Sample records for surface functionalization strategies

  1. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications

    PubMed Central

    Wu, Wei; Wu, Zhaohui; Yu, Taekyung; Jiang, Changzhong; Kim, Woo-Sik

    2015-01-01

    This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical in vivo or in vitro applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed. PMID:27877761

  2. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    PubMed Central

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  3. Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering.

    PubMed

    Bi, Xiaobao; Yin, Juan; Chen Guanbang, Ashley; Liu, Chuan-Fa

    2018-06-07

    The cell surface serves important functions such as the regulation of cell-cell and cell-environment interactions. The understanding and manipulation of the cell surface is important for a wide range of fundamental studies of cellular behavior and for biotechnological and medical applications. With the rapid advance of biology, chemistry and materials science, many strategies have been developed for the functionalization of bacterial and mammalian cell surfaces. Here, we review the recent development of chemical and enzymatic approaches to cell surface engineering with particular emphasis on discussing the advantages and limitations of each of these strategies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dual-function antibacterial surfaces for biomedical applications.

    PubMed

    Yu, Qian; Wu, Zhaoqiang; Chen, Hong

    2015-04-01

    Bacterial attachment and the subsequent formation of biofilm on surfaces of synthetic materials pose a serious problem in both human healthcare and industrial applications. In recent decades, considerable attention has been paid to developing antibacterial surfaces to reduce the extent of initial bacterial attachment and thereby to prevent subsequent biofilm formation. Briefly, there are three main types of antibacterial surfaces: bactericidal surfaces, bacteria-resistant surfaces, and bacteria-release surfaces. The strategy adopted to develop each type of surface has inherent advantages and disadvantages; many efforts have been focused on the development of novel antibacterial surfaces with dual functionality. In this review, we highlight the recent progress made in the development of dual-function antibacterial surfaces for biomedical applications. These surfaces are based on the combination of two strategies into one system, which can kill attached bacteria as well as resisting or releasing bacteria. Perspectives on future research directions for the design of dual-function antibacterial surfaces are also provided. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals.

    PubMed

    Dong, Angang; Ye, Xingchen; Chen, Jun; Kang, Yijin; Gordon, Thomas; Kikkawa, James M; Murray, Christopher B

    2011-02-02

    The ability to engineer surface properties of nanocrystals (NCs) is important for various applications, as many of the physical and chemical properties of nanoscale materials are strongly affected by the surface chemistry. Here, we report a facile ligand-exchange approach, which enables sequential surface functionalization and phase transfer of colloidal NCs while preserving the NC size and shape. Nitrosonium tetrafluoroborate (NOBF4) is used to replace the original organic ligands attached to the NC surface, stabilizing the NCs in various polar, hydrophilic media such as N,N-dimethylformamide for years, with no observed aggregation or precipitation. This approach is applicable to various NCs (metal oxides, metals, semiconductors, and dielectrics) of different sizes and shapes. The hydrophilic NCs obtained can subsequently be further functionalized using a variety of capping molecules, imparting different surface functionalization to NCs depending on the molecules employed. Our work provides a versatile ligand-exchange strategy for NC surface functionalization and represents an important step toward controllably engineering the surface properties of NCs.

  6. Plasmon-mediated chemical surface functionalization at the nanoscale

    NASA Astrophysics Data System (ADS)

    Nguyen, Mai; Lamouri, Aazdine; Salameh, Chrystelle; Lévi, Georges; Grand, Johan; Boubekeur-Lecaque, Leïla; Mangeney, Claire; Félidj, Nordin

    2016-04-01

    Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes. The aryl film is specifically grafted in areas of maximum near field enhancement, as confirmed by numerical calculation based on the discrete dipole approximation method. The energy of the incident light and the LSP wavelength are shown to be crucial parameters to monitor the aryl film thickness of up to ~30 nm. This robust and versatile strategy opens up exciting prospects for the nanoscale confinement of functional layers on surfaces, which should be particularly interesting for molecular sensing or nanooptics.Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes. The aryl film is specifically grafted in areas of maximum near field enhancement, as confirmed by numerical calculation based on the discrete dipole approximation method. The energy of the incident light and the LSP wavelength are shown to be crucial parameters to monitor the aryl film thickness of up to ~30 nm. This robust and versatile strategy opens up exciting prospects for the nanoscale confinement of functional layers on surfaces, which should be particularly interesting for molecular sensing or nanooptics. Electronic supplementary information (ESI) available: Additional figures are displayed (from Fig. SI1-SI6) to illustrate the content of the paper, including the proposed mechanisms of diazonium-derived aryl film grafting, the AFM measurements of the aryl film thickness and the calculation by the DDA method. See DOI: 10.1039/C6NR00744A

  7. New strategy for surface functionalization of periodic mesoporous silica based on meso-HSiO1.5.

    PubMed

    Xie, Zhuoying; Bai, Ling; Huang, Suwen; Zhu, Cun; Zhao, Yuanjin; Gu, Zhong-Ze

    2014-01-29

    Organic functionalization of periodic mesoporous silicas (PMSs) offers a way to improve their excellent properties and wide applications owing to their structural superiority. In this study, a new strategy for organic functionalization of PMSs is demonstrated by hydrosilylation of the recently discovered "impossible" periodic mesoporous hydridosilica, meso-HSiO1.5. This method overcomes the disadvantages of present pathways for organic functionalization of PMSs with organosilica. Moreover, compared to the traditional functionalization on the surface of porous silicon by hydrosilylation, the template-synthesized meso-HSiO1.5 is more flexible to access functional-groups-loaded PMSs with adjustable microstructures. The new method and materials will have wider applications based on both the structure and surface superiorities.

  8. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    PubMed

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  9. Solution Exchange Lithography: A Versatile Tool for Sequential Surface Engineering

    NASA Astrophysics Data System (ADS)

    Pester, Christian; Mattson, Kaila; Bothman, David; Klinger, Daniel; Lee, Kenneth; Discekici, Emre; Narupai, Benjaporn; Hawker, Craig

    The covalent attachment of polymers has emerged as a viable strategy for the preparation of multi-functional surfaces. Patterned, surface-grafted polymer brushes provide spatial control over wetting, mechanical, biological or electronic properties, and allow fabrication of `intelligent' substrates which selectively adapt to their environment. However, the route towards patterned polymer brush surfaces often remains challenging, creating a demand for more efficient and less complicated fabrication strategies. We describe the design and application of a novel experimental setup to combine light-mediated and flow chemistry for the fabrication of hierarchical surface-grafted polymer brushes. Using light-mediated, surface initiated controlled radical polymerization and post-functionalization via well-established, and highly efficient chemistries, polymer brush films of previously unimaginable complexity are now shown to be accessible. This methodology allows full flexibility to exchange both lithographic photomasks and chemical environments in-situ, readily affording multidimensional thin film architectures, all from uniformly functionalized substrates.

  10. Bioinspired surface functionalization of metallic biomaterials.

    PubMed

    Su, Yingchao; Luo, Cheng; Zhang, Zhihui; Hermawan, Hendra; Zhu, Donghui; Huang, Jubin; Liang, Yunhong; Li, Guangyu; Ren, Luquan

    2018-01-01

    Metallic biomaterials are widely used for clinical applications because of their excellent mechanical properties and good durability. In order to provide essential biofunctionalities, surface functionalization is of particular interest and requirement in the development of high-performance metallic implants. Inspired by the functional surface of natural biological systems, many new designs and conceptions have recently emerged to create multifunctional surfaces with great potential for biomedical applications. This review firstly introduces the metallic biomaterials, important surface properties, and then elaborates some strategies on achieving the bioinspired surface functionalization for metallic biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Management of the ocular surface and tear film before, during, and after laser in situ keratomileusis.

    PubMed

    Albietz, Julie M; Lenton, Lee M

    2004-01-01

    To identify evidence-based, best practice strategies for managing the ocular surface and tear film before, during, and after laser in situ keratomileusis (LASIK). After a comprehensive review of relevant published literature, evidence-based recommendations for best practice management strategies are presented. Symptoms of ocular irritation and signs of dysfunction of the integrated lacrimal gland/ocular surface functional gland unit are common before and after LASIK. The status of the ocular surface and tear film before LASIK can impact surgical outcomes in terms of potential complications during and after surgery, refractive outcome, optical quality, patient satisfaction, and the severity and duration of dry eye after LASIK. Before LASIK, the health of the ocular surface should be optimized and patients selected appropriately. Dry eye before surgery and female gender are risk factors for developing chronic dry eye after LASIK. Management of the ocular surface during LASIK can minimize ocular surface damage and the risk of adverse outcomes. Long-term management of the tear film and ocular surface after LASIK can reduce the severity and duration of dry eye symptoms and signs. Strategies to manage the integrated ocular surface/lacrimal gland functional unit before, during, and after LASIK can optimize outcomes. As problems with the ocular surface and tear film are relatively common, attention should focus on the use and improvement of evidence-based management strategies.

  12. ‘Action’ on structured freeform surfaces

    NASA Astrophysics Data System (ADS)

    Whitehouse, David J.

    2018-06-01

    Surfaces are becoming more complex partly due to the more complicated function required of them and partly due to the introduction of different manufacturing processes. These have thrown into relief the need to consider new ways of measuring and characterizing such surfaces and more importantly to make such characterization more relevant by tying together the geometry and the function more closely. The surfaces which have freeform and structure have been chosen to be a carrier for this investigation because so far there has been little work carried out in this neglected but potentially important area. This necessitates the development of a strategy for their characterization. In this article, some ways have been found of identifying possible strategies for tackling this characterization problem but also linking this characterization to performance and manufacture, based in part on the principles of least action and on the way that nature has evolved to solve the marriage of flexible freeform geometry, structure and function. Recommendations are made for the most suitable surface parameter to use which satisfies the requirement for characterizing structured freeform surfaces as well as utilizing ‘Action’ to predict functionality.

  13. Milling strategies evaluation when simulating the forming dies' functional surfaces production

    NASA Astrophysics Data System (ADS)

    Ižol, Peter; Tomáš, Miroslav; Beňo, Jozef

    2016-05-01

    The paper deals with selection and evaluation of milling strategies, available in CAM systems and applicable when complicated shape parts are produced, such as forming dies. A method to obtain samples is proposed and this stems from real forming die surface machined by proper strategies. The strategy applicability for the whole part - forming die - is reviewed by the particular specimen evaluation. The presented methodology has been verified by machining model die and comparing it to the production procedure proposed in other CAM systems.

  14. Want a Tip? Service Performance as a Function of Emotion Regulation and Extraversion

    ERIC Educational Resources Information Center

    Chi, Nai-Wen; Grandey, Alicia A.; Diamond, Jennifer A.; Krimmel, Kathleen Royer

    2011-01-01

    Surface acting and deep acting with customers are strategies for service performance, but evidence for their effectiveness is limited and mixed. We propose that deep acting is an effective strategy for most employees, whereas surface acting's effect on performance effectiveness depends on employee extraversion. In Study 1, restaurant servers who…

  15. Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants.

    PubMed

    Zeng, Qiang; Zhu, Yiwen; Yu, Bingran; Sun, Yujie; Ding, Xiaokang; Xu, Chen; Wu, Yu-Wei; Tang, Zhihui; Xu, Fu-Jian

    2018-05-09

    Combating implant-associated infections is an urgent demand due to the increasing numbers in surgical operations such as joint replacements and dental implantations. Surface functionalization of implantable medical devices with polymeric antimicrobial and antifouling agents is an efficient strategy to prevent bacterial fouling and associated infections. In this work, antimicrobial and antifouling branched polymeric agents (GPEG and GEG) were synthesized via ring-opening reaction involving gentamicin and ethylene glycol species. Due to their rich primary amine groups, they can be readily coated on the polydopamine-modified implant (such as titanium) surfaces. The resultant surface coatings of Ti-GPEG and Ti-GEG produce excellent in vitro antibacterial efficacy toward both Staphylococcus aureus and Escherichia coli, while Ti-GPEG exhibit better antifouling ability. Moreover, the infection model with S. aureus shows that implanted Ti-GPEG possessed excellent antibacterial and antifouling ability in vivo. This study would provide a promising strategy for the surface functionalization of implantable medical devices to prevent implant-associated infections.

  16. Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye.

    PubMed

    Huang, Qiang; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Zeng, Guangjian; Huang, Hongye; Jiang, Ruming; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    Monodispersed SiO 2 particles functionalized with cationic polymers poly-((3-acrylamidopropyl)trimethylammonium chloride) (PAPTCl) were prepared using mussel inspired surface modification strategy and surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, X-ray photoelectron spectroscopy, and zeta potential were employed to characterize these SiO 2 samples. The adsorption performance of the functionalized SiO 2 (donated as SiO 2 -PDA-PAPTCl) towards anionic organic dye Congo red (CR) was investigated to evaluate their potential environmental applications. We demonstrated that the surface of SiO 2 particles can be successfully functionalized with cationic PAPTCl. The adsorption capability of as-prepared SiO 2 was found to increases from 28.70 and 106.65mg/g after surface grafted with cationic polymers. The significant enhancement in the adsorption capability of SiO 2 -PDA-PAPTCl is mainly attributed to the introduction of cationic polymers. More importantly, this strategy is expected to be promising for fabrication of many other functional polymer nanocomposites for environmental applications due to the universality of mussel inspired chemistry and well designability and good monomer adaptability of SI-ATRP. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Engineering surfaces for bioconjugation: developing strategies and quantifying the extent of the reactions.

    PubMed

    Gauvreau, Virginie; Chevallier, Pascale; Vallières, Karine; Petitclerc, Eric; Gaudreault, René C; Laroche, Gaétan

    2004-01-01

    This study presents two-step and multistep reactions for modifying the surface of plasma-functionalized poly(tetrafluoroethylene) (PTFE) surfaces for subsequent conjugation of biologically relevant molecules. First, PTFE films were treated by a radiofrequency glow discharge (RFGD) ammonia plasma to introduce amino groups on the fluoropolymer surface. This plasma treatment is well optimized and allows the incorporation of a relative surface concentration of approximately 2-3.5% of amino groups, as assessed by chemical derivatization followed by X-ray photoelectron spectroscopy (XPS). In a second step, these amino groups were further reacted with various chemical reagents to provide the surface with chemical functionalities such as maleimides, carboxylic acids, acetals, aldehydes, and thiols, that could be used later on to conjugate a wide variety of biologically relevant molecules such as proteins, DNA, drugs, etc. In the present study, glutaric and cis-aconitic anhydrides were evaluated for their capability to provide carboxylic functions to the PTFE plasma-treated surface. Bromoacetaldehyde diethylacetal was reacted with the aminated PTFE surface, providing a diethylacetal function, which is a latent form of aldehyde functionality. Reactions with cross-linkers such as sulfo-succinimidyl derivatives (sulfo-SMCC, sulfo-SMPB) were evaluated to provide a highly reactive maleimide function suitable for further chemical reactions with thiolated molecules. Traut reagent (2-iminothiolane) was also conjugated to introduce a thiol group onto the fluoropolymer surface. PTFE-modified surfaces were analyzed by XPS with a particular attention to quantify the extent of the reactions that occurred on the polymer. Finally, surface immobilization of fibronectin performed using either glutaric anhydride or sulfo-SMPB activators demonstrated the importance of selecting the appropriate conjugation strategy to retain the protein biological activity.

  18. Role of vestibular information in initiation of rapid postural responses

    NASA Technical Reports Server (NTRS)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    Patients with bilateral vestibular loss have difficulty maintaining balance without stepping when standing in tandem, on compliant surfaces, across narrow beams, or on one foot, especially with eyes closed. Normal individuals (with no sensory impairment) maintain balance in these tasks by employing quick, active hip rotation (a "hip strategy"). The absence of a hip strategy in vestibular patients responding to translations of a short support surface has previously been taken as evidence that the use of hip strategy requires an intact vestibular system. However, many tasks requiring hip strategy alter one or a combination of important system characteristics, such as initial state of the body (tandem stance), dynamics (compliant surfaces), or biomechanical limits of stability (narrow beams). Therefore, the balance deficit in these tasks may result from a failure to account for these support surface alterations when planning and executing sensorimotor responses. In this study, we tested the hypothesis that vestibular information is critical to trigger a hip strategy even on an unaltered support surface, which imposes no changes on the system characteristics. We recorded the postural responses of vestibular patients and control subjects with eyes closed to rearward support surface translations of varying velocity, in erect stance on a firm, flat surface. Subjects were instructed to maintain balance without stepping, if possible. Faster translation velocities (25 cm/s or more) produced a consistent pattern of early hip torque (first 400 ms) in control subjects (i.e., a hip strategy). Most of the patients with bilateral vestibular loss responded to the same translation velocities with similar torques. Contrary to our hypothesis, we conclude that vestibular function is not necessary to trigger a hip strategy. We postulate, therefore, that the balance deficit previously observed in vestibular patients during postural tasks that elicit a hip strategy may have been due to the sensorimotor consequences of the system alterations imposed by the postural tasks used in those studies. Preliminary results from two younger patients who lost vestibular function as infants indicate that age, duration of vestibular loss, and/or the timing of the loss may also be factors that can influence the use of hip strategy as a rapid postural response.

  19. General and Direct Method for Preparing Oligonucleotide-Functionalized Metal-Organic Framework Nanoparticles.

    PubMed

    Wang, Shunzhi; McGuirk, C Michael; Ross, Michael B; Wang, Shuya; Chen, Pengcheng; Xing, Hang; Liu, Yuan; Mirkin, Chad A

    2017-07-26

    Metal-organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle-inorganic particle core-satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid-nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes.

  20. Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs

    PubMed Central

    2017-01-01

    In an ideal plasmonic surface sensor, the bioactive area, where analytes are recognized by specific biomolecules, is surrounded by an area that is generally composed of a different material. The latter, often the surface of the supporting chip, is generally hard to be selectively functionalized, with respect to the active area. As a result, cross talks between the active area and the surrounding one may occur. In designing a plasmonic sensor, various issues must be addressed: the specificity of analyte recognition, the orientation of the immobilized biomolecule that acts as the analyte receptor, and the selectivity of surface coverage. The objective of this tutorial review is to introduce the main rational tools required for a correct and complete approach to chemically functionalize plasmonic surface biosensors. After a short introduction, the review discusses, in detail, the most common strategies for achieving effective surface functionalization. The most important issues, such as the orientation of active molecules and spatial and chemical selectivity, are considered. A list of well-defined protocols is suggested for the most common practical situations. Importantly, for the reported protocols, we also present direct comparisons in term of costs, labor demand, and risk vs benefit balance. In addition, a survey of the most used characterization techniques necessary to validate the chemical protocols is reported. PMID:28796479

  1. Fabrication of hierarchical polymer surfaces with superhydrophobicity by injection molding from nature and function-oriented design

    NASA Astrophysics Data System (ADS)

    Weng, Can; Wang, Fei; Zhou, Mingyong; Yang, Dongjiao; Jiang, Bingyan

    2018-04-01

    A comparison of processes and wettability characteristics was presented for injection molded superhydrophobic polypropylene surfaces from two fabricating strategies. One is the biomimetic replication of patterns from indocalamus leaf in nature. The contact angle of water sitting on this PP surface was measured as 152 ± 2°, with comparable wetting behavior to natural indocalamus leaf surface. The other strategy is the fabrication of superhydrophobic structure by combining methods that produce structures at different length scales. Regarding both the machinability of mold inserts and function-oriented design, three micro-quadrangular arrays and one hierarchical micro-nano cylinder array were designed with the goal of superhydrophobicity. Particularly, a simple approach to the fabrication of hierarchical structures was proposed by combining the anodized plate and the punching plate. The function-oriented design targets as superhydrophobicity were all reached for the designed four structures. The measured contact angles of droplet for these structures were almost consistent with the calculated equilibrium contact angles from thermodynamic analysis. Among them, the contact angle of droplet on the surface of designed hierarchical structure reached about 163° with the sliding angle of 5°, resulting in self-cleaning characteristic. The superhydrophobicity of function-oriented designed polymer surfaces could be modified and controlled, which is exactly the limitation of replicating from natural organisms.

  2. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    NASA Astrophysics Data System (ADS)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J.

    2017-02-01

    The Huisgen cycloaddition reaction (;click; chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  3. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Win, Khin Yin; Liu, Shuhua; Teng, Choon Peng; Zheng, Yuangang; Han, Ming-Yong

    2013-03-01

    In this article, the very recent progress of various functional inorganic nanomaterials is reviewed including their unique properties, surface functionalization strategies, and applications in biosensing and imaging-guided therapeutics. The proper surface functionalization renders them with stability, biocompatibility and functionality in physiological environments, and further enables their targeted use in bioapplications after bioconjugation via selective and specific recognition. The surface-functionalized nanoprobes using the most actively studied nanoparticles (i.e., gold nanoparticles, quantum dots, upconversion nanoparticles, and magnetic nanoparticles) make them an excellent platform for a wide range of bioapplications. With more efforts in recent years, they have been widely developed as labeling probes to detect various biological species such as proteins, nucleic acids and ions, and extensively employed as imaging probes to guide therapeutics such as drug/gene delivery and photothermal/photodynamic therapy.

  4. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.

    PubMed

    Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il

    2014-02-01

    Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed.

  5. Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine

    PubMed Central

    Chung, Woo-Jae; Lee, Doe-Young; Yoo, So Young

    2014-01-01

    M13 bacteriophage (phage) has emerged as an attractive bionanomaterial owing to its genetically tunable surface chemistry and its potential to self-assemble into hierarchical structures. Furthermore, because of its unique nanoscopic structure, phage has been proposed as a model system in soft condensed physics and as a biomimetic building block for structured functional materials. Genetic engineering of phage provides great opportunities to develop novel nanomaterials with functional surface peptide motifs; however, this biological approach is generally limited to peptides containing the 20 natural amino acids. To extend the scope of phage applications, strategies involving chemical modification have been employed to incorporate a wider range of functional groups, including synthetic chemical compounds. In this review, we introduce the design of chemoselective phage functionalization and discuss how such a strategy is combined with genetic engineering for a variety of medical applications, as reported in recent literature. PMID:25540583

  6. Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine.

    PubMed

    Chung, Woo-Jae; Lee, Doe-Young; Yoo, So Young

    2014-01-01

    M13 bacteriophage (phage) has emerged as an attractive bionanomaterial owing to its genetically tunable surface chemistry and its potential to self-assemble into hierarchical structures. Furthermore, because of its unique nanoscopic structure, phage has been proposed as a model system in soft condensed physics and as a biomimetic building block for structured functional materials. Genetic engineering of phage provides great opportunities to develop novel nanomaterials with functional surface peptide motifs; however, this biological approach is generally limited to peptides containing the 20 natural amino acids. To extend the scope of phage applications, strategies involving chemical modification have been employed to incorporate a wider range of functional groups, including synthetic chemical compounds. In this review, we introduce the design of chemoselective phage functionalization and discuss how such a strategy is combined with genetic engineering for a variety of medical applications, as reported in recent literature.

  7. General and Direct Method for Preparing Oligonucleotide-Functionalized Metal–Organic Framework Nanoparticles

    PubMed Central

    2017-01-01

    Metal–organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle–inorganic particle core–satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid–nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes. PMID:28718644

  8. Bioinspired Functional Surfaces for Technological Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Vipul; Kumar, Suneel; Reddy, Kumbam Lingeshwar; Bahuguna, Ashish; Krishnan, Venkata

    2016-08-01

    Biological matters have been in continuous encounter with extreme environmental conditions leading to their evolution over millions of years. The fittest have survived through continuous evolution, an ongoing process. Biological surfaces are the important active interfaces between biological matters and the environment, and have been evolving over time to a higher state of intelligent functionality. Bioinspired surfaces with special functionalities have grabbed attention in materials research in the recent times. The microstructures and mechanisms behind these functional biological surfaces with interesting properties have inspired scientists to create artificial materials and surfaces which possess the properties equivalent to their counterparts. In this review, we have described the interplay between unique multiscale (micro- and nano-scale) structures of biological surfaces with intrinsic material properties which have inspired researchers to achieve the desired wettability and functionalities. Inspired by naturally occurring surfaces, researchers have designed and fabricated novel interfacial materials with versatile functionalities and wettability, such as superantiwetting surfaces (superhydrophobic and superoleophobic), omniphobic, switching wettability and water collecting surfaces. These strategies collectively enable functional surfaces to be utilized in different applications such as fog harvesting, surface-enhanced Raman spectroscopy (SERS), catalysis, sensing and biological applications. This paper delivers a critical review of such inspiring biological surfaces and artificial bioinspired surfaces utilized in different applications, where material science and engineering have merged by taking inspiration from the natural systems.

  9. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    PubMed

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Biomolecular strategies for cell surface engineering

    NASA Astrophysics Data System (ADS)

    Wilson, John Tanner

    Islet transplantation has emerged as a promising cell-based therapy for the treatment of diabetes, but its clinical efficacy remains limited by deleterious host responses that underlie islet destruction. In this dissertation, we describe the assembly of ultrathin conformal coatings that confer molecular-level control over the composition and biophysicochemical properties of the islet surface with implications for improving islet engraftment. Significantly, this work provides novel biomolecular strategies for cell surface engineering with broad biomedical and biotechnological applications in cell-based therapeutics and beyond. Encapsulation of cells and tissue offers a rational approach for attenuating deleterious host responses towards transplanted cells, but a need exists to develop cell encapsulation strategies that minimize transplant volume. Towards this end, we endeavored to generate nanothin films of diverse architecture with tunable properties on the extracellular surface of individual pancreatic islets through a process of layer-by-layer (LbL) self assembly. We first describe the formation of poly(ethylene glycol) (PEG)-rich conformal coatings on islets via LbL self assembly of poly(L-lysine)-g-PEG(biotin) and streptavidin. Multilayer thin films conformed to the geometrically and chemically heterogeneous islet surface, and could be assembled without loss of islet viability or function. Significantly, coated islets performed comparably to untreated controls in a murine model of allogenic intraportal islet transplantation, and, to our knowledge, this is the first study to report in vivo survival and function of nanoencapsulated cells or cell aggregates. Based on these findings, we next postulated that structurally similar PLL-g-PEG copolymers comprised of shorter PEG grafts might be used to initiate and propagate the assembly of polyelectrolyte multilayer (PEM) films on pancreatic islets, while simultaneously preserving islet viability. Through control of PLL backbone molecular weight, PEG chain length, and grafting ratio, PLL-g-PEG copolymers were rendered cytocompatible and used to initiate and propagate the growth of cell surface-supported PEM films. Planar characterization of this novel class of PEM films indicated that film thickness and composition may be tailored through appropriate control of layer number and copolymer properties. Furthermore, these investigations have helped establish a conceptual framework for the rational design of cell surface-supported thin films, with the objective of translating the diverse biomedical and biotechnological applications of PEM films to cellular interfaces. Important to the development of effective conformal islet coatings is an inherent strategy through which to incorporate bioactive molecules for directing desired biochemical or cellular responses. Towards this end, PLL-g-PEG copolymers functionalized with biotin, azide, and hydrazide moieties were synthesized and used, either alone or in combination, to capture streptavidin-, triphenylphosphine-, and aldehyde-labeled probes, respectively, on the islet surface. Additionally, PEM films assembled using alginate chemically modified to contain aldehyde groups could be used to introduce hydrazide-functionalized molecules to the islet surface. Hence, modified film constituents may be used as modular elements for controlling the chemical composition cell and tissue surfaces. Finally, we report a strategy for tethering thrombomodulin (TM) to the islet surface. Through site-specific, C-terminal biotinylation of TM and optimization of cell surface biotinylation, TM could be integrated with the islet surface. Re-engineering of islet surfaces with TM resulted in an increased catalytic capacity of islets to generate the powerful anti-inflammatory agent, activated protein C (APC), thereby providing a facile strategy for increasing the local concentration of APC at the site of transplantation.

  11. Reverse engineering of aircraft wing data using a partial differential equation surface model

    NASA Astrophysics Data System (ADS)

    Huband, Jacalyn Mann

    Reverse engineering is a multi-step process used in industry to determine a production representation of an existing physical object. This representation is in the form of mathematical equations that are compatible with computer-aided design and computer-aided manufacturing (CAD/CAM) equipment. The four basic steps to the reverse engineering process are data acquisition, data separation, surface or curve fitting, and CAD/CAM production. The surface fitting step determines the design representation of the object, and thus is critical to the success or failure of the reverse engineering process. Although surface fitting methods described in the literature are used to model a variety of surfaces, they are not suitable for reversing aircraft wings. In this dissertation, we develop and demonstrate a new strategy for reversing a mathematical representation of an aircraft wing. The basis of our strategy is to take an aircraft design model and determine if an inverse model can be derived. A candidate design model for this research is the partial differential equation (PDE) surface model, proposed by Bloor and Wilson and used in the Rapid Airplane Parameter Input Design (RAPID) tool at the NASA-LaRC Geolab. There are several basic mathematical problems involved in reversing the PDE surface model: (i) deriving a computational approximation of the surface function; (ii) determining a radial parametrization of the wing; (iii) choosing mathematical models or classes of functions for representation of the boundary functions; (iv) fitting the boundary data points by the chosen boundary functions; and (v) simultaneously solving for the axial parameterization and the derivative boundary functions. The study of the techniques to solve the above mathematical problems has culminated in a reverse PDE surface model and two reverse PDE surface algorithms. One reverse PDE surface algorithm recovers engineering design parameters for the RAPID tool from aircraft wing data and the other generates a PDE surface model with spline boundary functions from an arbitrary set of grid points. Our numerical tests show that the reverse PDE surface model and the reverse PDE surface algorithms can be used for the reverse engineering of aircraft wing data.

  12. Assembly, Structure, and Functionality of Metal-Organic Networks and Organic Semiconductor Layers at Surfaces

    NASA Astrophysics Data System (ADS)

    Tempas, Christopher D.

    Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.

  13. Reconstructing the vibro-acoustic quantities on a highly non-spherical surface using the Helmholtz equation least squares method.

    PubMed

    Natarajan, Logesh Kumar; Wu, Sean F

    2012-06-01

    This paper presents helpful guidelines and strategies for reconstructing the vibro-acoustic quantities on a highly non-spherical surface by using the Helmholtz equation least squares (HELS). This study highlights that a computationally simple code based on the spherical wave functions can produce an accurate reconstruction of the acoustic pressure and normal surface velocity on planar surfaces. The key is to select the optimal origin of the coordinate system behind the planar surface, choose a target structural wavelength to be reconstructed, set an appropriate stand-off distance and microphone spacing, use a hybrid regularization scheme to determine the optimal number of the expansion functions, etc. The reconstructed vibro-acoustic quantities are validated rigorously via experiments by comparing the reconstructed normal surface velocity spectra and distributions with the benchmark data obtained by scanning a laser vibrometer over the plate surface. Results confirm that following the proposed guidelines and strategies can ensure the accuracy in reconstructing the normal surface velocity up to the target structural wavelength, and produce much more satisfactory results than a straight application of the original HELS formulations. Experiment validations on a baffled, square plate were conducted inside a fully anechoic chamber.

  14. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization

    NASA Astrophysics Data System (ADS)

    Niu, Jia; Lunn, David J.; Pusuluri, Anusha; Yoo, Justin I.; O'Malley, Michelle A.; Mitragotri, Samir; Soh, H. Tom; Hawker, Craig J.

    2017-06-01

    The capability to graft synthetic polymers onto the surfaces of live cells offers the potential to manipulate and control their phenotype and underlying cellular processes. Conventional grafting-to strategies for conjugating preformed polymers to cell surfaces are limited by low polymer grafting efficiency. Here we report an alternative grafting-from strategy for directly engineering the surfaces of live yeast and mammalian cells through cell surface-initiated controlled radical polymerization. By developing cytocompatible PET-RAFT (photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization), synthetic polymers with narrow polydispersity (Mw/Mn < 1.3) could be obtained at room temperature in 5 minutes. This polymerization strategy enables chain growth to be initiated directly from chain-transfer agents anchored on the surface of live cells using either covalent attachment or non-covalent insertion, while maintaining high cell viability. Compared with conventional grafting-to approaches, these methods significantly improve the efficiency of grafting polymer chains and enable the active manipulation of cellular phenotypes.

  15. Undefined freeform surfaces having deterministic structure: issues of their characterization for functionality and manufacture

    NASA Astrophysics Data System (ADS)

    Whitehouse, David J.

    2016-09-01

    There is an increasing use of surfaces which have structure, an increase in the use of freeform surfaces, and most importantly an increase in the number of surfaces having both characteristics. These can be called multi-function surfaces, where more than one function is helped by the geometrical features: the structure can help one, the freeform another. Alternatively, they can be complementary to optimize a single function, but in all cases both geometries are involved. This paper examines some of the problems posed by having such disparate geometries on one surface; in particular, the methods of characterization needed to help understand the functionality and also to some extent their manufacture. This involves investigating ways of expressing how local and global geometric features of undefined freeform surfaces might influence function and how surface structure on top of or in series with the freeform affects the nature of the characterization. Some methods have been found of identifying possible strategies for tackling the characterization problem, based in part on the principles of least action and on the way that nature has solved the marriage of flexible freeform geometry and structure on surfaces.

  16. A 3D Self-Shaping Strategy for Nanoresolution Multicomponent Architectures.

    PubMed

    Su, Meng; Huang, Zhandong; Li, Yifan; Qian, Xin; Li, Zheng; Hu, Xiaotian; Pan, Qi; Li, Fengyu; Li, Lihong; Song, Yanlin

    2018-01-01

    3D printing or fabrication pursues the essential surface behavior manipulation of droplets or a liquid for rapidly and precisely constructing 3D multimaterial architectures. Further development of 3D fabrication desires a self-shaping strategy that can heterogeneously integrate functional materials with disparate electrical or optical properties. Here, a 3D liquid self-shaping strategy is reported for rapidly patterning materials over a series of compositions and accurately achieving micro- and nanoscale structures. The predesigned template selectively pins the droplet, and the surface energy minimization drives the self-shaping processing. The as-prepared 3D circuits assembled by silver nanoparticles carry a current of 208-448 µA at 0.01 V impressed voltage, while the 3D architectures achieved by two different quantum dots show noninterfering optical properties with feature resolution below 3 µm. This strategy can facilely fabricate micro-nanogeometric patterns without a modeling program, which will be of great significance for the development of 3D functional devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability.

    PubMed

    Stassi, Stefano; Chiadò, Alessandro; Cauda, Valentina; Palmara, Gianluca; Canavese, Giancarlo; Laurenti, Marco; Ricciardi, Carlo

    2017-04-01

    An efficient way to increase the binding capability of microcantilever biosensors is here demonstrated by growing zinc oxide nanowires (ZnO NWs) on their active surface. A comprehensive evaluation of the chemical compatibility of ZnO NWs brought to the definition of an innovative functionalization method able to guarantee the proper immobilization of biomolecules on the nanostructured surface. A noteworthy higher amount of grafted molecules was evidenced with colorimetric assays on ZnO NWs-coated devices, in comparison with functionalized and activated silicon flat samples. ZnO NWs grown on silicon microcantilever arrays and activated with the proposed immobilization strategy enhanced the sensor binding capability (and thus the dynamic range) of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices. Graphical Abstract An efficient way to increase the binding capability of microcantilever biosensors is represented by growing zinc oxide nanowires (ZnO NWs) on their active surface. ZnO NWs grown on silicon microcantilever arrays and activated with an innovative immobilization strategy enhanced the sensor binding capability of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices.

  18. Preparation and Characterization of Biofunctionalized Inorganic Substrates.

    PubMed

    Dugger, Jason W; Webb, Lauren J

    2015-09-29

    Integrating the function of biological molecules into traditional inorganic materials and substrates couples biologically relevant function to synthetic devices and generates new materials and capabilities by combining biological and inorganic functions. At this so-called "bio/abio interface," basic biological functions such as ligand binding and catalysis can be co-opted to detect analytes with exceptional sensitivity or to generate useful molecules with chiral specificity under entirely benign reaction conditions. Proteins function in dynamic, complex, and crowded environments (the living cell) and are therefore appropriate for integrating into multistep, multiscale, multimaterial devices such as integrated circuits and heterogeneous catalysts. However, the goal of reproducing the highly specific activities of biomolecules in the perturbed chemical and electrostatic environment at an inorganic interface while maintaining their native conformations is challenging to achieve. Moreover, characterizing protein structure and function at a surface is often difficult, particularly if one wishes to compare the activity of the protein to that of the dilute, aqueous solution phase. Our laboratory has developed a general strategy to address this challenge by taking advantage of the structural and chemical properties of alkanethiol self-assembled monolayers (SAMs) on gold surfaces that are functionalized with covalently tethered peptides. These surface-bound peptides then act as the chemical recognition element for a target protein, generating a biomimetic surface in which protein orientation, structure, density, and function are controlled and variable. Herein we discuss current research and future directions related to generating a chemically tunable biofunctionalization strategy that has potential to successfully incorporate the highly specialized functions of proteins onto inorganic substrates.

  19. Adjustment of surface chemical and physical properties with functionalized polymers to control cell adhesion

    NASA Astrophysics Data System (ADS)

    Zhou, Zhaoli

    Cell-surface interaction is crucial in many cellular functions such as movement, growth, differentiation, proliferation and survival. In the present work, we have developed several strategies to design and prepare synthetic polymeric materials with selected cues to control cell attachment. To promote neuronal cell adhesion on the surfaces, biocompatible, non-adhesive PEG-based materials were modified with neurotransmitter acetylcholine functionalities to produce hydrogels with a range of porous structures, swollen states, and mechanical strengths. Mice hippocampal cells cultured on the hydrogels showed differences in number, length of processes and exhibited different survival rates, thereby highlighting the importance of chemical composition and structure in biomaterials. Similar strategies were used to prepare polymer brushes to assess how topographical cues influence neuronal cell behaviors. The brushes were prepared using the "grown from" method through surface-initiated atom transfer radical polymerization (SI-ATRP) reactions and further patterned via UV photolithography. Protein absorption tests and hippocampal neuronal cell culture of the brush patterns showed that both protein and neuronal cells can adhere to the patterns and therefore can be guided by the patterns at certain length scales. We also prepared functional polymers to discourage attachment of undesirable cells on the surfaces. For example, we synthesized PEG-perfluorinated alkyl amphiphilic surfactants to modify polystyrene-block-poly(ethylene-ran-butylene)- block-polyisoprene (SEBI or K3) triblock copolymers for marine antifouling/fouling release surface coatings. Initial results showed that the polymer coated surfaces can facilitate removal of Ulva sporelings on the surfaces. In addition, we prepared both bioactive and dual functional biopassive/bioactive antimicrobial coatings based on SEBI polymers. Incubating the polymer coated surfaces with gram-positive bacteria (S. aureus), gram-negative bacteria (E. coli) and marine bacteria (C. marina ) species demonstrated that, unlike biopassive surfaces, the dual functionality polymer coated surfaces can significantly reduce both live and dead cells, without killing the cells in the culture media. The knowledge gained from those studies offers opportunities for further modification and potential applications of those types of polymers in the future.

  20. Functionalized carbon micro/nanostructures for biomolecular detection

    NASA Astrophysics Data System (ADS)

    Penmatsa, Varun

    Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250μM to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon-oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.

  1. Monitoring Strategies in Permeable Pavement Systems to Optimize Maintenance Scheduling

    EPA Science Inventory

    As the surface in a permeable pavement system clogs and performance decreases, maintenance is required to preserve the design function. Currently, guidance is limited for scheduling maintenance on an as needed basis. Previous research has shown that surface clogging in a permea...

  2. Monitoring Strategies in Permeable Pavement Systems to Optimize Maintenance Scheduling - abstract

    EPA Science Inventory

    As the surface in a permeable pavement system clogs and performance decreases, maintenance is required to preserve the design function. Currently, guidance is limited for scheduling maintenance on an as needed basis. Previous research has shown that surface clogging in a permea...

  3. Multifunctional clickable and protein-repellent magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-01-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing. Electronic supplementary information (ESI) available: Detailed synthetic procedures and additional experimental light scattering and zeta-potential data. See DOI: 10.1039/c5nr08258g

  4. Lotus-on-chip: computer-aided design and 3D direct laser writing of bioinspired surfaces for controlling the wettability of materials and devices.

    PubMed

    Lantada, Andrés Díaz; Hengsbach, Stefan; Bade, Klaus

    2017-10-16

    In this study we present the combination of a math-based design strategy with direct laser writing as high-precision technology for promoting solid free-form fabrication of multi-scale biomimetic surfaces. Results show a remarkable control of surface topography and wettability properties. Different examples of surfaces inspired on the lotus leaf, which to our knowledge are obtained for the first time following a computer-aided design with this degree of precision, are presented. Design and manufacturing strategies towards microfluidic systems whose fluid driving capabilities are obtained just by promoting a design-controlled wettability of their surfaces, are also discussed and illustrated by means of conceptual proofs. According to our experience, the synergies between the presented computer-aided design strategy and the capabilities of direct laser writing, supported by innovative writing strategies to promote final size while maintaining high precision, constitute a relevant step forward towards materials and devices with design-controlled multi-scale and micro-structured surfaces for advanced functionalities. To our knowledge, the surface geometry of the lotus leaf, which has relevant industrial applications thanks to its hydrophobic and self-cleaning behavior, has not yet been adequately modeled and manufactured in an additive way with the degree of precision that we present here.

  5. Finding Mount Everest and handling voids.

    PubMed

    Storch, Tobias

    2011-01-01

    Evolutionary algorithms (EAs) are randomized search heuristics that solve problems successfully in many cases. Their behavior is often described in terms of strategies to find a high location on Earth's surface. Unfortunately, many digital elevation models describing it contain void elements. These are elements not assigned an elevation. Therefore, we design and analyze simple EAs with different strategies to handle such partially defined functions. They are experimentally investigated on a dataset describing the elevation of Earth's surface. The largest value found by an EA within a certain runtime is measured, and the median over a few runs is computed and compared for the different EAs. For the dataset, the distribution of void elements seems to be neither random nor adversarial. They are so-called semirandomly distributed. To deepen our understanding of the behavior of the different EAs, they are theoretically considered on well-known pseudo-Boolean functions transferred to partially defined ones. These modifications are also performed in a semirandom way. The typical runtime until an optimum is found by an EA is analyzed, namely bounded from above and below, and compared for the different EAs. We figure out that for the random model it is a good strategy to assume that a void element has a worse function value than all previous elements. Whereas for the adversary model it is a good strategy to assume that a void element has the best function value of all previous elements.

  6. DNA-mediated engineering of multicomponent enzyme crystals

    PubMed Central

    Brodin, Jeffrey D.; Auyeung, Evelyn; Mirkin, Chad A.

    2015-01-01

    The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. Herein, we explore the concept of trading protein–protein interactions for DNA–DNA interactions to direct the assembly of two nucleic-acid–functionalized proteins with distinct surface chemistries into six unique lattices composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA–DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. This study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials. PMID:25831510

  7. DNA-mediated engineering of multicomponent enzyme crystals

    DOE PAGES

    Brodin, Jeffrey D.; Auyeung, Evelyn; Mirkin, Chad A.

    2015-03-23

    The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. In this paper, we explore the concept of trading protein–protein interactions for DNA–DNA interactions to direct the assembly of two nucleic-acid–functionalized proteins with distinct surface chemistries into six unique latticesmore » composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA–DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. Finally, this study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials.« less

  8. Two methods for one-point anchoring of a linear polysaccharide on a gold surface.

    PubMed

    Hoypierres, Julia; Dulong, Virginie; Rihouey, Christophe; Alexandre, Stéphane; Picton, Luc; Thébault, Pascal

    2015-01-01

    Two strategies to achieve a one-point anchoring of a hydrolyzed pullulan (P9000) on a gold surface are compared. The first strategy consists of forming a self-assembled monolayer of a 6-amino-1-hexanethiol (AHT) and then achieving reductive amination on the surface between the aminated surface and the aldehyde of the polysaccharide reductive end sugar. The second consists of incorporating a thiol function at the extremity of the pullulan (via the same reductive amination), leading to P9000-AHT and then immobilizing it on gold by a spontaneous reaction between solid gold and thiol. The modified pullulan was characterized by NMR and size-exclusion chromatography coupled to a light-scattering detector. P9000-AHT appears to be in a disulfide dimer form in solution but recovers its unimer form with dithiothreitol (DTT) treatment. The comparison of the two strategies by contact angle and XPS revealed that the second strategy is more efficient for the pullulan one-point anchoring. P9000-AHT even in its dimer form is easily grafted onto the surface. The grafted polymer seems to be more in a coil conformation than in a rigid brush. Furthermore, QCM measurements highlighted that the second strategy leads to a grafting density of around 3.5 × 10(13) molecules·cm(-2) corresponding to a high surface coverage. The elaboration of a dense and oriented layer of polysaccharides covalently linked to a gold surface might enhance the use of such modified polysaccharides in various fields.

  9. Rapid Covalent Immobilization of Proteins by Phenol-Based Photochemical Cross-Linking.

    PubMed

    Ren, Jun; Tian, Kaikai; Jia, Lingyun; Han, Xiuyou; Zhao, Mingshan

    2016-10-19

    A strategy for photoinduced covalent immobilization of proteins on phenol-functionalized surfaces is described. Under visible light irradiation, the reaction can be completed within seconds at ambient temperature, with high yields in aqueous solution of physiological conditions. Protein immobilization is based on a ruthenium-catalyzed radical cross-linking reaction between proteins and phenol-modified surfaces, and the process has proven mild enough for lipase, Staphylococcus aureus protein A, and streptavidin to preserve their bioactivity. This strategy was successfully applied to antibody immobilization on different material platforms, including agarose beads, cellulose membranes, and glass wafers, thus providing a generic procedure for rapid biomodification of surfaces.

  10. Yeast cell surface display: An efficient strategy for improvement of bioethanol fermentation performance.

    PubMed

    Chen, Xianzhong

    2017-03-04

    The cell surface serves as a functional interface between the inside and the outside of the cell. Within the past 20 y the ability of yeast (Saccharomyces cerevisiae) to display heterologous proteins on the cell surface has been demonstrated. Furthermore, S. cerevisiae has been both developed and applied in expression of various proteins on the cell surface. Using this novel and useful strategy, proteins and peptides of various kinds can be displayed on the yeast cell surface by fusing the protein of interest with the glycosylphosphatidylinositol (GPI)-anchoring system. Consolidated bioprocessing (CBP) using S. cerevisiae represents a promising technology for bioethanol production. However, further work is needed to improve the fermentation performance. There is some excellent previous research regarding construction of yeast biocatalyst using the surface display system to decrease cost, increase efficiency of ethanol production and directly utilize starch or biomass for fuel production. In this commentary, we reviewed the yeast surface display system and highlighted recent work. Additionally, the strategy for decrease of phytate phosphate content in dried distillers grains with solubles (DDGS) by display of phytase on the yeast cell surface is discussed.

  11. Yeast cell surface display: An efficient strategy for improvement of bioethanol fermentation performance

    PubMed Central

    Chen, Xianzhong

    2017-01-01

    ABSTRACT The cell surface serves as a functional interface between the inside and the outside of the cell. Within the past 20 y the ability of yeast (Saccharomyces cerevisiae) to display heterologous proteins on the cell surface has been demonstrated. Furthermore, S. cerevisiae has been both developed and applied in expression of various proteins on the cell surface. Using this novel and useful strategy, proteins and peptides of various kinds can be displayed on the yeast cell surface by fusing the protein of interest with the glycosylphosphatidylinositol (GPI)-anchoring system. Consolidated bioprocessing (CBP) using S. cerevisiae represents a promising technology for bioethanol production. However, further work is needed to improve the fermentation performance. There is some excellent previous research regarding construction of yeast biocatalyst using the surface display system to decrease cost, increase efficiency of ethanol production and directly utilize starch or biomass for fuel production. In this commentary, we reviewed the yeast surface display system and highlighted recent work. Additionally, the strategy for decrease of phytate phosphate content in dried distillers grains with solubles (DDGS) by display of phytase on the yeast cell surface is discussed. PMID:27459271

  12. Study of NTA-Nickel (II) Motif Functionalization for Binding of Histidine-Tagged Proteins by a Whispering Gallery Mode Resonator

    NASA Astrophysics Data System (ADS)

    Khuong, Anne Chudolij

    This work demonstrates the viability of the whispering gallery mode (WGM) photonic sensing method for use as a biosensor by demonstrating a surface immobilization strategy for histidine tagged biomolecules to the WGM sensor surface. The WGM resonator is a dielectric spherical microstructure that can sustain high-Q electromagnetic waves confined to the sphere by total internal reflection. Light circumnavigates the periphery of the WGM resonator and when the trapped light constructively superimposes onto itself on the round trip, a resonance condition is achieved. Because of minimal loss due to reflection, these modes can reach unusually high quality factors. When a change occurs in the evanescent field at the boundary of the resonator and surrounding environment, such as when a molecule binds to the resonator surface, a shift results in the resonance wavelength; this enables the WGM resonator to be used as a sensor. WGM optical biosensors offer a powerful alternative to conventional analytical techniques due to their high sensitivity, specificity and their ability to directly detect label-free events in real time. There has been considerable growth in this field over the last decade and potential applications to medical and biotechnological research are numerous; however, there are still obstacles limiting the widespread commercial use of these devices. The obstacle we address in this work relates to a general fundamental difficulty incorporating biomaterial into biosensors. We demonstrate a specific and controlled functionalization strategy intended for subsequent assimilation of biomolecules onto the WGM resonator surface. We have developed a general method which can be used to controllably immobilize recombinant proteins to WGM silica surfaces via their histidine tags. In the work presented herein we monitor by WGM, in real time, a two step functionalization strategy to incorporate an NTA-Ni2+ motif onto the surface of a WGM resonator. We estimated the equilibrium constant and surface the density for each of the two reaction steps. Our NTA-Ni2+ functionalized resonator can be used to immobilize histidine tagged biomolecules for subsequent interrogation of protein-protein or protein-ligand binding events and provides a general platform to immobilize biomolecules to WGM biosensors.

  13. Strategy of restraining ripple error on surface for optical fabrication.

    PubMed

    Wang, Tan; Cheng, Haobo; Feng, Yunpeng; Tam, Honyuen

    2014-09-10

    The influence from the ripple error to the high imaging quality is effectively reduced by restraining the ripple height. A method based on the process parameters and the surface error distribution is designed to suppress the ripple height in this paper. The generating mechanism of the ripple error is analyzed by polishing theory with uniform removal character. The relation between the processing parameters (removal functions, pitch of path, and dwell time) and the ripple error is discussed through simulations. With these, the strategy for diminishing the error is presented. A final process is designed and demonstrated on K9 work-pieces using the optimizing strategy with magnetorheological jet polishing. The form error on the surface is decreased from 0.216λ PV (λ=632.8  nm) and 0.039λ RMS to 0.03λ PV and 0.004λ RMS. And the ripple error is restrained well at the same time, because the ripple height is less than 6 nm on the final surface. Results indicate that these strategies are suitable for high-precision optical manufacturing.

  14. Strategies for specifically directing metal functionalization of protein nanotubes: constructing protein coated silver nanowires

    NASA Astrophysics Data System (ADS)

    Carreño-Fuentes, Liliana; Ascencio, Jorge A.; Medina, Ariosto; Aguila, Sergio; Palomares, Laura A.; Ramírez, Octavio T.

    2013-06-01

    Biological molecules that self-assemble in the nanoscale range are useful multifunctional materials. Rotavirus VP6 protein self-assembles into tubular structures in the absence of other rotavirus proteins. Here, we present strategies for selectively directing metal functionalization to the lumen of VP6 nanotubes. The specific in situ metal reduction in the inner surface of nanotube walls was achieved by the simple modification of a method previously reported to functionalize the nanotube outer surface. Silver nanorods and nanowires as long as 1.5 μm were formed inside the nanotubes by coalescence of nanoparticles. Such one-dimensional structures were longer than others previously obtained using bioscaffolds. The interactions between silver ions and the nanotube were simulated to understand the conditions that allowed nanowire formation. Molecular docking showed that a naturally occurring arrangement of aspartate residues enabled the stabilization of silver ions on the internal surface of the VP6 nanotubes. This is the first time that such a spatial arrangement has been proposed for the nucleation of silver nanoparticles, opening the possibility of using such an array to direct functionalization of other biomolecules. These results demonstrate the natural capabilities of VP6 nanotubes to function as a versatile biotemplate for nanomaterials.

  15. A simplified biomolecule attachment strategy for biosensing using a porous Si oxide interferometer

    PubMed Central

    Perelman, Loren A.; Schwartz, Michael P.; Wohlrab, Aaron M.; VanNieuwenhze, Michael S.; Sailor, Michael J.

    2008-01-01

    A simple strategy for linking biomolecules to porous Si surfaces and detecting peptide/drug binding is described. Porous Si is prepared using an electrochemical etch and then thermally oxidized by heating in ambient atmosphere. Bovine serum albumin (BSA) is then non-covalently adsorbed to the inner pore walls of the porous Si oxide (PSiO2) matrix. The BSA layer is used as a linker for covalent attachment of the peptide Ac-L-Lysine-D-Alanine-D-Alanine (KAA) using published bioconjugation chemistry. BSA-coated surfaces functionalized with KAA display specificity for the glycopeptide vancomycin while resisting adsorption of non-specific reagents. While the biomolecule attachment strategy reported here is used to bind peptides, the scheme can be generalized to the linking of any primary amine-containing molecule to PSiO2 surfaces. PMID:18458749

  16. Field spectroscopy sampling strategies for improved measurement of Earth surface reflectance

    NASA Astrophysics Data System (ADS)

    Mac Arthur, A.; Alonso, L.; Malthus, T. J.; Moreno, J. F.

    2013-12-01

    Over the last two decades extensive networks of research sites have been established to measure the flux of carbon compounds and water vapour between the Earth's surface and the atmosphere using eddy covariance (EC) techniques. However, contributing Earth surface components cannot be determined and (as the ';footprints' are spatially constrained) these measurements cannot be extrapolated to regional cover using this technique. At many of these EC sites researchers have been integrating spectral measurements with EC and ancillary data to better understand light use efficiency and carbon dioxide flux. These spectroscopic measurements could also be used to assess contributing components and provide support for imaging spectroscopy, from airborne or satellite platforms, which can provide unconstrained spatial cover. Furthermore, there is an increasing interest in ';smart' database and information retrieval systems such as that proposed by EcoSIS and OPTIMISE to store, analyse, QA and merge spectral and biophysical measurements and provide information to end users. However, as Earth surfaces are spectrally heterogeneous and imaging and field spectrometers sample different spatial extents appropriate field sampling strategies require to be adopted. To sample Earth surfaces spectroscopists adopt either single; random; regular grid; transect; or 'swiping' point sampling strategies, although little comparative work has been carried out to determine the most appropriate approach; the work by Goetz (2012) is a limited exception. Mac Arthur et al (2012) demonstrated that, for two full wavelength (400 nm to 2,500 nm) field spectroradiometers, the measurement area sampled is defined by each spectroradiometer/fore optic system's directional response function (DRF) rather than the field-of-view (FOV) specified by instrument manufacturers. Mac Arthur et al (2012) also demonstrated that each reflecting element within the sampled area was not weighted equally in the integrated measurement recorded. There were non-uniformities of spectral response with the spectral ';weighting' per wavelength interval being positionally dependent and unique to each spectroradiometer/fore optic system investigated. However, Mac Arthur et al (2012) did not provide any advice on how to compensate for these systematic errors or advise on appropriate sampling strategies. The work reported here will provide the first systematic study of the effect of field spectroscopy sampling strategies for a range of different Earth surface types. Synthetic Earth surface hyperspectral data cubes for each surface type were generated and convolved with a range of the spectrometer/fore optic system directional response functions generated by Mac Arthur et al 2013, to simulate spectroscopic measurements of Earth surfaces. This has enabled different field sampling strategies to be directly compared and their suitability for each measurement purpose and surface type to be assessed and robust field spectroscopy sampling strategy recommendations to be made. This will be particularly of interest to the carbon and water vapour flux communities and assist the development of sampling strategies for field spectroscopy from rotary-wing Unmanned Aerial Vehicles, which will aid acquiring measurements in the spatial domain, and generally further the use of field spectroscopy for quantitative Earth observation.

  17. Bioadhesion of mussels and geckos: Molecular mechanics, surface chemistry, and nanoadhesives

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin

    The adhesive strategies of living creatures are diverse, ranging from temporary to permanent adhesions with various functions such as locomotion, self-defense, communication, colony formation, and so on. The classic example of temporary adhesion is the gecko, which is known for its ability to walk along vertical and even inverted surfaces; this remarkable adhesion arises from the interfacial weak interactions of van der Waals and capillary forces. In contrast, a celerbrated example of permanent adhesion is found in marine mussels which secrete protein adhesives that function in aqueous environments without mechanical failure against turbulent conditions on the seashore. In addition, mussel adhesives stick to virtually all inorganic and organic surfaces. However, most commonly used man-made adhesives lack such unique adhesion properties compared to their natural counterparts. For example, many commercial adhesives quickly lose their adhesive strength when exposed to solvents, particularly water. The first part of this thesis focused on adhesion mechanics of mussels at a single-molecule level, in which the adhesive molecule showed surprisingly strong yet reversible adhesion on inorganic surfaces but exhibited irreversible covalent bond formation on organic surfaces. Strong and reversible adhesion on mucin surfaces was found, indicating potential application for drug delivery via mucus layers. Next, inspired by the mussel's versatile adhesion on a wide variety of material surfaces, a material-independent surface modification chemistry called 'polydopamine coating' is described. This concept was subsequently adapted to develop a surface-independent polymeric primer for layer-by-layer assembly of multifunctional coatings. Finally, a new bio-hybrid adhesive 'geckel' was developed by the functional combination of adhesion strategies of geckos and mussels. The new bio-inspired adhesive and material-independent surface chemistry can revolutionize the research areas such as medical devices, adhesives, and diagnostics, nanotechnology, biointerface, and catalysis.

  18. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting

    PubMed Central

    Sin, Wai Jack; Nai, Mui Ling Sharon; Wei, Jun

    2017-01-01

    As one of the powder bed fusion additive manufacturing technologies, electron beam melting (EBM) is gaining more and more attention due to its near-net-shape production capacity with low residual stress and good mechanical properties. These characteristics also allow EBM built parts to be used as produced without post-processing. However, the as-built rough surface introduces a detrimental influence on the mechanical properties of metallic alloys. Thereafter, understanding the effects of processing parameters on the part’s surface roughness, in turn, becomes critical. This paper has focused on varying the processing parameters of two types of contouring scanning strategies namely, multispot and non-multispot, in EBM. The results suggest that the beam current and speed function are the most significant processing parameters for non-multispot contouring scanning strategy. While for multispot contouring scanning strategy, the number of spots, spot time, and spot overlap have greater effects than focus offset and beam current. The improved surface roughness has been obtained in both contouring scanning strategies. Furthermore, non-multispot contouring scanning strategy gives a lower surface roughness value and poorer geometrical accuracy than the multispot counterpart under the optimized conditions. These findings could be used as a guideline for selecting the contouring type used for specific industrial parts that are built using EBM. PMID:28937638

  19. Improved performance of protected catecholic polysiloxanes for bio-inspired wet adhesion to surface oxides

    PubMed Central

    Heo, Jinhwa; Kang, Taegon; Jang, Se Gyu; Hwang, Dong Soo; Spruell, Jason M.; Killops, Kato L.; Waite, J. Herbert; Hawker, Craig J.

    2012-01-01

    A facile synthetic strategy for introducing catecholic moieties into polymeric materials based on a readily available precursor – eugenol – and efficient chemistries – tris(pentafluorophenyl)borane catalyzed silation and thiol-ene coupling is reported. Silyl-protection is shown to be critical for the oxidative stability of catecholic moieties during synthesis and processing which allows functionalized polysiloxane derivatives to be fabricated into 3-D microstructures as well as 2-D patterned surfaces. Deprotection gives stable catechol surfaces with adhesion to a variety of oxide surfaces being precisely tuned by the level of catechol incorporation. The advantage of silyl-protection for catechol functionalized polysiloxanes is demonstrated and represents a promising and versatile new platform for underwater surface treatments. PMID:23181614

  20. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Turcheniuk, Kostiantyn; Tarasevych, Arkadii V.; Kukhar, Valeriy P.; Boukherroub, Rabah; Szunerits, Sabine

    2013-10-01

    The synthesis of superparamagnetic nanostructures, especially iron-oxide based nanoparticles (IONPs), with appropriate surface functional groups has been intensively researched for many high-technological applications, including high density data storage, biosensing and biomedicine. In medicine, IONPs are nowadays widely used as contrast agents for magnetic resonance imaging (MRI), in hyperthermia therapy, but are also exploited for drug and gene delivery, detoxification of biological fluids or immunoassays, as they are relatively non-toxic. The use of magnetic particles in vivo requires IONPs to have high magnetization values, diameters below 100 nm with overall narrow size distribution and long time stability in biological fluids. Due to the high surface energies of IONPs agglomeration over time is often encountered. It is thus of prime importance to modify their surface to prevent aggregation and to limit non-specific adsorption of biomolecules onto their surface. Such chemical modifications result in IONPs being well-dispersed and biocompatible, and allow for targeted delivery and specific interactions. The chemical nature of IONPs thus determines not only the overall size of the colloid, but also plays a significant role for in vivo and in vitro applications. This review discusses the different concepts currently used for the surface functionalization and coating of iron oxide nanoparticles. The diverse strategies for the covalent linking of drugs, proteins, enzymes, antibodies, and nucleotides will be discussed and the chemically relevant steps will be explained in detail.

  1. Arctic ecosystem functional zones: identification and quantification using an above and below ground monitoring strategy

    NASA Astrophysics Data System (ADS)

    Hubbard, Susan S.; Ajo-Franklin, Jonathan B.; Dafflon, Baptiste; Dou, Shan; Kneafsey, Tim J.; Peterson, John E.; Tas, Neslihan; Torn, Margaret S.; Phuong Tran, Anh; Ulrich, Craig; Wainwright, Haruko; Wu, Yuxin; Wullschleger, Stan

    2015-04-01

    Although accurate prediction of ecosystem feedbacks to climate requires characterization of the properties that influence terrestrial carbon cycling, performing such characterization is challenging due to the disparity of scales involved. This is particularly true in vulnerable Arctic ecosystems, where microbial activities leading to the production of greenhouse gasses are a function of small-scale hydrological, geochemical, and thermal conditions influenced by geomorphology and seasonal dynamics. As part of the DOE Next-Generation Ecosystem Experiment (NGEE-Arctic), we are advancing two approaches to improve the characterization of complex Arctic ecosystems, with an initial application to an ice-wedge polygon dominated tundra site near Barrow, AK, USA. The first advance focuses on developing a new strategy to jointly monitor above- and below- ground properties critical for carbon cycling in the tundra. The strategy includes co-characterization of properties within the three critical ecosystem compartments: land surface (vegetation, water inundation, snow thickness, and geomorphology); active layer (peat thickness, soil moisture, soil texture, hydraulic conductivity, soil temperature, and geochemistry); and permafrost (mineral soil and ice content, nature, and distribution). Using a nested sampling strategy, a wide range of measurements have been collected at the study site over the past three years, including: above-ground imagery (LiDAR, visible, near infrared, NDVI) from various platforms, surface geophysical datasets (electrical, electromagnetic, ground penetrating radar, seismic), and point measurements (such as CO2 and methane fluxes, soil properties, microbial community composition). A subset of the coincident datasets is autonomously collected daily. Laboratory experiments and new inversion approaches are used to improve interpretation of the field geophysical datasets in terms of ecosystem properties. The new strategy has significantly advanced our ability to characterize and monitor ecosystem functioning - within and across permafrost, active layer and land-surface compartments and as a function of geomorphology and seasonal dynamics (thaw, growing season, freeze-up, and winter seasons). The second construct uses statistical approaches with the rich datasets to identify Arctic functional zones. Functional zones are regions in the landscape that have unique assemblages of above- and below-ground properties relevant to ecosystem functioning. Results demonstrate the strong co-variation of above and below ground properties in this Arctic ecosystem, particularly highlighting the critical influence of soil moisture on vegetation dynamics and redox-based active-layer biogeochemistry important for carbon cycling. The results also indicate that polygon types (low centered, high centered) have more power to explain the variations in properties than polygon features (trough, rim, center). This finding allows delineation of functional zones through grouping contiguous, similar types of polygons using remote sensing and surface geophysical datasets. Applied to the tundra NGEE study site, the functional zone approach permitted aggregation of critical properties associated with ~1350 polygons and their individual features, which vary over centimeter-to-meter length scales, into a few functional zones having suites of co-varying properties that were tractably defined over ~hundred meter length scales. The developed above-and-below ground monitoring strategy and functional zone approach are proving to be extremely valuable for gaining new insights about a complex Arctic ecosystem and for characterizing the system properties at high resolution and yet with spatial extents relevant for informing models focused on simulating ecosystem-climate feedbacks.

  2. Triclosan-immobilized polyamide thin film composite membranes with enhanced biofouling resistance

    NASA Astrophysics Data System (ADS)

    Park, Sang-Hee; Hwang, Seon Oh; Kim, Taek-Seung; Cho, Arah; Kwon, Soon Jin; Kim, Kyoung Taek; Park, Hee-Deung; Lee, Jung-Hyun

    2018-06-01

    We report on a strategy to improve biofouling resistance of a polyamide (PA) thin-film composite (TFC) reverse osmosis (RO) membrane via chemically immobilizing triclosan (TC), known as a common organic biocide, on its surface. To facilitate covalent attachment of TC on the membrane surface, TC was functionalized with amine moiety to prepare aminopropyl TC. Then, the TC-immobilized TFC (TFC-TC) membranes were fabricated through a one-step amide formation reaction between amine groups of aminopropyl TC and acyl chloride groups present on the PA membrane surface, which was confirmed by high-resolution XPS. Strong stability of the immobilized TC was also confirmed by a hydraulic washing test. Although the TFC-TC membrane showed slightly reduced separation performance compared to the pristine control, it still maintained a satisfactory RO performance level. Importantly, the TFC-TC membrane exhibited excellent antibacterial activity against both gram negative (E. coli and P. aeruginosa) and gram positive (S. aureus) bacteria along with greatly enhanced resistance to biofilm formation. Our immobilization approach offers a robust and relatively benign strategy to control biofouling of functional surfaces, films and membranes.

  3. Non-Equilibrium Plasma Processing for the Preparation of Antibacterial Surfaces

    PubMed Central

    Sardella, Eloisa; Palumbo, Fabio; Camporeale, Giuseppe; Favia, Pietro

    2016-01-01

    Non-equilibrium plasmas offer several strategies for developing antibacterial surfaces that are able to repel and/or to kill bacteria. Due to the variety of devices, implants, and materials in general, as well as of bacteria and applications, plasma assisted antibacterial strategies need to be tailored to each specific surface. Nano-composite coatings containing inorganic (metals and metal oxides) or organic (drugs and biomolecules) compounds can be deposited in one step, and used as drug delivery systems. On the other hand, functional coatings can be plasma-deposited and used to bind antibacterial molecules, for synthesizing surfaces with long lasting antibacterial activity. In addition, non-fouling coatings can be produced to inhibit the adhesion of bacteria and reduce the formation of biofilm. This paper reviews plasma-based strategies aimed to reduce bacterial attachment and proliferation on biomedical materials and devices, but also onto materials used in other fields. Most of the activities described have been developed in the lab of the authors. PMID:28773637

  4. A method for cone fitting based on certain sampling strategy in CMM metrology

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Guo, Chaopeng

    2018-04-01

    A method of cone fitting in engineering is explored and implemented to overcome shortcomings of current fitting method. In the current method, the calculations of the initial geometric parameters are imprecise which cause poor accuracy in surface fitting. A geometric distance function of cone is constructed firstly, then certain sampling strategy is defined to calculate the initial geometric parameters, afterwards nonlinear least-squares method is used to fit the surface. The experiment is designed to verify accuracy of the method. The experiment data prove that the proposed method can get initial geometric parameters simply and efficiently, also fit the surface precisely, and provide a new accurate way to cone fitting in the coordinate measurement.

  5. Surface processing: existing and potential applications of ultraviolet light.

    PubMed

    Manzocco, Lara; Nicoli, Maria Cristina

    2015-01-01

    Solid foods represent optimal matrices for ultraviolet processing with effects well beyond nonthermal surface disinfection. UV radiation favors hormetic response in plant tissues and degradation of toxic compound on the product surface. Photoinduced reactions can also provide unexplored possibilities to steer structure and functionality of food biopolymers. The possibility to extensively exploit this technology will depend on availability of robust information about efficacious processing conditions and adequate strategies to completely and homogeneously process food surface.

  6. Solubility studies of inorganic-organic hybrid nanoparticle photoresists with different surface functional groups

    NASA Astrophysics Data System (ADS)

    Li, Li; Chakrabarty, Souvik; Jiang, Jing; Zhang, Ben; Ober, Christopher; Giannelis, Emmanuel P.

    2016-01-01

    The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07334k

  7. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications

    NASA Astrophysics Data System (ADS)

    Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.

  8. Dopamine-assisted co-deposition: An emerging and promising strategy for surface modification.

    PubMed

    Qiu, Wen-Ze; Yang, Hao-Cheng; Xu, Zhi-Kang

    2018-04-27

    Mussel-inspired chemistry based on polydopamine (PDA) deposition has been developed as a facile and universal method for the surface modification of various materials. However, the inherent shortcomings of PDA coatings still impede their practical applications in the development of functional materials. In this review, we introduce the recent progress in the emerging dopamine-assisted co-deposition as a one-step strategy for functionalizing PDA-based coatings, and improving them in the aspects of deposition rate, morphology uniformity, surface wettability and chemical stability. The co-deposition mechanisms are categorized and discussed according to the interactions of dopamine or PDA with the introduced co-component. We also emphasize the influence of these interactions on the properties of the resultant PDA-based coatings. Meanwhile, we conclude the representative potential applications of those dopamine-assisted co-deposited coatings in material science, especially including separation membranes and biomaterials. Finally, some important issues and perspectives for theoretical study and applications are briefly discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Dual signal amplification of surface plasmon resonance imaging for sensitive immunoassay of tumor marker.

    PubMed

    Hu, Weihua; Chen, Hongming; Shi, Zhuanzhuan; Yu, Ling

    2014-05-15

    Surface plasmon resonance imaging (SPRi) is an intriguing technique for immunoassay with the inherent advantages of being high throughput, real time, and label free, but its sensitivity needs essential improvement for practical applications. Here, we report a dual signal amplification strategy using functional gold nanoparticles (AuNPs) followed by on-chip atom transfer radical polymerization (ATRP) for sensitive SPRi immunoassay of tumor biomarker in human serum. The AuNPs are grafted with an initiator of ATRP as well as a recognition antibody, where the antibody directs the specific binding of functional AuNPs onto the SPRi sensing surface to form immunocomplexes for first signal amplification and the initiator allows for on-chip ATRP of 2-hydroxyethyl methacrylate (HEMA) from the AuNPs to further enhance the SPRi signal. High sensitivity and broad dynamic range are achieved with this dual signal amplification strategy for detection of a model tumor marker, α-fetoprotein (AFP), in 10% human serum. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Emotional labor actors: a latent profile analysis of emotional labor strategies.

    PubMed

    Gabriel, Allison S; Daniels, Michael A; Diefendorff, James M; Greguras, Gary J

    2015-05-01

    Research on emotional labor focuses on how employees utilize 2 main regulation strategies-surface acting (i.e., faking one's felt emotions) and deep acting (i.e., attempting to feel required emotions)-to adhere to emotional expectations of their jobs. To date, researchers largely have considered how each strategy functions to predict outcomes in isolation. However, this variable-centered perspective ignores the possibility that there are subpopulations of employees who may differ in their combined use of surface and deep acting. To address this issue, we conducted 2 studies that examined surface acting and deep acting from a person-centered perspective. Using latent profile analysis, we identified 5 emotional labor profiles-non-actors, low actors, surface actors, deep actors, and regulators-and found that these actor profiles were distinguished by several emotional labor antecedents (positive affectivity, negative affectivity, display rules, customer orientation, and emotion demands-abilities fit) and differentially predicted employee outcomes (emotional exhaustion, job satisfaction, and felt inauthenticity). Our results reveal new insights into the nature of emotion regulation in emotional labor contexts and how different employees may characteristically use distinct combinations of emotion regulation strategies to manage their emotional expressions at work. (c) 2015 APA, all rights reserved.

  11. Direct organocatalytic enantioselective functionalization of SiOx surfaces.

    PubMed

    Parkin, John David; Chisholm, Ross; Frost, Aileen B; Bailey, Richard G; Smith, Andrew David; Hähner, Georg

    2018-06-05

    Traditional methods to prepare chiral surfaces involve either the adsorption of a chiral molecule onto an achiral surface, or adsorption of a species that forms a chiral template creating lattices with long range order. To date only limited alternative strategies to prepare chiral surfaces have been studied. In this manuscript a "bottom up" approach is developed that allows the preparation of chiral surfaces by direct enantioselective organocatalysis on a functionalized Si-oxide supported self-assembled monolayer (SAM). The efficient catalytic generation of enantiomerically enriched organic surfaces is achieved using a commercially available homogeneous isothiourea catalyst (HyperBTM) that promotes an enantioselective Michael-lactonization process upon a Si-oxide supported self-assembled monolayer functionalized with a reactive trifluoroenone group. Chiral atomic force microscopy (chi-AFM) is used to probe the enantiomeric enrichment of the organic films by measurement of the force distributions arising from interaction of D- or L-cysteine modified AFM tips and the organic films. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries

    PubMed Central

    Kim, Ki Jae; Lee, Seung-Wook; Yim, Taeeun; Kim, Jae-Geun; Choi, Jang Wook; Kim, Jung Ho; Park, Min-Sik; Kim, Young-Jun

    2014-01-01

    The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high current density (148 mA cm−2). Such improvement is attributed to the faster charge transfer and better wettability allowed by surface-active oxygen functional groups. Moreover, this method is much more competitive than other surface treatments in terms of processing time, production costs, and electrochemical performance. PMID:25366060

  13. Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

    PubMed

    Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-02-07

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.

  14. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

    PubMed

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R

    2015-07-06

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

  15. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review

    PubMed Central

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R.

    2015-01-01

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed. PMID:26109634

  16. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas-liquid separation.

    PubMed

    Wang, Tieqiang; Chen, Hongxu; Liu, Kun; Li, Yang; Xue, Peihong; Yu, Ye; Wang, Shuli; Zhang, Junhu; Kumacheva, Eugenia; Yang, Bai

    2014-04-07

    In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels.

  17. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells.

    PubMed

    Salmasi, Shima; Kalaskar, Deepak M; Yoon, Wai-Weng; Blunn, Gordon W; Seifalian, Alexander M

    2015-03-26

    Recent regenerative medicine and tissue engineering strategies (using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional (3D) organs, such as bone, skin, liver, kidney and ear, using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nano-surface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.

  18. A biomimetic functionalization approach to integration of carbon nanoutbes into biological systems

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Tam, Un Chong; Bertozzi, Carolyn; Zettl, Alex

    2006-03-01

    Due to their remarkable structural, electrical, and mechanical properties, carbon nanotubes (CNTs) have potential applications in biology ranging from imaging and tissue engineering. To realize these applications, however, new strategies for controlling the interaction between CNTs and biological systems such as proteins and cells are required. Here we describe a biomimetic approach to functionalize CNTs and therefore render them biocompatibility in order to facilitate their integration into biological systems. CNTs were coated with synthetic gycopolymers that mimic cell surface mucin gycoproteins. The functionalized CNTs were soluble in water, resisted non-specific protein binding and bound specifically to biomolecules. The coated CNTs could then be integrated onto mammalian cell surface by virtue of glycan-receptor interactions. Furthermore, the functionalized CNTs are non-toxic to cells. This strategy offers new opportunities for development of biosensor to probe biological processes. References: 1. X. Chen, G. S. Lee, A. Zettl, C. R. Bertozzi, Angewandte Chemie-International Edition 43, 6111 (2004). 2. X. Chen, U. C. Tam, J. L. Czlapanski, G. S. Lee, D. Rabuka, A. Zettl, C. R. Bertozzi, submitted.

  19. Interfacing Nanoparticles and Biology: New Strategies for Biomedicine

    PubMed Central

    Tonga, Gulen Yesilbag; Saha, Krishnendu; Rotello, Vincent M.

    2014-01-01

    The exterior surface of nanoparticles (NPs) dictates the behavior of these systems with the outside world. Understanding the interactions of NP surface functionality with biosystems enables the design and fabrication of effective platforms for therapeutics, diagnostics, and imaging agents. In this review, we highlight the role of chemistry in the engineering of nanomaterials, focusing on the fundamental role played by surface chemistry in controlling the interaction of NPs with proteins and cells. PMID:24105763

  20. Interventional magnetic resonance angiography with no strings attached: wireless active catheter visualization.

    PubMed

    Quick, Harald H; Zenge, Michael O; Kuehl, Hilmar; Kaiser, Gernot; Aker, Stephanie; Massing, Sandra; Bosk, Silke; Ladd, Mark E

    2005-02-01

    Active instrument visualization strategies for interventional MR angiography (MRA) require vascular instruments to be equipped with some type of radiofrequency (RF) coil or dipole RF antenna for MR signal detection. Such visualization strategies traditionally necessitate a connection to the scanner with either coaxial cable or laser fibers. In order to eliminate any wire connection, RF resonators that inductively couple their signal to MR surface coils were implemented into catheters to enable wireless active instrument visualization. Instrument background to contrast-to-noise ratio was systematically investigated as a function of the excitation flip angle. Signal coupling between the catheter RF coil and surface RF coils was evaluated qualitatively and quantitatively as a function of the catheter position and orientation with regard to the static magnetic field B0 and to the surface coils. In vivo evaluation of the instruments was performed in interventional MRA procedures on five pigs under MR guidance. Cartesian and projection reconstruction TrueFISP imaging enabled simultaneous visualization of the instruments and vascular morphology in real time. The implementation of RF resonators enabled robust visualization of the catheter curvature to the very tip. Additionally, the active visualization strategy does not require any wire connection to the scanner and thus does not hamper the interventionalist during the course of an intervention.

  1. Chemical copatterning strategies using azlactone-based block copolymers

    DOE PAGES

    Masigol, Mohammadali; Barua, Niloy; Retterer, Scott T.; ...

    2017-09-01

    Interfaces can be modified with azlactone-functional polymers in order to manipulate the chemical surface reactivity. Azlactone groups are highly reactive toward amine, thiol, and alcohol nucleophiles, providing a versatile coupling chemistry for secondary surface modification. Azlactone-based surface polymers have been explored in numerous applications, including chemical and biological capture, sensing, and cell culture. These applications often require that the polymer is copatterned within a chemically or biologically inert background; however, common fabrication methods degrade azlactone groups during processing steps or result in polymer films with poorly controlled thicknesses. Here, the authors develop fabrication strategies using parylene lift-off and interface-directed assemblymore » methods to generate microscale patterns of azlactone-based block copolymer in chemically or biologically inert backgrounds. The functionality of azlactone groups was preserved during fabrication, and patterned films appeared as uniform, 80–120nm brushlike films. The authors also develop a patterning approach that uses a novel microcontact stamping method to generate cross-linked, three-dimensional structures of azlactone-based polymers with controllable, microscale thicknesses. The authors identify the benefits of each approach and expect these polymers and patterning strategies to provide a versatile toolbox for developing synthetic interfaces with tuned chemical and physical features for sensing, cell culture, or material capture applications.« less

  2. Chemical copatterning strategies using azlactone-based block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masigol, Mohammadali; Barua, Niloy; Retterer, Scott T.

    Interfaces can be modified with azlactone-functional polymers in order to manipulate the chemical surface reactivity. Azlactone groups are highly reactive toward amine, thiol, and alcohol nucleophiles, providing a versatile coupling chemistry for secondary surface modification. Azlactone-based surface polymers have been explored in numerous applications, including chemical and biological capture, sensing, and cell culture. These applications often require that the polymer is copatterned within a chemically or biologically inert background; however, common fabrication methods degrade azlactone groups during processing steps or result in polymer films with poorly controlled thicknesses. Here, the authors develop fabrication strategies using parylene lift-off and interface-directed assemblymore » methods to generate microscale patterns of azlactone-based block copolymer in chemically or biologically inert backgrounds. The functionality of azlactone groups was preserved during fabrication, and patterned films appeared as uniform, 80–120nm brushlike films. The authors also develop a patterning approach that uses a novel microcontact stamping method to generate cross-linked, three-dimensional structures of azlactone-based polymers with controllable, microscale thicknesses. The authors identify the benefits of each approach and expect these polymers and patterning strategies to provide a versatile toolbox for developing synthetic interfaces with tuned chemical and physical features for sensing, cell culture, or material capture applications.« less

  3. Strategies in biomimetic surface engineering of nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gong, Yong-Kuan; Winnik, Françoise M.

    2012-01-01

    Engineered nanoparticles (NPs) play an increasingly important role in biomedical sciences and in nanomedicine. Yet, in spite of significant advances, it remains difficult to construct drug-loaded NPs with precisely defined therapeutic effects, in terms of release time and spatial targeting. The body is a highly complex system that imposes multiple physiological and cellular barriers to foreign objects. Upon injection in the blood stream or following oral administation, NPs have to bypass numerous barriers prior to reaching their intended target. A particularly successful design strategy consists in masking the NP to the biological environment by covering it with an outer surface mimicking the composition and functionality of the cell's external membrane. This review describes this biomimetic approach. First, we outline key features of the composition and function of the cell membrane. Then, we present recent developments in the fabrication of molecules that mimic biomolecules present on the cell membrane, such as proteins, peptides, and carbohydrates. We present effective strategies to link such bioactive molecules to the NPs surface and we highlight the power of this approach by presenting some exciting examples of biomimetically engineered NPs useful for multimodal diagnostics and for target-specific drug/gene delivery applications. Finally, critical directions for future research and applications of biomimetic NPs are suggested to the readers.

  4. Functionalization of SiO2 Surfaces for Si Monolayer Doping with Minimal Carbon Contamination.

    PubMed

    van Druenen, Maart; Collins, Gillian; Glynn, Colm; O'Dwyer, Colm; Holmes, Justin D

    2018-01-17

    Monolayer doping (MLD) involves the functionalization of semiconductor surfaces followed by an annealing step to diffuse the dopant into the substrate. We report an alternative doping method, oxide-MLD, where ultrathin SiO 2 overlayers are functionalized with phosphonic acids for doping Si. Similar peak carrier concentrations were achieved when compared with hydrosilylated surfaces (∼2 × 10 20 atoms/cm 3 ). Oxide-MLD offers several advantages over conventional MLD, such as ease of sample processing, superior ambient stability, and minimal carbon contamination. The incorporation of an oxide layer minimizes carbon contamination by facilitating attachment of carbon-free precursors or by impeding carbon diffusion. The oxide-MLD strategy allows selection of many inexpensive precursors and therefore allows application to both p- and n-doping. The phosphonic acid-functionalized SiO 2 surfaces were investigated using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy, whereas doping was assessed using electrochemical capacitance voltage and Hall measurements.

  5. Influence of survey strategy and interpolation model on DEM quality

    NASA Astrophysics Data System (ADS)

    Heritage, George L.; Milan, David J.; Large, Andrew R. G.; Fuller, Ian C.

    2009-11-01

    Accurate characterisation of morphology is critical to many studies in the field of geomorphology, particularly those dealing with changes over time. Digital elevation models (DEMs) are commonly used to represent morphology in three dimensions. The quality of the DEM is largely a function of the accuracy of individual survey points, field survey strategy, and the method of interpolation. Recommendations concerning field survey strategy and appropriate methods of interpolation are currently lacking. Furthermore, the majority of studies to date consider error to be uniform across a surface. This study quantifies survey strategy and interpolation error for a gravel bar on the River Nent, Blagill, Cumbria, UK. Five sampling strategies were compared: (i) cross section; (ii) bar outline only; (iii) bar and chute outline; (iv) bar and chute outline with spot heights; and (v) aerial LiDAR equivalent, derived from degraded terrestrial laser scan (TLS) data. Digital Elevation Models were then produced using five different common interpolation algorithms. Each resultant DEM was differentiated from a terrestrial laser scan of the gravel bar surface in order to define the spatial distribution of vertical and volumetric error. Overall triangulation with linear interpolation (TIN) or point kriging appeared to provide the best interpolators for the bar surface. Lowest error on average was found for the simulated aerial LiDAR survey strategy, regardless of interpolation technique. However, comparably low errors were also found for the bar-chute-spot sampling strategy when TINs or point kriging was used as the interpolator. The magnitude of the errors between survey strategy exceeded those found between interpolation technique for a specific survey strategy. Strong relationships between local surface topographic variation (as defined by the standard deviation of vertical elevations in a 0.2-m diameter moving window), and DEM errors were also found, with much greater errors found at slope breaks such as bank edges. A series of curves are presented that demonstrate these relationships for each interpolation and survey strategy. The simulated aerial LiDAR data set displayed the lowest errors across the flatter surfaces; however, sharp slope breaks are better modelled by the morphologically based survey strategy. The curves presented have general application to spatially distributed data of river beds and may be applied to standard deviation grids to predict spatial error within a surface, depending upon sampling strategy and interpolation algorithm.

  6. Quantitative characterization of surface topography using spectral analysis

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Junge, Till; Pastewka, Lars

    2017-03-01

    Roughness determines many functional properties of surfaces, such as adhesion, friction, and (thermal and electrical) contact conductance. Recent analytical models and simulations enable quantitative prediction of these properties from knowledge of the power spectral density (PSD) of the surface topography. The utility of the PSD is that it contains statistical information that is unbiased by the particular scan size and pixel resolution chosen by the researcher. In this article, we first review the mathematical definition of the PSD, including the one- and two-dimensional cases, and common variations of each. We then discuss strategies for reconstructing an accurate PSD of a surface using topography measurements at different size scales. Finally, we discuss detecting and mitigating artifacts at the smallest scales, and computing upper/lower bounds on functional properties obtained from models. We accompany our discussion with virtual measurements on computer-generated surfaces. This discussion summarizes how to analyze topography measurements to reconstruct a reliable PSD. Analytical models demonstrate the potential for tuning functional properties by rationally tailoring surface topography—however, this potential can only be achieved through the accurate, quantitative reconstruction of the PSDs of real-world surfaces.

  7. A new multi-domain method based on an analytical control surface for linear and second-order mean drift wave loads on floating bodies

    NASA Astrophysics Data System (ADS)

    Liang, Hui; Chen, Xiaobo

    2017-10-01

    A novel multi-domain method based on an analytical control surface is proposed by combining the use of free-surface Green function and Rankine source function. A cylindrical control surface is introduced to subdivide the fluid domain into external and internal domains. Unlike the traditional domain decomposition strategy or multi-block method, the control surface here is not panelized, on which the velocity potential and normal velocity components are analytically expressed as a series of base functions composed of Laguerre function in vertical coordinate and Fourier series in the circumference. Free-surface Green function is applied in the external domain, and the boundary integral equation is constructed on the control surface in the sense of Galerkin collocation via integrating test functions orthogonal to base functions over the control surface. The external solution gives rise to the so-called Dirichlet-to-Neumann [DN2] and Neumann-to-Dirichlet [ND2] relations on the control surface. Irregular frequencies, which are only dependent on the radius of the control surface, are present in the external solution, and they are removed by extending the boundary integral equation to the interior free surface (circular disc) on which the null normal derivative of potential is imposed, and the dipole distribution is expressed as Fourier-Bessel expansion on the disc. In the internal domain, where the Rankine source function is adopted, new boundary integral equations are formulated. The point collocation is imposed over the body surface and free surface, while the collocation of the Galerkin type is applied on the control surface. The present method is valid in the computation of both linear and second-order mean drift wave loads. Furthermore, the second-order mean drift force based on the middle-field formulation can be calculated analytically by using the coefficients of the Fourier-Laguerre expansion.

  8. Metal-Free Photoinduced Electron Transfer-Atom Transfer Radical Polymerization Integrated with Bioinspired Polydopamine Chemistry as a Green Strategy for Surface Engineering of Magnetic Nanoparticles.

    PubMed

    Yang, Yang; Liu, Xuegang; Ye, Gang; Zhu, Shan; Wang, Zhe; Huo, Xiaomei; Matyjaszewski, Krzysztof; Lu, Yuexiang; Chen, Jing

    2017-04-19

    Developing green and efficient technologies for surface modification of magnetic nanoparticles (MNPs) is of crucial importance for their biomedical and environmental applications. This study reports, for the first time, a novel strategy by integrating metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) with the bioinspired polydopamine (PDA) chemistry for controlled architecture of functional polymer brushes from MNPs. Conformal PDA encapsulation layers were initially generated on the surfaces of MNPs, which served as the protective shells while providing an ideal platform for tethering 2-bromo-2-phenylacetic acid (BPA), a highly efficient initiator. Metal-free PET-ATRP technique was then employed for controlled architecture of poly(glycidyl methacrylate) (PGMA) brushes from the core-shell MNPs by using diverse organic dyes as photoredox catalysts. Impacts of light sources (including UV and visible lights), photoredox catalysts, and polymerization time on the composition and morphology of the PGMA brushes were investigated. Moreover, the versatility of the PGMA-functionalized core-shell MNPs was demonstrated by covalent attachment of ethylenediamine (EDA), a model functional molecule, which afforded the MNPs with improved hydrophilicity, dispersibility, and superior binding ability to uranyl ions. The green methodology by integrating metal-free PET-ATRP with facile PDA chemistry would provide better opportunities for surface modification of MNPs and miscellaneous nanomaterials for biomedical and electronic applications.

  9. Analysis of several Boolean operation based trajectory generation strategies for automotive spray applications

    NASA Astrophysics Data System (ADS)

    Gao, Guoyou; Jiang, Chunsheng; Chen, Tao; Hui, Chun

    2018-05-01

    Industrial robots are widely used in various processes of surface manufacturing, such as thermal spraying. The established robot programming methods are highly time-consuming and not accurate enough to fulfil the demands of the actual market. There are many off-line programming methods developed to reduce the robot programming effort. This work introduces the principle of several based robot trajectory generation strategy on planar surface and curved surface. Since the off-line programming software is widely used and thus facilitates the robot programming efforts and improves the accuracy of robot trajectory, the analysis of this work is based on the second development of off-line programming software Robot studio™. To meet the requirements of automotive paint industry, this kind of software extension helps provide special functions according to the users defined operation parameters. The presented planning strategy generates the robot trajectory by moving an orthogonal surface according to the information of coating surface, a series of intersection curves are then employed to generate the trajectory points. The simulation results show that the path curve created with this method is successive and smooth, which corresponds to the requirements of automotive spray industrial applications.

  10. Cascade signal amplification for electrochemical immunosensing by integrating biobarcode probes, surface-initiated enzymatic polymerization and silver nanoparticle deposition.

    PubMed

    Lin, Dajie; Mei, Chengyang; Liu, Aili; Jin, Huile; Wang, Shun; Wang, Jichang

    2015-04-15

    A cascade signal amplification strategy through combining surface-initiated enzymatic polymerization (SIEP) and the subsequent deposition of strepavidin functionalized silver nanoparticles (AgNPs) was proposed. The first step of constructing the electrochemical immunosensor involves covalently immobilizing capture antibody on a chitosan modified glass carbon electrode, which then catalyzes DNA addition of deoxynucleotides (dNTP) at the 3'-OH group by terminal deoxynucleotidyl transferase (TdT), leading to the formation of long single-stranded DNAs labeled with numerous biotins. Following the deposition of numerous strepavidin functionalized AgNPs on those long DNA chains, electrochemical stripping signal of silver was used to monitor the immunoreaction in KCl solution. Using α-fetoprotein as a model analyte, this amplification strategy could detect fetoprotein down to 0.046pg/mL with a wide linear range from 0.1pg/mL to 1.0ng/mL. The achieved high sensitivity and good reproducibility suggest that this cascade signal amplification strategy has great potential for detecting biological samples and possibly clinical application. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development.

    PubMed

    Radke, Daniel; Jia, Wenkai; Sharma, Dhavan; Fena, Kemin; Wang, Guifang; Goldman, Jeremy; Zhao, Feng

    2018-05-07

    Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    PubMed

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications.

    PubMed

    Hyeon, Jeong Eun; Jeon, Sang Duck; Han, Sung Ok

    2013-11-01

    The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    NASA Astrophysics Data System (ADS)

    Brisset, Florian; Vieillard, Julien; Berton, Benjamin; Morin-Grognet, Sandrine; Duclairoir-Poc, Cécile; Le Derf, Franck

    2015-02-01

    Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.

  15. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer

    NASA Astrophysics Data System (ADS)

    Sanghvi, Archit B.; Miller, Kiley P.-H.; Belcher, Angela M.; Schmidt, Christine E.

    2005-06-01

    The goal in biomaterial surface modification is to retain a material's bulk properties while modifying only its surface to possess desired recognition and specificity. Here we develop a unique strategy for surface functionalization of an electrically conductive polymer, chlorine-doped polypyrrole (PPyCl), which has been widely researched for various electronic and biomedical applications. An M13 bacteriophage library was used to screen 109 different 12-mer peptide inserts against PPyCl. A binding phage (ϕT59) was isolated, and its binding stability and specificity to PPyCl was assessed using fluorescence microscopy and titer count analysis. The relative binding strength and mechanism of the corresponding 12-mer peptide and its variants was studied using atomic force microscopy and fluorescamine assays. Further, the T59 peptide was joined to a cell adhesive sequence and used to promote cell attachment on PPyCl. This strategy can be extended to immobilize a variety of molecules to PPyCl for numerous applications. In addition, phage display can be applied to other polymers to develop bioactive materials without altering their bulk properties.

  16. Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications

    PubMed Central

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah

    2011-01-01

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

  17. Neuromuscular strategies for the transitions between level and hill surfaces during walking

    PubMed Central

    Gottschall, Jinger S.; Nichols, T. Richard

    2011-01-01

    Despite continual fluctuations in walking surface properties, humans and animals smoothly transition between terrains in their natural surroundings. Walking transitions have the potential to influence dynamic balance in both the anterior–posterior and medial–lateral directions, thereby increasing fall risk and decreasing mobility. The goal of the current manuscript is to provide a review of the literature that pertains to the topic of surface slope transitions between level and hill surfaces, as well as report the recent findings of two experiments that focus on the neuromuscular strategies of surface slope transitions. Our results indicate that in anticipation of a change in surface slope, neuromuscular patterns during level walking prior to a hill are significantly different from the patterns during level walking without the future change in surface. Typically, the changes in muscle activity were due to co-contraction of opposing muscle groups and these changes correspond to modifications in head pitch. In addition, further experiments revealed that the neck proprioceptors may be an initial source of feedback for upcoming surface slope transitions. Together, these results illustrate that in order to safely traverse varying surfaces, transitions strides are functionally distinct from either level walking or hill walking independently. PMID:21502127

  18. The use of deep and surface learning strategies among students learning English as a foreign language in an Internet environment.

    PubMed

    Aharony, Noa

    2006-12-01

    The learning context is learning English in an Internet environment. The examination of this learning process was based on the Biggs and Moore's teaching-learning model (Biggs & Moore, 1993). The research aims to explore the use of the deep and surface strategies in an Internet environment among EFL students who come from different socio-economic backgrounds. The results of the research may add an additional level to the understanding of students' functioning in the Internet environment. One hundred fourty-eight Israeli junior and high school students participated in this research. The methodology was based on special computer software: Screen Cam, which recorded the students' learning process. In addition, expert judges completed a questionnaire which examined and categorized the students' learning strategies. The research findings show a clear preference of participants from all socio-economic backgrounds towards the surface learning strategy. The findings also showed that students from the medium to high socio-economic background used both learning strategies more frequently than low socio-economic students. The results reflect the habits that students acquire during their adjustment process throughout their education careers. A brief encounter with the Internet learning environment apparently cannot change norms or habits, which were acquired in the non-Internet learning environment.

  19. Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions

    Treesearch

    C. Yao; F. Wang; Z. Cai; X. Wang

    2016-01-01

    Nanoscale sorption is a promising strategy for catalyst and purification system design. In this paper, cellulose nanofibrils (CNFs) were densely attached with aldehyde functional groups on the surface via a mild periodate oxidation process, and then applied as mesoporous sorbents to remove Cu(II) and Pb(II) from aqueous solutions. In the studied concentration range (0....

  20. Special Issue: "Functional Dendrimers".

    PubMed

    Tomalia, Donald A

    2016-08-09

    This special issue entitled "Functional Dendrimers" focuses on the manipulation of at least six "critical nanoscale design parameters" (CNDPs) of dendrimers including: size, shape, surface chemistry, flexibility/rigidity, architecture and elemental composition. These CNDPs collectively define properties of all "functional dendrimers". This special issue contains many interesting examples describing the manipulation of certain dendrimer CNDPs to create new emerging properties and, in some cases, predictive nanoperiodic property patterns (i.e., dendritic effects). The systematic engineering of CNDPs provides a valuable strategy for optimizing functional dendrimer properties for use in specific applications.

  1. Surface modification of esophageal stent materials by a polyethylenimine layer aiming at anti-cancer function.

    PubMed

    Zhang, Kun; Bai, Yuxin; Wang, Xiaofeng; Li, Qian; Guan, Fangxia; Li, Jingan

    2017-08-01

    Esophageal cancer is difficult to cure globally and possesses high mortality rate, and it is generally accepted that palliative care such as stent implantation is the main therapy method for esophageal cancer in later period. However, the restenosis caused by tumor cells and inflammatory cells seriously interferes the stent clinical application and limits its long-term services. To solve this problem, series of drug delivery stents were developed and proven rather effective in the early stage of implantation, but more serious restenosis occurred after the drug delivery was over, which endangered the patients' life. Therefore, endowing the esophageal stent continuous anti-cancer function become an ideal strategy for inhibiting the restenosis. In this contribution, the functional layer composed of polydopamine (PDA) and Poly-ethylenimine (PEI) with series of molecular weights (MW, 1.8 × 10 3 , 1 × 10 4 , 2.5 × 10 4 and 7 × 10 4  Da) were fabricated onto the esophageal stent material 317L stainless steel (317L SS) surface. The surface characterization including amine quantitative, atomic force microscopy (AFM) and water contact angle measurement indicated successful preparation of the PDA/PEI layer. The Eca109 cells culture results proved that the PDA/PEI layers significantly improve Eca109 cells apoptosis and necrosis, suggesting excellent anti-cancer function. In addition, we also found that the anti-cancer function of the PDA/PEI layers was positively correlated to the immobilized PEIs' MW. All the results demonstrated the potential application of the PDA/PEI layers on the surface modification of esophageal stent for continuous anti-cancer function. It is generally accepted that the restenosis caused by tumor cells seriously interferes the esophageal stent clinical application. Thus, endowing the esophageal stent continuous anti-cancer function is the ideal strategy for inhibiting the restenosis. In this work, we fabricated functional layers composed of polydopamine (PDA) and Poly-ethylenimine (PEI) with series of molecular weights (MW, 1.8 × 10 3 , 1 × 10 4 , 2.5 × 10 4 and 7 × 10 4  Da) onto the esophageal stent material 317L stainless steel (317L SS) surface to inhibit the tumor cells growth, and this function was related to the PEIs' molecular weights. The functional PDA/PEI layers were expected potentially applied for surface modification of esophageal stent materials.

  2. What is the role of curvature on the properties of nanomaterials for biomedical applications?

    PubMed Central

    Solveyra, Estefania Gonzalez

    2015-01-01

    The use of nanomaterials for drug delivery and theranostics applications is a promising paradigm in nanomedicine, as it brings together the best features of nanotechnolgy, molecular biology and medicine. To fully exploit the synergistic potential of such interdisciplinary strategy, a comprehensive description of the interactions at the interface between nanomaterials and biological systems is not only crucial, but also mandatory. Routine strategies to engineer nanomaterial-based drugs comprise modifying their surface with biocompatible and targeting ligands, in many cases resorting to modular approaches that assume additive behavior. However, emergent behavior can be observed when combining confinement and curvature. The final properties of functionalized nanomaterials become dependent not only on the properties of their constituents but also on the geometry of the nano-bio interface, and on the local molecular environment. Modularity no longer holds, and the coupling between interactions, chemical equilibrium and molecular organization has to be directly addressed in order to design smart nanomaterials with controlled spatial functionalization envisioning optimized biomedical applications. Nanoparticle’s curvature becomes an integral part of the design strategy, enabling to control and engineer the chemical and surface properties with molecular precision. Understanding how NP size, morphology, and surface chemistry are interrelated will put us one step closer to engineering nanobiomaterials capable of mimicking biological structures and their behaviors, paving the way into applications and the possibility to elucidate the use of curvature by biological systems. PMID:26310432

  3. Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain

    PubMed Central

    Hauptrock, Beate; Malina, Victoria; Antunes, Edite; Voss, Ralf-Holger; Wolfl, Matthias; Strong, Roland; Theobald, Matthias; Greenberg, Philip D.

    2009-01-01

    Adoptive transfer of T lymphocytes transduced with a T cell receptor (TCR) to impart tumor reactivity has been reported as a potential strategy to redirect immune responses to target cancer cells (Schumacher, T.N. 2002. Nat. Rev. Immunol. 2:512–519). However, the affinity of most TCRs specific for shared tumor antigens that can be isolated is usually low. Thus, strategies to increase the affinity of TCRs or the functional avidity of TCR-transduced T cells might be therapeutically beneficial. Because glycosylation affects the flexibility, movement, and interactions of surface molecules, we tested if selectively removing conserved N-glycoslyation sites in the constant regions of TCR α or β chains could increase the functional avidity of T cells transduced with such modified TCRs. We observed enhanced functional avidity and improved recognition of tumor cells by T cells harboring TCR chains with reduced N-glycosylation (ΔTCR) as compared with T cells with wild-type (WT) TCR chains. T cells transduced with WT or ΔTCR chains bound tetramer equivalently at 4°C, but tetramer binding was enhanced at 37°C, predominantly as a result of reduced tetramer dissociation. This suggested a temperature-dependent mechanism such as TCR movement in the cell surface or structural changes of the TCR allowing improved multimerization. This strategy was effective with mouse and human TCRs specific for different antigens and, thus, should be readily translated to TCRs with any specificity. PMID:19171765

  4. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses.

    PubMed

    Jia, Zhaojun; Xiu, Peng; Li, Ming; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Wei, Shicheng; Zheng, Yufeng; Xi, Tingfei; Cai, Hong; Liu, Zhongjun

    2016-01-01

    The therapeutic applications of silver nanoparticles (AgNPs) against biomedical device-associated infections (BAI), by local delivery, are encountered with risks of detachment, instability and nanotoxicity in physiological milieus. To firmly anchor AgNPs onto modified biomaterial surfaces through tight physicochemical interactions would potentially relieve these concerns. Herein, we present a strategy for hierarchical TiO2/Ag coating, in an attempt to endow medical titanium (Ti) with anticorrosion and antibacterial properties whilst maintaining normal biological functions. In brief, by harnessing the adhesion and reactivity of bioinspired polydopamine, silver nanoparticles were easily immobilized onto peripheral surface and incorporated into interior cavity of a micro/nanoporous TiO2 ceramic coating in situ grown from template Ti. The resulting coating protected the substrate well from corrosion and gave a sustained release of Ag(+) up to 28 d. An interesting germicidal effect, termed "trap-killing", was observed against Staphylococcus aureus strain. The multiple osteoblast responses, i.e. adherence, spreading, proliferation, and differentiation, were retained normal or promoted, via a putative surface-initiated self-regulation mechanism. After subcutaneous implantation for a month, the coated specimens elicited minimal, comparable inflammatory responses relative to the control. Moreover, this simple and safe functionalization strategy manifested a good degree of flexibility towards three-dimensional sophisticated objects. Expectedly, it can become a prospective bench to bedside solution to current challenges facing orthopedics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Biomaterials and bone mechanotransduction

    NASA Technical Reports Server (NTRS)

    Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  6. Simultaneous size control and surface functionalization of titania nanoparticles through bioadhesion-assisted bio-inspired mineralization

    NASA Astrophysics Data System (ADS)

    Shi, Jiafu; Yang, Dong; Jiang, Zhongyi; Jiang, Yanjun; Liang, Yanpeng; Zhu, Yuanyuan; Wang, Xiaoli; Wang, Huihui

    2012-09-01

    Simultaneous size control and surface functionalization of inorganic nanoparticles (NPs) are often desired for their efficient applications in (bio)catalysis, drug and/or DNA delivery, and photonics, etc. In this study, a novel strategy "bioadhesion-assisted bio-inspired mineralization (BABM)" was put forward to prepare titania nanoparticles (TiNPs) with tunable particle size and multiple surface functionality. Specifically, the initial formation and subsequent growth of TiNPs were enabled by arginine via bio-inspired mineralization, while the mineralization process was terminated through the addition of the pre-polymerized dopa (oligodopa). By adjusting the addition time of oligodopa, the size of TiNPs could be facilely tailored from ca. 30-350 nm; meanwhile, the surface of TiNPs could be functionalized by oligodopa through metal-catechol coordination interaction (a typical bioadhesion phenomenon). In other words, oligodopa coating could not only exquisitely control the size of TiNPs, but also render TiNPs surface multifunctional groups for secondary treatment such as conjugating proteins through amine-catechol adduct formation. Hopefully, this BABM approach will construct a versatile platform for green and facile synthesis of inorganic NPs, in particular transition metal oxide NPs.

  7. Functional and structural mapping of human cerebral cortex: Solutions are in the surfaces

    PubMed Central

    Van Essen, David C.; Drury, Heather A.; Joshi, Sarang; Miller, Michael I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex. PMID:9448242

  8. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  9. Role of bond adaptability in the passivation of colloidal quantum dot solids.

    PubMed

    Thon, Susanna M; Ip, Alexander H; Voznyy, Oleksandr; Levina, Larissa; Kemp, Kyle W; Carey, Graham H; Masala, Silvia; Sargent, Edward H

    2013-09-24

    Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance.

  10. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-09-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.

  11. Entropic (de)stabilization of surface-bound peptides conjugated with polymers

    NASA Astrophysics Data System (ADS)

    Carmichael, Scott P.; Shell, M. Scott

    2015-12-01

    In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.

  12. Entropic (de)stabilization of surface-bound peptides conjugated with polymers.

    PubMed

    Carmichael, Scott P; Shell, M Scott

    2015-12-28

    In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.

  13. CuSO4/H2O2-Triggered Polydopamine/Poly(sulfobetaine methacrylate) Coatings for Antifouling Membrane Surfaces.

    PubMed

    Zhang, Chao; Li, Hao-Nan; Du, Yong; Ma, Meng-Qi; Xu, Zhi-Kang

    2017-02-07

    Mussel-inspired polydopamine (PDA) coatings have been broadly exploited for constructing functional membrane surfaces. One-step codeposition of PDA with antifouling polymers, especially zwitterionic polymers, has been regarded as a promising strategy for fabricating antifouling membrane surfaces. However, one challenge is that the codeposition is usually a slow process over 10 h or even several days. Herein, we report that CuSO 4 /H 2 O 2 is able to notably accelerate the codeposition process of PDA with poly(sulfobetaine methacrylate) (PSBMA). In our case, PSBMA is facilely anchored to the polypropylene microporous membrane (PPMM) surfaces within 1 h with the assistance of PDA because of its strong interfacial adhesion. The PDA/PSBMA-coated PPMMs show excellent surface hydrophilicity, high water permeation flux (7506 ± 528 L/m 2 ·h at 0.1 MPa), and an outstanding antifouling property. Moreover, the antifouling property is maintained after the membranes are treated with acid and alkali solutions as well as organic solvents. To recap, it provides a facile, universal, and time-saving strategy for exploiting high-efficiency and durable antifouling membrane surfaces.

  14. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency

    PubMed Central

    Chuah, Yon Jin; Koh, Yi Ting; Lim, Kaiyang; Menon, Nishanth V.; Wu, Yingnan; Kang, Yuejun

    2015-01-01

    Polydimethylsiloxane (PDMS) has been extensively exploited to study stem cell physiology in the field of mechanobiology and microfluidic chips due to their transparency, low cost and ease of fabrication. However, its intrinsic high hydrophobicity renders a surface incompatible for prolonged cell adhesion and proliferation. Plasma-treated or protein-coated PDMS shows some improvement but these strategies are often short-lived with either cell aggregates formation or cell sheet dissociation. Recently, chemical functionalization of PDMS surfaces has proved to be able to stabilize long-term culture but the chemicals and procedures involved are not user- and eco-friendly. Herein, we aim to tailor greener and biocompatible PDMS surfaces by developing a one-step bio-inspired polydopamine coating strategy to stabilize long-term bone marrow stromal cell culture on PDMS substrates. Characterization of the polydopamine-coated PDMS surfaces has revealed changes in surface wettability and presence of hydroxyl and secondary amines as compared to uncoated surfaces. These changes in PDMS surface profile contribute to the stability in BMSCs adhesion, proliferation and multipotency. This simple methodology can significantly enhance the biocompatibility of PDMS-based microfluidic devices for long-term cell analysis or mechanobiological studies. PMID:26647719

  15. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    NASA Astrophysics Data System (ADS)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  16. Mussel inspired polymerized P(TA-TETA) for facile functionalization of carbon nanotube

    NASA Astrophysics Data System (ADS)

    Si, Shuxian; Gao, Tingting; Wang, Junhao; Liu, Qinze; Zhou, Guowei

    2018-03-01

    This article describes a novel and effective approach for non-covalent modification of carbon nanotube (CNT) via the mussel inspired polymerization of tannic acid (TA) and triethylenetetramine (TETA) and subsequent surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photograph were used to study the successful preparation of polymer brush grafted CNT (CNT-P(TA-TETA)-PDMAEMA) composite as well as the pH-responsive behavior of the composite. Furthermore, by amine protonation and in situ reduction, gold nanoparticles were successfully uploaded and the catalytic property of CNT-P(TA-TETA)-PDMAEMA/Au was investigated. We believe that the surface functionalization strategy can be extended to graphene and other substrates, and the surface properties can be regulated by grafting polymer brushes with different functionalities.

  17. An Improved Forwarding of Diverse Events with Mobile Sinks in Underwater Wireless Sensor Networks.

    PubMed

    Raza, Waseem; Arshad, Farzana; Ahmed, Imran; Abdul, Wadood; Ghouzali, Sanaa; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-11-04

    In this paper, a novel routing strategy to cater the energy consumption and delay sensitivity issues in deep underwater wireless sensor networks is proposed. This strategy is named as ESDR: Event Segregation based Delay sensitive Routing. In this strategy sensed events are segregated on the basis of their criticality and, are forwarded to their respective destinations based on forwarding functions. These functions depend on different routing metrics like: Signal Quality Index, Localization free Signal to Noise Ratio, Energy Cost Function and Depth Dependent Function. The problem of incomparable values of previously defined forwarding functions causes uneven delays in forwarding process. Hence forwarding functions are redefined to ensure their comparable values in different depth regions. Packet forwarding strategy is based on the event segregation approach which forwards one third of the generated events (delay sensitive) to surface sinks and two third events (normal events) are forwarded to mobile sinks. Motion of mobile sinks is influenced by the relative distribution of normal nodes. We have also incorporated two different mobility patterns named as; adaptive mobility and uniform mobility for mobile sinks. The later one is implemented for collecting the packets generated by the normal nodes. These improvements ensure optimum holding time, uniform delay and in-time reporting of delay sensitive events. This scheme is compared with the existing ones and outperforms the existing schemes in terms of network lifetime, delay and throughput.

  18. Functional Anchoring Lipids for Drug Delivery Carrier Fabrication and Cell Surface Re-Engineering Applications

    NASA Astrophysics Data System (ADS)

    Vabbilisetty, Pratima

    For decades, lipid vesicular bodies such as liposomes have been widely used and explored as biomimetic models of cell membranes and as drug/gene delivery carrier systems. Similarly, micellar iron oxide nanoparticles have also been investigated as potential MRI agents as well as drug delivery carrier systems. Cell surface carbohydrate-protein interactions allow them to serve as markers for recognition of many molecular and cellular activities thereby, are exploited as attractive molecules for surface modification of nanocarrier systems with purpose for tissues specific targeting and biocompatibility. In addition, the cell lipid membrane serves as an important platform for occurrence of many biological processes that are governed and guided by cell surface receptors. Introduction of chemoselective functional groups, via bio-orthogonal conjugation strategies, at the cell surface facilitates many cellular modifications and paves path for novel and potential biomedical applications. Anchoring lipids are needed for liposome surface functionalization with ligands of interest and play important roles in ligand grafting density, liposomes stability and biological activity. On the other hand, anchoring lipids are also needed for cell surface re-engineering by lipid fusion approach and have high impact for ligand insertion efficiency and biological activity. Overall, in this dissertation study, functional anchoring lipids for glyco-functionalized carrier systems and for efficient cell surface re-engineering applications were systematically investigated, respectively. Firstly, investigation of the synthesis of glyco-functionalized liposome systems based on phosphatidylethonalamine (PE) and cholesterol (Chol) anchoring lipids, prepared by post chemically selective functionalization via Staudinger ligation were carried out. The effect of anchor lipids on the stability, encapsulation and releasing capacity of the glycosylated liposomes were investigated by dynamic light scattering (DLS) technique and by entrapping 5, 6-carboxyfluorescein (CF) dye and monitoring the fluorescence leakage, respectively. Overall, the Chol-anchored liposomes showed faster releasing rate than DSPE-anchored liposomes. This could be due to the increase in rigidity of the lipid membrane upon inclusion of Chol, thereby, leading to fast leakage of liposomes. Second, the potential effects of phospholipid (PE) and cholesterol (Chol)-based anchor lipids on cell surface re-engineering via copper free click chemistry were assessed with RAW 264.7 cells as model. The confocal microscopy and flow cytometry results indicated the successful incorporation of biotinylated Chol-based anchor lipids after specific streptavidin-FITC binding onto the cell surface. Higher fluorescence intensities from the cell membrane were observed for Chol-based anchor lipids when compared to DSPE as anchoring lipid. Furthermore, cytotoxicity of the synthesized biotinylated anchor lipids on the RAW 264.7 cells was assessed by MTT assay. The MTT assay results further confirmed that cell surface re-engineering via lipid anchoring approach strategy has very little or negligible amount of cytotoxicity on the cell viability. Thus, this study suggests the possible use of these lipids for potential cell surface re-engineering applications. In addition, synthesis of lipid coated iron oxide nanoparticles via dual solvent exchange approach and their glyco-functionalization via Staudinger ligation were investigated and characterized by FT-IR and TEM techniques. The stability of iron oxide nanoparticles with varying compositions of lipid anchors was evaluated by dynamic light scattering technique.

  19. Template mediated protein self-assembly as a valuable tool in regenerative therapy.

    PubMed

    Kundu, B; Eltohamy, M; Yadavalli, V K; Reis, R L; Kim, H W

    2018-04-11

    The assembly of natural proteinaceous biopolymers into macro-scale architectures is of great importance in synthetic biology, soft-material science and regenerative therapy. The self-assembly of protein tends to be limited due to anisotropic interactions among protein molecules, poor solubility and stability. Here, we introduce a unique platform to self-immobilize diverse proteins (fibrous and globular, positively and negatively charged, low and high molecular weight) using silicon surfaces with pendant -NH 2 groups via a facile one step diffusion limited aggregation (DLA) method. All the experimental proteins (type I collagen, bovine serum albumin and cytochrome C) self-assemble into seaweed-like branched dendritic architectures via classical DLA in the absence of any electrolytes. The notable differences in branching architectures are due to dissimilarities in protein colloidal sub-units, which is typical for each protein type, along with the heterogeneous distribution of surface -NH 2 groups. Fractal analysis of assembled structures is used to explain the underlying route of fractal deposition; which concludes how proteins with different functionality can yield similar assembly. Further, the nano-micro-structured surfaces can be used to provide functional topographical cues to study cellular responses, as demonstrated using rat bone marrow stem cells. The results indicate that the immobilization of proteins via DLA does not affect functionality, instead serving as topographical cues to guide cell morphology. This indicates a promising design strategy at the tissue-material interface and is anticipated to guide future surface modifications. A cost-effective standard templating strategy is therefore proposed for fundamental and applied particle aggregation studies, which can be used at multiple length scales for biomaterial design and surface reformation.

  20. Identifying tips for intramolecular NC-AFM imaging via in situ fingerprinting

    NASA Astrophysics Data System (ADS)

    Sang, Hongqian; Jarvis, Samuel P.; Zhou, Zhichao; Sharp, Peter; Moriarty, Philip; Wang, Jianbo; Wang, Yu; Kantorovich, Lev

    2014-10-01

    A practical experimental strategy is proposed that could potentially enable greater control of the tip apex in non-contact atomic force microscopy experiments. It is based on a preparation of a structure of interest alongside a reference surface reconstruction on the same sample. Our proposed strategy is as follows. Spectroscopy measurements are first performed on the reference surface to identify the tip apex structure using a previously collected database of responses of different tips to this surface. Next, immediately following the tip identification protocol, the surface of interest is studied (imaging, manipulation and/or spectroscopy). The prototype system we choose is the mixed Si(111)-7×7 and surface which can be prepared on the same sample with a controlled ratio of reactive and passivated regions. Using an ``in silico'' approach based on ab initio density functional calculations and a set of tips with varying chemical reactivities, we show how one can perform tip fingerprinting using the Si(111)-7×7 reference surface. Then it is found by examining the imaging of a naphthalene tetracarboxylic diimide (NTCDI) molecule adsorbed on surface that negatively charged tips produce the best intramolecular contrast attributed to the enhancement of repulsive interactions.

  1. Nanowell-Trapped Charged Ligand-Bearing Nanoparticle Surfaces – A Novel Method of Enhancing Flow-Resistant Cell Adhesion

    PubMed Central

    Tran, Phat L.; Gamboa, Jessica R.; McCracken, Katherine E.; Riley, Mark R.

    2014-01-01

    Assuring cell adhesion to an underlying biomaterial surface is vital in implant device design and tissue engineering, particularly under circumstances where cells are subjected to potential detachment from overriding fluid flow. Cell-substrate adhesion is a highly regulated process involving the interplay of mechanical properties, surface topographic features, electrostatic charge, and biochemical mechanisms. At the nanoscale level the physical properties of the underlying substrate are of particular importance in cell adhesion. Conventionally, natural, pro-adhesive, and often thrombogenic, protein biomaterials are frequently utilized to facilitate adhesion. In the present study nanofabrication techniques are utilized to enhance the biological functionality of a synthetic polymer surface, polymethymethacrylate, with respect to cell adhesion. Specifically we examine the effect on cell adhesion of combining: 1. optimized surface texturing, 2. electrostatic charge and 3. cell adhesive ligands, uniquely assembled on the substrata surface, as an ensemble of nanoparticles trapped in nanowells. Our results reveal that the ensemble strategy leads to enhanced, more than simply additive, endothelial cell adhesion under both static and flow conditions. This strategy may be of particular utility for enhancing flow-resistant endothelialization of blood-contacting surfaces of cardiovascular devices subjected to flow-mediated shear. PMID:23225491

  2. Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-09-09

    Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.

  3. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding. Electronic supplementary information (ESI) is available: Fluorescence spectra, ITC, CD spectra and other data as described in the text. See DOI: 10.1039/c4nr01544d

  4. Effect of different carboxylic acids in cyclodextrin functionalization of cellulose nanocrystals for prolonged release of carvacrol.

    PubMed

    Castro, D O; Tabary, N; Martel, B; Gandini, A; Belgacem, N; Bras, J

    2016-12-01

    Current investigations deal with new surface functionalization strategy of nanocrystalline cellulose-based substrates to impart active molecule release properties. In this study, cellulose nanocrystals (CNC) were surface-functionalized with β-cyclodextrin (β-CD) using succinic acid (SA) and fumaric acid (FA) as bridging agents. The main objective of this surface modification performed only in aqueous media was to obtain new active materials able to release antibacterial molecules over a prolonged period of time. The reactions were conducted by immersing the CNC film into a solution composed of β-CD, SA and FA, leading to CNC grafting. The materials were characterized by infrared spectroscopy (FT-IR), Quartz crystal microbalance-dissipation (QCM-D), AFM and phenolphthalein (PhP) was used to determine the efficiency of CNC grafting with β-CD. The results indicated that β-CD was successfully attached to the CNC backbone through the formation of ester bonds. Furthermore, carvacrol was entrapped by the attached β-CD and a prolonged release was confirmed. In particular, CNC grafted to β-CD in the presence of FA was selected as the best solution. The antibacterial activity and the controlled release were studied for this sample. Considerably longer bacterial activity against B. subtilis was observed for CNC grafted to β-CD compared to CNC and CNC-FA, confirming the promising impact of the present strategy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity

    NASA Astrophysics Data System (ADS)

    Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.

    2015-10-01

    Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems. Electronic supplementary information (ESI) available: Experimental procedures, synthesis, and characterization of molecules 1, 2 and 3. Explanation of the electrochemical method for approximating nanopore diameter. Additional XPS spectra. See DOI: 10.1039/C5NR02939B

  6. Enhanced chemiluminescence-based detection on gold substrate after electrografting of diazonium precursor-coated gold nanoparticles.

    PubMed

    Houmed Adabo, Ali; Zeggari, Rabah; Mohamed Saïd, Nasser; Bazzi, Rana; Elie-Caille, Céline; Marquette, Christophe; Martini, Matteo; Tillement, Olivier; Perriat, Pascal; Chaix, Carole; Boireau, Wilfrid; Roux, Stéphane

    2016-04-01

    Since it was demonstrated that nanostructured surfaces are more efficient for the detection based on the specific capture of analytes, there is a real need to develop strategies for grafting nanoparticles onto flat surfaces. Among the different routes for the functionalization of a surface, the reduction of diazonium salts appears very attractive for the covalent immobilization of nanoparticles because this method does not require a pre-treatment of the surface. For achieving this goal, gold nanoparticles coated by precursor of diazonium salts were synthesized by reduction of gold salt in presence of mercaptoaniline. These mercaptoaniline-coated gold nanoparticles (Au@MA) were successfully immobilized onto various conducting substrates (indium tin oxide (ITO), glassy carbon (GC) and gold electrodes with flat terraces) after addition of sodium nitrite at fixed potential. When applied onto the gold electrodes, such a grafting strategy led to an obvious enhancement of the luminescence of luminol used for the biodetection. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability.

    PubMed

    Lee, Kilsoo; Lee, Jaehong; Kim, Gwangmook; Kim, Youngjae; Kang, Subin; Cho, Sungjun; Kim, SeulGee; Kim, Jae-Kang; Lee, Wooyoung; Kim, Dae-Eun; Kang, Shinill; Kim, DaeEun; Lee, Taeyoon; Shim, Wooyoung

    2017-11-01

    Fabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes. This study utilizes a writing activity with a pencil and paper, which enables the construction of a fundamental capacitor that can be used as a flexible capacitive pressure sensor with high pressure sensitivity and short response time and that it can be inexpensively fabricated over large areas. Furthermore, the paper-based pressure sensors are integrated into a fully functional 3D touch-pad device, which is a step toward the realization of omnipresent electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mucosal vaccination--an old but still vital strategy.

    PubMed

    Długońska, Henryka; Grzybowski, Marcin

    2012-01-01

    The basic premise of vaccinology is to achieve strong protective immunity against defined infectious agents by a vaccine mimicking the effects of natural primary exposure to a pathogen. Because an exposure of humans and animals to microbes occurs mostly through mucosal surfaces, targeting the mucosa seems a rational and efficient vaccination strategy. Many experimental and clinical data confirmed that mucosal immunization offers many advantages over widely used in human and veterinary medicine subcutaneous or intramuscular immunization. In the present article selected aspects regarding mucosal vaccination are discussed. The structure and function of mucosa-associated lymphoid tissue (MALT), comprised of four main mucosal compartments forming a structural and functional unity as well as pivotal cellular MALT components (dendritic and M cells) were briefly characterized. Particular attention was focused on the mode of simple but efficacious delivery of vaccine antigens to mucosal surfaces. A few trials to generate potential mucosal vaccines against toxoplasmosis introduced by nasal or oral routes to experimental animals are also presented.

  9. Science and engineering of nanodiamond particle surfaces for biological applications (Review).

    PubMed

    Shenderova, Olga A; McGuire, Gary E

    2015-09-05

    Diamond has outstanding bulk properties such as super hardness, chemical inertness, biocompatibility, luminescence, to name just a few. In the nanoworld, in order to exploit these outstanding bulk properties, the surfaces of nanodiamond (ND) particles must be accordingly engineered for specific applications. Modification of functional groups on the ND's surface and the corresponding electrostatic properties determine their colloidal stability in solvents, formation of photonic crystals, controlled adsorption and release of cargo molecules, conjugation with biomolecules and polymers, and cellular uptake. The optical activity of the luminescent color centers in NDs depends on their proximity to the ND's surface and surface termination. In order to engineer the ND surface, a fundamental understanding of the specific structural features and sp(3)-sp(2) phase transformations on the surface of ND particles is required. In the case of ND particles produced by detonation of carbon containing explosives (detonation ND), it should also be taken into account that its structure depends on the synthesis parameters and subsequent processing. Thus, for development of a strategy of surface modification of detonation ND, it is imperative to know details of its production. In this review, the authors discuss ND particles structure, strategies for surface modification, electrokinetic properties of NDs in suspensions, and conclude with a brief overview of the relevant bioapplications.

  10. Relationship between influence function accuracy and polishing quality in magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Schinhaerl, Markus; Schneider, Florian; Rascher, Rolf; Vogt, Christian; Sperber, Peter

    2010-10-01

    Magnetorheological finishing is a typical commercial application of a computer-controlled polishing process in the manufacturing of precision optical surfaces. Precise knowledge of the material removal characteristic of the polishing tool (influence function) is essential for controlling the material removal on the workpiece surface by the dwell time method. Results from the testing series with magnetorheological finishing have shown that a deviation of only 5% between the actual material removal characteristic of the polishing tool and that represented by the influence function caused a considerable reduction in the polishing quality. The paper discusses reasons for inaccuracies in the influence function and the effects on the polishing quality. The generic results of this research serve for the development of improved polishing strategies, and may be used in alternative applications of computer-controlled polishing processes that quantify the material removal characteristic by influence functions.

  11. The interaction between thermodynamic stability and buried free cysteines in regulating the functional half-life of fibroblast growth factor-1.

    PubMed

    Lee, Jihun; Blaber, Michael

    2009-10-16

    Protein biopharmaceuticals are an important and growing area of human therapeutics; however, the intrinsic property of proteins to adopt alternative conformations (such as during protein unfolding and aggregation) presents numerous challenges, limiting their effective application as biopharmaceuticals. Using fibroblast growth factor-1 as model system, we describe a cooperative interaction between the intrinsic property of thermostability and the reactivity of buried free-cysteine residues that can substantially modulate protein functional half-life. A mutational strategy that combines elimination of buried free cysteines and secondary mutations that enhance thermostability to achieve a substantial gain in functional half-life is described. Furthermore, the implementation of this design strategy utilizing stabilizing mutations within the core region resulted in a mutant protein that is essentially indistinguishable from wild type as regard protein surface and solvent structure, thus minimizing the immunogenic potential of the mutations. This design strategy should be generally applicable to soluble globular proteins containing buried free-cysteine residues.

  12. The effect of Functional Electric Stimulation in stroke patients' motor control - a case report

    NASA Astrophysics Data System (ADS)

    Pripas, Denise; Rogers Venditi Beas, Allan; Fioramonte, Caroline; Gonsales de Castro, Pedro Claudio; Goroso, Daniel Gustavo; Cecília dos Santos Moreira, Maria

    2011-12-01

    Functional Electric Stimulation (FES) has been studied as a therapeutic resource to reduce spasticity in hemiplegic patients, however there are no studies about the effects of FES in motor control of these patients during functional tasks like balance maintenance. Muscular activation of gastrocnemius medialis and semitendinosus was investigated in both limbs of a hemiparetic patient during self-disturbed quiet stance before and after FES on tibialis anterior, by surface electromyography. The instant of maximum activation peak of GM and ST were calculated immediately after a motor self-disturbance, in order to observe muscular synergy between these two muscles, and possible balance strategies used (ankle or hip strategy). At the preserved limb there occurred distal-proximal synergy (GM followed by ST), expected for small perturbations; however, at spastic limb there was inversion of this synergy (proximal-distal) after FES. It is possible that intervention of electricity had inhibited synergical pathways due to antidromic effect, making it difficult to use ankle strategy in the spastic limb.

  13. High-performance fractional order terminal sliding mode control strategy for DC-DC Buck converter

    PubMed Central

    Xu, Dan; Zhou, Huan; Bai, Anning; Lu, Wei

    2017-01-01

    This paper presents an adaption of the fractional order terminal sliding mode control (AFTSMC) strategy for DC-DC Buck converter. The following strategy aims to design a novel nonlinear sliding surface function, with a double closed-loop structure of voltage and current. This strategy is a fusion of two characteristics: terminal sliding mode control (TSMC) and fractional order calculation (FOC). In addition, the influence of “the controller parameters” on the “performance of double closed-loop system” is investigated. It is observed that the value of terminal power has to be chosen to make a compromise between start-up and transient response of the converter. Therefore the AFTSMC strategy chooses the value of the terminal power adaptively, and this strategy can lead to the appropriate number of fractional order as well. Furthermore, through the fractional order analysis, the system can reach the sliding mode surface in a finite time. And the theoretical considerations are verified by numerical simulation. The performance of the AFTSMC and TSMC strategies is tested by computer simulations. And the comparison simulation results show that the AFTSMC exhibits a considerable improvement in terms of a faster output voltage response during load changes. Moreover, AFTSMC obtains a faster dynamical response, smaller steady-state error rate and lower overshoot. PMID:29084255

  14. High-performance fractional order terminal sliding mode control strategy for DC-DC Buck converter.

    PubMed

    Wang, Jianlin; Xu, Dan; Zhou, Huan; Bai, Anning; Lu, Wei

    2017-01-01

    This paper presents an adaption of the fractional order terminal sliding mode control (AFTSMC) strategy for DC-DC Buck converter. The following strategy aims to design a novel nonlinear sliding surface function, with a double closed-loop structure of voltage and current. This strategy is a fusion of two characteristics: terminal sliding mode control (TSMC) and fractional order calculation (FOC). In addition, the influence of "the controller parameters" on the "performance of double closed-loop system" is investigated. It is observed that the value of terminal power has to be chosen to make a compromise between start-up and transient response of the converter. Therefore the AFTSMC strategy chooses the value of the terminal power adaptively, and this strategy can lead to the appropriate number of fractional order as well. Furthermore, through the fractional order analysis, the system can reach the sliding mode surface in a finite time. And the theoretical considerations are verified by numerical simulation. The performance of the AFTSMC and TSMC strategies is tested by computer simulations. And the comparison simulation results show that the AFTSMC exhibits a considerable improvement in terms of a faster output voltage response during load changes. Moreover, AFTSMC obtains a faster dynamical response, smaller steady-state error rate and lower overshoot.

  15. Surface properties of functional polymer systems

    NASA Astrophysics Data System (ADS)

    Wong, Derek

    Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was confined to the top 2--3 nm of the surface. Contact angle results showed also that the reorganization process proceeded as a function of (time) 1/2, indicating that it is likely diffusion controlled. The magnitudes of the activation energies determined from the experimental data according to the Arhenius equation, suggest that the process is possibly correlated with known bulk beta and gamma relaxations in the polymer.

  16. Growth of carbon structured over Pd, Pt and Ni: A comparative DFT study

    NASA Astrophysics Data System (ADS)

    Quiroga, Matías Abel

    2013-03-01

    To elucidate the graphene-like structures mechanisms growth over the M(1 1 1) surface (M = Pd, Pt and Ni) we performed ab initio calculus in the frame of density functional theory with the exchange-correlation functional treated according to the Generalized Gradient Approximation (GGA). In order to avoid the problem that represent the complex interaction between the well formed graphene layer and the metallic surface, we recreate the carbon rings formation initial steps, by adding one by one carbon atoms over M(1 1 1) surface. With this strategy, the chemical bonding is always present until the graphene layer is well formed, in which case the GGA neglects van der Waals dispersive forces. We investigate the electronic properties by studying the band structure and the density of states.

  17. Unprecedented Self-Organized Monolayer of a Ru(II) Complex by Diazonium Electroreduction.

    PubMed

    Nguyen, Van Quynh; Sun, Xiaonan; Lafolet, Frédéric; Audibert, Jean-Frédéric; Miomandre, Fabien; Lemercier, Gilles; Loiseau, Frédérique; Lacroix, Jean-Christophe

    2016-08-03

    A new heteroleptic polypyridyle Ru(II) complex was synthesized and deposited on surface by the diazonium electroreduction process. It yields to the covalent grafting of a monolayer. The functionalized surface was characterized by XPS, electrochemistry, AFM, and STM. A precise organization of the molecules within the monolayer is observed with parallel linear stripes separated by a distance of 3.8 nm corresponding to the lateral size of the molecule. Such organization suggests a strong cooperative process in the deposition process. This strategy is an original way to obtain well-controlled and stable functionalized surfaces for potential applications related to the photophysical properties of the grafted chromophore. As an exciting result, it is the first example of a self-organized monolayer (SOM) obtained using diazonium electroreduction.

  18. CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Eyley, Samuel; Vandamme, Dries; Lama, Sanjaya; van den Mooter, Guy; Muylaert, Koenraad; Thielemans, Wim

    2015-08-01

    Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems.Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems. Electronic supplementary information (ESI) available: Spectra for all products. See DOI: 10.1039/C5NR03853G

  19. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications

    PubMed Central

    Nguyen, Hoang Hiep; Park, Jeho; Kang, Sebyung; Kim, Moonil

    2015-01-01

    Surface plasmon resonance (SPR) is a label-free detection method which has emerged during the last two decades as a suitable and reliable platform in clinical analysis for biomolecular interactions. The technique makes it possible to measure interactions in real-time with high sensitivity and without the need of labels. This review article discusses a wide range of applications in optical-based sensors using either surface plasmon resonance (SPR) or surface plasmon resonance imaging (SPRI). Here we summarize the principles, provide examples, and illustrate the utility of SPR and SPRI through example applications from the biomedical, proteomics, genomics and bioengineering fields. In addition, SPR signal amplification strategies and surface functionalization are covered in the review. PMID:25951336

  20. Porous graphene materials for water remediation.

    PubMed

    Niu, Zhiqiang; Liu, Lili; Zhang, Li; Chen, Xiaodong

    2014-09-10

    Water remediation has been a critical issue over the past decades due to the expansion of wastewater discharge to the environment. Currently, a variety of functional materials have been successfully prepared for water remediation applications. Among them, graphene is an attractive candidate due to its high specific surface area, tunable surface behavior, and high strength. This Concept paper summarizes the design strategy of porous graphene materials and their applications in water remediation, such as the cleanup of oil, removal of heavy metal ions, and elimination of water soluble organic contaminants. The progress made so far will guide further development in structure design strategy of porous materials based on graphene and exploration of such materials in environmental remediation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The role of "inert" surface chemistry in marine biofouling prevention.

    PubMed

    Rosenhahn, Axel; Schilp, Sören; Kreuzer, Hans Jürgen; Grunze, Michael

    2010-05-07

    The settlement and colonization of marine organisms on submerged man-made surfaces is a major economic problem for many marine industries. The most apparent detrimental effects of biofouling are increased fuel consumption of ships, clogging of membranes and heat exchangers, disabled underwater sensors, and growth of biofoulers in aquaculture systems. The presently common-but environmentally very problematic-way to deal with marine biofouling is to incorporate biocides, which use biocidal products in the surface coatings to kill the colonizing organisms, into the surface coatings. Since the implementation of the International Maritime Organization Treaty on biocides in 2008, the use of tributyltin (TBT) is restricted and thus environmentally benign but effective surface coatings are required. In this short review, we summarize the different strategies which are pursued in academia and industry to better understand the mechanisms of biofouling and to develop strategies which can be used for industrial products. Our focus will be on chemically "inert" model surface coatings, in particular oligo- and poly(ethylene glycol) (OEG and PEG) functionalized surface films. The reasons for choosing this class of chemistry as an example are three-fold: Firstly, experiments on spore settlement on OEG and PEG coatings help to understand the mechanism of non-fouling of highly hydrated interfaces; secondly, these studies defy the common assumption that surface hydrophilicity-as measured by water contact angles-is an unambiguous and predictive tool to determine the fouling behavior on the surface; and thirdly, choosing this system is a good example for "interfacial systems chemistry": it connects the behavior of unicellular marine organisms with the antifouling properties of a hydrated surface coating with structural and electronic properties as derived from ab initio quantum mechanical calculations using the electronic wave functions of oxygen, hydrogen, and carbon. This short review is written to outline for non-experts the hierarchical structure in length- and timescale of marine biofouling and the role of surface chemistry in fouling prevention. Experts in the field are referred to more specialized recent reviews.

  2. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas-liquid separation

    NASA Astrophysics Data System (ADS)

    Wang, Tieqiang; Chen, Hongxu; Liu, Kun; Li, Yang; Xue, Peihong; Yu, Ye; Wang, Shuli; Zhang, Junhu; Kumacheva, Eugenia; Yang, Bai

    2014-03-01

    In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels.In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels. Electronic supplementary information (ESI) available: The XPS spectrum of the as-prepared Janus arrays after the MHA modification; the SEM images of the PFS-MHA Janus Si pillar arrays fabricated through oblique evaporation of gold along the short axis of the elliptical pillars; images of the cross-shaped MF channel and Rhodamine aqueous solution injecting in a cross-shaped MF channel taken at different times; the plot data of DPFS/DMHA against the flow rate of the aqueous solution; the plot data of failure pressure against the bottom size of the channel; optical microscopy images of the Janus pillar array with less density of pillars; optical microscopy images of the T junction with higher magnification; the video of Rhodamine solution running in the T-shaped microchannel integrated with the Janus Si-EPAs; the video of the entire gas-liquid separation process. See DOI: 10.1039/c3nr05865d

  3. Folic acid functionalized surface highlights 5-methylcytosine-genomic content within circulating tumor cells.

    PubMed

    Malara, Natalia; Coluccio, Maria Laura; Limongi, Tania; Asande, Monica; Trunzo, Valentina; Cojoc, Gheorghe; Raso, Cinzia; Candeloro, Patrizio; Perozziello, Gerardo; Raimondo, Raffaella; De Vitis, Stefania; Roveda, Laura; Renne, Maria; Prati, Ubaldo; Mollace, Vincenzo; Di Fabrizio, Enzo

    2014-11-12

    Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor's stadiation, therapy, and early relapsing lesions. Within surface's bio-functionalization and cell's isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient's blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    PubMed Central

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A

    2013-01-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 hours, respectively. PMID:23498233

  5. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers.

    PubMed

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an "active" antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. CO2 sorption on surface-modified carbonaceous support: Probing the influence of the carbon black microporosity and surface polarity

    NASA Astrophysics Data System (ADS)

    Gargiulo, Valentina; Alfè, Michela; Ammendola, Paola; Raganati, Federica; Chirone, Riccardo

    2016-01-01

    The use of solid sorbents is a convenient option in post-combustion CO2 capture strategies. Sorbents selection is a key point because the materials are required to be both low-cost and versatile in typical post-combustion conditions in order to guarantee an economically advantageous overall process. This work compares strategies to tailor the chemico-physical features of carbon black (CB) by surface-modification and/or coating with a CO2-sorbent phase. The influence of the CB microporosity, enhanced by chemical/thermal treatments, is also taken into account. Three CB surface modifications are performed and compared: (i) oxidation and functionalization with amino-groups, (ii) coating with iron oxides and (iii) impregnation with an ionic liquid (IL). The CO2 capture performance is evaluated on the basis of the breakthrough curves measured at atmospheric pressure and room temperature in a lab-scale fixed bed micro-reactor. Most of tested solids adsorb a CO2 amount significantly higher than a 13X zeolite and DARCO FGD (Norit) activated carbon (up to 4 times more in the best case). The sorbents bearing basic functionalities (amino-groups and IL) exhibit the highest CO2 sorption capacity. The use of a microporous carbonaceous support limits the accessibility of CO2 toward the adsorbing phase (IL or FM) lowering the number of accessible binding sites for CO2.

  7. Patterning Surfaces on Azo-Based Multilayer Films via Surface Wrinkling Combined with Visible Light Irradiation.

    PubMed

    Zong, Chuanyong; Zhao, Yan; Ji, Haipeng; Xie, Jixun; Han, Xue; Wang, Juanjuan; Cao, Yanping; Lu, Conghua; Li, Hongfei; Jiang, Shichun

    2016-08-01

    Here, a simple combined strategy of surface wrinkling with visible light irradiation to fabricate well tunable hierarchical surface patterns on azo-containing multilayer films is reported. The key to tailor surface patterns is to introduce a photosensitive poly(disperse orange 3) intermediate layer into the film/substrate wrinkling system, in which the modulus decrease is induced by the reversible photoisomerization. The existence of a photoinert top layer prevents the photoisomerization-induced stress release in the intermediate layer to some extent. Consequently, the as-formed wrinkling patterns can be modulated over a large area by light irradiation. Interestingly, in the case of selective exposure, the wrinkle wavelength in the exposed region decreases, while the wrinkles in the unexposed region are evolved into highly oriented wrinkles with the orientation perpendicular to the exposed/unexposed boundary. Compared with traditional single layer-based film/substrate systems, the multilayer system consisting of the photosensitive intermediate layer offers unprecedented advantages in the patterning controllability/universality. As demonstrated here, this simple and versatile strategy can be conveniently extended to functional multilayer systems for the creation of prescribed hierarchical surface patterns with optically tailored microstructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    PubMed

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Role of surface properties in bacterial attachment

    NASA Astrophysics Data System (ADS)

    Conrad, Jacinta; Sharma, Sumedha

    2014-03-01

    Bacterial biofilms foul a wide range of engineered surfaces, from pipelines to membranes to biomedical implants, and lead to deleterious costs for industry and for human health. Designing strategies to reduce bacterial fouling requires fundamental understanding of mechanisms by which bacteria attach to surfaces. We investigate the attachment of Escherichia coli on silanized glass surfaces during flow through a linear channel at flow rates of 0.1-1 mL/min using confocal microscopy. We deposit self-assembled monolayers of organosilanes on glass and track the position and orientation of bacteria deposited on these surfaces during flow using high-throughput image processing algorithms. Here, we report differences in deposition rate and surface-tethered motion of cells as a function of surface charge and surface energy, suggesting that attachment of bacteria on these engineered surfaces is dominated by different physical mechanisms.

  10. Applications, Surface Modification and Functionalization of Nickel Nanorods

    PubMed Central

    Schrittwieser, Stefan; Reichinger, Daniela; Schotter, Joerg

    2017-01-01

    The growing number of nanoparticle applications in science and industry is leading to increasingly complex nanostructures that fulfill certain tasks in a specific environment. Nickel nanorods already possess promising properties due to their magnetic behavior and their elongated shape. The relevance of this kind of nanorod in a complex measurement setting can be further improved by suitable surface modification and functionalization procedures, so that customized nanostructures for a specific application become available. In this review, we focus on nickel nanorods that are synthesized by electrodeposition into porous templates, as this is the most common type of nickel nanorod fabrication method. Moreover, it is a facile synthesis approach that can be easily established in a laboratory environment. Firstly, we will discuss possible applications of nickel nanorods ranging from data storage to catalysis, biosensing and cancer treatment. Secondly, we will focus on nickel nanorod surface modification strategies, which represent a crucial step for the successful application of nanorods in all medical and biological settings. Here, the immobilization of antibodies or peptides onto the nanorod surface adds another functionality in order to yield highly promising nanostructures. PMID:29283415

  11. Covalent functionalization of MoS2 nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for Cd (II) detection.

    PubMed

    Gan, Xiaorong; Zhao, Huimin; Wong, Kwok-Yin; Lei, Dang Yuan; Zhang, Yaobin; Quan, Xie

    2018-05-15

    Surface functionalization is an effective strategy in the precise control of electronic surface states of two-dimensional materials for promoting their applications. In this study, based on the strong coordination interaction between the transition-metal centers and N atoms, the surface functionalization of few-layer MoS 2 nanosheets was successfully prepared by liquid phase exfoliation method in N, N-dimethylformamide (DMF), 1-methyl-2-pyrrolidinone, and formamide. The cytotoxicity of surface-functionalized MoS 2 nanosheets was for the first time evaluated by the methylthiazolyldiphenyl-tetrazoliumbromide assays. An electrochemical sensor was constructed based on glass carbon electrode (GCE) modified by MoS 2 nanosheets obtained in DMF, which exhibits relatively higher sensitivity to Cd 2+ detection and lower cytotoxicity against MCF-7 cells. The mechanisms of surface functionalization and selectively detecting Cd 2+ were investigated by density functional theory calculations together with various spectroscopic measurements. It was found that surface-functionalized MoS 2 nanosheets could be generated through Mo-N covalent bonds due to the orbital hybridization between the 5 s orbitals of Mo atoms and the 2p orbitals of N atoms of the solvent molecules. The high selectivity of the sensor is attributed to the coordination reaction between Cd 2+ and O donor atoms of DMF adsorbed on MoS 2 nanosheets. The robust anti-interference is ascribed to the strong binding energy of Cd 2+ and O atoms of DMF. Under the optimum conditions, the electrochemical sensor exhibits highly sensitive and selective assaying of Cd 2+ with a measured detection limit of 0.2 nM and a linear range from 2 nM to 20 μM. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials.

    PubMed

    Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Zhang, Ruihua; Ruder, Warren C

    2017-03-09

    We have developed an abiotic-biotic interface that allows engineered cells to control the material properties of a functionalized surface. This system is made by creating two modules: a synthetically engineered strain of E. coli cells and a functionalized material interface. Within this paper, we detail a protocol for genetically engineering selected behaviors within a strain of E. coli using molecular cloning strategies. Once developed, this strain produces elevated levels of biotin when exposed to a chemical inducer. Additionally, we detail protocols for creating two different functionalized surfaces, each of which is able to respond to cell-synthesized biotin. Taken together, we present a methodology for creating a linked, abiotic-biotic system that allows engineered cells to control material composition and assembly on nonliving substrates.

  13. Highly Efficient Antibacterial Surfaces Based on Bacterial/Cell Size Selective Microporous Supports.

    PubMed

    Vargas-Alfredo, Nelson; Santos-Coquillat, Ana; Martínez-Campos, Enrique; Dorronsoro, Ane; Cortajarena, Aitziber L; Del Campo, Adolfo; Rodríguez-Hernández, Juan

    2017-12-27

    We report on the fabrication of efficient antibacterial substrates selective for bacteria, i.e., noncytotoxic against mammalian cells. The strategy proposed is based on the different size of bacteria (1-4 μm) in comparison with mammalian cells (above 20 μm) that permit the bacteria to enter in contact with the inner part of micrometer-sized pores where the antimicrobial functionality are placed. On the contrary, mammalian cells, larger in terms of size, remain at the top surface, thus reducing adverse cytotoxic effects and improving the biocompatibility of the substrates. For this purpose, we fabricated well-ordered functional microporous substrates (3-5 μm) using the breath figures approach that enabled the selective functionalization of the pore cavity, whereas the rest of the surface remained unaffected. Microporous surfaces were prepared from polymer blends comprising a homopolymer (i.e., polystyrene) and a block copolymer (either polystyrene-b-poly(dimethylaminoethyl methacrylate) (PDMAEMA) or a quaternized polystyrene-b-poly(dimethylaminoethyl methacrylate)). As a result, porous surfaces with a narrow size distribution and a clear enrichment of the PDMAEMA or the quaternized PDMAEMA block inside the pores were obtained that, in the case of the quaternized PDMAEMA, provided an excellent antimicrobial activity to the films.

  14. Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Wei; Xiang, Guolei; Shang, Jin

    Here, a novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simplemore » washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Lastly, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.« less

  15. Covalent Functionalization of NiTi Surfaces with Bioactive Peptide Amphiphile Nanofibers

    PubMed Central

    Sargeant, Timothy D.; Rao, Mukti S.; Koh, Chung-Yan

    2009-01-01

    Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium shape memory alloy (NiTi) in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. PMID:18083225

  16. Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors

    NASA Astrophysics Data System (ADS)

    Mazur, Mykola; Barras, Alexandre; Kuncser, Victor; Galatanu, Andrei; Zaitzev, Vladimir; Turcheniuk, Kostiantyn V.; Woisel, Patrice; Lyskawa, Joel; Laure, William; Siriwardena, Aloysius; Boukherroub, Rabah; Szunerits, Sabine

    2013-03-01

    The synthesis of multifunctional magnetic nanoparticles (MF-MPs) is one of the most active research areas in advanced materials as their multifunctional surfaces allow conjugation of biological and chemical molecules, thus making it possible to achieve target-specific diagnostic in parallel to therapeutics. We report here a simple strategy to integrate in a one-step reaction several reactive sites onto the particles. The preparation of MF-MPs is based on their simultaneous modification with differently functionalized dopamine derivatives using simple solution chemistry. The formed MF-MPs show comparable magnetic properties to those of naked nanoparticles with almost unaltered particle size of around 25 nm. The different termini, amine, azide and maleimide functions, enable further functionalization of MF-MPs by the grafting-on approach. Michael addition, Cu(i) catalyzed « click » chemistry and amidation reactions are performed on the MF-MPs integrating subsequently 6-(ferrocenyl)-hexanethiol, horseradish peroxidase (HRP) and mannose.

  17. Comprehensive Interrogation of the Cellular Response to Fluorescent, Detonation and Functionalized Nanodiamonds

    PubMed Central

    Moore, L.; Grobárová, V.; Shen, H.; Man, H. B.; Míčová, J.; Ledvina, M.; Štursa, J.; Nesladek, M.

    2015-01-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation. PMID:25037888

  18. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds.

    PubMed

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-10-21

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  19. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds

    NASA Astrophysics Data System (ADS)

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-09-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  20. A novel adaptive switching function on fault tolerable sliding mode control for uncertain stochastic systems.

    PubMed

    Zahiripour, Seyed Ali; Jalali, Ali Akbar

    2014-09-01

    A novel switching function based on an optimization strategy for the sliding mode control (SMC) method has been provided for uncertain stochastic systems subject to actuator degradation such that the closed-loop system is globally asymptotically stable with probability one. In the previous researches the focus on sliding surface has been on proportional or proportional-integral function of states. In this research, from a degree of freedom that depends on designer choice is used to meet certain objectives. In the design of the switching function, there is a parameter which the designer can regulate for specified objectives. A sliding-mode controller is synthesized to ensure the reachability of the specified switching surface, despite actuator degradation and uncertainties. Finally, the simulation results demonstrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Strategies for leukemic biomarker detection using long-range surface plasmon-polaritons

    NASA Astrophysics Data System (ADS)

    Krupin, O.; Wang, C.; Berini, P.

    2014-09-01

    The suitability and use of long-range surface plasmon-polaritons for leukemic biomarker detection is discussed. A novel optical biosensor comprised of gold straight waveguides embedded in CYTOP with an etched microfluidic channel was tested for detecting leukemia in patient serum. Gold surface functionalization involved the interaction of protein G (PG) with antibodies by first adsorbing PG on bare gold and then antibodies (Immunoglobulin G, IgG). Differentiation between healthy and leukemia patients was based on the difference in ratios of Ig kappa (Igκ) and Ig lambda (Igλ) light chains in both serums. The ratio for a normal patient is ~1.4 - 2, whereas for a leukemia patient this ratio is altered. As a receptor (primary antibodies), goat anti-human anti-IgGκ and anti-IgGλ were used to functionalize the surface. Diluted normal and leukemia patient serums were tested over the aforementioned surfaces. The ratios of mass surface densities of IgGκ:IgGλ for normal serum (NS) and patient serum (PS) were found to be 1.55 and 1.92 respectively.

  2. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly

    NASA Astrophysics Data System (ADS)

    Mainwaring, David E.; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N.; Wu, Alex H.-F.; Marchant, Richard; Crawford, Russell J.; Ivanova, Elena P.

    2016-03-01

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08542j

  3. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given. This article was submitted as part of a collection of articles on surface nanotechnology for biological applications. Other papers on this topic can be found in issue 2 of vol. 3 (2011). This issue can be found from the Nanoscale homepage [http://www.rsc.org/nanoscale].

  4. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform

    PubMed Central

    Hu, Che-Ming J.; Zhang, Li; Aryal, Santosh; Cheung, Connie; Fang, Ronnie H.; Zhang, Liangfang

    2011-01-01

    Efforts to extend nanoparticle residence time in vivo have inspired many strategies in particle surface modifications to bypass macrophage uptake and systemic clearance. Here we report a top-down biomimetic approach in particle functionalization by coating biodegradable polymeric nanoparticles with natural erythrocyte membranes, including both membrane lipids and associated membrane proteins for long-circulating cargo delivery. The structure, size and surface zeta potential, and protein contents of the erythrocyte membrane-coated nanoparticles were verified using transmission electron microscopy, dynamic light scattering, and gel electrophoresis, respectively. Mice injections with fluorophore-loaded nanoparticles revealed superior circulation half-life by the erythrocyte-mimicking nanoparticles as compared to control particles coated with the state-of-the-art synthetic stealth materials. Biodistribution study revealed significant particle retention in the blood 72 h following the particle injection. The translocation of natural cellular membranes, their associated proteins, and the corresponding functionalities to the surface of synthetic particles represents a unique approach in nanoparticle functionalization. PMID:21690347

  5. Biochips: non-conventional strategies for biosensing elements immobilization.

    PubMed

    Marquette, Christophe A; Corgier, Benjamin P; Heyries, Kevin A; Blum, Loic J

    2008-01-01

    The present article draws a general picture of non-conventional methods for biomolecules immobilization. The technologies presented are based either on original solid supports or on innovative immobilization processes. Polydimethylsiloxane elastomer will be presented as a popular immobilization support within the biochip developer community. Electro-addressing of biomolecules at the surface of conducting biochips will appear to be an interesting alternative to immobilization processes based on surface functionalization. Finally, bead-assisted biomolecules immobilization will be presented as an open field of research for biochip developments.

  6. Advances in single-molecule magnet surface patterning through microcontact printing.

    PubMed

    Mannini, Matteo; Bonacchi, Daniele; Zobbi, Laura; Piras, Federica M; Speets, Emiel A; Caneschi, Andrea; Cornia, Andrea; Magnani, Agnese; Ravoo, Bart Jan; Reinhoudt, David N; Sessoli, Roberta; Gatteschi, Dante

    2005-07-01

    We present an implementation of strategies to deposit single-molecule magnets (SMMs) using microcontact printing microCP). We describe different approaches of microCP to print stripes of a sulfur-functionalized dodecamanganese (III, IV) cluster on gold surfaces. Comparison by atomic force microscopy profile analysis of the patterned structures confirms the formation of a chemically stable single layer of SMMs. Images based on chemical contrast, obtained by time-of-flight secondary ion mass spectrometry, confirm the patterned structure.

  7. Polymer surface functionalities that control human embryoid body cell adhesion revealed by high throughput surface characterization of combinatorial material microarrays

    PubMed Central

    Yang, Jing; Mei, Ying; Hook, Andrew L.; Taylor, Michael; Urquhart, Andrew J.; Bogatyrev, Said R.; Langer, Robert; Anderson, Daniel G.; Davies, Martyn C.; Alexander, Morgan R.

    2010-01-01

    High throughput materials discovery using combinatorial polymer microarrays to screen for new biomaterials with new and improved function is established as a powerful strategy. Here we combine this screening approach with high throughput surface characterisation (HT-SC) to identify surface structure-function relationships. We explore how this combination can help to identify surface chemical moieties that control protein adsorption and subsequent cellular response. The adhesion of human embryoid body (hEB) cells to a large number (496) of different acrylate polymers synthesized in a microarray format is screened using a high throughput procedure. To determine the role of the polymer surface properties on hEB cell adhesion, detailed HT-SC of these acrylate polymers is carried out using time of flight secondary ion mass spectrometry (ToF SIMS), x-ray photoelectron spectroscopy (XPS), pico litre drop sessile water contact angle (WCA) measurement and atomic force microscopy (AFM). A structure-function relationship is identified between the ToF SIMS analysis of the surface chemistry after a fibronectin (Fn) pre-conditioning step and the cell adhesion to each spot using the multivariate analysis technique partial least squares (PLS) regression. Secondary ions indicative of the adsorbed Fn correlate with increased cell adhesion whereas glycol and other functionalities from the polymers are identified that reduce cell adhesion. Furthermore, a strong relationship between the ToF SIMS spectra of bare polymers and the cell adhesion to each spot is identified using PLS regression. This identifies a role for both the surface chemistry of the bare polymer and the pre-adsorbed Fn, as-represented in the ToF SIMS spectra, in controlling cellular adhesion. In contrast, no relationship is found between cell adhesion and wettability, surface roughness, elemental or functional surface composition. The correlation between ToF SIMS data of the surfaces and the cell adhesion demonstrates the ability of identifying surface moieties that control protein adsorption and subsequent cell adhesion using ToF SIMS and multivariate analysis. PMID:20832108

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.

    Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance,more » surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.« less

  9. CMC-modified cellulose biointerface for antibody conjugation.

    PubMed

    Orelma, Hannes; Teerinen, Tuija; Johansson, Leena-Sisko; Holappa, Susanna; Laine, Janne

    2012-04-09

    In this Article, we present a new strategy for preparing an antihemoglobin biointerface on cellulose. The preparation method is based on functionalization of the cellulose surface by the irreversible adsorption of CMC, followed by covalent linking of antibodies to CMC. This would provide the means for affordable and stable cellulose-based biointerfaces for immunoassays. The preparation and characterization of the biointerface were studied on Langmuir-Schaefer cellulose model surfaces in real time using the quartz crystal microbalance with dissipation and surface plasmon resonance techniques. The stable attachment of antihemoglobin to adsorbed CMC was achieved, and a linear calibration of hemoglobin was obtained. CMC modification was also observed to prevent nonspecific protein adsorption. The antihemoglobin-CMC surface regenerated well, enabling repeated immunodetection cycles of hemoglobin on the same surface.

  10. Modification of Semiconductor Surfaces through Si-N Linkages by Wet-Chemistry Approaches and Modular Functionalization of Zinc Oxide Surfaces for Chemical Protection of Material Morphology

    NASA Astrophysics Data System (ADS)

    Gao, Fei

    Semiconductor substrates are widely used in many applications. Multiple practical uses involving these materials require the ability to tune their physical and chemical properties to adjust those to a specific application. In recent years, surface and interface reactions have affected dramatically device fabrication and material design. Novel surface functionalization techniques with diverse chemical approaches make the desired physical, thermal, electrical, and mechanical properties attainable. Meanwhile, the modified surface can serve as one of the most important key steps for further assembly process in order to make novel devices and materials. In the following chapters, novel chemical approaches to the functionalization of silicon and zinc oxide substrates will be reviewed and discussed. The specific functionalities including amines, azides, and alkynes on surfaces of different materials will be applied to address subsequent attachment of large molecules and assembly processes. This research is aimed to develop new strategies for manipulating the surface properties of semiconductor materials in a controlled way. The findings of these investigations will be relevant for future applications in molecular and nanoelectronics, sensing, and solar energy conversion. The ultimate goals of the projects are: 1) Preparation of an oxygen-and carbon-free silicon surface based exclusively on Si-N linkages for further modification protocols.. This project involves designing the surface reaction of hydrazine on chlorine-terminated silicon surface, introduction of additional functional group through dehydrohalogenation condensation reaction and direct covalent attachment of C60. 2) Demonstrating alternative method to anchor carbon nanotubes to solid substrates directly through the carbon cage.. This project targets surface modification of silicon and gold substrates with amine-terminated organic monolayers and the covalent attachment of nonfunctionalized and carboxylic acid-functionalized carbon nanotubes. 3) Designing a universal method for the modular functionalization of zinc oxide surface for the chemical protection of material morphology.. This project involves surface modification of zinc oxide nanopowder under vacuum condition with propiolic acid, followed by "click" reaction. A combination of spectroscopy and microscopy techniques was utilized to study the surface functionalization and assembly processes. Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and time of fight secondary ion mass spectroscopy (ToF-SIMS) were employed to elucidate the chemical structure of the modified surface. Atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were combined to obtain the surface morphological information. Density functional theory (DFT) calculations were applied to confirm the experimental results and to suggest plausible reaction mechanisms. Other complementary techniques for these projects also include nuclear magnetic resonance (NMR) spectroscopy to identify the chemical species on the surface and charge-carrier lifetime measurements to evaluate the electronic property of C60-modified silicon surface.

  11. Rational strategy for the atmospheric icing prevention based on chemically functionalized carbon soot coatings

    NASA Astrophysics Data System (ADS)

    Esmeryan, Karekin D.; Bressler, Ashton H.; Castano, Carlos E.; Fergusson, Christian P.; Mohammadi, Reza

    2016-12-01

    Although the superhydrophobic surfaces are preferable for passive anti-icing systems, as they provide water shedding before initiation of ice nucleation, their practical usage is still under debate. This is so, as the superhydrophobic materials are not necessarily icephobic and most of the synthesis techniques are characterized with low fabrication scalability. Here, we describe a rational strategy for the atmospheric icing prevention, based on chemically functionalized carbon soot, suitable for large-scale fabrication of superhydrophobic coatings that exhibit and retain icephobicity in harsh operational conditions. This is achieved through a secondary treatment with ethanol and aqueous fluorocarbon solution, which improves the coating's mechanical strength without altering its water repellency. Subsequent experimental analyses on the impact dynamics of icy water droplets on soot coated aluminum and steel sheets show that these surfaces remain icephobic in condensate environments and substrate temperatures down to -35 °C. Furthermore, the soot's icephobicity and non-wettability are retained in multiple icing/de-icing cycles and upon compressed air scavenging, spinning and water jetting with impact velocity of ∼25 m/s. Finally, on frosted soot surfaces, the droplets freeze in a spherical shape and are entirely detached by adding small amount of thermal energy, indicating lower ice adhesion compared to the uncoated metal substrates.

  12. What is the role of curvature on the properties of nanomaterials for biomedical applications?

    PubMed

    Gonzalez Solveyra, Estefania; Szleifer, Igal

    2016-05-01

    The use of nanomaterials for drug delivery and theranostics applications is a promising paradigm in nanomedicine, as it brings together the best features of nanotechnolgy, molecular biology, and medicine. To fully exploit the synergistic potential of such interdisciplinary strategy, a comprehensive description of the interactions at the interface between nanomaterials and biological systems is not only crucial, but also mandatory. Routine strategies to engineer nanomaterial-based drugs comprise modifying their surface with biocompatible and targeting ligands, in many cases resorting to modular approaches that assume additive behavior. However, emergent behavior can be observed when combining confinement and curvature. The final properties of functionalized nanomaterials become dependent not only on the properties of their constituents but also on the geometry of the nano-bio interface, and on the local molecular environment. Modularity no longer holds, and the coupling between interactions, chemical equilibrium, and molecular organization has to be directly addressed in order to design smart nanomaterials with controlled spatial functionalization envisioning optimized biomedical applications. Nanoparticle's curvature becomes an integral part of the design strategy, enabling to control and engineer the chemical and surface properties with molecular precision. Understanding how nanoparticle size, morphology, and surface chemistry are interrelated will put us one step closer to engineering nanobiomaterials capable of mimicking biological structures and their behaviors, paving the way into applications and the possibility to elucidate the use of curvature by biological systems. WIREs Nanomed Nanobiotechnol 2016, 8:334-354. doi: 10.1002/wnan.1365 For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.

  13. An N-terminal Retention Module Anchors the Giant Adhesin LapA of Pseudomonas fluorescens at the Cell Surface: A Novel Sub-family of Type I Secretion Systems.

    PubMed

    Smith, T Jarrod; Font, Maria E; Kelly, Carolyn M; Sondermann, Holger; O'Toole, George A

    2018-02-05

    LapA of Pseudomonas fluorescens Pf0-1 belongs to a diverse family of cell surface associated bacterial adhesins that are secreted via the type-1 secretion system (T1SS). We previously reported that the periplasmic protease LapG cleaves the N-terminus of LapA at a canonical dialanine motif to release the adhesin from the cell surface under conditions unfavorable to biofilm formation, thus decreasing biofilm formation. Here, we characterize LapA as the first type 1 secreted substrate that does not follow the "one-step" rule of T1SS. Rather, a novel N-terminal element, called the retention module (RM), localizes LapA at the cell surface as a secretion intermediate. Our genetic, biochemical, and molecular modeling analysis support a model wherein LapA is tethered to the cell surface through its T1SS outer membrane TolC-like pore, LapE, until LapG cleaves LapA in the periplasm. We further demonstrate this unusual retention strategy is likely conserved among LapA-like proteins, and reveals a new subclass of T1SS ABC transporters involved in transporting this group of surface-associated, LapA-like adhesins. These studies demonstrate a novel cell surface retention strategy used throughout the Proteobacteria and highlight a previously unappreciated flexibility of function for T1SS. Importance. Bacteria have evolved multiple secretion strategies to interact with their environment. For many bacteria, the secretion of cell surface associated adhesins is key for initiating contact with a preferred substratum to facilitate biofilm formation. Our work demonstrates that P. fluorescens uses a previously unrecognized secretion strategy to retain the giant adhesin LapA at its cell surface. Further, we identify likely LapA-like adhesins in various pathogenic and commensal Proteobacteria and provide phylogenetic evidence that these adhesins are secreted by a new subclass of T1SS ABC transporters. Copyright © 2018 American Society for Microbiology.

  14. Tuning dispersion correction in DFT-D2 for metal-molecule interactions: A tailored reparameterization strategy for the adsorption of aromatic systems on Ag(1 1 1)

    NASA Astrophysics Data System (ADS)

    Schiavo, Eduardo; Muñoz-García, Ana B.; Barone, Vincenzo; Vittadini, Andrea; Casarin, Maurizio; Forrer, Daniel; Pavone, Michele

    2018-02-01

    Common local and semi-local density functionals poorly describe the molecular physisorption on metal surfaces due to the lack of dispersion interactions. In the last decade, several correction schemes have been proposed to amend this fundamental flaw of Density Functional Theory. Using the prototypical case of aromatic molecules adsorbed on Ag(1 1 1), we discuss the accuracy of different dispersion-correction methods and present a reparameterization strategy for the simple and effective DFT-D2. For the adsorption of different aromatic systems on the same metallic substrate, good results at feasible computational costs are achieved by means of a fitting procedure against MP2 data.

  15. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings.

    PubMed

    Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J; Rodriguez-Emmenegger, Cesar

    2017-06-12

    Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.

  16. Programming 2D/3D shape-shifting with hobbyist 3D printers† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7mh00269f

    PubMed Central

    van Manen, Teunis; Janbaz, Shahram

    2017-01-01

    Materials and devices with advanced functionalities often need to combine complex 3D shapes with functionality-inducing surface features. Precisely controlled bio-nanopatterns, printed electronic components, and sensors/actuators are all examples of such surface features. However, the vast majority of the refined technologies that are currently available for creating functional surface features work only on flat surfaces. Here we present initially flat constructs that upon triggering by high temperatures change their shape to a pre-programmed 3D shape, thereby enabling the combination of surface-related functionalities with complex 3D shapes. A number of shape-shifting materials have been proposed during the last few years based on various types of advanced technologies. The proposed techniques often require multiple fabrication steps and special materials, while being limited in terms of the 3D shapes they could achieve. The approach presented here is a single-step printing process that requires only a hobbyist 3D printer and inexpensive off-the-shelf materials. It also lends itself to a host of design strategies based on self-folding origami, instability-driven pop-up, and ‘sequential’ shape-shifting to unprecedentedly expand the space of achievable 3D shapes. This combination of simplicity and versatility is a key to widespread applications. PMID:29308207

  17. High-yielding and photolabile approaches to the covalent attachment of biomolecules to surfaces via hydrazone chemistry.

    PubMed

    Lee, Ju Hun; Domaille, Dylan W; Noh, Hyunwoo; Oh, Taeseok; Choi, Chulmin; Jin, Sungho; Cha, Jennifer N

    2014-07-22

    The development of strategies to couple biomolecules covalently to surfaces is necessary for constructing sensing arrays for biological and biomedical applications. One attractive conjugation reaction is hydrazone formation--the reaction of a hydrazine with an aldehyde or ketone--as both hydrazines and aldehydes/ketones are largely bioorthogonal, which makes this particular reaction suitable for conjugating biomolecules to a variety of substrates. We show that the mild reaction conditions afforded by hydrazone conjugation enable the conjugation of DNA and proteins to the substrate surface in significantly higher yields than can be achieved with traditional bioconjugation techniques, such as maleimide chemistry. Next, we designed and synthesized a photocaged aryl ketone that can be conjugated to a surface and photochemically activated to provide a suitable partner for subsequent hydrazone formation between the surface-anchored ketone and DNA- or protein-hydrazines. Finally, we exploit the latent functionality of the photocaged ketone and pattern multiple biomolecules on the same substrate, effectively demonstrating a strategy for designing substrates with well-defined domains of different biomolecules. We expect that this approach can be extended to the production of multiplexed assays by using an appropriate mask with sequential photoexposure and biomolecule conjugation steps.

  18. Synthesis of Single-walled Carbon Nanotubes Coated with Thiol-reactive Gel via Emulsion Polymerization.

    PubMed

    Nagai, Yukiko; Tsutsumi, Yusuke; Nakashima, Naotoshi; Fujigaya, Tsuyohiko

    2018-06-15

    Single-walled carbon nanotubes (SWNTs) have unique near-infrared absorption and photoemission properties that are attractive for in vivo biological applications such as photothermal cancer treatment and bioimaging. Therefore, a smart functionalization strategy for SWNTs to create biocompatible surfaces and introduce various ligands to target active cancer cells without losing the unique optical properties of the SWNTs is strongly desired. This paper reports the de-sign and synthesis of a SWNT/gel hybrid containing maleimide groups, which react with various thiol compounds through Michael addition reactions. In this hybrid, the method called carbon nanotube micelle polymerization was used to non-covalently modify the surface of SWNTs with a cross-linked polymer gel layer. This method can form an extremely stable gel layer on SWNTs; such stability is essential for in vivo biological applications. The monomer used to form the gel layer contained a maleimide group, which was protected with furan in endo-form. The resulting hybrid was treated in water to induce deprotection via retro Diels-Alder reaction and then functionalized with thiol com-pounds through Michael addition. The functionalization of the hybrid was explored using a thiol-containing fluores-cent dye as a model thiol and the formation of the SWNT-dye conjugate was confirmed by energy transfer from the dye to SWNTs. Our strategy offers a promising SWNT-based platform for biological functionalization for cancer targeting, imaging, and treatment.

  19. Inhibitory motoneurons in arthropod motor control: organisation, function, evolution.

    PubMed

    Wolf, Harald

    2014-08-01

    Miniaturisation of somatic cells in animals is limited, for reasons ranging from the accommodation of organelles to surface-to-volume ratio. Consequently, muscle and nerve cells vary in diameters by about two orders of magnitude, in animals covering 12 orders of magnitude in body mass. Small animals thus have to control their behaviour with few muscle fibres and neurons. Hexapod leg muscles, for instance, may consist of a single to a few 100 fibres, and they are controlled by one to, rarely, 19 motoneurons. A typical mammal has thousands of fibres per muscle supplied by hundreds of motoneurons for comparable behavioural performances. Arthopods--crustaceans, hexapods, spiders, and their kin--are on average much smaller than vertebrates, and they possess inhibitory motoneurons for a motor control strategy that allows a broad performance spectrum despite necessarily small cell numbers. This arthropod motor control strategy is reviewed from functional and evolutionary perspectives and its components are described with a focus on inhibitory motoneurons. Inhibitory motoneurons are particularly interesting for a number of reasons: evolutionary and phylogenetic comparison of functional specialisations, evolutionary and developmental origin and diversification, and muscle fibre recruitment strategies.

  20. Seismic data enhancement and regularization using finite offset Common Diffraction Surface (CDS) stack

    NASA Astrophysics Data System (ADS)

    Garabito, German; Cruz, João Carlos Ribeiro; Oliva, Pedro Andrés Chira; Söllner, Walter

    2017-01-01

    The Common Reflection Surface stack is a robust method for simulating zero-offset and common-offset sections with high accuracy from multi-coverage seismic data. For simulating common-offset sections, the Common-Reflection-Surface stack method uses a hyperbolic traveltime approximation that depends on five kinematic parameters for each selected sample point of the common-offset section to be simulated. The main challenge of this method is to find a computationally efficient data-driven optimization strategy for accurately determining the five kinematic stacking parameters on which each sample of the stacked common-offset section depends. Several authors have applied multi-step strategies to obtain the optimal parameters by combining different pre-stack data configurations. Recently, other authors used one-step data-driven strategies based on a global optimization for estimating simultaneously the five parameters from multi-midpoint and multi-offset gathers. In order to increase the computational efficiency of the global optimization process, we use in this paper a reduced form of the Common-Reflection-Surface traveltime approximation that depends on only four parameters, the so-called Common Diffraction Surface traveltime approximation. By analyzing the convergence of both objective functions and the data enhancement effect after applying the two traveltime approximations to the Marmousi synthetic dataset and a real land dataset, we conclude that the Common-Diffraction-Surface approximation is more efficient within certain aperture limits and preserves at the same time a high image accuracy. The preserved image quality is also observed in a direct comparison after applying both approximations for simulating common-offset sections on noisy pre-stack data.

  1. Evolutionary screening and adsorption behavior of engineered M13 bacteriophage and derived dodecapeptide for selective decoration of gold interfaces.

    PubMed

    Causa, F; Della Moglie, R; Iaccino, E; Mimmi, S; Marasco, D; Scognamiglio, P L; Battista, E; Palmieri, C; Cosenza, C; Sanguigno, L; Quinto, I; Scala, G; Netti, P A

    2013-01-01

    There is a growing interest in identifying biomacromolecules such as proteins and peptides to functionalize metallic surfaces through noncovalent binding. One method for functionalizing materials without fundamentally changing their inherent structure is using biorecognition moieties. Here, we proved a general route to select a biomolecule adhesive motif for surface functionalization by comprehensively screening phage displayed peptides. In particular, we selected a genetically engineered M13 bacteriophage and a linear dodecapeptide derived from its pIII domain for recognizing gold surfaces in a specific and selective manner. In the phage context, we demonstrated the adhesive motif was capable to adsorb on gold in a preferential way with a morphological and viscoelastic signature of the adsorbed layer as evidenced by QCM-D and AFM investigations. Out of the phage context, the linear dodecapeptide is reproducibly found to adhere to the gold surface, and by quantitative SPR measurements, high affinity constants (K(eq)~10(6)M(-1), binding energy ~-8 kcal/mol) were determined. We proved that the interactions occurring at gold interface were mainly hydrophobic as a consequence of high frequency of hydrophobic residues in the peptide sequence. Moreover, by CD, molecular dynamics and steered molecular dynamics, we demonstrated that the molecular flexibility only played a minor role in the peptide adsorption. Such noncovalent but specific modification of inorganic surfaces through high affinity biomolecule adsorption represents a general strategy to modulate the functionality of multipurpose metallic surfaces. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Self-similar slip distributions on irregular shaped faults

    NASA Astrophysics Data System (ADS)

    Herrero, A.; Murphy, S.

    2018-06-01

    We propose a strategy to place a self-similar slip distribution on a complex fault surface that is represented by an unstructured mesh. This is possible by applying a strategy based on the composite source model where a hierarchical set of asperities, each with its own slip function which is dependent on the distance from the asperity centre. Central to this technique is the efficient, accurate computation of distance between two points on the fault surface. This is known as the geodetic distance problem. We propose a method to compute the distance across complex non-planar surfaces based on a corollary of the Huygens' principle. The difference between this method compared to others sample-based algorithms which precede it is the use of a curved front at a local level to calculate the distance. This technique produces a highly accurate computation of the distance as the curvature of the front is linked to the distance from the source. Our local scheme is based on a sequence of two trilaterations, producing a robust algorithm which is highly precise. We test the strategy on a planar surface in order to assess its ability to keep the self-similarity properties of a slip distribution. We also present a synthetic self-similar slip distribution on a real slab topography for a M8.5 event. This method for computing distance may be extended to the estimation of first arrival times in both complex 3D surfaces or 3D volumes.

  3. Helping Children with Visual and Motor Impairments Make the Most of Their Visual Abilities.

    ERIC Educational Resources Information Center

    Amerson, Marie J.

    1999-01-01

    Lists strategies for promoting functional vision use in children with visual and motor impairments, including providing postural stability, presenting visual attention tasks when energy level is the highest, using a slanted work surface, placing target items in varied locations within reach, and determining the most effective visual adaptations.…

  4. Does the Cave Environment Reduce Functional Diversity?

    PubMed Central

    Fernandes, Camile Sorbo; Batalha, Marco Antonio; Bichuette, Maria Elina

    2016-01-01

    Caves are not colonised by all taxa present in the surface species pool, due to absence of light and the tendency to food limitation when compared to surface communities. Under strong species sorting during colonisation and later by the restrictive environmental filter, traits that are not adaptive in subterranean habitats may be filtered out. We tested whether cave communities were assembled by the restrictive regime propitiated by permanent darkness or by competitive exclusion due to resource scarcity. When compared to surface communities, the restrictive subterranean regime would lead to lower functional diversity and phenotypic clustering inside the caves, and the opposite should be expected in the case of competitive exclusion. Using isopods (Oniscidea) as model taxa, we measured several niche descriptors of taxa from surface and cave habitats, used a multivariate measure of functional diversity, and compared their widths. We found phenotypic overdispersion and higher functional diversity in cave taxa when compared to surface taxa. On the one hand, the dry climate outside of caves hampered the survival of several taxa and their ecological strategies, not viable under severe desiccation risk, culminating in the clustering of functional traits. In contrast, this restriction does not occur inside of caves, where isopods find favourable conditions under lower predation pressures and more amenable environmental parameters that allow occupation and subsequent diversification. Our results showed that, at least for some taxa, caves may not be such a harsh environment as previously thought. The high functional diversity we found inside caves adds an additional reason for the conservation of these sensitive environments. PMID:27003837

  5. Star-pseudopolyrotaxane organized in nanoplatelets for poly(ε-caprolactone)-based nanofibrous scaffolds with enhanced surface reactivity.

    PubMed

    Oster, Murielle; Hébraud, Anne; Gallet, Sébastien; Lapp, Alain; Pollet, Eric; Avérous, Luc; Schlatter, Guy

    2015-02-01

    Herein, it is demonstrated that star pseudopolyrotaxanes (star-pPRs) obtained from the inclusion complexation of α-cyclodextrin (CD) and four-branched star poly(ε-caprolactone) (star-PCL) organize into nanoplatelets in dimethyl sulfoxide at 35 °C. This peculiar property, not observed for linear pseudopolyrotaxanes, allows the processing of star-pPRs while preserving their supramolecular assembly. Thus, original PCL:star-pPR core:shell nanofibers are elaborated by coaxial electrospinning. The star-pPR shell ensures the presence of available CD hydroxyl functions on the fiber surface allowing its postfunctionalization. As proof of concept, fluorescein isothiocyanate is grafted. Moreover, the morphology of the fibers is maintained due to the star-pPR shell that acts as a shield, preventing the fiber dissolution during chemical modification. The proposed strategy is simple and avoids the synthesis of polyrotaxanes, i.e., pPR end-capping to prevent the CD dethreading. As PCL is widely used for biomedical applications, this strategy paves the way for simple functionalization with any bioactive molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Universal biomimetic preparation and immobilization of layered double hydroxide films and adsorption behavior

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Zhang, Wenpeng; Chen, Zilin

    2017-01-01

    Preparation and immobilization of layered double hydroxides (LDHs) film onto multiple substrates is important and challenging in functional materials fields by date. In this work, a simple and universal polydopamine (PD)-based layer-by-layer assembly strategy was developed for the immobilization of LDHs film onto surfaces such as polypropylene chip, glass slides and metal coins. The surface of substrates was firstly modified by polydopamine functionalization, and then LDHs film was synthesized via urea method and directly immobilized on the PD layer by in situ growing strategy in one step. The PD layer as well as the final LDHs film was characterized by energy dispersive X-ray spectroscopy, scanning electron microscope, infrared spectroscopy, X-ray diffraction pattern and X-ray photoelectron spectra. It has been demonstrated the formation of the dense and homogeneous nanoscaled LDHs film with 400 nm thickness. Adsorption behavior of the fabricated NiAl-LDHs film toward anionic dyes and pharmaceuticals was further assessed. To demonstrate their extensive application, fast and high efficient adsorption of anionic dyes and pharmaceuticals was achieved by NiAl-LDHs-modified polypropylene centrifugal tube.

  7. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry.

    PubMed

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-03-16

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.

  8. Bio-inspired direct patterning functional nanothin microlines: controllable liquid transfer.

    PubMed

    Wang, Qianbin; Meng, Qingan; Wang, Pengwei; Liu, Huan; Jiang, Lei

    2015-04-28

    Developing a general and low-cost strategy that enables direct patterning of microlines with nanometer thickness from versatile liquid-phase functional materials and precise positioning of them on various substrates remains a challenge. Herein, with inspiration from the oriental wisdom to control ink transfer by Chinese brushes, we developed a facile and general writing strategy to directly pattern various functional microlines with homogeneous distribution and nanometer-scale thickness. It is demonstrated that the width and thickness of the microlines could be well-controlled by tuning the writing method, providing guidance for the adaptation of this technique to various systems. It is also shown that various functional liquid-phase materials, such as quantum dots, small molecules, polymers, and suspensions of nanoparticles, could directly write on the substrates with intrinsic physicochemical properties well-preserved. Moreover, this technique enabled direct patterning of liquid-phase materials on certain microdomains, even in multiple layered style, thus a microdomain localized chemical reaction and the patterned surface chemical modification were enabled. This bio-inspired direct writing device will shed light on the template-free printing of various functional micropatterns, as well as the integrated functional microdevices.

  9. Multivalency at Interfaces: Supramolecular Carbohydrate-Functionalized Graphene Derivatives for Bacterial Capture, Release, and Disinfection.

    PubMed

    Qi, Zhenhui; Bharate, Priya; Lai, Chian-Hui; Ziem, Benjamin; Böttcher, Christoph; Schulz, Andrea; Beckert, Fabian; Hatting, Benjamin; Mülhaupt, Rolf; Seeberger, Peter H; Haag, Rainer

    2015-09-09

    A supramolecular carbohydrate-functionalized two-dimensional (2D) surface was designed and synthesized by decorating thermally reduced graphene sheets with multivalent sugar ligands. The formation of host-guest inclusions on the carbon surface provides a versatile strategy, not only to increase the intrinsic water solubility of graphene-based materials, but more importantly to let the desired biofunctional binding groups bind to the surface. Combining the vital recognition role of carbohydrates and the unique 2D large flexible surface area of the graphene sheets, the addition of multivalent sugar ligands makes the resulting carbon material an excellent platform for selectively wrapping and agglutinating Escherichia coli (E. coli). By taking advantage of the responsive property of supramolecular interactions, the captured bacteria can then be partially released by adding a competitive guest. Compared to previously reported scaffolds, the unique thermal IR-absorption properties of graphene derivatives provide a facile method to kill the captured bacteria by IR-laser irradiation of the captured graphene-sugar-E. coli complex.

  10. Establishment of cell surface engineering and its development.

    PubMed

    Ueda, Mitsuyoshi

    2016-07-01

    Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique.

  11. Writing and erasing hidden optical information on covalently modified cellulose paper.

    PubMed

    d'Halluin, M; Rull-Barrull, J; Le Grognec, E; Jacquemin, D; Felpin, F-X

    2016-06-08

    An unprecedented strategy for preparing photoresponsive cellulose paper enabling the storage of short-lived optical data by covalent photopatterning is disclosed. An ab initio design hinting that the covalent grafting of coumarins on the paper could yield valuable photoresponsive units was first performed. Second, light sensitive paper that can be reversibly altered upon irradiation at a specific wavelength was prepared by covalent surface functionalization with coumarins. Third, the validity of this strategy is demonstrated using the photolithography of several gripping patterns such as a dynamic QR code.

  12. Facile and generalized encapsulations of inorganic nanocrystals with nitrogen-doped carbonaceous coating for multifunctionality

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Zhang, Jingchao; Wang, Shitong; Xu, Xiaobin; Zhang, Zhicheng; Wang, Pengpeng; Tang, Zilong; Wang, Xun

    2015-02-01

    A simple strategy toward versatile encapsulations of inorganic nanocrystals, through a green hydrothermal treatment of commercial polyurethane sponge, was developed. This approach enables us to realize a general method to form a surface-adherent, N-doped coating with a controllable thickness for well-defined structures. These composites exhibit active properties in optical applications and energy storage. For example, N-doped carbon encapsulated Fe2O3 nanoboxes show a very high discharge capacity and outstanding cyclability, and the capacity still remained at 1086 mA h g-1 at a current density of 400 mA g-1 after 200 cycles. Our results described here provide a simple surface coating technique to design various functional nanostructures.A simple strategy toward versatile encapsulations of inorganic nanocrystals, through a green hydrothermal treatment of commercial polyurethane sponge, was developed. This approach enables us to realize a general method to form a surface-adherent, N-doped coating with a controllable thickness for well-defined structures. These composites exhibit active properties in optical applications and energy storage. For example, N-doped carbon encapsulated Fe2O3 nanoboxes show a very high discharge capacity and outstanding cyclability, and the capacity still remained at 1086 mA h g-1 at a current density of 400 mA g-1 after 200 cycles. Our results described here provide a simple surface coating technique to design various functional nanostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07181f

  13. Understanding the creation of & reducing surface microroughness during polishing & post-processing of glass optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, Tayyab

    2016-09-22

    In the follow study, we have developed a detailed understanding of the chemical and mechanical microscopic interactions that occur during polishing affecting the resulting surface microroughness of the workpiece. Through targeted experiments and modeling, the quantitative relationships of many important polishing parameters & characteristics affecting surface microroughness have been determined. These behaviors and phenomena have been described by a number of models including: (a) the Ensemble Hertzian Multi Gap (EHMG) model used to predict the removal rate and roughness at atomic force microscope (AFM) scale lengths as a function of various polishing parameters, (b) the Island Distribution Gap (IDG) modelmore » used to predict the roughness at larger scale lengths, (c) the Deraguin-Verwey-Landau-Overbeek (DLVO) 3-body electrostatic colloidal model used to predict the interaction of slurry particles at the interface and roughness behavior as a function of pH, and (d) a diffusion/chemical reaction rate model of the incorporation of impurities species into the polishing surface layer (called the Bielby layer). Based on this improved understanding, novel strategies to polish the workpiece have been developed simultaneously leading to both ultrasmooth surfaces and high material removal rates. Some of these strategies include: (a) use of narrow PSD slurries, (b) a novel diamond conditioning recipe of the lap to increase the active contact area between the workpiece and lap without destroying its surface figure, (c) proper control of pH for a given glass type to allow for a uniform distribution of slurry particles at the interface, and (d) increase in applied load just up to the transition between molecular to plastic removal regime for a single slurry particle. These techniques have been incorporated into a previously developed finishing process called Convergent Polishing leading to not just economical finishing process with improved surface figure control, but also simultaneously leading to low roughness surface with high removal rates.« less

  14. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    NASA Astrophysics Data System (ADS)

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-Dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-12-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.

  15. Boronic Acid Functionalized Au Nanoparticles for Selective MicroRNA Signal Amplification in Fiber-Optic Surface Plasmon Resonance Sensing System.

    PubMed

    Qian, Siyu; Lin, Ming; Ji, Wei; Yuan, Huizhen; Zhang, Yang; Jing, Zhenguo; Zhao, Jianzhang; Masson, Jean-François; Peng, Wei

    2018-05-25

    MicroRNA (miRNA) regulates gene expression and plays a fundamental role in multiple biological processes. However, if both single-stranded RNA and DNA can bind with capture DNA on the sensing surface, selectively amplifying the complementary RNA signal is still challenging for researchers. Fiber-optic surface plasmon resonance (SPR) sensors are small, accurate, and convenient tools for monitoring biological interaction. In this paper, we present a high sensitivity microRNA detection technique using phenylboronic acid functionalized Au nanoparticles (PBA-AuNPs) in fiber-optic SPR sensing systems. Due to the inherent difficulty directly detecting the hybridized RNA on the sensing surface, the PBA-AuNPs were used to selectively amplify the signal of target miRNA. The result shows that the method has high selectivity and sensitivity for miRNA, with a detection limit at 2.7 × 10 -13 M (0.27 pM). This PBA-AuNPs amplification strategy is universally applicable for RNA detection with various sensing technologies, such as surface-enhanced Raman spectroscopy and electrochemistry, among others.

  16. Defined surface immobilization of glycosaminoglycan molecules for probing and modulation of cell-material interactions.

    PubMed

    Wang, Kai; Luo, Ying

    2013-07-08

    As one important category of biological molecules on the cell surface and in the extracellular matrix (ECM), glycosaminoglycans (GAGs) have been widely studied for biomedical applications. With the understanding that the biological functions of GAGs are driven by the complex dynamics of physiological and pathological processes, methodologies are desired to allow the elucidation of cell-GAG interactions with molecular level precision. In this study, a microtiter plate-based system was devised through a new surface modification strategy involving polydopamine (PDA) and GAG molecules functionalized with hydrazide chemical groups. A small library of GAGs including hyaluronic acid (with different molecular weights), heparin, and chondroitin sulfate was successfully immobilized via defined binding sites onto the microtiter plate surface under facile aqueous conditions. The methodology then allowed parallel studies of the GAG-modified surfaces in a high-throughput format. The results show that immobilized GAGs possess distinct properties to mediate protein adsorption, cell adhesion, and inflammatory responses, with each property showing dependence on the type and molecular weight of specific GAG molecules. The PDA-assisted immobilization of hydrazide-functionalized GAGs allows biomimetic attachment of GAG molecules and retains their bioactivity, providing a new methodology to systematically probe fundamental cell-GAG interactions to modulate the bioactivity and biocompatibility of biomaterials.

  17. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    PubMed Central

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  18. Evaluation of different strategies for magnetic particle functionalization with DNA aptamers.

    PubMed

    Pérez-Ruiz, Elena; Lammertyn, Jeroen; Spasic, Dragana

    2016-12-25

    The optimal bio-functionalization of magnetic particles is essential for developing magnetic particle-based bioassays. Whereas functionalization with antibodies is generally well established, immobilization of DNA probes, such as aptamers, is not yet fully explored. In this work, four different types of commercially available magnetic particles, coated with streptavidin, maleimide or carboxyl groups, were evaluated for their surface coverage with aptamer bioreceptors, efficiency in capturing target protein and non-specific protein adsorption on their surface. A recently developed aptamer against the peanut allergen, Ara h 1 protein, was used as a model system. Conjugation of biotinylated Ara h 1 aptamer to the streptavidin particles led to the highest surface coverage, whereas the coverage of maleimide particles was 25% lower. Carboxylated particles appeared to be inadequate for DNA functionalization. Streptavidin particles also showed the greatest target capturing efficiency, comparable to the one of particles functionalized with anti-Ara h 1 antibody. The performance of streptavidin particles was additionally tested in a sandwich assay with the aptamer as a capture receptor on the particle surface. While the limit of detection obtained was comparable to the same assay system with antibody as capture receptor, it was superior to previously reported values using the same aptamer in similar assay schemes with different detection platforms. These results point to the promising application of the Ara h 1 aptamer-functionalized particles in bioassay development. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Mussel-Inspired Adhesives and Coatings

    PubMed Central

    Lee, Bruce P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H.

    2011-01-01

    Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by mussels. Studies of these organisms have uncovered important adaptive strategies that help to circumvent the high dielectric and solvation properties of water that typically frustrate adhesion. In a chemical vein, the adhesive proteins of mussels are heavily decorated with Dopa, a catecholic functionality. Various synthetic polymers have been functionalized with catechols to provide diverse adhesive, sealant, coating, and anchoring properties, particularly for critical biomedical applications. PMID:22058660

  20. Designer nanoparticle: nanobiotechnology tool for cell biology

    NASA Astrophysics Data System (ADS)

    Thimiri Govinda Raj, Deepak B.; Khan, Niamat Ali

    2016-09-01

    This article discusses the use of nanotechnology for subcellular compartment isolation and its application towards subcellular omics. This technology review significantly contributes to our understanding on use of nanotechnology for subcellular systems biology. Here we elaborate nanobiotechnology approach of using superparamagnetic nanoparticles (SPMNPs) optimized with different surface coatings for subcellular organelle isolation. Using pulse-chase approach, we review that SPMNPs interacted differently with the cell depending on its surface functionalization. The article focuses on the use of functionalized-SPMNPs as a nanobiotechnology tool to isolate high quality (both purity and yield) plasma membranes and endosomes or lysosomes. Such nanobiotechnology tool can be applied in generating subcellular compartment inventories. As a future perspective, this strategy could be applied in areas such as immunology, cancer and stem cell research.

  1. Designer nanoparticle: nanobiotechnology tool for cell biology.

    PubMed

    Thimiri Govinda Raj, Deepak B; Khan, Niamat Ali

    2016-01-01

    This article discusses the use of nanotechnology for subcellular compartment isolation and its application towards subcellular omics. This technology review significantly contributes to our understanding on use of nanotechnology for subcellular systems biology. Here we elaborate nanobiotechnology approach of using superparamagnetic nanoparticles (SPMNPs) optimized with different surface coatings for subcellular organelle isolation. Using pulse-chase approach, we review that SPMNPs interacted differently with the cell depending on its surface functionalization. The article focuses on the use of functionalized-SPMNPs as a nanobiotechnology tool to isolate high quality (both purity and yield) plasma membranes and endosomes or lysosomes. Such nanobiotechnology tool can be applied in generating subcellular compartment inventories. As a future perspective, this strategy could be applied in areas such as immunology, cancer and stem cell research.

  2. Light-responsive smart surface with controllable wettability and excellent stability.

    PubMed

    Zhou, Yin-Ning; Li, Jin-Jin; Zhang, Qing; Luo, Zheng-Hong

    2014-10-21

    Novel fluorinated gradient copolymer was designed for smart surface with light-responsive controllable wettability and excellent stability. The switchable mechanism and physicochemical characteristics of the as-prepared surface decorated by designed polymeric material were investigated by ultraviolet-visible (UV-vis) spectrum, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Thanks to the functional film and surface roughening, etched silicon surface fabricated by copolymer involving spiropyran (Sp) moieties possesses a fairly large variation range of WCA (28.1°) and achieves the transformation between hydrophilicity (95.2° < 109.2°) and hydrophobicity (123.3° > 109.2°) relative to blank sample (109.2°). The synthetic strategy and developed smart surface offer a promising application in coating with controllable wettability, which bridge the gap between chemical structure and material properties.

  3. Self adaptive solution strategies: Locally bound constrained Newton Raphson solution algorithms

    NASA Technical Reports Server (NTRS)

    Padovan, Joe

    1991-01-01

    A summary is given of strategies which enable the automatic adjustment of the constraint surfaces recently used to extend the range and numerical stability/efficiency of nonlinear finite element equation solvers. In addition to handling kinematic and material induced nonlinearity, both pre-and postbuckling behavior can be treated. The scheme employs localized bounds on various hierarchical partitions of the field variables. These are used to resize, shape, and orient the global constraint surface, thereby enabling essentially automatic load/deflection incrementation. Due to the generality of the approach taken, it can be implemented in conjunction with the constraints of an arbitrary functional type. To benchmark the method, several numerical experiments are presented. These include problems involving kinematic and material nonlinearity, as well as pre- and postbuckling characteristics. Also included is a list of papers published in the course of the work.

  4. Seed-Surface Grafting Precipitation Polymerization for Preparing Microsized Optically Active Helical Polymer Core/Shell Particles and Their Application in Enantioselective Crystallization.

    PubMed

    Zhao, Biao; Lin, Jiangfeng; Deng, Jianping; Liu, Dong

    2018-05-14

    Core/shell particles constructed by polymer shell and silica core have constituted a significant category of advanced functional materials. However, constructing microsized optically active helical polymer core/shell particles still remains as a big academic challenge due to the lack of effective and universal preparation methods. In this study, a seed-surface grafting precipitation polymerization (SSGPP) strategy is developed for preparing microsized core/shell particles with SiO 2 as core on which helically substituted polyacetylene is covalently bonded as shell. The resulting core/shell particles exhibit fascinating optical activity and efficiently induce enantioselective crystallization of racemic threonine. Taking advantage of the preparation strategy, novel achiral polymeric and hybrid core/shell particles are also expected. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Functionalized Solid Electrodes for Electrochemical Biosensing of Purine Nucleobases and Their Analogues: A Review

    PubMed Central

    Sharma, Vimal Kumar; Jelen, Frantisek; Trnkova, Libuse

    2015-01-01

    Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications. PMID:25594595

  6. The relationship between patient functional status and environmental contamination by Clostridium difficile: a pilot study

    PubMed Central

    Blakney, Rebekah; Gudnadottir, Unnur; Warrack, Simone; O'Horo, John C.; Anderson, Michael; Sethi, Ajay; Schmitz, Michelle; Wang, Jennifer; Duster, Megan; Ide, Emma; Safdar, Nasia

    2016-01-01

    Introduction Limited data exist on patient factors related to environmental contamination with Clostridium difficile. Methods We evaluated the association between the functional status of patients with C. difficile infection (CDI) and environmental contamination with C. difficile. Results Contamination of patient rooms was frequent and higher functional status was associated with contaminated surfaces remote from the bed. All but one environmental isolates matched the corresponding patient's stool isolate for the seven patients tested. Conclusion Functional status is a factor that influences environmental contamination with C. difficile. Future studies should evaluate strategies to reduce contamination in CDI patient rooms, taking into account the patient's functional status. PMID:25869819

  7. Swarm formation control utilizing elliptical surfaces and limiting functions.

    PubMed

    Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P

    2009-12-01

    In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).

  8. A fluorescence resonance energy transfer quantum dot explosive nanosensor (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Goldman, Ellen R.; Clapp, Aaron R.; Uyeda, H. T.; Lassman, Michael E.; Hayhurst, Andrew; Mattoussi, Hedi

    2005-04-01

    Quantum dots (QDs) are a versatile synthetic photoluminescent nanomaterial whose chemical and photo-physical properties suggest that they may be superior to conventional organic fluorophores for a variety of biosensing applications. We have previously investigated QD-fluorescence resonance energy transfer (FRET) interactions by using the E. coli bacterial periplasmic binding protein - maltose binding protein (MBP) which was site-specifically dye-labeled and self assembled onto the QD surface and allowed us to monitor FRET between the QD donor and the acceptor dye. FRET efficiency increased as a function of the number of dye-acceptor moieties arrayed around the QD donor. We used this system to further demonstrate a prototype FRET based biosensor that functioned in the chemical/nutrient sensing of maltose. There are a number of potential benefits to using this type of QD-FRET based biosensing strategy. The protein attached to the QDs surface functions as a biosensing and biorecognition element in this configuration while the QD acts as both nanoscaffold and FRET energy donor. In this report, we show that the sensor design can be extended to target a completely unrelated analyte, namely the explosive TNT. The sensor consists of anti-TNT antibody fragments self-assembled onto the QD surface with a dye-labeled analog of TNT (TNB coupled to AlexaFluor 555 dye) prebound in the fragment binding site. The close proximity of dye to QD establishes a baseline level of FRET and addition of TNT displaces the TNB-dye analog, recovering QD photoluminescence in a concentration dependent manner. Potential benefits of this QD sensing strategy are discussed.

  9. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy

    PubMed Central

    Mendes, Livia Palmerston; Pan, Jiayi; Torchilin, Vladimir P.

    2017-01-01

    Dendrimers are highly branched polymers with easily modifiable surfaces. This makes them promising structures for functionalization and also for conjugation with drugs and DNA/RNA. Their architecture, which can be controlled by different synthesis processes, allows the control of characteristics such as shape, size, charge, and solubility. Dendrimers have the ability to increase the solubility and bioavailability of hydrophobic drugs. The drugs can be entrapped in the intramolecular cavity of the dendrimers or conjugated to their functional groups at their surface. Nucleic acids usually form complexes with the positively charged surface of most cationic dendrimers and this approach has been extensively employed. The presence of functional groups in the dendrimer’s exterior also permits the addition of other moieties that can actively target certain diseases and improve delivery, for instance, with folate and antibodies, now widely used as tumor targeting strategies. Dendrimers have been investigated extensively in the medical field, and cancer treatment is one of the greatest areas where they have been most used. This review will consider the main types of dendrimer currently being explored and how they can be utilized as drug and gene carriers and functionalized to improve the delivery of cancer therapy. PMID:28832535

  10. "Click" on Alkynylated Carbon Quantum Dots: An Efficient Surface Functionalization for Specific Biosensing and Bioimaging.

    PubMed

    Gao, Ming Xuan; Yang, Lin; Zheng, Yi; Yang, Xiao Xi; Zou, Hong Yan; Han, Jing; Liu, Ze Xi; Li, Yuan Fang; Huang, Cheng Zhi

    2017-02-10

    Surface functionalization is an essential pre requisite for wide and specific applications of nanoparticles such as photoluminescent (PL) carbon quantum dots (CQDs), but it remains a major challenge. In this report, alkynylated CQDs, prepared from carboxyl-rich CQDs through amidation with propargylamine in the presence of 1,1'-carbonyldiimidazole, were modified efficiently with azido molecular beacon DNA through a copper(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC). As a proof-of-concept, the DNA-modified CQDs are then bonded with gold nanoparticles (AuNPs, 5 nm) through a gold-sulfur bond. Owing to the emission enhancement, this complex can then be applied to the recognition of a single-base- mismatched target. The same functionalizing strategy applied to click the alkynylated CQDs with a nuclear localization sequence (NLS) peptide showed that the NLS-modified CQDs could target the nuclei specifically. These results indicate that surface functionalization of CQDs through a nonstoichiometric copper chalcogenide nanocrystal- (nsCuCNC-) catalyzed click reaction is efficient, and has significant potential in the fields of biosensing and bioimaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.

    PubMed

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liao, Xiaofeng; Wang, Jing; Chen, Zhonghua; He, Jie; Zeng, Xingrong

    2018-01-31

    Superhydrophobic surfaces with tunable adhesion from lotus-leaf to rose-petal states have generated much attention for their potential applications in self-cleaning, anti-icing, oil-water separation, microdroplet transportation, and microfluidic devices. Herein we report a facile magnetic-field-manipulation strategy to fabricate dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states on the two surfaces of the textile simultaneously. Upon exposure to a static magnetic field, fluoroalkylsilane-modified iron oxide (F-Fe 3 O 4 ) nanoparticles in polydimethylsiloxane (PDMS) moved along the magnetic field to construct discrepant hierarchical structures and roughnesses on the two sides of the textile. The positive surface (closer to the magnet, or P-surface) showed a water contact angle up to 165°, and the opposite surface (or O-surface) had a water contact angle of 152.5°. The P-surface where water droplets easily slid off with a sliding angle of 7.5° appeared in the "roll-down" state as Cassie mode, while the O-surface was in the "pinned" state as Wenzel mode, where water droplets firmly adhered even at vertical (90°) and inverted (180°) angles. The surface morphology and wetting mode were adjustable by varying the ratios of F-Fe 3 O 4 nanoparticles and PDMS. By taking advantage of the asymmetric adhesion behaviors, the as-fabricated superhydrophobic textile was successfully applied in no-loss microdroplet transportation and oil-water separation. Our method is simple and cost-effective. The fabricated textile has the characteristics of superhydrophobicity, magnetic responsiveness, excellent chemical stability, adjustable surface morphology, and controllable adhesion. Our findings conceivably stand out as a new tool to fabricate functional superhydrophobic materials with asymmetric surface properties for various potential applications.

  12. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    PubMed

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  13. Radiative Transfer Photometric Analysis of Surface Materials at the Mars Exploration Rover Landing Sites

    NASA Astrophysics Data System (ADS)

    Seelos, F. P.; Arvidson, R. E.; Guinness, E. A.; Wolff, M. J.

    2004-12-01

    The Mars Exploration Rover (MER) Panoramic Camera (Pancam) observation strategy included the acquisition of multispectral data sets specifically designed to support the photometric analysis of Martian surface materials (J. R. Johnson, this conference). We report on the numerical inversion of observed Pancam radiance-on-sensor data to determine the best-fit surface bidirectional reflectance parameters as defined by Hapke theory. The model bidirectional reflectance parameters for the Martian surface provide constraints on physical and material properties and allow for the direct comparison of Pancam and orbital data sets. The parameter optimization procedure consists of a spatial multigridding strategy driving a Levenberg-Marquardt nonlinear least squares optimization engine. The forward radiance models and partial derivatives (via finite-difference approximation) are calculated using an implementation of the DIScrete Ordinate Radiative Transfer (DISORT) algorithm with the four-parameter Hapke bidirectional reflectance function and the two-parameter Henyey-Greenstein phase function defining the lower boundary. The DISORT implementation includes a plane-parallel model of the Martian atmosphere derived from a combination of Thermal Emission Spectrometer (TES), Pancam, and Mini-TES atmospheric data acquired near in time to the surface observations. This model accounts for bidirectional illumination from the attenuated solar beam and hemispherical-directional skylight illumination. The initial investigation was limited to treating the materials surrounding the rover as a single surface type, consistent with the spatial resolution of orbital observations. For more detailed analyses the observation geometry can be calculated from the correlation of Pancam stereo pairs (J. M. Soderblom et al., this conference). With improved geometric control, the radiance inversion can be applied to constituent surface material classes such as ripple and dune forms in addition to the soils on the Meridiani plain. Under the assumption of a Henyey-Greenstein phase function, initial results for the Opportunity site suggest a single scattering albedo on the order of 0.25 and a Henyey-Greenstein forward fraction approaching unity at an effective wavelength of 753 nm. As an extension of the photometric modeling, the radiance inversion also provides a means of calculating surface reflectance independent of the radiometric calibration target. This method for determining observed reflectance will provide an additional constraint on the dust deposition model for the calibration target.

  14. Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications.

    PubMed

    Antonucci, Alessandra; Kupis-Rozmysłowicz, Justyna; Boghossian, Ardemis A

    2017-04-05

    The exquisite structural and optical characteristics of single-walled carbon nanotubes (SWCNTs), combined with the tunable specificities of proteins and peptides, can be exploited to strongly benefit technologies with applications in fields ranging from biomedicine to industrial biocatalysis. The key to exploiting the synergism of these materials is designing protein/peptide-SWCNT conjugation schemes that preserve biomolecule activity while keeping the near-infrared optical and electronic properties of SWCNTs intact. Since sp 2 bond-breaking disrupts the optoelectronic properties of SWCNTs, noncovalent conjugation strategies are needed to interface biomolecules to the nanotube surface for optical biosensing and delivery applications. An underlying understanding of the forces contributing to protein and peptide interaction with the nanotube is thus necessary to identify the appropriate conjugation design rules for specific applications. This article explores the molecular interactions that govern the adsorption of peptides and proteins on SWCNT surfaces, elucidating contributions from individual amino acids as well as secondary and tertiary protein structure and conformation. Various noncovalent conjugation strategies for immobilizing peptides, homopolypeptides, and soluble and membrane proteins on SWCNT surfaces are presented, highlighting studies focused on developing near-infrared optical sensors and molecular scaffolds for self-assembly and biochemical analysis. The analysis presented herein suggests that though direct adsorption of proteins and peptides onto SWCNTs can be principally applied to drug and gene delivery, in vivo imaging and targeting, or cancer therapy, nondirect conjugation strategies using artificial or natural membranes, polymers, or linker molecules are often better suited for biosensing applications that require conservation of biomolecular functionality or precise control of the biomolecule's orientation. These design rules are intended to provide the reader with a rational approach to engineering biomolecule-SWCNT platforms, broadening the breadth and accessibility of both wild-type and engineered biomolecules for SWCNT-based applications.

  15. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons.

    PubMed

    Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam

    2018-06-06

    Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Precision Parameter Estimation and Machine Learning

    NASA Astrophysics Data System (ADS)

    Wandelt, Benjamin D.

    2008-12-01

    I discuss the strategy of ``Acceleration by Parallel Precomputation and Learning'' (AP-PLe) that can vastly accelerate parameter estimation in high-dimensional parameter spaces and costly likelihood functions, using trivially parallel computing to speed up sequential exploration of parameter space. This strategy combines the power of distributed computing with machine learning and Markov-Chain Monte Carlo techniques efficiently to explore a likelihood function, posterior distribution or χ2-surface. This strategy is particularly successful in cases where computing the likelihood is costly and the number of parameters is moderate or large. We apply this technique to two central problems in cosmology: the solution of the cosmological parameter estimation problem with sufficient accuracy for the Planck data using PICo; and the detailed calculation of cosmological helium and hydrogen recombination with RICO. Since the APPLe approach is designed to be able to use massively parallel resources to speed up problems that are inherently serial, we can bring the power of distributed computing to bear on parameter estimation problems. We have demonstrated this with the CosmologyatHome project.

  17. Surface features of soil particles of three types of soils under different land use strategies

    NASA Astrophysics Data System (ADS)

    Matveeva, Nataliy; Kotelnikova, Anna; Rogova, Olga; Proskurnin, Mikhail

    2017-04-01

    Nowadays, there is a clear need in a deep investigation of molecular composition of soils and of its influence on surface characteristics of soil particles. The aim of this study is to evaluate the composition and properties of physical fractions in different soil types in determining functional specificity of soil solid-phase surface. The experiments were carried out with three different types of Russian soils—Sod-Podzolic, Chestnut, and Chernozem soils—under various treatments (fallow, different doses of mineral fertilizers and their aftereffects). The samples were separated into three fractions: silt (SF) with a particle size of <2 μm, light fraction (LF) with a density of <2 g/cm3, and residual fraction (RF) with a size >2 μm and the density >2 g/cm3. We measured specific surface area, surface hydrophobicity (contact angle, CA), ζ-potential, and the point of zero charge (PZC). For Chernozem and Chestnut soils and their fractions of we observed an increase in hydrophobicity for SF and RF under fertilizer treatment. At the sites not treated with fertilizers and aftereffect sites, the hydrophobicity of fractions was lower compared to the sites under treatment. The CA of the original soils and fractions were different: in 35% of cases CA was higher for SF and RF by 12-16%. The rest of samples demonstrated CA of all three physical fractions lower than CA of the original soil. The variability of the mean CA indicates considerable differences in ζ-potential and PZC between different types of soils and soil fractions. The results of potentiometric titration of PZC for Sod-Podzolic soil showed that all values are in acidic range, which suggests predominance of acidic functional groups at the surface of soil particles. Specific surface area determines soil sorption processes, bioavailability of nutrients, water etc. Here, specific surface area of Sod-Podzolic soil was low and SF-dependent. We calculated specific surface charge from obtained data on specific surface area and PZC. The results suggested considerable differences between sorption features of both soils and fractions under different land use strategies.

  18. A polymeric fastener can easily functionalize liposome surfaces with gadolinium for enhanced magnetic resonance imaging.

    PubMed

    Smith, Cartney E; Shkumatov, Artem; Withers, Sarah G; Yang, Binxia; Glockner, James F; Misra, Sanjay; Roy, Edward J; Wong, Chun-Ho; Zimmerman, Steven C; Kong, Hyunjoon

    2013-11-26

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization and, therefore, has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication.

  19. A Polymeric Fastener can Easily Functionalize Liposome Surfaces with Gadolinium for Enhanced Magnetic Resonance Imaging

    PubMed Central

    Smith, Cartney E.; Shkumatov, Artem; Withers, Sarah G.; Glockner, James F.; Misra, Sanjay; Roy, Edward J.; Wong, Chun-Ho; Zimmerman, Steven C.; Kong, Hyunjoon

    2013-01-01

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization, and therefore has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication. PMID:24083377

  20. Choosing the Optimal Number of B-spline Control Points (Part 1: Methodology and Approximation of Curves)

    NASA Astrophysics Data System (ADS)

    Harmening, Corinna; Neuner, Hans

    2016-09-01

    Due to the establishment of terrestrial laser scanner, the analysis strategies in engineering geodesy change from pointwise approaches to areal ones. These areal analysis strategies are commonly built on the modelling of the acquired point clouds. Freeform curves and surfaces like B-spline curves/surfaces are one possible approach to obtain space continuous information. A variety of parameters determines the B-spline's appearance; the B-spline's complexity is mostly determined by the number of control points. Usually, this number of control points is chosen quite arbitrarily by intuitive trial-and-error-procedures. In this paper, the Akaike Information Criterion and the Bayesian Information Criterion are investigated with regard to a justified and reproducible choice of the optimal number of control points of B-spline curves. Additionally, we develop a method which is based on the structural risk minimization of the statistical learning theory. Unlike the Akaike and the Bayesian Information Criteria this method doesn't use the number of parameters as complexity measure of the approximating functions but their Vapnik-Chervonenkis-dimension. Furthermore, it is also valid for non-linear models. Thus, the three methods differ in their target function to be minimized and consequently in their definition of optimality. The present paper will be continued by a second paper dealing with the choice of the optimal number of control points of B-spline surfaces.

  1. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles

    PubMed Central

    Li, Jiahe; Ai, Yiwei; Wang, Lihua; Bu, Pengcheng; Sharkey, Charles C.; Wu, Qianhui; Wun, Brittany; Roy, Sweta; Shen, Xiling; King, Michael R.

    2015-01-01

    Circulating tumor cells (CTCs) are responsible for metastases in distant organs via hematogenous dissemination. Fundamental studies in the past decade have suggested that neutralization of CTCs in circulation could represent an effective strategy to prevent metastasis. Current paradigms of targeted drug delivery into a solid tumor largely fall into two main categories: unique cancer markers (e.g. overexpression of surface receptors) and tumor-specific microenvironment (e.g. low pH, hypoxia, etc.). While relying on a surface receptor to target CTCs can be greatly challenged by cancer heterogeneity, targeting of tumor microenvironments has the advantage of recognizing a broader spectrum of cancer cells regardless of genetic differences or tumor types. The blood circulation, however, where CTCs transit through, lacks the same tumor microenvironment as that found in a solid tumor. In this study, a unique “microenvironment” was confirmed upon introduction of cancer cells of different types into circulation where activated platelets and fibrin were physically associated with blood-borne cancer cells. Inspired by this observation, synthetic silica particles were functionalized with activated platelet membrane along with surface conjugation of tumor-specific apoptosis-inducing ligand cytokine, TRAIL. Biomimetic synthetic particles incorporated into CTC-associated micro-thrombi in lung vasculature and dramatically decreased lung metastases in a mouse breast cancer metastasis model. Our results demonstrate a “Trojan Horse” strategy of neutralizing CTCs to attenuate metastasis. PMID:26519648

  2. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    NASA Astrophysics Data System (ADS)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up new possibilities to modify the implant site and tailor it to a desirable bioactivity.

  3. Surface Functionalization Methods to Enhance Bioconjugation in Metal-Labeled Polystyrene Particles

    PubMed Central

    Abdelrahman, Ahmed I.; Thickett, Stuart C.; Liang, Yi; Ornatsky, Olga; Baranov, Vladimir; Winnik, Mitchell A.

    2011-01-01

    Lanthanide-encoded polystyrene particles synthesized by dispersion polymerization are excellent candidates for mass cytometry based immunoassays, however they have previously lacked the ability to conjugate biomolecules to the particle surface. We present here three approaches to post-functionalize these particles, enabling the covalent attachment of proteins. Our first approach used partially hydrolyzed poly(N-vinylpyrrolidone) as a dispersion polymerization stabilizer to synthesize particles with high concentration of -COOH groups on the particle surface. In an alternative strategy to provide -COOH functionality to the lanthanide-encoded particles, we employed seeded emulsion polymerization to graft poly(methacrylic acid) (PMAA) chains onto the surface of these particles. However, these two approaches gave little to no improvement in the extent of bioconjugation. In our third approach, seeded emulsion polymerization was subsequently used as a method to grow a functional polymer shell (in this case, poly(glycidyl methacrylate) (PGMA)) onto the surface of these particles, which proved highly successful. The epoxide-rich PGMA shell permitted extensive surface bioconjugation of NeutrAvidin, as probed by an Lu-labeled biotin reporter (ca. 7 × 105 binding events per particle with a very low amount of non-specific binding) and analyzed by mass cytometry. It was shown that coupling agents such as EDC were not needed, such was the reactivity of the particle surface. These particles were stable and the addition of a polymeric shell was shown did not affect the narrow lanthanide ion distribution within the particle interior as analyzed by mass cytometry. These particles represent the most promising candidates for the development of a highly multiplexed bioassay based on lanthanide-labeled particles to date. PMID:21799543

  4. Molecualr-scale multicoordinating ligands for coating luminescent QDs and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhan, Naiqian

    Colloidal semiconductor quantum dots (QDs) are inorganic nanocrystals that possess several unique photophysical properties, including tunable narrow emission and remarkable photo- and chemical stability. They have large surface area, and thus can be decorated with large numbers and a variety of molecular vectors. These properties combined offer a potentially superior alternative to traditional organic fluorophore for advanced applications in bio-imaging and bio-sensing. Herein, our effort has centered on developing a series of metal coordinating ligands with controllable structures to modify the QD surfaces and construct biocompatible nanocrystals. The ligand architecture accounts for several factors: (i) variable coordination number, (ii) nature of the hydrophilic moiety, polyethylene glycol (PEG) or zwitterion, and (iii) versatility of end-reactive groups including amine, azide, carboxylic acid and aldehyde. The ligand design is combined with a newly developed photoligation strategy to promote the dispersion of luminescent QDs in buffer media. The dissertation is organized in six chapters: In chapter 1, we provide a brief introduction of the basic photophysical properties of QDs and the synthesis history for growing high quality semiconductor nanocrystals. We also present some of the most effective methods reported to date to prepare aqueous QD dispersions, discuss the effective chemical coupling strategies for conjugating biomolecules, and review the recent literatures that have used QD-bioconjugates for imaging and sensing purposes. In Chapter 2, we describe a novel photoligation strategy to promote the transfer of luminescent QDs from hydrophobic to hydrophilic media using lipic acid (LA)-based ligands. We also discusse the experimental conditions, mechanismfor in-situ ligand exchange and the generosity of the method towards the diverse functionality while maintaining the optical properties of the nanocrystals. In chapter 3, we present the design and synthesis of three sets of compact zwitterionic ligands comprising either one or two lipoic acid (LA) groups chemically linked to a zwitterion moiety. These ligands are then combined with the photoligation strategy to promote the phase transfer of QDs to buffer media. The high compactness and the stability of the nanocrystals over a broad range of conditions have been discussed.This chapter also highlights the conjugation of mCherry to the QD surface via metal-histidine coordination, as a proof-of-concept, to develop FRET-based sensors. In chapter 4, we detail a versatile strategy to prepare a series of poly (ethylene glycol) containing multicoordinating ligands optimized for the surface-functionalization of luminescent QDs and gold nanoparticles (AuNPs) alike. Our chemical design relies on the modificationof chiral L-aspartic acid precursor, and the advantages of using aminoacid combined with lipoic acid and reactive PEG moieties have been discussed. Nonetheless, the two sets of ligands: bis(LA)-PEG-FN and LA-(PEG-FN)2 described here are compatible with photoligation strategy to yield hydrophilic, colloidally stable and reactive nanoparticles (QDs and AuNPs). In chapter 5, we discuss the preparation of hydrophilic QDs with intact azide (-N3) and aldehyde (-CHO) bio-orthorgonal functionalities on their surfaces. Strain promoted click chemistry and hydrazine ligation will be discussed to illustrate the orthogonality of two reactive groups, azide and aldehyde. Additionally, we demonstrate an optical method to extract the number of reactive -CHO groups per QD and finally estimate the total number of ligands bound to each QD for a few distinct size nanocrystals.

  5. [Strategies to choose scaffold materials for tissue engineering].

    PubMed

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which mixed with sustained-release nano-microsphere containing growth factors. What's more, the stent internal surface coated with glue/collagen matrix mixing layer containing bFGF and EGF so could supplying the early release of the two cytokines. Finally, combining the poly(L-lactic acid)/poly(ε-caprolactone) biliary stent with the induced cells was the last step for preparing tissue-engineered bile duct. This literature reviewed a variety of the existing tissue engineering scaffold materials and briefly introduced the impact factors on the characteristics of tissue engineering scaffold materials such as preparation procedure, surface modification of scaffold, and so on. We explored the choosing strategy of desired tissue engineering scaffold materials.

  6. Magnetic Beads Enhance Adhesion of NIH 3T3 Fibroblasts: A Proof-of-Principle In Vitro Study for Implant-Mediated Long-Term Drug Delivery to the Inner Ear

    PubMed Central

    Aliuos, Pooyan; Schulze, Jennifer; Schomaker, Markus; Reuter, Günter; Stolle, Stefan R. O.; Werner, Darja; Ripken, Tammo; Lenarz, Thomas; Warnecke, Athanasia

    2016-01-01

    Introduction Long-term drug delivery to the inner ear may be achieved by functionalizing cochlear implant (CI) electrodes with cells providing neuroprotective factors. However, effective strategies in order to coat implant surfaces with cells need to be developed. Our vision is to make benefit of electromagnetic field attracting forces generated by CI electrodes to bind BDNF-secreting cells that are labelled with magnetic beads (MB) onto the electrode surfaces. Thus, the effect of MB-labelling on cell viability and BDNF production were investigated. Materials and Methods Murine NIH 3T3 fibroblasts—genetically modified to produce BDNF—were labelled with MB. Results Atomic force and bright field microscopy illustrated the internalization of MB by fibroblasts after 24 h of cultivation. Labelling cells with MB did not expose cytotoxic effects on fibroblasts and allowed adhesion on magnetic surfaces with sufficient BDNF release. Discussion Our data demonstrate a novel approach for mediating enhanced long-term adhesion of BDNF-secreting fibroblasts on model electrode surfaces for cell-based drug delivery applications in vitro and in vivo. This therapeutic strategy, once transferred to cells suitable for clinical application, may allow the biological modifications of CI surfaces with cells releasing neurotrophic or other factors of interest. PMID:26918945

  7. An efficient solution to the decoherence enhanced trivial crossing problem in surface hopping

    NASA Astrophysics Data System (ADS)

    Bai, Xin; Qiu, Jing; Wang, Linjun

    2018-03-01

    We provide an in-depth investigation of the time interval convergence when both trivial crossing and decoherence corrections are applied to Tully's fewest switches surface hopping (FSSH) algorithm. Using one force-based and one energy-based decoherence strategies as examples, we show decoherence corrections intrinsically enhance the trivial crossing problem. We propose a restricted decoherence (RD) strategy and incorporate it into the self-consistent (SC) fewest switches surface hopping algorithm [L. Wang and O. V. Prezhdo, J. Phys. Chem. Lett. 5, 713 (2014)]. The resulting SC-FSSH-RD approach is applied to general Hamiltonians with different electronic couplings and electron-phonon couplings to mimic charge transport in tens to hundreds of molecules. In all cases, SC-FSSH-RD allows us to use a large time interval of 0.1 fs for convergence and the simulation time is reduced by over one order of magnitude. Both the band and hopping mechanisms of charge transport have been captured perfectly. SC-FSSH-RD makes surface hops in the adiabatic representation and can be implemented in both diabatic and locally diabatic representations for wave function propagation. SC-FSSH-RD can potentially describe general nonadiabatic dynamics of electrons and excitons in organics and other materials.

  8. A bio-recognition device developed onto nano-crystals of carbonate apatite for cell-targeted gene delivery.

    PubMed

    Chowdhury, E H; Akaike, Toshihiro

    2005-05-20

    The DNA delivery to mammalian cells is an essential tool for analyzing gene structure, regulation, and function. The approach holds great promise for the further development of gene therapy techniques and DNA vaccination strategies to treat and control diseases. Here, we report on the establishment of a cell-specific gene delivery and expression system by physical adsorption of a cell-recognition molecule on the nano-crystal surface of carbonate apatite. As a model, DNA/nano-particles were successfully coated with asialofetuin to facilitate uptake by hepatocyte-derived cell lines through the asialoglycoprotein receptor (ASGPr) and albumin to prevent non-specific interactions of the particles with cell-surface. The resulting composite particles with dual surface properties could accelerate DNA uptake and enhance expression to a notable extent. Nano-particles coated with transferrin in the same manner dramatically enhanced transgene expression in the corresponding receptor-bearing cells and thus our newly developed strategy represents a universal phenomenon for anchoring a bio-recognition macromolecule on the apatite crystal surface for targeted gene delivery, having immediate applications in basic research laboratories and great promise for gene therapy. (c) 2005 Wiley Periodicals, Inc.

  9. Deliberately Designed Atomic-Level Silver-Containing Interface Results in Improved Rate Capability and Utilization of Silver Hollandite for Lithium-Ion Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Paul F.; Brady, Alexander B.; Lee, Seung-Yong

    α-MnO 2-structured materials are generally classified as semiconductors, thus we present a strategy to increase electrochemical utilization through design of a conductive material interface. Surface treatment of silver hollandite (Ag xMn 8O 16) with Ag + (Ag 2O) provides significant benefit to the resultant electrochemistry, including a decreased charge transfer resistance, and a 2-fold increase in deliverable energy density at high rate. The improved function of this designed interface relative to conventional electrode fabrication strategies is further highlighted.

  10. Deliberately Designed Atomic-Level Silver-Containing Interface Results in Improved Rate Capability and Utilization of Silver Hollandite for Lithium-Ion Storage

    DOE PAGES

    Smith, Paul F.; Brady, Alexander B.; Lee, Seung-Yong; ...

    2017-12-11

    α-MnO 2-structured materials are generally classified as semiconductors, thus we present a strategy to increase electrochemical utilization through design of a conductive material interface. Surface treatment of silver hollandite (Ag xMn 8O 16) with Ag + (Ag 2O) provides significant benefit to the resultant electrochemistry, including a decreased charge transfer resistance, and a 2-fold increase in deliverable energy density at high rate. The improved function of this designed interface relative to conventional electrode fabrication strategies is further highlighted.

  11. Functional surfaces for tribological applications: inspiration and design

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, Hisham A.

    2016-12-01

    Surface texturing has been recognized as a method for enhancing the tribological properties of surfaces for many years. Adding a controlled texture to one of two faces in relative motion can have many positive effects, such as reduction of friction and wear and increase in load capacity. To date, the true potential of texturing has not been realized not because of the lack of enabling texturing technologies but because of the severe lack of detailed information about the mechanistic functional details of texturing in a tribological situation. Experimental as well as theoretical analysis of textured surfaces define important metrics for performance evaluation. These metrics represent the interaction between geometry of the texturing element and surface topology. To date, there is no agreement on the optimal values that should be implemented given a particular surface. More importantly, a well-defined methodology for the generation of deterministic textures of optimized designs virtually does not exist. Nature, on the other hand, offers many examples of efficient texturing strategies (geometries and topologies) specifically applied to mitigate frictional effects in a variety of situations. Studying these examples may advance the technology of surface engineering. This paper therefore, provides a comparative review of surface texturing that manifest viable synergy between tribology and biology. We attempt to provide successful emerging examples where borrowing from nature has inspired viable surface solutions that address difficult tribological problems both in dry and lubricated contact situations.

  12. Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation.

    PubMed

    Di Luca, Andrea; de Wijn, Joost R; van Blitterswijk, Clemens A; Camarero-Espinosa, Sandra; Moroni, Lorenzo

    2017-08-01

    The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC-3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Tetrahedral cluster and pseudo molecule: New approaches to Calculate Absolute Surface Energy of Zinc Blende (111)/(-1-1-1) Surface

    NASA Astrophysics Data System (ADS)

    Zhang, Yiou; Zhang, Jingzhao; Tse, Kinfai; Wong, Lun; Chan, Chunkai; Deng, Bei; Zhu, Junyi

    Determining accurate absolute surface energies for polar surfaces of semiconductors has been a great challenge in decades. Here, we propose pseudo-hydrogen passivation to calculate them, using density functional theory approaches. By calculating the energy contribution from pseudo-hydrogen using either a pseudo molecule method or a tetrahedral cluster method, we obtained (111)/(-1-1-1) surfaces energies of Si, GaP, GaAs, and ZnS with high self-consistency. Our findings may greatly enhance the basic understandings of different surfaces and lead to novel strategies in the crystal growth. We would like to thank Su-huai Wei for helpful discussions. Computing resources were provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project.

  14. Design and preparation of bi-functionalized short-chain modified zwitterionic nanoparticles.

    PubMed

    Hu, Fenglin; Chen, Kaimin; Xu, Hong; Gu, Hongchen

    2018-05-01

    An ideal nanomaterial for use in the bio-medical field should have a distinctive surface capable of effectively preventing nonspecific protein adsorption and identifying target bio-molecules. Recently, the short-chain zwitterion strategy has been suggested as a simple and novel approach to create outstanding anti-fouling surfaces. In this paper, the carboxyl end group of short-chain zwitterion-coated silica nanoparticles (SiO 2 -ZWS) was found to be difficult to functionalize via a conventional EDC/NHS strategy due to its rapid hydrolysis side-reactions. Hence, a series of bi-functionalized silica nanoparticles (SiO 2 -ZWS/COOH) were designed and prepared by controlling the molar ratio of 3-aminopropyltriethoxysilane (APTES) to short-chain zwitterionic organosiloxane (ZWS) in order to achieve above goal. The synthesized SiO 2 -ZWS/COOH had similar excellent anti-fouling properties compared with SiO 2 -ZWS, even in 50% fetal bovine serum characterized by DLS and turbidimetric titration. Subsequently, SiO 2 -ZWS/COOH 5/1 was chosen as a representative and then demonstrated higher detection signal intensity and more superior signal-to-noise ratios compare with the pure SiO 2 -COOH when they were used as a bio-carrier for chemiluminescence enzyme immunoassay (CLEIA). These unique bi-functionalized silica nanoparticles have many potential applications in the diagnostic and therapeutic fields. Reducing nonspecific protein adsorption and enhancing the immobilized efficiency of specific bio-probes are two of the most important issues for bio-carriers, particularly for a nanoparticle based bio-carrier. Herein, we designed and prepared a bi-functional nanoparticle with anti-fouling property and bio conjugation capacity for further bioassay by improving the short-chain zwitterionic modification strategy we have proposed previously. The heterogeneous surface of this nanoparticle showed effective anti-fouling properties both in model protein solutions and fetal bovine serum (FBS). The modified nanoparticles can also be successfully functionalized with a specific antibody for CLEIA assay with a prominent bio-detection performance even in 50% FBS. In this paper, we also investigated an unexpectedly fast hydrolysis behavior of NHS-activated carboxylic groups within the pure short-chain zwitterionic molecule that led to no protein binding in the short-chain zwitterion modified nanoparticle. Our findings pave a new way for the designing of high performance bio-carriers, demonstrating their strong potential as a robust platform for diagnosis and therapy. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. The alternative strategy for designing covalent drugs through kinetic effects of pi-stacking on the self-assembled nanoparticles: a model study with antibiotics

    NASA Astrophysics Data System (ADS)

    Du, Libo; Suo, Siqingaowa; Zhang, Han; Jia, Hongying; Liu, Ke Jian; Zhang, Xue Ji; Liu, Yang

    2016-11-01

    It is still a huge challenge to find a new strategy for rationally designing covalent drugs because most of them are discovered by serendipity. Considering that the effect of covalent drugs is closely associated with the kinetics of the reaction between drug molecule and its target protein, here we first demonstrate an example of the kinetic effect of pi-stacking of drug molecules on covalent antimicrobial drug design. When PEGylated 7-aminocephalosporanic acid (PEG-ACA) is used as a substrate drug, pi-stacking of the ACA group via the self-assembly of PEG-ACA on the surface of gold nanoparticles (i.e. Au@ACA) exhibits antibacterial activity against E. coli fourfold higher than a PEG-ACA monomer does. The reason can be reasonably attributed to the kinetic rate enhancement for the covalent reaction between Au@ACA and penicillin binding proteins. We believe that the self-assembly of functional groups onto the surface of gold nanoparticles represents a new strategy for covalent drug design.

  16. Filtering Non-Linear Transfer Functions on Surfaces.

    PubMed

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few lines of shader code (provided in supplemental material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2013.102), is high performance, and has a negligible memory footprint.

  17. Bidirectional immobilization of affinity-tagged cytochrome c on electrode surfaces.

    PubMed

    Schröper, Florian; Baumann, Arnd; Offenhäusser, Andreas; Mayer, Dirk

    2010-08-07

    Here, we report a new strategy for the directed bivalent immobilization of cyt c on or between gold electrodes. C-terminal modification with cys- or his-tag did not affect the functional integrity of the protein. In combination with electrostatic protein binding, these tags enable a bifunctional immobilization between two electrodes or alternatively one electrode and interacting enzymes.

  18. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging.

    PubMed

    Li, Kai; Liu, Bin

    2014-09-21

    Polymer encapsulated organic nanoparticles have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance as imaging and therapeutic agents. Of particular importance is the polymer encapsulated nanoparticles containing conjugated polymers (CP) or fluorogens with aggregation induced emission (AIE) characteristics as the core, which have shown significant advantages in terms of tunable brightness, superb photo- and physical stability, good biocompatibility, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of polymer encapsulated CP and AIE fluorogen nanoparticles, including preparation methods, material design and matrix selection, nanoparticle fabrication and surface functionalization for fluorescence and photoacoustic imaging. We also discuss their specific applications in cell labeling, targeted in vitro and in vivo imaging, blood vessel imaging, cell tracing, inflammation monitoring and molecular imaging. We specially focus on strategies to fine-tune the nanoparticle property (e.g. size and fluorescence quantum yield) through precise engineering of the organic cores and careful selection of polymer matrices. The review also highlights the merits and limitations of these nanoparticles as well as strategies used to overcome the limitations. The challenges and perspectives for the future development of polymer encapsulated organic nanoparticles are also discussed.

  19. Function and biotechnology of extremophilic enzymes in low water activity

    PubMed Central

    2012-01-01

    Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology. PMID:22480329

  20. Adhesion Between Volcanic Glass and Spacecraft Materials in an Airless Body Environment

    NASA Technical Reports Server (NTRS)

    Berkebile, Stephen; Street, Kenneth W., Jr.; Gaier, James R.

    2012-01-01

    The successful exploration of airless bodies, such as the Earth s moon, many smaller moons of the outer planets (including those of Mars) and asteroids, will depend on the development and implementation of effective dust mitigation strategies. The ultrahigh vacuum environment (UHV) on the surfaces of these bodies, coupled with constant ion and photon bombardment from the Sun and micrometeorite impacts (space weathering), makes dust adhesion to critical spacecraft systems a severe problem. As a result, the performance of thermal control surfaces, photovoltaics and mechanical systems can be seriously degraded even to the point of failure. The severe dust adhesion experienced in these environments is thought to be primarily due to two physical mechanisms, electrostatic attraction and high surface energies, but the dominant of these has yet to be determined. The experiments presented here aim to address which of these two mechanisms is dominant by quantifying the adhesion between common spacecraft materials (polycarbonate, FEP and PTFE Teflon, (DuPont) Ti-6-4) and a synthetic noritic volcanic glass, as a function of surface cleanliness and triboelectric charge transfer in a UHV environment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10, although the increase is dependent on the particular material pair. The knowledge gained by these studies is envisioned to aid the development of new dust mitigation strategies and improve existing strategies by helping to identify and characterize mechanisms of glass to spacecraft adhesion for norite volcanic glass particles. Furthermore, the experience of the Apollo missions revealed that dust mitigation strategies must be subjected to high fidelity tests. To facilitate the effectiveness of ground-based testing of mitigation strategies, the issue of a pressure limit for high fidelity tests will be addressed.

  1. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Endo, Masayuki; Sugiyama, Hiroshi

    2015-08-01

    Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed `lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space.

  2. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures

    PubMed Central

    Endo, Masayuki; Sugiyama, Hiroshi

    2015-01-01

    Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed ‘lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space. PMID:26310995

  3. Novel poly(dimethylsiloxane) bonding strategy via room temperature "chemical gluing".

    PubMed

    Lee, Nae Yoon; Chung, Bong Hyun

    2009-04-09

    Here we propose a new scheme for bonding poly(dimethylsiloxane) (PDMS), namely, a "chemical gluing", at room temperature by anchoring chemical functionalities on the surfaces of PDMS. Aminosilane and epoxysilane are anchored separately on the surfaces of two PDMS substrates, the reaction of which are well-known to form a strong amine-epoxy bond, therefore acting as a chemical glue. The bonding is performed for 1 h at room temperature without employing heat. We characterize the surface properties and composition by contact angle measurement, X-ray photoelectron spectroscopy analysis, and fluorescence measurement to confirm the formation of surface functionalities and investigate the adhesion strength by means of pulling, tearing, and leakage tests. As confirmed by the above-mentioned analyses and tests, PDMS surfaces were successfully modified with amine and epoxy functionalities, and a bonding based on the amine-epoxy chemical gluing was successfully realized within 1 h at room temperature. The bonding was sufficiently robust to tolerate intense introduction of liquid whose per minute injection volume was almost 2000 times larger than the total internal volume of the microchannel used. In addition to the bonding of PDMS-PDMS homogeneous assembly, the bonding of the PDMS-poly(ethylene terephthalate) heterogeneous assembly was also examined. We also investigate the potential use of the multifunctionalized walls inside the microchannel, generated as a consequence of the chemical gluing, as a platform for the targeted immobilization.

  4. Probing microscopic material properties inside simulated membranes through spatially resolved three-dimensional local pressure fields and surface tensions

    PubMed Central

    Kasson, Peter M.; Hess, Berk; Lindahl, Erik

    2013-01-01

    Cellular lipid membranes are spatially inhomogeneous soft materials. Materials properties such as pressure and surface tension thus show important microscopic-scale variation that is critical to many biological functions. We present a means to calculate pressure and surface tension in a 3D-resolved manner within molecular-dynamics simulations and show how such measurements can yield important insight. We also present the first corrections to local virial and pressure fields to account for the constraints typically used in lipid simulations that otherwise cause problems in highly oriented systems such as bilayers. Based on simulations of an asymmetric bacterial ion channel in a POPC bilayer, we demonstrate how 3D-resolved pressure can probe for both short-range and long-range effects from the protein on the membrane environment. We also show how surface tension is a sensitive metric for inter-leaflet equilibrium and can be used to detect even subtle imbalances between bilayer leaflets in a membrane-protein simulation. Since surface tension is known to modulate the function of many proteins, this effect is an important consideration for predictions of ion channel function. We outline a strategy by which our local pressure measurements, which we make available within a version of the GROMACS simulation package, may be used to design optimally equilibrated membrane-protein simulations. PMID:23318532

  5. Multi-surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines

    NASA Astrophysics Data System (ADS)

    Lawrence, K. Deepak; Ramamoorthy, B.

    2016-03-01

    Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.

  6. DNA Detection by Flow Cytometry using PNA-Modified Metal-Organic Framework Particles.

    PubMed

    Mejia-Ariza, Raquel; Rosselli, Jessica; Breukers, Christian; Manicardi, Alex; Terstappen, Leon W M M; Corradini, Roberto; Huskens, Jurriaan

    2017-03-23

    A DNA-sensing platform is developed by exploiting the easy surface functionalization of metal-organic framework (MOF) particles and their highly parallelized fluorescence detection by flow cytometry. Two strategies were employed to functionalize the surface of MIL-88A, using either covalent or non-covalent interactions, resulting in alkyne-modified and biotin-modified MIL-88A, respectively. Covalent surface coupling of an azide-dye and the alkyne-MIL-88A was achieved by means of a click reaction. Non-covalent streptavidin-biotin interactions were employed to link biotin-PNA to biotin-MIL-88A particles mediated by streptavidin. Characterization by confocal imaging and flow cytometry demonstrated that DNA can be bound selectively to the MOF surface. Flow cytometry provided quantitative data of the interaction with DNA. Making use of the large numbers of particles that can be simultaneously processed by flow cytometry, this MOF platform was able to discriminate between fully complementary, single-base mismatched, and randomized DNA targets. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease.

    PubMed

    Barabino, Stefano; Chen, Yihe; Chauhan, Sunil; Dana, Reza

    2012-05-01

    The tear film, lacrimal glands, corneal and conjunctival epithelia and Meibomian glands work together as a lacrimal functional unit (LFU) to preserve the integrity and function of the ocular surface. The integrity of this unit is necessary for the health and normal function of the eye and visual system. Nervous connections and systemic hormones are well known factors that maintain the homeostasis of the ocular surface. They control the response to internal and external stimuli. Our and others' studies show that immunological mechanisms also play a pivotal role in regulating the ocular surface environment. Our studies demonstrate how anti-inflammatory factors such as the expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in corneal cells, immature corneal resident antigen-presenting cells, and regulatory T cells play an active role in protecting the ocular surface. Dry eye disease (DED) affects millions of people worldwide and negatively influences the quality of life for patients. In its most severe forms, DED may lead to blindness. The etiology and pathogenesis of DED remain largely unclear. Nonetheless, in this review we summarize the role of the disruption of afferent and efferent immunoregulatory mechanisms that are responsible for the chronicity of the disease, its symptoms, and its clinical signs. We illustrate current anti-inflammatory treatments for DED and propose that prevention of the disruption of immunoregulatory mechanisms may represent a promising therapeutic strategy towards controlling ocular surface inflammation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Ocular Surface Immunity: Homeostatic Mechanisms and Their Disruption in Dry Eye Disease

    PubMed Central

    Barabino, Stefano; Chen, Yihe; Chauhan, Sunil; Dana, Reza

    2012-01-01

    The tear film, lacrimal glands, corneal and conjunctival epithelia and Meibomian glands work together as a lacrimal functional unit (LFU) to preserve the integrity and function of the ocular surface. The integrity of this unit is necessary for the health and normal function of the eye and visual system. Nervous connections and systemic hormones are well known factors that maintain the homeostasis of the ocular surface. They control the response to internal and external stimuli. Our and others’ studies show that immunological mechanisms also play a pivotal role in regulating the ocular surface environment. Our studies demonstrate how anti-inflammatory factors such as the expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in corneal cells, immature corneal resident antigen-presenting cells, and regulatory T cells play an active role in protecting the ocular surface. Dry eye disease (DED) affects millions of people worldwide and negatively influences the quality of life for patients. In its most severe forms, DED may lead to blindness. The etiology and pathogenesis of DED remain largely unclear. Nonetheless, in this review we summarize the role of the disruption of afferent and efferent immunoregulatory mechanisms that are responsible for the chronicity of the disease, its symptoms, and its clinical signs. We illustrate current anti-inflammatory treatments for DED and propose that prevention of the disruption of immunoregulatory mechanisms may represent a promising therapeutic strategy towards controlling ocular surface inflammation. PMID:22426080

  9. Self-Assembled Monolayers for Dental Implants

    PubMed Central

    Correa-Uribe, Alejandra

    2018-01-01

    Implant-based therapy is a mature approach to recover the health conditions of patients affected by edentulism. Thousands of dental implants are placed each year since their introduction in the 80s. However, implantology faces challenges that require more research strategies such as new support therapies for a world population with a continuous increase of life expectancy, to control periodontal status and new bioactive surfaces for implants. The present review is focused on self-assembled monolayers (SAMs) for dental implant materials as a nanoscale-processing approach to modify titanium surfaces. SAMs represent an easy, accurate, and precise approach to modify surface properties. These are stable, well-defined, and well-organized organic structures that allow to control the chemical properties of the interface at the molecular scale. The ability to control the composition and properties of SAMs precisely through synthesis (i.e., the synthetic chemistry of organic compounds with a wide range of functional groups is well established and in general very simple, being commercially available), combined with the simple methods to pattern their functional groups on complex geometry appliances, makes them a good system for fundamental studies regarding the interaction between surfaces, proteins, and cells, as well as to engineering surfaces in order to develop new biomaterials. PMID:29552036

  10. Micropatterned ferrocenyl monolayers covalently bound to hydrogen-terminated silicon surfaces: effects of pattern size on the cyclic voltammetry and capacitance characteristics.

    PubMed

    Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han

    2014-06-24

    The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.

  11. GENIE - Generation of computational geometry-grids for internal-external flow configurations

    NASA Technical Reports Server (NTRS)

    Soni, B. K.

    1988-01-01

    Progress realized in the development of a master geometry-grid generation code GENIE is presented. The grid refinement process is enhanced by developing strategies to utilize bezier curves/surfaces and splines along with weighted transfinite interpolation technique and by formulating new forcing function for the elliptic solver based on the minimization of a non-orthogonality functional. A two step grid adaptation procedure is developed by optimally blending adaptive weightings with weighted transfinite interpolation technique. Examples of 2D-3D grids are provided to illustrate the success of these methods.

  12. Polymeric Janus Nanoparticles: Recent Advances in Synthetic Strategies, Materials Properties, and Applications.

    PubMed

    Fan, Xiaoshan; Yang, Jing; Loh, Xian Jun; Li, Zibiao

    2018-06-13

    Polymeric Janus nanoparticles with two sides of incompatible chemistry have received increasing attention due to their tunable asymmetric structure and unique material characteristics. Recently, with the rapid progress in controlled polymerization combined with novel fabrication techniques, a large array of functional polymeric Janus particles are diversified with sophisticated architecture and applications. In this review, the most recently developed strategies for controlled synthesis of polymeric Janus nanoparticles with well-defined size and complex superstructures are summarized. In addition, the pros and cons of each approach in mediating the anisotropic shapes of polymeric Janus particles as well as their asymmetric spatial distribution of chemical compositions and functionalities are discussed and compared. Finally, these newly developed structural nanoparticles with specific shapes and surface functions orientated applications in different domains are also discussed, followed by the perspectives and challenges faced in the further advancement of polymeric Janus nanoparticles as high performance materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bagging Voronoi classifiers for clustering spatial functional data

    NASA Astrophysics Data System (ADS)

    Secchi, Piercesare; Vantini, Simone; Vitelli, Valeria

    2013-06-01

    We propose a bagging strategy based on random Voronoi tessellations for the exploration of geo-referenced functional data, suitable for different purposes (e.g., classification, regression, dimensional reduction, …). Urged by an application to environmental data contained in the Surface Solar Energy database, we focus in particular on the problem of clustering functional data indexed by the sites of a spatial finite lattice. We thus illustrate our strategy by implementing a specific algorithm whose rationale is to (i) replace the original data set with a reduced one, composed by local representatives of neighborhoods covering the entire investigated area; (ii) analyze the local representatives; (iii) repeat the previous analysis many times for different reduced data sets associated to randomly generated different sets of neighborhoods, thus obtaining many different weak formulations of the analysis; (iv) finally, bag together the weak analyses to obtain a conclusive strong analysis. Through an extensive simulation study, we show that this new procedure - which does not require an explicit model for spatial dependence - is statistically and computationally efficient.

  14. Synergistic effect of amino acids modified on dendrimer surface in gene delivery.

    PubMed

    Wang, Fei; Wang, Yitong; Wang, Hui; Shao, Naimin; Chen, Yuanyuan; Cheng, Yiyun

    2014-11-01

    Design of an efficient gene vector based on dendrimer remains a great challenge due to the presence of multiple barriers in gene delivery. Single-functionalization on dendrimer cannot overcome all the barriers. In this study, we synthesized a list of single-, dual- and triple-functionalized dendrimers with arginine, phenylalanine and histidine for gene delivery using a one-pot approach. The three amino acids play different roles in gene delivery: arginine is essential in formation of stable complexes, phenylalanine improves cellular uptake efficacy, and histidine increases pH-buffering capacity and minimizes cytotoxicity of the cationic dendrimer. A combination of these amino acids on dendrimer generates a synergistic effect in gene delivery. The dual- and triple-functionalized dendrimers show minimal cytotoxicity on the transfected NIH 3T3 cells. Using this combination strategy, we can obtain triple-functionalized dendrimers with comparable transfection efficacy to several commercial transfection reagents. Such a combination strategy should be applicable to the design of efficient and biocompatible gene vectors for gene delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Gaze Strategies in Skateboard Trick Jumps: Spatiotemporal Constraints in Complex Locomotion.

    PubMed

    Klostermann, André; Küng, Philip

    2017-03-01

    This study aimed to further the knowledge on gaze behavior in locomotion by studying gaze strategies in skateboard jumps of different difficulty that had to be performed either with or without an obstacle. Nine experienced skateboarders performed "Ollie" and "Kickflip" jumps either over an obstacle or over a plane surface. The stable gaze at 5 different areas of interest was calculated regarding its relative duration as well as its temporal order. During the approach phase, an interaction between area of interest and obstacle condition, F(3, 24) = 12.91, p <  .05, η p 2  = .62, was found with longer stable-gaze locations at the takeoff area in attempts with an obstacle (p <  .05, η p 2  = .47). In contrast, in attempts over a plane surface, longer stable-gaze locations at the skateboard were revealed (p <  .05, η p 2  = .73). Regarding the trick difficulty factor, the skateboarders descriptively showed longer stable-gaze locations at the skateboard for the "Kickflip" than for the "Ollie" in the no-obstacle condition only (p>.05, d = 0.74). Finally, during the jump phase, neither obstacle condition nor trick difficulty affected gaze behavior differentially. This study underlines the functional adaptability of the visuomotor system to changing demands in highly dynamic situations. As a function of certain constraints, different gaze strategies were observed that can be considered as highly relevant for successfully performing skateboard jumps.

  16. Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins.

    PubMed

    Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2018-02-10

    A novel method to characterize cell surface proteins and complexes has been developed. Polydopamine (PDA)-encapsulated Hela cells were prepared for plasma membrane proteome research. Since the PDA protection, the encapsulated cells could be maintained for more than two weeks. Amino groups functionalized magnetic nanoparticles were also used for cell capture by the reaction with the PDA coatings. Plasma membrane fragments were isolated and enriched with assistance of an external magnetic field after disruption of the coated cells by ultrasonic treatment. Plasma membrane proteins (PMPs) and complexes were well preserved on the fragments and identified by shot-gun proteomic analytical strategy. 385 PMPs and 1411 non-PMPs were identified using the method. 85.2% of these PMPs were lipid-raft associated proteins. Ingenuity Pathway Analysis was employed for bio-information extraction from the identified proteins. It was found that 653 non-PMPs had interactions with 140 PMPs. Among them, epidermal growth factor receptor and its complexes, and a series of important pathways including STAT3 pathway were observed. All these results demonstrated that the new approach is of great importance in applying to the research of physiological function and mechanism of the plasma membrane proteins. This work developed a novel strategy for the proteomic analysis of cell surface proteins. According to the results, 73.3% of total identified proteins were lipid-raft associated proteins, which imply that the proposed method is of great potential in the identification of lipid-raft associated proteins. In addition, a series of protein-protein interactions and pathways related to Hela cells were pointed out. All these results demonstrated that our proposed approach is of great importance and could well be applied to the physiological function and mechanism research of plasma membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture.

    PubMed

    Ates, Hatice Ceren; Ozgur, Ebru; Kulah, Haluk

    2018-03-23

    Methods for isolation and quantification of circulating tumor cells (CTCs) are attracting more attention every day, as the data for their unprecedented clinical utility continue to grow. However, the challenge is that CTCs are extremely rare (as low as 1 in a billion of blood cells) and a highly sensitive and specific technology is required to isolate CTCs from blood cells. Methods utilizing microfluidic systems for immunoaffinity-based CTC capture are preferred, especially when purity is the prime requirement. However, antibody immobilization strategy significantly affects the efficiency of such systems. In this study, two covalent and two bioaffinity antibody immobilization methods were assessed with respect to their CTC capture efficiency and selectivity, using an anti-epithelial cell adhesion molecule (EpCAM) as the capture antibody. Surface functionalization was realized on plain SiO 2 surfaces, as well as in microfluidic channels. Surfaces functionalized with different antibody immobilization methods are physically and chemically characterized at each step of functionalization. MCF-7 breast cancer and CCRF-CEM acute lymphoblastic leukemia cell lines were used as EpCAM positive and negative cell models, respectively, to assess CTC capture efficiency and selectivity. Comparisons reveal that bioaffinity based antibody immobilization involving streptavidin attachment with glutaraldehyde linker gave the highest cell capture efficiency. On the other hand, a covalent antibody immobilization method involving direct antibody binding by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)-N-hydroxysuccinimide (NHS) reaction was found to be more time and cost efficient with a similar cell capture efficiency. All methods provided very high selectivity for CTCs with EpCAM expression. It was also demonstrated that antibody immobilization via EDC-NHS reaction in a microfluidic channel leads to high capture efficiency and selectivity.

  18. The structure of reconstructed chalcopyrite surfaces

    NASA Astrophysics Data System (ADS)

    Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas

    2018-03-01

    Chalcopyrite (CuFeS2) surfaces are of major interest for copper exploitation in aqueous solution, called leaching. Since leaching is a surface process knowledge of the surface structure, bonding pattern and oxidation states is important for improving the efficiency. At present such information is not available from experimental studies. Therefore a detailed computational study of chalcopyrite surfaces is performed. The structures of low-index stoichiometric chalcopyrite surfaces {hkl} h, k, l ∈ {0, 1, 2} have been studied with density functional theory (DFT) and global optimization strategies. We have applied ab initio molecular dynamics (MD) in combination with simulated annealing (SA) in order to explore possible reconstructions via a minima hopping (MH) algorithm. In almost all cases reconstruction involving substantial rearrangement has occurred accompanied by reduction of the surface energy. The analysis of the change in the coordination sphere and migration during reconstruction reveals that S-S dimers are formed on the surface. Further it was observed that metal atoms near the surface move toward the bulk forming metal alloys passivated by sulfur. The obtained surface energies of reconstructed surfaces are in the range of 0.53-0.95 J/m2.

  19. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    PubMed Central

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  20. Efficient self-assembly of DNA-functionalized fluorophores and gold nanoparticles with DNA functionalized silicon surfaces: the effect of oligomer spacers

    PubMed Central

    Milton, James A.; Patole, Samson; Yin, Huabing; Xiao, Qiang; Brown, Tom; Melvin, Tracy

    2013-01-01

    Although strategies for the immobilization of DNA oligonucleotides onto surfaces for bioanalytical and top-down bio-inspired nanobiofabrication approaches are well developed, the effect of introducing spacer molecules between the surface and the DNA oligonucleotide for the hybridization of nanoparticle–DNA conjugates has not been previously assessed in a quantitative manner. The hybridization efficiency of DNA oligonucleotides end-labelled with gold nanoparticles (1.4 or 10 nm diameter) with DNA sequences conjugated to silicon surfaces via hexaethylene glycol phosphate diester oligomer spacers (0, 1, 2, 6 oligomers) was found to be independent of spacer length. To quantify both the density of DNA strands attached to the surfaces and hybridization with the surface-attached DNA, new methodologies have been developed. Firstly, a simple approach based on fluorescence has been developed for determination of the immobilization density of DNA oligonucleotides. Secondly, an approach using mass spectrometry has been created to establish (i) the mean number of DNA oligonucleotides attached to the gold nanoparticles and (ii) the hybridization density of nanoparticle–oligonucleotide conjugates with the silicon surface–attached complementary sequence. These methods and results will be useful for application with nanosensors, the self-assembly of nanoelectronic devices and the attachment of nanoparticles to biomolecules for single-molecule biophysical studies. PMID:23361467

  1. Phylogenetic ecology of leaf surface traits in the milkweeds (Asclepias spp.): chemistry, ecophysiology, and insect behavior.

    PubMed

    Agrawal, Anurag A; Fishbein, Mark; Jetter, Reinhard; Salminen, Juha-Pekka; Goldstein, Jessica B; Freitag, Amy E; Sparks, Jed P

    2009-08-01

    The leaf surface is the contact point between plants and the environment and plays a crucial role in mediating biotic and abiotic interactions. Here, we took a phylogenetic approach to investigate the function, trade-offs, and evolution of leaf surface traits in the milkweeds (Asclepias). Across 47 species, we found trichome densities of up to 3000 trichomes cm(-2) and epicuticular wax crystals (glaucousness) on 10 species. Glaucous species had a characteristic wax composition dominated by very-long-chain aldehydes. The ancestor of the milkweeds was probably a glaucous species, from which there have been several independent origins of glabrous and pubescent types. Trichomes and wax crystals showed negatively correlated evolution, with both surface types showing an affinity for arid habitats. Pubescent and glaucous milkweeds had a higher maximum photosynthetic rate and lower stomatal density than glabrous species. Pubescent and glaucous leaf surfaces impeded settling behavior of monarch caterpillars and aphids compared with glabrous species, although surface types did not show consistent differentiation in secondary chemistry. We hypothesize that pubescence and glaucousness have evolved as alternative mechanisms with similar functions. The glaucous type, however, appears to be ancestral, lost repeatedly, and never regained; we propose that trichomes are a more evolutionarily titratable strategy.

  2. Self-assembled tethered bimolecular lipid membranes.

    PubMed

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules via the NH2 moiety of their headgroups. It is demonstrated that these membranes are well suited for the in situ synthesis of membrane protein by a cell-free expression approach. The vectorial integration of an in vitro synthesized odorant receptor, OR5 from the rat, is demonstrated by means of antibodies that specifically bind to a tag at the N-terminus of the receptor and is read out by surface plasmon fluorescence spectroscopy. A completely different strategy employs his-tagged membrane proteins in their solubilized form binding to a surface-attached Ni(+)-NTA monolayer generating a well-oriented protein layer the density of which can be easily controlled by online monitoring the binding (assembly) step by surface plasmon spectroscopy. Moreover, the attachment of the his-tag to either the C- or the N-terminus allows for the complete control of the protein orientation. After the exchange of the detergent micelle by a lipid bilayer via a surface dialysis procedure an electrically very well isolating protein-tethered membrane is formed. We show that this "wiring" of the functional units allows for the (external) manipulation of the oxidation state of the redox-protein cytochrome c Oxidase by the control of the potential applied to the gold substrate which is used as the working electrode in an electrochemical attachment.

  3. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhanjadeo, Madhabi M.; Academy of Scientific and Innovative Research; Nayak, Ashok K.

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Fieldmore » emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.« less

  4. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria

    PubMed Central

    Yosef, Ido; Manor, Miriam; Kiro, Ruth

    2015-01-01

    The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones. PMID:26060300

  5. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria.

    PubMed

    Yosef, Ido; Manor, Miriam; Kiro, Ruth; Qimron, Udi

    2015-06-09

    The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones.

  6. Evolutionary branching under multi-dimensional evolutionary constraints.

    PubMed

    Ito, Hiroshi; Sasaki, Akira

    2016-10-21

    The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cold pressure welding of aluminium-steel blanks: Manufacturing process and electrochemical surface preparation

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans Christian; Homberg, Werner; Orive, Alejandro Gonzalez; Grundmeier, Guido; Hordych, Illia; Maier, Hans Jürgen

    2018-05-01

    In this study the manufacture of aluminium-steel blanks by cold pressure welding and their preparation for a welding process through electrochemical surface treatment are investigated and discussed. The cold pressure welding process was done with an incremental rolling tool that allows for the partial pressure welding of two blanks along a prepared path. The influence of the surface preparation by electrochemical deposition of bond promoting organosilane-based agents and roughening on a nano-scale is investigated and compared to conventional surface treatments. Coating the surfaces with a thin organosilane-based film incorporating specific functional groups should promote additional bonding between the mating oxide layers; its influence on the total weld strength is studied. Pressure welding requires suitable process strategies, and the current advances in the proposed incremental rolling process for the combination of mild steel and aluminium are presented.

  8. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    NASA Astrophysics Data System (ADS)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu

    2014-10-01

    A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO2 is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO2 was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO2 modification increased more than six times. And the adsorption of Pb2+ on the MnO2 surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  9. Imprint control of BaTiO 3 thin films via chemically induced surface polarization pinning

    DOE PAGES

    Lee, Hyungwoo; Kim, Tae Heon; Patzner, Jacob J.; ...

    2016-02-22

    Surface-adsorbed polar molecules can significantly alter the ferroelectric properties of oxide thin films. Thus, fundamental understanding and controlling the effect of surface adsorbates are crucial for the implementation of ferroelectric thin film devices, such as ferroelectric tunnel junctions. Herein, we report an imprint control of BaTiO 3 (BTO) thin films by chemically induced surface polarization pinning in the top few atomic layers of the water-exposed BTO films. Our studies based on synchrotron X-ray scattering and coherent Bragg rod analysis demonstrate that the chemically induced surface polarization is not switchable but reduces the polarization imprint and improves the bistability of ferroelectricmore » phase in BTO tunnel junctions. Here, we conclude that the chemical treatment of ferroelectric thin films with polar molecules may serve as a simple yet powerful strategy to enhance functional properties of ferroelectric tunnel junctions for their practical applications.« less

  10. Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyong; Huang, Qiang; Liu, Meiying; Tian, Jianwen; Zeng, Guangjian; Li, Zhen; Wang, Ke; Zhang, Qinsong; Wan, Qing; Deng, Fengjie; Wei, Yen

    2015-07-01

    The environmental applications of carbon nanotubes (CNTs) have attracted great research attention since their first discovery. However, the performance of pristine CNTs for removal of heavy metal ions is greatly limited by their severe aggregation and lack of functional groups. In this work, a novel method has been developed for preparation of amine functionalized CNTs via combination of mussel inspired chemistry and Michael addition reaction. CNTs were first coated with polydopamine (PDA) through mussel inspired chemistry. And then commercial available agent polyethylene polyamine with a number of amine groups was further conjugated with PDA coated CNTs via Michael addition reaction. A series of characterization techniques have demonstrated that the amine functionalized CNTs have been successfully prepared. Furthermore, the adsorption application of thus amine functionalized CNTs for Cu2+ was examined. The effects of various parameters including pH solution, temperature, initial Cu2+ concentration and the adsorbent concentration were investigated. The data from experiments were analyzed by the Langmuir and Freundlich models of adsorption. Due to the universal of mussel inspired chemistry, the method described in this work should be a general strategy for surface modification of materials for environmental applications.

  11. Engineering interfacial properties of organic semiconductors through soft-contact lamination and surface functionalization

    NASA Astrophysics Data System (ADS)

    Shu, Andrew Leo

    Organic electronics is a topic of interest due to its potential for low temperature and solution processing for large area and flexible applications. Examples of organic electronic devices are already available on the market; however these are, in general, still rather expensive. In order to fully realize inexpensive and efficient organic electronics, the properties of organic films need to be understood and strategies developed to take advantage of these properties to improve device performance. This work focuses on two strategies that can be used to control charge transport at interfaces with active organic semiconducting thin films. These strategies are studied and verified with a range of photoemission spectroscopy, surface probe microscopy, and electrical measurements. Vacuum evaporated molecular organic devices have long used layer stacking of different materials as a method of dividing roles in a device and modifying energy level alignment to improve device performance and efficiency. Applying this type of architecture for solution-processed devices, on the other hand, is nontrivial, as an issue of removal of or mixing with underlying layers arises. We present and examine here soft-contact lamination as a viable technique for depositing solution-processed multilayer structures. The energetics at homojunctions of a couple of air-stable polymers is investigated. Charge transport is then compared between a two-layer film and a single-layer film of equivalent thicknesses. The interface formed by soft-contact lamination is found to be transparent with respect to electronic charge carriers. We also propose a technique for modifying electronic level alignment at active organic-organic heterojunctions using dipolar self-assembled monolayers (SAM). An ultra-thin metal oxide is first deposited via a gentle low temperature chemical vapor deposition as an adhesion layer for the SAM. The deposition is shown to be successful for a variety of organic films. A series of phenylphosphonic acid SAM molecules with various molecular dipoles is then used to functionalize the surface of an organic film and found to modify the work function depending on the molecular dipole across the molecule. This in turn is found to modify the energy level alignment between the underlying organic film with an organic film deposited on top.

  12. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry

    NASA Astrophysics Data System (ADS)

    Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S.; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel

    2016-05-01

    Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+n(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.

  13. SPRi-based biosensing platforms for detection of specific DNA sequences using thiolate and dithiocarbamate assemblies

    NASA Astrophysics Data System (ADS)

    Drozd, Marcin; Pietrzak, Mariusz D.; Malinowska, Elżbieta

    2018-05-01

    The framework of presented study covers the development and examination of the analytical performance of surface plasmon resonance-based (SPR) DNA biosensors dedicated for a detection of model target oligonucleotide sequence. For this aim, various strategies of immobilization of DNA probes on gold transducers were tested. Besides the typical approaches: chemisorption of thiolated ssDNA (DNA-thiol) and physisorption of non-functionalized oligonucleotides, relatively new method based on chemisorption of dithiocarbamate-functionalized ssDNA (DNA-DTC) was applied for the first time for preparation of DNA-based SPR biosensor. The special emphasis was put on the correlation between the method of DNA immobilization and the composition of obtained receptor layer. The carried out studies focused on the examination of the capability of developed receptors layers to interact with both target DNA and DNA-functionalized AuNPs. It was found, that the detection limit of target DNA sequence (27 nb length) depends on the strategy of probe immobilization and backfilling method, and in the best case it amounted to 0,66 nM. Moreover, the application of ssDNA-functionalized gold nanoparticles (AuNPs) as plasmonic labels for secondary enhancement of SPR response is presented. The influence of spatial organization and surface density of a receptor layer on the ability to interact with DNA-functionalized AuNPs is discussed. Due to the best compatibility of receptors immobilized via DTC chemisorption: 1.47 ± 0.4 ·1012 molecules • cm-2 (with the calculated area occupied by single nanoparticle label of 132.7 nm2), DNA chemisorption based on DTCs is pointed as especially promising for DNA biosensors utilizing indirect detection in competitive assays.

  14. Transmembrane 4 L Six Family Member 5 (TM4SF5)-Mediated Epithelial-Mesenchymal Transition in Liver Diseases.

    PubMed

    Lee, Jung Weon

    2015-01-01

    The membrane protein TM4SF5, a member of the transmembrane 4L six family, forms a tetraspanin-enriched microdomain (TEM) on the cell surface, where many different membrane proteins and receptors form a massive protein-protein complex to regulate cellular functions including transdifferentiation, migration, and invasion. We recently reported that TM4SF5 causes epithelial-mesenchymal transition (EMT), eventually contributing to aberrant multilayer cellular growth, drug resistance, enhanced migration, invasion, its circulation in the blood, tumor initiation for successful metastasis, and muscle development in zebrafish. In this review, I summarize the information on the role of TM4SF5 in EMT-related functions at TM4SF5-enriched microdomain (T5EM) on cell surface, where proteins such as TM4SF5, CD151, CD44, integrins, and epidermal growth factor receptor (EGFR) can form numerous protein complexes. TM4SF5-mediated EMT contributes to diverse cellular functions, leading to fibrotic phenotypes and initiating and maintaining tumors in primary and/or metastatic regions, in addition to its role in muscle development in zebrafish. Anti-TM4SF5 strategies for addressing the protein networks can lead to regulation of the fibrotic, tumorigenic, and tumor-maintaining functions of TM4SF5-positive hepatic cells. This review is for us to (re)consider the antifibrotic or antitumorigenic (i.e., anti-EMT-related diseases) strategies of dealing with protein networks that would be involved in cross-talks to regulate various cellular functions during TM4SF5-dependent progression from fibrotic to cancerous hepatic cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. SPRi-Based Biosensing Platforms for Detection of Specific DNA Sequences Using Thiolate and Dithiocarbamate Assemblies.

    PubMed

    Drozd, Marcin; Pietrzak, Mariusz D; Malinowska, Elżbieta

    2018-01-01

    The framework of presented study covers the development and examination of the analytical performance of surface plasmon resonance-based (SPR) DNA biosensors dedicated for a detection of model target oligonucleotide sequence. For this aim, various strategies of immobilization of DNA probes on gold transducers were tested. Besides the typical approaches: chemisorption of thiolated ssDNA (DNA-thiol) and physisorption of non-functionalized oligonucleotides, relatively new method based on chemisorption of dithiocarbamate-functionalized ssDNA (DNA-DTC) was applied for the first time for preparation of DNA-based SPR biosensor. The special emphasis was put on the correlation between the method of DNA immobilization and the composition of obtained receptor layer. The carried out studies focused on the examination of the capability of developed receptors layers to interact with both target DNA and DNA-functionalized AuNPs. It was found, that the detection limit of target DNA sequence (27 nb length) depends on the strategy of probe immobilization and backfilling method, and in the best case it amounted to 0.66 nM. Moreover, the application of ssDNA-functionalized gold nanoparticles (AuNPs) as plasmonic labels for secondary enhancement of SPR response is presented. The influence of spatial organization and surface density of a receptor layer on the ability to interact with DNA-functionalized AuNPs is discussed. Due to the best compatibility of receptors immobilized via DTC chemisorption: 1.47 ± 0.4 · 10 12 molecules · cm -2 (with the calculated area occupied by single nanoparticle label of ~132.7 nm 2 ), DNA chemisorption based on DTCs is pointed as especially promising for DNA biosensors utilizing indirect detection in competitive assays.

  16. Functionalized PLA-PEG nanoparticles targeting intestinal transporter PepT1 for oral delivery of acyclovir.

    PubMed

    Gourdon, Betty; Chemin, Caroline; Moreau, Amélie; Arnauld, Thomas; Baumy, Philippe; Cisternino, Salvatore; Péan, Jean-Manuel; Declèves, Xavier

    2017-08-30

    Targeting intestinal di- and tri-peptide transporter PepT1 with prodrugs is a successful strategy to improve oral drug bioavailability, as demonstrated with valacyclovir, a prodrug of acyclovir. The aim of this new drug delivery strategy is to over-concentrate a poorly absorbed drug on the intestinal membrane surface by targeting PepT1 with functionalized polymer nanoparticles. In the present study, poly(lactic acid)-poly(ethylene glycol)-ligand (PLA-PEG-ligand) nanoparticles were obtained by nanoprecipitation. A factorial experimental design allowed us to identify size-influent parameters and to obtain optimized ≈30nm nanoparticles. Valine, Glycylsarcosine, Valine-Glycine, and Tyrosine-Valine were chemically linked to PLA-PEG. In Caco-2 cell monolayer model, competition between functionalized nanoparticles and [ 3 H]Glycylsarcosine, a strong substrate of PepT1, reduced [ 3 H]Glycylsarcosine transport from 22 to 46%. Acyclovir was encapsulated with a drug load of ≈10% in valine-functionalized nanoparticles, resulting in a 2.7-fold increase in permeability as compared to the free drug. An in vivo pharmacokinetic study in mice compared oral absorption of acyclovir after administration of 25mg/kg of valacyclovir, free or encapsulated acyclovir in functionalized nanoparticles. Acyclovir encapsulation did not statistically modify AUC or C max , but increased t 1/2 and MRT 1.3-fold as compared to free acyclovir. This new strategy is promising for poorly absorbed drugs by oral administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Synthesis of hybrid inorganic/organic nitric oxide-releasing silica nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Carpenter, Alexis Wells

    Nitric oxide (NO) is an endogenously produced free radical involved in a number of physiological processes. Thus, much research has focused on developing scaffolds that store and deliver exogenous NO. Herein, the synthesis of N-diazeniumdiolate-modified silica nanoparticles of various physical and chemical properties for biomedical applications is presented. To further develop NO-releasing silica particles for antimicrobial applications, a reverse microemulsion synthesis was designed to achieve nanoparticles of distinct sizes and similar NO release characteristics. Decreasing scaffold size resulted in improved bactericidal activity against Pseudomonas aeruginosa. Confocal microscopy revealed that the improved efficacy resulted from faster particle-bacterium association kinetics. To broaden the therapeutic potential of NO-releasing silica particles, strategies to tune NO release characteristics were evaluated. Initially, surface hydrophobicity and NO release kinetics were tuned by grafting hydrocarbon- and fluorocarbon-based silanes onto the surface of N-diazeniumdiolate-modified particles. The addition of fluorocarbons resulted in a 10x increase in the NO release half-life. The addition of short-chained hydrocarbons to the particle surface increased their stability in hydrophobic electrospun polyurethanes. Although NO release kinetics were longer than that of unmodified particles, durations were still limited to <7 days. An alternative strategy for increasing NO release duration involved directly stabilizing the N-diazeniumdiolate using O2-protecting groups. O2-Methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl))piperazin-1-yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO) was grafted onto mesoporous silica nanoparticles to yield scaffolds with an NO payload of 2.5 μmol NO/mg and an NO release half-life of 23 d. Doping the MOM-Pip/NO-modified particles into resin composites yielded antibacterial NO-releasing dental restorative materials. A 3-log reduction in viable adhered Streptococcus mutans was observed with the MOM-Pip/NO-doped composites compared to undoped controls. The greater chemical flexibility of macromolecular scaffolds is a major advantage over LMW NO donors as it allows for the incorporation of multiple functionalities onto a single scaffold. To demonstrate this advantage, dual functional particles were synthesized by covalently binding quaternary ammonium (QA) functionalities to the surface of NO-releasing silica particles. The QA functionality proved more effective against Staphylococcus aureus than P. aeruginosa, and increasing alkyl chain length correlated with increased efficacy. Nitric oxide-releasing QA-functionalized particles were found to be more effective against S. aureus compared to monofunctional particles.

  18. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging.

    PubMed

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-07-25

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.

  19. Architecture engineering of supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Chen, Kunfeng; Li, Gong; Xue, Dongfeng

    2016-02-01

    The biggest challenge for today’s supercapacitor systems readily possessing high power density is their low energy density. Their electrode materials with controllable structure, specific surface area, electronic conductivity, and oxidation state, have long been highlighted. Architecture engineering of functional electrode materials toward powerful supercapacitor systems is becoming a big fashion in the community. The construction of ion-accessible tunnel structures can microscopically increase the specific capacitance and materials utilization; stiff 3D structures with high specific surface area can macroscopically assure high specific capacitance. Many exciting findings in electrode materials mainly focus on the construction of ice-folded graphene paper, in situ functionalized graphene, in situ crystallizing colloidal ionic particles and polymorphic metal oxides. This feature paper highlights some recent architecture engineering strategies toward high-energy supercapacitor electrode systems, including electric double-layer capacitance (EDLC) and pseudocapacitance.

  20. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  1. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging

    PubMed Central

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-01-01

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes. PMID:27453176

  2. Method and algorithm of automatic estimation of road surface type for variable damping control

    NASA Astrophysics Data System (ADS)

    Dąbrowski, K.; Ślaski, G.

    2016-09-01

    In this paper authors presented an idea of road surface estimation (recognition) on a base of suspension dynamic response signals statistical analysis. For preliminary analysis cumulated distribution function (CDF) was used, and some conclusion that various roads have responses values in a different ranges of limits for the same percentage of samples or for the same limits different percentages of samples are located within the range between limit values. That was the base for developed and presented algorithm which was tested using suspension response signals recorded during road test riding over various surfaces. Proposed algorithm can be essential part of adaptive damping control algorithm for a vehicle suspension or adaptive control strategy for suspension damping control.

  3. Surface tailored single walled carbon nanotubes as catalyst support for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kireeti, Kota V. M. K.; Jha, Neetu

    2017-10-01

    A strategy for tuning the surface property of Single Walled Carbon Nanotubes (SWNTs) for enhanced methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) along with methanol tolerance is presented. The surface functionality is tailored using controlled acid and base treatment. Acid treatment leads to the attachment of carboxylic carbon (CC) fragments to SWNT making it hydrophilic (P3-SWNT). Base treatment of P3-SWNT with 0.05 M NaOH reduces the CCs and makes it hydrophobic (P33-SWNT). Pt catalyst supported on the P3-SWNT possesses enhanced MOR whereas that supported on P33-SWNT not only enhances ORR kinetics but also possess good tolerance towards methanol oxidation as verified by the electrochemical technique.

  4. Tapered optical fiber sensor based on localized surface plasmon resonance.

    PubMed

    Lin, Hsing-Ying; Huang, Chen-Han; Cheng, Gia-Ling; Chen, Nan-Kuang; Chui, Hsiang-Chen

    2012-09-10

    A tapered fiber localized surface plasmon resonance (LSPR) sensor is demonstrated for refractive index sensing and label-free biochemical detection. The sensing strategy relies on the interrogation of the transmission intensity change due to the evanescent field absorption of immobilized gold nanoparticles on the tapered fiber surface. The refractive index resolution based on the interrogation of transmission intensity change is calculated to be 3.2×10⁻⁵ RIU. The feasibility of DNP-functionalized tapered fiber LSPR sensor in monitoring anti-DNP antibody with different concentrations spiked in buffer is examined. Results suggest that the compact sensor can perform qualitative and quantitative biochemical detection in real-time and thus has potential to be used in biomolecular sensing applications.

  5. Postural compensation for vestibular loss and implications for rehabilitation.

    PubMed

    Horak, Fay B

    2010-01-01

    This chapter summarizes the role of the vestibular system in postural control so that specific and effective rehabilitation can be designed that facilitates compensation for loss of vestibular function. Patients with bilateral or unilateral loss of peripheral vestibular function are exposed to surface perturbations to quantify automatic postural responses. Studies also evaluated the effects of audio- and vibrotactile-biofeedback to improve stability in stance and gait. The most important role of vestibular information for postural control is to control orientation of the head and trunk in space with respect to gravitoinertial forces, particularly when balancing on unstable surfaces. Vestibular sensory references are particularly important for postural control at high frequencies and velocities of self-motion, to reduce trunk drift and variability, to provide an external reference frame for the trunk and head in space; and to uncouple coordination of the trunk from the legs and the head-in-space from the body CoM. The goal of balance rehabilitation for patients with vestibular loss is to help patients 1) use remaining vestibular function, 2) depend upon surface somatosensory information as their primary postural sensory system, 3) learn to use stable visual references, and 4) identify efficient and effective postural movement strategies.

  6. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    PubMed

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  7. Molecular Velcro constructed from polymer loop brushes showing enhanced adhesion force

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Han, Biao; Han, Lin; Li, Christopher; Department of Materials Science; Engineering Team; School of Biomedical Engineering, Science; Health Systems Team

    2015-03-01

    Molecular Velcro is commonly seen in biological systems as the formation of strong physical entanglement at molecular scale could induce strong adhesion, which is crucial to many biological processes. To mimic this structure, we designed, and fabricated polymer loop brushes using polymer single crystals with desired surface functionality and controlled chain folding. Compared with reported loop brushes fabricated using triblock copolymers, the present loop bushes have precise loop sizes, loop grafting density, and well controlled tethering locations on the solid surface. Atomic force microscopy-based force spectroscopy measurements using a polymer chain coated probe reveal that the adhesion force are significantly enhanced on the loop brush surface as compared with its single-strand counterpart. This study directly shows the effect of polymer brush conformation on their properties, and suggests a promising strategy for advanced polymer surface design.

  8. Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization.

    PubMed

    Shi, Yingge; Zeng, Guanjian; Xu, Dazhuang; Liu, Meiying; Wang, Ke; Li, Zhen; Fu, Lihua; Zhang, Qingsong; Zhang, Xiaoyong; Wei, Yen

    2017-11-01

    Carbon nanotubes (CNTs) are a type of one-dimensional carbon nanomaterials that possess excellent physicochemical properties and have been potentially utilized for a variety of applications. Surface modification of CNTs with polymers is a general route to expand and improve the performance of CNTs and has attracted great research interest over the past few decades. Although many methods have been developed previously, most of these methods still showed some disadvantages, such as low efficiency, complex experimental procedure and harsh reaction conditions etc. In this work, we reported a practical and novel way to fabricate CNTs based polymer composites via the combination of mussel inspired chemistry and reversible addition fragmentation chain transfer (RAFT) polymerization. First, the amino group was introduced onto the surface of CNTs via self-polymerization of dopamine. Then, chain transfer agent can be immobilized on the amino groups functionalized CNTs to obtain CNT-PDA-CTA, which can be utilized for surface-initiated RAFT polymerization. A water soluble and biocompatible monomer poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) was adopted to fabricate pPEGMA functionalized CNTs through RAFT polymerization. The successful preparation of CNTs based polymer composites (CNT-pPEGMA) was confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy in details. The CNT-pPEGMA showed good dispersibility and desirable biocompatibility, making them highly potential for biomedical applications. More importantly, a large number of CNTs based polymer composites could also be fabricated through the same strategy when different monomers were used due to the good monomer adaptability of RAFT polymerization. Therefore, this strategy should be a general method for preparation of various multifunctional CNTs based polymer composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications.

    PubMed

    Li, Yongsheng; Shi, Jianlin

    2014-05-28

    Hollow-structured mesoporous materials (HMMs), as a kind of mesoporous material with unique morphology, have been of great interest in the past decade because of the subtle combination of the hollow architecture with the mesoporous nanostructure. Benefitting from the merits of low density, large void space, large specific surface area, and, especially, the good biocompatibility, HMMs present promising application prospects in various fields, such as adsorption and storage, confined catalysis when catalytically active species are incorporated in the core and/or shell, controlled drug release, targeted drug delivery, and simultaneous diagnosis and therapy of cancers when the surface and/or core of the HMMs are functionalized with functional ligands and/or nanoparticles, and so on. In this review, recent progress in the design, synthesis, functionalization, and applications of hollow mesoporous materials are discussed. Two main synthetic strategies, soft-templating and hard-templating routes, are broadly sorted and described in detail. Progress in the main application aspects of HMMs, such as adsorption and storage, catalysis, and biomedicine, are also discussed in detail in this article, in terms of the unique features of the combined large void space in the core and the mesoporous network in the shell. Functionalization of the core and pore/outer surfaces with functional organic groups and/or nanoparticles, and their performance, are summarized in this article. Finally, an outlook of their prospects and challenges in terms of their controlled synthesis and scaled application is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures

    PubMed Central

    Wang, Li; Sun, Yujing; Li, Zhuang; Wu, Aiguo; Wei, Gang

    2016-01-01

    The combination of nanotechnology, biology, and bioengineering greatly improved the developments of nanomaterials with unique functions and properties. Biomolecules as the nanoscale building blocks play very important roles for the final formation of functional nanostructures. Many kinds of novel nanostructures have been created by using the bioinspired self-assembly and subsequent binding with various nanoparticles. In this review, we summarized the studies on the fabrications and sensor applications of biomimetic nanostructures. The strategies for creating different bottom-up nanostructures by using biomolecules like DNA, protein, peptide, and virus, as well as microorganisms like bacteria and plant leaf are introduced. In addition, the potential applications of the synthesized biomimetic nanostructures for colorimetry, fluorescence, surface plasmon resonance, surface-enhanced Raman scattering, electrical resistance, electrochemistry, and quartz crystal microbalance sensors are presented. This review will promote the understanding of relationships between biomolecules/microorganisms and functional nanomaterials in one way, and in another way it will guide the design and synthesis of biomimetic nanomaterials with unique properties in the future. PMID:28787853

  11. Polymers mediate a one-pot route for functionalized quantum dot barcodes with a large encoding capacity.

    PubMed

    Zhang, Ding Sheng-Zi; Jiang, Yang; Wei, Dan; Wei, Xunbin; Xu, Hong; Gu, Hongchen

    2018-06-21

    With the increasing demands for high-throughput multiplexed bioassays, quantum dot (QD)-encoded microbeads as biocarriers for various bioreactions have attracted considerable attention. However, three key requirements for these biocarriers are still longstanding issues: a stable fluorescence intensity, a large encoding capacity and abundant surface functional groups. Here, a novel one-pot strategy is developed, generating functionalized QD-encoded microspheres with a strong fluorescence intensity and optical stability. With poly(styrene-co-maleic anhydride) (PSMA) molecules as mediators, the encapsulation of QDs and carboxylation of the bead surface are integrated together, greatly improving the preparation efficiency and guaranteeing their potential application in biodetection. Moreover, the mechanism for preparing QD-doped beads is further proposed, which helps to precisely manipulate the preparation process and accurately encode the beads. Through this approach, a single- and dual-color barcode library of QD-encoded microspheres has been successfully established, which demonstrates their great potential in suspension arrays.

  12. Faraday cage-type electrochemiluminescence immunosensor for ultrasensitive detection of Vibrio vulnificus based on multi-functionalized graphene oxide.

    PubMed

    Guo, Zhiyong; Sha, Yuhong; Hu, Yufang; Yu, Zhongqing; Tao, Yingying; Wu, Yanjie; Zeng, Min; Wang, Sui; Li, Xing; Zhou, Jun; Su, Xiurong

    2016-10-01

    A novel Faraday cage-type electrochemiluminescence (ECL) immunosensor devoted to the detection of Vibrio vulnificus (VV) was fabricated. The sensing strategy was presented by a unique Faraday cage-type immunocomplex based on immunomagnetic beads (IMBs) and multi-functionalized graphene oxide (GO) labeled with (2,2'-bipyridine)(5-aminophenanthroline)ruthenium (Ru-NH2). The multi-functionalized GO could sit on the electrode surface directly due to the large surface area, abundant functional groups, and good electronic transport property. It ensures that more Ru-NH2 is entirely caged and become "effective," thus improving sensitivity significantly, which resembles extending the outer Helmholtz plane (OHP) of the electrode. Under optimal conditions, the developed immunosensor achieves a limit of detection as low as 1 CFU/mL. Additionally, the proposed immunosensor with high sensitivity and selectivity can be used for the detection of real samples. The novel Faraday cage-type method has shown potential application for the diagnosis of VV and opens up a new avenue in ECL immunoassay. Graphical abstract Faraday cage-type immunoassay mode for ultrasensitive detection by extending OHP.

  13. Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities

    PubMed Central

    Bridier, Arnaud; Piard, Jean-Christophe; Pandin, Caroline; Labarthe, Simon; Dubois-Brissonnet, Florence; Briandet, Romain

    2017-01-01

    Biofilms are dynamic habitats which constantly evolve in response to environmental fluctuations and thereby constitute remarkable survival strategies for microorganisms. The modulation of biofilm functional properties is largely governed by the active remodeling of their three-dimensional structure and involves an arsenal of microbial self-produced components and interconnected mechanisms. The production of matrix components, the spatial reorganization of ecological interactions, the generation of physiological heterogeneity, the regulation of motility, the production of actives enzymes are for instance some of the processes enabling such spatial organization plasticity. In this contribution, we discussed the foundations of architectural plasticity as an adaptive driver of biofilms through the review of the different microbial strategies involved. Moreover, the possibility to harness such characteristics to sculpt biofilm structure as an attractive approach to control their functional properties, whether beneficial or deleterious, is also discussed. PMID:28775718

  14. Mass Spectrometric Analysis of the Cell Surface N-Glycoproteome by Combining Metabolic Labeling and Click Chemistry

    NASA Astrophysics Data System (ADS)

    Smeekens, Johanna M.; Chen, Weixuan; Wu, Ronghu

    2015-04-01

    Cell surface N-glycoproteins play extraordinarily important roles in cell-cell communication, cell-matrix interactions, and cellular response to environmental cues. Global analysis is exceptionally challenging because many N-glycoproteins are present at low abundances and effective separation is difficult to achieve. Here, we have developed a novel strategy integrating metabolic labeling, copper-free click chemistry, and mass spectrometry (MS)-based proteomics methods to analyze cell surface N-glycoproteins comprehensively and site-specifically. A sugar analog containing an azido group, N-azidoacetylgalactosamine, was fed to cells to label glycoproteins. Glycoproteins with the functional group on the cell surface were then bound to dibenzocyclooctyne-sulfo-biotin via copper-free click chemistry under physiological conditions. After protein extraction and digestion, glycopeptides with the biotin tag were enriched by NeutrAvidin conjugated beads. Enriched glycopeptides were deglycosylated with peptide- N-glycosidase F in heavy-oxygen water, and in the process of glycan removal, asparagine was converted to aspartic acid and tagged with 18O for MS analysis. With this strategy, 144 unique N-glycopeptides containing 152 N-glycosylation sites were identified in 110 proteins in HEK293T cells. As expected, 95% of identified glycoproteins were membrane proteins, which were highly enriched. Many sites were located on important receptors, transporters, and cluster of differentiation proteins. The experimental results demonstrated that the current method is very effective for the comprehensive and site-specific identification of the cell surface N-glycoproteome and can be extensively applied to other cell surface protein studies.

  15. Smart modification of the single conical nanochannel to fabricate dual-responsive ion gate by self-initiated photografting and photopolymerization.

    PubMed

    Zhai, Qingfeng; Jiang, Hong; Zhang, Xiaowei; Li, Jing; Wang, Erkang

    2016-01-01

    A simple, rapid and general method of self-initiated photografting and photopolymerization (SIPGP) was first introduced to fabricate dual-responsive nanochannel with a solid-state conical nanopore for the first time. The high density of carboxyl and hydroxyl groups on the internal surface of the etched poly(ethylene terephthalate) (PET) nanochannel acted as photo-active sites to provide further growth and amplification of polymer brushes via SIPGP. Poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) was chosen as a prototypical polymer which can be grafted on the surface of the nanochannel with high efficiency. SIPGP provided a smart and simple strategy to graft polymer brush on the surface of the nanochannel without the need of a surface bonded initiator. Series of characterizations including current-voltage curves, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) indicated the successful construction of the polymer. The functionalized nanochannel was finally used for the construction of smart gate with perfect responsibility, reversibility and stability towards CO2 and temperature. This modification strategy combined with unique character of the polymer may hold a great potential in building various smart responsive systems. Copyright © 2015. Published by Elsevier B.V.

  16. Reversible tuning of the wettability on a silver mesodendritic surface by the formation and disruption of lipid-like bilayers

    NASA Astrophysics Data System (ADS)

    Gao, Yuanji; Xia, Bing; Liu, Jie; Ding, Lisheng; Li, Bangjing; Zhou, Yan

    2015-02-01

    This study reported a smart, easy to apply, flexible and green strategy for obtaining a biomimic micro-nanostructures. 1-Mercapto-12-(p-nitrophenoxy) dodecane (MPND) and n-dodecanethiol were used to form low surface energy film on a silver mesodendritic structure coated zinc substrate. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology and mesocrystal structures. Noncovalently linked sodium nonanoyloxy benzene sulfonate (NOBS) was used to form "lipid-like bilayers" on the surface, making it possible for the surface to switch its surface wettability reversibly. The water contact angle (CA) on the constructed surface varies from 168 ± 2° (before processed by NOBS) to 55 ± 2° (after processed by NOBS). This phenomenon can be explained by the formation and disruption of "lipid-like bilayers" to affect the wettability of the surface. This work is of great scientific interests and may provide insights into the design of novel functional devices that are relevant to surface wettability, such as microfluidic devices and sensors.

  17. The Functionality of Surface Hydroxy Groups on the Selectivity and Activity of Carbon Dioxide Reduction over Cuprous Oxide in Aqueous Solutions.

    PubMed

    Yang, Piaoping; Zhao, Zhi-Jian; Chang, Xiaoxia; Mu, Rentao; Zha, Shenjun; Zhang, Gong; Gong, Jinlong

    2018-06-25

    Carbon dioxide (CO 2 ) reduction in aqueous solutions is an attractive strategy for carbon capture and utilization. Cuprous oxide (Cu 2 O) is a promising catalyst for CO 2 reduction as it can convert CO 2 into valuable hydrocarbons and suppress the side hydrogen evolution reaction (HER). However, the nature of the active sites in Cu 2 O remains under debate because of the complex surface structure of Cu 2 O under reducing conditions, leading to limited guidance in designing improved Cu 2 O catalysts. This paper describes the functionality of surface-bonded hydroxy groups on partially reduced Cu 2 O(111) for the CO 2 reduction reaction (CO 2 RR) by combined density functional theory (DFT) calculations and experimental studies. We find that the surface hydroxy groups play a crucial role in the CO 2 RR and HER, and a moderate coverage of hydroxy groups is optimal for promotion of the CO 2 RR and suppression of the HER simultaneously. Electronic structure analysis indicates that the charge transfer from hydroxy groups to coordination-unsaturated Cu (Cu CUS ) sites stabilizes surface-adsorbed COOH*, which is a key intermediate during the CO 2 RR. Moreover, the CO 2 RR was evaluated over Cu 2 O octahedral catalysts with {111} facets and different surface coverages of hydroxy groups, which demonstrates that Cu 2 O octahedra with moderate coverage of hydroxy groups can indeed enhance the CO 2 RR and suppress the HER. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ambient Noise Interferometry and Surface Wave Array Tomography: Promises and Problems

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.; Yao, H.; de Hoop, M. V.; Campman, X.; Solna, K.

    2008-12-01

    In the late 1990ies most seismologists would have frowned at the possibility of doing high-resolution surface wave tomography with noise instead of with signal associated with ballistic source-receiver propagation. Some may still do, but surface wave tomography with Green's functions estimated through ambient noise interferometry ('sourceless tomography') has transformed from a curiosity into one of the (almost) standard tools for analysis of data from dense seismograph arrays. Indeed, spectacular applications of ambient noise surface wave tomography have recently been published. For example, application to data from arrays in SE Tibet revealed structures in the crust beneath the Tibetan plateau that could not be resolved by traditional tomography (Yao et al., GJI, 2006, 2008). While the approach is conceptually simple, in application the proverbial devil is in the detail. Full reconstruction of the Green's function requires that the wavefields used are diffusive and that ambient noise energy is evenly distributed in the spatial dimensions of interest. In the field, these conditions are not usually met, and (frequency dependent) non-uniformity of the noise sources may lead to incomplete reconstruction of the Green's function. Furthermore, ambient noise distributions can be time-dependent, and seasonal variations have been documented. Naive use of empirical Green's functions may produce (unknown) bias in the tomographic models. The degrading effect on EGFs of the directionality of noise distribution forms particular challenges for applications beyond isotropic surface wave inversions, such as inversions for (azimuthal) anisotropy and attempts to use higher modes (or body waves). Incomplete Green's function reconstruction can (probably) not be prevented, but it may be possible to reduce the problem and - at least - understand the degree of incomplete reconstruction and prevent it from degrading the tomographic model. We will present examples of Rayleigh wave inversions and discuss strategies to mitigate effects of incomplete Green's function reconstruction on tomographic images.

  19. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials.

    PubMed

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-04-11

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  20. A novel functional electrical stimulation-control system for restoring motor function of post-stroke hemiplegic patients

    PubMed Central

    Huang, Zonghao; Wang, Zhigong; Lv, Xiaoying; Zhou, Yuxuan; Wang, Haipeng; Zong, Sihao

    2014-01-01

    Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, multi-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique. PMID:25657728

  1. Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing.

    PubMed

    Yang, Qiang; Li, Huizeng; Li, Mingzhu; Li, Yanan; Chen, Shuoran; Bao, Bin; Song, Yanlin

    2017-11-29

    Elimination of satellite droplets in inkjet printing has long been desired for high-resolution and precision printing of functional materials and tissues. Generally, the strategy to suppress satellite droplets is to control ink properties, such as viscosity or surface tension, to assist ink filaments in retracting into one drop. However, this strategy brings new restrictions to the ink, such as ink viscosity, surface tension, and concentration. Here, we report an alternative strategy that the satellite droplets are eliminated by enhancing Rayleigh instability of filament at the break point to accelerate pinch-off of the droplet from the nozzle. A superhydrophobic and ultralow adhesive nozzle with cone morphology exhibits the capability to eliminate satellite droplets by cutting the ink filament at breakup point effectively. As a result, the nozzles with different sizes (10-80 μm) are able to print more inks (1 < Z < 38), for which the nozzles are super-ink-phobic and ultralow adhesive, without satellite droplets. The finding presents a new way to remove satellite droplets via designing nozzles with super-ink-phobicity and ultralow adhesion rather than restricting the ink, which has promising applications in printing electronics and biotechnologies.

  2. Gene Overexpression/Suppression Analysis of Candidate Virulence Factors of Candida albicans▿

    PubMed Central

    Fu, Yue; Luo, Guanpingsheng; Spellberg, Brad J.; Edwards, John E.; Ibrahim, Ashraf S.

    2008-01-01

    We developed a conditional overexpression/suppression genetic strategy in Candida albicans to enable simultaneous testing of gain or loss of function in order to identify new virulence factors. The strategy involved insertion of a strong, tetracycline-regulated promoter in front of the gene of interest. To validate the strategy, a library of genes encoding glycosylphosphatidylinositol (GPI)-anchored surface proteins was screened for virulence phenotypes in vitro. During the screening, overexpression of IFF4 was found to increase the adherence of C. albicans to plastic and to human epithelial cells, but not endothelial cells. Consistent with the in vitro results, IFF4 overexpression modestly increased the tissue fungal burden during murine vaginal candidiasis. In addition to the in vitro screening tests, IFF4 overexpression was found to increase C. albicans susceptibility to neutrophil-mediated killing. Furthermore, IFF4 overexpression decreased the severity of hematogenously disseminated candidiasis in normal mice, but not in neutropenic mice, again consistent with the in vitro phenotype. Overexpression of 12 other GPI proteins did not affect normal GPI protein cell surface accumulation, demonstrating that the overexpression strategy did not affect the cell capacity for making such proteins. These data indicate that the same gene can increase or decrease candidal virulence in distinct models of infection, emphasizing the importance of studying virulence genes in different anatomical contexts. Finally, these data validate the use of a conditional overexpression/suppression genetic strategy to identify candidal virulence factors. PMID:18178776

  3. Surface science and model catalysis with ionic liquid-modified materials.

    PubMed

    Steinrück, H-P; Libuda, J; Wasserscheid, P; Cremer, T; Kolbeck, C; Laurin, M; Maier, F; Sobota, M; Schulz, P S; Stark, M

    2011-06-17

    Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nanotubular topography enhances the bioactivity of titanium implants.

    PubMed

    Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan

    2017-08-01

    Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Towards an integrated strategy for monitoring wetland inundation with virtual constellations of optical and radar satellites

    NASA Astrophysics Data System (ADS)

    DeVries, B.; Huang, W.; Huang, C.; Jones, J. W.; Lang, M. W.; Creed, I. F.; Carroll, M.

    2017-12-01

    The function of wetlandscapes in hydrological and biogeochemical cycles is largely governed by surface inundation, with small wetlands that experience periodic inundation playing a disproportionately large role in these processes. However, the spatial distribution and temporal dynamics of inundation in these wetland systems are still poorly understood, resulting in large uncertainties in global water, carbon and greenhouse gas budgets. Satellite imagery provides synoptic and repeat views of the Earth's surface and presents opportunities to fill this knowledge gap. Despite the proliferation of Earth Observation satellite missions in the past decade, no single satellite sensor can simultaneously provide the spatial and temporal detail needed to adequately characterize inundation in small, dynamic wetland systems. Surface water data products must therefore integrate observations from multiple satellite sensors in order to address this objective, requiring the development of improved and coordinated algorithms to generate consistent estimates of surface inundation. We present a suite of algorithms designed to detect surface inundation in wetlands using data from a virtual constellation of optical and radar sensors comprising the Landsat and Sentinel missions (DeVries et al., 2017). Both optical and radar algorithms were able to detect inundation in wetlands without the need for external training data, allowing for high-efficiency monitoring of wetland inundation at large spatial and temporal scales. Applying these algorithms across a gradient of wetlands in North America, preliminary findings suggest that while these fully automated algorithms can detect wetland inundation at higher spatial and temporal resolutions than currently available surface water data products, limitations specific to the satellite sensors and their acquisition strategies are responsible for uncertainties in inundation estimates. Further research is needed to investigate strategies for integrating optical and radar data from virtual constellations, with a focus on reducing uncertainties, maximizing spatial and temporal detail, and establishing consistent records of wetland inundation over time. The findings and conclusions in this article do not necessarily represent the views of the U.S. Government.

  6. Modulating the physicochemical and structural properties of gold-functionalized protein nanotubes through thiol surface modification.

    PubMed

    Carreño-Fuentes, Liliana; Plascencia-Villa, Germán; Palomares, Laura A; Moya, Sergio E; Ramírez, Octavio T

    2014-12-16

    Biomolecules are advantageous scaffolds for the synthesis and ordering of metallic nanoparticles. Rotavirus VP6 nanotubes possess intrinsic affinity to metal ions, a property that has been exploited to synthesize gold nanoparticles over them. The resulting nanobiomaterials have unique properties useful for novel applications. However, the formed nanobiomaterials lack of colloidal stability and flocculate, limiting their functionality. Here we demonstrate that it is possible to synthesize thiol-protected gold nanoparticles over VP6 nanotubes, which resulted in soluble nanobiomaterials. With this strategy, it was possible to modulate the size, colloidal stability, and surface plasmon resonance of the synthesized nanoparticles by controlling the content of the thiolated ligands. Two types of water-soluble ligands were tested, a small linear ligand, sodium 3-mercapto-1-propanesulfonate (MPS), and a bulky ligand, 5-mercaptopentyl β-D-glucopyranoside (GlcC5SH). The synthesized nanobiomaterials had a higher stability in suspension, as determined by Z-potential measurements. To the extent of our knowledge, this is the first time that a rational strategy is developed to modulate the particular properties of metal nanoparticles in situ synthesized over a protein bioscaffold through thiol coating, achieving a high spatial and structural organization of nanoparticles in a single integrative hybrid structure.

  7. Chimeric peptides as implant functionalization agents for titanium alloy implants with antimicrobial properties.

    PubMed

    Yucesoy, Deniz T; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M; Snead, Malcolm L; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMP's), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host- and bacterial- cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with antimicrobial peptides can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, S. mutans, S. epidermidis , and E. coli . In biological interactions such as occurs on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up new possibilities to cover the implant site and tailor it to a desirable bioactivity.

  8. Preparation of Mach-Zehnder interferometric photonic biosensors by inkjet printing technology

    NASA Astrophysics Data System (ADS)

    Strasser, Florian; Melnik, Eva; Muellner, Paul; Jiménez-Meneses, Pilar; Nechvile, Magdalena; Koppitsch, Guenther; Lieberzeit, Peter; Laemmerhofer, Michael; Heer, Rudolf; Hainberger, Rainer

    2017-05-01

    Inkjet printing is a versatile method to apply surface modification procedures in a spatially controlled, cost-effective and mass-fabrication compatible manner. Utilizing this technology, we investigate two different approaches for functionalizing label-free optical waveguide based biosensors: a) surface modification with amine-based functional polymers (biotin-modified polyethylenimine (PEI-B)) employing active ester chemistry and b) modification with dextran based hydrogel thin films employing photoactive benzophenone crosslinker moieties. Whereas the modification with PEI-B ensures high receptor density at the surface, the hydrogel films can serve both as a voluminous matrix binding matrix and as a semipermeable separation layer between the sensor surface and the sample. We use the two surface modification strategies both individually and in combination for binding studies towards the detection of the protein inflammation biomarker, C-reactive protein (CRP). For the specific detection of CRP, we compare two kinds of capture molecules, namely biotinylated antibodies and biotinylated CRP-specific DNA based aptamers. Both kinds of capture molecules were immobilized on the PEI-B by means of streptavidin-biotin affinity binding. As transducer, we use an integrated four-channel silicon nitride (Si3N4) waveguide based Mach-Zehnder interferometric (MZI) photonic sensing platform operating at a wavelength of 850nm (TM-mode).

  9. Quantifying similarity in reliability surfaces using the probability of agreement

    DOE PAGES

    Stevens, Nathaniel T.; Anderson-Cook, Christine Michaela

    2017-03-30

    When separate populations exhibit similar reliability as a function of multiple explanatory variables, combining them into a single population is tempting. This can simplify future predictions and reduce uncertainty associated with estimation. However, combining these populations may introduce bias if the underlying relationships are in fact different. The probability of agreement formally and intuitively quantifies the similarity of estimated reliability surfaces across a two-factor input space. An example from the reliability literature demonstrates the utility of the approach when deciding whether to combine two populations or to keep them as distinct. As a result, new graphical summaries provide strategies formore » visualizing the results.« less

  10. Quantifying similarity in reliability surfaces using the probability of agreement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Nathaniel T.; Anderson-Cook, Christine Michaela

    When separate populations exhibit similar reliability as a function of multiple explanatory variables, combining them into a single population is tempting. This can simplify future predictions and reduce uncertainty associated with estimation. However, combining these populations may introduce bias if the underlying relationships are in fact different. The probability of agreement formally and intuitively quantifies the similarity of estimated reliability surfaces across a two-factor input space. An example from the reliability literature demonstrates the utility of the approach when deciding whether to combine two populations or to keep them as distinct. As a result, new graphical summaries provide strategies formore » visualizing the results.« less

  11. Changes in the tear film and ocular surface from dry eye syndrome.

    PubMed

    Johnson, Michael E; Murphy, Paul J

    2004-07-01

    Dry eye syndrome (DES) refers to a spectrum of ocular surface diseases with diverse and frequently multiple aetiologies. The common feature of the various manifestations of DES is an abnormal tear film. Tear film abnormalities associated with DES are tear deficiency, owing to insufficient supply or excessive loss, and anomalous tear composition. These categorizations are artificial, as in reality both often coexist. DES disrupts the homeostasis of the tear film with its adjacent structures, and adversely affects its ability to perform essential functions such as supporting the ocular surface epithelium and preventing microbial invasion. In addition, whatever the initial trigger, moderate and severe DES is characterized by ocular surface inflammation, which in turn becomes the cause and consequence of cell damage, creating a self-perpetuating cycle of deterioration. Progress has been made in our understanding of the aetiology and pathogenesis of DES, and these advances have encouraged a proliferation of therapeutic options. This article aims to amalgamate prevailing ideas of DES development, and to assist in that, relevant aspects of the structure, function, and production of the tear film are reviewed. Additionally, a synopsis of therapeutic strategies for DES is presented, detailing treatments currently available, and those in development.

  12. Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model

    NASA Astrophysics Data System (ADS)

    Bussy, Cyrill; Hadad, Caroline; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas

    2015-12-01

    Chemically functionalized carbon nanotubes (f-CNTs) have been used in proof-of-concept studies to alleviate debilitating neurological conditions. Previous in vivo observations in brain tissue have suggested that microglia - acting as resident macrophages of the brain - play a critical role in the internalization of f-CNTs and their partial in situ biodegradation following a stereotactic administration in the cortex. At the same time, several reports have indicated that immune cells such as neutrophils, eosinophils and even macrophages could participate in the processing of carbon nanomaterials via oxidation processes leading to degradation, with surface properties acting as modulators of CNT biodegradability. In this study we questioned whether degradability of f-CNTs within microglia could be modulated depending on the type of surface functionalization used. We investigated the kinetics of degradation of multi-walled carbon nanotubes (MWNTs) functionalized via different chemical strategies that were internalized within isolated primary microglia over three months. A cellular model of rat primary microglia that can be maintained in cell culture for a long period of time was first developed. The Raman structural signature of the internalized f-CNTs was then studied directly in cells over a period of up to three months, following a single exposure to a non-cytotoxic concentration of three different f-CNTs (carboxylated, aminated and both carboxylated and aminated). Structural modifications suggesting partial but continuous degradation were observed for all nanotubes irrespective of their surface functionalization. Carboxylation was shown to promote more pronounced structural changes inside microglia over the first two weeks of the study.Chemically functionalized carbon nanotubes (f-CNTs) have been used in proof-of-concept studies to alleviate debilitating neurological conditions. Previous in vivo observations in brain tissue have suggested that microglia - acting as resident macrophages of the brain - play a critical role in the internalization of f-CNTs and their partial in situ biodegradation following a stereotactic administration in the cortex. At the same time, several reports have indicated that immune cells such as neutrophils, eosinophils and even macrophages could participate in the processing of carbon nanomaterials via oxidation processes leading to degradation, with surface properties acting as modulators of CNT biodegradability. In this study we questioned whether degradability of f-CNTs within microglia could be modulated depending on the type of surface functionalization used. We investigated the kinetics of degradation of multi-walled carbon nanotubes (MWNTs) functionalized via different chemical strategies that were internalized within isolated primary microglia over three months. A cellular model of rat primary microglia that can be maintained in cell culture for a long period of time was first developed. The Raman structural signature of the internalized f-CNTs was then studied directly in cells over a period of up to three months, following a single exposure to a non-cytotoxic concentration of three different f-CNTs (carboxylated, aminated and both carboxylated and aminated). Structural modifications suggesting partial but continuous degradation were observed for all nanotubes irrespective of their surface functionalization. Carboxylation was shown to promote more pronounced structural changes inside microglia over the first two weeks of the study. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06625e

  13. Analysis strategies for high-resolution UHF-fMRI data.

    PubMed

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Surface polyPEGylation of Eu3+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-01

    The Eu3+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu3+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated ATRP. As compared with the traditional ATRP, the metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts such as copper ions. More importantly, the strategy described in this work should also be utilized for fabrications of many other luminescent polymer nanocomposites due to its good monomer adoptability.

  15. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yihuang; Wang, Zewei; He, Yanjie; Yoon, Young Jun; Jung, Jaehan; Zhang, Guangzhao; Lin, Zhiqun

    2018-02-01

    The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology.

  16. Controlling the cell adhesion property of silk films by graft polymerization.

    PubMed

    Dhyani, Vartika; Singh, Neetu

    2014-04-09

    We report here a graft polymerization method to improve the cell adhesion property of Bombyx mori silk fibroin films. B. mori silk has evolved as a promising material for tissue engineering because of its biocompatibility and biodegradability. However, silk's hydrophobic character makes cell adhesion and proliferation difficult. Also, the lack of sufficient reactive amino acid residues makes biofunctionalization via chemical modification challenging. Our study describes a simple method that provides increased chemical handles for tuning of the surface chemistry of regenerated silk films (SFs), thus allowing manipulation of their bioactivity. By grafting pAAc and pHEMA via plasma etching, we have increased carboxylic acid and hydroxyl groups on silk, respectively. These modifications allowed us to tune the hydrophilicity of SFs and provide functional groups for bioconjugation. Our strategy also allowed us to develop silk-based surface coatings, where spatial control over cell adhesion can be achieved. This control over cell adhesion in a particular region of the SFs is difficult to obtain via existing methods of modifying the silk fibroin instead of the SF surface. Thus, our strategy will be a valuable addition to the toolkit of biofunctionalization for enhancing SFs' tissue engineering applications.

  17. Controlled interaction: strategies for using virtual reality to study perception.

    PubMed

    Durgin, Frank H; Li, Zhi

    2010-05-01

    Immersive virtual reality systems employing head-mounted displays offer great promise for the investigation of perception and action, but there are well-documented limitations to most virtual reality systems. In the present article, we suggest strategies for studying perception/action interactions that try to depend on both scale-invariant metrics (such as power function exponents) and careful consideration of the requirements of the interactions under investigation. New data concerning the effect of pincushion distortion on the perception of surface orientation are presented, as well as data documenting the perception of dynamic distortions associated with head movements with uncorrected optics. A review of several successful uses of virtual reality to study the interaction of perception and action emphasizes scale-free analysis strategies that can achieve theoretical goals while minimizing assumptions about the accuracy of virtual simulations.

  18. Synthesis and characterization of transition metal oxide/sulfide nanostructures for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Yilmaz, Gamze

    This thesis is essentially oriented to develop low-cost nanostructured transition metal (nickel and vanadium) oxides and sulfides with high energy density, power density and electrochemical stability via strategies of structural design, hybridization, functionalization and surface engineering. Metal oxide and metal oxide/sulfide hybrid nanostructures in several designs, including hierarchical porous nanostructures, hollow polyhedrons, nanocubes, nanoframes, octopod nanoframes, and nanocages, were synthesized to study the contribution of structural design, compositional engineering, functionalization and surface engineering to the electrochemical properties of the materials. Modulated compositional and structural features disclosed the opportunities of large accessible active sites, facile ion transport, robustness and enhanced electrical conductivity. The best electrochemical performance with merits of highest energy density (38.9 Wh kg-1), power density (7.4 kW kg-1) and electrochemical stability (90.9% after 10000 cycles) was obtained for nickel cobalt layered double hydroxide/cobalt sulfide (NiCo-LDH/Co9S8) hybrid hollow polyhedron structure.

  19. Backfilling-Free Strategy for Biopatterning on Intrinsically Dual-Functionalized Poly[2-Aminoethyl Methacrylate-co-Oligo(Ethylene Glycol) Methacrylate] Films.

    PubMed

    Lee, Bong Soo; Lee, Juno; Han, Gyeongyeop; Ha, EunRae; Choi, Insung S; Lee, Jungkyu K

    2016-07-20

    We demonstrated protein and cellular patterning with a soft lithography technique using poly[2-aminoethyl methacrylate-co-oligo(ethylene glycol) methacrylate] films on gold surfaces without employing a backfilling process. The backfilling process plays an important role in successfully generating biopatterns; however, it has potential disadvantages in several interesting research and technical applications. To overcome the issue, a copolymer system having highly reactive functional groups and bioinert properties was introduced through a surface-initiated controlled radical polymerization with 2-aminoethyl methacrylate hydrochloride (AMA) and oligo(ethylene glycol) methacrylate (OEGMA). The prepared poly(AMA-co-OEGMA) film was fully characterized, and among the films having different thicknesses, the 35 nm-thick biotinylated, poly(AMA-co-OEGMA) film exhibited an optimum performance, such as the lowest nonspecific adsorption and the highest specific binding capability toward proteins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vörös, Márton; Brawand, Nicholas P.; Galli, Giulia

    Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial formore » charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Lastly, our findings suggest that postsynthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films.« less

  1. Micropatterning stretched and aligned DNA using microfluidics and surface patterning for applications in hybridization-mediated templated assembly of nanostructures

    NASA Astrophysics Data System (ADS)

    Carbeck, Jeffrey; Petit, Cecilia

    2004-03-01

    Current efforts in nanotechnology use one of two basic approaches: top-down fabrication and bottom-up assembly. Top-down strategies use lithography and contact printing to create patterned surfaces and microfluidic channels that, in turn, can corral and organize nanoscale structures. Bottom-up approaches use templates to direct the assembly of atoms, molecules, and nanoparticles through molecular recognition. The goal of this work is to integrate these strategies by first patterning and orienting DNA molecules through top-down tools so that single DNA chains can then serve as templates for the bottom-up construction of hetero-structures composed of proteins and nanoparticles, both metallic and semi-conducting. The first part of this talk focuses on the top-down strategies used to create microscopic patterns of stretched and aligned molecules of DNA. Specifically, it presents a new method in which molecular combing -- a process by which molecules are deposited and stretched onto a surface by the passage of an air-water interface -- is performed in microchannels. This approach demonstrates that the shape and motion of this interface serve as an effective local field directing the chains dynamically as they are stretched onto the surface. The geometry of the microchannel directs the placement of the DNA molecules, while the geometry of the air-water interface directs the local orientation and curvature of the molecules. This ability to control both the placement and orientation of chains has implication for the use of this technique in genetic analysis and in the bottom up approach to nanofabrication.The second half of this talk presents our bottom-up strategy, which allows placement of nanoparticles along individual DNA chains with a theoretical resolution of less than 1 nm. Specifically, we demonstrate the sequence-specific patterning of nanoparticles via the hybridization of functionalized complementary probes to surface-bound chains of double-stranded DNA. Using this technique, we demonstrate the ability to assemble metals, semiconductors, and a composite of both on a single molecule.

  2. Comparative study of singlet oxygen production by photosensitiser dyes encapsulated in silicone: towards rational design of anti-microbial surfaces.

    PubMed

    Noimark, Sacha; Salvadori, Enrico; Gómez-Bombarelli, Rafael; MacRobert, Alexander J; Parkin, Ivan P; Kay, Christopher W M

    2016-10-12

    Surfaces with built-in antimicrobial activity have the potential to reduce hospital-acquired infections. One promising strategy is to create functionalised surfaces which, following illumination with visible light, are able to generate singlet oxygen under aerobic conditions. In contrast to antibiotics, the mechanism of bacterial kill by species derived from reactions with singlet oxygen is completely unselective, therefore offering little room for evolutionary adaptation. Here we consider five commercially available organic photosensitiser dyes encapsulated in silicone polymer that show varied antimicrobial activity. We correlate density functional theory calculations with UV-Vis spectroscopy, electron paramagnetic resonance spectroscopy and singlet oxygen production measurements in order to define and test the elements required for efficacious antimicrobial activity. Our approach forms the basis for the rational in silico design and spectroscopic screening of simple and efficient self-sterilising surfaces made from cheap, low toxicity photosensitiser dyes encapsulated in silicone.

  3. Communication: A combined periodic density functional and incremental wave-function-based approach for the dispersion-accounting time-resolved dynamics of ⁴He nanodroplets on surfaces: ⁴He/graphene.

    PubMed

    de Lara-Castells, María Pilar; Stoll, Hermann; Civalleri, Bartolomeo; Causà, Mauro; Voloshina, Elena; Mitrushchenkov, Alexander O; Pi, Martí

    2014-10-21

    In this work we propose a general strategy to calculate accurate He-surface interaction potentials. It extends the dispersionless density functional approach recently developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] to adsorbate-surface interactions by including periodic boundary conditions. We also introduce a scheme to parametrize the dispersion interaction by calculating two- and three-body dispersion terms at coupled cluster singles and doubles and perturbative triples (CCSD(T)) level via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. The performance of the composite approach is tested on (4)He/graphene by determining the energies of the low-lying selective adsorption states, finding an excellent agreement with the best available theoretical data. Second, the capability of the approach to describe dispersionless correlation effects realistically is used to extract dispersion effects in time-dependent density functional simulations on the collision of (4)He droplets with a single graphene sheet. It is found that dispersion effects play a key role in the fast spreading of the (4)He nanodroplet, the evaporation-like process of helium atoms, and the formation of solid-like helium structures. These characteristics are expected to be quite general and highly relevant to explain experimental measurements with the newly developed helium droplet mediated deposition technique.

  4. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes

    NASA Astrophysics Data System (ADS)

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude M.; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer; Turetsky, Merritt R.; McGuire, A. David; Shah, Manesh B.; Verberkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K.

    2015-05-01

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular `omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  5. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.

    PubMed

    Hultman, Jenni; Waldrop, Mark P; Mackelprang, Rachel; David, Maude M; McFarland, Jack; Blazewicz, Steven J; Harden, Jennifer; Turetsky, Merritt R; McGuire, A David; Shah, Manesh B; VerBerkmoes, Nathan C; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K

    2015-05-14

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  6. Mapping the Moho with seismic surface waves: Sensitivity, resolution, and recommended inversion strategies

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergei; Adam, Joanne; Meier, Thomas

    2013-04-01

    Seismic surface waves have been used to study the Earth's crust since the early days of modern seismology. In the last decade, surface-wave crustal imaging has been rejuvenated by the emergence of new, array techniques (ambient-noise and teleseismic interferometry). The strong sensitivity of both Rayleigh and Love waves to the Moho is evident from a mere visual inspection of their dispersion curves or waveforms. Yet, strong trade-offs between the Moho depth and crustal and mantle structure in surface-wave inversions have prompted doubts regarding their capacity to resolve the Moho. Although the Moho depth has been an inversion parameter in numerous surface-wave studies, the resolution of Moho properties yielded by a surface-wave inversion is still somewhat uncertain and controversial. We use model-space mapping in order to elucidate surface waves' sensitivity to the Moho depth and the resolution of their inversion for it. If seismic wavespeeds within the crust and upper mantle are known, then Moho-depth variations of a few kilometres produce large (over 1 per cent) perturbations in phase velocities. However, in inversions of surface-wave data with no a priori information (wavespeeds not known), strong Moho-depth/shear-speed trade-offs will mask about 90 per cent of the Moho-depth signal, with remaining phase-velocity perturbations 0.1-0.2 per cent only. In order to resolve the Moho with surface waves alone, errors in the data must thus be small (up to 0.2 per cent for resolving continental Moho). If the errors are larger, Moho-depth resolution is not warranted and depends on error distribution with period, with errors that persist over broad period ranges particularly damaging. An effective strategy for the inversion of surface-wave data alone for the Moho depth is to, first, constrain the crustal and upper-mantle structure by inversion in a broad period range and then determine the Moho depth in inversion in a narrow period range most sensitive to it, with the first-step results used as reference. We illustrate this strategy with an application to data from the Kaapvaal Craton. Prior information on crustal and mantle structure reduces the trade-offs and thus enables resolving the Moho depth with noisier data; such information should be sought and used whenever available (as has been done, explicitly or implicitly, in many previous studies). Joint analysis or inversion of surface-wave and other data (receiver functions, topography, gravity) can reduce uncertainties further and facilitate Moho mapping. Alone or as a part of multi-disciplinary datasets, surface-wave data offer unique sensitivity to the crustal and upper-mantle structure and are becoming increasingly important in the seismic imaging of the crust and the Moho. Reference Lebedev, S., J. Adam, T. Meier. Mapping the Moho with seismic surface waves: A review, resolution analysis, and recommended inversion strategies. Tectonophysics, "Moho" special issue, 10.1016/j.tecto.2012.12.030, 2013.

  7. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents

    PubMed Central

    Wang, Fenglin; Li, Chengyao; Cheng, Jing; Yuan, Zhiqin

    2016-01-01

    Inorganic nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization and excellent biocompatibility. This review focuses on the discussion of several types of inorganic nanoparticle-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, upconversion nanoparticles and mesoporous silica nanoparticles. Several cancer therapy techniques are briefly introduced at the beginning. Emphasis is placed on how these inorganic nanoparticles can provide enhanced therapeutic efficacy in cancer treatment through site-specific accumulation, targeted drug delivery and stimulated drug release, with elaborations on several examples to highlight the respective strategies adopted. Finally, a brief summary and future challenges are included. PMID:27898016

  8. OVERGRID: A Unified Overset Grid Generation Graphical Interface

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Akien, Edwin W. (Technical Monitor)

    1999-01-01

    This paper presents a unified graphical interface and gridding strategy for performing overset grid generation. The interface called OVERGRID has been specifically designed to follow an efficient overset gridding strategy, and contains general grid manipulation capabilities as well as modules that are specifically suited for overset grids. General grid utilities include functions for grid redistribution, smoothing, concatenation, extraction, extrapolation, projection, and many others. Modules specially tailored for overset grids include a seam curve extractor, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, and a Cartesian box grid generator, Grid visualization is achieved using OpenGL while widgets are constructed with Tcl/Tk. The software is portable between various platforms from UNIX workstations to personal computers.

  9. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents.

    PubMed

    Wang, Fenglin; Li, Chengyao; Cheng, Jing; Yuan, Zhiqin

    2016-11-25

    Inorganic nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization and excellent biocompatibility. This review focuses on the discussion of several types of inorganic nanoparticle-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, upconversion nanoparticles and mesoporous silica nanoparticles. Several cancer therapy techniques are briefly introduced at the beginning. Emphasis is placed on how these inorganic nanoparticles can provide enhanced therapeutic efficacy in cancer treatment through site-specific accumulation, targeted drug delivery and stimulated drug release, with elaborations on several examples to highlight the respective strategies adopted. Finally, a brief summary and future challenges are included.

  10. Modulation of protein stability and aggregation properties by surface charge engineering.

    PubMed

    Raghunathan, Govindan; Sokalingam, Sriram; Soundrarajan, Nagasundarapandian; Madan, Bharat; Munussami, Ganapathiraman; Lee, Sun-Gu

    2013-09-01

    An attempt to alter protein surface charges through traditional protein engineering approaches often affects the native protein structure significantly and induces misfolding. This limitation is a major hindrance in modulating protein properties through surface charge variations. In this study, as a strategy to overcome such a limitation, we attempted to co-introduce stabilizing mutations that can neutralize the destabilizing effect of protein surface charge variation. Two sets of rational mutations were designed; one to increase the number of surface charged amino acids and the other to decrease the number of surface charged amino acids by mutating surface polar uncharged amino acids and charged amino acids, respectively. These two sets of mutations were introduced into Green Fluorescent Protein (GFP) together with or without stabilizing mutations. The co-introduction of stabilizing mutations along with mutations for surface charge modification allowed us to obtain functionally active protein variants (s-GFP(+15-17) and s-GFP(+5-6)). When the protein properties such as fluorescent activity, folding rate and kinetic stability were assessed, we found the possibility that the protein stability can be modulated independently of activity and folding by engineering protein surface charges. The aggregation properties of GFP could also be altered through the surface charge engineering.

  11. Cell surface engineering with polyelectrolyte multilayer thin films.

    PubMed

    Wilson, John T; Cui, Wanxing; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Pan, Di; Qu, Zheng; Krishnamurthy, Venkata R; Mets, Joseph; Kumar, Vivek; Wen, Jing; Song, Yuhua; Tsukruk, Vladimir V; Chaikof, Elliot L

    2011-05-11

    Layer-by-layer assembly of polyelectrolyte multilayer (PEM) films represents a bottom-up approach for re-engineering the molecular landscape of cell surfaces with spatially continuous and molecularly uniform ultrathin films. However, fabricating PEMs on viable cells has proven challenging owing to the high cytotoxicity of polycations. Here, we report the rational engineering of a new class of PEMs with modular biological functionality and tunable physicochemical properties which have been engineered to abrogate cytotoxicity. Specifically, we have discovered a subset of cationic copolymers that undergoes a conformational change, which mitigates membrane disruption and facilitates the deposition of PEMs on cell surfaces that are tailorable in composition, reactivity, thickness, and mechanical properties. Furthermore, we demonstrate the first successful in vivo application of PEM-engineered cells, which maintained viability and function upon transplantation and were used as carriers for in vivo delivery of PEMs containing biomolecular payloads. This new class of polymeric film and the design strategies developed herein establish an enabling technology for cell transplantation and other therapies based on engineered cells. © 2011 American Chemical Society

  12. Bio-inspired formation of functional calcite/metal oxide nanoparticle composites.

    PubMed

    Kim, Yi-Yeoun; Schenk, Anna S; Walsh, Dominic; Kulak, Alexander N; Cespedes, Oscar; Meldrum, Fiona C

    2014-01-21

    Biominerals are invariably composite materials, where occlusion of organic macromolecules within single crystals can significantly modify their properties. In this article, we take inspiration from this biogenic strategy to generate composite crystals in which magnetite (Fe3O4) and zincite (ZnO) nanoparticles are embedded within a calcite single crystal host, thereby endowing it with new magnetic or optical properties. While growth of crystals in the presence of small molecules, macromolecules and particles can lead to their occlusion within the crystal host, this approach requires particles with specific surface chemistries. Overcoming this limitation, we here precipitate crystals within a nanoparticle-functionalised xyloglucan gel, where gels can also be incorporated within single crystals, according to their rigidity. This method is independent of the nanoparticle surface chemistry and as the gel maintains its overall structure when occluded within the crystal, the nanoparticles are maintained throughout the crystal, preventing, for example, their movement and accumulation at the crystal surface during crystal growth. This methodology is expected to be quite general, and could be used to endow a wide range of crystals with new functionalities.

  13. Elemental and compound semiconductor surface chemistry: Intelligent interfacial design facilitated through novel functionalization and deposition strategies

    NASA Astrophysics Data System (ADS)

    Porter, Lon Alan, Jr.

    The fundamental understanding of silicon surface chemistry is an essential tool for silicon's continued dominance of the semiconductor industry in the years to come. By tapping into the vast library of organic functionalities, the synthesis of organic monolayers may be utilized to prepare interfaces, tailored to a myriad of applications ranging from silicon VLSI device optimization and MEMS to physiological implants and chemical sensors. Efforts in our lab to form stable organic monolayers on porous silicon through direct silicon-carbon linkages have resulted in several efficient functionalization methods. In the first chapter of this thesis a comprehensive review of these methods, and many others is presented. The following chapter and the appendix serve to demonstrate both potential applications and studies aimed at developing a fundamental understanding of the chemistry behind the organic functionalization of silicon surfaces. The remainder of this thesis attempts to demonstrate new methods of metal deposition onto both elemental and compound semiconductor surfaces. Currently, there is considerable interest in producing patterned metallic structures with reduced dimensions for use in technologies such as ULSI device fabrication, MEMS, and arrayed nanosensors, without sacrificing throughput or cost effectiveness. Research in our laboratory has focused on the preparation of precious metal thin films on semiconductor substrates via electroless deposition. Continuous metallic films form spontaneously under ambient conditions, in the absence of a fluoride source or an externally applied current. In order to apply this metallization method toward the development of useful technologies, patterning utilizing photolithography, microcontact printing, and scanning probe nanolithography has been demonstrated.

  14. Engineering On-Surface Spin Crossover: Spin-State Switching in a Self-Assembled Film of Vacuum-Sublimable Functional Molecule.

    PubMed

    Kumar, Kuppusamy Senthil; Studniarek, Michał; Heinrich, Benoît; Arabski, Jacek; Schmerber, Guy; Bowen, Martin; Boukari, Samy; Beaurepaire, Eric; Dreiser, Jan; Ruben, Mario

    2018-03-01

    The realization of spin-crossover (SCO)-based applications requires study of the spin-state switching characteristics of SCO complex molecules within nanostructured environments, especially on surfaces. Except for a very few cases, the SCO of a surface-bound thin molecular film is either quenched or heavily altered due to: (i) molecule-surface interactions and (ii) differing intermolecular interactions in films relative to the bulk. By fabricating SCO complexes on a weakly interacting surface, the interfacial quenching problem is tackled. However, engineering intermolecular interactions in thin SCO active films is rather difficult. Here, a molecular self-assembly strategy is proposed to fabricate thin spin-switchable surface-bound films with programmable intermolecular interactions. Molecular engineering of the parent complex system [Fe(H 2 B(pz) 2 ) 2 (bpy)] (pz = pyrazole, bpy = 2,2'-bipyridine) with a dodecyl (C 12 ) alkyl chain yields a classical amphiphile-like functional and vacuum-sublimable charge-neutral Fe II complex, [Fe(H 2 B(pz) 2 ) 2 (C 12 -bpy)] (C 12 -bpy = dodecyl[2,2'-bipyridine]-5-carboxylate). Both the bulk powder and 10 nm thin films sublimed onto either quartz glass or SiO x surfaces of the complex show comparable spin-state switching characteristics mediated by similar lamellar bilayer like self-assembly/molecular interactions. This unprecedented observation augurs well for the development of SCO-based applications, especially in molecular spintronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics.

    PubMed

    Gadelha, Catarina; Zhang, Wenzhu; Chamberlain, James W; Chait, Brian T; Wickstead, Bill; Field, Mark C

    2015-07-01

    Surface membrane organization and composition is key to cellular function, and membrane proteins serve many essential roles in endocytosis, secretion, and cell recognition. The surface of parasitic organisms, however, is a double-edged sword; this is the primary interface between parasites and their hosts, and those crucial cellular processes must be carried out while avoiding elimination by the host immune defenses. For extracellular African trypanosomes, the surface is partitioned such that all endo- and exocytosis is directed through a specific membrane region, the flagellar pocket, in which it is thought the majority of invariant surface proteins reside. However, very few of these proteins have been identified, severely limiting functional studies, and hampering the development of potential treatments. Here we used an integrated biochemical, proteomic and bioinformatic strategy to identify surface components of the human parasite Trypanosoma brucei. This surface proteome contains previously known flagellar pocket proteins as well as multiple novel components, and is significantly enriched in proteins that are essential for parasite survival. Molecules with receptor-like properties are almost exclusively parasite-specific, whereas transporter-like proteins are conserved in model organisms. Validation shows that the majority of surface proteome constituents are bona fide surface-associated proteins and, as expected, most present at the flagellar pocket. Moreover, the largest systematic analysis of trypanosome surface molecules to date provides evidence that the cell surface is compartmentalized into three distinct domains with free diffusion of molecules in each, but selective, asymmetric traffic between. This work provides a paradigm for the compartmentalization of a cell surface and a resource for its analysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids.

    PubMed

    Tang, Qian; Li, Zai-Yong; Wei, Yu-Bo; Yang, Xia; Liu, Lan-Tao; Gong, Cheng-Bin; Ma, Xue-Bing; Lam, Michael Hon-Wah; Chow, Cheuk-Fai

    2016-09-01

    A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22×10(-5)M in aqueous NaH2PO4 buffer at pH=7.0 and a maximal adsorption capacity of 1.45μmolg(-1). Upon alternate irradiation at 365 and 440nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Responsive 3D microstructures from virus building blocks.

    PubMed

    Oh, Seungwhan; Kwak, Eun-A; Jeon, Seongho; Ahn, Suji; Kim, Jong-Man; Jaworski, Justyn

    2014-08-13

    Fabrication of 3D biological structures reveals dynamic response to external stimuli. A liquid-crystalline bridge extrusion technique is used to generate 3D structures allowing the capture of Rayleigh-like instabilities, facilitating customization of smooth, helical, or undulating periodic surface textures. By integrating intrinsic biochemical functionality and synthetic components into controlled structures, this strategy offers a new form of adaptable materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Army LEED-Certified Projects, August 2008 - January 2011

    DTIC Science & Technology

    2011-06-01

    functions, conference room, kitchen , bathrooms, foyer, maintenance shed, patio/courtyard, playground, and surface parking lot. StRatEgiES anD RESuLtS This... kitchen assist with the reduction in potable water use for the building. The building employs a number of environmentally preferable products and...of two bedrooms, a kitchen , and bathroom. In total, the five building complex can provide housing for up to 1,840 soldiers. The five buildings were

  19. The Mechanosensitive Ca2+ Channel as a Central Regular of Prostate Tumor Cell Migration and Invasiveness

    DTIC Science & Technology

    2011-04-01

    activation still needs to be determined (Strotmann et al. 2000). 7.2.4 The Use of MS Enzyme Inhibitors A further strategy for implicating potential MS...invasiveness and metastatic potential . 1.1 Use patch-clamp/pressure clamp techniques, confocal immunofluorescence, Westerns and surface biotinylation...9. Maroto, R. Kurosky, A. Hamill, O.P. Expression and function of canonical transient recptor potential channels in human prostate tumor cells

  20. Surface, Deep, and Transfer? Considering the Role of Content Literacy Instructional Strategies

    ERIC Educational Resources Information Center

    Frey, Nancy; Fisher, Douglas; Hattie, John

    2017-01-01

    This article provides an organizational review of content literacy instructional strategies to forward a claim that some strategies work better for surface learning, whereas others are more effective for deep learning and still others for transfer learning. The authors argue that the failure to adopt content literacy strategies by disciplinary…

  1. Functionalization of graphene for efficient energy conversion and storage.

    PubMed

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious application of these site-selective reactions to graphene sheets has opened up a rich field of graphene-based energy materials with enhanced performance in energy conversion and storage. These results reveal the versatility of surface functionalization for making sophisticated graphene materials for energy applications. Even though many covalent and noncovalent functionalization methods have already been reported, vast opportunities remain for developing novel graphene materials for highly efficient energy conversion and storage systems.

  2. A 3D quantitative comparison of trapezium and trapezoid relative articular and nonarticular surface areas in modern humans and great apes.

    PubMed

    Tocheri, M W; Razdan, A; Williams, R C; Marzke, M W

    2005-11-01

    The structure and functions of the modern human hand are critical components of what distinguishes Homo sapiens from the great apes (Gorilla, Pan, and Pongo). In this study, attention is focused on the trapezium and trapezoid, the two most lateral bones of the distal carpal row, in the four extant hominid genera, representing the first time they have been quantified and analyzed together as a morphological-functional complex. Our objective is to quantify the relative articular and nonarticular surface areas of these two bones and to test whether modern humans exhibit significant shape differences from the great apes, as predicted by previous qualitative analyses and the functional demands of differing manipulative and locomotor strategies. Modern humans were predicted to show larger relative first metacarpal and scaphoid surfaces on the trapezium because of the regular recruitment of the thumb during manipulative behaviors; alternatively, great apes were predicted to show larger relative second metacarpal and scaphoid surfaces on the trapezoid because of the functional demands on the hands during locomotor behaviors. Modern humans were also expected to exhibit larger relative mutual joint surfaces between the trapezoid and adjacent carpals than do the great apes because of assumed transverse loads generated by the functional demands of the modern human power grip. Using 3D bone models acquired through laser digitizing, the relative articular and nonarticular areas on each bone are quantified and compared. Multivariate analyses of these data clearly distinguish modern humans from the great apes. In total, the observed differences between modern humans and the great apes support morphological predictions based on the fact that this region of the human wrist is no longer involved in weight-bearing during locomotor behavior and is instead recruited solely for manipulative behaviors. The results provide the beginnings of a 3D comparative standard against which further extant and fossil primate wrist bones can be compared within the contexts of manipulative and locomotor behaviors.

  3. Mechanism Responsible for Intercalation of Dimethyl Sulfoxide in Kaolinite: Molecular Dynamics Simulations.

    PubMed

    Zhang, Shuai; Liu, Qinfu; Cheng, Hongfei; Gao, Feng; Liu, Cun; Teppen, Brian J

    2018-01-01

    Intercalation is the promising strategy to expand the interlayer region of kaolinite for their further applications. Herein, the adaptive biasing force (ABF) accelerated molecular dynamics simulations were performed to calculate the free energies involved in the kaolinite intercalation by dimethyl sulfoxide (DMSO). Additionally, the classical all atom molecular dynamics simulations were carried out to calculate the interfacial interactions between kaolinite interlayer surfaces and DMSO with the aim at exploring the underlying force that drives the DMSO to enter the interlayer space. The results showed that the favorable interaction of DMSO with both kaolinite interlayer octahedral surface and tetrahedral surface can help in introducing DMSO enter kaolinite interlayer. The hydroxyl groups on octahedral surface functioned as H-donors attracting the S=O groups of DMSO through hydrogen bonding interaction. The tetrahedral surface featuring hydrophobic property attracted the methyl groups of DMSO through hydrophobic interaction. The results provided a detailed picture of the energetics and interlayer structure of kaolinite-DMSO intercalate.

  4. Engineering the Band Gap States of the Rutile TiO2 (110) Surface by Modulating the Active Heteroatom.

    PubMed

    Yu, Yaoguang; Yang, Xu; Zhao, Yanling; Zhang, Xiangbin; An, Liang; Huang, Miaoyan; Chen, Gang; Zhang, Ruiqin

    2018-04-19

    Introducing band gap states to TiO 2 photocatalysts is an efficient strategy for expanding the range of accessible energy available in the solar spectrum. However, few approaches are able to introduce band gap states and improve photocatalytic performance simultaneously. Introducing band gap states by creating surface disorder can incapacitate reactivity where unambiguous adsorption sites are a prerequisite. An alternative method for introduction of band gap states is demonstrated in which selected heteroatoms are implanted at preferred surface sites. Theoretical prediction and experimental verification reveal that the implanted heteroatoms not only introduce band gap states without creating surface disorder, but also function as active sites for the Cr VI reduction reaction. This promising approach may be applicable to the surfaces of other solar harvesting materials where engineered band gap states could be used to tune photophysical and -catalytic properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A review of molecular phase separation in binary self-assembled monolayers of thiols on gold surfaces

    NASA Astrophysics Data System (ADS)

    Ong, Quy; Nianias, Nikolaos; Stellacci, Francesco

    2017-09-01

    Binary self-assembled monolayers (SAMs) on gold surfaces have been known to undergo molecular phase separation to various degrees and have been subject to both experimental and theoretical studies. On gold nanoparticles in particular, binary SAMs ligand shells display intriguing morphologies. Consequently, unexpected behaviors of the nanoparticles with respect to their biological, chemical, and interfacial properties have been observed. It is critical that the phase separation of binary SAMs be understood at both molecular and macroscopic level to create, and then manipulate, the useful properties of the functionalized surfaces. We look into the current understanding of molecular phase separation of binary SAMs on gold surfaces, represented by Au(111) flat surfaces and Au nanoparticles, from both theoretical and experimental aspects. We point out shortcomings and describe several research strategies that will address them in the future. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Pule Pileni.

  6. Ocean surface partitioning strategies using ocean colour remote Sensing: A review

    NASA Astrophysics Data System (ADS)

    Krug, Lilian Anne; Platt, Trevor; Sathyendranath, Shubha; Barbosa, Ana B.

    2017-06-01

    The ocean surface is organized into regions with distinct properties reflecting the complexity of interactions between environmental forcing and biological responses. The delineation of these functional units, each with unique, homogeneous properties and underlying ecosystem structure and dynamics, can be defined as ocean surface partitioning. The main purposes and applications of ocean partitioning include the evaluation of particular marine environments; generation of more accurate satellite ocean colour products; assimilation of data into biogeochemical and climate models; and establishment of ecosystem-based management practices. This paper reviews the diverse approaches implemented for ocean surface partition into functional units, using ocean colour remote sensing (OCRS) data, including their purposes, criteria, methods and scales. OCRS offers a synoptic, high spatial-temporal resolution, multi-decadal coverage of bio-optical properties, relevant to the applications and value of ocean surface partitioning. In combination with other biotic and/or abiotic data, OCRS-derived data (e.g., chlorophyll-a, optical properties) provide a broad and varied source of information that can be analysed using different delineation methods derived from subjective, expert-based to unsupervised learning approaches (e.g., cluster, fuzzy and empirical orthogonal function analyses). Partition schemes are applied at global to mesoscale spatial coverage, with static (time-invariant) or dynamic (time-varying) representations. A case study, the highly heterogeneous area off SW Iberian Peninsula (NE Atlantic), illustrates how the selection of spatial coverage and temporal representation affects the discrimination of distinct environmental drivers of phytoplankton variability. Advances in operational oceanography and in the subject area of satellite ocean colour, including development of new sensors, algorithms and products, are among the potential benefits from extended use, scope and applications of ocean surface partitioning using OCRS.

  7. Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method.

    PubMed

    Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua

    2014-08-01

    Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.

  8. Structural and functional analysis of the YAP-binding domain of human TEAD2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Wei; Yu, Jianzhong; Tomchick, Diana R.

    2010-06-15

    The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like {beta}-sandwich fold with two extra helix-turn-helixmore » inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.« less

  9. Tales from the tomb: the microbial ecology of exposed rock surfaces.

    PubMed

    Brewer, Tess E; Fierer, Noah

    2018-03-01

    Although a broad diversity of eukaryotic and bacterial taxa reside on rock surfaces where they can influence the weathering of rocks and minerals, these communities and their contributions to mineral weathering remain poorly resolved. To build a more comprehensive understanding of the diversity, ecology and potential functional attributes of microbial communities living on rock, we sampled 149 tombstones across three continents and analysed their bacterial and eukaryotic communities via marker gene and shotgun metagenomic sequencing. We found that geographic location and climate were important factors structuring the composition of these communities. Moreover, the tombstone-associated microbial communities varied as a function of rock type, with granite and limestone tombstones from the same cemeteries harbouring taxonomically distinct microbial communities. The granite and limestone-associated communities also had distinct functional attributes, with granite-associated bacteria having more genes linked to acid tolerance and chemotaxis, while bacteria on limestone were more likely to be lichen associated and have genes involved in photosynthesis and radiation resistance. Together these results indicate that rock-dwelling microbes exhibit adaptations to survive the stresses of the rock surface, differ based on location, climate and rock type, and seem pre-disposed to different ecological strategies (symbiotic versus free-living lifestyles) depending on the rock type. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method

    NASA Astrophysics Data System (ADS)

    Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua

    2014-08-01

    Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.

  11. Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation

    NASA Astrophysics Data System (ADS)

    Dumée, Ludovic F.; Yi, Zhifeng; Tardy, Blaise; Merenda, Andrea; Des Ligneris, Elise; Dagastine, Ray R.; Kong, Lingxue

    2017-03-01

    Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications.

  12. Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation

    PubMed Central

    Dumée, Ludovic F.; Yi, Zhifeng; Tardy, Blaise; Merenda, Andrea; des Ligneris, Elise; Dagastine, Ray R.; Kong, Lingxue

    2017-01-01

    Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications. PMID:28332602

  13. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer?

    NASA Astrophysics Data System (ADS)

    Carrião, Marcus S.; Bakuzis, Andris F.

    2016-04-01

    The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy.The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy. Electronic supplementary information (ESI) available: Unit cells per region calculation; core-shell Hamiltonian; magnetisation description functions; energy argument of Brillouin function; polydisperse models; details of experimental procedure; LRT versus core-shell model; model calculation software; and shell thickness study. See DOI: 10.1039/C5NR09093H

  14. Surface functionalization of titanium dioxide nanoparticles: Photo-stability and reactive oxygen species (ROS) generation

    NASA Astrophysics Data System (ADS)

    Louis, Kacie M.

    Metal oxide nanoparticles are becoming increasingly prevalent in society for applications of sunscreens, cosmetics, paints, biomedical imaging, and photovoltaics. Due to the increased surface area to volume ratio of nanoparticles compared to bulk materials, it is important to know the health and safety impacts of these materials. One mechanism of toxicity of nominally "safe" materials such as TiO 2 is through the photocatalytic generation of reactive oxygen species (ROS). ROS production and ligand degradation can affect the bioavailability of these particles in aqueous organisms. We have investigated ROS generation by functionalized TiO2 nanoparticles and its influence on aggregation and bioavailability and toxicity to zebrafish embryos/larvae. For these studies we investigated anatase TiO2 nanoparticles. For application purposes and solution stability, the TiO2 nanoparticles were functionalized with a variety of ligands such as citrate, 3,4-dihydroxybenzaldehyde, and ascorbate. We quantitatively examined the amount of ROS produced in aqueous solution using fluorescent probes and see that more ROS is produced under UV light than in the dark control. Our measurements show that TiO2 toxicity reaches a maximum for nanoparticles with smaller diameters, and is correlated with surface area dependent changes in ROS generation. In an effort to reduce toxicity through control of the surface and surface ligands, we synthesized anatase nanoparticles of different sizes, functionalized them with different ligands, and examined the resulting ROS generation and ligand stability. Using a modular ligand containing a hydrophobic inner region and a hydrophilic outer region, we synthesized water-stable nanoparticles, via two different chemical reactions, having much-reduced ROS generation and thus reduced toxicity. These results suggest new strategies for making safer nanoparticles while still retaining their desired properties. We also examine the degradation of the different ligands on the surface of the particles using XPS and FTIR. The combination of ROS production and ligand degradation can affect the bioavailability of these particles in aqueous species.

  15. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    PubMed

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  16. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    DOE PAGES

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis; ...

    2017-02-01

    The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effectsmore » of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less

  17. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis

    The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effectsmore » of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less

  18. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    PubMed Central

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-01-01

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches. PMID:28788602

  19. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays.

    PubMed

    Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki

    2016-11-19

    The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.

  20. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays

    PubMed Central

    Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki

    2016-01-01

    The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides. PMID:28952593

  1. Functionalization of Probe Tips and Supports for Single-Molecule Recognition Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ebner, Andreas; Wildling, Linda; Zhu, Rong; Rankl, Christian; Haselgrübler, Thomas; Hinterdorfer, Peter; Gruber, Hermann J.

    The measuring tip of a force microscope can be converted into a monomolecular sensor if one or few "ligand" molecules are attached to the apex of the tip while maintaining ligand function. Functionalized tips are used to study fine details of receptor-ligand interaction by force spectroscopy or to map cognate "receptor" molecules on the sample surface. The receptor (or target) molecules can be present on the surface of a biological specimen; alternatively, soluble target molecules must be immobilized on ultraflat supports. This review describes the methods of tip functionalization, as well as target molecule immobilization. Silicon nitride tips, silicon chips, and mica have usually been functionalized in three steps: (1) aminofunctionalization, (2) crosslinker attachment, and (3) ligand/receptor coupling, whereby numerous crosslinkers are available to couple widely different ligand molecules. Gold-covered tips and/or supports have usually been coated with a self-assembled monolayer, on top of which the ligand/receptor molecule has been coupled either directly or via a crosslinker molecule. Apart from these general strategies, many simplified methods have been used for tip and/or support functionalization, even single-step methods such as adsorption or chemisorption being very efficient under suitable circumstances. All methods are described with the same explicitness and critical parameters are discussed. In conclusion, this review should help to find suitable methods for specific problems of tip and support functionalization.

  2. Hip and knee net joint moments that correlate with success in lateral load transfers over a low friction surface.

    PubMed

    Catena, Robert D; Xu, Xu

    2016-12-01

    We previously described two different preferred strategies used to perform a lateral load transfer. The wide stance strategy was not used successfully on a low-friction surface, while the narrow stance strategy was successful. Here, we retrospectively examined lower extremity net joint moments between successful and unsuccessful strategies to determine if there is a kinetic benefit consideration that may go into choosing the preferred strategy. Success vs. failure over a novel slippery surface was used to dichotomise 35 healthy working-age individuals into the two groups (successful and unsuccessful). Participants performed lateral load transfers over three sequential surface conditions: high friction, novel low friction and practised low friction. The unsuccessful strategy required larger start torques, but lower dynamic moments during transfer compared to the successful strategy. These results indicate that the periodically unsuccessful strategy may be preferred because it requires less muscle recruitment and lower stresses on lower extremity soft tissues. Practitioner Summary: The reason for this paper is to retrospectively examine the joint moment in two different load transfer strategies that are used in a lateral load transfer. We found that periodically unsuccessful strategies that we previously reported may be a beneficial toward reduced lower extremity joint stresses.

  3. A review of cetacean lung morphology and mechanics.

    PubMed

    Piscitelli, Marina A; Raverty, Stephen A; Lillie, Margo A; Shadwick, Robert E

    2013-12-01

    Cetaceans possess diverse adaptations in respiratory structure and mechanics that are highly specialized for an array of surfacing and diving behaviors. Some of these adaptations and air management strategies are still not completely understood despite over a century of study. We have compiled the historical and contemporary knowledge of cetacean lung anatomy and mechanics in regards to normal lung function during ventilation and air management while diving. New techniques are emerging utilizing pulmonary mechanics to measure lung function in live cetaceans. Given the diversity of respiratory adaptations in cetaceans, interpretations of these results should consider species-specific anatomy, mechanics, and behavior. Copyright © 2013 Wiley Periodicals, Inc.

  4. Effect of Molecular Flexibility upon Ice Adhesion Shear Strength

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G.; Wohl, Christopher J.; Kreeger, Richard E.; Palacios, Jose; Knuth, Taylor; Hadley, Kevin

    2016-01-01

    Ice formation on aircraft surfaces effects aircraft performance by increasing weight and drag leading to loss of lift. Current active alleviation strategies involve pneumatic boots, heated surfaces, and usage of glycol based de-icing fluids. Mitigation or reduction of in-flight icing by means of a passive approach may enable retention of aircraft capabilities, i.e., no reduction in lift, while reducing the aircraft weight and mechanical complexity. Under a NASA Aeronautics Research Institute Seedling activity, the effect of end group functionality and chain length upon ice adhesion shear strength (IASS) was evaluated with the results indicating that chemical functionality and chain length (i.e. molecular flexibility) affected IASS. Based on experimental and modeling results, diamine monomers incorporating molecular flexibility as either a side chain or in between diamine functionalities were prepared, incorporated into epoxy resins that were subsequently used to fabricate coatings on aluminum substrates, and tested in a simulated icing environment. The IASS was found to be lower when molecular flexibility was incorporated in the polymer chain as opposed to a side chain.

  5. Decoupling Polymer Properties to Elucidate Mechanisms Governing Cell Behavior

    PubMed Central

    Wang, Xintong; Boire, Timothy C.; Bronikowski, Christine; Zachman, Angela L.; Crowder, Spencer W.

    2012-01-01

    Determining how a biomaterial interacts with cells (“structure-function relationship”) reflects its eventual clinical applicability. Therefore, a fundamental understanding of how individual material properties modulate cell-biomaterial interactions is pivotal to improving the efficacy and safety of clinically translatable biomaterial systems. However, due to the coupled nature of material properties, their individual effects on cellular responses are difficult to understand. Structure-function relationships can be more clearly understood by the effective decoupling of each individual parameter. In this article, we discuss three basic decoupling strategies: (1) surface modification, (2) cross-linking, and (3) combinatorial approaches (i.e., copolymerization and polymer blending). Relevant examples of coupled material properties are briefly reviewed in each section to highlight the need for improved decoupling methods. This follows with examples of more effective decoupling techniques, mainly from the perspective of three primary classes of synthetic materials: polyesters, polyethylene glycol, and polyacrylamide. Recent strides in decoupling methodologies, especially surface-patterning and combinatorial techniques, offer much promise in further understanding the structure-function relationships that largely govern the success of future advancements in biomaterials, tissue engineering, and drug delivery. PMID:22536977

  6. Analog "neuronal" networks in early vision.

    PubMed Central

    Koch, C; Marroquin, J; Yuille, A

    1986-01-01

    Many problems in early vision can be formulated in terms of minimizing a cost function. Examples are shape from shading, edge detection, motion analysis, structure from motion, and surface interpolation. As shown by Poggio and Koch [Poggio, T. & Koch, C. (1985) Proc. R. Soc. London, Ser. B 226, 303-323], quadratic variational problems, an important subset of early vision tasks, can be "solved" by linear, analog electrical, or chemical networks. However, in the presence of discontinuities, the cost function is nonquadratic, raising the question of designing efficient algorithms for computing the optimal solution. Recently, Hopfield and Tank [Hopfield, J. J. & Tank, D. W. (1985) Biol. Cybern. 52, 141-152] have shown that networks of nonlinear analog "neurons" can be effective in computing the solution of optimization problems. We show how these networks can be generalized to solve the nonconvex energy functionals of early vision. We illustrate this approach by implementing a specific analog network, solving the problem of reconstructing a smooth surface from sparse data while preserving its discontinuities. These results suggest a novel computational strategy for solving early vision problems in both biological and real-time artificial vision systems. PMID:3459172

  7. Sequential Design of Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Cook, Christine Michaela

    2017-06-30

    A sequential design of experiments strategy is being developed and implemented that allows for adaptive learning based on incoming results as the experiment is being run. The plan is to incorporate these strategies for the NCCC and TCM experimental campaigns to be run in the coming months. This strategy for experimentation has the advantages of allowing new data collected during the experiment to inform future experimental runs based on their projected utility for a particular goal. For example, the current effort for the MEA capture system at NCCC plans to focus on maximally improving the quality of prediction of COmore » 2 capture efficiency as measured by the width of the confidence interval for the underlying response surface that is modeled as a function of 1) Flue Gas Flowrate [1000-3000] kg/hr; 2) CO 2 weight fraction [0.125-0.175]; 3) Lean solvent loading [0.1-0.3], and; 4) Lean solvent flowrate [3000-12000] kg/hr.« less

  8. Site-Specific Protein Labeling via Sortase-Mediated Transpeptidation

    PubMed Central

    Antos, John M.; Ingram, Jessica; Fang, Tao; Pishesha, Novalia; Truttmann, Matthias C.; Ploegh, Hidde L.

    2017-01-01

    Strategies for site-specific protein modification are highly desirable for the construction of conjugates containing non-genetically encoded functional groups. Ideally, these strategies should proceed under mild conditions, and be compatible with a wide range of protein targets and non-natural moieties. The transpeptidation reaction catalyzed by bacterial sortases is a prominent strategy for protein derivatization that possesses these features. Naturally occurring or engineered variants of sortase A from Staphylococcus aureus catalyze a ligation reaction between a five amino acid substrate motif (LPXTG) and oligoglycine nucleophiles. By pairing proteins and synthetic peptides that possess these ligation handles, it is possible to install modifications onto the protein N- or C-terminus in site-specific fashion. As described in this unit, the successful implementation of sortase-mediated labeling involves straightforward solid-phase synthesis and molecular biology techniques, and this method is compatible with proteins in solution or on the surface of live cells. PMID:19365788

  9. Evolvable Mars Campaign Long Duration Habitation Strategies: Architectural Approaches to Enable Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Simon, Matthew A.; Toups, Larry; Howe, A. Scott; Wald, Samuel I.

    2015-01-01

    The Evolvable Mars Campaign (EMC) is the current NASA Mars mission planning effort which seeks to establish sustainable, realistic strategies to enable crewed Mars missions in the mid-2030s timeframe. The primary outcome of the Evolvable Mars Campaign is not to produce "The Plan" for sending humans to Mars, but instead its intent is to inform the Human Exploration and Operations Mission Directorate near-term key decisions and investment priorities to prepare for those types of missions. The FY'15 EMC effort focused upon analysis of integrated mission architectures to identify technically appealing transportation strategies, logistics build-up strategies, and vehicle designs for reaching and exploring Mars moons and Mars surface. As part of the development of this campaign, long duration habitats are required which are capable of supporting crew with limited resupply and crew abort during the Mars transit, Mars moons, and Mars surface segments of EMC missions. In particular, the EMC design team sought to design a single, affordable habitation system whose manufactured units could be outfitted uniquely for each of these missions and reused for multiple crewed missions. This habitat system must provide all of the functionality to safely support 4 crew for long durations while meeting mass and volume constraints for each of the mission segments set by the chosen transportation architecture and propulsion technologies. This paper describes several proposed long-duration habitation strategies to enable the Evolvable Mars Campaign through improvements in mass, cost, and reusability, and presents results of analysis to compare the options and identify promising solutions. The concepts investigated include several monolithic concepts: monolithic clean sheet designs, and concepts which leverage the co-manifested payload capability of NASA's Space Launch System (SLS) to deliver habitable elements within the Universal Payload Adaptor between the SLS upper stage and the Orion/Service module on the top of the vehicle. Multiple modular habitat options for Mars surface and in-space missions are also considered with various functionality and volume splits between modules to find the best balance of reducing the single largest mass which must be delivered to a destination and reducing the number of separate elements which must be launched. Analysis results presented for each of these concepts in this paper include mass/volume/power sizing using parametric sizing tools, identification of unique operational constraints, and limited comments on the additional impacts of reusability/dormancy on system design. Finally, recommendations will be made for promising solutions which will be carried forward for consideration in the Evolvable Mars Campaign work.

  10. Fluorine and sulfur simultaneously co-doped suspended graphene

    NASA Astrophysics Data System (ADS)

    Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M.

    2017-11-01

    Suspended graphene flakes are exposed simultaneously to fluorine and sulfur ions produced by the μ-wave plasma discharge of the SF6 precursor gas. The microscopic and spectroscopic analyses, performed by Raman spectroscopy, scanning electron microscopy and photoelectron spectromicroscopy, show the homogeneity in functionalization yield over the graphene flakes with F and S atoms covalently bonded to the carbon lattice. This promising surface shows potential for several applications ranging from biomolecule immobilization to lithium battery and hydrogen storage devices. The present co-doping process is an optimal strategy to engineer the graphene surface with a concurrent hydrophobic character, thanks to the fluorine atoms, and a high affinity with metal nanoparticles due to the presence of sulfur atoms.

  11. Improved strategies for DNP-enhanced 2D 1 H-X heteronuclear correlation spectroscopy of surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; Perras, Frederic A.; Chaudhary, Umesh

    We demonstrate that dynamic nuclear polarization (DNP)-enhanced 1H-X heteronuclear correlation (HETCOR) measurements of hydrogen-rich surface species are better accomplished by using proton-free solvents. This approach notably prevents HETCOR spectra from being obfuscated by the solvent-derived signals otherwise present in DNP measurements. Additionally, in the hydrogen-rich materials studied here, which included functionalized mesoporous silica nanoparticles and metal organic frameworks, the use of proton-free solvents afforded higher sensitivity gains than the commonly used solvents containing protons. Here, we also explored the possibility of using a solvent-free sample formulation and the feasibility of indirect detection in DNP-enhanced HETCOR experiments.

  12. Improved strategies for DNP-enhanced 2D 1 H-X heteronuclear correlation spectroscopy of surfaces

    DOE PAGES

    Kobayashi, Takeshi; Perras, Frederic A.; Chaudhary, Umesh; ...

    2017-08-12

    We demonstrate that dynamic nuclear polarization (DNP)-enhanced 1H-X heteronuclear correlation (HETCOR) measurements of hydrogen-rich surface species are better accomplished by using proton-free solvents. This approach notably prevents HETCOR spectra from being obfuscated by the solvent-derived signals otherwise present in DNP measurements. Additionally, in the hydrogen-rich materials studied here, which included functionalized mesoporous silica nanoparticles and metal organic frameworks, the use of proton-free solvents afforded higher sensitivity gains than the commonly used solvents containing protons. Here, we also explored the possibility of using a solvent-free sample formulation and the feasibility of indirect detection in DNP-enhanced HETCOR experiments.

  13. Adsorption of organic molecules on mineral surfaces studied by first-principle calculations: A review.

    PubMed

    Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping

    2018-04-09

    First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.

  14. Solution strategies and heat transfer calculations for three-dimensional configurations at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Gnoffo, Peter A.

    1992-01-01

    A procedure which reduces the memory requirements for computing the viscous flow over a modified Orbiter geometry at a hypersonic flight condition is presented. The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) code which incorporates a thermochemical nonequilibrium chemistry model, a finite rate catalytic wall boundary condition and wall temperature distribution based on radiation equilibrium is used in this study. In addition, the effect of choice of 'min mod' function, eigenvalue limiter and grid density on surface heating is investigated. The surface heating from a flowfield calculation at Mach number 22, altitude of 230,000 ft and 40 deg angle of attack is compared with flight data from three Orbiter flights.

  15. A general strategy for the ultrafast surface modification of metals.

    PubMed

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-12-07

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.

  16. Scrutinizing human MHC polymorphism: Supertype analysis using Poisson-Boltzmann electrostatics and clustering.

    PubMed

    Mumtaz, Shahzad; Nabney, Ian T; Flower, Darren R

    2017-10-01

    Peptide-binding MHC proteins are thought the most variable across the human population; the extreme MHC polymorphism observed is functionally important and results from constrained divergent evolution. MHCs have vital functions in immunology and homeostasis: cell surface MHC class I molecules report cell status to CD8+ T cells, NKT cells and NK cells, thus playing key roles in pathogen defence, as well as mediating smell recognition, mate choice, Adverse Drug Reactions, and transplantation rejection. MHC peptide specificity falls into several supertypes exhibiting commonality of binding. It seems likely that other supertypes exist relevant to other functions. Since comprehensive experimental characterization is intractable, structure-based bioinformatics is the only viable solution. We modelled functional MHC proteins by homology and used calculated Poisson-Boltzmann electrostatics projected from the top surface of the MHC as multi-dimensional descriptors, analysing them using state-of-the-art dimensionality reduction techniques and clustering algorithms. We were able to recover the 3 MHC loci as separate clusters and identify clear sub-groups within them, vindicating unequivocally our choice of both data representation and clustering strategy. We expect this approach to make a profound contribution to the study of MHC polymorphism and its functional consequences, and, by extension, other burgeoning structural systems, such as GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Fully printable, strain-engineered electronic wrap for customizable soft electronics.

    PubMed

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-24

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  18. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    NASA Astrophysics Data System (ADS)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  19. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    PubMed Central

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-01-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form. PMID:28338055

  20. Functionalizing aluminum substrata by quaternary ammonium for antifouling performances

    NASA Astrophysics Data System (ADS)

    He, Xiaoyan; Suo, Xinkun; Bai, Xiuqin; Yuan, Chengqing; Li, Hua

    2018-05-01

    Due to the great loss induced by biofouling, developing new strategies for combating biofouling has attracted extensive attention. Quaternary ammonium salts are potent cationic antimicrobials used in consumer products and their use for surface immobilization could create a contact-active antimicrobial layer. Here we report the facile preparation of a contact-active antifouling coating by tethering polyethyleneimine (PEI) onto flat/nanostructured aluminum surface by hydrogen bonding between PEI and AlOOH. Quaternized PEI (QPEI) is obtained through quaternization reactions. Biofouling testing suggests excellent antifouling performances of the samples by declining the adhesion of 95% Phaeodactylum tricornutum and 98% of Chlorella pyrenoidosa. The antifouling properties of PEI/QPEI are attributed predominately to their hydrophilic and antimicrobial nature. The technical route of PEI/QPEI surface grafting shows great potential for modifying marine infrastructures for enhanced antifouling performances.

  1. Engineering a biospecific communication pathway between cells and electrodes

    NASA Astrophysics Data System (ADS)

    Collier, Joel H.; Mrksich, Milan

    2006-02-01

    Methods for transducing the cellular activities of mammalian cells into measurable electronic signals are important in many biotechnical applications, including biosensors, cell arrays, and other cell-based devices. This manuscript describes an approach for functionally integrating cellular activities and electrical processes in an underlying substrate. The cells are engineered with a cell-surface chimeric receptor that presents the nonmammalian enzyme cutinase. Action of this cell-surface cutinase on enzyme substrate self-assembled monolayers switches a nonelectroactive hydroxyphenyl ester to an electroactive hydroquinone, providing an electrical activity that can be identified with cyclic voltammetry. In this way, cell-surface enzymatic activity is transduced into electronic signals. The development of strategies to directly interface the activities of cells with materials will be important to enabling a broad class of hybrid microsystems that combine living and nonliving components. biomaterial | extracellular matrix | signal transduction

  2. Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis

    PubMed Central

    Doolittle, Elizabeth; Peiris, Pubudu M.; Doron, Gilad; Goldberg, Amy; Tucci, Samantha; Rao, Swetha; Shah, Shruti; Sylvestre, Meilyn; Govender, Priya; Turan, Oguz; Lee, Zhenghong; Schiemann, William P.; Karathanasis, Efstathios

    2015-01-01

    Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvβ3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection. PMID:26203676

  3. Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis.

    PubMed

    Doolittle, Elizabeth; Peiris, Pubudu M; Doron, Gilad; Goldberg, Amy; Tucci, Samantha; Rao, Swetha; Shah, Shruti; Sylvestre, Meilyn; Govender, Priya; Turan, Oguz; Lee, Zhenghong; Schiemann, William P; Karathanasis, Efstathios

    2015-08-25

    Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvβ3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection.

  4. An organophosphonate strategy for functionalizing silicon photonic biosensors

    PubMed Central

    Shang, Jing; Cheng, Fang; Dubey, Manish; Kaplan, Justin M.; Rawal, Meghana; Jiang, Xi; Newburg, David S.; Sullivan, Philip A.; Andrade, Rodrigo B.; Ratner, Daniel M.

    2012-01-01

    Silicon photonic microring resonators have established their potential for label-free and low-cost biosensing applications. However, the long-term performance of this optical sensing platform requires robust surface modification and biofunctionalization. Herein, we demonstrate a conjugation strategy based on an organophosphonate surface coating and vinyl sulfone linker to biofunctionalize silicon resonators for biomolecular sensing. To validate this method, a series of glycans, including carbohydrates and glycoconjugates, were immobilized on divinyl sulfone (DVS)/organophosphonate-modified microrings and used to characterize carbohydrate-protein and norovirus particle interactions. This biofunctional platform was able to orthogonally detect multiple specific carbohydrate-protein interactions simultaneously. Additionally, the platform was capable of reproducible binding after multiple regenerations by high-salt, high-pH or low-pH solutions and after 1-month storage in ambient conditions. This remarkable stability and durability of the organophosphonate immobilization strategy will facilitate the application of silicon microring resonators in various sensing conditions, prolong their lifetime, and minimize the cost for storage and delivery; these characteristics are requisite for developing biosensors for point-of-care and distributed diagnostics and other biomedical applications. In addition, the platform demonstrated its ability to characterize carbohydrate-mediated host-virus interactions, providing a facile method for discovering new anti-viral agents to prevent infectious disease. PMID:22220731

  5. Site-directed introduction of disulfide groups on antibodies for highly sensitive immunosensors.

    PubMed

    Acero Sánchez, Josep Ll; Fragoso, Alex; Joda, Hamdi; Suárez, Guillaume; McNeil, Calum J; O'Sullivan, Ciara K

    2016-07-01

    The interface between the sample and the transducer surface is critical to the performance of a biosensor. In this work, we compared different strategies for covalent self-assembly of antibodies onto bare gold substrates by introducing disulfide groups into the immunoglobulin structure, which acted as anchor molecules able to chemisorb spontaneously onto clean gold surfaces. The disulfide moieties were chemically introduced to the antibody via the primary amines, carboxylic acids, and carbohydrates present in its structure. The site-directed modification via the carbohydrate chains exhibited the best performance in terms of analyte response using a model system for the detection of the stroke marker neuron-specific enolase. SPR measurements clearly showed the potential for creating biologically active densely packed self-assembled monolayers (SAMs) in a one-step protocol compared to both mixed SAMs of alkanethiol compounds and commercial immobilization layers. The ability of the carbohydrate strategy to construct an electrochemical immunosensor was investigated using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) transduction. Graphical Abstract Left: Functionalization strategies of bare gold substrates via direct bio-SAM using disulfide-containing antibody chemically modified via their primary amines (A), carbohydrates (B) and carboxylic acids (C). Right: Dependence of the peak height with NSE concentration at NSE21-CHO modified electrochemical immunosensor. Inset: Logarithmic calibration plot.

  6. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.

    PubMed

    Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C

    2013-04-01

    A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Synthesis of Three-dimensional Polymer Nanostructures via Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Cheng, Kenneth

    Chemical vapor deposition (CVD) is a widely practiced methodology for preparing thin film polymer coatings, and the coatings can be applied to a broad range of materials, including three-dimensional solid structures and low-vapor pressure liquids. Reactive poly(p-xylylene) (PPX) coatings prepared by CVD can be used as a powerful tool for surface functionalization and bio-conjugation. The first portion of this dissertation serves to extend the use of CVD-based reactive PPX coatings as a surface functionalization strategy for the conjugation of biomolecules. Micro-structured PPX coatings having multiple surface reactive groups were fabricated. Multiple orthogonal click reactions were then employed to selectively immobilize galactose and mannobiose to the micro-structured polymer coatings. The presence of different types of carbohydrate enables lectins binding for examining ligands/cell receptor interactions. This dissertation also demonstrates the use of CVD-based reactive PPX coatings as intermediate layers to immobilize adenoviral vectors onto tissue scaffolds. The ability to tether adenoviral vectors on tissue scaffolds localizes the transduction near the scaffold surface and reduces acute toxicity and hepatic pathology cause by direct administration of the viral vector, providing a safe and efficient gene therapy delivery strategy. In the second portion of this dissertation, we explore the CVD of PPX onto surfaces coated with a thin layer of liquid crystal (LC). Instead of forming a conformal PPX coating encapsulating the LC layer, PPX assembled into an array of high-aspect ratio nanofibers inside the LC layer. The LC layer was demonstrated to act as a template where the anisotropic internal ordering of the LC facilitated the formation of nanofibers. The diameter of the nanofibers was in the range of 100 nm and could be tuned by type of LC template used, and the length of the nanofibers could be precisely controlled by varying the thickness of the LC film. The overall shape of the nanofibers could be controlled by the internal ordering of the LC template, as exemplified by the assembly of helical nanofibers using cholesteric LC as the template. PPX nanofibers could be applied to a broad range of materials, such as curved surface, metal meshes and microparticles. We successfully created nanofibers with different surface functionalities and utilized them to capture molecules of interest. We also demonstrated the synthesis of twisted nanofibers using chiral-substituted precursors. The direction and the degree of twisting of nanofibers could be controlled by the handedness and the enantiomeric excess of the chiral precursor. Finally, we showed that the LC-templated CVD method could be extended to fabricating nanofibers made of other CVD-based polymer systems, such as poly(lutidine) and poly(p-phenylene vinylene). Our work opens a new platform for designing functional polymer nanostructures with programmable geometry, alignment and chemistry. The polymer nanostructures can be attractive for applications ranging from sensors, affinity filtration, and catalytic supports.

  8. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake.

    PubMed

    Mirshafiee, Vahid; Kim, Raehyun; Park, Soyun; Mahmoudi, Morteza; Kraft, Mary L

    2016-01-01

    Nanoparticles (NPs) are functionalized with targeting ligands to enable selectively delivering drugs to desired locations in the body. When these functionalized NPs enter the blood stream, plasma proteins bind to their surfaces, forming a protein corona that affects NP uptake and targeting efficiency. To address this problem, new strategies for directing the formation of a protein corona that has targeting capabilities are emerging. Here, we have investigated the feasibility of directing corona composition to promote targeted NP uptake by specific types of cells. We used the well-characterized process of opsonin-induced phagocytosis by macrophages as a simplified model of corona-mediated NP uptake by a desired cell type. We demonstrate that pre-coating silica NPs with gamma-globulins (γ-globulins) produced a protein corona that was enriched with opsonins, such as immunoglobulins. Although immunoglobulins are ligands that bind to receptors on macrophages and elicit phagocytois, the opsonin-rich protein corona did not increase NP uptake by macrophage RAW 264.7 cells. Immunolabeling experiments indicated that the binding of opsonins to their target cell surface receptors was impeded by other proteins in the corona. Thus, corona-mediated NP targeting strategies must optimize both the recruitment of the desired plasma proteins as well as their accessibility and orientation in the corona layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function.

    PubMed

    Zhang, Zhi-Hui; Wang, Hu-Jun; Liang, Yun-Hong; Li, Xiu-Juan; Ren, Lu-Quan; Cui, Zhen-Quan; Luo, Cheng

    2018-03-01

    Superhydrophobic surfaces have great potential for application in self-cleaning and oil/water separation. However, the large-scale practical applications of superhydrophobic coating surfaces are impeded by many factors, such as complicated fabrication processes, the use of fluorinated reagents and noxious organic solvents and poor mechanical stability. Herein, we describe the successful preparation of a fluorine-free multifunctional coating without noxious organic solvents that was brushed, dipped or sprayed onto glass slides and stainless-steel meshes as substrates. The obtained multifunctional superhydrophobic and superoleophilic surfaces (MSHOs) demonstrated self-cleaning abilities even when contaminated with or immersed in oil. The superhydrophobic surfaces were robust and maintained their water repellency after being scratched with a knife or abraded with sandpaper for 50 cycles. In addition, stainless-steel meshes sprayed with the coating quickly separated various oil/water mixtures with a high separation efficiency (>93%). Furthermore, the coated mesh maintained a high separation efficiency above 95% over 20 cycles of separation. This simple and effective strategy will inspire the large-scale fabrication of multifunctional surfaces for practical applications in self-cleaning and oil/water separation.

  10. Covalent Surface Modification of Silicon Oxides with Alcohols in Polar Aprotic Solvents.

    PubMed

    Lee, Austin W H; Gates, Byron D

    2017-09-05

    Alcohol-based monolayers were successfully formed on the surfaces of silicon oxides through reactions performed in polar aprotic solvents. Monolayers prepared from alcohol-based reagents have been previously introduced as an alternative approach to covalently modify the surfaces of silicon oxides. These reagents are readily available, widely distributed, and are minimally susceptible to side reactions with ambient moisture. A limitation of using alcohol-based compounds is that previous reactions required relatively high temperatures in neat solutions, which can degrade some alcohol compounds or could lead to other unwanted side reactions during the formation of the monolayers. To overcome these challenges, we investigate the condensation reaction of alcohols on silicon oxides carried out in polar aprotic solvents. In particular, propylene carbonate has been identified as a polar aprotic solvent that is relatively nontoxic, readily accessible, and can facilitate the formation of alcohol-based monolayers. We have successfully demonstrated this approach for tuning the surface chemistry of silicon oxide surfaces with a variety of alcohol containing compounds. The strategy introduced in this research can be utilized to create silicon oxide surfaces with hydrophobic, oleophobic, or charged functionalities.

  11. Stability and rheology of dispersions of silicon nitride and silicon carbide

    NASA Technical Reports Server (NTRS)

    Feke, Donald L.

    1987-01-01

    The relationship between the surface and colloid chemistry of commercial ultra-fine silicon carbide and silicon nitride powders was examined by a variety of standard characterization techniques and by methodologies especially developed for ceramic dispersions. These include electrokinetic measurement, surface titration, and surface spectroscopies. The effects of powder pretreatment and modification strategies, which can be utilized to augment control of processing characteristics, were monitored with these technologies. Both silicon carbide and nitride were found to exhibit silica-like surface chemistries, but silicon nitride powders possess an additional amine surface functionality. Colloidal characteristics of the various nitride powders in aqueous suspension is believed to be highly dependent on the relative amounts of the two types of surface groups, which in turn is determined by the powder synthesis route. The differences in the apparent colloidal characteristics for silicon nitride powders cannot be attributed to the specific absorption of ammonium ions. Development of a model for the prediction of double-layer characteristics of materials with a hybrid site interface facilitated understanding and prediction of the behavior of both surface charge and surface potential for these materials. The utility of the model in application to silicon nitride powders was demonstrated.

  12. A generic approach to engineer antibody pH-switches using combinatorial histidine scanning libraries and yeast display.

    PubMed

    Schröter, Christian; Günther, Ralf; Rhiel, Laura; Becker, Stefan; Toleikis, Lars; Doerner, Achim; Becker, Janine; Schönemann, Andreas; Nasu, Daichi; Neuteboom, Berend; Kolmar, Harald; Hock, Björn

    2015-01-01

    There is growing interest in the fast and robust engineering of protein pH-sensitivity that aims to reduce binding at acidic pH, compared to neutral pH. Here, we describe a novel strategy for the incorporation of pH-sensitive antigen binding functions into antibody variable domains using combinatorial histidine scanning libraries and yeast surface display. The strategy allows simultaneous screening for both, high affinity binding at pH 7.4 and pH-sensitivity, and excludes conventional negative selection steps. As proof of concept, we applied this strategy to incorporate pH-dependent antigen binding into the complementary-determining regions of adalimumab. After 3 consecutive rounds of separate heavy and light chain library screening, pH-sensitive variants could be isolated. Heavy and light chain mutations were combined, resulting in 3 full-length antibody variants that revealed sharp, reversible pH-dependent binding profiles. Dissociation rate constants at pH 6.0 increased 230- to 780-fold, while high affinity binding at pH 7.4 in the sub-nanomolar range was retained. Furthermore, binding to huFcRn and thermal stability were not affected by histidine substitutions. Overall, this study emphasizes a generalizable strategy for engineering pH-switch functions potentially applicable to a variety of antibodies and further proteins-based therapeutics.

  13. Bioinspired Programmable Polymer Gel Controlled by Swellable Guest Medium.

    PubMed

    Deng, Heng; Dong, Yuan; Su, Jheng-Wun; Zhang, Cheng; Xie, Yunchao; Zhang, Chi; Maschmann, Matthew R; Lin, Yuyi; Lin, Jian

    2017-09-13

    Responsive materials with functions of forming three-dimensional (3D) origami and/or kirigami structures have a broad range of applications in bioelectronics, metamaterials, microrobotics, and microelectromechanical (MEMS) systems. To realize such functions, building blocks of actuating components usually possess localized inhomogeneity so that they respond differently to external stimuli. Previous fabrication strategies lie in localizing nonswellable or less-swellable guest components in their swellable host polymers to reduce swelling ability. Herein, inspired by ice plant seed capsules, we report an opposite strategy of implanting swellable guest medium inside nonswellable host polymers to locally enhance the swelling inhomogeneity. Specifically, we adopted a skinning effect induced surface polymerization combined with direct laser writing to control gradient of swellable cyclopentanone (CP) in both vertical and lateral directions of the nonswellable SU-8. For the first time, the laser direct writing was used as a novel strategy for patterning programmable polymer gel films. Upon stimulation of organic solvents, the dual-gradient gel films designed by origami or kirigami principles exhibit reversible 3D shape transformation. Molecular dynamics (MD) simulation illustrates that CP greatly enhances diffusion rates of stimulus solvent molecules in the SU-8 matrix, which offers the driving force for the programmable response. Furthermore, this bioinspired strategy offers unique capabilities in fabricating responsive devices such as a soft gripper and a locomotive robot, paving new routes to many other responsive polymers.

  14. Functional & phylogenetic diversity of copepod communities

    NASA Astrophysics Data System (ADS)

    Benedetti, F.; Ayata, S. D.; Blanco-Bercial, L.; Cornils, A.; Guilhaumon, F.

    2016-02-01

    The diversity of natural communities is classically estimated through species identification (taxonomic diversity) but can also be estimated from the ecological functions performed by the species (functional diversity), or from the phylogenetic relationships among them (phylogenetic diversity). Estimating functional diversity requires the definition of specific functional traits, i.e., phenotypic characteristics that impact fitness and are relevant to ecosystem functioning. Estimating phylogenetic diversity requires the description of phylogenetic relationships, for instance by using molecular tools. In the present study, we focused on the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. First, we implemented a specific trait database for the most commonly-sampled and abundant copepod species of the Mediterranean Sea. Our database includes 191 species, described by seven traits encompassing diverse ecological functions: minimal and maximal body length, trophic group, feeding type, spawning strategy, diel vertical migration and vertical habitat. Clustering analysis in the functional trait space revealed that Mediterranean copepods can be gathered into groups that have different ecological roles. Second, we reconstructed a phylogenetic tree using the available sequences of 18S rRNA. Our tree included 154 of the analyzed Mediterranean copepod species. We used these two datasets to describe the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. The replacement component (turn-over) and the species richness difference component (nestedness) of the beta diversity indices were identified. Finally, by comparing various and complementary aspects of plankton diversity (taxonomic, functional, and phylogenetic diversity) we were able to gain a better understanding of the relationships among the zooplankton community, biodiversity, ecosystem function, and environmental forcing.

  15. Surface Roughness and Morphology Customization of Additive Manufactured Open Porous Ti6Al4V Structures

    PubMed Central

    Pyka, Grzegorz; Kerckhofs, Greet; Papantoniou, Ioannis; Speirs, Mathew; Schrooten, Jan; Wevers, Martine

    2013-01-01

    Additive manufacturing (AM) is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE) was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties. PMID:28788357

  16. Surface Roughness and Morphology Customization of Additive Manufactured Open Porous Ti6Al4V Structures.

    PubMed

    Pyka, Grzegorz; Kerckhofs, Greet; Papantoniou, Ioannis; Speirs, Mathew; Schrooten, Jan; Wevers, Martine

    2013-10-22

    Additive manufacturing (AM) is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE) was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties.

  17. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  18. Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities.

    PubMed

    Zhi, Zelun; Su, Yajuan; Xi, Yuewei; Tian, Liang; Xu, Miao; Wang, Qianqian; Padidan, Sara; Li, Peng; Huang, Wei

    2017-03-29

    In recent years, microbial colonization on the surface of biomedical implants/devices has become a severe threat to human health. Herein, surface-immobilized guanidine derivative block copolymers create an antimicrobial and antifouling dual-functional coating. We report the preparation of an antimicrobial and antifouling block copolymer by the conjugation of polyhexanide (PHMB) with either allyl glycidyl ether or allyloxy polyethylene glycol (APEG; MW 1200 and 2400). The allyl glycidyl ether modified PHMB (A-PHMB) and allyloxy polyethylene glycol 1200/2400 modified PHMB (APEG 1200/2400 -PHMB) copolymers were grafted onto a silicone rubber surface as a bottlebrush-like coating, respectively, using a plasma-UV-assisted surface-initiated polymerization. Both A-PHMB and APEG 1200/2400 -PHMB coatings exhibited excellent broad-spectrum antimicrobial properties against Gram-negative/positive bacteria and fungi. The APEG 2400 -PHMB coating displayed an improved antibiofilm as well as antifouling properties and a long reusable cycle, compared with two other coatings, due to its abundant PEG blocks among those copolymers. Also, the APEG 2400 -PHMB-coated silicone coupons were biocompatible toward mammalian cells, as revealed by in vitro hemocompatibile and cytotoxic assays. An in vivo study showed a significant decline of Escherichia coli colonies with a 5-log reduction, indicating the APEG 2400 -PHMB coating surface worked effectively in the rodent subcutaneous infection model. This PHMB-based block copolymer coating is believed to be an effective strategy to prevent biomaterial-associated infections.

  19. Surface regions of illusory images are detected with a slower processing speed than those of luminance-defined images.

    PubMed

    Mihaylova, Milena; Manahilov, Velitchko

    2010-11-24

    Research has shown that the processing time for discriminating illusory contours is longer than for real contours. We know, however, little whether the visual processes, associated with detecting regions of illusory surfaces, are also slower as those responsible for detecting luminance-defined images. Using a speed-accuracy trade-off (SAT) procedure, we measured accuracy as a function of processing time for detecting illusory Kanizsa-type and luminance-defined squares embedded in 2D static luminance noise. The data revealed that the illusory images were detected at slower processing speed than the real images, while the points in time, when accuracy departed from chance, were not significantly different for both stimuli. The classification images for detecting illusory and real squares showed that observers employed similar detection strategies using surface regions of the real and illusory squares. The lack of significant differences between the x-intercepts of the SAT functions for illusory and luminance-modulated stimuli suggests that the detection of surface regions of both images could be based on activation of a single mechanism (the dorsal magnocellular visual pathway). The slower speed for detecting illusory images as compared to luminance-defined images could be attributed to slower processes of filling-in of regions of illusory images within the dorsal pathway.

  20. Hybrid thrusters and reaction wheels strategy for large angle rapid reorientation with high precision

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Sun, Zhaowei; Wu, Shunan

    2012-08-01

    The quaternion-based, high precision, large angle rapid reorientation of rigid spacecraft is the main problem investigated in this study. The operation is accomplished via a hybrid thrusters and reaction wheels strategy where thrusters are engaged in providing a primary maneuver torque in open loop, while reaction wheels provide fine control torque to achieve high precision in closed-loop control. The inaccuracy of thrusters is handled by a variable structure control (VSC). In addition, a signum function is mixed in the switching surface in VSC to produce a maneuver to the reference attitude trajectory in a shortest distance. Detailed proofs and numerical simulation examples are presented to illustrate all the technical aspects of this work.

  1. Catalyst-free "click" functionalization of polymer brushes preserves antifouling properties enabling detection in blood plasma.

    PubMed

    Parrillo, Viviana; de Los Santos Pereira, Andres; Riedel, Tomas; Rodriguez-Emmenegger, Cesar

    2017-06-08

    Progress in biosensors for clinical detection critically relies on modifications of the transducer surface to prevent non-specific adsorption from matrix components (i.e. antifouling) while supporting biomolecular recognition elements to capture the analyte. Such combination of properties presents a significant challenge. Hierarchically structured polymer brushes comprising an antifouling polymer bottom block and a functionalizable top block are proposed as a promising strategy to achieve this goal. We employed the catalyst-free strain-promoted alkyne-azide cycloaddition (SPAAC) "click" reaction to biofunctionalize antifouling polymer brushes without impairing their resistance to fouling. The functionalization was performed on the side chains along the top polymer block or only on the end-groups of the polymer brush. The immobilized amounts of bioreceptors (streptavidin followed by biotin-conjugated proteins) and the resistance to fouling from blood plasma of the surfaces obtained were evaluated via surface plasmon resonance. The end group functionalization approach resulted in very low immobilization of bioreceptor. On the other hand, the side group modification of a top polymer block led to immobilization of 83% of a monolayer of streptavidin. Following binding of a biotin-conjugated antibody (66 ng cm -2 ) the functionalized layer was able to reduce the fouling from undiluted human blood plasma by 89% in comparison with bare gold. Finally, the functionalized hierarchical polymer brushes were applied to the label-free detection of a model analyte in diluted human blood plasma, highlighting the potential for translation to medical applications. Copyright © 2017. Published by Elsevier B.V.

  2. Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model.

    PubMed

    Bussy, Cyrill; Hadad, Caroline; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas

    2016-01-07

    Chemically functionalized carbon nanotubes (f-CNTs) have been used in proof-of-concept studies to alleviate debilitating neurological conditions. Previous in vivo observations in brain tissue have suggested that microglia - acting as resident macrophages of the brain - play a critical role in the internalization of f-CNTs and their partial in situ biodegradation following a stereotactic administration in the cortex. At the same time, several reports have indicated that immune cells such as neutrophils, eosinophils and even macrophages could participate in the processing of carbon nanomaterials via oxidation processes leading to degradation, with surface properties acting as modulators of CNT biodegradability. In this study we questioned whether degradability of f-CNTs within microglia could be modulated depending on the type of surface functionalization used. We investigated the kinetics of degradation of multi-walled carbon nanotubes (MWNTs) functionalized via different chemical strategies that were internalized within isolated primary microglia over three months. A cellular model of rat primary microglia that can be maintained in cell culture for a long period of time was first developed. The Raman structural signature of the internalized f-CNTs was then studied directly in cells over a period of up to three months, following a single exposure to a non-cytotoxic concentration of three different f-CNTs (carboxylated, aminated and both carboxylated and aminated). Structural modifications suggesting partial but continuous degradation were observed for all nanotubes irrespective of their surface functionalization. Carboxylation was shown to promote more pronounced structural changes inside microglia over the first two weeks of the study.

  3. Surface derivatization strategy for combinatorial analysis of cell response to mixtures of protein domains.

    PubMed

    Chiang, Chunyi; Karuri, Stella W; Kshatriya, Pradnya P; Schwartz, Jeffrey; Schwarzbauer, Jean E; Karuri, Nancy W

    2012-01-10

    We report a robust strategy for conjugating mixtures of two or more protein domains to nonfouling polyurethane surfaces. In our strategy, the carbamate groups of polyurethane are reacted with zirconium alkoxide from the vapor phase to give a surface-bound oxide that serves as a chemical layer that can be used to bond organics to the polymer substrate. A hydroxyalkylphosphonate monolayer was synthesized on this layer, which was then used to covalently bind primary amine groups in protein domains using chloroformate-derived cross-linking. The effectiveness of this synthesis strategy was gauged by using an ELISA to measure competitive, covalent bonding of cell-binding (III(9-10)) and fibronectin-binding (III(1-2)) domains of the cell adhesion protein fibronectin. Cell adhesion, spreading, and fibronectin matrix assembly were examined on surfaces conjugated with single domains, a 1:1 surface mixture of III(1-2) and III(9-10), and a recombinant protein "duplex" containing both domains in one fusion protein. The mixture performed as well as or better than the other surfaces in these assays. Our surface activation strategy is amenable to a wide range of polymer substrates and free amino group-containing protein fragments. As such, this technique may be used to create biologically specific materials through the immobilization of specific protein groups or mixtures thereof on a substrate surface.

  4. Benefits of Using a Mars Forward Strategy for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne

    2009-01-01

    This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the costly technological development gap between the lunar and Mars programs can be eliminated. This provides a sustained level of technological competitiveness as well as maintaining a stable engineering and manufacturing capability throughout the entire duration of Project Constellation.

  5. Bromelain-Functionalized Multiple-Wall Lipid-Core Nanocapsules: Formulation, Chemical Structure and Antiproliferative Effect Against Human Breast Cancer Cells (MCF-7).

    PubMed

    Oliveira, Catiúscia P; Prado, Willian A; Lavayen, Vladimir; Büttenbender, Sabrina L; Beckenkamp, Aline; Martins, Bruna S; Lüdtke, Diogo S; Campo, Leandra F; Rodembusch, Fabiano S; Buffon, Andréia; Pessoa, Adalberto; Guterres, Silvia S; Pohlmann, Adriana R

    2017-02-01

    This study was conducted a promising approach to surface functionalization developed for lipid-core nanocapsules and the merit to pursue new strategies to treat solid tumors. Bromelain-functionalized multiple-wall lipid-core nanocapsules (Bro-MLNC-Zn) were produced by self-assembling following three steps of interfacial reactions. Physicochemical and structural characteristics, in vitro proteolytic activity (casein substrate) and antiproliferative activity (breast cancer cells, MCF-7) were determined. Bro-MLNC-Zn had z-average diameter of 135 nm and zeta potential of +23 mV. The complex is formed by a Zn-N chemical bond and a chelate with hydroxyl and carboxyl groups. Bromelain complexed at the nanocapsule surface maintained its proteolytic activity and showed anti-proliferative effect against human breast cancer cells (MCF-7) (72.6 ± 1.2% at 1.250 μg mL -1 and 65.5 ± 5.5% at 0.625 μg mL -1 ). Comparing Bro-MLNC-Zn and bromelain solution, the former needed a dose 160-folds lower than the latter for a similar effect. Tripan blue dye assay corroborated the results. The surface functionalization approach produced an innovative formulation having a much higher anti-proliferative effect than the bromelain solution, even though both in vitro proteolytic activity were similar, opening up a great opportunity for further studies in nanomedicine.

  6. Novel antimicrobial and biofilm-controlling cellulosic polymers

    NASA Astrophysics Data System (ADS)

    Padmanabhuni, Revathi V.

    Cotton and cellulose acetate (CA) are cellulosic polymers with versatile applications. Like any other polymeric materials, cellulosic materials are also susceptible to microbial contamination and cause serious nosocomial infections. Hence, there is a definite need to develop antimicrobial cellulosic materials to prevent microbial colonization. Henceforth, we prepared a suitable polycation to treat cotton fabrics and CA films by LbL self-assembly process to achieve potent antimicrobial functions. The treated fabrics demonstrated total kill against E. coli and S. aureus in 2 h contact time whereas treated CA films, even after 6 h, could inactivate only 98 % of bacteria. Since CA films are more hydrophobic, have less surface charge, and surface area than cotton fabrics, LbL procedure was not much effective for CA films to achieve potent antimicrobial functions. Yet, CA is another very important cellulosic polymer with various applications in which antimicrobial activity is often desired. So, to improve the antimicrobial activity of CA films, we designed a novel strategy to coat the surface of CaCO3 fillers with quaternary ammonium salts (QAS)based fatty acids to make the filler surface organophilic and accomplish antibacterial activity concurrently, rendering the resulting polymer-filler composites antimicrobial. Thus, a series of QAS-based fatty acids (C8-C16) were synthesized, coated onto CaCO 3, and used as antimicrobial additives (5 %) in CA films. Although C8-quat-CaCO 3 could only provide 94 % of reduction of bacteria, both C12- and C16- quats and their corresponding quat-coated CaCO3 provided a total kill of S. aureus and E. coli in 2 h. These findings suggested that it is feasible to use QAS-based fatty acids to coat CaCO3 and use them as antimicrobial additives of CA films to achieve potent antimicrobial effects. Building on these results, to further evaluate the applicability of the antimicrobial filler strategy, we synthesized an N-halamine based fatty acid, coated onto CaCO3 and used as antimicrobial additives in CA films; the resulting samples provided excellent antimicrobial and biofilm-controlling effects, confirming that the antimicrobial filler approach could be an effective strategy for the antimicrobial treatments of CA and potentially other related hydrophobic polymeric materials.

  7. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice.

    PubMed

    Bhanjadeo, Madhabi M; Nayak, Ashok K; Subudhi, Umakanta

    2017-04-01

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.

    PubMed

    Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun

    2015-01-20

    Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.

  9. A general strategy for the ultrafast surface modification of metals

    PubMed Central

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-01-01

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments. PMID:27924909

  10. Surface-Based fMRI-Driven Diffusion Tractography in the Presence of Significant Brain Pathology: A Study Linking Structure and Function in Cerebral Palsy

    PubMed Central

    Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.

    2016-01-01

    Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011

  11. Ankle and hip postural strategies defined by joint torques

    NASA Technical Reports Server (NTRS)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control patterns into a continuum of postural corrections.

  12. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent curing. PMID:21643511

  13. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    PubMed

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators

    NASA Astrophysics Data System (ADS)

    Ozgur, Erol; Toren, Pelin; Aktas, Ozan; Huseyinoglu, Ersin; Bayindir, Mehmet

    2015-08-01

    Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned.

  15. Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process

    NASA Astrophysics Data System (ADS)

    Wu, Zhiguo; Cui, Zhenyu; Li, Tianyu; Qin, Shuhao; He, Benqiao; Han, Na; Li, Jianxin

    2017-10-01

    A simple strategy of thermally induced phase separation followed by non-solvent induced phase separation (TIPS-NIPS) is reported to fabricate poly (vinylidene fluoride) (PVDF)-based blend membrane. The dissolved poly (styrene-co-maleic anhydride) (SMA) in diluent prevents the crystallization of PVDF during the cooling process and deposites on the established PVDF matrix in the later extraction. Compared with traditional coating technique, this one-step TIPS-NIPS method can not only fabricate a supporting layer with an interconnected network structure even via solid-liquid phase separation of TIPS, but also form a uniform SMA skin layer approximately as thin as 200 nm via surface deposition of NIPS. Besides the better hydrophilicity, what's interesting is that the BSA rejection ratio increases from 48% to 94% with the increase of SMA, which indicates that the separation performance has improved. This strategy can be conveniently extended to the creation of firmly thin layer, surface functionalization and structure controllability of the membrane.

  16. Sequence variation and structural conservation allows development of novel function and immune evasion in parasite surface protein families

    PubMed Central

    Higgins, Matthew K; Carrington, Mark

    2014-01-01

    Trypanosoma and Plasmodium species are unicellular, eukaryotic pathogens that have evolved the capacity to survive and proliferate within a human host, causing sleeping sickness and malaria, respectively. They have very different survival strategies. African trypanosomes divide in blood and extracellular spaces, whereas Plasmodium species invade and proliferate within host cells. Interaction with host macromolecules is central to establishment and maintenance of an infection by both parasites. Proteins that mediate these interactions are under selection pressure to bind host ligands without compromising immune avoidance strategies. In both parasites, the expansion of genes encoding a small number of protein folds has established large protein families. This has permitted both diversification to form novel ligand binding sites and variation in sequence that contributes to avoidance of immune recognition. In this review we consider two such parasite surface protein families, one from each species. In each case, known structures demonstrate how extensive sequence variation around a conserved molecular architecture provides an adaptable protein scaffold that the parasites can mobilise to mediate interactions with their hosts. PMID:24442723

  17. Mechanistic Challenges and Advantages of Biosensor Miniaturization into the Nanoscale.

    PubMed

    Soleymani, Leyla; Li, Feng

    2017-04-28

    Over the past few decades, there has been tremendous interest in developing biosensing systems that combine high sensitivity and specificity with rapid sample-to-answer times, portability, low-cost operation, and ease-of-use. Miniaturizing the biosensor dimensions into the nanoscale has been identified as a strategy for addressing the functional requirements of point-of-care and wearable biosensors. However, it is important to consider that decreasing the critical dimensions of biosensing elements impacts the two most important performance metrics of biosensors: limit-of-detection and response time. Miniaturization into the nanoscale enhances signal-to-noise-ratio by increasing the signal density (signal/geometric surface area) and reducing background signals. However, there is a trade-off between the enhanced signal transduction efficiency and the longer time it takes to collect target analytes on sensor surfaces due to the increase in mass transport times. By carefully considering the signal transduction mechanisms and reaction-transport kinetics governing different classes of biosensors, it is possible to develop structure-level and device-level strategies for leveraging miniaturization toward creating biosensors that combine low limit-of-detection with rapid response times.

  18. A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus.

    PubMed

    Grasso, Simone; Lico, Chiara; Imperatori, Francesca; Santi, Luca

    2013-06-01

    Structure, size, physicochemical properties and production strategies make many plant viruses ideal protein based nanoscaffolds, nanocontainers and nano-building blocks expected to deliver a multitude of applications in different fields such as biomedicine, pharmaceutical chemistry, separation science, catalytic chemistry, crop pest control and biomaterials science. Functionalization of viral nanoparticles through modification by design of their external and internal surfaces is essential to fully exploit the potentiality of these objects. In the present paper we describe the development of a plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. We demonstrate the ability of this system to remarkably sustain genetic modifications and in vitro chemical derivatizations of its outer surface, which resulted in the successful display of large chimeric peptides fusions and small chemical molecules, respectively. Moreover, we have defined physicochemical conditions for viral swelling and reversible viral pore gating that we have successfully employed for foreign molecules loading and retention in the inner cavity of this plant virus nanoparticles system. Finally, a production and purification strategy from Nicotiana benthamiana plants has been addressed and optimized.

  19. One-pot synthesis of redox-responsive polymers-coated mesoporous silica nanoparticles and their controlled drug release.

    PubMed

    Sun, Jiao-Tong; Piao, Ji-Gang; Wang, Long-Hai; Javed, Mohsin; Hong, Chun-Yan; Pan, Cai-Yuan

    2013-09-01

    A versatile one-pot strategy for the preparation of reversibly cross-linked polymer-coated mesoporous silica nanoparticles (MSNs) via surface reversible addition-fragmentation chain transfer (RAFT) polymerization is presented for the first time in this paper. The less reactive monomer oligo(ethylene glycol) acrylate (OEGA) and the more reactive cross-linker N,N'-cystaminebismethacrylamide (CBMA) are chosen to be copolymerized on the external surfaces of RAFT agent-functionalized MSNs to form the cross-linked polymer shells. Owing to the reversible cleavage and restoration of disulfide bonds via reduction/oxidation reactions, the polymer shells can control the on/off switching of the nanopores and regulate the drug loading and release. The redox-responsive release of doxorubicin (DOX) from this drug carrier is realized. The protein adsorption, in vitro cytotoxicity assays, and endocytosis studies demonstrate that this biocompatible vehicle is a potential candidate for delivering drugs. It is expected that this versatile grafting strategy may help fabricate satisfying MSN-based drug delivery systems for clinical application. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering.

    PubMed

    Gil, Eun Seok; Mandal, Biman B; Park, Sang-Hyug; Marchant, Jeffrey K; Omenetto, Fiorenzo G; Kaplan, David L

    2010-12-01

    RGD-coupled silk protein-biomaterial lamellar systems were prepared and studied with human cornea fibroblasts (hCFs) to match functional requirements. A strategy for corneal tissue engineering was pursued to replicate the structural hierarchy of human corneal stroma within thin stacks of lamellae-like tissues, in this case constructed from scaffolds constructed with RGD-coupled, patterned, porous, mechanically robust and transparent silk films. The influence of RGD-coupling on the orientation, proliferation, ECM organization, and gene expression of hCFs was assessed. RGD surface modification enhanced cell attachment, proliferation, alignment and expression of both collagens (type I and V) and proteoglycans (decorin and biglycan). Confocal and histological images of the lamellar systems revealed that the bio-functionalized silk human cornea 3D constructs exhibited integrated corneal stroma tissue with helicoidal multi-lamellar alignment of collagen-rich and proteoglycan-rich extracellular matrix, with transparency of the construct. This biomimetic approach to replicate corneal stromal tissue structural hierarchy and architecture demonstrates a useful strategy for engineering human cornea. Further, this approach can be exploited for other tissue systems due to the pervasive nature of such helicoids in most human tissues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy.

    PubMed

    Steele, Katherine M; Rozumalski, Adam; Schwartz, Michael H

    2015-12-01

    Individuals with cerebral palsy (CP) have impaired movement due to a brain injury near birth. Understanding how neuromuscular control is altered in CP can provide insight into pathological movement. We sought to determine if individuals with CP demonstrate reduced complexity of neuromuscular control during gait compared with unimpaired individuals and if changes in control are related to functional ability. Muscle synergies during gait were retrospectively analyzed for 633 individuals (age range 3.9-70y): 549 with CP (hemiplegia, n=122; diplegia, n=266; triplegia, n=73; quadriplegia, n=88) and 84 unimpaired individuals. Synergies were calculated using non-negative matrix factorization from surface electromyography collected during previous clinical gait analyses. Synergy complexity during gait was compared with diagnosis subtype, functional ability, and clinical examination measures. Fewer synergies were required to describe muscle activity during gait in individuals with CP compared with unimpaired individuals. Changes in synergies were related to functional impairment and clinical examination measures including selective motor control, strength, and spasticity. Individuals with CP use a simplified control strategy during gait compared with unimpaired individuals. These results were similar to synergies during walking among adult stroke survivors, suggesting similar neuromuscular control strategies between these clinical populations. © 2015 Mac Keith Press.

  2. Data approximation using a blending type spline construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalmo, Rune; Bratlie, Jostein

    2014-11-18

    Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended together by C{sup k}-smooth basis functions. One way of approximating discrete regular data using GERBS is by partitioning the data set into subsets and fit a local function to each subset. Partitioning and fitting strategies can be devised such that important or interesting data points are interpolated in order to preserve certain features. We present a method for fitting discrete data using a tensor product GERBS construction. The method is based on detection of feature points using differential geometry. Derivatives, which aremore » necessary for feature point detection and used to construct local surface patches, are approximated from the discrete data using finite differences.« less

  3. Random heteropolymers preserve protein function in foreign environments

    NASA Astrophysics Data System (ADS)

    Panganiban, Brian; Qiao, Baofu; Jiang, Tao; DelRe, Christopher; Obadia, Mona M.; Nguyen, Trung Dac; Smith, Anton A. A.; Hall, Aaron; Sit, Izaac; Crosby, Marquise G.; Dennis, Patrick B.; Drockenmuller, Eric; Olvera de la Cruz, Monica; Xu, Ting

    2018-03-01

    The successful incorporation of active proteins into synthetic polymers could lead to a new class of materials with functions found only in living systems. However, proteins rarely function under the conditions suitable for polymer processing. On the basis of an analysis of trends in protein sequences and characteristic chemical patterns on protein surfaces, we designed four-monomer random heteropolymers to mimic intrinsically disordered proteins for protein solubilization and stabilization in non-native environments. The heteropolymers, with optimized composition and statistical monomer distribution, enable cell-free synthesis of membrane proteins with proper protein folding for transport and enzyme-containing plastics for toxin bioremediation. Controlling the statistical monomer distribution in a heteropolymer, rather than the specific monomer sequence, affords a new strategy to interface with biological systems for protein-based biomaterials.

  4. Immunoevasive protein (IEP)-containing surface layer covering polydnavirus particles is essential for viral infection.

    PubMed

    Furihata, Shunsuke; Tanaka, Kohjiro; Ryuda, Masasuke; Ochiai, Masanori; Matsumoto, Hitoshi; Csikos, Gyorge; Hayakawa, Yoichi

    2014-01-01

    Polydnaviruses (PDVs) are unique symbiotic viruses associated with parasitoid wasps: PDV particles are injected into lepidopteran hosts along with the wasp eggs and express genes that interfere with aspects of host physiology such as immune defenses and development. Recent comparative genomic studies of PDVs have significantly improved our understanding of their origin as well as the genome organization. However, the structural features of functional PDV particles remain ambiguous. To clear up the structure of Cotesia kariyai PDV (CkPDV) particles, we focused on immunoevasive protein (IEP), which is a mediator of immunoevasion by the wasp from the encapsulation reaction of the host insect's hemocytes, because it has been demonstrated to be present on the surface of the virus particle. We discovered that IEP tends to polymerize and constitutes a previously unidentified thin surface layer covering CkPDV particles. This outermost surface layer looked fragile and was easily removed from CkPVD particles by mechanical stressors such as shaking, which prevented CkPDV from expressing the encoded genes in the host target tissues such as fat body or hemocytes. Furthermore, we detected IEP homologue gene expression in the wasp's venom reservoirs, implying IEP has another unknown biological function in the wasp or parasitized hosts. Taken together, the present results demonstrated that female C. kariyai wasps produce the fragile thin layer partly composed of IEP to cover the outer surfaces of CkPDV particles; otherwise, they cannot function as infectious agents in the wasp's host. The fact that IEP family proteins are expressed in both venom reservoirs and oviducts suggests an intimate relationship between both tissues in the development of the parasitism strategy of the wasp. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. [Functional and dysfunctional emotion regulation strategies for depressive symptoms in adolescents].

    PubMed

    Fern, Julia; Nitkowski, Dennis; Petermann, Ulrike; Petermann, Franz

    2018-01-01

    Dysfunctional and functional emotion regulation strategies in adolescence have so far been examined separately, but not in interaction. Our aim is to analyze a possible compensation of dysfunctional regulation strategies through functional strategies in depressive symptoms. Method: The Regulation of Emotions Questionnaire (REQ) was used to examine the ability of emotion regulation in 247 adolescents between 12 to 17 years (M = 14.41, SD = 1.39). To measure depressive symptoms, Allgemeine Depressionsskala (ADS) was established. Results speak for a compensation of internal-dysfunctional emotion regulation strategies with internal-functional emotion regulation strategies in girls. In boys, functional emotion regulation strategies strengthen the relationship between internal-dysfunctional emotion regulation strategies and depressive symptoms. Other strategies do not interact with each another. Results indicate a compensative effect in girls, while in boys functional emotion regulation seems to have an amplifying effect on depressive symptoms. Results suggest that boys use functional strategies in a dysfunctional way, while girls are able to use them appropriately. An exploration of the understanding of functional emotion regulation may enable approaches to treatment.

  6. Biofilm formation on nanostructured titanium oxide surfaces and a micro/nanofabrication-based preventive strategy using colloidal lithography.

    PubMed

    Singh, Ajay Vikram; Vyas, Varun; Salve, Tushar S; Cortelli, Daniele; Dellasega, David; Podestà, Alessandro; Milani, Paolo; Gade, W N

    2012-06-01

    The contamination of implant devices as a result of biofilm formation through bacterial infection has instigated major research in this area, particularly to understand the mechanism of bacterial cell/implant surface interactions and their preventions. In this paper, we demonstrate a controlled method of nanostructured titanium oxide surface synthesis using supersonic cluster beam depositions. The nanoscale surface characterization using atomic force microscopy and a profilometer display a regulated evolution in nanomorphology and physical properties. X-ray photoelectron spectroscopy analyses display a stoichiometric nanostructured TiO(2) film. Measurement of the water contact angle shows a nominal increase in the hydrophilic nature of ns-TiO(2) films, whereas the surface energy increases with decreasing contact angle. Bacterial species Staphylococcus aureus and Escherichia coli interaction with nanostructured surfaces shows an increase in adhesion and biofilm formation with increasing nanoscale morphological properties. Conversely, limiting ns-TiO(2) film distribution to micro/nanopatterned designed substrates integrated with bovine serum albumin functionalization leads to a reduction in biofilm formations due to a globally decreased bacterial cell-surface interaction area. The results have potential implications in inhibiting bacterial colonization and promoting mammalian cell-implant interactions.

  7. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    PubMed Central

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-01-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity. PMID:26333629

  8. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  9. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies.

    PubMed

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-03

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  10. Surface patterning of polymeric separation membranes and its influence on the filtration performance

    NASA Astrophysics Data System (ADS)

    Maruf, Sajjad

    Polymeric membrane based separation technologies are crucial for addressing the global issues such as water purification. However, continuous operations of these processes are often hindered by fouling which increases mass transport resistance of the membrane to permeation and thus the energy cost, and eventually replacement of the membrane in the system. In comparison to other anti-fouling strategies, the use of controlled surface topography to mitigate fouling has not been realized mainly due to the lack of methods to create targeted topography on the porous membrane surface. This thesis aims to develop a new methodology to create surface-patterned polymeric separation membrane to improve their anti-fouling characteristics during filtration. First, successful fabrication of sub-micron surface patterns directly on a commercial ultrafiltration (UF) membrane surface using nanoimprint lithographic (NIL) technique was demonstrated. Comprehensive filtration studies revealed that the presence of these sub-micron surface patterns mitigates not only the onset of colloidal particle deposition, but also lowers the rate of growth of cake layer after initial deposition, in comparison with un-patterned membranes. The anti-fouling effects were also observed for model protein solutions. Staged filtration experiments, with backwash cleaning, revealed that the permeate flux of the patterned membrane after protein fouling was considerably higher than that of the pristine or un-patterned membrane. In addition to the surface-patterning of UF membranes, successful fabrication of a surface-patterned thin film composite (TFC) membrane was shown for the first time. A two-step fabrication process was carried out by (1) nanoimprinting a polyethersulfone (PES) support using NIL, and (2) forming a thin dense film atop the PES support via interfacial polymerization (IP). Fouling experiments suggest that the surface patterns alter the hydrodynamics at the membrane-feed interface, which is effective in decreasing fouling in dead end filtration system. In summary, this thesis represents the first ever fabrication of functional patterned polymeric separation membrane and systematic investigation of the influence of submicron surface patterns on pressure-driven liquid membrane separations. The results presented here will enable an effective non-chemical surface modification anti-fouling strategy, which can be directly added onto current commercial separation membrane manufacturing route.

  11. Autonomous Bacterial Localization and Gene Expression Based on Nearby Cell Receptor Density

    DTIC Science & Technology

    2013-01-22

    synthesis of novel products (Kwok, 2010). In such cases, cell populations are aligned for optimal production . While Nature’s biosynthetic toolbox is vast...less commonly examined but equally innovative strategy envisions a repro- grammed cell itself or small collections of cells as the end products of...to surfaces. In Figure 2B, we depict the level of NF binding and AI-2 production as a function of coated avidin. We used a mathematical model for E

  12. Harnessing Novel Secreted Inhibitors of EGF Receptor Signaling for Breast Cancer Treatment

    DTIC Science & Technology

    2007-04-01

    the original proposal, we described approaches for displaying the basic Argos and Dkk scaffolds as pIII fusions on M13 phage , so that we could...deal of effort into displaying Argos and other relevant proteins as pIII fusions on M13 phage (Task 2a). This has been technically very challenging... display function Argos on the surface of phage M13 , requiring a change in experimental strategy • To replace the phage display , we have established

  13. The Art and Science of Polymer Brushes: Recent Developments in Patterning and Characterization Approaches.

    PubMed

    Panzarasa, Guido

    2017-06-28

    Polymer brushes are dense arrays of macromolecular chains tethered by one end at a surface. They are at the cutting edge of polymer nanotechnology since the dawn of controlled surface-initiated polymerization techniques unlocked new prospects for the synthesis of polymer brushes with tailorable properties. More recently, thanks to the growing interest in the use of brushes for the generation of functional surfaces, the need for advanced patterning and characterization approaches rapidly increased. Meeting these needs requires the contribution of experts from different disciplines: polymer chemistry, surface science, electrochemistry and particle physics. The focus of this review is to highlight recent developments in the field of polymer brushes, specifically the application of photocatalytic lithography as a versatile patterning strategy, the study of grafted-from polymer brushes by electrochemical methods and, most importantly, the introduction of positron annihilation spectroscopy as a powerful technique for the investigation of the structure of polymer brushes and of their composites with nanoparticles.

  14. Role of Flippases in Protein Glycosylation in the Endoplasmic Reticulum

    PubMed Central

    Rush, Jeffrey S.

    2015-01-01

    Glycosylation is essential to the synthesis, folding, and function of glycoproteins in eukaryotes. Proteins are co- and posttranslationally modified by a variety of glycans in the endoplasmic reticulum (ER); modifications include C- and O-mannosylation, N-glycosylation, and the addition of glycosylphosphatidylinositol membrane anchors. Protein glycosylation in the ER of eukaryotes involves enzymatic steps on both the cytosolic and lumenal surfaces of the ER membrane. The glycans are first assembled as precursor glycolipids, on the cytosolic surface of the ER, which are tethered to the membrane by attachment to a long-chain polyisoprenyl phosphate (dolichol) containing a reduced α-isoprene. The lipid-anchored building blocks then migrate transversely (flip) across the ER membrane to the lumenal surface, where final assembly of the glycan is completed. This strategy allows the cell to export high-energy biosynthetic intermediates as lipid-bound glycans, while constraining the glycosyl donors to the site of assembly on the membrane surface. This review focuses on the flippases that participate in protein glycosylation in the ER. PMID:26917968

  15. The Phosphorylation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) by Engineered Surfaces with Electrostatically or Covalently Immobilized VEGF

    PubMed Central

    Anderson, Sean M.; Chen, Tom T.; Iruela-Arispe, M. Luisa; Segura, Tatiana

    2010-01-01

    Growth factors are a class of signaling proteins that direct cell fate through interaction with cell surface receptors. Although a myriad of possible cell fates stem from a growth factor binding to its receptor, the signaling cascades that result in one fate over another are still being elucidated. One possible mechanism by which nature modulates growth factor signaling is through the method of presentation of the growth factor – soluble or immobilized (matrix bound). Here we present the methodology to study signaling of soluble versus immobilized VEGF through VEGFR-2. We have designed a strategy to covalently immobilize VEGF using its heparin-binding domain to orient the molecule (bind) and a secondary functional group to mediate covalent binding (lock). This bind-and-lock approach aims to allow VEGF to assume a bioactive orientation before covalent immobilization. Surface plasmon resonance (SPR) demonstrated heparin and VEGF binding with surface densities of 60 ng/cm2 and 100 pg/cm2, respectively. ELISA experiments confirmed VEGF surface density and showed that electrostatically bound VEGF releases in cell medium and heparin solutions while covalently bound VEGF remains immobilized. Electrostatically bound VEGF and covalently bound VEGF phosphorylate VEGFR-2 in both VEGFR-2 transfected cells and VEGFR-2 endogenously producing cells. HUVECs plated on VEGF functionalized surfaces showed different morphologies between surface-bound VEGF and soluble VEGF. The surfaces synthesized in these studies allow for the study of VEGF/VEGFR-2 signaling induced by covalently bound, electrostatically bound, and soluble VEGF and may provide further insight into the design of materials for the generation of a mature and stable vasculature. PMID:19540581

  16. Antibacterial Surface Design of Titanium-Based Biomaterials for Enhanced Bacteria-Killing and Cell-Assisting Functions Against Periprosthetic Joint Infection.

    PubMed

    Wang, Jiaxing; Li, Jinhua; Qian, Shi; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong; Chu, Paul K

    2016-05-04

    Periprosthetic joint infection (PJI) is one of the formidable and recalcitrant complications after orthopedic surgery, and inhibiting biofilm formation on the implant surface is considered crucial to prophylaxis of PJI. However, it has recently been demonstrated that free-floating biofilm-like aggregates in the local body fluid and bacterial colonization on the implant and peri-implant tissues can coexist and are involved in the pathogenesis of PJI. An effective surface with both contact-killing and release-killing antimicrobial capabilities can potentially abate these concerns and minimize PJI caused by adherent/planktonic bacteria. Herein, Ag nanoparticles (NPs) are embedded in titania (TiO2) nanotubes by anodic oxidation and plasma immersion ion implantation (PIII) to form a contact-killing surface. Vancomycin is then incorporated into the nanotubes by vacuum extraction and lyophilization to produce the release-killing effect. A novel clinical PJI model system involving both in vitro and in vivo use of methicillin-resistant Staphylococcus aureus (MRSA) ST239 is established to systematically evaluate the antibacterial properties of the hybrid surface against planktonic and sessile bacteria. The vancomycin-loaded and Ag-implanted TiO2 nanotubular surface exhibits excellent antimicrobial and antibiofilm effects against planktonic/adherent bacteria without appreciable silver ion release. The fibroblasts/bacteria cocultures reveal that the surface can help fibroblasts to combat bacteria. We first utilize the nanoarchitecture of implant surface as a bridge between the inorganic bactericide (Ag NPs) and organic antibacterial agent (vancomycin) to achieve total victory in the battle of PJI. The combination of contact-killing and release-killing together with cell-assisting function also provides a novel and effective strategy to mitigate bacterial infection and biofilm formation on biomaterials and has large potential in orthopedic applications.

  17. The use of a proteinaceous "cushion" with a polystyrene-binding peptide tag to control the orientation and function of a target peptide adsorbed to a hydrophilic polystyrene surface.

    PubMed

    Imanaka, Hiroyuki; Yamadzumi, Daisuke; Yanagita, Keisuke; Ishida, Naoyuki; Nakanishi, Kazuhiro; Imamura, Koreyoshi

    2016-03-01

    In immobilizing target biomolecules on a solid surface, it is essential (i) to orient the target moiety in a preferred direction and (ii) to avoid unwanted interactions of the target moiety including with the solid surface. The preferred orientation of the target moiety can be achieved by genetic conjugation of an affinity peptide tag specific to the immobilization surface. Herein, we report on a strategy for reducing the extent of direct interaction between the target moiety and surface in the immobilization of hexahistidine peptide (6His) and green fluorescent protein (GFP) on a hydrophilic polystyrene (PS) surface: Ribonuclease HII from Thermococcus kodakaraensis (cHII) was genetically inserted as a "cushion" between the PS-affinity peptide tag and target moiety. The insertion of a cushion protein resulted in a considerably stronger immobilization of target biomolecules compared to conjugation with only a PS affinity peptide tag, resulting in a substantially enhanced accessibility of the detection antibody to the target 6His peptide. The fluorescent intensity of the GFP moiety was decreased by approximately 30% as the result of fusion with cHII and the PS-affinity peptide tag but was fully retained in the immobilization on the PS surface irrespective of the increased binding force. Furthermore, the fusion of cHII did not impair the stability of the target GFP moiety. Accordingly, the use of a proteinaceous cushion appears to be promising for the immobilization of functional biomolecules on a solid surface. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:527-534, 2016. © 2016 American Institute of Chemical Engineers.

  18. Bond Order Conservation Strategies in Catalysis Applied to the NH 3 Decomposition Reaction

    DOE PAGES

    Yu, Liang; Abild-Pedersen, Frank

    2016-12-14

    On the basis of an extensive set of density functional theory calculations, it is shown that a simple scheme provides a fundamental understanding of variations in the transition state energies and structures of reaction intermediates on transition metal surfaces across the periodic table. The scheme is built on the bond order conservation principle and requires a limited set of input data, still achieving transition state energies as a function of simple descriptors with an error smaller than those of approaches based on linear fits to a set of calculated transition state energies. Here, we have applied this approach together withmore » linear scaling of adsorption energies to obtain the energetics of the NH 3 decomposition reaction on a series of stepped fcc(211) transition metal surfaces. Moreover, this information is used to establish a microkinetic model for the formation of N 2 and H 2, thus providing insight into the components of the reaction that determines the activity.« less

  19. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine

    PubMed Central

    Conde, João; Dias, Jorge T.; Grazú, Valeria; Moros, Maria; Baptista, Pedro V.; de la Fuente, Jesus M.

    2014-01-01

    In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles. PMID:25077142

  20. A general patterning approach by manipulating the evolution of two-dimensional liquid foams

    NASA Astrophysics Data System (ADS)

    Huang, Zhandong; Su, Meng; Yang, Qiang; Li, Zheng; Chen, Shuoran; Li, Yifan; Zhou, Xue; Li, Fengyu; Song, Yanlin

    2017-01-01

    The evolution of gas-liquid foams has been an attractive topic for more than half a century. However, it remains a challenge to manipulate the evolution of foams, which restricts the development of porous materials with excellent mechanical, thermal, catalytic, electrical or acoustic properties. Here we report a strategy to manipulate the evolution of two-dimensional (2D) liquid foams with a micropatterned surface. We demonstrate that 2D liquid foams can evolve beyond Ostwald ripening (large bubbles always consuming smaller ones). By varying the arrangement of pillars on the surface, we have prepared various patterns of foams in which the size, shape and position of the bubbles can be precisely controlled. Furthermore, these patterned bubbles can serve as a template for the assembly of functional materials, such as nanoparticles and conductive polymers, into desired 2D networks with nanoscale resolution. This methodology provides new insights in controlling curvature-driven evolution and opens a general route for the assembly of functional materials.

  1. Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles

    DOE PAGES

    Vörös, Márton; Brawand, Nicholas P.; Galli, Giulia

    2016-11-15

    Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial formore » charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Lastly, our findings suggest that postsynthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films.« less

  2. Highly selective and efficient imprinted polymers based on carboxyl-functionalized magnetic nanoparticles for the extraction of gallic acid from pomegranate rind.

    PubMed

    Zhang, Junjie; Li, Benqiang; Yue, Huijuan; Wang, Jing; Zheng, Yuansuo

    2018-01-01

    With the combined surface imprinting technique and immobilized template strategy, molecularly imprinted magnetic nanoparticles were successfully prepared and coupled with high-performance liquid chromatography to selectively separate and determine gallic acid from the pomegranate rind. On the surface of carboxyl-functionalized magnetic nanospheres, thin imprinting shells were formed using dopamine as monomer and crosslinker. The characteristics, polymerization conditions, and adsorption performances of the resultant nanomaterials were investigated in detail. In addition of good crystallinity, satisfactory magnetism, and uniform morphology of the obtained polymers, they had rapid binding kinetics, high adsorption capacity, and favorable reusability. In the mixed solution of four hydroxybenzoic acids, the prepared nanomaterials have an excellent selectivity to gallic acid with an imprinting factor of as high as 17.5. Therefore, the polymers have great potentials in specific extraction and enrichment of gallic acid from the complex natural resources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hydroxylation of organic polymer surface: method and application.

    PubMed

    Yang, Peng; Yang, Wantai

    2014-03-26

    It may be hardly believable that inert C-H bonds on a polymeric material surface could be quickly and efficiently transformed into C-OH by a simple and mild way. Thanks to the approaches developed recently, it is now possible to transform surface H atoms of a polymeric substrate into monolayer OH groups by a simple/mild photochemical reaction. Herein the method and application of this small-molecular interfacial chemistry is highlighted. The existence of hydroxyl groups on material surfaces not only determines the physical and chemical properties of materials but also provides effective reaction sites for postsynthetic sequential modification to fulfill the requirements of various applications. However, organic synthetic materials based on petroleum, especially polyolefins comprise mainly C and H atoms and thus present serious surface problems due to low surface energy and inertness in reactivity. These limitations make it challenging to perform postsynthetic surface sequential chemical derivatization toward enhanced functionalities and properties and also cause serious interfacial problems when bonding or integrating polymer substrates with natural or inorganic materials. Polymer surface hydroxylation based on direct conversion of C-H bonds on polymer surfaces is thus of significant importance for academic and practical industrial applications. Although highly active research results have reported on small-molecular C-H bond activation in solution (thus homogeneous), most of them, featuring the use of a variety of transition metals as catalysts, present a slow reaction rate, a low atom economy and an obvious environmental pollution. In sharp contrast to these conventional C-H activation strategies, the present Spotlight describes a universal confined photocatalytic oxidation (CPO) system that is able to directly convert polymer surface C-H bonds to C-OSO3(-) and, subsequently, to C-OH through a simple hydrolysis. Generally speaking, these newly implanted hydroxyl groups preserve their own reactivity toward other complementary compounds, thus creating a novel base with distinct surface properties. Thanks to this functionalized platform, a wide range of organic, inorganic and metal materials have been attached to conventional organic polymer substrates through the rational engineering of surface molecular templates from small functional groups to macromolecules. It is expected that the proposed novel CPO method and its versatile usages in advanced material applications will offer new opportunities for a variety of scientific communities, especially for those working on surface/interface modulation.

  4. Nanopatterning of Surfaces with Monometallic and Heterobimetallic 1D Coordination Polymers: A Molecular Tectonics Approach at the Solid/Liquid Interface.

    PubMed

    El Garah, Mohamed; Marets, Nicolas; Mauro, Matteo; Aliprandi, Alessandro; Bonacchi, Sara; De Cola, Luisa; Ciesielski, Artur; Bulach, Véronique; Hosseini, Mir Wais; Samorì, Paolo

    2015-07-08

    The self-assembly of multiple molecular components into complex supramolecular architectures is ubiquitous in nature and constitutes one of the most powerful strategies to fabricate multifunctional nanomaterials making use of the bottom-up approach. When spatial confinement in two dimensions on a solid substrate is employed, this approach can be exploited to generate periodically ordered structures from suitably designed molecular tectons. In this study we demonstrate that physisorbed directional periodic arrays of monometallic or heterobimetallic coordination polymers can be generated on a highly oriented pyrolitic graphite surface by combinations of a suitably designed directional organic tecton or metallatecton based on a porphyrin or nickel(II) metalloporphyrin backbone bearing both a pyridyl unit and a terpyridyl unit acting as coordinating sites for CoCl2. The periodic architectures were visualized at the solid/liquid interface with a submolecular resolution by scanning tunneling microscopy and corroborated by combined density functional and time-dependent density functional theory calculations. The capacity to nanopattern the surface for the first time with two distinct metallic centers exhibiting different electronic and optical properties is a key step toward the bottom-up construction of robust multicomponent and, thus, multifunctional molecular nanostructures and nanodevices.

  5. Three cysteine residues of SLC52A1, a receptor for the porcine endogenous retrovirus-A (PERV-A), play a critical role in cell surface expression and infectivity.

    PubMed

    Colon-Moran, Winston; Argaw, Takele; Wilson, Carolyn A

    2017-07-01

    Porcine endogenous retrovirus-A (PERV-A), a gammaretrovirus, infects human cells in vitro, thus raising the potential risk of cross-species transmission in xenotransplantation. Two members of the solute carrier family 52 (SLC52A1 and SLC52A2) are PERV-A receptors. Site-directed mutagenesis of the cDNA encoding SLC52A1 identified that only one of two putative glycosylation signals is occupied by glycans. In addition, we showed that glycosylation of SLC52A1 is not necessary for PERV-A receptor function. We also identified that at a minimum, three cysteine residues are sufficient for SLC52A1 cell surface expression. Mutation of cysteine at position 365 and either of the two cysteine residues in the C-terminal tail at positions 442 or 446 reduced SLC52A1 surface expression and PERV-A infection suggesting that these residues may contribute to overall structural stability and receptor function. Understanding interactions between PERV-A and its cellular receptor may provide novel strategies to prevent zoonotic infection in the setting of xenotransplantation. Published by Elsevier Inc.

  6. Testing and comparison of the coating materials for immunosensors on QCM

    NASA Astrophysics Data System (ADS)

    Oztuna, Ali; Nazir, Hasan

    2012-06-01

    In immunoassay based biosensors development studies polymers, as a matrix, and thiol, amine and aldehyde derivative compounds, as a antibody linker, are to be experimented. Aim of this study is to test amine and acetate functional group containing derivatives in liquid phase in order to develop an antibody immobilization strategy for Quartz Crystal Microbalance (QCM) system. In our study, 4-aminothiophenol (4-AT), carboxylated-PVC (PVC-COOH) and aminated- PVC (PVC-NH2) compared with each other as a coating material. Surface of the coated AT-cut gold crystals were characterized with Fourier Transform Infrared spectrometry (FTIR) and Scanning Electron Microscobe (SEM) and tested in a Bacillus anthracis (GenBank: GQ375871) spores immunoassay model system. Subsequently, a series of SEM micrographs were taken again in order to investigate surface morphology and show the presence of the B. anthracis spores on the sensor surface. When experimental results and SEM images were evaluated together, it was suggested that with the synthesis of PVC like open-chained polymers, containing -NH2 and -SH functional groups, B. anthracis spore detection can be accomplished on QCM without requiring complicated immobilization procedures and expensive preliminary preparations.

  7. Analysis of machining accuracy during free form surface milling simulation for different milling strategies

    NASA Astrophysics Data System (ADS)

    Matras, A.; Kowalczyk, R.

    2014-11-01

    The analysis results of machining accuracy after the free form surface milling simulations (based on machining EN AW- 7075 alloys) for different machining strategies (Level Z, Radial, Square, Circular) are presented in the work. Particular milling simulations were performed using CAD/CAM Esprit software. The accuracy of obtained allowance is defined as a difference between the theoretical surface of work piece element (the surface designed in CAD software) and the machined surface after a milling simulation. The difference between two surfaces describes a value of roughness, which is as the result of tool shape mapping on the machined surface. Accuracy of the left allowance notifies in direct way a surface quality after the finish machining. Described methodology of usage CAD/CAM software can to let improve a time design of machining process for a free form surface milling by a 5-axis CNC milling machine with omitting to perform the item on a milling machine in order to measure the machining accuracy for the selected strategies and cutting data.

  8. Triggering nanoparticle surface ligand rearrangement via external stimuli: light-based actuation of biointerfaces

    NASA Astrophysics Data System (ADS)

    Tang, Zhenghua; Lim, Chang-Keun; Palafox-Hernandez, J. Pablo; Drew, Kurt L. M.; Li, Yue; Swihart, Mark T.; Prasad, Paras N.; Walsh, Tiffany R.; Knecht, Marc R.

    2015-08-01

    Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies.Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies. Electronic supplementary information (ESI) available: Additional modeling analysis, QCM analysis, UV-vis and CD spectroscopy data. See DOI: 10.1039/C5NR02311D

  9. Learning strategies during clerkships and their effects on clinical performance.

    PubMed

    van Lohuizen, M T; Kuks, J B M; van Hell, E A; Raat, A N; Cohen-Schotanus, J

    2009-11-01

    Previous research revealed relationships between learning strategies and knowledge acquisition. During clerkships, however, students' focus widens beyond mere knowledge acquisition as they further develop overall competence. This shift in focus can influence learning strategy use. We explored which learning strategies were used during clerkships and their relationship to clinical performance. Participants were 113 (78%) clerks at the university hospital or one of six affiliated hospitals. Learning strategies were assessed using the 'Approaches to Learning at Work Questionnaire' (deep, surface-rational and surface-disorganised learning). Clinical performance was calculated by taking the mean of clinical assessment marks. The relationship between learning strategies and clinical performance was explored using regression analysis. Most students (89%) did not clearly prefer a single learning strategy. No relationship was found between learning strategies and clinical performance. Since overall competence comprises integration of knowledge, skills and professional behaviour, we assume that students without a clear preference use more than one learning strategy. Finding no relationship between learning strategies and clinical performance reflects the complexity of clinical learning. Depending on circumstances it may be important to obtain relevant information quickly (surface-rational) or understand material thoroughly (deep). In future research we will examine when and why students use different learning strategies.

  10. A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate-protein interaction profiling and cell surface carbohydrate expression evaluation

    NASA Astrophysics Data System (ADS)

    Wang, Yangzhong; Chen, Zhuhai; Liu, Yang; Li, Jinghong

    2013-07-01

    A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes.A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes. Electronic supplementary information (ESI) available: Experimental details; characterization of probes; the influence of electrolyte pH; probe concentration and glucose concentration on the electrode ECL effect. See DOI: 10.1039/c3nr01598j

  11. CRYOPRESERVATION STRATEGY FOR TISSUE ENGINEERING CONSTRUCTS CONSISTING OF HUMAN MESENHYMAL STEM CELLS AND HYDROGEL BIOMATERIALS.

    PubMed

    Wu, Y; Wen, F; Gouk, S S; Lee, E H; Kuleshova, L

    2015-01-01

    The development of vitrification strategy for cell-biomaterial constructs, particularly biologically inspired nanoscale materials and hydrogels mimicking the in vivo environment is an active area. A cryopreservation strategy mimicking the in vivo environment for cell-hydrogel constructs may enhance cell proliferation and biological function. To demonstrate the efficacy of vitrification as a platform technology involving tissue engineering and human mesenchymal stem cells (hMSCs). Microcarriers made from alginate coated with chitosan and collagen are used. Conventional freezing and vitrification were compared. The vitrification strategy includes 10 min step-wise exposure to a vitrification solution (40% v/v EG, 0.6M sucrose) and immersion into liquid nitrogen. Confocal imaging of live/dead staining of hMSCs cultured on the surface of microcarriers demonstrated that vitrified cells had excellent appearance and prolonged spindle shape morphology. The proliferation ability of post-vitrified cells arbitrated to protein Ki-67 gene expression was not significantly different in comparison to untreated control, while that of post-freezing cells was almost lost. The ability of hMSCs cultured on the surface of microcarriers to proliferate has been not affected by vitrification and it was significantly better after vitrification than after conventional freezing during continuous culture. Collagen II related mRNA expression by 4 weeks post-vitrification and post-freezing showed that ability to differentiate into cartilage was sustained during vitrification and reduced during conventional freezing. No significant difference was found between control and vitrification groups only. Vitrification strategy coupled with advances in hMSC-expansion platform that completely preserves the ability of stem cells to proliferate and subsequently differentiate allows not only to reach a critical cell number, but also demonstrate prospects for effective utilization and transportation of cells with their support system, creating demand for novel biodegradable materials.

  12. Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel

    NASA Astrophysics Data System (ADS)

    Kirner, S. V.; Hermens, U.; Mimidis, A.; Skoulas, E.; Florian, C.; Hischen, F.; Plamadeala, C.; Baumgartner, W.; Winands, K.; Mescheder, H.; Krüger, J.; Solis, J.; Siegel, J.; Stratakis, E.; Bonse, J.

    2017-12-01

    Ultrashort laser pulses with durations in the fs-to-ps range were used for large area surface processing of steel aimed at mimicking the morphology and extraordinary wetting behaviour of bark bugs (Aradidae) found in nature. The processing was performed by scanning the laser beam over the surface of polished flat sample surfaces. A systematic variation of the laser processing parameters (peak fluence and effective number of pulses per spot diameter) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, i.e., LIPSS, grooves, spikes, etc.). Moreover, different laser processing strategies, varying laser wavelength, pulse duration, angle of incidence, irradiation atmosphere, and repetition rates, allowed to achieve a range of morphologies that resemble specific structures found on bark bugs. For identifying the ideal combination of parameters for mimicking bug-like structures, the surfaces were inspected by scanning electron microscopy. In particular, tilted micrometre-sized spikes are the best match for the structure found on bark bugs. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined in terms of philic/phobic nature and fluid transport. These results point out a route towards reproducing complex surface structures inspired by nature and their functional response in technologically relevant materials.

  13. Synergistic effects of bisphosphonate and calcium phosphate nanoparticles on peri-implant bone responses in osteoporotic rats.

    PubMed

    Alghamdi, Hamdan S; Bosco, Ruggero; Both, Sanne K; Iafisco, Michele; Leeuwenburgh, Sander C G; Jansen, John A; van den Beucken, Jeroen J J P

    2014-07-01

    The prevalence of osteoporosis will increase within the next decades due to the aging world population, which can affect the bone healing response to dental and orthopedic implants. Consequently, local drug targeting of peri-implant bone has been proposed as a strategy for the enhancement of bone-implant integration in osteoporotic conditions. In the present study, an established in-vivo femoral condyle implantation model in osteoporotic and healthy bone is used to analyze the osteogenic capacity of titanium implants coated with bisphosphonate (BP)-loaded calcium phosphate nanoparticles (nCaP) under compromised medical conditions. After 4 weeks of implantation, peri-implant bone volume (%BV; by μCT) and bone area (%BA; by histomorphometry) were significantly increased within a distance of 500 μm from implant surfaces functionalized with BP compared to control implants in osteoporotic and healthy conditions. Interestingly, the deposition of nCaP/BP coatings onto implant surfaces increased both peri-implant bone contact (%BIC) and volume (%BV) compared to the deposition of nCaP or BP coatings individually, in osteoporotic and healthy conditions. The results of real-time PCR revealed similar osteogenic gene expression levels to all implant surfaces at 4-weeks post-implantation. In conclusion, simultaneous targeting of bone formation (by nCaP) and bone resorption (by BP) using nCaP/BP surface coatings represents an effective strategy for synergistically improvement of bone-implant integration, especially in osteoporotic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Graphene quantum dots modified silicon nanowire array for ultrasensitive detection in the gas phase

    NASA Astrophysics Data System (ADS)

    Li, T. Y.; Duan, C. Y.; Zhu, Y. X.; Chen, Y. F.; Wang, Y.

    2017-03-01

    Si nanostructure-based gas detectors have attracted much attention due to their huge surface areas, relatively high carrier mobility, maneuverability for surface functionalization and compatibility to modern electronic industry. However, the unstable surface of Si, especially for the nanostructures in a corrosive atmosphere, hinders their sensitivity and reproducibility when used for detection in the gas phase. In this study, we proposed a novel strategy to fabricate a Si-based gas detector by using the vertically aligned Si nanowire (SiNW) array as a skeleton and platform, and decorated chemically inert graphene quantum dots (GQDs) to protect the SiNWs from oxidation and promote the carriers’ interaction with the analytes. The radial core-shell structures of the GQDs/SiNW array were then assembled into a resistor-based gas detection system and evaluated by using nitrogen dioxide (NO2) as the model analyte. Compared to the bare SiNW array, our novel sensor exhibited ultrahigh sensitivity for detecting trace amounts of NO2 with the concentration as low as 10 ppm in room temperature and an immensely reduced recovery time, which is of significant importance for their practical application. Meanwhile, strikingly, reproducibility and stability could also be achieved by showing no sensitivity decline after storing the GQDs/SiNW array in air for two weeks. Our results demonstrate that protecting the surface of the SiNW array with chemically inert GQDs is a feasible strategy to realize ultrasensitive detection in the gas phase.

  15. Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO 2

    DOE PAGES

    Hod, Idan; Sampson, Matthew D.; Deria, Pravas; ...

    2015-09-18

    Realization of heterogeneous electrochemical CO 2-to-fuel conversion via molecular catalysis under high-flux conditions requires the assembly of large quantities of reactant-accessible catalysts on conductive surfaces. As a proof of principle, we demonstrate that electrophoretic deposition of thin films of an appropriately chosen metal–organic framework (MOF) material is an effective method for immobilizing the needed quantity of catalyst. For electrocatalytic CO 2 reduction, we used a material that contains functionalized Fe-porphyrins as catalytically competent, redox-conductive linkers. The approach yields a high effective surface coverage of electrochemically addressable catalytic sites (~10 15 sites/cm 2). The chemical products of the reduction, obtained withmore » ~100% Faradaic efficiency, are mixtures of CO and H 2. The results validate the strategy of using MOF chemistry to obtain porous, electrode-immobilized, networks of molecular catalysts having competency for energy-relevant electrochemical reactions.« less

  16. Interfaces and thin films as seen by bound electromagnetic waves.

    PubMed

    Knoll, W

    1998-01-01

    This contribution summarizes the use of plasmon surface polaritons and guided optical waves for the characterization of interfaces and thin organic films. After a short introduction to the theoretical background of evanescent wave optics, examples are given that show how this interfacial "light" can be employed to monitor thin coatings at a solid/air or solid/liquid interface. Examples are given for a very sensitive thickness determination of samples ranging from self-assembled monolayers, to multilayer assemblies prepared by the Langmuir/Blodgett/Kuhn technique or by the alternate polyelectrolyte deposition. These are complemented by the demonstration of the potential of the technique to also monitor time-dependent processes in a kinetic mode. Here, we put an emphasis on the combination set-up of surface plasmon optics with electrochemical techniques, allowing for the on-line characterization of various surface functionalization strategies, e.g. for (bio-) sensor purposes.

  17. Near-infrared light-responsive dynamic wrinkle patterns.

    PubMed

    Li, Fudong; Hou, Honghao; Yin, Jie; Jiang, Xuesong

    2018-04-01

    Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light-responsive dynamic wrinkles by using a carbon nanotube (CNT)-containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics.

  18. Biological Activation of Inert Ceramics: Recent Advances Using Tailored Self-Assembled Monolayers on Implant Ceramic Surfaces

    PubMed Central

    Böke, Frederik; Schickle, Karolina; Fischer, Horst

    2014-01-01

    High-strength ceramics as materials for medical implants have a long, research-intensive history. Yet, especially on applications where the ceramic components are in direct contact with the surrounding tissue, an unresolved issue is its inherent property of biological inertness. To combat this, several strategies have been investigated over the last couple of years. One promising approach investigates the technique of Self-Assembled Monolayers (SAM) and subsequent chemical functionalization to create a biologically active tissue-facing surface layer. Implementation of this would have a beneficial impact on several fields in modern implant medicine such as hip and knee arthroplasty, dental applications and related fields. This review aims to give a summarizing overview of the latest advances in this recently emerging field, along with thorough introductions of the underlying mechanism of SAMs and surface cell attachment mechanics on the cell side. PMID:28788687

  19. Shallow Heavily Doped n++ Germanium by Organo-Antimony Monolayer Doping.

    PubMed

    Alphazan, Thibault; Díaz Álvarez, Adrian; Martin, François; Grampeix, Helen; Enyedi, Virginie; Martinez, Eugénie; Rochat, Névine; Veillerot, Marc; Dewitte, Marc; Nys, Jean-Philippe; Berthe, Maxime; Stiévenard, Didier; Thieuleux, Chloé; Grandidier, Bruno

    2017-06-14

    Functionalization of Ge surfaces with the aim of incorporating specific dopant atoms to form high-quality junctions is of particular importance for the development of solid-state devices. In this study, we report the shallow doping of Ge wafers with a monolayer doping strategy that is based on the controlled grafting of Sb precursors and the subsequent diffusion of Sb into the wafer upon annealing. We also highlight the key role of citric acid in passivating the surface before its reaction with the Sb precursors and the benefit of a protective SiO 2 overlayer that enables an efficient incorporation of Sb dopants with a concentration higher than 10 20 cm -3 . Microscopic four-point probe measurements and photoconductivity experiments show the full electrical activation of the Sb dopants, giving rise to the formation of an n++ Sb-doped layer and an enhanced local field-effect passivation at the surface of the Ge wafer.

  20. A practical teaching course in directed protein evolution using the green fluorescent protein as a model.

    PubMed

    Ruller, Roberto; Silva-Rocha, Rafael; Silva, Artur; Cruz Schneider, Maria Paula; Ward, Richard John

    2011-01-01

    Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from Aequorea victoria by a random mutagenesis strategy using error-prone polymerase chain reaction. Screening of bacterial colonies transformed with random mutant libraries identified GFP variants with increased fluorescence yields. Mapping the three-dimensional structure of these mutants demonstrated how alterations in structural features such as the environment around the fluorophore and properties of the protein surface can influence functional properties such as the intensity of fluorescence and protein solubility. Copyright © 2011 Wiley Periodicals, Inc.

  1. Ag nanoparticle-functionalized ZnO micro-flowers for enhanced photodegradation of herbicide derivatives

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wu, Shumin; Li, Xianliang; Meng, Hao; Zhang, Xia; Wang, Zhuopeng; Han, Yide

    2017-07-01

    We demonstrate a general strategy to design step by step the Ag nanoparticle-functionalized ZnO micro-flowers (Ag/ZnO composites). XRD patterns confirmed the presence of Ag nanoparticles in ZnO/Ag composites, and the SEM and TEM results further demonstrated that Ag nanoparticles were highly dispersed and anchored onto the surface of each ZnO nanosheets. By using the ZnO/Ag composites, the photodegradation of two herbicide derivatives, metamitron and metribuzin, were studied. The enhanced photocatalytic performance was ascribed to the fact that the Ag deposition could reduce the recombination probability of electron-hole pairs, and the photocatalytic mechanism were also investigated in this paper.

  2. Differential targeting of Gbetagamma-subunit signaling with small molecules.

    PubMed

    Bonacci, Tabetha M; Mathews, Jennifer L; Yuan, Chujun; Lehmann, David M; Malik, Sundeep; Wu, Dianqing; Font, Jose L; Bidlack, Jean M; Smrcka, Alan V

    2006-04-21

    G protein betagamma subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gbetagamma subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gbetagamma subunit functions. Several compounds bound to Gbetagamma subunits with affinities from 0.1 to 60 muM and selectively modulated functional Gbetagamma-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.

  3. Optimization of soluble organic selenium accumulation during fermentation of Flammulina velutipes mycelia.

    PubMed

    Ma, Yunfeng; Xiang, Fu; Xiang, Jun; Yu, Longjiang

    2012-01-01

    Selenium is an essential nutrient with diverse physiological functions, and soluble organic selenium (SOS) sources have a higher bioavailability than inorganic selenium sources. Based on the response surface methodology and central composite design, this study presents the optimal medium components for SOS accumulation in batch cultures of Flammulina velutipes, i.e. 30 g/L glucose, 11.2 mg/L sodium selenite, and 1.85 g/L NH4NO3. Furthermore, logistic function model feeding was found to be the optimal feeding strategy for SOS accumulation during Flammulina velutipes mycelia fermentation, where the maximum SOS accumulation reached (4.63 +/- 0.24) mg/L, which is consistent with the predicted value.

  4. Boronic acid-based chemical sensors for saccharides.

    PubMed

    Zhang, Xiao-Tai; Liu, Guang-Jian; Ning, Zhang-Wei; Xing, Guo-Wen

    2017-11-27

    During the past decades, the interaction between boronic acids-functionalized sensors and saccharides is of great interest in the frontier domain of the interdiscipline concerning both biology and chemistry. Various boronic acid-based sensing systems have been developed to detect saccharides and corresponding derivatives in vitro as well as in vivo, which embrace unimolecular sensors, two-component sensing ensembles, functional assemblies, and boronic acid-loaded nanomaterials or surfaces. New sensing strategies emerge in endlessly with excellent selectivity and sensitivity. In this review, several typical sensing systems were introduced and some promising examples were highlighted to enable the deep insight of saccharides sensing on the basis of boronic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Synthesis and Characterization of the Nano-TiO2 Visible Light Photocatalysts: Vanadium Surface Doping Modification

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Li, Zongbao; Jia, Lichao; Xing, Xiaobo

    2018-05-01

    A simple strategy to greatly increase the photocatalytic ability of nanocrystalline anatase has been put forward to fabricate efficient TiO2-based photocatalysts under visible irradiation. By surface modification with V ion, samples with different ratios were synthesized by using an incipient wetness impregnation method. The as-prepared specimens were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities were evaluated by using methylene blue degradations. Meanwhile, the optimized loading structure and electronic structures were calculated by using the density function theory (DFT). This work should provide a practical route to reasonably design and synthesize high-performance TiO2-based nanostructured photocatalysts.

  6. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    PubMed

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  7. Directed-Assembly of Carbon Nanotubes on Soft Substrates for Flexible Biosensor Array

    NASA Astrophysics Data System (ADS)

    Lee, Hyoung Woo; Koh, Juntae; Lee, Byung Yang; Kim, Tae Hyun; Lee, Joohyung; Hong, Seunghun; Yi, Mihye; Jhon, Young Min

    2009-03-01

    We developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for flexible biosensors. In this strategy, thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and linker-free assembly process was applied onto the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neuro-transmitting material, and monosodium glutamate, a food additive.

  8. Self-assembling triblock proteins for biofunctional surface modification

    NASA Astrophysics Data System (ADS)

    Fischer, Stephen E.

    Despite the tremendous promise of cell/tissue engineering, significant challenges remain in engineering functional scaffolds to precisely regulate the complex processes of tissue growth and development. As the point of contact between the cells and the scaffold, the scaffold surface plays a major role in mediating cellular behaviors. In this dissertation, the development and utility of self-assembling, artificial protein hydrogels as biofunctional surface modifiers is described. The design of these recombinant proteins is based on a telechelic triblock motif, in which a disordered polyelectrolyte central domain containing embedded bioactive ligands is flanked by two leucine zipper domains. Under moderate conditions of temperature and pH, the leucine zipper end domains form amphiphilic alpha-helices that reversibly associate into homo-trimeric aggregates, driving hydrogel formation. Moreover, the amphiphilic nature of these helical domains enables surface adsorption to a variety of scaffold materials to form biofunctional protein coatings. The nature and stability of these coatings in various solution conditions, and their interaction with mammalian cells is the primary focus of this dissertation. In particular, triblock protein coatings functionalized with cell recognition sequences are shown to produce well-defined surfaces with precise control over ligand density. The impact of this is demonstrated in multiple cell types through ligand density-dependent cell-substrate interactions. To improve the stability of these physically self-assembled coatings, two covalent crosslinking strategies are described---one in which a zero-length chemical crosslinker (EDC) is utilized and a second in which disulfide bonds are engineered into the recombinant proteins. These targeted crosslinking approaches are shown to increase the stability of surface adsorbed protein layers with minimal effect on the presentation of many bioactive ligands. Finally, to demonstrate the versatility of the triblock protein hydrogels, and the ease of introducing multiple functionalities to a substrate surface, a surface coating is tailored for neural stem cell culture in order to improve proliferation on the scaffold, while maintaining the stem cell phenotype. These studies demonstrate the unique advantages of genetic engineering over traditional techniques for surface modification. In addition to their unmatched sequence fidelity, recombinant proteins can easily be modified with bioactive ligands and their organization into coherent, supramolecular structures mimics natural self-assembly processes.

  9. Surface Passivation for Single-molecule Protein Studies

    PubMed Central

    Chandradoss, Stanley D.; Haagsma, Anna C.; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-01-01

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation. PMID:24797261

  10. A Complete System for Automatic Extraction of Left Ventricular Myocardium From CT Images Using Shape Segmentation and Contour Evolution

    PubMed Central

    Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen

    2014-01-01

    The left ventricular myocardium plays a key role in the entire circulation system and an automatic delineation of the myocardium is a prerequisite for most of the subsequent functional analysis. In this paper, we present a complete system for an automatic segmentation of the left ventricular myocardium from cardiac computed tomography (CT) images using the shape information from images to be segmented. The system follows a coarse-to-fine strategy by first localizing the left ventricle and then deforming the myocardial surfaces of the left ventricle to refine the segmentation. In particular, the blood pool of a CT image is extracted and represented as a triangulated surface. Then, the left ventricle is localized as a salient component on this surface using geometric and anatomical characteristics. After that, the myocardial surfaces are initialized from the localization result and evolved by applying forces from the image intensities with a constraint based on the initial myocardial surface locations. The proposed framework has been validated on 34-human and 12-pig CT images, and the robustness and accuracy are demonstrated. PMID:24723531

  11. Electrochemical Responsive Superhydrophilic Surfaces of Polythiophene Derivatives towards Cell Capture and Release.

    PubMed

    Hao, Yuwei; Li, Yingying; Zhang, Feilong; Cui, Haijun; Hu, Jinsong; Meng, Jingxin; Wang, Shutao

    2018-03-23

    Highly efficient cell capture and release with low background are urgently required for early diagnosis of diseases such as cancer. Herein, we report an electrochemical responsive superhydrophilic surface exhibiting specific cell capture and release with high yields and extremely low nonspecific adhesion. Through electrochemical deposition, 3-substituted thiophene derivatives are deposited onto indium tin oxide (ITO) nanowire arrays with 4-n-nonylbenzeneboronic acid (BA) as dopant, fabricating the electrochemical responsive superhydrophilic surfaces. The molecular recognition between sialic acids over-expressed on the cell membrane and doped BAs endows the electrochemical responsive surfaces with the ability to capture and release targeted cancer cells. By adjusting the substituent group of thiophene derivatives, the surface wettability can be readily regulated and further utilized for reducing nonspecific cell adhesion. Significantly, the released cells still maintain a high proliferation ability, which indicates that the applied potential does not significantly harm the cells. Therefore, these results may provide a new strategy to achieve advanced functions of biomedical materials, such as low nonspecific adhesion. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sorption potential of alkaline treated straw and a soil for sulfonylurea herbicide removal from aqueous solutions: An environmental management strategy.

    PubMed

    Cara, Irina-Gabriela; Rusu, Bogdan-George; Raus, Lucian; Jitareanu, Gerard

    2017-11-01

    The adsorption potential of alkaline treated straw (wheat and corn) in mixture with soil, has been investigated for the removal of sulfonylurea molecules from an aqueous solutions. The surface characteristics were investigated by scanning electron microscopy and Fourier Transform Infrared - FTIR, while the adsorbent capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry. Surface analysis of alkaline treated straw samples by scanning electron microscopy - SEM showed the increasing of the surface roughness improving their functional surface activity. An increase (337.22 mg g -1 ) of adsorption capacity of sulfonylurea molecules was obtained for all studied straw. The Langmuir isotherm model was the best model for the mathematical description of the adsorption process indicating the forming of a surface sorption monolayer with a finite number of identical sites. The kinetics of sulfonylurea herbicide followed the pseudo-second order mechanism corresponding to strong chemical interactions. The results sustained that the alkaline treated straw have biosorption characteristics, being suitable adsorbent materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Jena Diversity Model: Towards a Richer Representation of the Terrestrial Biosphere for Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Pavlick, R.; Reu, B.; Bohn, K.; Dyke, J.; Kleidon, A.

    2010-12-01

    The terrestrial biosphere is a complex, self-organizing system which is continually both adapting to and altering its global environment. It also exhibits a vast diversity of vegetation forms and functioning. However, the terrestrial biosphere components within current state-of-the-art Earth System Models abstract this diversity in to a handful of relatively static plant functional types. These coarse and static representations of functional diversity might contribute to overly pessimistic projections regarding terrestrial ecosystem responses to scenarios of global change (e.g. Amazonian and boreal forest diebacks). In the Jena Diversity (JeDi) model, we introduce a new approach to vegetation modelling with a richer representation of functional diversity, based not on plant functional types, but on unavoidable plant ecophysiological trade-offs, which we hypothesize should be more stable in time. The JeDi model tests a large number of plant growth strategies. Each growth strategy is simulated using a set of randomly generated parameter values, which characterize its functioning in terms of carbon allocation, ecophysiology, and phenology, which are then linked to the growing conditions at the land surface. The model is constructed in such a way that these parameters inherently lead to ecophysiological trade-offs, which determine whether a growth strategy is able to survive and reproduce under the prevalent climatic conditions. Kleidon and Mooney (2000) demonstrated that this approach is capable of reproducing the geographic distribution of species richness. More recently, we have shown the JeDi model can explain other biogeographical phenomena including the present-day global pattern of biomes (Reu et al., accepted), ecosystem evenness (Kleidon et al. 2009), and possible mechanisms for biome shifts and biodiversity changes under scenarios of global warming (Reu et al., submitted). We have also evaluated the simulated biogeochemical fluxes from JeDi against a variety of site, field, and satellite observations (Pavlick et al., submitted) following a protocol established by the Carbon-Land Model Intercomparison Project (Randerson et al. 2009). We found that the global patterns of biogeochemical fluxes and land surface properties are reasonably well simulated using this bottom-up trade-off approach and compare favorably with other state of the art terrestrial biosphere models. Here, we present some results from JeDi simulations, wherein we varied the modelled functional diversity to quantify its impact on terrestrial biogeochemical fluxes under both present-day conditions and projected scenarios of global change. We also present results from a set of simulations wherein we vary the ability of the modelled ecosystems to adapt through changes in functional composition, leading to different projection responses of the carbon cycle to global warming. This plant functional tradeoff approach sets the foundation for many applications, including exploring the emergence and climatic impacts of major vegetation transitions throughout the last 400 million years as well as quantifying the significance of preserving functional diversity to hedge against uncertain climates in the future.

  14. Changes in Jump-Down Performance After Space Flight: Short- and Long-Term Adaptation

    NASA Technical Reports Server (NTRS)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.

    2010-01-01

    INTRODUCTION Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares the jump strategies used by astronauts before and after flight, the changes to those strategies within a test session, and the recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS Six astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high. A force plate measured the ground reaction forces and center-of-pressure displacement from the landings. Muscle activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS AND CONCLUSION Many of the astronauts tested were unable to maintain balance on their first postflight jump landing but recovered by the third jump, showing a learning progression in which the performance improvement could be attributed to adjustments of strategy on takeoff, landing, or both. Takeoff strategy changes were evident in air time (time between takeoff and landing), which was significantly reduced after flight, and also in increased asymmetry in foot latencies on takeoff. Landing modifications were seen in changes in ground reaction force curves. The results demonstrate astronauts adaptive capabilities and full performance recovery within days after flight.

  15. Beyond the Matrix: The Many Non-ECM Ligands for Integrins

    PubMed Central

    LaFoya, Bryce; Munroe, Jordan A.; Miyamoto, Alison; Detweiler, Michael A.; Crow, Jacob J.; Gazdik, Tana

    2018-01-01

    The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins. PMID:29393909

  16. Strategy for robot motion and path planning in robot taping

    NASA Astrophysics Data System (ADS)

    Yuan, Qilong; Chen, I.-Ming; Lembono, Teguh Santoso; Landén, Simon Nelson; Malmgren, Victor

    2016-06-01

    Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. The taping process is a special process which requires correct surface covering strategy and proper attachment of the masking tape for an efficient surface protection. We have introduced an automatic robot taping system consisting of a robot manipulator, a rotating platform, a 3D scanner and specially designed taping end-effectors. This paper mainly talks about the surface covering strategies for different classes of geometries. The methods and corresponding taping tools are introduced for taping of following classes of surfaces: Cylindrical/extended surfaces, freeform surfaces with no grooves, surfaces with grooves, and rotational symmetrical surfaces. A collision avoidance algorithm is introduced for the robot taping manipulation. With further improvements on segmenting surfaces of taping parts and tape cutting mechanisms, such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to assist humans in this tedious and time costly work.

  17. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    NASA Astrophysics Data System (ADS)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-11-01

    Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  18. 3β-Hydroxysterol Δ24-Reductase on the Surface of Hepatitis C Virus-Related Hepatocellular Carcinoma Cells Can Be a Target for Molecular Targeting Therapy

    PubMed Central

    Saito, Makoto; Takano, Takashi; Nishimura, Tomohiro; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2015-01-01

    In our previous study, we demonstrated that 3β-hydroxysterol Δ24-reductase (DHCR24) was overexpressed in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), and that its expression was induced by HCV. Using a monoclonal antibody against DHCR24 (2-152a MAb), we found that DHCR24 was specifically expressed on the surface of HCC cell lines. Based on these findings, we aimed to establish a novel targeting strategy using 2-152a MAb to treat HCV-related HCC. In the present study, we examined the antitumor activity of 2-152a MAb. In the presence of complement, HCC-derived HuH-7 cells were killed by treatment with 2-152a MAb, which was mediated by complement-dependent cytotoxicity (CDC). In addition, the antigen recognition domain of 2-152a MAb was responsible for the unique anti-HCV activity. These findings demonstrate the feasibility of using 2-152a MAb for antibody therapy against HCV-related HCC. In addition, surface DHCR24 on HCC cells exhibited a functional property, agonist-induced internalization. We showed that 2-152a MAb-mediated binding of a cytotoxic agent (a saponin-conjugated secondary antibody) to surface DHCR24 led to significant cytotoxicity. This suggests that surface DHCR24 on HCC cells can function as a carrier for internalization. Therefore, surface DHCR24 could be a valuable target for HCV-related HCC therapy, and 2-152a MAb appears to be useful for this targeted therapy. PMID:25875901

  19. Tunable top-down fabrication and functional surface coating of single-crystal titanium dioxide nanostructures and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ha, Seungkyu; Janissen, Richard; Ussembayev, Yera Ye.; van Oene, Maarten M.; Solano, Belen; Dekker, Nynke H.

    2016-05-01

    Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and yet-to-be-developed applications. However, the implementation of single-crystal TiO2 has been hampered by challenges in its fabrication and subsequent surface functionalization. Here, we introduce a novel top-down approach that allows for batch fabrication of uniform high-aspect-ratio single-crystal TiO2 nanostructures with targeted sidewall profiles. We complement our fabrication approach with a functionalization strategy that achieves dense, uniform, and area-selective coating with a variety of biomolecules. This allows us to fabricate single-crystal rutile TiO2 nanocylinders tethered with individual DNA molecules for use as force- and torque-transducers in an optical torque wrench. These developments provide the means for increased exploitation of the superior material properties of single-crystal TiO2 at the nanoscale.Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and yet-to-be-developed applications. However, the implementation of single-crystal TiO2 has been hampered by challenges in its fabrication and subsequent surface functionalization. Here, we introduce a novel top-down approach that allows for batch fabrication of uniform high-aspect-ratio single-crystal TiO2 nanostructures with targeted sidewall profiles. We complement our fabrication approach with a functionalization strategy that achieves dense, uniform, and area-selective coating with a variety of biomolecules. This allows us to fabricate single-crystal rutile TiO2 nanocylinders tethered with individual DNA molecules for use as force- and torque-transducers in an optical torque wrench. These developments provide the means for increased exploitation of the superior material properties of single-crystal TiO2 at the nanoscale. Electronic supplementary information (ESI) available: Experimental details (ESI Methods) of the optic axis orientation of TiO2 nanocylinders, Cr etch mask fabrication, surface functionalization and its evaluation using fluorescence microscopy, preparation of DNA constructs, assembly of flow cells, bioconjugation of TiO2 nanocylinders, OTW instrumentation and measurements; TiO2 dry etching optimization and the etching parameters employed (Tables S1 and S2); dimensional analysis of TiO2 nanocylinders (Table S3); diverse applications of TiO2 at the nanoscale (Fig. S1); selection of etch mask material (Fig. S2); control of sidewall profiles in TiO2 etching (Fig. S3); size distributions of TiO2 nanocylinders (Fig. S4); quantitative comparisons of different surface linker molecules (Fig. S5); DLS measurements on TiO2 nanocylinders (Fig. S6); optical trap calibration (Fig. S7); and supplementary references. See DOI: 10.1039/c6nr00898d

  20. The physicochemical process of bacterial attachment to abiotic surfaces: Challenges for mechanistic studies, predictability and the development of control strategies.

    PubMed

    Wang, Yi; Lee, Sui Mae; Dykes, Gary

    2015-01-01

    Bacterial attachment to abiotic surfaces can be explained as a physicochemical process. Mechanisms of the process have been widely studied but are not yet well understood due to their complexity. Physicochemical processes can be influenced by various interactions and factors in attachment systems, including, but not limited to, hydrophobic interactions, electrostatic interactions and substratum surface roughness. Mechanistic models and control strategies for bacterial attachment to abiotic surfaces have been established based on the current understanding of the attachment process and the interactions involved. Due to a lack of process control and standardization in the methodologies used to study the mechanisms of bacterial attachment, however, various challenges are apparent in the development of models and control strategies. In this review, the physicochemical mechanisms, interactions and factors affecting the process of bacterial attachment to abiotic surfaces are described. Mechanistic models established based on these parameters are discussed in terms of their limitations. Currently employed methods to study these parameters and bacterial attachment are critically compared. The roles of these parameters in the development of control strategies for bacterial attachment are reviewed, and the challenges that arise in developing mechanistic models and control strategies are assessed.

  1. A pre-protective strategy for precise tumor targeting and efficient photodynamic therapy with a switchable DNA/upconversion nanocomposite.

    PubMed

    Yu, Zhengze; Ge, Yegang; Sun, Qiaoqiao; Pan, Wei; Wan, Xiuyan; Li, Na; Tang, Bo

    2018-04-14

    Tumor-specific targeting based on folic acid (FA) is one of the most common and significant approaches in cancer therapy. However, the expression of folate receptors (FRs) in normal tissues will lead to unexpected targeting and unsatisfactory therapeutic effect. To address this issue, we develop a pre-protective strategy for precise tumor targeting and efficient photodynamic therapy (PDT) using a switchable DNA/upconversion nanocomposite, which can be triggered in the acidic tumor microenvironment. The DNA/upconversion nanocomposite is composed of polyacrylic acid (PAA) coated upconversion nanoparticles (UCNPs), the surface of which is modified using FA and chlorin e6 (Ce6) functionalized DNA sequences with different lengths. Initially, FA on the shorter DNA was protected by a longer DNA to prevent the bonding to FRs on normal cells. Once reaching the acidic tumor microenvironment, C base-rich longer DNA forms a C-quadruplex, resulting in the exposure of the FA groups and the bonding of FA and FRs on cancer cell membranes to achieve precise targeting. Simultaneously, the photosensitizer chlorin e6 (Ce6) gets close to the surface of UCNPs, enabling the excitation of Ce6 to generate singlet oxygen ( 1 O 2 ) under near infrared light via Förster resonance energy transfer (FRET). In vivo experiments indicated that higher tumor targeting efficiency was achieved and the tumor growth was greatly inhibited through the pre-protective strategy.

  2. Hybrid Nanomaterials with Single-Site Catalysts by Spatially Controllable Immobilization of Nickel Complexes via Photoclick Chemistry for Alkene Epoxidation.

    PubMed

    Ghosh, Dwaipayan; Febriansyah, Benny; Gupta, Disha; Ng, Leonard Kia-Sheun; Xi, Shibo; Du, Yonghua; Baikie, Tom; Dong, ZhiLi; Soo, Han Sen

    2018-05-22

    Catalyst deactivation is a persistent problem not only for the scientific community but also in industry. Isolated single-site heterogeneous catalysts have shown great promise to overcome these problems. Here, a versatile anchoring strategy for molecular complex immobilization on a broad range of semiconducting or insulating metal oxide ( e. g., titanium dioxide, mesoporous silica, cerium oxide, and tungsten oxide) nanoparticles to synthesize isolated single-site catalysts has been studied systematically. An oxidatively stable anchoring group, maleimide, is shown to form covalent linkages with surface hydroxyl functionalities of metal oxide nanoparticles by photoclick chemistry. The nanocomposites have been thoroughly characterized by techniques including UV-visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and X-ray absorption spectroscopy (XAS). The IR spectroscopic studies confirm the covalent linkages between the maleimide group and surface hydroxyl functionalities of the oxide nanoparticles. The hybrid nanomaterials function as highly efficient catalysts for essentially quantitative oxidations of terminal and internal alkenes and show molecular catalyst product selectivities even in more eco-friendly solvents. XAS studies verify the robustness of the catalysts after several catalytic cycles. We have applied the photoclick anchoring methodology to precisely control the deposition of a luminescent variant of our catalyst on the metal oxide nanoparticles. Overall, we demonstrate a general approach to use irradiation to anchor molecular complexes on oxide nanoparticles to create recyclable, hybrid, single-site catalysts that function with high selectivity in a broad range of solvents. We have achieved a facile, spatially and temporally controllable photoclick method that can potentially be extended to other ligands, catalysts, functional molecules, and surfaces.

  3. A Practical Strategy for sEMG-Based Knee Joint Moment Estimation During Gait and Its Validation in Individuals With Cerebral Palsy

    PubMed Central

    Kwon, Suncheol; Stanley, Christopher J.; Kim, Jung; Kim, Jonghyun; Damiano, Diane L.

    2013-01-01

    Individuals with cerebral palsy have neurological deficits that may interfere with motor function and lead to abnormal walking patterns. It is important to know the joint moment generated by the patient’s muscles during walking in order to assist the suboptimal gait patterns. In this paper, we describe a practical strategy for estimating the internal moment of a knee joint from surface electromyography (sEMG) and knee joint angle measurements. This strategy requires only isokinetic knee flexion and extension tests to obtain a relationship between the sEMG and the knee internal moment, and it does not necessitate comprehensive laboratory calibration, which typically requires a 3-D motion capture system and ground reaction force plates. Four estimation models were considered based on different assumptions about the functions of the relevant muscles during the isokinetic tests and the stance phase of walking. The performance of the four models was evaluated by comparing the estimated moments with the gold standard internal moment calculated from inverse dynamics. The results indicate that an optimal estimation model can be chosen based on the degree of cocontraction. The estimation error of the chosen model is acceptable (normalized root-mean-squared error: 0.15–0.29, R: 0.71–0.93) compared to previous studies (Doorenbosch and Harlaar, 2003; Doorenbosch and Harlaar, 2004; Doorenbosch, Joosten, and Harlaar, 2005), and this strategy provides a simple and effective solution for estimating knee joint moment from sEMG. PMID:22410952

  4. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    NASA Astrophysics Data System (ADS)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  5. Cortical thickness and surface area correlates with cognitive dysfunction among first-episode psychosis patients.

    PubMed

    Haring, L; Müürsepp, A; Mõttus, R; Ilves, P; Koch, K; Uppin, K; Tarnovskaja, J; Maron, E; Zharkovsky, A; Vasar, E; Vasar, V

    2016-07-01

    In studies using magnetic resonance imaging (MRI), some have reported specific brain structure-function relationships among first-episode psychosis (FEP) patients, but findings are inconsistent. We aimed to localize the brain regions where cortical thickness (CTh) and surface area (cortical area; CA) relate to neurocognition, by performing an MRI on participants and measuring their neurocognitive performance using the Cambridge Neuropsychological Test Automated Battery (CANTAB), in order to investigate any significant differences between FEP patients and control subjects (CS). Exploration of potential correlations between specific cognitive functions and brain structure was performed using CANTAB computer-based neurocognitive testing and a vertex-by-vertex whole-brain MRI analysis of 63 FEP patients and 30 CS. Significant correlations were found between cortical parameters in the frontal, temporal, cingular and occipital brain regions and performance in set-shifting, working memory manipulation, strategy usage and sustained attention tests. These correlations were significantly dissimilar between FEP patients and CS. Significant correlations between CTh and CA with neurocognitive performance were localized in brain areas known to be involved in cognition. The results also suggested a disrupted structure-function relationship in FEP patients compared with CS.

  6. Dynamic root distributions in ecohydrological modeling: A case study at Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Sivandran, Gajan; Bras, Rafael L.

    2013-06-01

    Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. In particular, the rooting strategies employed by vegetation can be critical to their survival. However, land surface models currently prescribe rooting profiles as a function of only the plant functional type of interest with no consideration for the soil texture or rainfall regime of the region being modeled. Additionally, these models do not incorporate the ability of vegetation to dynamically alter their rooting strategies in response to transient changes in environmental forcings or competition from other plant species and therefore tend to underestimate the resilience of these ecosystems. To address the simplicity of the current representation of roots in land surface models, a new dynamic rooting scheme was incorporated into the framework of the distributed ecohydrological model tRIBS+VEGGIE. The new scheme optimizes the allocation of carbon to the root zone to reduce the perceived stress of the vegetation, so that root profiles evolve based upon local climate and soil conditions. The ability of the new scheme to capture the complex dynamics of natural systems was evaluated by comparisons to hourly timescale energy flux, soil moisture, and vegetation growth observations from the Walnut Gulch Experimental Watershed, Arizona. Robust agreement was found between the model and observations, providing confidence that the improved model is able to capture the multidirectional interactions between climate, soil, and vegetation at this site.

  7. The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis.

    PubMed

    Deng, Simin; Xu, Tong; Fang, Qiong; Yu, Lei; Zhu, Jiaqi; Chen, Long; Liu, Jiahui; Zhou, Rui

    2018-01-01

    Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA -deleted mutant strain Δ sntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔ sntA . The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of Δ sntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.

  8. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: a potential novel strategy to enhance zinc absorption by ZIP4 targeting.

    PubMed

    Hashimoto, Ayako; Ohkura, Katsuma; Takahashi, Masakazu; Kizu, Kumiko; Narita, Hiroshi; Enomoto, Shuichi; Miyamae, Yusaku; Masuda, Seiji; Nagao, Masaya; Irie, Kazuhiro; Ohigashi, Hajime; Andrews, Glen K; Kambe, Taiho

    2015-12-01

    Dietary zinc deficiency puts human health at risk, so we explored strategies for enhancing zinc absorption. In the small intestine, the zinc transporter ZIP4 functions as an essential component of zinc absorption. Overexpression of ZIP4 protein increases zinc uptake and thereby cellular zinc levels, suggesting that food components with the ability to increase ZIP4 could potentially enhance zinc absorption via the intestine. In the present study, we used mouse Hepa cells, which regulate mouse Zip4 (mZip4) in a manner indistinguishable from that in intestinal enterocytes, to screen for suitable food components that can increase the abundance of ZIP4. Using this ZIP4-targeting strategy, two such soybean extracts were identified that were specifically able to decrease mZip4 endocytosis in response to zinc. These soybean extracts also effectively increased the abundance of apically localized mZip4 in transfected polarized Caco2 and Madin-Darby canine kidney cells and, moreover, two apically localized mZip4 acrodermatitis enteropathica mutants. Soybean components were purified from one extract and soyasaponin Bb was identified as an active component that increased both mZip4 protein abundance and zinc levels in Hepa cells. Finally, we confirmed that soyasaponin Bb is capable of enhancing cell surface endogenous human ZIP4 in human cells. Our results suggest that ZIP4 targeting may represent a new strategy to improve zinc absorption in humans. © 2015 Authors; published by Portland Press Limited.

  9. Marrying the mussel inspired chemistry and Kabachnik-Fields reaction for preparation of SiO2 polymer composites and enhancement removal of methylene blue

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; Liu, Meiying; Chen, Junyu; Wan, Qing; Tian, Jianwen; Huang, Long; Jiang, Ruming; Deng, Fengjie; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-11-01

    The removal of organic dyes using functionalization SiO2 composites (denoted as SiO2-PDA-CSH) were prepared via a facile method that combined with mussel inspired chemistry and Kabachnik-Fields (KF) reaction. The size and surface morphology, chemical structure, thermal stability, surface charging property, and elemental composition were evaluated by means of transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), zeta potential, and X-ray photoelectron spectroscopy (XPS), respectively. The results demonstrated that the organic functional groups can be successfully introduced onto the surface of SiO2 microspheres through the combination of mussel inspired chemistry and KF reaction. The removal of cationic dye methylene blue (MB) by the raw SiO2 and SiO2-PDA-CSH composites was examined and compared using a series of batch adsorption experiments. The results suggested that SiO2-PDA-CSH composites had a 3-fold increase in the adsorption capacity towards MB than that of pure SiO2 microspheres and the adsorption process was dependent on the solution pH. According to the adsorption kinetics, the adsorption of MB onto SiO2-PDA-CSH composites was well described by pseudo-second-order kinetic model. The equilibrium data were fitted with Langmuir and Freundlich isotherm models with R2 = 0.9981 and R2 = 0.9982, respectively. The maximum adsorption capacity from Langmuir isotherm was found to be 688.85 mg/g. The adsorption thermodynamics was also investigated in detailed. The parameters revealed that the adsorption process was spontaneous and endothermic in nature. The adsorption mechanism might be the synergistic action of physical adsorption of SiO2-PDA-CSH particles and electrostatic interaction between the MB and functional groups on the surface of SiO2-PDA-CSH composites, including sulfydryl, amino, aromatic moieties, and phosphate groups. Taken together, we developed a novel and facile strategy for the surface modification of SiO2 to achieve high adsorption towards MB based on the mussel inspired chemistry and multicomponent KF reaction. More importantly, this strategy could be easily extended for fabrication of many other high efficient adsorbents due to the universality of mussel inspired chemistry and various multicomponent reactions based on amino groups. Therefore, this work will open a new avenue and direction for the environmental applications of mussel inspired chemistry.

  10. Phosphonate-anchored monolayers for antibody binding to magnetic nanoparticles.

    PubMed

    Benbenishty-Shamir, Helly; Gilert, Roni; Gotman, Irena; Gutmanas, Elazar Y; Sukenik, Chaim N

    2011-10-04

    Targeted delivery of magnetic iron oxide nanoparticles (IONPs) to a specific tissue can be achieved by conjugation with particular biological ligands on an appropriately functionalized IONP surface. To take best advantage of the unique magnetic properties of IONPs and to maximize their blood half-life, thin, strongly bonded, functionalized coatings are required. The work reported herein demonstrates the successful application of phosphonate-anchored self-assembled monolayers (SAMs) as ultrathin coatings for such particles. It also describes a new chemical approach to the anchoring of antibodies on the surface of SAM-coated IONPs (using nucleophilic aromatic substitution). This anchoring strategy results in stable, nonhydrolyzable, covalent attachment and allows the reactivity of the particles toward antibody binding to be activated in situ, such that prior to the activation the modified surface is stable for long-term storage. While the SAMs do not have the well-packed crystallinity of other such monolayers, their structure was studied using smooth model substrates based on an iron oxide layer on a double-side polished silicon wafer. In this way, atomic force microscopy, ellipsometry, and contact angle goniometry (tools that could not be applied to the nanoparticles' surfaces) could contribute to the determination of their monomolecular thickness and uniformity. Finally, the successful conjugation of IgG antibodies to the SAM-coated IONPs such that the antibodies retain their biological activity is verified by their complexation to a secondary fluorescent antibody. © 2011 American Chemical Society

  11. Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis.

    PubMed

    Imamaki, Rie; Ogawa, Kazuko; Kizuka, Yasuhiko; Komi, Yusuke; Kojima, Soichi; Kotani, Norihiro; Honke, Koichi; Honda, Takashi; Taniguchi, Naoyuki; Kitazume, Shinobu

    2018-05-02

    Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1 -/- mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1 -/- endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1 -/- mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.

  12. Strategies for reducing the impacts of surface transportation on global climate change : a synthesis of policy research and state and local mitigation strategies

    DOT National Transportation Integrated Search

    2009-03-01

    Climate change is likely to have more impact on the future of surface transportation than any other issue. The challenges and implications for surface transportation and for state DOTs include: the need to support major GHG reductions, the need to me...

  13. Site-Directed Immobilization of Bone Morphogenetic Protein 2 to Solid Surfaces by Click Chemistry.

    PubMed

    Siverino, Claudia; Tabisz, Barbara; Lühmann, Tessa; Meinel, Lorenz; Müller, Thomas; Walles, Heike; Nickel, Joachim

    2018-03-29

    Different therapeutic strategies for the treatment of non-healing long bone defects have been intensively investigated. Currently used treatments present several limitations that have led to the use of biomaterials in combination with osteogenic growth factors, such as bone morphogenetic proteins (BMPs). Commonly used absorption or encapsulation methods require supra-physiological amounts of BMP2, typically resulting in a so-called initial burst release effect that provokes several severe adverse side effects. A possible strategy to overcome these problems would be to covalently couple the protein to the scaffold. Moreover, coupling should be performed in a site-specific manner in order to guarantee a reproducible product outcome. Therefore, we created a BMP2 variant, in which an artificial amino acid (propargyl-L-lysine) was introduced into the mature part of the BMP2 protein by codon usage expansion (BMP2-K3Plk). BMP2-K3Plk was coupled to functionalized beads through copper catalyzed azide-alkyne cycloaddition (CuAAC). The biological activity of the coupled BMP2-K3Plk was proven in vitro and the osteogenic activity of the BMP2-K3Plk-functionalized beads was proven in cell based assays. The functionalized beads in contact with C2C12 cells were able to induce alkaline phosphatase (ALP) expression in locally restricted proximity of the bead. Thus, by this technique, functionalized scaffolds can be produced that can trigger cell differentiation towards an osteogenic lineage. Additionally, lower BMP2 doses are sufficient due to the controlled orientation of site-directed coupled BMP2. With this method, BMPs are always exposed to their receptors on the cell surface in the appropriate orientation, which is not the case if the factors are coupled via non-site-directed coupling techniques. The product outcome is highly controllable and, thus, results in materials with homogeneous properties, improving their applicability for the repair of critical size bone defects.

  14. Enhanced protective role in materials with gradient structural orientations: Lessons from Nature.

    PubMed

    Liu, Zengqian; Zhu, Yankun; Jiao, Da; Weng, Zhaoyong; Zhang, Zhefeng; Ritchie, Robert O

    2016-10-15

    Living organisms are adept at resisting contact deformation and damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the two prime characteristics of many biological materials to be translated into engineering design. Here, we examine one design motif from a variety of biological tissues and materials where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation over multiple length-scales, without manipulation of composition or microstructural dimension. Quantitative correlations are established between the structural orientations and local mechanical properties, such as stiffness, strength and fracture resistance; based on such gradients, the underlying mechanisms for the enhanced protective role of these materials are clarified. Theoretical analysis is presented and corroborated through numerical simulations of the indentation behavior of composites with distinct orientations. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally graded mechanical properties in synthetic materials for improved contact damage resistance. Living organisms are adept at resisting contact damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally-graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the prime characteristics of many biological materials. Here, we examine one design motif from a variety of biological tissues where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation at multiple length-scales, without changes in composition or microstructural dimension. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally-graded mechanical properties in synthetic materials for improved damage resistance. Published by Elsevier Ltd.

  15. Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate.

    PubMed

    Deng, Jie; Liu, Xinyue; Zhang, Shuqing; Cheng, Chong; Nie, Chuanxiong; Zhao, Changsheng

    2015-09-08

    Surface modification has long been of great interest to impart desired functionalities to the bioimplants. However, due to the limitations of recent technologies in surface modification, it is highly desirable to explore novel protocols, which can advantageously and efficiently endow the inert material surfaces with versatile biofunctionalities. Herein, to achieve versatile and rapid postfunctionalization of polymeric membrane, we demonstrate a new strategy for the fabrication of β-cyclodextrin (β-CD) modified host membrane substrate that can recognize a series of well-designed guest macromolecules. The surface assembly procedure was driven by the host-guest interaction between adamantane (Ad) and β-CD. β-CD immobilized host membrane was fabricated via two steps: (1) epoxy groups enriched poly(ether sulfone) (PES) membrane was first prepared via in situ cross-linking polymerization and subsequently phase separation; (2) mono-6-deoxy-6-ethylenediamine-β-CD (EDA-β-CD) was then anchored onto the surface of the epoxy functionalized PES membrane to obtain PES-CD. Subsequently, three types of Ad-terminated polymers, including Ad-poly(styrenesulfonate-co-sodium acrylate) (Ad-PSA), Ad-methoxypoly(ethylene glycol) (Ad-PEG), and Ad-poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate (Ad-PMT), were separately assembled onto the β-CD immobilized surfaces to endow the membranes with anticoagulant, antifouling, and antibacterial capability, respectively. Activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) measurements were carried out to explore the anticoagulant activity. The antifouling capability was evaluated via protein adsorption and platelet adhesion measurements. Moreover, Staphyllococcous aureus (S. aureus) was selected as model bacteria to evaluate the antibacterial ability of the functionalized membranes. The results indicated that well-regulated blood compatibility, antifouling capability, and bactericidal activity could be achieved by the proposed rapid postfunctionalization on polymeric membranes. This approach of versatile and rapid postfunctionalization is promising for the preparation of multifunctional polymeric membrane materials to meet with various demands for the further applications.

  16. Real-Time Ligand Binding Pocket Database Search Using Local Surface Descriptors

    PubMed Central

    Chikhi, Rayan; Sael, Lee; Kihara, Daisuke

    2010-01-01

    Due to the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of a particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two dimensional pseudo-Zernike moments or the 3D Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark study employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed. PMID:20455259

  17. Real-time ligand binding pocket database search using local surface descriptors.

    PubMed

    Chikhi, Rayan; Sael, Lee; Kihara, Daisuke

    2010-07-01

    Because of the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two-dimensional pseudo-Zernike moments or the three-dimensional Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark studies employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed.

  18. Dual-Function Au@Y2O3:Eu3+ Smart Film for Enhanced Power Conversion Efficiency and Long-Term Stability of Perovskite Solar Cells.

    PubMed

    Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo

    2017-07-28

    In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y 2 O 3 :Eu 3+ phosphor (Au@Y 2 O 3 :Eu 3+ ) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y 2 O 3 :Eu 3+ phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y 2 O 3 :Eu 3+ film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.

  19. Successful Stabilization of Graphene Oxide in Electrolyte Solutions: Enhancement of Bio-functionalization and Cellular Uptake

    PubMed Central

    Hong, Bong Jin; Compton, Owen C.; An, Zhi; Eryzazici, Ibrahim; Nguyen, SonBinh T.

    2013-01-01

    Aqueous dispersions of graphene oxide are inherently unstable in the presence of electrolytes, which screen the electrostatic surface charge on these nanosheets and induce irreversible aggregation. Two complementary strategies, utilizing either electrostatic or steric stabilization, have been developed to enhance the stability of graphene oxide in electrolyte solutions, allowing it to stay dispersed in cell culture media and serum. The electrostatic stabilization approach entails further oxidation of graphene oxide to low C/O ratio (~1.03) and increases ionic tolerance of these nanosheets. The steric stabilization technique employs an amphiphilic block copolymer that serves as a non-covalently bound surfactant to minimize the aggregate-induced nanosheets-nanosheet interactions. Both strategies can stabilize graphene oxide nanosheets with large dimensions (>300 nm) in biological media, allowing for an enhancement of >250% in the bioconjugation efficiency of streptavidin in comparison to untreated nanosheets. Notably, both strategies allow the stabilized nanosheets to be readily uptake by cells, demonstrating their excellent performance as potential drug delivery vehicles. PMID:22017285

  20. THEMIS Surface-Atmosphere Separation Strategy and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Bandfield, J. L.; Smith, M. D.; Christensen, P. R.

    2002-01-01

    Methods refined and adapted from the TES investigation are used to develop a surface-atmosphere separation strategy for THEMIS image analysis and atmospheric temperature and opacity retrievals. Additional information is contained in the original extended abstract.

Top