscale" turbulent weather eddies (O(100) km scale). While "canonical" ABL is equilibrium, quasi-stationary and characterized statistically by the ratio of boundary layer depth (zi) to Obukhov length scale (- L) , the real mesoscale influences (Ug and Q0) that force a true daytime ABL are nonstationary at both diurnal and sub-diurnal time scales. We study the consequences of this non-stationarity on ABL dynamics by forcing ABL LES with realistic WRF simulations over flat Kansas terrain. Considering horizontal homogeneity, we relate the mesoscale and geostrophic winds, Ug and Vg, and systematically study the ABL turbulence response to non-steady variations in Q0 and Ug. We observe significant deviations from equilibrium, that manifest in many ways, such as the formation of "roll" eddies purely from changes in mesoscale wind direction that are normally associated with increased surface heat flux. Support from DOE. Compute resources from Penn State ICS.
Visualization and Analysis of Vortex-Turbine Intersections in Wind Farms.
Shafii, Sohail; Obermaier, Harald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth
2013-02-13
Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. The paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life-expectancy. Our methods have the potential to improve turbine design in order to save costs related to turbine operation and maintenance.
Novel deformable mirror design for possible wavefront correction in CO2 laser fusion system
NASA Astrophysics Data System (ADS)
Gunn, S. V.; Heinz, T. A.; Henderson, W. D.; Massie, N. A.; Viswanathan, V. K.
1980-11-01
Analysis at Los Alamos and elsewhere has resulted in the conclusion that deformable mirrors can substantially improve the optical performance of laser fusion systems, as the errors are mostly static or quasi-static with mainly low spatial frequencies across the aperture resulting in low order Seidel aberrations in the beam. A novel deformable mirror assembly (Fig. 1) has been fabricated with 19 actuators capable of surface deflection of ±20 microns. The mirror surface deflections are produced by a unique differential ball screw that acts as both a force and position actuator. The screw is driven by a stepper motor giving a surface positioning resolution of 0.025 micron. No holding voltage potential is required, and a piezoceramic element in series with each ball screw provides a ±1 micron amplitude high-frequency surface dither to aid the correction process. Mirror performance in terms of individual actuator influence function, cross-coupling, figure attainment, long-term surface stability as well as optical performance characteristics will be discussed.
Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas
2015-06-19
In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorptionmore » on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.« less
Newton's Law: Not so Simple after All
ERIC Educational Resources Information Center
Robertson, William C.; Gallagher, Jeremiah; Miller, William
2004-01-01
One of the most basic concepts related to force and motion is Newton's first law, which essentially states, "An object at rest tends to remain at rest unless acted on by an unbalanced force. An object in motion in a straight line tends to remain in motion in a straight line unless acted upon by an unbalanced force." Judging by the time and space…
Support optimization of the ring primary mirror of a 2m solar telescope
NASA Astrophysics Data System (ADS)
Yang, Dehua; Jin, Zhenyu; Liu, Zhong
2016-08-01
A special 2-m Ring Solar Telescope (2-m RST) is to be built by YNAO-Yunnan Astronomical Observatory, Kunming, China. Its distinct primary mirror is distinctively shaped in a ring with an outer diameter of 2.02 m and a ring width of 0.35 m. Careful calculation and optimization of the mirror support pattern have been carried out first of all to define optimum blank parameters in view of performance balance of support design, fabrication and cost. This paper is to review the special consideration and optimization of the support design for the unique ring mirror. Schott zerodur is the prevailing candidate for the primary mirror blank. Diverse support patterns with various blank thicknesses have been discussed by extensive calculation of axial support pattern of the mirror. We reached an optimum design of 36 axial supports for a blank thickness of 0.15 m with surface error of 5 nm RMS. Afterwards, lateral support scheme was figured out for the mirror with settled parameters. A classical push-and-pull scheme was used. Seeing the relative flexibility of the ring mirror, special consideration was taken to unusually set the acting direction of the support forces not in the mirror gravity plane, but along the gravity of the local virtual slices of the mirror blank. Nine couples of the lateral push-pull force are considered. When pointing to horizon, the mirror surface exhibits RMS error of 5 nm with three additional small force couples used to compensate for the predominant astigmatism introduced by lateral supports. Finally, error estimation has been performed to evaluate the surface degradation with introduced errors in support force and support position, respectively, for both axial and lateral supports. Monte Carlo approach was applied using unit seeds for amplitude and position of support forces. The comprehensive optimization and calculation suggests the support systems design meet the technic requirements of the ring mirror of the 2-m RST.
The effect of contaminant on skid resistance of pavement surface
NASA Astrophysics Data System (ADS)
Lubis, A. S.; Muis, Z. A.; Gultom, E. M.
2018-03-01
Skid resistance of the pavement surface is the force generated by the movement of the wheels of the vehicle on the surface of the pavement. Contaminants are materials that cover the surface of the pavement affecting the skid resistance of the pavement surface. The contaminant acts as a coating interface or direct contact of the pavement surface with the wheels of the vehicle which can cause adverse effects, such as the decreasing value of skid resistance of the pavement surface. This study aims to analyze the effect of some types of contaminants on skid resistance of pavement surfaces. The contaminants that used in this study were water, sand, salt, and lubricating oil. The study was conducted by direct testing on two types of pavement: flexible pavement and rigid pavement. The measurements of the skid resistance were made using the British Pendulum Tester with British Pendulum Number for two conditions: before and after the pavement surface was covered with contaminants. The results showed that there was a contaminant effect on skid resistance of pavement surface. Skid resistance of pavement surfaces decreased after the contaminants were covered in water, sand, salt, and lubricant by 20.1%, 22.8%, 37.1% and 50.5% respectively.
Design, calibration and testing of a force balance for a hypersonic shock tunnel
NASA Astrophysics Data System (ADS)
Vadassery, Pravin
The forces acting on a flight vehicle are critical for determining its performance. Of particular interest is the hypersonic regime. Force measurements are much more complex in hypersonic flows, where those speeds are simulated in shock tunnels. A force balance for such facilities contains sensitive gages that measure stress waves and ultimately determine the different components of force acting on the model. An external force balance was designed and fabricated for the UTA Hypersonic shock tunnel to measure drag at Mach 10. Static and dynamic calibrations were performed to find the transfer function of the system. Forces were recovered using a deconvolution procedure. To validate the force balance, experiments were conducted on a blunt cone. The measured forces were compared to Newtonian theory.
Optimal perturbations of a finite-width mixing layer near the trailing edge
NASA Astrophysics Data System (ADS)
Gumbart, James C.; Rabchuk, James
2002-03-01
The trailing edge of a surface separating two fluid flows can act as an efficient receptor for acoustic or other disturbances. The incident wave energy is converted by a linear mechanism into incipient flow instabilities which lead further downstream to the transition to turbulence. Understanding this process is essential for analyzing feedback loops and other resonances which can cause unwanted structural vibrations in the surface material or directed acoustic emissions from the mixing region. Previously, the modes of instability in a finite-width mixing layer near the trailing edge were studied as a function of frequency by assuming that vorticity was continually being introduced into the flow at the trailing edge by the forcing field. It was found that the initial amplitude of the growing instability mode was a sharply decreasing function of forcing frequency, and that the initial amplitude was a minimum for the frequency at which the rate of instability growth was a maximum^1. This result has led to a study of the adjoint equation for the perturbation stream function, whose eigensolutions are known to be associated with the optimal perturbation field for the frequency of forcing leading to the greatest instability growth downstream. We have obtained these solutions for a piecewise linear velocity profile near the trailing edge using group-theoretic techniques and have shown that they are indeed optimal. We have also analyzed the nature of the physical forcing field that might produce these optimal perturbations. ^1 Rabchuk, J.A., July 2000, Physics of Fluids.
NASA Astrophysics Data System (ADS)
Legleiter, Justin; Park, Matthew; Cusick, Brian; Kowalewski, Tomasz
2006-03-01
One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip-sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip-sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by “comb” filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach.
A novel reciprocating micropump based on Lorentz force
NASA Astrophysics Data System (ADS)
Salari, Alinaghi; Hakimsima, Abbas; Shafii, Mohammad Behshad
2015-03-01
Lorentz force is the pumping basis of many electromagnetic micropumps used in lab-on-a-chip. In this paper a novel reciprocating single-chamber micropump is proposed, in which the actuation technique is based on Lorentz force acting on an array of microwires attached on a membrane surface. An alternating current is applied through the microwires in the presence of a magnetic field. The resultant force causes the membrane to oscillate and pushes the fluid to flow through microchannel using a ball-valve. The pump chamber (3 mm depth) was fabricated on a Polymethylmethacrylate (PMMA) substrate using laser engraving technique. The chamber was covered by a 60 μm thick hyper-elastic latex rubber diaphragm. Two miniature permanent magnets capable of providing magnetic field of 0.09 T at the center of the diaphragm were mounted on each side of the chamber. Square wave electric current with low-frequencies was generated using a function generator. Cylindrical copper microwires (250 μm diameter and 5 mm length) were attached side-by-side on top surface of the diaphragm. Thin loosely attached wires were used as connectors to energize the electrodes. Due to large displacement length of the diaphragm (~3 mm) a high efficiency (~90%) ball valve (2 mm diameter stainless steel ball in a tapered tubing structure) was used in the pump outlet. The micropump exhibits a flow rate as high as 490 μl/s and pressure up to 1.5 kPa showing that the pump is categorized among high-flow-rate mechanical micropumps.
Xu, Rui; Ye, Shili; Xu, Kunqi; Lei, Le; Hussain, Sabir; Zheng, Zhiyue; Pang, Fei; Xing, Shuya; Liu, Xinmeng; Ji, Wei; Cheng, Zhihai
2018-08-31
Understanding the process of charge generation, transfer, and diffusion between two-dimensional (2D) materials and their supporting substrates is very important for potential applications of 2D materials. Compared with the systematic studies of triboelectric charging in a bulk sample, a fundamental understanding of the triboelectrification of the 2D material/insulator system is rather limited. Here, the charge transfer and diffusion of both the SiO 2 surface and MoS 2 /SiO 2 interface through contact electrification and frictional electrification are investigated systematically in situ by scanning Kelvin probe microscopy and dual-harmonic electrostatic force microscopy. Different from the simple static charge transfer between SiO 2 and the PtSi alloy atomic force microscope (AFM) tip, the charge transfer between the tip and the MoS 2 /SiO 2 system is complicated. Triboelectric charges, generated by contact or frictional electrification with the AFM tip, are trapped at the MoS 2 /SiO 2 interface and act as floating gates. The local charge discharge processes can be obtained by monitoring the surface potential. The charge decay time (τ) of the MoS 2 /SiO 2 interface is one (or two) orders of magnitude larger than the decay time τ of the SiO 2 surface. This work facilitates an understanding of the triboelectric and de-electrification of the interface between 2D materials and substrates. In addition to the charge transfer and diffusion, we demonstrate the nanopatterns of surface and interfacial charges, which have great potential for the application of self-assembly of charged nanostructures.
Grasso, Frank W; Setlur, Pradeep
2007-12-01
Octopus arms house 200-300 independently controlled suckers that can alternately afford an octopus fine manipulation of small objects and produce high adhesion forces on virtually any non-porous surface. Octopuses use their suckers to grasp, rotate and reposition soft objects (e.g., octopus eggs) without damaging them and to provide strong, reversible adhesion forces to anchor the octopus to hard substrates (e.g., rock) during wave surge. The biological 'design' of the sucker system is understood to be divided anatomically into three functional groups: the infundibulum that produces a surface seal that conforms to arbitrary surface geometry; the acetabulum that generates negative pressures for adhesion; and the extrinsic muscles that allow adhered surfaces to be rotated relative to the arm. The effector underlying these abilities is the muscular hydrostat. Guided by sensory input, the thousands of muscle fibers within the muscular hydrostats of the sucker act in coordination to provide stiffness or force when and where needed. The mechanical malleability of octopus suckers, the interdigitated arrangement of their muscle fibers and the flexible interconnections of its parts make direct studies of their control challenging. We developed a dynamic simulator (ABSAMS) that models the general functioning of muscular hydrostat systems built from assemblies of biologically constrained muscular hydrostat models. We report here on simulation studies of octopus-inspired and artificial suckers implemented in this system. These simulations reproduce aspects of octopus sucker performance and squid tentacle extension. Simulations run with these models using parameters from man-made actuators and materials can serve as tools for designing soft robotic implementations of man-made artificial suckers and soft manipulators.
NASA Astrophysics Data System (ADS)
Tian, Wei; Ozbay, Ahmet; Hu, Hui
2014-12-01
An experimental investigation was conducted to examine the effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model. The experimental study was performed in a large-scale wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in two different types of Atmospheric Boundary Layer (ABL) winds with distinct mean and turbulence characteristics. In addition to measuring dynamic wind loads acting on the model turbine by using a force-moment sensor, a high-resolution Particle Image Velocimetry system was used to achieve detailed flow field measurements to characterize the turbulent wake flows behind the model turbine. The measurement results reveal clearly that the discrepancies in the incoming surface winds would affect the wake characteristics and dynamic wind loads acting on the model turbine dramatically. The dynamic wind loads acting on the model turbine were found to fluctuate much more significantly, thereby, much larger fatigue loads, for the case with the wind turbine model sited in the incoming ABL wind with higher turbulence intensity levels. The turbulent kinetic energy and Reynolds stress levels in the wake behind the model turbine were also found to be significantly higher for the high turbulence inflow case, in comparison to those of the low turbulence inflow case. The flow characteristics in the turbine wake were found to be dominated by the formation, shedding, and breakdown of various unsteady wake vortices. In comparison with the case with relatively low turbulence intensities in the incoming ABL wind, much more turbulent and randomly shedding, faster dissipation, and earlier breakdown of the wake vortices were observed for the high turbulence inflow case, which would promote the vertical transport of kinetic energy by entraining more high-speed airflow from above to re-charge the wake flow and result in a much faster recovery of the velocity deficits in the turbine wake.
Dynamic Contact Angle at the Nanoscale: A Unified View.
Lukyanov, Alex V; Likhtman, Alexei E
2016-06-28
Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.
Free-surface flow around an appended hull
NASA Astrophysics Data System (ADS)
Lungu, A.; Pacuraru, F.
2010-08-01
The prediction of the total drag experienced by an advancing ship is a complicated problem which requires a thorough understanding of the hydrodynamic forces acting on the hull, the physical processes from which these forces arise as well as their mutual interaction. A general numerical method to predict the hydrodynamic performance of a twin-propeller combatant ship is presented in the paper, which describes the solution of a RANS solver coupled with a body force method as an attempt in investigating the flow features around the ship hull equipped with rotating propellers and rudders. A special focus is made on the propeller non-symmetrical inflow field, aimed at obtaining the necessary data for the propulsive performances evaluation as well as for the propeller final design. The reported work allows not only the performance evaluation for the overall performances of a hull, but also leads to the development, implementation and validation of new concepts in modeling the turbulent vortical flows, with direct connection to the ship propulsion problem.
NASA Astrophysics Data System (ADS)
Zhang, Huiyan; Feng, Yuping; Nieto, Daniel; García-Lecina, Eva; Mcdaniel, Clare; Díaz-Marcos, Jordi; Flores-Arias, María Teresa; Gerard M., O.'connor; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi
2016-05-01
Periodic ripple and nanoripple patterns are formed at the surface of amorphous steel after femtosecond pulsed laser irradiation (FSPLI). Formation of such ripples is accompanied with the emergence of a surface ferromagnetic behavior which is not initially present in the non-irradiated amorphous steel. The occurrence of ferromagnetic properties is associated with the laser-induced devitrification of the glassy structure to form ferromagnetic (α-Fe and Fe3C) and ferrimagnetic [(Fe,Mn)3O4 and Fe2CrO4] phases located in the ripples. The generation of magnetic structures by FSPLI turns out to be one of the fastest ways to induce magnetic patterning without the need of any shadow mask. Furthermore, local variations of the adhesion force, wettability and nanomechanical properties are also observed and compared to those of the as-cast amorphous alloy. These effects are of interest for applications (e.g., biological, magnetic recording, etc.) where both ferromagnetism and tribological/adhesion properties act synergistically to optimize material performance.
NASA Technical Reports Server (NTRS)
Robertson, Glen A. (Inventor)
1990-01-01
A piezoelectrostatic generator includes a plurality of elongated piezoelectric elements having first and second ends, with the first ends fixedly mounted in a cylindrical housing and the second extending radially inwardly toward an axis. A shaft movable along the axis is connected to the inner ends of the elements to produce bending forces in piezoelectric strips within the elements. Each element includes a pair of strips mounted in surface contact and in electrical series to produce a potential upon bending. Electrodes spaced from the strips by a solid dielectric material act as capacitor plates to collect the potential charge.
1993-12-01
sensor response. That is, the tactile sensor’s response to a temperature change could be interpreted as the sensor’s response solely to an externally...is a vector quantity. A force acting on a surface can be interpreted in terms of a normal and a tangential component. Often, these components are...polarization [12]: 3-16 h K" + (3.34) Similarly, the stress in a material due to an applied strain and polarization is [12]: T = cS- hTP (3.35) The electric
Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the NASA Gulfstream GIII test bed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight.
Chervanyov, A I
2016-12-28
By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.
The plane elasticity problem for a crack near the curved surface
NASA Astrophysics Data System (ADS)
Lebedeva, M. V.
2018-05-01
The unconventional approach to the plane elasticity problem for a crack near the curved surface is presented. The solution of the problem is considered in the form of the sum of solutions of two auxiliary problems. The first one describes the plane with a crack, whose surfaces are loaded by some unknown self-balanced force p(x). The second problem is dealing with the semi-infinite region with the boundary conditions equal to the difference of boundary conditions of the problem to be sought and the solution of the first problem on the region border. The unknown function p(x) is supposed to be approximated with the sufficient level of accuracy by N order polynomial with complex coefficients. This paper is aimed to determine the critical loads causing the spontaneous growth of cracks. The angles of propagation of the stationary cracks located in the region with a ledge or a cut are found. The influence of length of a crack on the bearing ability of an elastic body with the curved surface is investigated. The effect of a form of the concentrator and orientation of a crack to the fracture load subject to the different combinations of forces acting both on a surface of a crack and at infinity is analysed. The results of this research can be applied for calculation of the durability of thin-walled vessels of pressure, e.g., chemical reactors, in order to ensure their ecological safety.
TUNNEL LINING DESIGN METHOD BY FRAME STRUCTURE ANALYSIS USING GROUND REACTION CURVE
NASA Astrophysics Data System (ADS)
Sugimoto, Mitsutaka; Sramoon, Aphichat; Okazaki, Mari
Both of NATM and shield tunnelling method can be applied to Diluvial and Neogene deposit, on which mega cities are located in Japan. Since the lining design method for both tunnelling methods are much different, the unified concept for tunnel lining design is expected. Therefore, in this research, a frame structure analysis model for tunnel lining design using the ground reaction curve was developed, which can take into account the earth pressure due to excavated surface displacement to active side including the effect of ground self-stabilization, and the excavated surface displacement before lining installation. Based on the developed model, a parameter study was carried out taking coefficient of subgrade reaction and grouting rate as a parameter, and the measured earth pressure acting on the lining at the site was compared with the calculated one by the developed model and the conventional model. As a result, it was confirmed that the developed model can represent earth pressure acting on the lining, lining displacement, and lining sectional force at ground ranging from soft ground to stiff ground.
Rao, Komal; Imran, Muhammad; Jabri, Tooba; Ali, Imdad; Perveen, Samina; Shafiullah; Ahmed, Shakil; Shah, Muhammad Raza
2017-10-15
Gold nanoparticles (AuNPs) have attracted greater scientific interests for the construction of drugs loading cargos due to their biocompatibility, safety and facile surface modifications. This study deals with the fabrication of gum tragacanth (GT) green AuNPs as carrier for Naringin, a less water soluble therapeutic molecule. The optimized AuNPs were characterized through UV-vis spectroscopy, FT-IR and atomic force microscope (AFM). Naringin loaded nanoparticles were investigated for their bactericidal potentials using Tetrazolium Microplate assay. Morphological studies conducted via AFM revealed spherical shape for AuNPs with nano-range size and stabilized by GT multi-functional groups. The AuNPs acted as carrier for increased amount of Naringin. Upon loading in AuNPs, Naringin An increased in the bactericidal potentials of Naringin was observed after loading on AuNPs against various tested bacterial strains. This was further authenticated by the surface morphological analysis, showing enhanced membrane destabilizing effects of loaded Naringin. The results suggest that GT stabilized green AuNPs can act as effective delivery vehicles for enhancing bactericidal potentials of Naringin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.
Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli
2017-12-15
Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.
Shear thickening in suspensions: the lubricated-to-frictional contact scenario
NASA Astrophysics Data System (ADS)
Morris, Jeffrey
2017-11-01
Suspensions of solid particles in viscous liquids can vary from low-viscosity liquids to wet granular materials or soft solids depending on the solids loading and the forces acting between particles. When the particles are very concentrated, these mixtures are ''dense suspensions.'' Dense suspensions often exhibit shear thickening, an increase in apparent viscosity as the shear rate is increased. In its most extreme form, order of magnitude increases in viscosity over such a narrow range in shear rate occur that the term discontinuous shear thickening (DST) is applied. DST is particularly striking as it occurs in the relatively simple case of nearly hard spheres in a Newtonian liquid, and is found to take place for submicron particles in colloidal dispersions to much larger particle corn starch dispersions. We focus on simulations of a recently developed ``lubricated-to-frictional'' rheology in which the interplay of viscous lubrication, repulsive surface forces, and contact friction between particle surfaces provides a scenario to explain DST. Our simulation method brings together elements of the discrete-element method from granular flow with a simplified Stokesian Dynamics, and can rationalize not only the abrupt change in properties with imposed shear rate (or shear stress), but also the magnitude of the change. The large change in properties is associated with the breakdown of lubricating films between particles, with activation of Coulomb friction between particles. The rate dependence is caused by the shearing forces driving particles to contact, overwhelming conservative repulsive forces between surfaces; the repulsive forces are representative of colloidal stabilization by surface charge or steric effects, e.g. due to adsorbed polymer. The results of simulation are compared to developments by other groups, including a number of experimental studies and a theory incorporating the same basic elements as the simulation. The comparison to experiments of the predictions of the lubricated-to-frictional rheology is generally good, but discrepancies demand some perspective on the strong simplifying assumptions in the model. Since contact is difficult to both establish and to characterize for surfaces between particles of micron scale or smaller, what is happening in the very close ``contacts'' is not clear, and how changes at this scale give rise to the large-scale force organization is yet to be established. The insight to the elements needed for the abrupt flow induced transition seen in DST thus suggests a need for consideration of both the microscopic physics of contact and the statistical physics governing the macroscopic properties. This work was supported in part by the NSF CBET program, Grant # 1605283.
NASA Technical Reports Server (NTRS)
Maniotis, A. J.; Chen, C. S.; Ingber, D. E.
1997-01-01
We report here that living cells and nuclei are hard-wired such that a mechanical tug on cell surface receptors can immediately change the organization of molecular assemblies in the cytoplasm and nucleus. When integrins were pulled by micromanipulating bound microbeads or micropipettes, cytoskeletal filaments reoriented, nuclei distorted, and nucleoli redistributed along the axis of the applied tension field. These effects were specific for integrins, independent of cortical membrane distortion, and were mediated by direct linkages between the cytoskeleton and nucleus. Actin microfilaments mediated force transfer to the nucleus at low strain; however, tearing of the actin gel resulted with greater distortion. In contrast, intermediate filaments effectively mediated force transfer to the nucleus under both conditions. These filament systems also acted as molecular guy wires to mechanically stiffen the nucleus and anchor it in place, whereas microtubules acted to hold open the intermediate filament lattice and to stabilize the nucleus against lateral compression. Molecular connections between integrins, cytoskeletal filaments, and nuclear scaffolds may therefore provide a discrete path for mechanical signal transfer through cells as well as a mechanism for producing integrated changes in cell and nuclear structure in response to changes in extracellular matrix adhesivity or mechanics.
Development of magnetic separation system of magnetoliposomes
NASA Astrophysics Data System (ADS)
Nakao, R.; Matuo, Y.; Mishima, F.; Taguchi, T.; Maenosono, S.; Nishijima, S.
2009-10-01
The magnetic separation technology using sub-microsized ferromagnetic particle is indispensable in many areas of medical biosciences. For example, ferromagnetic particles (200-500 nm) are widely used for cell sorting in stem cell research with the use of cell surface-specific antigens. Nanosized ferromagnetic particles (10-20 nm) have been suggested as more suitable in drug delivery studies given their efficiency of tissue penetration, however, the magnetic separation method for them has not been established. One of the major reasons is that magnetic force acting on the object particles decreases drastically as a particle diameter becomes small. In this study, magnetic force acting on the targets was enhanced by the combination of superconducting magnet and the filter consisting of ferromagnetic particle. By doing so, we confirmed that Fe 3O 4 of 20 nm in diameter was trapped in the magnetic filter under an external magnetic field of 0.5 T. Fe 3O 4 encapsulated with phospholipid liposomes of 200 nm in diameter was also shown to be trapped as external magnetic field of 1.5 T, but not of 0.5 T. We also showed the result of particle trajectory calculation which emulated well the experimental data.
[Adhesive properties and related phenomena for powdered pharmaceuticals].
Otsuka, A
1998-04-01
This report deals with adhesive properties and related phenomena of powdered materials including pharmaceuticals. The adhesive force between a powder particle and substrate as well as the tensile strength of a powder bed and tablet was measured. Various factors were found to affect powder adhesion. Physical properties such as the size, shape and surface roughness were examined. The adhesive force between a particle and substrate decreased remarkably in the presence of ultrafine particles, which is of interest since the addition of adequate amount of "glidant" causes an increase in powder fluidity. From a pharmaceutical point of view, temperature and humidity were essential to particle adhesion. For several organic substances, the adhesive force increased significantly at homologous temperatures more than ca. 0.7, suggesting the sintering mechanism to be operative. The adhsive force between polymer films and glass beads varied according to polymer and relative humidity. A close correlation of water sorbed by the polymer film with adhesive force was noted. In connection with powder fluidity, compaction properties were studied by the centrifugal and tapping methods. Apparent adhesion defined as the ratio of the adhesive force between two contacting particles to the external force acting on a particle was noted to be the primary determinant of the void fraction or the porosity of the powder bed, indicating that the probability of particle displacement essentially depended on apparent adhesion.
Forces Acting on a Ball in an Air Jet
ERIC Educational Resources Information Center
Lopez-Arias, T.; Gratton, L. M.; Zendri, G.; Oss, S.
2011-01-01
The forces acting on a ball in an air jet have been measured using simple equipment. Such measurements allow quite a precise, non-ambiguous description and understanding of the physical mechanism which explains the famous levitating ball experiment. (Contains 7 figures.)
Biomechanics of leukocyte rolling
Sundd, Prithu; Pospieszalska, Maria K.; Cheung, Luthur Siu-Lun; Konstantopoulos, Konstantinos; Ley, Klaus
2011-01-01
Leukocyte rolling on endothelial cells and other P-selectin substrates is mediated by P-selectin binding to P-selectin glycoprotein ligand-1 expressed on the tips of leukocyte microvilli. Leukocyte rolling is a result of rapid, yet balanced formation and dissociation of selectin-ligand bonds in the presence of hydrodynamic shear forces. The hydrodynamic forces acting on the bonds may either increase (catch bonds) or decrease (slip-bonds) their lifetimes. The force-dependent ‘catch-slip’ bond kinetics are explained using the ‘two pathway model’ for bond dissociation. Both the ‘sliding-rebinding’ and the ‘allosteric’ mechanisms attribute ‘catch-slip’ bond behavior to the force-induced conformational changes in the lectin-EGF domain hinge of selectins. Below a threshold shear stress, selectins cannot mediate rolling. This ‘shear-threshold’ phenomenon is a consequence of shear-enhanced tethering and catch-bond enhanced rolling. Quantitative dynamic footprinting microscopy has revealed that leukocytes rolling at venular shear stresses (> 0.6 Pa) undergo cellular deformation (large footprint) and form long tethers. The hydrodynamic shear force and torque acting on the rolling cell are thought to be synergistically balanced by the forces acting on tethers and stressed microvilli, however, their relative contribution remains to be determined. Thus, improvement beyond the current understanding requires in silico models that can predict both cellular and microvillus deformation and experiments that allow measurement of forces acting on individual microvilli and tethers. PMID:21515934
Spontaneous Droplet Jump with Electro-Bouncing
NASA Astrophysics Data System (ADS)
Schmidt, Erin; Weislogel, Mark
2016-11-01
We investigate the dynamics of water droplet jumps from superhydrophobic surfaces in the presence of an electric field during a step reduction in gravity level. In the brief free-fall environment of a drop tower, when a strong non-homogeneous electric field (with a measured strength between 0 . 39 and 2 . 36 kV/cm) is imposed, body forces acting on the jumped droplets are primarily supplied by polarization stress and Coulombic attraction instead of gravity. The droplet charge, measured to be on the order of 2 . 3 . (10-11) C, originates by electro-osmosis of charged species at the (PTFE coated) hydrophobic surface interface. This electric body force leads to a droplet bouncing behavior similar to well-known phenomena in 1-g, though occurring for larger drops 0.1 mL for a given range of impact Weber numbers, We < 20 . In 1-g, for We > 0 . 4 , impact recoil behavior on a super-hydrophobic surface is normally dominated by damping from contact line hysteresis and by air-layer interactions. However, in the strong electric field, the droplet bounce dynamics additionally include electrohydrodynamic effects on wettability and Cassie-Wenzel transition. This is qualitatively discussed in terms of coefficients of restitution and trends in contact time. This work was supported primarily by NASA Cooperative Agreement NNX12A047A.
Expansion joint for guideway for magnetic levitation transportation system
Rossing, Thomas D.
1993-01-01
An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.
Expansion joint for guideway for magnetic levitation transportation system
Rossing, T.D.
1993-02-09
An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.
Simulation of dynamic vehicle-track interaction on small radius curves
NASA Astrophysics Data System (ADS)
Torstensson, Peter T.; Nielsen, Jens C. O.
2011-11-01
A time-domain method for the simulation of general three-dimensional dynamic interaction between a vehicle and a curved railway track, accounting for a prescribed relative wheel-rail displacement excitation in a wide frequency range (up to several hundred Hz), is presented. The simulation model is able to capture the low-frequency vehicle dynamics simultaneously due to curving and the high-frequency track dynamics due to the excitation by, for example, the short-pitch corrugation on the low rail. The adopted multibody dynamics formulation considers inertia forces, such as centrifugal and Coriolis forces, as well as the structural flexibility of vehicle and track components. To represent a wheel/rail surface irregularity, isoparametric two-dimensional elements able to describe generally curved surface shapes are used. The computational effort is reduced by including only one bogie in the vehicle model. The influence of the low-frequency vehicle dynamics of the remaining parts of the vehicle is considered by pre-calculated look-up tables of forces and moments acting in the secondary suspension. For a track model taken as rigid, good agreement is observed between the results calculated with the presented model and a commercial software. The features of the model are demonstrated by a number of numerical examples. The influence of the structural flexibility of the wheelset and track on wheel-rail contact forces is investigated. For a discrete rail irregularity excitation, it is shown that the longitudinal creep force is significantly influenced by the wheelset eigenmodes. The introduction of a velocity-dependent friction law is found to induce an oscillation in the tangential contact force on the low rail with a frequency corresponding to the first anti-symmetric torsional mode of the wheelset. Further, under the application of driving moments on the two wheelsets and excitation by a discrete irregularity on the high rail, the frequency content of the tangential contact forces on the low rail is significantly influenced by the P2 resonance as well as by several wheelset eigenmodes.
Dynamics of tokamak plasma surface current in 3D ideal MHD model
NASA Astrophysics Data System (ADS)
Galkin, Sergei A.; Svidzinski, V. A.; Zakharov, L. E.
2013-10-01
Interest in the surface current which can arise on perturbed sharp plasma vacuum interface in tokamaks was recently generated by a few papers (see and references therein). In dangerous disruption events with plasma-touching-wall scenarios, the surface current can be shared with the wall leading to the strong, damaging forces acting on the wall A relatively simple analytic definition of δ-function surface current proportional to a jump of tangential component of magnetic field nevertheless leads to a complex computational problem on the moving plasma-vacuum interface, requiring the incorporation of non-linear 3D plasma dynamics even in one-fluid ideal MHD. The Disruption Simulation Code (DSC), which had recently been developed in a fully 3D toroidal geometry with adaptation to the moving plasma boundary, is an appropriate tool for accurate self-consistent δfunction surface current calculation. Progress on the DSC-3D development will be presented. Self-consistent surface current calculation under non-linear dynamics of low m kink mode and VDE will be discussed. Work is supported by the US DOE SBIR grant #DE-SC0004487.
Whitelaw, Jamie A; Latorre-Barragan, Fernanda; Gras, Simon; Pall, Gurman S; Leung, Jacqueline M; Heaslip, Aoife; Egarter, Saskia; Andenmatten, Nicole; Nelson, Shane R; Warshaw, David M; Ward, Gary E; Meissner, Markus
2017-01-18
Apicomplexan parasites employ a unique form of movement, termed gliding motility, in order to invade the host cell. This movement depends on the parasite's actomyosin system, which is thought to generate the force during gliding. However, recent evidence questions the exact molecular role of this system, since mutants for core components of the gliding machinery, such as parasite actin or subunits of the MyoA-motor complex (the glideosome), remain motile and invasive, albeit at significantly reduced efficiencies. While compensatory mechanisms and unusual polymerisation kinetics of parasite actin have been evoked to explain these findings, the actomyosin system could also play a role distinct from force production during parasite movement. In this study, we compared the phenotypes of different mutants for core components of the actomyosin system in Toxoplasma gondii to decipher their exact role during gliding motility and invasion. We found that, while some phenotypes (apicoplast segregation, host cell egress, dense granule motility) appeared early after induction of the act1 knockout and went to completion, a small percentage of the parasites remained capable of motility and invasion well past the point at which actin levels were undetectable. Those act1 conditional knockout (cKO) and mlc1 cKO that continue to move in 3D do so at speeds similar to wildtype parasites. However, these mutants are virtually unable to attach to a collagen-coated substrate under flow conditions, indicating an important role for the actomyosin system of T. gondii in the formation of attachment sites. We demonstrate that parasite actin is essential during the lytic cycle and cannot be compensated by other molecules. Our data suggest a conventional polymerisation mechanism in vivo that depends on a critical concentration of G-actin. Importantly, we demonstrate that the actomyosin system of the parasite functions in attachment to the surface substrate, and not necessarily as force generator.
Design parameters for rotating cylindrical filtration
NASA Technical Reports Server (NTRS)
Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.
2002-01-01
Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.
Xu, Xihua; Sun, Zhipeng; Ansari, K. R.; Lin, Yuanhua
2017-01-01
The corrosion mitigation efficiency of biotin drug for mild steel in 15% hydrochloric acid was thoroughly investigated by weight loss and electrochemical methods. The surface morphology was studied by the contact angle, scanning electrochemical microscopy, atomic force microscopy and scanning electron microscopy methods. Quantum chemical calculation and Fukui analysis were done to correlate the experimental and theoretical data. The influence of the concentration of inhibitor, immersion time, temperature, activation energy, enthalpy and entropy has been reported. The mitigation efficiency of biotin obtained by all methods was in good correlation with each other. Polarization studies revealed that biotin acted as a mixed inhibitor. The adsorption of biotin was found to obey the Langmuir adsorption isotherm. Surface studies showed the hydrophobic nature of the steel with inhibitor and vindicated the formation of a film on the metal surface that reduced the corrosion rate. PMID:29308235
A variable pressure method for characterizing nanoparticle surface charge using pore sensors.
Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff
2012-04-03
A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.
Impacts of raindrop evaporative cooling on tropical cyclone secondary eyewall formation
NASA Astrophysics Data System (ADS)
Ge, Xuyang; Guan, Liang; Yan, Ziyu
2018-06-01
The impacts of raindrop evaporative cooling on secondary eyewall formation (SEF) of simulated tropical cyclones are investigated using idealized numerical experiments. The results suggest that the raindrop evaporative cooling effect is beneficial to the development of secondary eyewall through the planetary boundary layer (PBL) cold pool process. The evaporative cooling-driven downdrafts bring about the surface cold pool beneath a precipitation cloud. This cold pool dynamics act as a lifting mechanism to trigger the outer convection. The radially outward propagation of spiral rainbands broadens the TC size, by which modifies the surface heat fluxes and thus outer convection. Furthermore, the unbalanced PBL process contributes to the SEF. The radially outward surface outflows forces convection at outer region and thus favors a larger TC size. A larger TC implies an enhanced inertial stability at the outer region, which favors a higher conversion efficiency of diabatic heating to kinetic energy.
NASA Astrophysics Data System (ADS)
Yang, Yong
2008-12-01
In an actual levitation system composed of high temperature superconductors (HTSs) and permanent magnets (PMs), the levitating bodies may traverse in arbitrary directions. Many previous researchers assumed that the levitating bodies moved in a vertical direction or a lateral direction in order to simplify the problem. In this paper, the vertical and lateral forces acting on the PM are calculated by the modified frozen-image method when a PM above an HTS traverses in arbitrary directions. In order to study the effects of the movement directions on the vertical and lateral forces, comparisons of the forces that act on a PM traversing in a tilted direction with those that act on a PM traversing in a vertical direction or a lateral direction have been presented.
Surface structure and stability of partially hydroxylated silica surfaces
Rimsza, J. M.; Jones, R. E.; Criscenti, L. J.
2017-04-04
Surface energies of silicates influence crack propagation during brittle fracture and decrease with surface relaxation caused by annealing and hydroxylation. Molecular-level simulations are particularly suited for the investigation of surface processes. In this work, classical MD simulations of silica surfaces are performed with two force fields (ClayFF and ReaxFF) to investigate the effect of force field reactivity on surface structure and energy as a function of surface hydroxylation. An unhydroxylated fracture surface energy of 5.1 J/m 2 is calculated with the ClayFF force field, and 2.0 J/m 2 is calculated for the ReaxFF force field. The ClayFF surface energies aremore » consistent with the experimental results from double cantilever beam fracture tests (4.5 J/m 2), whereas ReaxFF underestimated these surface energies. Surface relaxation via annealing and hydroxylation was performed by creating a low-energy equilibrium surface. Annealing condensed neighboring siloxane bonds increased the surface connectivity, and decreased the surface energies by 0.2 J/m 2 for ClayFF and 0.8 J/m 2 for ReaxFF. Posthydroxylation surface energies decreased further to 4.6 J/m 2 with the ClayFF force field and to 0.2 J/m 2 with the ReaxFF force field. Experimental equilibrium surface energies are ~0.35 J/m 2, consistent with the ReaxFF force field. Although neither force field was capable of replicating both the fracture and equilibrium surface energies reported from experiment, each was consistent with one of these conditions. Furthermore, future computational investigations that rely on accurate surface energy values should consider the surface state of the system and select the appropriate force field.« less
Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization
NASA Astrophysics Data System (ADS)
Yi, Jinsoo; Schmidt, Jacob; Chien, Aichi; Montemagno, Carlo D.
2009-02-01
We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.
Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization.
Yi, Jinsoo; Schmidt, Jacob; Chien, Aichi; Montemagno, Carlo D
2009-02-25
We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.
Graphene thickness dependent adhesion force and its correlation to surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourzand, Hoorad; Tabib-Azar, Massood, E-mail: azar.m@utah.edu; Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112
2014-04-28
In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesionmore » force measurement results.« less
Force transduction and lipid binding in MscL: A continuum-molecular approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanegas, Juan M.; Arroyo, Marino; Fotiadis, Dimitrios
2014-12-01
The bacterial mechanosensitive channel MscL, a small protein mainly activated by membrane tension, is a central model system to study the transduction of mechanical stimuli into chemical signals. Mutagenic studies suggest that MscL gating strongly depends on both intra-protein and interfacial lipid-protein interactions. However, there is a gap between this detailed chemical information and current mechanical models of MscL gating. Here, we investigate the MscL bilayer-protein interface through molecular dynamics simulations, and take a combined continuum-molecular approach to connect chemistry and mechanics. We quantify the effect of membrane tension on the forces acting on the surface of the channel, andmore » identify interactions that may be critical in the force transduction between the membrane and MscL. We find that the local stress distribution on the protein surface is largely asymmetric, particularly under tension, with the cytoplasmic side showing significantly larger and more localized forces, which pull the protein radially outward. The molecular interactions that mediate this behavior arise from hydrogen bonds between the electronegative oxygens in the lipid headgroup and a cluster of positively charged lysine residues on the amphipathic S1 domain and the C-terminal end of the second trans-membrane helix. We take advantage of this strong interaction (estimated to be 10–13 kT per lipid) to actuate the channel (by applying forces on protein-bound lipids) and explore its sensitivity to the pulling magnitude and direction. We conclude by highlighting the simple motif that confers MscL with strong anchoring to the bilayer, and its presence in various integral membrane proteins including the human mechanosensitive channel K2P1 and bovine rhodopsin.« less
Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy
NASA Astrophysics Data System (ADS)
Naitoh, Yoshitaka; Turanský, Robert; Brndiar, Ján; Li, Yan Jun; Štich, Ivan; Sugawara, Yasuhiro
2017-07-01
Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions, probing nanostructures via atomic or molecular manipulation, and provide insights into the behaviour of nano-machines on substrates.
Microwave emission from lead zirconate titanate induced by impulsive mechanical load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman, A., E-mail: alexander.aman@ovgu.de; Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg; Majcherek, S.
2015-10-28
This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression andmore » restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.« less
Dufrêne, Y F
2001-02-01
The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.
NASA Astrophysics Data System (ADS)
Ito, Shunya; Kasuya, Motohiro; Kurihara, Kazue; Nakagawa, Masaru
2018-02-01
We measured the surface forces generated between fused silica surfaces in a low-viscosity oleophilic diacrylate monomer for reliably repeated ultraviolet (UV) nanoimprinting, and studied the influence of water in monomer liquids on the forces. Fused silica surfaces, with a static contact angle of 52.6 ± 1.7° for water, owing to the low degree of hydroxylation, hardly showed reproducible surface forces with repeated scan cycles, comprising approach and separation, even in an identical liquid monomer medium with both of low and high water content. The monomer liquid with a high water content of approximately 420 ppm showed a greater tendency to increase the surface forces at longer surface-surface distances compared with the monomer liquid with a low water content of approximately 60 ppm. On the other hand, silica surfaces with a water contact angle of < 5° after exposure to vacuum UV (VUV) light under a reduced air pressure showed reproducible profiles of surfaces forces using the monomer with a low water concentration of approximately 60 ppm for repeated surface forces scan cycles even in separately prepared silica surfaces, whilst they showed less reproducible profiles in the liquids with high water content of 430 ppm. These results suggested that water possibly adsorbed on the hydrophilic and hydrophobic silica surfaces in the monomer liquid of the high water concentration influenced the repeatability of the surface forces profiles.
Mody, Nipa A; King, Michael R
2007-05-22
We used the platelet adhesive dynamics computational method to study the influence of Brownian motion of a platelet on its flow characteristics near a surface in the creeping flow regime. Two important characterizations were done in this regard: (1) quantification of the platelet's ability to contact the surface by virtue of the Brownian forces and torques acting on it, and (2) determination of the relative importance of Brownian motion in promoting surface encounters in the presence of shear flow. We determined the Peclet number for a platelet undergoing Brownian motion in shear flow, which could be expressed as a simple linear function of height of the platelet centroid, H from the surface Pe (platelet) = . (1.56H + 0.66) for H > 0.3 microm. Our results demonstrate that at timescales relevant to shear flow in blood Brownian motion plays an insignificant role in influencing platelet motion or creating further opportunities for platelet-surface contact. The platelet Peclet number at shear rates >100 s-1 is large enough (>200) to neglect platelet Brownian motion in computational modeling of flow in arteries and arterioles for most practical purposes even at very close distances from the surface. We also conducted adhesive dynamics simulations to determine the effects of platelet Brownian motion on GPIbalpha-vWF-A1 single-bond dissociation dynamics. Brownian motion was found to have little effect on bond lifetime and caused minimal bond stressing as bond rupture forces were calculated to be less than 0.005 pN. We conclude from our results that, for the case of platelet-shaped cells, Brownian motion is not expected to play an important role in influencing flow characteristics, platelet-surface contact frequency, and dissociative binding phenomena under flow at physiological shear rates (>50 s(-1)).
Image method for induced surface charge from many-body system of dielectric spheres
NASA Astrophysics Data System (ADS)
Qin, Jian; de Pablo, Juan J.; Freed, Karl F.
2016-09-01
Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ɛ, where a is the sphere radius, R the average inter-sphere separation, and ɛ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.
NASA Astrophysics Data System (ADS)
Hosseini, Somaye; Savaloni, Hadi; Gholipour-Shahraki, Mehran
2017-03-01
The wettability of solid surfaces is important from the aspects of both science and technology. The Mn nano-sculptured thin films were designed and fabricated by oblique angle deposition of Mn on glass substrates at room temperature. The obtained structure was characterized by field emission scanning electron microscopy and atomic force microscopy. The wettability of thin films samples was investigated by water contact angle (WCA). The 4-pointed helical star-shaped structure exhibits hydrophobicity with static WCAs of more than 133° for a 10-mg distilled water droplet. This sample also shows the rose petal effect with the additional property of high adhesion. The Mn nano-sculptured thin films also act as a sticky surface which is confirmed by hysteresis of the contact angle obtained from advancing and receding contact angles measurements. Physicochemical property of liquid phase could effectively change the contact angle, and polar solvents in contact with hydrophobic solid surfaces do not necessarily show high contact angle value.
IImage method for induced surface charge from many-body system of dielectric spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Jian; de Pablo, Juan J.; Freed, Karl F.
2016-09-28
Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)(3) epsilon, where a is the sphere radius, R the average inter-sphere separation,more » and. the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.« less
NASA Technical Reports Server (NTRS)
Fujimoto, K.
1986-01-01
What happens if a stainless steel ball hits a water ball in the weightless space ot the Universe? In other words, it was the objective of our experiments in the Space to observe the surface tension of liquid by means of making a solid collide with a liquid. Place a small volume of water between 2 glass sheets to make a thin water membrane: the 2 glass sheets cannot be separated unless an enormous force is applied. It is obvious from this phenomenom that the surface tension of water is far greater than presumed. On Earth, however, it is impossible in most cases to observe only the surface tension of liquid, because gravity always acts on the surface tension. Water and stainless steel balls were chosen the liquid and solids for the experiments. Because water is the liquid most familiar to us, its properties are well known. And it is also of great interest to compare its properties on the Earth with those in the weightless space.
First measurements of Hiro currents in vertical displacement event in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Hao; Xu, Guosheng; Wang, Huiqian
Specially designed tiles were setup in the 2012 campaign of the Experimental Advanced Superconducting Tokamak (EAST), to directly measure the toroidal surface currents during the disruptions. Hiro currents with direction opposite to the plasma currents have been observed, confirming the sign prediction by the Wall Touching Vertical Mode (WTVM) theory and numerical simulations. During the initial phase of the disruption, when the plasma begins to touch the wall, the surface currents can be excited by WTVM along the plasma facing tile surface, varying with the mode magnitude. The currents are not observed in the cases when the plasma moves awaymore » from the tile surface. This discovery addresses the importance of the plasma motion into the wall in vertical disruptions. WTVM, acting as a current generator, forces the Hiro currents to flow through the gaps between tiles. This effect, being overlooked so far in disruption analysis, may damage the edges of the tiles and is important for the ITER device.« less
76 FR 32224 - Migratory Birds; Take of Migratory Birds by the Armed Forces
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-03
... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service Migratory Birds; Take of Migratory Birds by... Forces to incidentally take migratory birds during approved military readiness activities without violating the Migratory Bird Treaty Act (MBTA). The Authorization Act provided this interim authority to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rimsza, J. M.; Jones, R. E.; Criscenti, L. J.
Surface energies of silicates influence crack propagation during brittle fracture and decrease with surface relaxation caused by annealing and hydroxylation. Molecular-level simulations are particularly suited for the investigation of surface processes. In this work, classical MD simulations of silica surfaces are performed with two force fields (ClayFF and ReaxFF) to investigate the effect of force field reactivity on surface structure and energy as a function of surface hydroxylation. An unhydroxylated fracture surface energy of 5.1 J/m 2 is calculated with the ClayFF force field, and 2.0 J/m 2 is calculated for the ReaxFF force field. The ClayFF surface energies aremore » consistent with the experimental results from double cantilever beam fracture tests (4.5 J/m 2), whereas ReaxFF underestimated these surface energies. Surface relaxation via annealing and hydroxylation was performed by creating a low-energy equilibrium surface. Annealing condensed neighboring siloxane bonds increased the surface connectivity, and decreased the surface energies by 0.2 J/m 2 for ClayFF and 0.8 J/m 2 for ReaxFF. Posthydroxylation surface energies decreased further to 4.6 J/m 2 with the ClayFF force field and to 0.2 J/m 2 with the ReaxFF force field. Experimental equilibrium surface energies are ~0.35 J/m 2, consistent with the ReaxFF force field. Although neither force field was capable of replicating both the fracture and equilibrium surface energies reported from experiment, each was consistent with one of these conditions. Furthermore, future computational investigations that rely on accurate surface energy values should consider the surface state of the system and select the appropriate force field.« less
NASA Astrophysics Data System (ADS)
Rahman, A.; Kollet, S. J.; Sulis, M.
2013-12-01
In the terrestrial hydrological cycle, the atmosphere and the free groundwater table act as the upper and lower boundary condition, respectively, in the non-linear two-way exchange of mass and energy across the land surface. Identifying and quantifying the interactions among various atmospheric-subsurface-landsurface processes is complicated due to the diverse spatiotemporal scales associated with these processes. In this study, the coupled subsurface-landsurface model ParFlow.CLM was applied over a ~28,000 km2 model domain encompassing the Rur catchment, Germany, to simulate the fluxes of the coupled water and energy cycle. The model was forced by hourly atmospheric data from the COSMO-DE model (numerical weather prediction system of the German Weather Service) over one year. Following a spinup period, the model results were synthesized with observed river discharge, soil moisture, groundwater table depth, temperature, and landsurface energy flux data at different sites in the Rur catchment. It was shown that the model is able to reproduce reasonably the dynamics and also absolute values in observed fluxes and state variables without calibration. The spatiotemporal patterns in simulated water and energy fluxes as well as the interactions were studied using statistical, geostatistical and wavelet transform methods. While spatial patterns in the mass and energy fluxes can be predicted from atmospheric forcing and power law scaling in the transition and winter months, it appears that, in the summer months, the spatial patterns are determined by the spatially correlated variability in groundwater table depth. Continuous wavelet transform techniques were applied to study the variability of the catchment average mass and energy fluxes at varying time scales. From this analysis, the time scales associated with significant interactions among different mass and energy balance components were identified. The memory of precipitation variability in subsurface hydrodynamics acts at the 20-30 day time scale, while the groundwater contribution to sustain the long-term variability patterns in evapotranspiration acts at the 40-60 day scale. Diurnal patterns in connection with subsurface hydrodynamics were also detected. Thus, it appears that the subsurface hydrodynamics respond to the temporal patterns in land surface fluxes due to the variability in atmospheric forcing across multiple space and time scales.
Substrate stiffness influences high resolution printing of living cells with an ink-jet system.
Tirella, Annalisa; Vozzi, Federico; De Maria, Carmelo; Vozzi, Giovanni; Sandri, Tazio; Sassano, Duccio; Cognolato, Livio; Ahluwalia, Arti
2011-07-01
The adaptation of inkjet printing technology for the realisation of controlled micro- and nano-scaled biological structures is of great potential in tissue and biomaterial engineering. In this paper we present the Olivetti BioJet system and its applications in tissue engineering and cell printing. BioJet, which employs a thermal inkjet cartridge, was used to print biomolecules and living cells. It is well known that high stresses and forces are developed during the inkjet printing process. When printing living particles (i.e., cell suspensions) the mechanical loading profile can dramatically damage the processed cells. Therefore computational models were developed to predict the velocity profile and the mechanical load acting on a droplet during the printing process. The model was used to investigate the role of the stiffness of the deposition substrate during droplet impact and compared with experimental investigations on cell viability after printing on different materials. The computational model and the experimental results confirm that impact forces are highly dependent on the deposition substrate and that soft and viscous surfaces can reduce the forces acting on the droplet, preventing cell damage. These results have high relevance for cell bioprinting; substrates should be designed to have a good compromise between substrate stiffness to conserve spatial patterning without droplet coalescence but soft enough to absorb the kinetic energy of droplets in order to maintain cell viability. Copyright © 2011. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Stelian, Carmen
2015-02-01
Lorentz force velocimetry is a new technique in electromagnetic flow measurements based on exposing an electrical conducting metal to a static magnetic field and measuring the force acting on the magnet system. The calibration procedure of a Lorentz force flowmeter used in industrial open-channel flow measurements is difficult because of the fluctuating liquid level in the channel. In this paper, the application of Manning's formula to estimate the depth of a liquid metal flowing in an open channel is analyzed by using the numerical modeling. Estimations of Manning's n parameter for aluminum show higher values as compared with water flowing in artificial channels. Saint-Venant equations are solved in order to analyze the wave propagation at the free surface of the liquid. Numerical results show a significant damping of waves at the surface of liquid metals as compared with water. Therefore, the Manning formula can be used to correlate the liquid depth and the flow rate in LFF numerical calibration procedure. These results show that the classical formulas, used exclusively to study the water flow in open channels, can be also applied for the liquid metals. The application of Manning's formulas requires experimental measurements of the parameter n, which depends on the channel bed roughness and also on the physical properties of the liquid flowing in channel.
Dolan, P; Adams, M A
1998-08-01
During manual handling, the back muscles protect the spine from excessive flexion, but in doing so impose a high compressive force on it. Epidemiological links between back pain and repetitive lifting suggest that fatigued muscles may adversely affect the balance between bending and compression. Fifteen volunteers lifted and lowered a 10 kg weight from floor to waist height 100 times. Throughout this task, the bending moment acting on the osteoligamentous lumbar spine was estimated from continuous measurements of lumbar flexion, obtained using the 3-Space Isotrak. Spinal compression was estimated from the electromyographic (EMG) activity of the erector spinae muscles, recorded from skin-surface electrodes at the levels of T10 and L3. EMG signals were calibrated against force when subjects pulled up on a load cell, and correction factors were applied to account for changes in muscle length and contraction velocity. Fatigue in the erector spinae muscles was quantified by comparing the frequency content of their EMG signal during static contractions performed before, and immediately after, the 100 lifts. Results showed that peak lumbar flexion increased during the 100 lifts from 83.3 +/- 14.8% to 90.4 +/- 14.3%, resulting in a 36% increase in estimated peak bending moment acting on the lumbar spine (P = 0.008). Peak spinal compression fell by 11% (p = 0.007). The median frequency of the EMG signal at L3 decreased by 5.5% following the 100 lifts (p = 0.042) confirming that the erector spinae were fatigued, but measures of fatigue showed no significant correlation with increased bending. We conclude that repetitive lifting induces measurable fatigue in the erector spinae muscles, and substantially increases the bending moment acting on the lumbar spine.
75 FR 13095 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2010-0007] Privacy Act of 1974... Federal Register Liaison Officer, Department of Defense. F031 AF SF B System Name: Security Forces... all Active Duty Military personnel, Reserve and Guard; Department of Defense (DoD) civilians and...
32 CFR 806b.3 - Violation penalties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT... law suit against the Air Force for failing to comply with the Privacy Act. The courts may find an...) Willfully maintaining a system of records that doesn't meet the public notice requirements. (b) Disclosing...
32 CFR 806b.3 - Violation penalties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT... law suit against the Air Force for failing to comply with the Privacy Act. The courts may find an...) Willfully maintaining a system of records that doesn't meet the public notice requirements. (b) Disclosing...
44 CFR 208.2 - Definitions of terms used in this part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Force personnel compensation, itemized fringe benefit rates and amounts including calculations, and... State or Local Government that has executed an MOA with DHS to organize and administer a Task Force. Stafford Act means the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121...
75 FR 42720 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... identifiers or contact information. FOR FURTHER INFORMATION CONTACT: Mr. Charles J. Shedrick, 703-696-6488. SUPPLEMENTARY INFORMATION: The Department of the Air Force systems of records notices subject to the Privacy Act... Warfighting Integration and Chief Information officer, ATTN: SAF/XCPPI, 1800 Air Force Pentagon, Washington...
Complexion of forces in an anisotropic self-gravitating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandrup, H.E.
Chandrasekhar and von Neumann developed a completely stochastic formalism to analyze the complexion of forces acting upon a test star situated in an infinite, homogeneous distribution of field stars. This formalism is generalized here to allow for more realistic inhomogeneous and anisotropic systems. It is demonstrated that the forces acting upon a test star decompose ''naturally'' into the incoherent sum of a mean force associated with the average spatial inhomogeneity and a fluctuating force associated with stochastic deviations from these mean conditions. Moreover, as in the special case considered by Chandrasekhar and von Neumann, one can apparently associate the fluctuatingmore » forces with the effects of particularly proximate field stars, thereby motivating the ''nearest neighbor'' interpretation first introduced by Chandrasekhar.« less
Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system
NASA Astrophysics Data System (ADS)
Zhang, C.; Man, B. Y.; Yang, C.; Jiang, S. Z.; Liu, M.; Chen, C. S.; Xu, S. C.; Sun, Z. C.; Gao, X. G.; Chen, X. J.
2013-10-01
Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene.
Heart sounds as a result of acoustic dipole radiation of heart valves
NASA Astrophysics Data System (ADS)
Kasoev, S. G.
2005-11-01
Heart sounds are associated with impulses of force acting on heart valves at the moment they close under the action of blood-pressure difference. A unified model for all the valves represents this impulse as an acoustic dipole. The near pressure field of this dipole creates a distribution of the normal velocity on the breast surface with features typical of auscultation practice: a pronounced localization of heart sound audibility areas, an individual area for each of the valves, and a noncoincidence of these areas with the projections of the valves onto the breast surface. In the framework of the dipole theory, the optimum size of the stethoscope’s bell is found and the spectrum of the heart sounds is estimated. The estimates are compared with the measured spectrum.
Suction and Blowing Flow Control on Airfoil for Drag Reduction in Subsonic Flow
NASA Astrophysics Data System (ADS)
Baljit, S. S.; Saad, M. R.; Nasib, A. Z.; Sani, A.; Rahman, M. R. A.; Idris, A. C.
2017-10-01
Lift force is produced from a pressure difference between the pressures acting in upper and lower surfaces. Therefore, flow becomes detached from the surface of the airfoil at separation point and form vortices. These vortices affect the aerodynamic performance of the airfoil in term of lift and drag coefficient. Therefore, this study is investigating the effect of suction and jet blowing in boundary layer separation control on NACA 0012 airfoil in a subsonic wind tunnel. The experiment examined both methods at the position of 25% of the chord-length of the airfoil at Reynolds number 1.2 × 105. The findings show that suction and jet blowing affect the aerodynamic performance of NACA 0012 airfoil and can be an effective means for boundary layer separation control in subsonic flow.
Adsorption and inhibitive properties of sildenafil (Viagra) for zinc in hydrochloric acid solution
NASA Astrophysics Data System (ADS)
Fouda, A. S.; Ibrahim, H.; Atef, M.
Sildenafil (Viagra) was investigated as corrosion inhibitor for Zn in 1 M HCl solution using chemical and electrochemical methods at 25 °C. Electrochemical results showed that this drug is efficient inhibitor for Zn in HCl and the inhibition efficiency (IE) reached to 91% at 300 ppm. The IE increases with the drug concentration and decreases with increasing temperature. The adsorption of this drug on Zn surface follows Langmuir adsorption isotherm. The polarization plots revealed that Sildenafil acts as a mixed-type inhibitor. The thermodynamic parameters of activation and adsorption were calculated and discussed. The surface morphology of the Zn specimens was evaluated using scanning electron microscope (SEM), energy dispersive X-ray (EDX), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) techniques.
Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Wang, Xiu; Kong, Wen; Yi, Gewen; Jia, Junhong
2011-10-01
In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.
Geometrical force constraint method for vessel and x-ray angiogram simulation.
Song, Shuang; Yang, Jian; Fan, Jingfan; Cong, Weijian; Ai, Danni; Zhao, Yitian; Wang, Yongtian
2016-01-01
This study proposes a novel geometrical force constraint method for 3-D vasculature modeling and angiographic image simulation. For this method, space filling force, gravitational force, and topological preserving force are proposed and combined for the optimization of the topology of the vascular structure. The surface covering force and surface adhesion force are constructed to drive the growth of the vasculature on any surface. According to the combination effects of the topological and surface adhering forces, a realistic vasculature can be effectively simulated on any surface. The image projection of the generated 3-D vascular structures is simulated according to the perspective projection and energy attenuation principles of X-rays. Finally, the simulated projection vasculature is fused with a predefined angiographic mask image to generate a realistic angiogram. The proposed method is evaluated on a CT image and three generally utilized surfaces. The results fully demonstrate the effectiveness and robustness of the proposed method.
Small nanoparticles, surface geometry and contact forces.
Takato, Yoichi; Benson, Michael E; Sen, Surajit
2018-03-01
In this molecular dynamics study, we examine the local surface geometric effects of the normal impact force between two approximately spherical nanoparticles that collide in a vacuum. Three types of surface geometries-(i) crystal facets, (ii) sharp edges, and (iii) amorphous surfaces of small nanoparticles with radii R <10 nm-are considered. The impact forces are compared with their macroscopic counterparts described by nonlinear contact forces based on Hertz contact mechanics. In our simulations, edge and amorphous surface contacts with weak surface energy reveal that the average impact forces are in excellent agreement with the Hertz contact force. On the other hand, facet collisions show a linearly increasing force with increasing compression. Our results suggest that the nearly spherical nanoparticles are likely to enable some nonlinear dynamic phenomena, such as breathers and solitary waves observed in granular materials, both originating from the nonlinear contact force.
Does Southern Ocean Surface Forcing Shape the Global Ocean Overturning Circulation?
NASA Astrophysics Data System (ADS)
Sun, Shantong; Eisenman, Ian; Stewart, Andrew L.
2018-03-01
Paleoclimate proxy data suggest that the Atlantic Meridional Overturning Circulation (AMOC) was shallower at the Last Glacial Maximum (LGM) than its preindustrial (PI) depth. Previous studies have suggested that this shoaling necessarily accompanies Antarctic sea ice expansion at the LGM. Here the influence of Southern Ocean surface forcing on the AMOC depth is investigated using ocean-only simulations from a state-of-the-art climate model with surface forcing specified from the output of previous coupled PI and LGM simulations. In contrast to previous expectations, we find that applying LGM surface forcing in the Southern Ocean and PI surface forcing elsewhere causes the AMOC to shoal only about half as much as when LGM surface forcing is applied globally. We show that this occurs because diapycnal mixing renders the Southern Ocean overturning circulation more diabatic than previously assumed, which diminishes the influence of Southern Ocean surface buoyancy forcing on the depth of the AMOC.
Surface roughness model based on force sensors for the prediction of the tool wear.
de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel
2014-04-04
In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained.
Effective interactions between inclusions in an active bath
NASA Astrophysics Data System (ADS)
Zaeifi Yamchi, Mahdi; Naji, Ali
2017-11-01
We study effective two- and three-body interactions between non-active colloidal inclusions in an active bath of chiral or non-chiral particles, using Brownian dynamics simulations within a standard, two-dimensional model of disk-shaped inclusions and active particles. In a non-chiral active bath, we first corroborate previous findings on effective two-body repulsion mediated between the inclusions by elucidating the detailed non-monotonic features of the two-body force profiles, including a primary maximum and a secondary hump at larger separations that was not previously reported. We then show that these features arise directly from the formation, and sequential overlaps, of circular layers (or "rings") of active particles around the inclusions, as the latter are brought to small surface separations. These rings extend to radial distances of a few active-particle radii from the surface of inclusions, giving the hard-core inclusions relatively thick, soft, repulsive "shoulders," whose multiple overlaps then enable significant (non-pairwise) three-body forces in both non-chiral and chiral active baths. The resulting three-body forces can even exceed the two-body forces in magnitude and display distinct repulsive and attractive regimes at intermediate to large self-propulsion strengths. In a chiral active bath, we show that, while active particles still tend to accumulate at the immediate vicinity of the inclusions, they exhibit strong depletion from the intervening region between the inclusions and partial depletion from relatively thick, circular zones further away from the inclusions. In this case, the effective, predominantly repulsive interactions between the inclusions turn to active, chirality-induced, depletion-type attractions, acting over an extended range of separations.
Self-assembled Gemini surfactant film-mediated dispersion stability.
Rabinovich, Y I; Kanicky, J R; Pandey, S; Oskarsson, H; Holmberg, K; Moudgil, B M; Shah, D O
2005-08-15
The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).
United States Air Force Response to Problems of Child Abuse within the Military Community.
1985-01-01
The Child Abuse Prevention and Treatment Act became national law in the United States. This act authorized a National Center on Child Abuse and...Neglect to compile information, operate a clearinghouse on programs showing promise of success in prevention, identification and treatment of child abuse , publish...Force base to investigate and evaluate suspected child abuse cases. This study focuses on child abuse in the Air Force community rather than in the
Probing surface charge potentials of clay basal planes and edges by direct force measurements.
Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe
2008-11-18
The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the surface element integrated DLVO model. The point of zero charge of the muscovite edge surface was estimated to be pH 7-8.
Bob Meyer (right), acting deputy director of NASA Dryden, shakes hands with Les Bordelon, executive
NASA Technical Reports Server (NTRS)
2002-01-01
Bob Meyer (on the right), acting deputy director of NASA's Dryden Flight Research Center, Edwards, California, shakes hands with Les Bordelon, executive director of Edwards Air Force Base. The handshake represents Dryden's acceptance of an Air Force C-20A delivered from Ramstein Air Base, Germany. The aircraft will be modified to carry equipment and experiments in support of both NASA and U.S. Air Force projects. The joint use of this aircraft is a result of the NASA Dryden/Edwards Air Force Base Alliance which shares some resources as cost-cutting measures.
Nanolubricant: magnetic nanoparticle based
NASA Astrophysics Data System (ADS)
Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.
2017-11-01
In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.
A study on high-speed rolling contact between a wheel and a contaminated rail
NASA Astrophysics Data System (ADS)
Zhao, Xin; Wen, Zefeng; Zhu, Minhao; Jin, Xuesong
2014-10-01
A 3-D explicit finite element model is developed to investigate the transient wheel-rail rolling contact in the presence of rail contamination or short low adhesion zones (LAZs). A transient analysis is required because the wheel passes by a short LAZ very quickly, especially at high speeds. A surface-to-surface contact algorithm (by the penalty method) is employed to solve the frictional rolling contact between the wheel and the rail meshed by solid elements. The LAZ is simulated by a varying coefficient of friction along the rail. Different traction efforts and action of the traction control system triggered by the LAZ are simulated by applying a time-dependent driving torque to the wheel axle. Structural flexibilities of the vehicle-track system are considered properly. Analysis focuses on the contact forces, creepage, contact stresses and the derived frictional work and plastic deformation. It is found that the longitudinal contact force and the maximum surface shear stress in the contact patch become obviously lower in the LAZ and much higher as the wheel re-enters the dry rail section. Consequently, a higher wear rate and larger plastic flow are expected at the location where the dry contact starts to be rebuilt. In other words, contact surface damages such as wheel flats and rail burns may come into being because of the LAZ. Length of the LAZ, the traction level, etc. are varied. The results also show that local contact surface damages may still occur as the traction control system acts.
Investigating biomolecular recognition at the cell surface using atomic force microscopy.
Wang, Congzhou; Yadavalli, Vamsi K
2014-05-01
Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique. Copyright © 2014 Elsevier Ltd. All rights reserved.
Size Limit for Particle-Stabilized Emulsion Droplets under Gravity
NASA Astrophysics Data System (ADS)
Tavacoli, J. W.; Katgert, G.; Kim, E. G.; Cates, M. E.; Clegg, P. S.
2012-06-01
We demonstrate that emulsion droplets stabilized by interfacial particles become unstable beyond a size threshold set by gravity. This holds not only for colloids but also for supracolloidal glass beads, using which we directly observe the ejection of particles near the droplet base. The number of particles acting together in these ejection events decreases with time until a stable acornlike configuration is reached. Stability occurs when the weight of all remaining particles is less than the interfacial binding force of one particle. We also show the importance of the curvature of the droplet surface in promoting particle ejection.
The constitution of cometary nuclei
NASA Technical Reports Server (NTRS)
Whipple, F. L.
1977-01-01
The nongravitational term in the expression for the total force acting on a comet is calculated, and an upper limit is obtained for the product of the radial nongravitational term times the radius times the square root of the albedo. This condition is satisfied for ten periodic comets with q no greater than 1.5 AU, and the activity of these comets is consistent with control by H2O ice. Some of the comets must be spotty to account for their low albedo values. The effect of cosmic rays on comets, leading to frosting of their surface, is discussed.
NASA Astrophysics Data System (ADS)
Biancofiore, L.; Heifetz, E.; Hoepffner, J.; Gallaire, F.
2017-10-01
Both surface tension and buoyancy force in stable stratification act to restore perturbed interfaces back to their initial positions. Hence, both are intuitively considered as stabilizing agents. Nevertheless, the Taylor-Caulfield instability is a counterexample in which the presence of buoyancy forces in stable stratification destabilize shear flows. An explanation for this instability lies in the fact that stable stratification supports the existence of gravity waves. When two vertically separated gravity waves propagate horizontally against the shear, they may become phase locked and amplify each other to form a resonance instability. Surface tension is similar to buoyancy but its restoring mechanism is more efficient at small wavelengths. Here, we show how a modification of the Taylor-Caulfield configuration, including two interfaces between three stably stratified immiscible fluids, supports interfacial capillary gravity whose interaction yields resonance instability. Furthermore, when the three fluids have the same density, an instability arises solely due to a pure counterpropagating capillary wave resonance. The linear stability analysis predicts a maximum growth rate of the pure capillary wave instability for an intermediate value of surface tension corresponding to We-1=5 , where We denotes the Weber number. We perform direct numerical nonlinear simulation of this flow and find nonlinear destabilization when 2 ≤We-1≤10 , in good agreement with the linear stability analysis. The instability is present also when viscosity is introduced, although it is gradually damped and eventually quenched.
Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow
NASA Astrophysics Data System (ADS)
Huntley, Helga S.; Ryan, Patricia
2018-01-01
A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.
Apparatus and method for producing an artificial gravitational field
NASA Technical Reports Server (NTRS)
Mccanna, Jason (Inventor)
1993-01-01
An apparatus and method is disclosed for producing an artificial gravitational field in a spacecraft by rotating the same around a spin axis. The centrifugal force thereby created acts as an artificial gravitational force. The apparatus includes an engine which produces a drive force offset from the spin axis to drive the spacecraft towards a destination. The engine is also used as a counterbalance for a crew cabin for rotation of the spacecraft. Mass of the spacecraft, which may include either the engine or crew cabin, is shifted such that the centrifugal force acting on that mass is no longer directed through the center of mass of the craft. This off-center centrifugal force creates a moment that counterbalances the moment produced by the off-center drive force to eliminate unwanted rotation which would otherwise be precipitated by the offset drive force.
Properties of pseudo magnetism acting between bodies
NASA Astrophysics Data System (ADS)
Deva, Anish; Baruah, Abhinav Ray; Sarma, Arun
A non-contact force has been found to be always acting between two bodies kept close to each other in different media. The properties of the force are different as compared to other non-contact forces such as gravitation and electrostatics, as was shown in our previous work. The aim of this paper is to find how the force behaves when two objects are brought near each other, one being completely immersed in the medium and the other kept just outside. The magnitude of the force in each medium has been calculated through experiments and then compared with each other. The discrepancies obtained between these magnitudes (10-5 N in water and 10-6 N in engine oil) and the varied oscillation patterns (amplitude and frequency) obtained from graphs have shown that the force behaves differently with different media. In general, the frequency of the force has been found to be of the order 10-2 Hz. The behaviour has also been found to depend on the nature of the material and shape of the object. This correlation has been ascertained by using a Gauss meter to measure the force acting between two objects and also that of an individual object. The polarity of the force i.e. whether attractive or repulsive, has been found to vary across the length of the objects and graphs have been plotted to demonstrate this property.
Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces.
Jogikalmath, G; Stuart, J K; Pungor, A; Hlady, V
1999-08-01
Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface more uniform. The subsequent hydrolysis of the terminal epoxide groups resulted in a larger surface heterogeneity which was modeled by two populations of the terminal hydroxyl groups, each with its own distribution of adhesion forces and force variance. The activation of the hydroxyls with carbonyldiimmidazole (CDI) healed the surface and lowered its adhesion, however, the force variance remained rather large. Finally, the grafting of the α,ω-diamino poly(ethyleneoxide) chains to the CDI-activated glass largely eliminated adhesion except at a few discrete regions. The adhesion on the PEO grafted layer followed the Poisson distribution of the pull-off forces. With the exception of the glass surface, a correlation between the water contact angles and the mean pull-off forces measured with the Si(3)N(4) tip surfaces was found for all modified glass surfaces.
75 FR 34709 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID USAF-2010-0016] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to amend a system of records.... Mitchell S. Bryman, Alternate OSD Federal Register Liaison Officer, Department of Defense. F044 AF SG E...
77 FR 43816 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-26
... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2012-0012] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to alter a system of records... OSD Federal Register Liaison Officer, Department of Defense. F033 AFCA C SYSTEM NAME: USAF Information...
32 CFR 806b.53 - Training tools.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Training tools. 806b.53 Section 806b.53 National... Training § 806b.53 Training tools. Helpful resources include: (a) The Air Force Freedom of Information Act Web page which includes a Privacy Overview, Privacy Act training slides, the Air Force systems of...
75 FR 14580 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2010-0008] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to amend a system of records... S. Bryman, Alternate OSD Federal Register Liaison Officer, Department of Defense. F036 AFSPC A...
78 FR 68480 - Sunshine Act Meetings; National Science Board
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-14
..., December 11, 2013, 6:00 p.m.-7:00 p.m. e.s.t. SUBJECT MATTER: A discussion of the results of the Task Force... NATIONAL SCIENCE FOUNDATION Sunshine Act Meetings; National Science Board The National Science Board's Task Force on Administrative Burdens, pursuant to NSF regulations (45 CFR Part 614), the...
76 FR 12084 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2011-0008] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice To Alter a System of Records... Liaison Officer, Department of Defense. F011 AF XO A System name: Aviation Resource Management System...
78 FR 5789 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2013-0005] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to alter a System of Records.... Aaron Siegel, Alternate OSD Federal Register Liaison Officer, Department of Defense. F036 AF PC U System...
Cho, Nakwon
1980-01-01
A positive acting valve suitable for operation in a corrosive environment is provided. The valve includes a hollow valve body defining an open-ended bore for receiving two, axially aligned, spaced-apart, cylindrical inserts. One insert, designated the seat insert, terminates inside the valve body in an annular face which lies within plane normal to the axis of the two inserts. An elastomeric O-ring seal is disposed in a groove extending about the annular face. The other insert, designated the wedge insert, terminates inside the valve body in at least two surfaces oppositely inclined with respect to each other and with respect to a plane normal to the axis of the two inserts. An elongated reciprocable gate, movable between the two inserts along a path normal to the axis of the two inserts, has a first flat face portion disposed adjacent and parallel to the annular face of the seat insert. The gate has a second face portion opposite to the first face portion provided with at least two oppositely inclined surfaces for mating with respective inclined surfaces of the wedge insert. An opening is provided through the gate which registers with a flow passage through the two inserts when the valve is open. Interaction of the respective inclined surfaces of the gate and wedge insert act to force the first flat face portion of the gate against the O-ring seal in the seat insert at the limits of gate displacement where it reaches its respective fully open and fully closed positions.
Hydrodynamic forces on inundated bridge decks
DOT National Transportation Integrated Search
2009-05-01
The hydrodynamic forces experienced by an inundated bridge deck have great importance in the design of bridges. Specifically, the drag force, lift force, and the moment acting on the bridge deck under various levels of inundation and a range of flow ...
Mathematical modelling and numerical simulation of forces in milling process
NASA Astrophysics Data System (ADS)
Turai, Bhanu Murthy; Satish, Cherukuvada; Prakash Marimuthu, K.
2018-04-01
Machining of the material by milling induces forces, which act on the work piece material, tool and which in turn act on the machining tool. The forces involved in milling process can be quantified, mathematical models help to predict these forces. A lot of research has been carried out in this area in the past few decades. The current research aims at developing a mathematical model to predict forces at different levels which arise machining of Aluminium6061 alloy. Finite element analysis was used to develop a FE model to predict the cutting forces. Simulation was done for varying cutting conditions. Different experiments was designed using Taguchi method. A L9 orthogonal array was designed and the output was measure for the different experiments. The same was used to develop the mathematical model.
Numerical Investigation of Rockfall Impacts on Muckpiles for Underground Portals
NASA Astrophysics Data System (ADS)
Effeindzourou, Anna; Giacomini, Anna; Thoeni, Klaus; Sloan, Scott W.
2017-06-01
Small-scale waste rock piles or muckpiles are commonly used as energy absorption barriers in various surface mining applications. This paper numerically investigates the impact behaviour of blocks on muckpiles used as cushion layer on top of underground portal entries. A three-dimensional discrete element model is implemented into the open-source framework YADE and validated using full-scale experimental data. The model allows estimating the energy absorption capacity of the muckpile and the impact forces acting on the portal structure. It also provides valuable information on the rebound characteristics which are useful for the definition of the potential safety areas in the vicinity of an underground entry. In order to show its capabilities, the model is applied to a large number of cases representing potential design conditions. The influence of block mass, impact velocity and absorbing cushion thickness on the forces at the base of the muckpile and the rebound trajectories after impact are investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Land, T.A.; De Yoreo, J.J.; Malkin, A.J.
1996-05-01
The evolution of surface morphology and step dynamics during growth of rhombohedral crystals of the protein canavalin and crystals of the cubic satellite tobacco mosaic virus (STMV) have been investigated for the first time by in situ atomic force microscopy. These two crystals were observed to grow by very different mechanisms. Growth of canavalin occurs on complex vicinal hillocks formed by multiple, independently acting screw dislocations. Small clusters were observed on the terraces. STMV on the other hand, was observed to grow by 2D nucleation of islands. No dislocations were found on the crystal. The results are used to determinemore » the growth mechanisms and estimate the fundamental materials parameters. The images also illustrate the important mechanism of defect incorporation and provide insight to the processes that limit the growth rate and uniformity of these crystals.« less
Analysis of the particle stability in a new designed ultrasonic levitation device.
Baer, Sebastian; Andrade, Marco A B; Esen, Cemal; Adamowski, Julio Cezar; Schweiger, Gustav; Ostendorf, Andreas
2011-10-01
The use of acoustic levitation in the fields of analytical chemistry and in the containerless processing of materials requires a good stability of the levitated particle. However, spontaneous oscillations and rotation of the levitated particle have been reported in literature, which can reduce the applicability of the acoustic levitation technique. Aiming to reduce the particle oscillations, this paper presents the analysis of the particle stability in a new acoustic levitator device. The new acoustic levitator consists of a piezoelectric transducer with a concave radiating surface and a concave reflector. The analysis is conducted by determining numerically the axial and lateral forces that act on the levitated object and by measuring the oscillations of a sphere particle by a laser Doppler vibrometer. It is shown that the new levitator design allows to increase the lateral forces and reduce significantly the lateral oscillations of the levitated object.
Natural Curvature as Effective Confinement in Elastic Sheets
NASA Astrophysics Data System (ADS)
Albarran, Octavio; Katifori, Eleni; Goehring, Lucas
The wrinkling and folding transitions of thin elastic sheets have been extensively studied in the last decade. The exchange of energy from stretching to bending acts as a paradigm for a wide range of elastic instabilities, including the wrinkling of the gut, and the crinkling of leaves. In two dimensions this type of problem is typically considered by the model of an Euler-elastica in compressive confinement. We show that, even without any external forces, an elastic surface supported by a fluid can bend and wrinkle when it acquires a non-zero natural curvature. Locally, we will demonstrate how a preferential curvature can be related to an effective compression, and hence a confining force that can vary spatially. This suggests a simple experimental setup, where we have characterised a variety of wrinkle patterns that can be generated for different mechanical properties and natural curvatures.
32 CFR 806b.1 - Summary of revisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for the Air Force Privacy Program from Air Force Communications and Information Center to the Air Force Chief Information Officer; prescribes Air Force Visual Aid 33-276, Privacy Act Label as optional... are new or have major changes; changes appeal processing from Air Force Communications and Information...
Dynamic response of sand particles impacted by a rigid spherical object
NASA Astrophysics Data System (ADS)
Youplao, P.; Takita, A.; Nasbey, H.; Yupapin, P. P.; Fujii, Y.
2018-06-01
A method for measuring the dynamic impact responses that acting on a spherical object while dropping and colliding with dried sand, such as the velocity, displacement, acceleration, and resultant force, is presented and discussed. In the experiment, a Michelson-type laser interferometer is employed to obtain the velocity of the spherical stainless steel object. Then the obtained time velocity profile is used to calculate the acceleration, the displacement, and the inertial force acting on the observed sand particles. Furthermore, a high-speed camera is employed to observe the behavior of the sand during the collision. From the experimental results with the sampling interval for frequencies calculation of 1 ms, the combined standard uncertainty in the instantaneous value of the impact force acts on the observed object is obtained and approximated to 0.49 N, which is related to a corresponding 4.07% of the maximum value at 12.05 N of the impact force.
Correlation between surface morphology and surface forces of protein A adsorbed on mica.
Ohnishi, S; Murata, M; Hato, M
1998-01-01
We have investigated the morphology and surface forces of protein A adsorbed on mica surface in the protein solutions of various concentrations. The force-distance curves, measured with a surface force apparatus (SFA), were interpreted in terms of two different regimens: a "large-distance" regimen in which an electrostatic double-layer force dominates, and an "adsorbed layer" regimen in which a force of steric origin dominates. To further clarify the forces of steric origin, the surface morphology of the adsorbed protein layer was investigated with an atomic force microscope (AFM) because the steric repulsive forces are strongly affected by the adsorption mode of protein A molecules on mica. At lower protein concentrations (2 ppm, 10 ppm), protein A molecules were adsorbed "side-on" parallel to the mica surfaces, forming a monolayer of approximately 2.5 nm. AFM images at higher concentrations (30 ppm, 100 ppm) showed protruding structures over the monolayer, which revealed that the adsorbed protein A molecules had one end oriented into the solution, with the remainder of each molecule adsorbed side-on to the mica surface. These extending ends of protein A overlapped each other and formed a "quasi-double layer" over the mica surface. These AFM images proved the existence of a monolayer of protein A molecules at low concentrations and a "quasi-double layer" with occasional protrusions at high concentrations, which were consistent with the adsorption mode observed in the force-distance curves. PMID:9449346
Mental capacity and decision making: defining capacity.
Dimond, Bridgit
The Mental Capacity Act 2005 came fully into force on 1st October 2007 (some sections came into force on 1 April 2007). This series of articles considers some of the key features of the Act, including the concepts of best interests, the lasting power of attorney, the role of the new Court of Protection, the Office of Public Guardian and the deputies of the Court, to name but a few. This first article looks at the central feature of the Act: how mental capacity is determined.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... of Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental... Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental Policy Act, and... coal mining operations under the Clean Water Act, National Environmental Policy Act, and the...
NASA Astrophysics Data System (ADS)
Sanada, Masakazu; Tamada, Osamu; Ishikawa, Atsushi; Kawai, Akira
2005-05-01
Adhesion property of resist is characterized with DPAT (direct peeling with atomic force microscope (AFM) tip) method using 193 nm resist patterns of 180 nm dot shape which were developed for various developing time between 12 and 120 seconds in order to analyze the phenomenon which the short develop time process had led to suppress the pattern collapse. Surface free energy and refractive index of resist film treated with the developing time were also investigated from a thermodynamic point of view. The balance model among surface energy was adopted for analyzing intrusion phenomenon of developer solution into the resist-substrate interface. It can be explained quantitatively that the intrusion energy of developer solution acts to weaken the adhesion strength of resist pattern to the substrate. Furthermore, the intrusion energy became larger with increasing developing time. Analysis with the DPAT method indicates that the pattern collapse occurs accompanied with interface and cohesion destruction. Interface-scientifically speaking, the short develop time process proved to be effective to suppress the pattern collapse because of higher adhesion energy of the resist pattern to the substrate in shorter developing time.
Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow
NASA Astrophysics Data System (ADS)
Wang, Zhen-guo; Wu, Liyin; Li, Qinglian; Li, Chun
2014-09-01
Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. The injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674-2686 (2008)] and Wang et al. [AIAA J. 50, 1360-1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.
Influence of the arc plasma parameters on the weld pool profile in TIG welding
NASA Astrophysics Data System (ADS)
Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.
2014-11-01
Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.
Surface Roughness Model Based on Force Sensors for the Prediction of the Tool Wear
de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel
2014-01-01
In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained. PMID:24714391
Critical Casimir effect for colloids close to chemically patterned substrates.
Tröndle, M; Kondrat, S; Gambassi, A; Harnau, L; Dietrich, S
2010-08-21
Colloids immersed in a critical or near-critical binary liquid mixture and close to a chemically patterned substrate are subject to normal and lateral critical Casimir forces of dominating strength. For a single colloid, we calculate these attractive or repulsive forces and the corresponding critical Casimir potentials within mean-field theory. Within this approach we also discuss the quality of the Derjaguin approximation and apply it to Monte Carlo simulation data available for the system under study. We find that the range of validity of the Derjaguin approximation is rather large and that it fails only for surface structures which are very small compared to the geometric mean of the size of the colloid and its distance from the substrate. For certain chemical structures of the substrate, the critical Casimir force acting on the colloid can change sign as a function of the distance between the particle and the substrate; this provides a mechanism for stable levitation at a certain distance which can be strongly tuned by temperature, i.e., with a sensitivity of more than 200 nm/K.
NASA Technical Reports Server (NTRS)
Smith, Todd E.
1991-01-01
An aeroelastic analysis is developed which has general application to all types of axial-flow turbomachinery blades. The approach is based on linear modal analysis, where the blade's dynamic response is represented as a linear combination of contributions from each of its in-vacuum free vibrational modes. A compressible linearized unsteady potential theory is used to model the flow over the oscillating blades. The two-dimensional unsteady flow is evaluated along several stacked axisymmetric strips along the span of the airfoil. The unsteady pressures at the blade surface are integrated to result in the generalized force acting on the blade due to simple harmonic motions. The unsteady aerodynamic forces are coupled to the blade normal modes in the frequency domain using modal analysis. An iterative eigenvalue problem is solved to determine the stability of the blade when the unsteady aerodynamic forces are included in the analysis. The approach is demonstrated by applying it to a high-energy subsonic turbine blade from a rocket engine turbopump power turbine. The results indicate that this turbine could undergo flutter in an edgewise mode of vibration.
32 CFR 806b.4 - Privacy Act complaints.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 6 2014-07-01 2014-07-01 false Privacy Act complaints. 806b.4 Section 806b.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT PROGRAM Overview of the Privacy Act Program § 806b.4 Privacy Act complaints. (a) Process Privacy Act...
32 CFR 806b.4 - Privacy Act complaints.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Privacy Act complaints. 806b.4 Section 806b.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT PROGRAM Overview of the Privacy Act Program § 806b.4 Privacy Act complaints. (a) Process Privacy Act...
32 CFR 806b.4 - Privacy Act complaints.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Privacy Act complaints. 806b.4 Section 806b.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT PROGRAM Overview of the Privacy Act Program § 806b.4 Privacy Act complaints. (a) Process Privacy Act...
32 CFR 806b.4 - Privacy Act complaints.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 6 2012-07-01 2012-07-01 false Privacy Act complaints. 806b.4 Section 806b.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT PROGRAM Overview of the Privacy Act Program § 806b.4 Privacy Act complaints. (a) Process Privacy Act...
32 CFR 806b.4 - Privacy Act complaints.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Privacy Act complaints. 806b.4 Section 806b.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT PROGRAM Overview of the Privacy Act Program § 806b.4 Privacy Act complaints. (a) Process Privacy Act...
Influence of Casimir-Lifshitz forces on actuation dynamics of MEMS
NASA Astrophysics Data System (ADS)
Broer, Wijnand; Palasantzas, George; Knoester, Jasper; Svetovoy, Vitaly
2013-03-01
Electromagnetic fluctuations generate forces between neutral bodies known as Casimir-Lifshitz forces, of which van der Waals forces are special cases, and which can become important in micromechanical systems (MEMS). For surface areas big enough but gaps small enough, the Casimir force can possibly draw and lock MEMS components together, an effect called stiction, causing device malfunction. Alternatively, stiction can also be exploited to add new functionalities to MEMS architecture. Here, using as inputs the measured frequency dependent dielectric response and surface roughness statistics from Atomic Force Microscopy (AFM) images, we perform the first realistic calculation of MEMS actuation. For our analysis the Casimir force is combined with the electrostatic force between rough surfaces to counterbalance the elastic restoring force. It is found that, even though surface roughness has an adverse effect on the availability of (stable) equilibria, it ensures that those stable equilibria can be reached more easily than in the case of flat surfaces. Hence our results can have significant implications on how to design MEM surfaces. The author would like this abstract to appear in a Casimir related session.
Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko
2016-10-01
Various molecular interaction forces are generated during protein adsorption process on material surfaces. Thus, it is necessary to control them to suppress protein adsorption and the subsequent cell and tissue responses. A series of binary copolymer brush layers were prepared via surface-initiated atom transfer radical polymerization, by mixing the cationic monomer unit and anionic monomer unit randomly in various ratios. Surface characterization revealed that the constructed copolymer brush layers exhibited an uniform super-hydrophilic nature and different surface potentials. The strength of the electrostatic interaction forces operating on these mixed-charge copolymer brush surfaces was evaluated quantitatively using force-versus-distance (f-d) curve measurements by atomic force microscopy (AFM) and probes modified by negatively charged carboxyl groups or positively charged amino groups. The electrostatic interaction forces were determined based on the charge ratios of the copolymer brush layers. Notably, the surface containing equivalent cationic/anionic monomer units hardly interacted with both the charged groups. Furthermore, the protein adsorption force and the protein adsorption mass on these surfaces were examined by AFM f-d curve measurement and surface plasmon resonance measurement, respectively. To clarify the influence of the electrostatic interaction on the protein adsorption behavior on the surface, three kinds of proteins having negative, positive, and relatively neutral net charges under physiological conditions were used in this study. We quantitatively demonstrated that the amount of adsorbed proteins on the surfaces would have a strong correlation with the strength of surface-protein interaction forces, and that the strength of surface-protein interaction forces would be determined from the combination between the properties of the electrostatic interaction forces on the surfaces and the charge properties of the proteins. Especially, the copolymer brush surface composed of equivalent cationic/anionic monomer units exhibited no significant interaction forces, and dramatically suppressed the adsorption of proteins regardless of their charge properties. We conclude that the established methodology could elucidate relationship between the protein adsorption behavior and molecular interaction, especially the electrostatic interaction forces, and demonstrated that the suppression of the electrostatic interactions with the ionic functional groups would be important for the development of new polymeric biomaterials with a high repellency of protein adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Current kinematics and dynamics of Africa and the East African Rift System
NASA Astrophysics Data System (ADS)
Stamps, D. S.; Flesch, L. M.; Calais, E.; Ghosh, A.
2014-06-01
Although the East African Rift System (EARS) is an archetype continental rift, the forces driving its evolution remain debated. Some contend buoyancy forces arising from gravitational potential energy (GPE) gradients within the lithosphere drive rifting. Others argue for a major role of the diverging mantle flow associated with the African Superplume. Here we quantify the forces driving present-day continental rifting in East Africa by (1) solving the depth averaged 3-D force balance equations for 3-D deviatoric stress associated with GPE, (2) inverting for a stress field boundary condition that we interpret as originating from large-scale mantle tractions, (3) calculating dynamic velocities due to lithospheric buoyancy forces, lateral viscosity variations, and velocity boundary conditions, and (4) calculating dynamic velocities that result from the stress response of horizontal mantle tractions acting on a viscous lithosphere in Africa and surroundings. We find deviatoric stress associated with lithospheric GPE gradients are ˜8-20 MPa in EARS, and the minimum deviatoric stress resulting from basal shear is ˜1.6 MPa along the EARS. Our dynamic velocity calculations confirm that a force contribution from GPE gradients alone is sufficient to drive Nubia-Somalia divergence and that additional forcing from horizontal mantle tractions overestimates surface kinematics. Stresses from GPE gradients appear sufficient to sustain present-day rifting in East Africa; however, they are lower than the vertically integrated strength of the lithosphere along most of the EARS. This indicates additional processes are required to initiate rupture of continental lithosphere, but once it is initiated, lithospheric buoyancy forces are enough to maintain rifting.
Surface stress mediated image force and torque on an edge dislocation
NASA Astrophysics Data System (ADS)
Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh
2018-07-01
The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.
76 FR 54742 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
... phone at 703- 696-6488. SUPPLEMENTARY INFORMATION: The Department of the Air Force's notices for systems... individuals covered by the system: Air Force government civilians, vendors doing business with the U.S. Air Force, Air Force active duty military personnel, Air Force reserve personnel, and Air National Guard...
Multi-year predictability in a coupled general circulation model
NASA Astrophysics Data System (ADS)
Power, Scott; Colman, Rob
2006-02-01
Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial “ wings” in the subtropical eastern Pacific. The model and observations exhibit “ENSO-like” decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency (reddens the spectrum) of variability off the equator relative to its equatorial counterpart. At low frequencies, dissipation acts as an additional low pass filter that becomes more effective, as latitude increases. At the same time, ENSO-driven off-equatorial surface heating anomalies drive mixed layer temperature responses in both hemispheres. Both the eastern boundary interactions and the accumulation of surface heat fluxes by the surface mixed layer act to low pass filter the ENSO-forcing. The resulting off-equatorial variability is therefore more coherent with low pass filtered (decadal) ENSO indices [e.g. NINO3 sea-surface temperature (SST)] than with unfiltered ENSO indices. Consequently large correlations between variability and NINO3 extend further poleward on decadal time-scales than they do on interannual time-scales. This explains why decadal ENSO-like patterns have a broader meridional structure than their interannual counterparts. This difference in appearance can occur even if ENSO indices do not have any predictability beyond interannual time-scales. The wings around 15-20°S, and sub-surface variability at many other locations are predictable on interannual and multi-year time-scales. This includes westward propagating internal RWs within about 25° of the equator. The slowest of these take up to 4 years to reach the western boundary. This sub-surface predictability has significant oceanographic interest. However, it is linked to only low levels of SST variability. Consequently, extrapolation of delayed action oscillator theory to decadal time-scales might not be justified.
Modeling and experiments of the adhesion force distribution between particles and a surface.
You, Siming; Wan, Man Pun
2014-06-17
Due to the existence of surface roughness in real surfaces, the adhesion force between particles and the surface where the particles are deposited exhibits certain statistical distributions. Despite the importance of adhesion force distribution in a variety of applications, the current understanding of modeling adhesion force distribution is still limited. In this work, an adhesion force distribution model based on integrating the root-mean-square (RMS) roughness distribution (i.e., the variation of RMS roughness on the surface in terms of location) into recently proposed mean adhesion force models was proposed. The integration was accomplished by statistical analysis and Monte Carlo simulation. A series of centrifuge experiments were conducted to measure the adhesion force distributions between polystyrene particles (146.1 ± 1.99 μm) and various substrates (stainless steel, aluminum and plastic, respectively). The proposed model was validated against the measured adhesion force distributions from this work and another previous study. Based on the proposed model, the effect of RMS roughness distribution on the adhesion force distribution of particles on a rough surface was explored, showing that both the median and standard deviation of adhesion force distribution could be affected by the RMS roughness distribution. The proposed model could predict both van der Waals force and capillary force distributions and consider the multiscale roughness feature, greatly extending the current capability of adhesion force distribution prediction.
2015-12-01
B. THE PROSPECTIVE 2040 7TH FLEET FORCES Based on the current and planned naval forces allocated to 7th Fleet, it is assumed that the Navy’s 2040...approximately 15 percent of The Advanced Surface Force Fleet, or 20 ships, are allocated to 7th Fleet. Furthermore, 12 of The Advanced Surface...production, personnel support for cleanup and recovery efforts, berthing capability, and medical support.90 After determining the critical missions
Force microscopy of layering and friction in an ionic liquid
NASA Astrophysics Data System (ADS)
Hoth, Judith; Hausen, Florian; Müser, Martin H.; Bennewitz, Roland
2014-07-01
The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.
Sensitivity of forces to wall transpiration in flow past an aerofoil
Mao, X.
2015-01-01
The adjoint-based sensitivity analyses well explored in hydrodynamic stability studies are extended to calculate the sensitivity of forces acting on an aerofoil with respect to wall transpiration. The magnitude of the sensitivity quantifies the controllability of the force, and the distribution of the sensitivity represents a most effective control when the control magnitude is small enough. Since the sensitivity to streamwise control is one order smaller than that to the surface-normal one, the work is concentrated on the normal control. In direct numerical simulations of flow around a NACA0024 aerofoil, the unsteady controls are far less effective than the steady control owing to the lock-in effect. At a momentum coefficient of 0.0008 and a maximum control velocity of 3.6% of the free-stream velocity, the steady surface-normal control reduces drag by 20% or enhances lift by up to 140% at Re=1000. A suction around the low-pressure region on the upper surface upstream of the separation point is found to reduce drag and enhance lift. At higher Reynolds numbers, the uncontrolled flow becomes three dimensional and the sensitivity diverges owing to the chaotic dynamics of the flow. Then the mechanism identified at lower Reynolds numbers is exploited to obtain the control, which is localized and can be generated by a limited number of actuators. The control to reduce drag or enhance lift is found to suppress unsteadiness, e.g. vortex shedding and three-dimensional developments. For example, at Re=2000 and α=10°, the control with a momentum coefficient of 0.0001 reduces drag by 20%, enhances lift by up to 200% and leads to a steady controlled flow. PMID:26807041
NASA Astrophysics Data System (ADS)
Arai, Toyoko; Inamura, Ryo; Kura, Daiki; Tomitori, Masahiko
2018-03-01
The kinetic energy of the oscillating cantilever of noncontact atomic force microscopy (nc-AFM) at room temperature was considerably dissipated over regions between a Si adatom and its neighboring rest atom for Si(111 )-(7 ×7 ) in close proximity to a Si tip on the cantilever. However, nc-AFM topographic images showed no atomic features over those regions, which were the hollow sites of the (7 ×7 ). This energy dissipation likely originated from displacement of Si adatoms with respect to the tip over the hollow sites, leading to a lateral shift of the adatoms toward the rest atom. This interaction led to hysteresis over each cantilever oscillation cycle; when the tip was retracted, the Si adatom likely returned to its original position. To confirm the atomic processes involved in the force interactions through Si dangling bonds, the Si(111 )-(7 ×7 ) surface was partly terminated with atomic hydrogen (H) and examined by nc-AFM. When the Si adatoms and/or the rest atoms were terminated with H, the hollow sites were not bright (less dissipation) in images of the energy dissipation channels by nc-AFM. The hollow sites acted as metastable sites for Si adatoms in surface diffusion and atom manipulation; thus, the dissipation energy which is saturated on the tip likely corresponds to the difference in the potential energy between the hollow site and the Si adatom site. In this study, we demonstrated the ability of dissipation channels of nc-AFM to enable visualization of the dynamics of atoms and molecules on surfaces, which cannot be revealed by nc-AFM topographic images alone.
77 FR 77049 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
...; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to delete a System of Records. SUMMARY: The Department of the Air Force is deleting a system of records notice in its existing inventory of record systems subject to the Privacy Act of 1974 (5 U.S.C. 552a), as amended. DATES: This...
78 FR 73508 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-06
... Force's notices for systems of records subject to the Privacy Act of 1974 (5 U.S.C. 552a), as amended....gov/privacy/SORNs/component/airforce/index.html . The proposed systems reports, as required by 5 U.S.C... Volunteer Records. System location: National Museum of the U.S. Air Force, 1100 Spaatz Street, Wright...
76 FR 12082 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
...: The Department of the Air Force's notices for systems of records subject to the Privacy Act of 1974 (5... U.S.C. 5014, Secretary of the Navy; 10 U.S.C. 8013, Secretary of the Air Force; 10 U.S.C. 5043... the military department's board determination and rating schedule. Routine uses of records maintained...
The onset of chaos in orbital pilot-wave dynamics.
Tambasco, Lucas D; Harris, Daniel M; Oza, Anand U; Rosales, Rodolfo R; Bush, John W M
2016-10-01
We present the results of a numerical investigation of the emergence of chaos in the orbital dynamics of droplets walking on a vertically vibrating fluid bath and acted upon by one of the three different external forces, specifically, Coriolis, Coulomb, or linear spring forces. As the vibrational forcing of the bath is increased progressively, circular orbits destabilize into wobbling orbits and eventually chaotic trajectories. We demonstrate that the route to chaos depends on the form of the external force. When acted upon by Coriolis or Coulomb forces, the droplet's orbital motion becomes chaotic through a period-doubling cascade. In the presence of a central harmonic potential, the transition to chaos follows a path reminiscent of the Ruelle-Takens-Newhouse scenario.
On the identification of a harmonic force on a viscoelastic plate from response data
NASA Technical Reports Server (NTRS)
D'Cruz, J.; Crisp, J. D. C.; Ryall, T. G.
1992-01-01
The problem of determining the force acting on a structure from measurements of the response of the structure to the force is an inverse problem. Presented is a method for determining the location, magnitude, and phase of a harmonic point force acting on a simply-supported classical viscoelastic rectangular plate from a number of displacement readings at discrete points on the plate. Presented also is a demonstration of the robustness of the solution technique to the effects of measurement noise as well as a means by which problems involving more general structural and loading configurations may be solved.
Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes
Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.; ...
2016-07-18
The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less
Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.
The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less
Rouge, Clémence; Lhémery, Alain; Ségur, Damien
2013-10-01
An electromagnetic acoustic transducer (EMAT) or a laser used to generate elastic waves in a component is often described as a source of body force confined in a layer close to the surface. On the other hand, models for elastic wave radiation more efficiently handle sources described as distributions of surface stresses. Equivalent surface stresses can be obtained by integrating the body force with respect to depth. They are assumed to generate the same field as the one that would be generated by the body force. Such an integration scheme can be applied to Lorentz force for conventional EMAT configuration. When applied to magnetostrictive force generated by an EMAT in a ferromagnetic material, the same scheme fails, predicting a null stress. Transforming body force into equivalent surface stresses therefore, requires taking into account higher order terms of the force moments, the zeroth order being the simple force integration over the depth. In this paper, such a transformation is derived up to the second order, assuming that body forces are localized at depths shorter than the ultrasonic wavelength. Two formulations are obtained, each having some advantages depending on the application sought. They apply regardless of the nature of the force considered.
Forcing and Responses of the Surface Energy Budget at Summit, Greenland
NASA Astrophysics Data System (ADS)
Miller, Nathaniel B.
Energy exchange at the Greenland Ice Sheet surface governs surface temperature variability, a factor critical for representing increasing surface melt extent, which portends a rise in global sea level. A comprehensive set of cloud, tropospheric, near-surface and sub-surface measurements at Summit Station is utilized to determine the driving forces and subsequent responses of the surface energy budget (SEB). This budget includes radiative, turbulent, and ground heat fluxes, and ultimately controls the evolution of surface temperature. At Summit Station, clouds radiatively warm the surface in all months with an annual average cloud radiative forcing value of 33 W m -2, largely driven by the occurrence of liquid-bearing clouds. The magnitude of the surface temperature response is dependent on how turbulent and ground heat fluxes modulate changes to radiative forcing. Relationships between forcing terms and responding surface fluxes show that changes in the upwelling longwave radiation compensate for 65-85% (50- 60%) of the total change in radiative forcing in the winter (summer). The ground heat flux is the second largest response term (16% annually), especially during winter. Throughout the annual cycle, the sensible heat flux response is comparatively constant (9%) and latent heat flux response is only 1.5%, becoming more of a factor in modulating surface temperature responses during the summer. Combining annual cycles of these responses with cloud radiative forcing results, clouds warm the surface by an estimated 7.8°C annually. A reanalysis product (ERA-I), operational model (CFSv2), and climate model (CESM) are evaluated utilizing the comprehensive set of SEB observations and process-based relationships. Annually, surface temperatures in each model are warmer than observed with overall poor representation of the coldest surface temperatures. Process-based relationships between different SEB flux terms offer insight into how well a modeling framework represents physical processes and the ability to distinguish errors in forcing versus those in physical representation. Such relationships convey that all three models underestimate the response of surface temperatures to changes in radiative forcing. These results provide a method to expose model deficiencies and indicate the importance of representing surface, sub-surface and boundary-layer processes when portraying cloud impacts on surface temperature variability.
Aeroelastic Airworthiness Assesment of the Adaptive Compliant Trailing Edge Flaps
NASA Technical Reports Server (NTRS)
Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat; Ervin, Gregory; Flick, Peter
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) demonstrator is a joint task under the National Aeronautics and Space Administration Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan). The project goal is to develop advanced technologies that enable environmentally friendly aircraft, such as adaptive compliant technologies. The ACTE demonstrator flight-test program encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a modified Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys. The control surfaces developed by FlexSys are a pair of uniquely-designed unconventional flaps to be used as lifting surfaces during flight-testing to validate their structural effectiveness. The unconventional flaps required a multidisciplinary airworthiness assessment to prove they could withstand the prescribed flight envelope. Several challenges were posed due to the large deflections experienced by the structure, requiring non-linear analysis methods. The aeroelastic assessment necessitated both conventional and extensive testing and analysis methods. A series of ground vibration tests (GVTs) were conducted to provide modal characteristics to validate and update finite element models (FEMs) used for the flutter analyses for a subset of the various flight configurations. Numerous FEMs were developed using data from FlexSys and the ground tests. The flap FEMs were then attached to the aircraft model to generate a combined FEM that could be analyzed for aeroelastic instabilities. The aeroelastic analysis results showed the combined system of aircraft and flaps were predicted to have the required flutter margin to successfully demonstrate the adaptive compliant technology. This paper documents the details of the aeroelastic airworthiness assessment described, including the ground testing and analyses, and subsequent flight-testing performed on the unconventional ACTE flaps.
Sarkar, Anwesha; Zhao, Yuanchang; Wang, Yongliang; Wang, Xuefeng
2018-06-25
Integrin-transmitted cellular forces are crucial mechanical signals regulating a vast range of cell functions. Although various methods have been developed to visualize and quantify cellular forces at the cell-matrix interface, a method with high performance and low technical barrier is still in demand. Here we developed a force-activatable coating (FAC), which can be simply coated on regular cell culture apparatus' surfaces by physical adsorption, and turn these surfaces to force reporting platforms that enable cellular force mapping directly by fluorescence imaging. The FAC molecule consists of an adhesive domain for surface coating and a force-reporting domain which can be activated to fluoresce by integrin molecular tension. The tension threshold required for FAC activation is tunable in 10-60 piconewton (pN), allowing the selective imaging of cellular force contributed by integrin tension at different force levels. We tested the performance of two FACs with tension thresholds of 12 and 54 pN (nominal values), respectively, on both glass and polystyrene surfaces. Cellular forces were successfully mapped by fluorescence imaging on all the surfaces. FAC-coated surfaces also enable co-imaging of cellular forces and cell structures in both live cells and immunostained cells, therefore opening a new avenue for the study of the interplay of force and structure. We demonstrated the co-imaging of integrin tension and talin clustering in live cells, and concluded that talin clustering always occurs before the generation of integrin tension above 54 pN, reinforcing the notion that talin is an important adaptor protein for integrin tension transmission. Overall, FAC provides a highly convenient approach that is accessible to general biological laboratories for the study of cellular forces with high sensitivity and resolution, thus holding the potential to greatly boost the research of cell mechanobiology.
NASA Astrophysics Data System (ADS)
Li, Qiang; Popov, Valentin L.
2018-03-01
Recently proposed formulation of the boundary element method for adhesive contacts has been generalized for contacts of power-law graded materials with and without adhesion. Proceeding from the fundamental solution for single force acting on the surface of an elastic half space, first the influence matrix is obtained for a rectangular grid. The inverse problem for the calculation of required stress in the contact area from a known surface displacement is solved using the conjugate-gradient technique. For the transformation between the stresses and displacements, the Fast Fourier Transformation is used. For the adhesive contact of graded material, the detachment criterion based on the energy balance is proposed. The method is validated by comparison with known exact analytical solutions as well as by proving the independence of the mesh size and the grid orientation.
Khodri, Myriam; Izumo, Takeshi; Vialard, Jérôme; Janicot, Serge; Cassou, Christophe; Lengaigne, Matthieu; Mignot, Juliette; Gastineau, Guillaume; Guilyardi, Eric; Lebas, Nicolas; Robock, Alan; McPhaden, Michael J
2018-02-22
The original version of this Article omitted a reference to previous work in 'Mann, M.E., Cane, M.A., Zebiak, S.E., Clement, A., Volcanic and Solar Forcing of the Tropical Pacific Over the Past 1000 Years, J. Climate 18, 447-456 (2005)'. This has been added as reference 62 at the end of the fourth sentence of the fourth paragraph of the Introduction: 'Early studies using simple coupled ocean-atmosphere models 26 proposed that following volcano-induced surface cooling, upwelling in the eastern equatorial Pacific acting on a reduced vertical temperature contrast between the ocean surface and interior leads to anomalous warming in this region, thereby favouring El Niño development the following year 12, 27, 62 .' This has been corrected in the PDF and HTML versions of the Article.
Dynamic Stability and Gravitational Balancing of Multiple Extended Bodies
NASA Technical Reports Server (NTRS)
Quadrelli, Marco
2008-01-01
Feasibility of a non-invasive compensation scheme was analyzed for precise positioning of a massive extended body in free fall using gravitational forces influenced by surrounding source masses in close proximity. The N-body problem of classical mechanics is a paradigm used to gain insight into the physics of the equivalent N-body problem subject to control forces. The analysis addressed how a number of control masses move around the proof mass so that the proof mass position can be accurately and remotely compensated when exogenous disturbances are acting on it, while its sensitivity to gravitational waves remains unaffected. Past methods to correct the dynamics of the proof mass have considered active electrostatic or capacitive methods, but the possibility of stray capacitances on the surfaces of the proof mass have prompted the investigation of other alternatives, such as the method presented in this paper. While more rigorous analyses of the problem should be carried out, the data show that, by means of a combined feedback and feed-forward control approach, the control masses succeeded in driving the proof mass along the specified trajectory, which implies that the proof mass can, in principle, be balanced via gravitational forces only while external perturbations are acting on it. This concept involves the dynamic stability of a group of massive objects interacting gravitationally under active control, and can apply to drag-free control of spacecraft during missions, to successor gravitational wave space borne sensors, or to any application requiring flying objects to be precisely controlled in position and attitude relative to another body via gravitational interactions only.
Hydrophobic interactions between dissimilar surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, R.H.; Flinn, D.H.; Rabinovich, Y.I.
1997-01-15
An atomic force microscope (AFM) was used to measure surface forces between a glass sphere and a silica plate. When the measurements were conducted between untreated surfaces, a short-range hydration force with decay lengths of 0.4 and 3.0 nm was observed. When the surfaces were hydrophobized with octadecyltrichlorosilane (OTS), on the other hand, long-range hydrophobic forces with decay lengths in the range of 2--32 nm were observed. The force measurements were conducted between surfaces having similar and dissimilar hydrophobicities so that the results may be used for deriving an empirical combining rule. It was found that the power law forcemore » constants for asymmetric interactions are close to the geometric means of those for symmetric interactions. Thus, hydrophobic force constants can be combined in the same manner as the Hamaker constants. A plot of the power law force constants versus water contact angles suggests that the hydrophobic force is uniquely determined by contact angle. These results will be useful in predicting hydrophobic forces for asymmetric interactions and in estimating hydrophobic forces from contact angles.« less
Sumriddetchkajorn, Sarun; Chaitavon, Kosom
2006-01-01
A surface plasmon resonance (SPR)-based optical touch sensor structure is proposed that provides high switch sensitivity and requires a weak activating force. Our proposed SPR-based optical touch sensor is arranged in a compact Kretschmann-Raether configuration in which the prism acting as our sensor head is coated with a metal nanofilm. Our optical-based noise rejection scheme relies on wavelength filtering, spatial filtering, and high reflectivity of the metal nanofilm, whereas our electrical-based noise reduction is obtained by means of an electrical signal filtering process. In our experimental proof of concept, a visible laser diode at a 655 nm centered wavelength and a prism made from BK7 with a 50 nm thick gold layer on the touching surface are used, showing a 7.85 dB optical contrast ratio for the first touch. An estimated weak mechanical force of <0.1 N is also observed that sufficiently activates the desired electrical load. It is tested for 51 operations without sensor malfunction under typical and very high illumination of 342 and 3000 lx, respectively. In this case, a measured average optical contrast of 0.80 dB is obtained with a +/-0.47 dB fluctuation, implying that the refractive index change in a small 3.2% of the overall active area is enough for our SPR-based optical touch sensor to function properly. Increasing optical contrast in our SPR-based optical touch sensor can be accomplished by using a higher polarization-extinction ratio and a narrower-bandwidth optical beam. A controlled environment and gold-coated surface using the thin-film sputtering technique can help improve the reliability and the durability of our SPR-based optical touch sensor. Other key features include ease of implementation, prevention of a light beam becoming incident on the user, and the ability to accept both strong and weak activating forces.
Subtidal sea level variability in a shallow Mississippi River deltaic estuary, Louisiana
Snedden, G.A.; Cable, J.E.; Wiseman, W.J.
2007-01-01
The relative roles of river, atmospheric, and tidal forcings on estuarine sea level variability are examined in Breton Sound, a shallow (0.7 m) deltaic estuary situated in an interdistributary basin on the Mississippi River deltaic plain. The deltaic landscape contains vegetated marshes, tidal flats, circuitous channels, and other features that frictionally dissipate waves propagating through the system. Direct forcing by local wind stress over the surface of the estuary is minimal, owing to the lack of significant fetch due to landscape features of the estuary. Atmospheric forcing occurs almost entirely through remote forcing, where alongshore winds facilitate estuary-shelf exchange through coastal Ekman convergence. The highly frictional nature of the deltaic landscape causes the estuary to act as a low-pass filter to remote atmospheric forcing, where high-frequency, coastally-induced fluctuations are significantly damped, and the damping increases with distance from the estuary mouth. During spring, when substantial quantities of controlled Mississippi River inputs (q?? = 62 m3 s-1) are discharged into the estuary, upper estuary subtidal sea levels are forced by a combination of river and remote atmospheric forcings, while river effects are less clear downestuary. During autumn (q?? = 7 m3 s-1) sea level variability throughout the estuary is governed entirely by coastal variations at the marine boundary. A frequency-dependent analytical model, previously used to describe sea level dynamics forced by local wind stress and coastal forcing in deeper, less frictional systems, is applied in the shallow Breton Sound estuary. In contrast to deeper systems where coastally-induced fluctuations exhibit little or no frictional attenuation inside the estuary, these fluctuations in the shallow Breton Sound estuary show strong frequency-dependent amplitude reductions that extend well into the subtidal frequency spectrum. ?? 2007 Estuarine Research Federation.
78 FR 29123 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2013-0018] Proposed Collection; Comment Request AGENCY: Department of Defense/Department of the Air Force/Headquarters, Air Force Safety... Act of 1995, the Department of the Air Force announces a proposed public information collection and...
Manipulation of double-stranded DNA melting by force
NASA Astrophysics Data System (ADS)
Singh, Amit Raj; Granek, Rony
2017-09-01
By integrating elasticity—as described by the Gaussian network model—with bond binding energies that distinguish between different base-pair identities and stacking configurations, we study the force induced melting of a double-stranded DNA (dsDNA). Our approach is a generalization of our previous study of thermal dsDNA denaturation [J. Chem. Phys. 145, 144101 (2016), 10.1063/1.4964285] to that induced by force at finite temperatures. It allows us to obtain semimicroscopic information about the opening of the chain, such as whether the dsDNA opens from one of the ends or from the interior, forming an internal bubble. We study different types of force manipulation: (i) "end unzipping," with force acting at a single end base pair perpendicular to the helix, (ii) "midunzipping," with force acting at a middle base pair perpendicular to the helix, and (iii) "end shearing," where the force acts at opposite ends along the helix. By monitoring the free-energy landscape and probability distribution of intermediate denaturation states, we show that different dominant intermediate states are stabilized depending on the type of force manipulation used. In particular, the bubble state of the sequence L60B36, which we have previously found to be a stable state during thermal denaturation, is absent for end unzipping and end shearing, whereas very similar bubbles are stabilized by midunzipping, or when the force location is near the middle of the chain. Ours results offer a simple tool for stabilizing bubbles and loops using force manipulations at different temperatures, and may implicate on the mechanism in which DNA enzymes or motors open regions of the chain.
Wiesing, M; de Los Arcos, T; Gebhard, M; Devi, A; Grundmeier, G
2017-12-20
The structural and electronic origins of the interactions between polycarbonate and sputter deposited TiAlN were analysed using a combined electron and force spectroscopic approach. Interaction forces were measured by means of dynamic force spectroscopy and the surface polarizability was analysed by X-ray photoelectron valence band spectroscopy. It could be shown that the adhesive interactions between polycarbonate and TiAlN are governed by van der Waals forces. Different surface cleansing and oxidizing treatments were investigated and the effect of the surface chemistry on the force interactions was analysed. Intense surface oxidation resulted in a decreased adhesion force by a factor of two due to the formation of a 2 nm thick Ti 0.21 Al 0.45 O surface oxide layer. The origin of the residual adhesion forces caused by the mixed Ti 0.21 Al 0.45 O surface oxide was clarified by considering the non-retarded Hamaker coefficients as calculated by Lifshitz theory, based on optical data from Reflection Electron Energy Loss Spectroscopy. This disclosed increased dispersion forces of Ti 0.21 Al 0.45 O due to the presence of Ti(iv) ions and related Ti 3d band optical transitions.
Contact geometry and mechanics predict friction forces during tactile surface exploration.
Janko, Marco; Wiertlewski, Michael; Visell, Yon
2018-03-20
When we touch an object, complex frictional forces are produced, aiding us in perceiving surface features that help to identify the object at hand, and also facilitating grasping and manipulation. However, even during controlled tactile exploration, sliding friction forces fluctuate greatly, and it is unclear how they relate to the surface topography or mechanics of contact with the finger. We investigated the sliding contact between the finger and different relief surfaces, using high-speed video and force measurements. Informed by these experiments, we developed a friction force model that accounts for surface shape and contact mechanical effects, and is able to predict sliding friction forces for different surfaces and exploration speeds. We also observed that local regions of disconnection between the finger and surface develop near high relief features, due to the stiffness of the finger tissues. Every tested surface had regions that were never contacted by the finger; we refer to these as "tactile blind spots". The results elucidate friction force production during tactile exploration, may aid efforts to connect sensory and motor function of the hand to properties of touched objects, and provide crucial knowledge to inform the rendering of realistic experiences of touch contact in virtual reality.
77 FR 60029 - Strengthening Protections Against Trafficking in Persons in Federal Contracts
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
... persons'')--defined in section 103 of the TVPA, 22 U.S.C. 7102(8), to include sex trafficking in which a commercial sex act is induced by force, fraud, or coercion, or in which the person induced to perform such... procurement of commercial sex acts, or the use of forced labor in the performance of the contract or...
Effects of Deformation on Drag and Lift Forces Acting on a Droplet in a Shear Flow
NASA Astrophysics Data System (ADS)
Suh, Youngho; Lee, Changhoon
2010-11-01
The droplet behavior in a linear shear flow is studied numerically to investigate the effect of deformation on the drag and lift acting on droplet. The droplet shape is calculated by a level set method which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid- gas interface. By adopting the feedback forces which can maintain the droplet at a fixed position, we determine the acting force on a droplet in shear flow field with efficient handling of deformation. Based on the numerical results, drag and lift forces acting on a droplet are observed to depend strongly on the deformation. Droplet shapes are observed to be spherical, deformed, and oscillating depending on the Reynolds number. Also, the present method is proven to be applicable to a three- dimensional deformation of droplet in the shear flow, which cannot be properly analyzed by the previous studies. Comparisons of the calculated results by the current method with those obtained from body-fitted methods [Dandy and Leal, J. Fluid Mech. 208, 161 (1989)] and empirical models [Feng and Beard, J. Atmos. Sci. 48, 1856 (1991)] show good agreement.
Electrokinetic motion of a rectangular nanoparticle in a nanochannel
NASA Astrophysics Data System (ADS)
Movahed, Saeid; Li, Dongqing
2012-08-01
This article presents a theoretical study of electrokinetic motion of a negatively charged cubic nanoparticle in a three-dimensional nanochannel with a circular cross-section. Effects of the electrophoretic and the hydrodynamic forces on the nanoparticle motion are examined. Because of the large applied electric field over the nanochannel, the impact of the Brownian force is negligible in comparison with the electrophoretic and the hydrodynamic forces. The conventional theories of electrokinetics such as the Poisson-Boltzmann equation and the Helmholtz-Smoluchowski slip velocity approach are no longer applicable in the small nanochannels. In this study, and at each time step, first, a set of highly coupled partial differential equations including the Poisson-Nernst-Plank equation, the Navier-Stokes equations, and the continuity equation was solved to find the electric potential, ionic concentration field, and the flow field around the nanoparticle. Then, the electrophoretic and hydrodynamic forces acting on the negatively charged nanoparticle were determined. Following that, the Newton second law was utilized to find the velocity of the nanoparticle. Using this model, effects of surface electric charge of the nanochannel, bulk ionic concentration, the size of the nanoparticle, and the radius of the nanochannel on the nanoparticle motion were investigated. Increasing the bulk ionic concentration or the surface charge of the nanochannel will increase the electroosmotic flow, and hence affect the particle's motion. It was also shown that, unlike microchannels with thin EDL, the change in nanochannel size will change the EDL field and the ionic concentration field in the nanochannel, affecting the particle's motion. If the nanochannel size is fixed, a larger particle will move faster than a smaller particle under the same conditions.
Patra, Aditya Prasad; Sharma, Shobhona; Ainavarapu, Sri Rama Koti
2017-02-10
The most effective vaccine candidate of malaria is based on the Plasmodium falciparum circumsporozoite protein (CSP), a major surface protein implicated in the structural strength, motility, and immune evasion properties of the infective sporozoites. It is suspected that reversible conformational changes of CSP are required for infection of the mammalian host, but the detailed structure and dynamic properties of CSP remain incompletely understood, limiting our understanding of its function in the infection. Here, we report the structural and mechanical properties of the CSP studied using single-molecule force spectroscopy on several constructs, one including the central region of CSP, which is rich in NANP amino acid repeats (CSP rep ), and a second consisting of a near full-length sequence without the signal and anchor hydrophobic domains (CSP ΔHP ). Our results show that the CSP rep is heterogeneous, with 40% of molecules requiring virtually no mechanical force to unfold (<10 piconewtons (pN)), suggesting that these molecules are mechanically compliant and perhaps act as entropic springs, whereas the remaining 60% are partially structured with low mechanical resistance (∼70 pN). CSP ΔHP having multiple force peaks suggests specifically folded domains, with two major populations possibly indicating the open and collapsed forms. Our findings suggest that the overall low mechanical resistance of the repeat region, exposed on the outer surface of the sporozoites, combined with the flexible full-length conformations of CSP, may provide the sporozoites not only with immune evasion properties, but also with lubricating capacity required during its navigation through the mosquito and vertebrate host tissues. We anticipate that these findings would further assist in the design and development of future malarial vaccines. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Bondarenko, J. A.; Fedorenko, M. A.; Pogonin, A. A.
2018-03-01
The loading and unloading units and grinding mills of raw devices have internal cone type or pipe screw perceive load of incoming and outgoing material. The main part of the support assembly is a pin. Mounting seats for the pipe screws cone have traces of deformation and work hardening, while they themselves have wear of pins and deformation of the inner and outer cylindrical working surface. In the mill body, there are constantly acting dynamic forces causing vibration, which are transmitted to the stud and inner accelerating elements. Under the influence of stress and vibration, the housing spigot is in the stress-compressed state and stretched vertically and horizontally. As a result, the insertion element is deformed and weakened in the fixture. A moving element appears in the gap leading to the fact that it drops lfeedstock and under the influence of variable loads it is destroyed, as well as the seating surfaces of the insert pin member.
NASA Astrophysics Data System (ADS)
Morales, M.; Droppa, R., Jr.; de Mello, S. R. S.; Figueroa, C. A.; Zanatta, A. R.; Alvarez, F.
2018-01-01
In this work we report an experimental approach by combining in situ sequential top-down and bottom-up processes to induce the organization of nanosized nickel particles. The top-down process consists in xenon ion bombardment of a crystalline silicon substrate to generate a pattern, followed by depositing a ˜15 nm titanium oxynitride thin film to act as a metallic diffusion barrier. Then, metallic nanoparticles are deposited by argon ion sputtering a pure nickel target, and the sample is annealed to promote the organization of the nickel nanoparticles (a bottom-up process). According to the experimental results, the surface pattern and the substrate biaxial surface strain are the driving forces behind the alignment and organization of the nickel nanoparticles. Moreover, the ratio between the F of metallic atoms arriving at the substrate relative to its surface diffusion mobility determines the nucleation regime of the nickel nanoparticles. These features are presented and discussed considering the existing technical literature on the subject.
Al-Harbi, Albandaree K.
2018-01-01
The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution. PMID:29337992
Emran, Khadijah M; Al-Harbi, Albandaree K
2018-01-01
The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.
Bastounis, Effie E; Yeh, Yi-Ting; Theriot, Julie A
2018-05-02
Extracellular matrix stiffness (ECM) is one of the many mechanical forces acting on mammalian adherent cells and an important determinant of cellular function. While the effect of ECM stiffness on many aspects of cellular behavior has been previously studied, how ECM stiffness might mediate susceptibility of host cells to infection by bacterial pathogens was hitherto unexplored. To address this open question, we manufactured hydrogels of varying physiologically-relevant stiffness and seeded human microvascular endothelial cells (HMEC-1) on them. We then infected HMEC-1 with the bacterial pathogen Listeria monocytogenes (Lm), and found that adhesion of Lm onto host cells increases monotonically with increasing matrix stiffness, an effect that requires the activity of focal adhesion kinase (FAK). We identified cell surface vimentin as a candidate surface receptor mediating stiffness-dependent adhesion of Lm to HMEC-1 and found that bacterial infection of these host cells is decreased when the amount of surface vimentin is reduced. Our results provide the first evidence that ECM stiffness can mediate the susceptibility of mammalian host cells to infection by a bacterial pathogen.
Zhang, Ming; Akbulut, Mustafa
2011-10-18
The increased production and commercial use of nanoparticulate drug delivery systems combined with a lack of regulation to govern their disposal may result in their introduction to soils and ultimately into groundwater systems. To better understand how such particles interact with environmentally significant interfaces, we study the adsorption, desorption, and removal behavior of poly(ethylene glycol)-based nanoparticulate drug delivery systems on and from cellulose, which is the most common organic compound on Earth. It is shown that such an adsorption process is only partially reversible, and most of the adsorbate particles do not desorb from the cellulose surface even upon rinsing with a large amount of water. The rate constant of adsorption decreases with increasing particle size. Furthermore, hydrodynamic forces acting parallel to the surfaces are found to be of great importance in the context of particle dynamics near the cellulose surface, and ultimately responsible for the removal of some fraction of particles via rolling or sliding. As the particle size increases, the removal rates of the particles increase for a given hydrodynamical condition. © 2011 American Chemical Society
Guo, Kun; Chen, Xin; Freguia, Stefano; Donose, Bogdan C
2013-09-15
This study introduces a novel and simple method to covalently graft neutral red (NR) onto carbon surfaces based on spontaneous reduction of in situ generated NR diazonium salts. Immobilization of neutral red on carbon surface was achieved by immersing carbon electrodes in NR-NaNO2-HCl solution. The functionalized electrodes were characterized by cyclic voltammetry (CV), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Results demonstrated that NR attached in this way retains high electrochemical activity and proved that NR was covalently bound to the carbon surface via the pathway of reduction of aryl diazonium salts. The NR-modified electrodes showed a good stability when stored in PBS solution in the dark. The current output of an acetate-oxidising microbial bioanode made of NR-modified graphite felts were 3.63±0.36 times higher than the unmodified electrodes, which indicates that covalently bound NR can act as electron transfer mediator to facilitate electron transfer from bacteria to electrodes. Copyright © 2013 Elsevier B.V. All rights reserved.
On the predictability of land surface fluxes from meteorological variables
NASA Astrophysics Data System (ADS)
Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.
2018-01-01
Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.
78 FR 28895 - Sunshine Act Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... thanking Amy Reagan for her service on the Pro Bono Task Force (Resolution 2013-XXX) 4. Consider and act on... Corporate Secretary (Resolution 2013-XXX) 7. Public comment 8. Consider and act on other business 9...
The Impacts of Daily Surface Forcing in the Upper Ocean over Tropical Pacific: A Numerical Study
NASA Technical Reports Server (NTRS)
Sui, C.-H.; Rienecker, Michele M.; Li, Xiaofan; Lau, William K.-M.; Laszlo, Istvan; Pinker, Rachel T.
2001-01-01
Tropical Pacific Ocean is an important region that affects global climate. How the ocean responds to the atmospheric surface forcing (surface radiative, heat and momentum fluxes) is a major topic in oceanographic research community. The ocean becomes warm when more heat flux puts into the ocean. The monthly mean forcing has been used in the past years since daily forcing was unavailable due to the lack of observations. The daily forcing is now available from the satellite measurements. This study investigates the response of the upper ocean over tropical Pacific to the daily atmospheric surface forcing. The ocean surface heat budgets are calculated to determine the important processes for the oceanic response. The differences of oceanic responses between the eastern and western Pacific are intensively discussed.
Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh
2013-05-08
We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles.
Improving the contact resistance at low force using gold coated carbon nanotube surfaces
NASA Astrophysics Data System (ADS)
McBride, J. W.; Yunus, E. M.; Spearing, S. M.
2010-04-01
Investigations to determine the electrical contact performance under repeated cycles at low force conditions for carbon-nanotube (CNT) coated surfaces were performed. The surfaces under investigation consisted of multi-walled CNT synthesized on a silicon substrate and coated with a gold film. These planar surfaces were mounted on the tip of a PZT actuator and contacted with a plated Au hemispherical probe. The dynamic applied force used was 1 mN. The contact resistance (Rc) of these surfaces was investigated with the applied force and with repeated loading cycles performed for stability testing. The surfaces were compared with a reference Au-Au contact under the same experimental conditions. This initial study shows the potential for the application of gold coated CNT surfaces as an interface in low force electrical contact applications.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Chang, Yehui; Wang, Hailan; Schubert, Siegfried D.
2016-01-01
We perform a series of stationary wave model (SWM) experiments in which the boreal summer atmosphere is forced, over a number of locations in the continental U.S., with an idealized diabatic heating anomaly that mimics the atmospheric heating associated with a dry land surface. For localized heating within a large portion of the continental interior, regardless of the specific location of this heating, the spatial pattern of the forced atmospheric circulation anomaly (in terms of 250-mb eddy streamfunction) is largely the same: a high anomaly forms over west central North America and a low anomaly forms to the east. In supplemental atmospheric general circulation model (AGCM) experiments, we find similar results; imposing soil moisture dryness in the AGCM in different locations within the US interior tends to produce the aforementioned pattern, along with an associated near-surface warming and precipitation deficit in the center of the continent. The SWM-based and AGCM-based patterns generally agree with composites generated using reanalysis and precipitation gauge data. The AGCM experiments also suggest that dry anomalies imposed in the lower Mississippi Valley have remote surface impacts of particularly large spatial extent, and a region along the eastern half of the US-Canada border is particularly sensitive to dry anomalies in a number of remote areas. Overall, the SWM and AGCM experiments support the idea of a positive feedback loop operating over the continent: dry surface conditions in many interior locations lead to changes in atmospheric circulation that act to enhance further the overall dryness of the continental interior.
rpSPH: a novel smoothed particle hydrodynamics algorithm
NASA Astrophysics Data System (ADS)
Abel, Tom
2011-05-01
We suggest a novel discretization of the momentum equation for smoothed particle hydrodynamics (SPH) and show that it significantly improves the accuracy of the obtained solutions. Our new formulation which we refer to as relative pressure SPH, rpSPH, evaluates the pressure force with respect to the local pressure. It respects Newton's first law of motion and applies forces to particles only when there is a net force acting upon them. This is in contrast to standard SPH which explicitly uses Newton's third law of motion continuously applying equal but opposite forces between particles. rpSPH does not show the unphysical particle noise, the clumping or banding instability, unphysical surface tension and unphysical scattering of different mass particles found for standard SPH. At the same time, it uses fewer computational operations and only changes a single line in existing SPH codes. We demonstrate its performance on isobaric uniform density distributions, uniform density shearing flows, the Kelvin-Helmholtz and Rayleigh-Taylor instabilities, the Sod shock tube, the Sedov-Taylor blast wave and a cosmological integration of the Santa Barbara galaxy cluster formation test. rpSPH is an improvement in these cases. The improvements come at the cost of giving up exact momentum conservation of the scheme. Consequently, one can also obtain unphysical solutions particularly at low resolutions.
Aoun, Laurène; Weiss, Pierre; Laborde, Adrian; Ducommun, Bernard; Lobjois, Valérie; Vieu, Christophe
2014-07-07
We report the design, fabrication and evaluation of an array of microdevices composed of high aspect ratio PDMS pillars, dedicated to the study of tumour spheroid mechanical properties. The principle of the microdevice is to confine a spheroid within a circle of micropillars acting as peripheral flexible force sensors. We present a technological process for fabricating high aspect ratio micropillars (300 μm high) with tunable feature dimensions (diameter and spacing) enabling production of flexible PDMS pillars with a height comparable to spheroid sizes. This represents an upscale of 10 along the vertical direction in comparison to more conventional PDMS pillar force sensors devoted to single cell studies, while maintaining their force sensitivity in the same order of magnitude. We present a method for keeping these very high aspect ratio PDMS pillars stable and straight in liquid solution. We demonstrate that microfabricated devices are biocompatible and adapted to long-term spheroid growth. Finally, we show that the spheroid interaction with the micropillars' surface is dependent on PDMS cellular adhesiveness. Time-lapse recordings of growth-induced micropillars' bending coupled with a software program to automatically detect and analyse micropillar displacements are presented. The use of these microdevices as force microsensors opens new prospects in the fields of tissue mechanics and pharmacological drug screening.
Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.
2012-01-01
The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925
NASA Astrophysics Data System (ADS)
Brand, Howard
2002-03-01
Lenz's law is used to demonstrate that Newton's third law includes forces acting at a distance. The action-reaction pair is the force on a magnet falling through a conducting tube at terminal velocity, and a force on the tube.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cruelty includes, but is not limited to, being the victim of any act or threatened act of violence.... Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor), or forced prostitution shall be considered acts of violence. Other abusive actions may also be acts...
Code of Federal Regulations, 2011 CFR
2011-10-01
... cruelty includes, but is not limited to, being the victim of any act or threatened act of violence.... Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor), or forced prostitution shall be considered acts of violence. Other abusive actions may also be acts...
Code of Federal Regulations, 2010 CFR
2010-10-01
... cruelty includes, but is not limited to, being the victim of any act or threatened act of violence.... Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor), or forced prostitution shall be considered acts of violence. Other abusive actions may also be acts...
Code of Federal Regulations, 2013 CFR
2013-10-01
... cruelty includes, but is not limited to, being the victim of any act or threatened act of violence.... Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor), or forced prostitution shall be considered acts of violence. Other abusive actions may also be acts...
Studies into Equine Electrocardiography and Vectorcardiography
Holmes, J. R.; Alps, B. J.
1967-01-01
Theoretical consideration has been given in two horses to the properties of the electric field created by the equine heart acting as a simple electric generator. The principles of the vectorial theory have been applied to test the validity of application of the dipole concept. The cardiac electric forces, althrough complex in the immediate region of the heart, appear at the body surface in a similar form to those arising from a relatively immobile, single equivalent dipole. The potential value of the technique of vectorcardiography in cardiological investigations is briefly discussed. ImagesFig. 1.Fig. 3.Fig. 5.Fig. 10.Fig. 12.Fig. 13. PMID:17649586
Eccentricity and misalignment effects on the performance of high-pressure annular seals
NASA Technical Reports Server (NTRS)
Chen, W. C.; Jackson, E. D.
1985-01-01
Annular pressure seals act as powerful hydrostatic bearings and influence the dynamic characteristics of rotating machinery. This work, using the existing concentric seal theories, provides a simple approximate method for calculation of both seal leakage and the dynamic coefficients for short seals with large eccentricity and/or misalignment of the shaft. Rotation and surface roughness effects are included for leakage and dynamic force calculation. The leakage calculations for both laminar and turbulent flow are compared with experimental results. The dynamic coefficients are compared with analytical results. Excellent agreement between the present work and published results have been observed up to the eccentricitiy ratio of 0.8.
Actin-based propulsion of a microswimmer.
Leshansky, A M
2006-07-01
A simple hydrodynamic model of actin-based propulsion of microparticles in dilute cell-free cytoplasmic extracts is presented. Under the basic assumption that actin polymerization at the particle surface acts as a force dipole, pushing apart the load and the free (nonanchored) actin tail, the propulsive velocity of the microparticle is determined as a function of the tail length, porosity, and particle shape. The anticipated velocities of the cargo displacement and the rearward motion of the tail are in good agreement with recently reported results of biomimetic experiments. A more detailed analysis of the particle-tail hydrodynamic interaction is presented and compared to the prediction of the simplified model.
ERIC Educational Resources Information Center
Young, Timothy; Guy, Mark
2011-01-01
Students have a difficult time understanding force, especially when dealing with a moving object. Many forces can be acting on an object at the same time, causing it to stay in one place or move. By directly observing these forces, students can better understand the effect these forces have on an object. With a simple, student-built device called…
Segets, Doris; Marczak, Renata; Schäfer, Stefan; Paula, Carolin; Gnichwitz, Jan-Frederik; Hirsch, Andreas; Peukert, Wolfgang
2011-06-28
The current work addresses the understanding of the stabilization of nanoparticles in suspension. Specifically, we study ZnO in ethanol for which the influence of particle size and reactant ratio as well as surface coverage on colloidal stability in dependence of the purification progress was investigated. The results revealed that the well-known ζ-potential determines not only the colloidal stability but also the surface coverage of acetate groups bound to the particle surface. The acetate groups act as molecular spacers between the nanoparticles and prevent agglomeration. Next to DLVO calculations based on the theory of Derjaguin, Landau, Verwey and Overbeek using a core-shell model we find that the stability is better understood in terms of dimensionless numbers which represent attractive forces as well as electrostatic repulsion, steric effects, transport properties, and particle concentration. Evaluating the colloidal stability in dependence of time by means of UV-vis absorption measurements a stability map for ZnO is derived. From this map it becomes clear that the dimensionless steric contribution to colloidal stability scales with a stability parameter including dimensionless repulsion and attraction as well as particle concentration and diffusivity of the particles according to a power law with an exponent of -0.5. Finally, we show that our approach is valid for other stabilizing molecules like cationic dendrons and is generally applicable for a wide range of other material systems within the limitations of vanishing van der Waals forces in refractive index matched situations, vanishing ζ-potential and systems without a stabilizing shell around the particle surface.
NASA Technical Reports Server (NTRS)
Jaffe, Richard L.; Walther, Jens H.; Zimmerli, Urs; Koumoutsakos, Petros
2004-01-01
It has been observed that a carbon nanotube (CNT) AFM tip coated with ethylene diamine (EDA) penetrates the liquid water-air interface more easily than an uncoated nanotube tip. The EDA coating remains intact through repeated cycles of dipping and removal. In order to understand the physical basis for this observation, we use ab initio quantum chemistry calculations to study the EDA-CNT-water interaction and to parameterize a force field describing this system. Molecular dynamics (MD) simulations are carried out for EDA-water mixtures and an EDA-coated carbon nanotube immmed in water. These simulations are similar to our earlier MD study that characterized the CNT-water interface. The attractive CNT-EDA and CNT-water interactions arise primarily from van der Waals forces, and the EDA-EDA, EDA-water and water-water interactions are mainly due to hydrogen bond formation. The binding energ of single EDA molecule to the nanotube is nearly three times larger than the corresponding value found for water (4.3 versus 1.5 kcal mol, respectively). The EDA molecules readily stick to and diffuse along the CNT surface. As a resulf mixing of the EDA and water films does not occur on the timescale of the MD simulations. The EDA film reduces the hydrophobicity of the nanotube surface and acts like a prototypical surfactant in stabilizing the suspension of carbon nanotubes in water. For this presentation, we use the MD simulations to determine how the presence of the carbon nanotube surface perturbs the properties of EDA-water mixtures.
Influence of surface potential on the adhesive force of radioactive gold surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kweon, Hyojin; Yiacoumi, Sotira; Lee, Ida
2013-08-23
Radioactive particles may acquire surface potential through self-charging, and thus can behave differently from natural aerosols in atmospheric systems with respect to aggregation, deposition, resuspension, and transport to areas surrounding a radioactive source. Here, this work focuses on the adhesive force between radioactive particles and metallic surfaces, which relates to the deposition and resuspension of particles on surrounding surfaces. Scanning surface potential microscopy was employed to measure the surface potential of radioactive gold foil. Atomic force microscopy was used to investigate the adhesive force for gold that acquired surface charge either by irradiation or by application of an equivalent electricalmore » bias. Overall, the adhesive force increases with increasing surface potential or relative humidity. However, a behavior that does not follow the general trend was observed for the irradiated gold at a high decay rate. A comparison between experimental measurements and calculated values revealed that the surface potential promotes adhesion. The contribution of the electrostatic force at high levels of relative humidity was lower than the one found using theoretical calculations due to the effects caused by enhanced adsorption rate of water molecules under a high surface charge density. Lastly, the results of this study can be used to provide a better understanding of the behavior of radioactive particles in atmospheric systems.« less
NASA Astrophysics Data System (ADS)
Shi, Aiming; Jiang, Li; Dowell, Earl H.; Qin, Zhixuan
2017-02-01
Solar sail is a high potential `sailing craft' for interstellar exploration. The area of the first flight solar sail demonstrator named "IKAROS" is 200 square meters. Future interplanetary missions will require solar sails at least on the order of 10000 square meters (or larger). Due to the limitation of ground facilities, the size of experimental sample should not be large. Furthermore the ground experiments have to be conducted in gravitational field, so the gravity effect must be considered in a ground test. To obtain insight into the solar sail membrane dynamics, a key membrane flutter (or limit cycle oscillations) experiment with light forces acting on it must be done. But one big challenge is calibrating such a tiny light force by as a function of the input power. In this paper, a gravity-based measuring method for light pressure acting on membrane is presented. To explain the experimental principle, an ideal example of a laser beam with expanders and a metal film is studied. Based on calculations, this experimental mechanics method for calibrating light pressure with an accuracy of 0.01 micro-Newton may be realized by making the light force balance the gravity force on the metal films. This gravity-based measuring method could not only be applied to study the dynamics characteristics of solar sail membrane structure with different light forces, but could also be used to determine more accurate light forces/loads acting on solar sail films and hence to enhance the determination of the mechanical properties of the solar sail membrane structure.
78 FR 10127 - Request for Nominations to the Agricultural Air Quality Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... Conservation Service Request for Nominations to the Agricultural Air Quality Task Force AGENCY: Natural... Nominations to the Agricultural Air Quality Task Force. SUMMARY: The Secretary of Agriculture invites... Force (AAQTF) which was established by the Federal Agriculture Improvement and Reform Act of 1996 to...
45 CFR 506.14 - “Force hostile to the United States” defined.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CLAIMS UNDER TITLE I OF THE WAR CLAIMS ACT OF 1948, AS AMENDED ELIGIBILITY REQUIREMENTS FOR COMPENSATION Prisoners of War § 506.14 “Force hostile to the United States” defined. Force hostile to the United States... Forces of the United States during the Vietnam conflict. ...
45 CFR 506.14 - “Force hostile to the United States” defined.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CLAIMS UNDER TITLE I OF THE WAR CLAIMS ACT OF 1948, AS AMENDED ELIGIBILITY REQUIREMENTS FOR COMPENSATION Prisoners of War § 506.14 “Force hostile to the United States” defined. Force hostile to the United States... Forces of the United States during the Vietnam conflict. ...
45 CFR 506.14 - “Force hostile to the United States” defined.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CLAIMS UNDER TITLE I OF THE WAR CLAIMS ACT OF 1948, AS AMENDED ELIGIBILITY REQUIREMENTS FOR COMPENSATION Prisoners of War § 506.14 “Force hostile to the United States” defined. Force hostile to the United States... Forces of the United States during the Vietnam conflict. ...
45 CFR 506.14 - “Force hostile to the United States” defined.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CLAIMS UNDER TITLE I OF THE WAR CLAIMS ACT OF 1948, AS AMENDED ELIGIBILITY REQUIREMENTS FOR COMPENSATION Prisoners of War § 506.14 “Force hostile to the United States” defined. Force hostile to the United States... Forces of the United States during the Vietnam conflict. ...
NASA Astrophysics Data System (ADS)
Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Löcher, Anno; Kusche, Jürgen; Börger, Klaus
2018-05-01
Ultra-sensitive space-borne accelerometers on board of low Earth orbit (LEO) satellites are used to measure non-gravitational forces acting on the surface of these satellites. These forces consist of the Earth radiation pressure, the solar radiation pressure and the atmospheric drag, where the first two are caused by the radiation emitted from the Earth and the Sun, respectively, and the latter is related to the thermospheric density. On-board accelerometer measurements contain systematic errors, which need to be mitigated by applying a calibration before their use in gravity recovery or thermospheric neutral density estimations. Therefore, we improve, apply and compare three calibration procedures: (1) a multi-step numerical estimation approach, which is based on the numerical differentiation of the kinematic orbits of LEO satellites; (2) a calibration of accelerometer observations within the dynamic precise orbit determination procedure and (3) a comparison of observed to modeled forces acting on the surface of LEO satellites. Here, accelerometer measurements obtained by the Gravity Recovery And Climate Experiment (GRACE) are used. Time series of bias and scale factor derived from the three calibration procedures are found to be different in timescales of a few days to months. Results are more similar (statistically significant) when considering longer timescales, from which the results of approach (1) and (2) show better agreement to those of approach (3) during medium and high solar activity. Calibrated accelerometer observations are then applied to estimate thermospheric neutral densities. Differences between accelerometer-based density estimations and those from empirical neutral density models, e.g., NRLMSISE-00, are observed to be significant during quiet periods, on average 22 % of the simulated densities (during low solar activity), and up to 28 % during high solar activity. Therefore, daily corrections are estimated for neutral densities derived from NRLMSISE-00. Our results indicate that these corrections improve model-based density simulations in order to provide density estimates at locations outside the vicinity of the GRACE satellites, in particular during the period of high solar/magnetic activity, e.g., during the St. Patrick's Day storm on 17 March 2015.
Turbulence suppression at water density interfaces: observations under moderate wind forcing.
NASA Astrophysics Data System (ADS)
Marcello Falcieri, Francesco; Kanth, Lakshmi H.; Benetazzo, Alvise; Bergamasco, Andrea; Bonaldo, Davide; Barbariol, Francesco; Malačič, Vlado; Sclavo, Mauro; Carniel, Sandro
2016-04-01
Water column stratification has a strong influence on the behaviour of turbulence kinetic energy (TKE) dissipation rates. Density gradient interfaces, due to thermohaline characteristics and to suspended sediment concentration, can act as a barrier and significantly damp TKE. Between January 30th - February 4th 2014 (CARPET2014 oceanographic campaign on R/V URANIA) we collected the very first turbulence data in the Gulf of Trieste (a small bay located in the North-eartern part of the Adriatic Sea). Observation consisted of 38 CTD casts and 478 microstructure profiles (145 ensembles) collected with a free-falling probe (MSS90L). Among those 48 were grouped in three sets of yoyo casts, each lasting for about 12 consecutive hours. The meteorological conditions during the campaign were of moderate wind (average wind speed 10 m s-1) and heat flux (net negative heat flux ranging from 150 to 400 W m-2). The water column characteristics in the Gulf during the campaign evolved from well-mixed to stratified conditions with waters intruding from the Adriatic Sea at the bottom. Two types of water intrusions were found during yoyo casts: one coming from the Adriatic Sea northern coast (i.e. warmer, saltier and more turbid) and one coming from the open sea in front of the Po Delta (i.e. cooler, fresher and less turbid). Our observations show that under moderate wind forcing, the GOT was not completely mixed due to the interfaces created by the bottom waters intruding from the open sea. The comparison of microstructure profiles collected during well mixed and stratified conditions permitted us to highlight the effect of different stratification on TKE dissipation rates. While during well mixed condition TKE profiles are governed just by their forcing, the two intrusions showed different impacts on TKE dissipation rate profiles. The coastal one, with high turbidity, acted as a barrier to surface driven turbulence dumping it of almost two order of magnitude, while the one coming from the open sea, with low sediment concentrations and a smaller vertical density gradient, was not able to suppress downward penetration of turbulence from the surface.
A new look at the Dynamic Similarity Hypothesis: the importance of swing phase.
Raichlen, David A; Pontzer, Herman; Shapiro, Liza J
2013-01-01
The Dynamic Similarity Hypothesis (DSH) suggests that when animals of different size walk at similar Froude numbers (equal ratios of inertial and gravitational forces) they will use similar size-corrected gaits. This application of similarity theory to animal biomechanics has contributed to fundamental insights in the mechanics and evolution of a diverse set of locomotor systems. However, despite its popularity, many mammals fail to walk with dynamically similar stride lengths, a key element of gait that determines spontaneous speed and energy costs. Here, we show that the applicability of the DSH is dependent on the inertial forces examined. In general, the inertial forces are thought to be the centripetal force of the inverted pendulum model of stance phase, determined by the length of the limb. If instead we model inertial forces as the centripetal force of the limb acting as a suspended pendulum during swing phase (determined by limb center of mass position), the DSH for stride length variation is fully supported. Thus, the DSH shows that inter-specific differences in spatial kinematics are tied to the evolution of limb mass distribution patterns. Selection may act on morphology to produce a given stride length, or alternatively, stride length may be a "spandrel" of selection acting on limb mass distribution.
NASA Astrophysics Data System (ADS)
Diez, M.; Savov, I. P.; Connor, C.
2010-12-01
Veinlets, veins, sheet or layers of syenite are common structures found in alkaline basalt sills. The mechanism usually invoked to explain their formation are liquid immiscibility, multiple intrusion or crystal fractionation from primitive mafic melt. Syenite veins of few centimeters to sheets of up to 1-2 m thick are ubiquitous in remarkably well-exposed sills of the San Rafael subvolcanic field in the Colorado Plateau, Utah. In some of these exposures we have found an intriguing configuration in which the main body of the alkaline sill is underlain by a lower density sheet of syenite of ~ 1 m thick. The contact is flat and is not a chilled margin, therefore a multiple intrusion scenario with long intervals between injections can be disregarded. This implies that both layers were fluid at the time of magma emplacement. As the more felsic less dense syenite is at the bottom of the sill any mechanism governed exclusively by bouyancy would be problematic. In an attempt to shed light on this apparent riddle we propose the following geological scenario: The sill is built by continuous injections. Magma starts to cool and fractional crystallization operates at this stage to differentiate the alkaline magma into syenite. By the time ~60% of crystallization is attained the system can be described as two-phase flow consisting of pore-syenite melt in hot-creeping matrix. The forces acting to segregate melt into veins or sheets are the gravitational force and surface tension. When surface tension is stronger than the gravitational force, differences in average curvature or surface tension translates into pressure differences that drive melt flow from low to high porosity regions. If the last injections occur at the bottom of the sill a syenite layer may be formed. With the aid of dimensional analysis and two-phase numerical models that account for gravitational compaction and surface tension effects, we explore the conditions that allow for centimeter-scale veins to meter-scale sheets formation in shallow sills. After combining field observations, petrological studies and numerical models of shallow sills in the San Rafael subvolcanic field, we will report the conditions that control magma differentiation in shallow intraplate settings.
NASA Astrophysics Data System (ADS)
McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.
2004-12-01
Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some preliminary solutions using it. McWilliams, J.C., J.M. Restrepo, & E.M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 511, 135-178. Sullivan, P.P., J.C. McWilliams, & W.K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. J. Fluid Mech. 507, 143-174.
Growth mechanisms in chemical vapour deposited carbon nanotubes
NASA Astrophysics Data System (ADS)
Vinciguerra, Vincenzo; Buonocore, Francesco; Panzera, Giuseppe; Occhipinti, Luigi
2003-06-01
We present a model for the process of the growth of carbon nanotubes (CNTs) obtained by chemical vapour deposition in the presence of transition metal nanoparticles (Me-NPs) which act as a catalyst. We have deduced that the growth of a CNT occurs in the presence of two forces: (i) a viscous force, due to the surrounding hot gas, which opposes and slows down the growth of the CNT, and (ii) an extrusive force that causes the growth and that in the steady-state stage of the growth is completely balanced by the viscous force. We believe that it is the great decrease in free energy in the assembling reaction that occurs at the interface of the Me-NP catalyst that causes the extrusive force for the growth of a CNT. Moreover, the process of chemisorption of a C2 fragment, through the interaction of the C2-pi system with the 3d metal orbitals, has been considered as well as the coordination action of the Fe, Ni and Co metal surfaces. The structural properties of the Fe, Co and Ni surfaces show that the (1, - 1, 0) planes of Fe and the (1, 1, 1) planes of Co and Ni exhibit the symmetry and distances required to overlap with the lattice of a graphene sheet. This gives us information about the coordination mechanism responsible for assembling the CNTs. In fact, we show that it is possible to cleave an Me-NP in such a way as to match the correct symmetry and dimension of the armchair structure of a single-walled nanotube. The mechanism of C2 addition at the edge of the growing CNT has also been considered in relation to the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) symmetry. We demonstrate that the action of d orbitals of the metal atoms forming the Me-NP makes possible the thermally forbidden reaction, which involves the C2-pi system.
32 CFR 865.119 - Privacy Act information.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Privacy Act information. 865.119 Section 865.119...-GENERAL PERSONNEL REVIEW BOARDS Air Force Discharge Review Board § 865.119 Privacy Act information. Information protected under the Privacy Act is involved in discharge review functions. The provisions of 32...
32 CFR 865.119 - Privacy Act information.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 6 2012-07-01 2012-07-01 false Privacy Act information. 865.119 Section 865.119...-GENERAL PERSONNEL REVIEW BOARDS Air Force Discharge Review Board § 865.119 Privacy Act information. Information protected under the Privacy Act is involved in discharge review functions. The provisions of 32...
32 CFR 865.119 - Privacy Act information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 6 2014-07-01 2014-07-01 false Privacy Act information. 865.119 Section 865.119...-GENERAL PERSONNEL REVIEW BOARDS Air Force Discharge Review Board § 865.119 Privacy Act information. Information protected under the Privacy Act is involved in discharge review functions. The provisions of 32...
32 CFR 865.119 - Privacy Act information.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Privacy Act information. 865.119 Section 865.119...-GENERAL PERSONNEL REVIEW BOARDS Air Force Discharge Review Board § 865.119 Privacy Act information. Information protected under the Privacy Act is involved in discharge review functions. The provisions of 32...
32 CFR 865.119 - Privacy Act information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Privacy Act information. 865.119 Section 865.119...-GENERAL PERSONNEL REVIEW BOARDS Air Force Discharge Review Board § 865.119 Privacy Act information. Information protected under the Privacy Act is involved in discharge review functions. The provisions of 32...
Personifying self in physics problem situations involving forces as a student help strategy
NASA Astrophysics Data System (ADS)
Tabor-Morris, A. E.
2013-03-01
How can physics teachers best guide students regarding physics problem situations involving forces? A suggestion is made here to personify oneself as the object in question, that is, to pretend to be the object undergoing forces and then qualify and quantify those forces according to their vectors for the system at hand. This personification is not meant to empower the object to act, just to sense the forces it is experiencing. This strategy may be especially useful to beginning physics learners attacking problems that involve both multiple forces AND multiple objects, since each object acted upon needs to be considered separately, using the idea that one cannot be two places at once. An example of this type of problem expounded on here is Atwood's machine: two weights hung over a pulley with a single rope. Another example given is electromagnetic forces on one charge caused by other charges in the vicinity. Discussion is made on implementation of classroom strategies. Department of Physics