Inverted amorphous silicon solar cell utilizing cermet layers
Hanak, Joseph J.
1979-01-01
An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.
NASA Astrophysics Data System (ADS)
Rahman, Ayesha; Seth, Dipankar; Mukhopadhyaya, Sunit K.; Brahmachary, Ratan L.; Ulrichs, Christian; Goswami, Arunava
2009-01-01
Cellular interactions with engineered nanoparticles (NPs) are dependent on many properties, inherent to the nanoparticle (viz. size, shape, surface characteristics, degradation, agglomeration/dispersal, and charge, etc.). Modification of the surface reactivity via surface functionalization of the nanoparticles to be targeted seems to be important. Utilization of different surface functionalization methods of nanoparticles is an emerging field of basic and applied nanotechnology. It is well known that many disease-causing organisms induce host lipids and if deprived, their growth is inhibited in vivo. Amorphous nanosilica (ANS) and amorphous microsilica with nanopores (AMS) were prepared by a combination of wet chemistry and high-energy ball milling. Lipophilic moieties were attached to both ANS and AMS via chemical surface functionalization method. Lipophilic ANS and AMS were found to inhibit the growth of Bombyx mori nuclear polyhedrosis virus (BmNPV) and chicken malarial parasites via absorption of silkworm hemolymph and chicken serum lipids/lipoproteins, respectively, in vivo. Therefore, intelligent surface functionalization of NP is an important concept, and its application in curing chicken malaria and BmNPV is presented here. Surface functionalization method reported in this paper might serve as a valuable technology for treating many diseases where pathogens induce host lipid.
Excess electrons in ice: a density functional theory study.
Bhattacharya, Somesh Kr; Inam, Fakharul; Scandolo, Sandro
2014-02-21
We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals.
Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film
NASA Astrophysics Data System (ADS)
Chen, Cheng; Fan, Xue; Diao, Dongfeng
2016-10-01
We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.
Newell, H E; Buckton, G; Butler, D A; Thielmann, F; Williams, D R
2001-04-17
The purpose of this study was to assess the effect of relative humidity (RH) on the surface energy of amorphous lactose. Two samples of amorphous lactose were investigated; a spray dried 100% amorphous material and a ball milled sample of crystalline lactose. The milled sample had less than 1% amorphous content by mass, but on investigation at 0% RH, yielded surface energies comparable to those obtained from the 100% amorphous material, indicating that the surface was amorphous. The effect of increasing humidity was to reduce the dispersive surface energy of the two samples from 36.0 +/- 0.14 and 41.6 +/- 1.4 mJ m(-2) at 0% RH for the spray dried and milled samples respectively, to a value comparable to that obtained for the crystalline alpha-lactose monohydrate of 31.3 +/- 0.41 mJ m(-2). The change in surface energy due to water sorption was only reversible up to 20% RH; after exposure to higher RH values subsequent drying did not result in a return to the original surface energy of the amorphous form. This shows that the surface is reorganising as the glass transition temperature (Tg) is reduced, even though the sample has not collapsed or crystallised. It was possible to follow the collapse behaviour in the column with ease, using a number of different methods.
NASA Astrophysics Data System (ADS)
Chen, Jinshe; Duan, Zunbin; Song, Zhaoyang; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong
2017-12-01
The amorphous NiP nanoparticles were synthesized and a novel amorphous NiP/Hβ catalyst was prepared successfully further. Due to the superior surface property of amorphous NiP/Hβ catalyst, it exhibited good catalytic application for n-hexane isomerization. The catalytic activity of amorphous NiP/Hβ catalyst was close to that of the prepared Pt/Hβ sample, and better than that of commercial catalyst and crystalline Ni2P/Hβ catalyst. What's more, the amorphous NiP/Hβ catalyst shows high resistance to different sulfur compounds and water on account of its unique surface property. The effect of loading amounts on surface property and catalytic performance was investigated, and the structure-function relationship among them was studied ulteriorly. The results demonstrate that loading amounts have effect on textural property and surface acid property, which further affect the catalytic performance. The 10 wt.% NiP/Hβ sample has appropriate pore structure and acid property with uniformly dispersed NiP nanoparticles on surface, which is helpful for providing suitable synergistic effect. The effects of reaction conditions on surface reactions and the mechanism for n-hexane isomerization were investigated further. Based on these results, the amorphous NiP/Hβ catalyst with superior surface property probably pavesa way to overcome the drawbacks of traditional noble metal catalyst, which shows good catalytic application prospects.
Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier
Carlson, David E.; Wronski, Christopher R.
1979-01-01
A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.
NASA Astrophysics Data System (ADS)
Zhang, X.; Comins, J. D.; Every, A. G.; Stoddart, P. R.; Pang, W.; Derry, T. E.
1998-11-01
Thin amorphous silicon layers on crystalline silicon substrates have been produced by argon-ion bombardment of (001) silicon surfaces. Thermally induced surface excitations characteristic of this example of a soft-on-hard system have been investigated by surface Brillouin scattering (SBS) as a function of scattering-angle and amorphous-layer thickness. At large scattering angles or for sufficiently large layer thickness, a second peak is present in the SBS spectrum near the low-energy threshold for the continuum of bulk excitations of the system. The measured spectra are analyzed on the basis of surface elastodynamic Green's functions, which successfully simulate their detailed appearance and identify the second peak as either a Sezawa wave (true surface wave) or a pseudo-Sezawa wave (attenuated surface wave) depending on the scattering parameters. The attributes of the pseudo-Sezawa wave are described; these include its asymmetrical line shape and variation in intensity with k∥d (the product of the surface excitation wave vector and the layer thickness), and its emergence as the Sezawa wave from the low-energy side of the Lamb shoulder at a critical value of k∥d. Furthermore, the behavior of a pronounced minimum in the Lamb shoulder near the longitudinal wave threshold observed in the experiments is reported and is found to be in good agreement with the calculated spectra. The elastic constants of the amorphous silicon layer are determined from the velocity dispersion of the Rayleigh surface acoustic wave and the minimum in the Lamb shoulder.
Threshold irradiation dose for amorphization of silicon carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, L.L.; Zinkle, S.J.
1997-04-01
The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenonmore » ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.« less
Generating gradient germanium nanostructures by shock-induced amorphization and crystallization
Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.; Remington, Bruce A.; Hahn, Eric N.; More, Karren L.; Meyers, Marc A.
2017-01-01
Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report here a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. We propose that germanium undergoes amorphization above a threshold stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition. PMID:28847926
Generating gradient germanium nanostructures by shock-induced amorphization and crystallization.
Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E; Remington, Bruce A; Hahn, Eric N; More, Karren L; Meyers, Marc A
2017-09-12
Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report here a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. We propose that germanium undergoes amorphization above a threshold stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.
Formation Timescales of Amorphous Rims on Lunar Grains Derived From ARTEMIS Observations
NASA Astrophysics Data System (ADS)
Poppe, A. R.; Farrell, W. M.; Halekas, J. S.
2018-01-01
The weathering of airless bodies exposed to space is a fundamental process in the formation and evolution of planetary surfaces. At the Moon, space weathering induces a variety of physical, chemical, and optical changes including the formation of nanometer-sized amorphous rims on individual lunar grains. These rims are formed by vapor redeposition from micrometeoroid impacts and ion irradiation-induced amorphization of the crystalline matrix. For ion irradiation-induced rims, however, laboratory experiments of the depth and formation timescales of these rims stand in stark disagreement with observations of lunar soil grains. We use observations by the Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) spacecraft in orbit around the Moon to compute the mean ion flux to the lunar surface between 10 eV and 5 MeV and convolve this flux with ion irradiation-induced vacancy production rates as a function of depth calculated using the Stopping Range of Ions in Matter model. By combining these results with laboratory measurements of the critical fluence for charged-particle amorphization in olivine, we can predict the formation timescale of amorphous rims as a function of depth in olivinic grains. This analysis resolves two outstanding issues: (1) the provenance of >100 nm amorphous rims on lunar grains and (2) the nature of the depth-age relationship for amorphous rims on lunar grains.
Generating gradient germanium nanostructures by shock-induced amorphization and crystallization
Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.; ...
2017-08-28
Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. Here, we propose that germanium undergoes amorphization above a thresholdmore » stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.« less
Generating gradient germanium nanostructures by shock-induced amorphization and crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.
Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. Here, we propose that germanium undergoes amorphization above a thresholdmore » stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.« less
Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide
Balistrieri, L.S.; Chao, T.T.
1990-01-01
This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites is reflected in decreasing equilibrium constants for selenite with increasing adsorption density and both experimental observations and modeling results suggest that manganese dioxide has fewer sites of higher energy for selenite adsorption than amorphous iron oxyhydroxide. Modeling and interpreting the adsorption of phosphate, molybdate, and silicate on the oxides are made difficult by the lack of constraint in choosing surface species and the fact that equally good fits can be obtained with different surface species. Finally, predictions of anion competition using the model results from single adsorbate systems are not very successful because the model does not account for surface site heterogeneity. Selenite adsorption data from a multi-adsorbate system could be fit if the equilibrium constant for selenite is decreased with increasing anion adsorption density. ?? 1990.
Atomistic and infrared study of CO-water amorphous ice onto olivine dust grain
NASA Astrophysics Data System (ADS)
Escamilla-Roa, Elizabeth; Moreno, Fernando; López-Moreno, J. Juan; Sainz-Díaz, C. Ignacio
2017-01-01
This work is a study of CO and H2O molecules as adsorbates that interact on the surface of olivine dust grains. Olivine (forsterite) is present on the Earth, planetary dust, in the interstellar medium (ISM) and in particular in comets. The composition of amorphous ice is very important for the interpretation of processes that occur in the solar system and the ISM. Dust particles in ISM are composed of a heterogeneous mixture of amorphous or crystalline silicates (e.g. olivine) organic material, carbon, and other minor constituents. These dust grains are embedded in a matrix of ices, such as H2O, CO, CO2, NH3, and CH4. We consider that any amorphous ice will interact and grow faster on dust grain surfaces. In this work we explore the adsorption of CO-H2O amorphous ice onto several (100) forsterite surfaces (dipolar and non-dipolar), by using first principle calculations based on density functional theory (DFT). These models are applied to two possible situations: i) adsorption of CO molecules mixed into an amorphous ice matrix (gas mixture) and adsorbed directly onto the forsterite surface. This interaction has lower adsorption energy than polar molecules (H2O and NH3) adsorbed on this surface; ii) adsorption of CO when the surface has previously been covered by amorphous water ice (onion model). In this case the calculations show that adsorption energy is low, indicating that this interaction is weak and therefore the CO can be desorbed with a small increase of temperature. Vibration spectroscopy for the most stable complex was also studied and the frequencies were in good agreement with experimental frequency values.
NASA Astrophysics Data System (ADS)
Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu
2014-10-01
A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO2 is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO2 was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO2 modification increased more than six times. And the adsorption of Pb2+ on the MnO2 surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, T. C.; Zhu, Q.; Buchholz, D. B.
2015-03-01
The work functions of various amorphous and crystalline transparent conducting oxides (TCO5) were measured using Kelvin probe. The films, made by pulsed laser deposition, exhibited varying work functions dependent on the composition and deposition parameters. Tin oxide showed the largest work functions of the oxides measured, while zinc oxide showed the lowest. Binary and ternary combinations of the basis TCOs showed intermediate work functions dependent on the endpoint components. Amorphous TCO5, important in OPV and other technological applications, exhibited similar work functions to their crystalline counterparts. UV/ozone treatment of TCOs temporarily increased the work function, consistent with proposed defect mechanismsmore » associated with near-surface changes in carrier content and Fermi level. Finally, a method for facile adjustment of the work function of commercial TCOs by atomic layer deposition (ALD) capping layers was presented, illustrated by the growth of zinc oxide layers on commercial crystalline ITO films.« less
NASA Astrophysics Data System (ADS)
Yeh, T. C.; Zhu, Q.; Buchholz, D. B.; Martinson, A. B.; Chang, R. P. H.; Mason, T. O.
2015-03-01
The work functions of various amorphous and crystalline transparent conducting oxides (TCOs) were measured using Kelvin probe. The films, made by pulsed laser deposition, exhibited varying work functions dependent on the composition and deposition parameters. Tin oxide showed the largest work functions of the oxides measured, while zinc oxide showed the lowest. Binary and ternary combinations of the basis TCOs showed intermediate work functions dependent on the endpoint components. Amorphous TCOs, important in OPV and other technological applications, exhibited similar work functions to their crystalline counterparts. UV/ozone treatment of TCOs temporarily increased the work function, consistent with proposed defect mechanisms associated with near-surface changes in carrier content and Fermi level. Finally, a method for facile adjustment of the work function of commercial TCOs by atomic layer deposition (ALD) capping layers was presented, illustrated by the growth of zinc oxide layers on commercial crystalline ITO films.
Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin
2017-05-01
Pyrochlore-structure oxides, A2B2O7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. The mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La2Zr2O7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr+ at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopy (STEM). At lower doses, the surface of the La2Zr2O7 filmmore » amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La2Zr2O7, the bandgap of a thick La2Zr2O7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.« less
Formation Timescales of Amosphous Rims on Lunar Grains Derived from ARTEMIS Observations
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Farrell, W. M.; Halekas, Jasper S.
2018-01-01
The weathering of airless bodies exposed to space is a fundamental process in the formation and evolution of planetary surfaces. At the Moon, space weathering induces a variety of physical, chemical, and optical changes including the formation of nanometer-sized amorphous rims on individual lunar grains. These rims are formed by vapor redeposition from micrometeoroid impacts and ion irradiation-induced amorphization of the crystalline matrix. For ion irradiation-induced rims, however, laboratory experiments of the depth and formation timescales of these rims stand in stark disagreement with observations of lunar soil grains. We use observations by the Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) spacecraft in orbit around the Moon to compute the mean ion flux to the lunar surface between 10 eV and 5 MeV and convolve this flux with ion irradiation-induced vacancy production rates as a function of depth calculated using the Stopping Range of Ions in Matter model. By combining these results with laboratory measurements of the critical fluence for charged-particle amorphization in olivine, we can predict the formation timescale of amorphous rims as a function of depth in olivinic grains. This analysis resolves two outstanding issues: (1) the provenance of >100 nm amorphous rims on lunar grains and (2) the nature of the depth-age relationship for amorphous rims on lunar grains.
Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films
Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin; ...
2017-05-01
Pyrochlore-structure oxides, A 2B 2O 7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. In this paper, the mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La 2Zr 2O 7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr + at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopymore » (STEM). At lower doses, the surface of the La 2Zr 2O 7 film amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La 2Zr 2O 7, the bandgap of a thick La 2Zr 2O 7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.« less
NASA Astrophysics Data System (ADS)
Nieroda, Jolanta; Rybak, Andrzej; Kmita, Grzegorz; Sitarz, Maciej
2018-05-01
Metallic glasses are metallic materials, which exhibit an amorphous structure. These are mostly three or more component alloys, and some of them are magnetic metals. Materials of this kind are characterized by high electrical resistivity and at the same time exhibit very good magnetic properties (e.g. low-magnetization loss). The above mentioned properties are very useful in electrical engineering industry and this material is more and more popular as a substance for high-efficiency electrical devices production. This industry area is still evolving, and thus even higher efficiency of apparatus based on amorphous material is expected. A raw material must be carefully investigated and characterized before the main production process is started. Presented work contains results of complementary examination of amorphous metal Metglas 2605. Studies involve two ways to obtain clean and oxidized surface with high reactivity, namely degreasing followed by annealing process and plasma treatment. The amorphous metal parameters were examined by means of several techniques: surface free energy (SFE) measurements by sessile drop method, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and both ex situ and in situ Raman spectroscopy. Additionally, influence of plasma parameters on wetting properties were optimized in systematic way with Design of Experiments (DOE) method. A wide range of used methods allow to fully investigate the amorphous metal material during preliminary preparation of surface. Obtained results provide information about appropriate parameters that should be applied in order to obtain highly reactive surface with functional oxide layer on it.
Fast surface crystallization of amorphous griseofulvin below T g.
Zhu, Lei; Jona, Janan; Nagapudi, Karthik; Wu, Tian
2010-08-01
To study crystal growth rates of amorphous griseofulvin (GSF) below its glass transition temperature (T (g)) and the effect of surface crystallization on the overall crystallization kinetics of amorphous GSF. Amorphous GSF was generated by melt quenching. Surface and bulk crystal growth rates were determined using polarized light microscope. X-ray powder diffraction (XRPD) and Raman microscopy were used to identify the polymorph of the crystals. Crystallization kinetics of amorphous GSF powder stored at 40 degrees C (T (g)-48 degrees C) and room temperature (T (g)-66 degrees C) was monitored using XRPD. Crystal growth at the surface of amorphous GSF is 10- to 100-fold faster than that in the bulk. The surface crystal growth can be suppressed by an ultrathin gold coating. Below T (g), the crystallization of amorphous GSF powder was biphasic with a rapid initial crystallization stage dominated by the surface crystallization and a slow or suspended late stage controlled by the bulk crystallization. GSF exhibits the fastest surface crystallization kinetics among the known amorphous pharmaceutical solids. Well below T (g), surface crystallization dominated the overall crystallization kinetics of amorphous GSF powder. Thus, surface crystallization should be distinguished from bulk crystallization in studying, modeling and controlling the crystallization of amorphous solids.
Size and shape dependence of CO adsorption sites on sapphire supported Fe microcrystals
NASA Technical Reports Server (NTRS)
Papageorgopoulos, C.; Heinemann, K.
1985-01-01
The surface structure and stoichiometry of alumina substrates, as well as the size, growth characteristics, and shape of Fe deposits on sapphire substrates have been investigated by low energy electron diffraction (LEED), Auger electron spectroscopy, electron energy loss spectroscopy, and X-ray photoemission spectroscopy (XPS), as well as work function measurements, in conjunction with transition electron microscopy observations. The substrates used in this work were the following: (1) new, clean Al2O3; (2) same surface amorphized by Ar ion bombardment; (3) same surface regenerated by 650 C annealing; (4) amorphous alumina films on Ta slab; and (5) polycrystal alumina films, obtained by heating amorphous films to 600 C. Substrate cleaning was found to be most effective in producing a reproducible surface upon oxygen RF plasma treatment. The Fe nucleation and growth process was found to depend strongly on the type of substrate surface and deposition conditions. Ar ion bombardment under beam flooding, and subsequent annealing at 650 C was found an effective means to restore the original Al2O3 (1102) surface for renewed Fe deposition.
Integrated amorphous silicon-aluminum long-range surface plasmon polariton (LR-SPP) waveguides
NASA Astrophysics Data System (ADS)
Sturlesi, Boaz; Grajower, Meir; Mazurski, Noa; Levy, Uriel
2018-03-01
We demonstrate the design, fabrication, and experimental characterization of a long range surface plasmon polariton waveguide that is compatible with complementary metal-oxide semiconductor backend technology. The structure consists of a thin aluminum strip embedded in amorphous silicon. This configuration offers a symmetric environment in which surface plasmon polariton modes undergo minimal loss. Furthermore, the plasmonic mode profile matches the modes of the dielectric (amorphous silicon) waveguide, thus allowing efficient coupling between silicon photonics and plasmonic platforms. The propagation length of the plasmonic waveguide was measured to be about 27 μm at the telecom wavelength around 1550 nm, in good agreement with numerical simulations. As such, the waveguide features both tight mode confinement and decent propagation length. On top of its photonic properties, placing a metal within the structure may also allow for additional functionalities such as photo-detection, thermo-optic tuning, and electro-optic control to be implemented.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1999-01-01
This chapter describes three studies on the surface design, surface engineering, and tribology of chemical-vapor-deposited (CVD) diamond films and coatings toward wear-resistant, self-lubricating diamond films and coatings. Friction mechanisms and solid lubrication mechanisms of CVD diamond are stated. Effects of an amorphous hydrogenated carbon on CVD diamond, an amorphous, nondiamond carbon surface layer formed on CVD diamond by carbon and nitrogen ion implantation, and a materials combination of cubic boron nitride and CVD diamond on the adhesion, friction, and wear behaviors of CVD diamond in ultrahigh vacuum are described. How surface modification and the selected materials couple improved the tribological functionality of coatings, giving low coefficient of friction and good wear resistance, is explained.
Newell, H E; Buckton, G; Butler, D A; Thielmann, F; Williams, D R
2001-05-01
To assess differences in surface energy due to processing induced disorder and to understand whether the disorder dominated the surfaces of particles. Inverse gas chromatography was used to compare the surface energies of crystalline, amorphous, and ball milled lactose. The milling process made ca 1% of the lactose amorphous, however the dispersive contribution to surface energy was 31.2, 37.1, and 41.6 mJ m(-2) for crystalline, spray dried and milled lactose, respectively. A physical mixture of crystalline (99%) and amorphous (1%) material had a dispersive surface energy of 31.5 mJ m(-2). Milling had made the surface energy similar to that of the amorphous material in a manner that was very different to a physical mixture of the same amorphous content. The milled material will have similar interfacial interactions to the 100% amorphous material.
Qian, Ken K; Suib, Steven L; Bogner, Robin H
2011-11-01
Amorphization of crystalline compounds using mesoporous media is a promising technique to improve the solubility and dissolution rate of poorly soluble compounds. The objective of this paper is to determine the capacity of amorphization and understand the mechanisms of phase transformation. Commercial grades of mesoporous silicon dioxide (SiO(2)) samples (5- to 30-nm mean pore diameters) with either constant surface area or constant pore volume were used. The amorphization capacity of naphthalene was not proportional to either the surface area or the pore volume measured using adsorption chambers. Instead, the amorphization capacity correlated with surface curvature, that is, the smaller the pore diameter and the higher the surface curvature, the greater the amorphization capacity. The change in surface chemistry due to a highly curved surface may be responsible for the enhanced amorphization capacity as well. The amorphization of crystalline compounds was facilitated through capillary condensation, with the decrease in pore volume as the direct experimental evidence. The amorphization capacity was also enhanced by the dipole-dipole or dipole-induced dipole interaction, promoted by the hydroxyl groups on the surface of SiO(2). The enthalpy of vapor-solid condensation of crystalline compounds was a useful indicator to predict the rank order of amorphization capacity. Copyright © 2011 Wiley-Liss, Inc.
Nanopillar arrays of amorphous carbon nitride
NASA Astrophysics Data System (ADS)
Sai Krishna, Katla; Pavan Kumar, B. V. V. S.; Eswaramoorthy, Muthusamy
2011-07-01
Nanopillar arrays of amorphous carbon nitride have been prepared using anodic aluminum oxide (AAO) membrane as a template. The amine groups present on the surface of these nanopillars were exploited for functionalization with oleic acid in order to stabilize the nanostructure at the aqueous-organic interface and also for the immobilization of metal nanoparticles and protein. These immobilised nanoparticles were found to have good catalytic activity.
Fe-Based Amorphous Coatings on AISI 4130 Structural Steel for Corrosion Resistance
NASA Astrophysics Data System (ADS)
Katakam, Shravana; Santhanakrishnan, S.; Dahotre, Narendra B.
2012-06-01
The current study focuses on synthesizing a novel functional coating for corrosion resistance applications, via laser surface alloying. The iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder is used for laser surface alloying on AISI 4130 steel substrate, with a continuous wave ytterbium Nd-YAG fiber laser. The corrosion resistance of the coatings is evaluated for different processing conditions. The microstructural evolution and the response of the microstructure to the corrosive environment is studied using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Microstructural studies indicate the presence of face-centered cubic Fe-based dendrites intermixed within an amorphous matrix along with fine crystalline precipitates. The corrosion resistance of the coatings decrease with an increase in laser energy density, which is attributed to the precipitation and growth of chromium carbide. The enhanced corrosion resistance of the coatings processed with low energy density is attributed to the self-healing mechanism of this amorphous system.
Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry
2017-09-01
The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium phosphate (ACP) environments could also arise from a transient amorphous precursor phase of apatite. Here, we provide an NMR spectroscopy methodology to reveal the origin of these ACP environments in bone mineral or in biomimetic apatite. The 1 H magnetization exchange between protons arising from amorphous and crystalline domains shows unambiguously that an ACP layer coats the apatitic crystalline core of bone et biomimetic apatite platelets. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Milling induced amorphisation and recrystallization of α-lactose monohydrate.
Badal Tejedor, Maria; Pazesh, Samaneh; Nordgren, Niklas; Schuleit, Michael; Rutland, Mark W; Alderborn, Göran; Millqvist-Fureby, Anna
2018-02-15
Preprocessing of pharmaceutical powders is a common procedure to condition the materials for a better manufacturing performance. However, such operations may induce undesired material properties modifications when conditioning particle size through milling, for example. Modification of both surface and bulk material structure will change the material properties, thus affecting the processability of the powder. Hence it is essential to control the material transformations that occur during milling. Topographical and mechanical changes in surface properties can be a preliminary indication of further material transformations. Therefore a surface evaluation of the α-lactose monohydrate after short and prolonged milling times has been performed. Unprocessed α-lactose monohydrate and spray dried lactose were evaluated in parallel to the milled samples as reference examples of the crystalline and amorphous lactose structure. Morphological differences between unprocessed α-lactose, 1 h and 20 h milled lactose and spray dried lactose were detected from SEM and AFM images. Additionally, AFM was used to simultaneously characterize particle surface amorphicity by measuring energy dissipation. Extensive surface amorphicity was detected after 1 h of milling while prolonged milling times showed only a moderate particle surface amorphisation. Bulk material characterization performed with DSC indicated a partial amorphicity for the 1 h milled lactose and a fully amorphous thermal profile for the 20 h milled lactose. The temperature profiles however, were shifted somewhat in the comparison to the amorphous reference, particularly after extended milling, suggesting a different amorphous state compared to the spray-dried material. Water loss during milling was measured with TGA, showing lower water content for the lactose amorphized through milling compared to spray dried amorphous lactose. The combined results suggest a surface-bulk propagation of the amorphicity during milling in combination with a different amorphous structural conformation to that of the amorphous spray dried lactose. The hardened surface may be due to either surface crystallization of lactose or to formation of a low-water glass transition. Copyright © 2017 Elsevier B.V. All rights reserved.
Inhibiting surface crystallization of amorphous indomethacin by nanocoating.
Wu, Tian; Sun, Ye; Li, Ning; de Villiers, Melgardt M; Yu, Lian
2007-04-24
An amorphous solid (glass) may crystallize faster at the surface than through the bulk, making surface crystallization a mechanism of failure for amorphous pharmaceuticals and other materials. An ultrathin coating of gold or polyelectrolytes inhibited the surface crystallization of amorphous indomethacin (IMC), an anti-inflammatory drug and model organic glass. The gold coating (10 nm) was deposited by sputtering, and the polyelectrolyte coating (3-20 nm) was deposited by an electrostatic layer-by-layer assembly of cationic poly(dimethyldiallyl ammonium chloride) (PDDA) and anionic sodium poly(styrenesulfonate) (PSS) in aqueous solution. The coating also inhibited the growth of existing crystals. The inhibition was strong even with one layer of PDDA. The polyelectrolyte coating still permitted fast dissolution of amorphous IMC and improved its wetting and flow. The finding supports the view that the surface crystallization of amorphous IMC is enabled by the mobility of a thin layer of surface molecules, and this mobility can be suppressed by a coating of only a few nanometers. This technique may be used to stabilize amorphous drugs prone to surface crystallization, with the aqueous coating process especially suitable for drugs of low aqueous solubility.
Dutta, Arghya; Wong, Raymond A; Park, Woonghyeon; Yamanaka, Keisuke; Ohta, Toshiaki; Jung, Yousung; Byon, Hye Ryung
2018-02-14
The major challenge facing lithium-oxygen batteries is the insulating and bulk lithium peroxide discharge product, which causes sluggish decomposition and increasing overpotential during recharge. Here, we demonstrate an improved round-trip efficiency of ~80% by means of a mesoporous carbon electrode, which directs the growth of one-dimensional and amorphous lithium peroxide. Morphologically, the one-dimensional nanostructures with small volume and high surface show improved charge transport and promote delithiation (lithium ion dissolution) during recharge and thus plays a critical role in the facile decomposition of lithium peroxide. Thermodynamically, density functional calculations reveal that disordered geometric arrangements of the surface atoms in the amorphous structure lead to weaker binding of the key reaction intermediate lithium superoxide, yielding smaller oxygen reduction and evolution overpotentials compared to the crystalline surface. This study suggests a strategy to enhance the decomposition rate of lithium peroxide by exploiting the size and shape of one-dimensional nanostructured lithium peroxide.
Lee, Sang Chul; Benck, Jesse D.; Tsai, Charlie; ...
2015-12-01
Amorphous MoS x is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS 3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS 2 in composition and chemical state. However, structural changes in the Mo Sx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoS x catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmentalmore » TEM. For the first time, we directly observe the formation of crystalline domains in the MoS x catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoS x catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS 2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. Finally, these results have important implications for the application of this highly active electrocatalyst for sustainable H 2 generation.« less
Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong
Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less
Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces
Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong; ...
2017-09-26
Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less
Charged particle space weathering rates at the Moon derived from ARTEMIS observations
NASA Astrophysics Data System (ADS)
Poppe, A. R.; Farrell, W. M.; Halekas, J. S.
2017-12-01
The weathering of airless bodies exposed to space is a fundamental process in the formation and evolution of planetary surfaces. At the Moon, space weathering induces a variety of physical, chemical, and optical changes including the formation of nanometer sized amorphous rims on individual lunar grains. These rims are formed by vapor redeposition from micrometeoroid impacts and ion irradiation-induced amorphization of the crystalline matrix. For ion irradiation-induced rims, however, laboratory experiments of the depth and formation timescales of these rims stand in stark disagreement with observations of lunar soil grains. We use observations by the ARTEMIS spacecraft in orbit around the Moon to compute the mean ion flux to the lunar surface and convolve this flux with ion irradiation-induced vacancy production rates calculated using the Stopping Range of Ions in Matter (SRIM) model. From this, we calculate the formation timescales for amorphous rim production as a function of depth and compare to laboratory experiments and observations of lunar soil. Our analysis resolves two outstanding issues: (1) the provenance of >100 nm amorphous rims on lunar grains and (2) the nature of the depth-age relationship for amorphous rims on lunar grains. We also present the hypothesis that ion beam-induced epitaxial crystallization is responsible for the discrepancy between observational and experimental results of the formation time of <100 nm amorphous rims.
Del Vitto, Annalisa; Pacchioni, Gianfranco; Lim, Kok Hwa; Rösch, Notker; Antonietti, Jean-Marie; Michalski, Marcin; Heiz, Ulrich; Jones, Harold
2005-10-27
We report on the optical absorption spectra of gold atoms and dimers deposited on amorphous silica in size-selected fashion. Experimental spectra were obtained by cavity ringdown spectroscopy. Issues on soft-landing, fragmentation, and thermal diffusion are discussed on the basis of the experimental results. In parallel, cluster and periodic supercell density functional theory (DFT) calculations were performed to model atoms and dimers trapped on various defect sites of amorphous silica. Optically allowed electronic transitions were calculated, and comparisons with the experimental spectra show that silicon dangling bonds [[triple bond]Si(.-)], nonbridging oxygen [[triple bond]Si-O(.-)], and the silanolate group [[triple bond]Si-O(-)] act as trapping centers for the gold particles. The results are not only important for understanding the chemical bonding of atoms and clusters on oxide surfaces, but they will also be of fundamental interest for photochemical studies of size-selected clusters on surfaces.
Compensated amorphous silicon solar cell
Devaud, Genevieve
1983-01-01
An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.
Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo
2014-01-01
Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics. PMID:25297473
Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo
2014-10-09
Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics.
Amorphous alumina coatings: processing, structure and remarkable barrier properties.
Samélor, Diane; Lazar, Ana-Maria; Aufray, Maëlenn; Tendero, Claire; Lacroix, Loïc; Béguin, Jean-Denis; Caussat, Brigitte; Vergnes, Hugues; Alexis, Joël; Poquillon, Dominique; Pébère, Nadine; Gleizes, Alain; Vahlas, Constantin
2011-09-01
Amorphous aluminium oxide coatings were processed by metalorganic chemical vapour deposition (MOCVD); their structural characteristics were determined as a function of the processing conditions, the process was modelled considering appropriate chemical kinetic schemes, and the properties of the obtained material were investigated and were correlated with the nanostructure of the coatings. With increasing processing temperature in the range 350 degrees C-700 degrees C, subatmospheric MOCVD of alumina from aluminium tri-isopropoxide (ATI) sequentially yields partially hydroxylated amorphous aluminium oxides, amorphous Al2O3 (415 degrees C-650 degrees C) and nanostructured gamma-Al2O3 films. A numerical model for the process allowed reproducing the non uniformity of deposition rate along the substrate zone due to the depletion of ATI. The hardness of the coatings prepared at 350 degrees C, 480 degrees C and 700 degrees C is 6 GPa, 11 GPa and 1 GPa, respectively. Scratch tests on films grown on TA6V titanium alloy reveal adhesive and cohesive failures for the amorphous and nanocrystalline ones, respectively. Alumina coating processed at 480 degrees C on TA6V yielded zero weight gain after oxidation at 600 degrees C in lab air. The surface of such low temperature processed amorphous films is hydrophobic (water contact angle 106 degrees), while the high temperature processed nanocrystalline films are hydrophilic (48 degrees at a deposition temperature of 700 degrees C). It is concluded that amorphous Al2O3 coatings can be used as oxidation and corrosion barriers at ambient or moderate temperature. Nanostructured with Pt or Ag nanoparticles, they can also provide anti-fouling or catalytic surfaces.
Method for improving the stability of amorphous silicon
Branz, Howard M.
2004-03-30
A method of producing a metastable degradation resistant amorphous hydrogenated silicon film is provided, which comprises the steps of growing a hydrogenated amorphous silicon film, the film having an exposed surface, illuminating the surface using an essentially blue or ultraviolet light to form high densities of a light induced defect near the surface, and etching the surface to remove the defect.
Investigation of solid phase composition on tablet surfaces by grazing incidence X-ray diffraction.
Koradia, Vishal; Tenho, Mikko; Lopez de Diego, Heidi; Ringkjøbing-Elema, Michiel; Møller-Sonnergaard, Jørn; Salonen, Jarno; Lehto, Vesa-Pekka; Rantanen, Jukka
2012-01-01
To investigate solid state transformations of drug substances during compaction using grazing incidence X-ray diffraction (GIXD). The solid forms of three model drugs-theophylline (TP), nitrofurantoin (NF) and amlodipine besylate (AMB)-were compacted at different pressures (from 100 to 1000 MPa); prepared tablets were measured using GIXD. After the initial measurements of freshly compacted tablets, tablets were subjected to suitable recrystallization treatment, and analogous measurements were performed. Solid forms of TP, NF and AMB showed partial amorphization as well as crystal disordering during compaction; the extent of these effects generally increased as a function of pressure. The changes were most pronounced at the outer surface region. The different solid forms showed difference in the formation of amorphicity/crystal disordering. Dehydration due to compaction was observed for the TP monohydrate, whereas hydrates of NF and AMB were stable towards dehydration. With GIXD measurements, it was possible to probe the solid form composition at the different depths of the tablet surfaces and to obtain depth-dependent information on the compaction-induced amorphization, crystal disordering and dehydration.
Neon ion beam induced pattern formation on amorphous carbon surfaces
NASA Astrophysics Data System (ADS)
Bobes, Omar; Hofsäss, Hans; Zhang, Kun
2018-02-01
We investigate the ripple pattern formation on amorphous carbon surfaces at room temperature during low energy Ne ion irradiation as a function of the ion incidence angle. Monte Carlo simulations of the curvature coefficients applied to the Bradley-Harper and Cater-Vishnyakov models, including the recent extensions by Harrison-Bradley and Hofsäss predict that pattern formation on amorphous carbon thin films should be possible for low energy Ne ions from 250 eV up to 1500 eV. Moreover, simulations are able to explain the absence of pattern formation in certain cases. Our experimental results are compared with prediction using current linear theoretical models and applying the crater function formalism, as well as Monte Carlo simulations to calculate curvature coefficients using the SDTrimSP program. Calculations indicate that no patterns should be generated up to 45° incidence angle if the dynamic behavior of the thickness of the ion irradiated layer introduced by Hofsäss is taken into account, while pattern formation most pronounced from 50° for ion energy between 250 eV and 1500 eV, which are in good agreement with our experimental data.
Anti-biofouling function of amorphous nano-Ta2O5 coating for VO2-based intelligent windows.
Li, Jinhua; Guo, Geyong; Wang, Jiaxing; Zhou, Huaijuan; Shen, Hao; Yeung, Kelvin W K
2017-04-28
From environmental and health perspectives, the acquisition of a surface anti-biofouling property holds important significance for the usability of VO 2 intelligent windows. Herein, we firstly deposited amorphous Ta 2 O 5 nanoparticles on VO 2 film by the magnetron sputtering method. It was found that the amorphous nano-Ta 2 O 5 coating possessed a favorable anti-biofouling capability against Pseudomonas aeruginosa as an environmental microorganism model, behind which lay the mechanism that the amorphous nano-Ta 2 O 5 could interrupt the microbial membrane electron transport chain and significantly elevate the intracellular reactive oxygen species (ROS) level. A plausible relationship was established between the anti-biofouling activity and physicochemical nature of amorphous Ta 2 O 5 nanoparticles from the perspective of defect chemistry. ROS-induced oxidative damage gave rise to microbial viability loss. In addition, the amorphous nano-Ta 2 O 5 coating can endow VO 2 with favorable cytocompatibility with human skin fibroblasts. This study may provide new insights into understanding the anti-biofouling and antimicrobial actions of amorphous transition metal oxide nanoparticles, which is conducive to expanding their potential applications in environmental fields.
Anti-biofouling function of amorphous nano-Ta2O5 coating for VO2-based intelligent windows
NASA Astrophysics Data System (ADS)
Li, Jinhua; Guo, Geyong; Wang, Jiaxing; Zhou, Huaijuan; Shen, Hao; Yeung, Kelvin W. K.
2017-04-01
From environmental and health perspectives, the acquisition of a surface anti-biofouling property holds important significance for the usability of VO2 intelligent windows. Herein, we firstly deposited amorphous Ta2O5 nanoparticles on VO2 film by the magnetron sputtering method. It was found that the amorphous nano-Ta2O5 coating possessed a favorable anti-biofouling capability against Pseudomonas aeruginosa as an environmental microorganism model, behind which lay the mechanism that the amorphous nano-Ta2O5 could interrupt the microbial membrane electron transport chain and significantly elevate the intracellular reactive oxygen species (ROS) level. A plausible relationship was established between the anti-biofouling activity and physicochemical nature of amorphous Ta2O5 nanoparticles from the perspective of defect chemistry. ROS-induced oxidative damage gave rise to microbial viability loss. In addition, the amorphous nano-Ta2O5 coating can endow VO2 with favorable cytocompatibility with human skin fibroblasts. This study may provide new insights into understanding the anti-biofouling and antimicrobial actions of amorphous transition metal oxide nanoparticles, which is conducive to expanding their potential applications in environmental fields.
Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun
2017-03-01
For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm 2 ), insulating property (leakage current densities <10 -7 A/cm 2 ), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.
Thakral, Naveen K; Mohapatra, Sarat; Stephenson, Gregory A; Suryanarayanan, Raj
2015-01-05
Tablets of amorphous indomethacin were compressed at 10, 25, 50, or 100 MPa using either an unlubricated or a lubricated die and stored individually at 35 °C in sealed Mylar pouches. At selected time points, tablets were analyzed by two-dimensional X-ray diffractometry (2D-XRD), which enabled us to profile the extent of drug crystallization in tablets, in both the radial and axial directions. To evaluate the role of lubricant, magnesium stearate was used as "internal" and/or "external" lubricant. Indomethacin crystallization propensity increased as a function of compression pressure, with 100 MPa pressure causing crystallization immediately after compression (detected using synchrotron radiation). However, the drug crystallization was not uniform throughout the tablets. In unlubricated systems, pronounced crystallization at the radial surface could be attributed to die wall friction. The tablet core remained substantially amorphous, irrespective of the compression pressure. Lubrication of the die wall with magnesium stearate, as external lubricant, dramatically decreased drug crystallization at the radial surface. The spatial heterogeneity in drug crystallization, as a function of formulation composition and compression pressure, was systematically investigated. When formulating amorphous systems as tablets, the potential for compression induced crystallization warrants careful consideration. Very low levels of crystallization on the tablet surface, while profoundly affecting product performance (decrease in dissolution rate), may not be readily detected by conventional analytical techniques. Early detection of crystallization could be pivotal in the successful design of a dosage form where, in order to obtain the desired bioavailability, the drug may be in a high energy state. Specialized X-ray diffractometric techniques (2D; use of high intensity synchrotron radiation) enabled detection of very low levels of drug crystallization and revealed the heterogeneity in crystallization within the tablet.
Xiao, Shifang; Li, Xiaofan; Deng, Huiqiu; Deng, Lei; Hu, Wangyu
2015-03-07
Despite an intensive investigation on bimetallic nanoparticles, little attention has been paid to their amorphization in the past few decades. The study of amorphization on a nanoscale is of considerable significance for the preparation of amorphous nanoparticles and bulk metallic glass. Herein, we pursue the amorphization process of Al-based nanoparticles with classic molecular dynamics simulations and local structural analysis techniques. By a comparative study of the amorphization of pure Al and Fe-doped Al-based nanodroplets in the course of rapid cooling, we find that Fe addition plays a very important role in the vitrification of Al-based nanodroplets. Owing to the subsurface segregated Fe atoms with their nearest neighbors tending to form relatively stable icosahedral (ICO) clusters, the Fe-centred cluster network near the surface effectively suppresses the crystallization of droplets from surface nucleation and growth as the concentration of Fe attains a certain value. The glass formation ability of nanodroplets is suggested to be enhanced by the high intrinsic inner pressure as a result of small size and surface tension, combined with the dopant-inhibited surface nucleation. In addition, the effect of the size and the added concentration of nanoparticles on amorphization and the thermal stability of the amorphous nanoparticles are discussed. Our findings reveal the amorphization mechanism in Fe-doped Al-based nanoparticles and provide a theoretical guidance for the design of amorphous materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Wei; Meng, Yifei; Zhang, Xie
Amorphous and nanograined (NG) steels are two categories of strong steels. However, over the past decade, their application has been hindered by their limited plasticity, the addition of expensive alloying elements, and processing challenges associated with producing bulk materials. Here in this work, we report that the surface of a carburized Fe-Mn-Si martensitic steel with extremely low elemental alloying additions can be economically fabricated into an amorphous-nanocrystalline hybrid structure. Atom probe tomography and nanobeam diffraction of a hard turned steel surface together with molecular dynamics (MD) simulations reveal that the original cementite surface structure experiences a size-dependent amorphization and phasemore » transformation during heavy plastic deformation. MD simulations further show that the martensite-cementite interface serves as a nucleation site for cementite amorphization, and that cementite can become disordered if further strained when the cementite particles are relatively small. These graded structures exhibit a surface hardness of ~16.2 GPa, which exceeds the value of ~8.8 GPa for the original nanocrystalline martensitic steel and most nanocrystalline steels reported before. Finally, this practical and cost-efficient approach for producing a hard surface with retained bulk ductility and toughness can provide expanded opportunities for producing an amorphous-crystalline hybrid structure in steels and other alloy systems.« less
Guo, Wei; Meng, Yifei; Zhang, Xie; ...
2018-04-11
Amorphous and nanograined (NG) steels are two categories of strong steels. However, over the past decade, their application has been hindered by their limited plasticity, the addition of expensive alloying elements, and processing challenges associated with producing bulk materials. Here in this work, we report that the surface of a carburized Fe-Mn-Si martensitic steel with extremely low elemental alloying additions can be economically fabricated into an amorphous-nanocrystalline hybrid structure. Atom probe tomography and nanobeam diffraction of a hard turned steel surface together with molecular dynamics (MD) simulations reveal that the original cementite surface structure experiences a size-dependent amorphization and phasemore » transformation during heavy plastic deformation. MD simulations further show that the martensite-cementite interface serves as a nucleation site for cementite amorphization, and that cementite can become disordered if further strained when the cementite particles are relatively small. These graded structures exhibit a surface hardness of ~16.2 GPa, which exceeds the value of ~8.8 GPa for the original nanocrystalline martensitic steel and most nanocrystalline steels reported before. Finally, this practical and cost-efficient approach for producing a hard surface with retained bulk ductility and toughness can provide expanded opportunities for producing an amorphous-crystalline hybrid structure in steels and other alloy systems.« less
Amiaud, L; Momeni, A; Dulieu, F; Fillion, J H; Matar, E; Lemaire, J-L
2008-02-08
Molecular hydrogen interaction on water ice surfaces is a major process taking place in interstellar dense clouds. By coupling laser detection and classical thermal desorption spectroscopy, it is possible to study the effect of rotation of D(2) on adsorption on amorphous solid water ice surfaces. The desorption profiles of ortho- and para-D(2) are different. This difference is due to a shift in the adsorption energy distribution of the two lowest rotational states. Molecules in J''=1 rotational state are on average more strongly bound to the ice surface than those in J''=0 rotational state. This energy difference is estimated to be 1.4+/-0.3 meV. This value is in agreement with previous calculation and interpretation. The nonspherical wave function J'' =1 has an interaction with the asymmetric part of the adsorption potential and contributes positively in the binding energy.
Surface dynamics of amorphous polymers used for high-voltage insulators.
Shemella, Philip T; Laino, Teodoro; Fritz, Oliver; Curioni, Alessandro
2011-11-24
Amorphous siloxane polymers are the backbone of high-voltage insulation materials. The natural hydrophobicity of their surface is a necessary property for avoiding leakage currents and dielectric breakdown. As these surfaces are exposed to the environment, electrical discharges or strong mechanical impact can temporarily destroy their water-repellent properties. After such events, however, a self-healing process sets in and restores the original hydrophobicity within some hours. In the present study, we investigate possible mechanisms of this restoration process. Using large-scale, all-atom molecular dynamics simulations, we show that molecules on the material surface have augmented motion that allows them to rearrange with a net polarization. The overall surface region has a net orientation that contributes to hydrophobicity, and charged groups that are placed at the surface migrate inward, away from the vacuum interface and into the bulk-like region. Our simulations provide insight into the mechanisms for hydrophobic self-recovery that repair material strength and functionality and suggest material compositions for future high-voltage insulators. © 2011 American Chemical Society
Hui, Ou-Yang; Yi, Tao; Zheng, Qin; Liu, Feng
2011-06-01
Amorphous drugs have higher solubility, better oral bioavailability and are easier to be absorbed than their crystalline counterparts. However, the amorphous drugs, with weak stability, are so easy to crystallize that they will lose the original advantages. Polarization microscope, scanning electron microscope, differential scanning calorimetry, X-ray diffractomer and Raman spectroscopy were used to study the microcosmic crystallization mechanisms of amorphous indometacin and the performance of the drug crystals. The results showed that the growth rate of amorphous indometacin crystals at the free surface was markedly faster than that through the bulk, and that the crystal growth rate decreased observably after spraying an ultrathin melting gold (10 nm) at the free surface of the drug. These results indicated that the high growth rates of amorphous drugs crystals at the free surface were the key to their stability and that an ultrathin coating could be applied to enhance the stability of amorphous drugs.
Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals
Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo
2014-07-15
A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).
Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals
Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA
2009-11-17
A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).
Shi, Jian; Li, Zhaodong; Kvit, Alexander; Krylyuk, Sergiy; Davydov, Albert V; Wang, Xudong
2013-01-01
Understanding the evolution of amorphous and crystalline phases during atomic layer deposition (ALD) is essential for creating high quality dielectrics, multifunctional films/coatings, and predictable surface functionalization. Through comprehensive atomistic electron microscopy study of ALD TiO2 nanostructures at designed growth cycles, we revealed the transformation process and sequence of atom arrangement during TiO2 ALD growth. Evolution of TiO2 nanostructures in ALD was found following a path from amorphous layers to amorphous particles to metastable crystallites and ultimately to stable crystalline forms. Such a phase evolution is a manifestation of the Ostwald-Lussac Law, which governs the advent sequence and amount ratio of different phases in high-temperature TiO2 ALD nanostructures. The amorphous-crystalline mixture also enables a unique anisotropic crystal growth behavior at high temperature forming TiO2 nanorods via the principle of vapor-phase oriented attachment.
Different structural morphologies of the two surfaces in some Co-based amorphous ribbons
NASA Astrophysics Data System (ADS)
Bordin, G.; Buttino, G.
1992-12-01
In nearly zero magnetostriction Co-based Metglas amorphous ribbons, the anomalous Hall effect is used to investigate the behaviour of the surfaces (dull or shiny). The electronic transport properties of a double-layer film, where one of the two layers examined is ferromagnetic and amorphous, and the other is a non-magnetic film, are interpreted on the basis of the mean free path method of Bergmann and Fuchs-Sondheimer theory. The results obtained confirm the different structural morphology of the amorphous surfaces (dull or shiny) already observed by means of bending effects on the initial permeability that depends on the way of winding the ribbons in toroidal samples of the same amorphous materials.
NASA Astrophysics Data System (ADS)
Gueorguiev, G. K.; Broitman, E.; Furlan, A.; Stafström, S.; Hultman, L.
2009-11-01
The energy cost for dangling bond formation in Fullerene-like Carbon Nitride (FL-CN x) and Phosphorus carbide (FL-CP x) as well as their amorphous counterparts: a-CN x, a-CP x, and a-C has been calculated within the framework of Density Functional Theory and compared with surface water adsorption measurements. The highest energy cost is found in the FL-CN x (about 1.37 eV) followed by FL-CP x compounds (0.62-1.04 eV).
Mah, Pei T; Novakovic, Dunja; Saarinen, Jukka; Van Landeghem, Stijn; Peltonen, Leena; Laaksonen, Timo; Isomäki, Antti; Strachan, Clare J
2017-05-01
To investigate the effect of compression on the crystallization behavior in amorphous tablets using sum frequency generation (SFG) microscopy imaging and more established analytical methods. Tablets containing neat amorphous griseofulvin with/without excipients (silica, hydroxypropyl methylcellulose acetate succinate (HPMCAS), microcrystalline cellulose (MCC) and polyethylene glycol (PEG)) were prepared. They were analyzed upon preparation and storage using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and SFG microscopy. Compression-induced crystallization occurred predominantly on the surface of the neat amorphous griseofulvin tablets, with minimal crystallinity being detected in the core of the tablets. The presence of various types of excipients was not able to mitigate the compression-induced surface crystallization of the amorphous griseofulvin tablets. However, the excipients affected the crystallization rate of amorphous griseofulvin in the core of the tablet upon compression and storage. SFG microscopy can be used in combination with ATR-FTIR spectroscopy and SEM to understand the crystallization behaviour of amorphous tablets upon compression and storage. When selecting excipients for amorphous formulations, it is important to consider the effect of the excipients on the physical stability of the amorphous formulations.
NASA Astrophysics Data System (ADS)
Cormier, Lyne Mercedes
1998-12-01
The objectives of this investigation of amorphous Cr-B thin films as prospective coatings for biomaterials applications were to (i) produce and characterize an amorphous Cr-B thin film coating by magnetron sputtering, (ii) evaluate its corrosion resistance in physiologically relevant electrolytes, and (iii) propose a mechanism for the formation/dissolution of the passive film formed on amorphous Cr-B in chloride-containing near-neutral salt electrolytes. Dense (zone T) amorphous Cr75B25 thin films produced by DC magnetron sputtering were found to be better corrosion barriers than nanoczystalline or porous (zone 1) amorphous Cr75B25 thin films. The growth morphology and microstructure were a function of the sputtering pressure and substrate temperature, in agreement with the structure zone model of Thornton. The passivity/loss of passivity of amorphous Cr 75B25 in near-neutral salt solutions was explained using a modified bipolar layer model. The chromate ions identified by X-Ray Photoelectron Spectroscopy (XPS) in the outer layer of the passive film were found to play a determinant role in the passive behaviour of amorphous Cr75B 25 thin films in salt solutions. In near-neutral salt solutions of pH = 5 to 7, a decrease in pH combined with an increase in chloride concentration resulted in less dissolution of the Cr75B25 thin films. The apparent breakdown potential at 240 mV (SCE) obtained by Cyclic Potentiodynamic Anodic Polarization (CPAP) was associated with oxidation of species within the passive film, but not to dissolution leading to immediate loss of passivity. Pit Propagation Rate (PPR) testing evaluated the stable pitting potential to be between 600 and 650 mV. Amorphous Cr75B25 thin films ranked the best among other Cr-based materials such as 316L stainless steel, CrB2 and Cr investigated in this study for general corrosion behaviour in NaCl and Hanks solutions by CPAP testing. In terms of corrosion resistance, amorphous Cr75B25 thin films were recognized as a promising material for surface modification of biomaterials.
Surface chemistry and catalytic performance of amorphous NiB/Hβ catalyst for n-hexane isomerization
NASA Astrophysics Data System (ADS)
Chen, Jinshe; Cai, Tingting; Jing, Xiaohui; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong
2016-12-01
The amorphous NiB nanoparticles were synthesized and a novel type of NiB/Hβ catalyst was prepared for the isomerization of n-hexane. The optimum preparation conditions were investigated and the effect of preparation conditions on the surface chemistry information of catalysts was characterized by XRD, N2 sorption studies, XPS, TPD and other related means. It was demonstrated that the loading amounts of NiB have effect on textural properties and the acid properties of surface. The loading amounts of NiB were also related to the amount of strong Lewis acid sites and the ratios of weak acid to strong acid of samples. Meanwhile, calcination temperatures of samples were closely associated with the structure of active components that function as metal centers. When the loading amount of NiB was 5 wt.% and calcination temperature was 200 °C, the catalyst had proper surface acidity sites and metal active sites to provide suitable synergistic effects. The mechanism for n-hexane isomerization was also investigated and the existence of unique structure of Bsbnd Nisbnd H was proved, which could provide good hydrogenation-dehydrogenation functions.
Comparative surface dynamics of amorphous and semicrystalline polymer films
Becker, James S.; Brown, Ryan D.; Killelea, Daniel R.; Yuan, Hanqiu; Sibener, S. J.
2011-01-01
The surface dynamics of amorphous and semicrystalline polymer films have been measured using helium atom scattering. Time-of-flight data were collected to resolve the elastic and inelastic scattering components in the diffuse scattering of neutral helium atoms from the surface of a thin poly(ethylene terephthalate) film. Debye–Waller attenuation was observed for both the amorphous and semicrystalline phases of the polymer by recording the decay of elastically scattered helium atoms with increasing surface temperature. Thermal attenuation measurements in the specular scattering geometry yielded perpendicular mean-square displacements of 2.7•10-4 Å2 K-1 and 3.1•10-4 Å2 K-1 for the amorphous and semicrystalline surfaces, respectively. The semicrystalline surface was consistently ∼15% softer than the amorphous across a variety of perpendicular momentum transfers. The Debye–Waller factors were also measured at off-specular angles to characterize the parallel mean-square displacements, which were found to increase by an order of magnitude over the perpendicular mean-square displacements for both surfaces. In contrast to the perpendicular motion, the semicrystalline state was ∼25% stiffer than the amorphous phase in the surface plane. These results were uniquely accessed through low-energy neutral helium atom scattering due to the highly surface-sensitive and nonperturbative nature of these interactions. The goal of tailoring the chemical and physical properties of complex advanced materials requires an improved understanding of interfacial dynamics, information that is obtainable through atomic beam scattering methods. PMID:20713734
The effect of processing on the surface physical stability of amorphous solid dispersions.
Yang, Ziyi; Nollenberger, Kathrin; Albers, Jessica; Moffat, Jonathan; Craig, Duncan; Qi, Sheng
2014-11-01
The focus of this study was to investigate the effect of processing on the surface crystallization of amorphous molecular dispersions and gain insight into the mechanisms underpinning this effect. The model systems, amorphous molecular dispersions of felodipine-EUDRAGIT® E PO, were processed both using spin coating (an ultra-fast solvent evaporation based method) and hot melt extrusion (HME) (a melting based method). Amorphous solid dispersions with drug loadings of 10-90% (w/w) were obtained by both processing methods. Samples were stored under 75% RH/room temperatures for up to 10months. Surface crystallization was observed shortly after preparation for the HME samples with high drug loadings (50-90%). Surface crystallization was characterized by powder X-ray diffraction (PXRD), ATR-FTIR spectroscopy and imaging techniques (SEM, AFM and localized thermal analysis). Spin coated molecular dispersions showed significantly higher surface physical stability than hot melt extruded samples. For both systems, the progress of the surface crystal growth followed zero order kinetics on aging. Drug enrichment at the surfaces of HME samples on aging was observed, which may contribute to surface crystallization of amorphous molecular dispersions. In conclusion it was found the amorphous molecular dispersions prepared by spin coating had a significantly higher surface physical stability than the corresponding HME samples, which may be attributed to the increased process-related apparent drug-polymer solubility and reduced molecular mobility due to the quenching effect caused by the rapid solvent evaporation in spin coating. Copyright © 2014 Elsevier B.V. All rights reserved.
González-Flores, Diego; Sánchez, Irene; Zaharieva, Ivelina; Klingan, Katharina; Heidkamp, Jonathan; Chernev, Petko; Menezes, Prashanth W; Driess, Matthias; Dau, Holger; Montero, Mavis L
2015-02-16
Is water oxidation catalyzed at the surface or within the bulk volume of solid oxide materials? This question is addressed for cobalt phosphate catalysts deposited on inert electrodes, namely crystallites of pakhomovskyite (Co3(PO4)2⋅8 H2O, Pak) and phosphate-containing Co oxide (CoCat). X-ray spectroscopy reveals that oxidizing potentials transform the crystalline Pak slowly (5-8 h) but completely into the amorphous CoCat. Electrochemical analysis supports high-TOF surface activity in Pak, whereas its amorphization results in dominating volume activity of the thereby formed CoCat material. In the directly electrodeposited CoCat, volume catalysis prevails, but not at very low levels of the amorphous material, implying high-TOF catalysis at surface sites. A complete picture of heterogeneous water oxidation requires insight in catalysis at the electrolyte-exposed "outer surface", within a hydrated, amorphous volume phase, and modes and kinetics of restructuring upon operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oxygen vacancy and hole conduction in amorphous TiO2.
Pham, Hieu H; Wang, Lin-Wang
2015-01-07
The amorphous titanium dioxide (a-TiO2) has drawn attention recently due to the finding that it holds promise for coating conventional photoelectrodes for corrosion protection while still allowing the holes to transport to the surface. The mechanism of hole conductivity at a level much higher than the edge of the valence band is still a mystery. In this work, an amorphous TiO2 model is obtained from molecular dynamics employing the "melt-and-quench" technique. The electronic properties, polaronic states and the hole conduction mechanism in amorphous structure were investigated by means of density functional theory with Hubbard's energy correction (DFT + U) and compared to those in crystalline (rutile) TiO2. The formation energy of the oxygen vacancy was found to reduce significantly (by a few eV) upon amorphization. Our theoretical study suggested that the oxygen vacancies and their defect states provide hopping channels, which are comparable to experimental observations and could be responsible for hole conduction in the "leaky" TiO2 recently discovered for the photochemical water-splitting applications.
Replication of surface features from a master model to an amorphous metallic article
Johnson, William L.; Bakke, Eric; Peker, Atakan
1999-01-01
The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.
Amorphous metal formulations and structured coatings for corrosion and wear resistance
Farmer, Joseph C.
2014-07-15
A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.
Amorphous metal formulations and structured coatings for corrosion and wear resistance
Farmer, Joseph C [Tracy, CA
2011-12-13
A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.
Superior electric storage on an amorphous perfluorinated polymer surface
Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko; Sueyoshi, Takashi
2016-01-01
Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the −90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system. PMID:26902953
NASA Technical Reports Server (NTRS)
Hofmann, Douglas (Inventor)
2017-01-01
Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.
Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan
2017-02-08
The crystal to amorphous transformation is a common phenomenon in Nature and has important impacts on material properties. Our current knowledge on such complex solid transformation processes is, however, limited because of their slow kinetics and the lack of long-range ordering in amorphous structures. To reveal the kinetics in the amorphization of solids, this work, by developing iterative reaction sampling based on the stochastic surface walking global optimization method, investigates the well-known crystal to amorphous transformation of silica (SiO 2 ) under external pressures, the mechanism of which has long been debated for its non-equilibrium, pressure-sensitive kinetics and complex product components. Here we report for the first time the global potential energy surface (PES) and the lowest energy pathways for α-quartz amorphization from first principles. We show that the pressurization at 15 GPa, the reaction condition, can lift the quartz phase energetically close to the amorphous zone, which thermodynamically initializes the amorphization. More importantly, the large flexibility of Si cation coordination (including four, five and six coordination) results in many kinetically competing routes to more stable dense forms, including the known MI, stishovite, newly-identified MII and TI phases. All these pathways have high barriers due to the local Si-O bond breaking and are mediated by amorphous structures with five-fold Si. This causes simultaneous crystal-to-crystal and crystal-to-amorphous transitions. The high barrier and the reconstructive nature of the phase transition are the key kinetics origin for silica amorphization under pressures.
The Effect of Shock on the Amorphous Component in Altered Basalt
NASA Technical Reports Server (NTRS)
Eckley, S. A.; Wright, S. P.; Rampe, E. B.; Niles, P. B.
2017-01-01
Investigation of the geochemical and mineralogical composition of the Martian surface provides insight into the geologic history of the predominantly basaltic crust. The Chemistry and Mineralogy (CheMin) instrument onboard the Curiosity rover has returned the first X-Ray diffraction data from the Martian surface. However, large proportions (27 +/- 14 with some estimates as high as 50 weight percentage) of an amorphous component have been reported. As a remedy to this problem, mass balance equations using geochemistry, volatile chemistry, and mineralogy have been employed to constrain the geochemistry of the amorphous component. However, "the nature and number of amorphous phases that constitute the amorphous component is not unequivocally known". Multiple hypotheses have been proposed to explain the origin of this amorphous component: Allophane (Al2O); Basaltic glass (Volcanic and impact); Palagonite (Altered basaltic glass); Hisingerite (Fe (sup 3 plus)-bearing phyllosilicate); S/Cl-rich component (sulfates and/or akaganeite); Nanophase ferric oxide component (npOx). Establishing a multi-phase amorphous component from a basaltic precursor that has undergone physical and chemical weathering within geochemical constraints is of paramount importance to better understand the composition of a large portion of the Martian surface (up to 50 weight percentage). Shocked basalts from Lonar Crater in India are valuable analogs for the Martian surface because it is a well-preserved impact crater in a basaltic target. Having undergone pre- and post-shock aqueous alteration, these rocks provide crucial data regarding the effect of shock on the amorphous component in altered basalt. By conducting mass balance equations similar to what has been performed for Gale crater materials, we attempt to calculate the geochemistry of the amorphous component in altered basalts ranging from unshocked to Class 5 (Table 1). This has the potential to reveal the nature and origin (i.e. primary igneous, shock metamorphic, and/or aqueous alteration occurring before or after the impact event) of the amorphous component in shocked basalt with the goal of unravelling the history of the Martian surface.
Iuraş, Andreea; Scurr, David J; Boissier, Catherine; Nicholas, Mark L; Roberts, Clive J; Alexander, Morgan R
2016-04-05
The structure of a material, in particular the extremes of crystalline and amorphous forms, significantly impacts material performance in numerous sectors such as semiconductors, energy storage, and pharmaceutical products, which are investigated in this paper. To characterize the spatial distribution for crystalline-amorphous forms at the uppermost molecular surface layer, we performed time-of-flight secondary-ion mass spectroscopy (ToF-SIMS) measurements for quench-cooled amorphous and recrystallized samples of the drugs indomethacin, felodipine, and acetaminophen. Polarized light microscopy was used to localize crystallinity induced in the samples under controlled conditions. Principal component analysis was used to identify the subtle changes in the ToF-SIMS spectra indicative of the amorphous and crystalline forms for each drug. The indicators of amorphous and crystalline surfaces were common in type across the three drugs, and could be explained in general terms of crystal packing and intermolecular bonding, leading to intramolecular bond scission in the formation of secondary ions. Less intramolecular scission occurred in the amorphous form, resulting in a greater intensity of molecular and dimer secondary ions. To test the generality of amorphous-crystalline differentiation using ToF-SIMS, a different recrystallization method was investigated where acetaminophen single crystals were recrystallized from supersaturated solutions. The findings indicated that the ability to assign the crystalline/amorphous state of the sample using ToF-SIMS was insensitive to the recrystallization method. This demonstrates that ToF-SIMS is capable of detecting and mapping ordered crystalline and disordered amorphous molecular materials forms at micron spatial resolution in the uppermost surface of a material.
Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.
Teerakapibal, Rattavut; Gui, Yue; Yu, Lian
2018-01-05
Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.
Volumetric and infrared measurements on amorphous ice structure
NASA Astrophysics Data System (ADS)
Manca, C.; Martin, C.; Roubin, P.
2004-05-01
We have simultaneously used adsorption isotherm volumetry and Fourier transform infrared spectroscopy in order to take the investigations on amorphous ice structure a step further, especially concerning porosity and annealing-induced modifications. We have studied surface reorganization during annealing and found that the number of surface sites decreases before crystallization, their relative ratios being different for amorphous and crystalline ice. We also present results confirming that ice can have a large specific surface area and nevertheless be non-microporous.
Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.
Capece, Maxx; Davé, Rajesh
2015-06-01
Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei
2012-01-02
The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1983-01-01
An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.
Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth
NASA Astrophysics Data System (ADS)
Cao, Ying; Wang, Hua-Jie; Cao, Cui; Sun, Yuan-Yuan; Yang, Lin; Wang, Bao-Qing; Zhou, Jian-Guo
2011-07-01
In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.
Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.
Hellrup, Joel; Alderborn, Göran; Mahlin, Denny
2015-11-01
This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Method and apparatus for determining minority carrier diffusion length in semiconductors
Moore, Arnold R.
1984-01-01
Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A drop of a transparent electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The drop of redox couple solution functions to create a liquid Schottky barrier at the surface of the material. Illumination light is passed through a transparent rod supported over the surface and through the drop of transparent electrolyte. The drop is held in the gap between the rod and the surface. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.
Conformal coating of highly structured surfaces
Ginley, David S.; Perkins, John; Berry, Joseph; Gennett, Thomas
2012-12-11
Method of applying a conformal coating to a highly structured substrate and devices made by the disclosed methods are disclosed. An example method includes the deposition of a substantially contiguous layer of a material upon a highly structured surface within a deposition process chamber. The highly structured surface may be associated with a substrate or another layer deposited on a substrate. The method includes depositing a material having an amorphous structure on the highly structured surface at a deposition pressure of equal to or less than about 3 mTorr. The method may also include removing a portion of the amorphous material deposited on selected surfaces and depositing additional amorphous material on the highly structured surface.
The effect of dehydration conditions on the functionality of anhydrous amorphous raffinose.
Chamarthy, Sai Prasanth; Khalef, Nawel; Trasi, Niraj; Bakri, Aziz; Carvajal, M Teresa; Pinal, Rodolfo
2010-06-14
The purpose of this investigation is to study the effect of dehydration conditions of raffinose pentahydrate (RF.5H2O) on the physical properties and functionality of the resulting material. Crystalline RF.5H2O was dehydrated at two temperatures, 80 degrees C and 110 degrees C, producing the amorphous anhydrous form (RF.am). The dehydration temperature had no effect on a number of physical properties of the obtained RF.am, including X-ray powder diffraction, surface energy and water uptake. However, despite resulting on the same dynamics and extent of water sorption, different dehydration temperatures produced amorphous samples with drastically different recrystallization tendencies. Thermodynamic parameters show that despite the similarities on certain physical attributes, different dehydration temperature results in samples with significantly different free energy, hence stability. The difference in free energy produced by the dehydration temperature is attributed to differences in supramolecular structure that persist even in the liquid domain (above T(g)) of the amorphous samples. Evidence of such effects is observed as fluctuations in heat capacity present in RF.am but absent in the freshly prepared glass and also supported by the presence of molecular mobility modes observed using thermal polarization measurements. Copyright 2010 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Selenite adsorption behavior was investigated on amorphous aluminum and iron oxides, clay minerals: kaolinite, montmorillonite, and illite, and 45 surface and subsurface soil samples from the Southwestern and Midwestern regions of the USA as a function of solution pH. Selenite adsorption decreased ...
Multi-Functions of Carbonated Calcium Deficient Hydroxyapatite (CDHA)
NASA Astrophysics Data System (ADS)
Zhou, Huan
Natural bone is a complex composite mainly constituted of inorganic minerals and organic collagen molecules. Calcium phosphate (CaP) based materials have been proposed as the predominant bone substitute for bone tissue engineering applications due to their chemical similarity to bone mineral. Amorphous carbonated calcium deficient hydroxyapatite (CDHA) is an important compound among CaP materials because of the amorphous crystallite structure. The presence of extra ions in its lattice structure not only influences cell attachment and proliferation of osteoblasts, but also helps in bone metabolism. Biomimetic coating approach is the most widely used approach to produce CDHA coatings to implant. It is a process using simulated body fluid (SBF) to deposit bone-like CDHA coating to various material surfaces. The CDHA formation mechanism, SBF compositions and reacting conditions of biomimetic coating have already been sufficiently studied and compared in the past 20 years. It is an attempt in this thesis to explore new applications of SBF in biomedical research, focusing on different biomaterial applications: 1) based on the low temperature reaction condition of SBF, bisphosphonate incorporated CDHA coatings were deposited onto Ti6Al4V surface for the treatment of osteoporosis; 2) amorphous calcium phosphate nanospheres with extra elements in the lattice structure were prepared by a novel microwave assisted approach, providing a new potential of CaP materials production; 3) CDHA particles formed in SBF can be used as great fillers with biopolymers for preparing biocomposites for biomedical applications; 4) based on the high activity of CDHA amorphous structure and the stabilization ability of ethanol, yttrium and europium doped calcium phosphates were prepared using CDHA as a sacrificing template. In the end, future work based on these observations in the thesis is addressed, including areas of drug delivery, biocomposite fabrication and preparation of functionalized calcium phosphate materials.
Amorphous titanium-oxide supercapacitors.
Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko
2016-10-21
The electric capacitance of an amorphous TiO 2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm 2 , accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO 2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.
Amorphous titanium-oxide supercapacitors
NASA Astrophysics Data System (ADS)
Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko
2016-10-01
The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.
NASA Astrophysics Data System (ADS)
He, Jiao; Acharyya, Kinsuk; Emtiaz, S. M.; Vidali, Gianfranco
2016-06-01
Sticking and adsorption of molecules on dust grains are two important processes in gas-grain interactions. We accurately measured both the sticking coefficient and the binding energy of several key molecules on the surface of amorphous solid water as a function of coverage.A time-resolved scattering technique was used to measure sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on non-porous amorphous solid water (np-ASW) in the low coverage limit over a wide range of surface temperatures. We found that the time-resolved scattering technique is advantageous over the conventional King-Wells method that underestimates the sticking coefficient. Based on the measured values we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy.We measured the binding energy of N2, CO, O2, CH4, and CO2 on np-ASW, and of N2 and CO on porous amorphous solid water (p-ASW). We were able to measure binding energies down to a fraction of 1% of a layer, thus making these measurements more appropriate for astrochemistry than the existing values. We found that CO2 forms clusters on np-ASW surface even at very low coverage; this may help in explaining the segregation of CO2 in ices. The binding energies of N2, CO, O2, and CH4 on np-ASW decrease with coverage in the submonolayer regime. Their values in the low coverage limit are much higher than what is commonly used in gas-grain models. An empirical formula was used to describe the coverage dependence of the binding energies. We used the newly determined binding energy distributions in a simulation of gas-grain chemistry for cold dense clouds and hot core models. We found that owing to the higher value of desorption energy in the sub-monlayer regime a fraction of all these ices stays much longer and to higher temperature on the grain surface compared to the case using single value energies as currently done in astrochemical models.This work was supported in part by a grant to GV from NSF --- Astronomy & Astrophysics Division (#1311958)
Intrinsic stress evolution during amorphous oxide film growth on Al surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flötotto, D., E-mail: d.floetotto@is.mpg.de; Wang, Z. M.; Jeurgens, L. P. H.
2014-03-03
The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.
NASA Astrophysics Data System (ADS)
Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.
2015-10-01
Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.
The Effects of Hydrogen on the Potential-Energy Surface of Amorphous Silicon
NASA Astrophysics Data System (ADS)
Joly, Jean-Francois; Mousseau, Normand
2012-02-01
Hydrogenated amorphous silicon (a-Si:H) is an important semiconducting material used in many applications from solar cells to transistors. In 2010, Houssem et al. [1], using the open-ended saddle-point search method, ART nouveau, studied the characteristics of the potential energy landscape of a-Si as a function of relaxation. Here, we extend this study and follow the impact of hydrogen doping on the same a-Si models as a function of doping level. Hydrogen atoms are first attached to dangling bonds, then are positioned to relieve strained bonds of fivefold coordinated silicon atoms. Once these sites are saturated, further doping is achieved with a Monte-Carlo bond switching method that preserves coordination and reduces stress [2]. Bonded interactions are described with a modified Stillinger-Weber potential and non-bonded Si-H and H-H interactions with an adapted Slater-Buckingham potential. Large series of ART nouveau searches are initiated on each model, resulting in an extended catalogue of events that characterize the evolution of potential energy surface as a function of H-doping. [4pt] [1] Houssem et al., Phys Rev. Lett., 105, 045503 (2010)[0pt] [2] Mousseau et al., Phys Rev. B, 41, 3702 (1990)
The contribution of vapor deposition to amorphous rims on lunar soil grains. [Abstract only
NASA Technical Reports Server (NTRS)
Keller, L. P.; Mckay, D. S.
1994-01-01
Recent analysis analytical electron microscope study of lunar soils showed that the approximately 60-nm-wide amorphous rims surrounding many lunar soils grains exhibit distinct compositional differences from their hosts. On average, the amorphous rim compositions reflect the local bulk soil composition with the exceptions of Si and S, which are enriched relative to the bulk soil. These chemical trends led us to propose that the amorphous rims were in fact deposits of impact-generated vapors produced during regolith gardening, a hypothesis that runs contrary to the generally accepted view that the rims are produced through amorphization of the outer parts of mineral grains by interaction with the solar wind. Analytical data are reported for amorphous rims on individual minerals in lunar soils in order to show that the magnitude of the chemical differences between rim and host are so great that they require a major addition of foreign elements to the grain surfaces. The average composition of amorphous rims is listed as a function of host mineralogy as determined in microtone thin sections using energy-dispersive X-ray spectrometry in the transmission electron microscope. As the host mineral becomes chemically more complex, the chemical differences are not as clear. The average rim compositions are remarkably similar and are independent of the host grain mineralogy. Whether there are 'sputtering' or radiation effects superimposed on the vapor-deposited material can be debated. We do not explicitly exclude the effects of radiation damage as a contributing factor to the formation of amorphous rims; we are merely emphasizing the major role played by condensed vapors in the formation of amorphous rims on lunar soil grains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Hiroshi; Wada, Koji; Senshu, Hiroki
2015-10-10
Adhesion forces between submicrometer-sized silicate grains play a crucial role in the formation of silicate dust agglomerates, rocky planetesimals, and terrestrial planets. The surface energy of silicate dust particles is the key to their adhesion and rolling forces in a theoretical model based on contact mechanics. Here we revisit the cohesion of amorphous silica spheres by compiling available data on the surface energy for hydrophilic amorphous silica in various circumstances. It turned out that the surface energy for hydrophilic amorphous silica in a vacuum is a factor of 10 higher than previously assumed. Therefore, the previous theoretical models underestimated themore » critical velocity for the sticking of amorphous silica spheres, as well as the rolling friction forces between them. With the most plausible value of the surface energy for amorphous silica spheres, theoretical models based on the contact mechanics are in harmony with laboratory experiments. Consequently, we conclude that silicate grains with a radius of 0.1 μm could grow to planetesimals via coagulation in a protoplanetary disk. We argue that the coagulation growth of silicate grains in a molecular cloud is advanced either by organic mantles rather than icy mantles or, if there are no mantles, by nanometer-sized grain radius.« less
Schammé, Benjamin; Mignot, Mélanie; Couvrat, Nicolas; Tognetti, Vincent; Joubert, Laurent; Dupray, Valérie; Delbreilh, Laurent; Dargent, Eric; Coquerel, Gérard
2016-08-04
In this article, we conduct a comprehensive molecular relaxation study of amorphous Quinidine above and below the glass-transition temperature (Tg) through broadband dielectric relaxation spectroscopy (BDS) experiments and theoretical density functional theory (DFT) calculations, as one major issue with the amorphous state of pharmaceuticals is life expectancy. These techniques enabled us to determine what kind of molecular motions are responsible, or not, for the devitrification of Quinidine. Parameters describing the complex molecular dynamics of amorphous Quinidine, such as Tg, the width of the α relaxation (βKWW), the temperature dependence of α-relaxation times (τα), the fragility index (m), and the apparent activation energy of secondary γ relaxation (Ea-γ), were characterized. Above Tg (> 60 °C), a medium degree of nonexponentiality (βKWW = 0.5) was evidenced. An intermediate value of the fragility index (m = 86) enabled us to consider Quinidine as a glass former of medium fragility. Below Tg (< 60 °C), one well-defined secondary γ relaxation, with an apparent activation energy of Ea-γ = 53.8 kJ/mol, was reported. From theoretical DFT calculations, we identified the most reactive part of Quinidine moieties through exploration of the potential energy surface. We evidenced that the clearly visible γ process has an intramolecular origin coming from the rotation of the CH(OH)C9H14N end group. An excess wing observed in amorphous Quinidine was found to be an unresolved Johari-Goldstein relaxation. These studies were supplemented by sub-Tg experimental evaluations of the life expectancy of amorphous Quinidine by X-ray powder diffraction and differential scanning calorimetry. We show that the difference between Tg and the onset temperature for crystallization, Tc, which is 30 K, is sufficiently large to avoid recrystallization of amorphous Quinidine during 16 months of storage under ambient conditions.
Amorphous surface layers in Ti-implanted Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.
1979-01-01
Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10/sup 16/ at/cm/sup 2/. The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10/sup 17/ Ti/cm/sup 2/ at 180more » keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10/sup 17/ Ti/cm/sup 2/ implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10/sup 17/ Ti/cm/sup 2/ produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %.« less
Supersonic plasma outflow in a plasmochemical method of amorphous silicon thin films formation
NASA Astrophysics Data System (ADS)
Baranova, L. V.; Strunin, V. I.; Khudaibergenov, G. Zh
2018-01-01
As a result of the numerical modeling of gasdynamic functions of a nozzle of Laval there obtained its parameters which form supersonic plasma jet outflow in a process of amorphous silicon thin films deposition. According to the nozzle design parameters, there obtained amorphous silicon thin films and studied uniformity of the thickness of the synthesized coatings. It was also performed that due to a low translational temperature at the nozzle exit the relaxation losses reduce significantly, “freezing” the vibrational degrees of freedom and the degrees of freedom of the transverse motion of the particles, and increasing the energy efficiency of the film formation process. All this is caused by the fact that on the surface of a growing film only the products of primary interaction of electrons with molecules of a silicon-containing gas in the plasmatron do interact.
Fukuhara, Mikio; Sugawara, Kazuyuki
2014-01-01
Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC.
2014-01-01
Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC. PMID:24959106
Simulation studies for surfaces and materials strength
NASA Technical Reports Server (NTRS)
Halicioglu, T.
1986-01-01
During this reporting period three investigations were carried out. The first area of research concerned the analysis of the structure-energy relationship in small clusters. This study is very closely related to the improvement of the potential energy functions which are suitable and simple enough to be used in atomistic simulation studies. Parameters obtained from ab initio calculations for dimers and trimers of Al were used to estimate energetics and global minimum energy structures of clusters continuing up to 15 Al atoms. The second research topic addressed modeling of the collision process for atoms impinging on surfaces. In this simulation study qualitative aspects of the O atom collision with a graphite surface were analyzed. Four different O/graphite systems were considered and the aftermath of the impact was analyzed. The final area of investigation was related to the simulation of thin amorphous Si films on crystalline Si substrates. Parameters obtained in an earlier study were used to model an exposed amorphous Si surface and an a-Si/c-Si interface. Structural details for various film thicknesses were investigated at an atomistic level.
Lai, Min; Zhang, Xiaodong; Fang, Fengzhou
2017-12-01
Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.
Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria
2014-11-14
Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.
Verraedt, Els; Braem, Annabel; Chaudhari, Amol; Thevissen, Karin; Adams, Erwin; Van Mellaert, Lieve; Cammue, Bruno P A; Duyck, Joke; Anné, Jozef; Vleugels, Jef; Martens, Johan A
2011-10-31
Amorphous microporous silica (AMS) serving as a reservoir for controlled release of a bioactive agent was applied in the open porosity of a titanium coating on a Ti-6Al-4V metal substrate. The pores of the AMS emptied by calcination were loaded with chlorhexidine diacetate (CHX) via incipient wetness impregnation with CHX solution, followed by solvent evaporation. Using this CHX loaded AMS system on titanium substrate sustained release of CHX into physiological medium was obtained over a 10 day-period. CHX released from the AMS coating was demonstrated to be effective in killing planktonic cultures of the human pathogens Candida albicans and Staphylococcus epidermidis. This surface modification of titanium bodies with AMS controlled release functionality for a bioactive compound potentially can be applied on dental and orthopaedic implants to abate implant-associated microbial infection. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tobochnik, Jan; Chapin, Phillip M.
1988-05-01
Monte Carlo simulations were performed for hard disks on the surface of an ordinary sphere and hard spheres on the surface of a four-dimensional hypersphere. Starting from the low density fluid the density was increased to obtain metastable amorphous states at densities higher than previously achieved. Above the freezing density the inverse pressure decreases linearly with density, reaching zero at packing fractions equal to 68% for hard spheres and 84% for hard disks. Using these new estimates for random closest packing and coefficients from the virial series we obtain an equation of state which fits all the data up to random closest packing. Usually, the radial distribution function showed the typical split second peak characteristic of amorphous solids and glasses. High density systems which lacked this split second peak and showed other sharp peaks were interpreted as signaling the onset of crystal nucleation.
Nuth, Joseph A.; Johnson, Natasha M.; Ferguson, Frank T.; Carayon, Alicia
2018-01-01
We report the ratio of the initial carbon available as CO that forms gas-phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface-mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume “filamentous” structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain–grain sticking during low-velocity collisions. PMID:29563766
NASA Technical Reports Server (NTRS)
Nuth, Joseph A.; Johnson, Natasha M.; Ferguson, Frank T.; Carayon, Alicia
2016-01-01
We report the ratio of the initial carbon available as CO that forms gas-phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface-mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99 for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume filamentous structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain-grain sticking during low-velocity collisions.
The Radial Distribution Function (RDF) of Amorphous Selenium Obtained through the Vacuum Evaporator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guda, Bardhyl; Dede, Marie
2010-01-21
After the amorphous selenium obtained through the vacuum evaporator, the relevant diffraction intensity is taken and its processing is made. Further on the interferential function is calculated and the radial density function is defined. For determining these functions are used two methods, which were compared with each other and finally are received results for amorphous selenium RDF.
An approach to tune the amplitude of surface ripple patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Tanuj; Kanjilal, D.; Kumar, Ashish
An approach is presented to tune the amplitude of ripple patterns using ion beam. By varying the depth location of amorphous/crystalline interface, ripple patterns of different amplitude with similar wavelength were grown on the surface of Si (100) using 50 keV Ar{sup +} beam irradiation. Atomic force microscopy study demonstrates the tuning of amplitude of ripples patterns for wide range. Rutherford backscattering channeling measurement was performed to measure the depth location of amorphous/crystalline interface. It is postulated that the ion beam stimulated solid flow inside the amorphous layer controls the wavelength, whereas mass rearrangement at amorphous/crystalline interface controls the amplitude.
Crystalline and amorphous cellulose in the secondary walls of Arabidopsis.
Ruel, Katia; Nishiyama, Yoshiharu; Joseleau, Jean-Paul
2012-09-01
In the cell walls of higher plants, cellulose chains are present in crystalline microfibril, with an amorphous part at the surface, or present as amorphous material. To assess the distribution and relative occurrence of the two forms of cellulose in the inflorescence stem of Arabidopsis, we used two carbohydrate-binding modules, CBM3a and CBM28, specific for crystalline and amorphous cellulose, respectively, with immunogold detection in TEM. The binding of the two CBMs displayed specific patterns suggesting that the synthesis of cellulose leads to variable nanodomains of cellulose structures according to cell type. In developing cell walls, only CBM3a bound significantly to the incipient primary walls, indicating that at the onset of its deposition cellulose is in a crystalline structure. As the secondary wall develops, the labeling with both CBMs becomes more intense. The variation of the labeling pattern by CBM3a between transverse and longitudinal sections appeared related to microfibril orientation and differed between fibers and vessels. Although the two CBMs do not allow the description of the complete status of cellulose microstructures, they revealed the dynamics of the deposition of crystalline and amorphous forms of cellulose during wall formation and between cell types adapting cellulose microstructures to the cell function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Zhang, Xiaodong; Li, Hongxin; Lv, Xutian; Xu, Jingcheng; Wang, Yuxin; He, Chi; Liu, Ning; Yang, Yiqiong; Wang, Yin
2018-06-21
A comprehensive study was carried out on amorphous metal-organic frameworks Mn-MIL-100 as efficient catalysts for CO oxidation. This study focused on explaining the crystalline-amorphous-crystalline transformations during thermolysis of Mn-MIL-100 and studying the structure changes during the CO oxidation reaction. A possible formation mechanism of amorphous Mn-MIL-100 was proposed. Amorphous Mn-MIL-100 obtained by calcination at 250 °C (a-Mn-250) showed a smaller specific surface area (4 m 2 g -1 ) but high catalytic activity. Furthermore, the structure of amorphous Mn-MIL-100 was labile during the reaction. When a-Mn-250 was treated with reaction atmosphere at high temperature (giving used-a-Mn-250-S), the amorphous catalysts transformed into Mn 2 O 3 . Meanwhile, the BET surface area (164 m 2 g -1 ) and catalytic performance both sharply increased. In addition, used-a-Mn-250-S catalyst transformed from Mn 2 O 3 into Mn 3 O 4 , and this resulted in a slight decrease of catalytic activity in the presence of 1 vol % water vapor in the feed stream. A schematic mechanism of the structure changes during the reaction process was proposed. The success of the synthesis relies on the increase in BET surface area by using CO as retreatment atmosphere, and the enhanced catalytic activity was attributed to the unique structure, a large quantity of surface active oxygen species, oxygen vacancies, and good low-temperature reduction behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interaction of D2 with H2O amorphous ice studied by temperature-programmed desorption experiments.
Amiaud, L; Fillion, J H; Baouche, S; Dulieu, F; Momeni, A; Lemaire, J L
2006-03-07
The gas-surface interaction of molecular hydrogen D2 with a thin film of porous amorphous solid water (ASW) grown at 10 K by slow vapor deposition has been studied by temperature-programmed-desorption (TPD) experiments. Molecular hydrogen diffuses rapidly into the porous network of the ice. The D2 desorption occurring between 10 and 30 K is considered here as a good probe of the effective surface of ASW interacting with the gas. The desorption kinetics have been systematically measured at various coverages. A careful analysis based on the Arrhenius plot method has provided the D2 binding energies as a function of the coverage. Asymmetric and broad distributions of binding energies were found, with a maximum population peaking at low energy. We propose a model for the desorption kinetics that assumes a complete thermal equilibrium of the molecules with the ice film. The sample is characterized by a distribution of adsorption sites that are filled according to a Fermi-Dirac statistic law. The TPD curves can be simulated and fitted to provide the parameters describing the distribution of the molecules as a function of their binding energy. This approach contributes to a correct description of the interaction of molecular hydrogen with the surface of possibly porous grain mantles in the interstellar medium.
Interaction of acetonitrile with the surfaces of amorphous and crystalline ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaff, J.E.; Roberts, J.T.
1999-10-12
The adsorption of acetonitrile (CH{sub 3}CN) on ultrathin films of ice under ultrahigh vacuum was investigated with temperature-programmed desorption ass spectrometry (TPD) and Fourier transform infrared reflection absorption spectroscopy (FTIRAS). Two types of film were studied, amorphous and crystalline. On the amorphous films, two sates of adsorbed acetonitrile were observed by TPD and FTIRAS. One of the states is attributed to acetonitrile that is hydrogen bonded to agree OH group at the ice surface; the other state is assigned to acetonitrile that is purely physiorbed. Evidence for the hydrogen-bonded state is two-fold. First, there is a large kinetic isotope effectmore » for desorption from H{sub 2}O-and D{sub 2}O-ice: the desorption temperatures from ice-h{sub 2} and ice-d{sub 2} are {approximately}161 and {approximately}176 K, respectively. Second, the C{triple{underscore}bond}N stretching frequency (2,265 cm{sup {minus}1}) is 16 cm{sup {minus}1} is greater than that of physisorbed acetonitrile, and it is roughly equal to that of acetonitrile which is hydrogen bonded to an OH group at the air-liquid water interface. On the crystalline films, there is no evidence for a hydrogen-bonded state in the TPD spectra. The FTIRAS spectra do show that some hydrogen-bonded acetonitrile is present but at a maximum coverage that is roughly one-sixth of that on the amorphous surface. The difference between the amorphous and crystalline surfaces cannot be attributed to a difference n surface areas. Rather, this work provides additional evidence that the surface chemical properties of amorphous ice are different from those of crystalline ice.« less
Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces.
Rydén, Louise; Omar, Omar; Johansson, Anna; Jimbo, Ryo; Palmquist, Anders; Thomsen, Peter
2017-01-01
It has been suggested that surface modification with a thin hydroxyapatite (HA) coating enhances the osseointegration of titanium implants. However, there is insufficient information about the biological processes involved in the HA-induced response. This study aimed to investigate the inflammatory cell response to titanium implants with either amorphous or crystalline thin HA. Human mononuclear cells were cultured on titanium discs with a machined surface or with a thin, 0.1 μm, amorphous or crystalline HA coating. Cells were cultured for 24 and 96 h, with and without lipopolysaccharide (LPS) stimulation. The surfaces were characterized with respect to chemistry, phase composition, wettability and topography. Biological analyses included the percentage of implant-adherent cells and the secretion of pro-inflammatory cytokine (TNF-α) and growth factors (BMP-2 and TGF-β1). Crystalline HA revealed a smooth surface, whereas the amorphous HA displayed a porous structure, at nano-scale, and a hydrophobic surface. Higher TNF-α secretion and a higher ratio of adherent cells were demonstrated for the amorphous HA compared with the crystalline HA. TGF-β1 secretion was detected in all groups, but without any difference. No BMP-2 secretion was detected in any of the groups. The addition of LPS resulted in a significant increase in TNF-α in all groups, whereas TGF-β1 was not affected. Taken together, the results show that thin HA coatings with similar micro-roughness but a different phase composition, nano-scale roughness and wettability are associated with different monocyte responses. In the absence of strong inflammatory stimuli, crystalline hydroxyapatite elicits a lower inflammatory response compared with amorphous hydroxyapatite.
NASA Astrophysics Data System (ADS)
Rodriguez-Contreras, Alejandra; Guadarrama Bello, Dainelys; Nanci, Antonio
2018-07-01
There has been much emphasis on the influence of crystallinity and wettability for modulating cell activity, particularly for bone biomaterials. In this context, we have generated titanium oxide layers with similar mesoporous topography and surface roughness but with amorphous or crystalline oxide layers and differential wettability. We then investigated their influence on the behavior of MC3T3 osteoblastic and bacterial cells. There was no difference in cell adhesion, spreading and growth on amorphous and crystalline surfaces. The number of focal adhesions was similar, however, cells on the amorphous surface exhibited a higher frequency of mature adhesions. The crystallinity of the surface layers also had no bearing on bacterial adhesion. While it cannot be excluded that surface crystallinity, roughness and wettability contribute to some degree to determining cell behavior, our data suggest that physical characteristics of surfaces represent the major determinant.
Cheow, Wean Sin; Kiew, Tie Yi; Yang, Yue; Hadinoto, Kunn
2014-05-05
Amorphous drug nanoparticles have recently emerged as a promising bioavailability enhancement strategy of poorly soluble drugs attributed to the high supersaturation solubility generated by the amorphous state and fast dissolution afforded by the nanoparticles. Herein we examine the effects of two amorphization strategies in the nanoscale, i.e., (1) molecular mobility restrictions and (2) high energy surface occupation, both by polymer excipient stabilizers, on the (i) morphology, (ii) colloidal stability, (iii) drug loading, (iv) amorphous state stability after three-month storage, and (v) in vitro supersaturation profiles, using itraconazole (ITZ) as the model drug. Drug-polyelectrolyte complexation is employed in the first strategy to prepare amorphous ITZ nanoparticles using dextran sulfate as the polyelectrolyte (ITZ nanoplex), while the second strategy employs pH-shift precipitation using hydroxypropylmethylcellulose as the surface stabilizer (nano-ITZ), with both strategies resulting in >90% ITZ utilization. Both amorphous ITZ nanoparticles share similar morphology (∼300 nm spheres) with the ITZ nanoplex exhibiting better colloidal stability, albeit at lower ITZ loading (65% versus 94%), due to the larger stabilizer amount used. The ITZ nanoplex also exhibits superior amorphous state stability, attributed to the ITZ molecular mobility restriction by electrostatic complexation with dextran sulfate. The higher stability, however, is obtained at the expense of slower supersaturation generation, which is maintained over a prolonged period, compared to the nano-ITZ. The present results signify the importance of selecting the optimal amorphization strategy, in addition to formulating the excipient stabilizers, to produce amorphous drug nanoparticles having the desired characteristics.
He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong
2016-08-09
The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.
In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes
NASA Astrophysics Data System (ADS)
Bhowmick, Tridib Kumar; Yoon, Diana; Patel, Minal; Fisher, John; Ehrman, Sheryl
2010-10-01
In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m2/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.
Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen
2015-12-15
Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.
NASA Astrophysics Data System (ADS)
Yang, Hongsheng; Kim, Junghwan; Yamamoto, Koji; Xing, Xing; Hosono, Hideo
2018-03-01
We report a unique amorphous oxide semiconductor Znsbnd Sisbnd O (a-ZSO) which has a small work function of 3.4 eV for as-deposited films. The surface modification of a-ZSO thin films by plasma treatments is examined to apply it to the electron injection/transport layer of organic devices. It turns out that the energy alignment and exciton dissociation efficiency at a-ZSO/organic semiconductor interface significantly changes by choosing different gas (oxygen or argon) for plasma treatments (after a-ZSO was exposed to atmospheric environment for 5 days). In situ ultraviolet photoelectron spectroscopy (UPS) measurement reveals that the work function of a-ZSO is increased to 4.0 eV after an O2-plasma treatment, while the work function of 3.5 eV is recovered after an Ar-plasma treatment which indicates this treatment is effective for surface cleaning. To study the effects of surface treatments to device performance, OLEDs and hybrid polymer solar cells with O2-plasma or Ar-plasma treated a-ZSO are compared. Effects of these surface treatments on performance of inverted OLEDs and hybrid polymer solar cells are examined. Ar-plasma treated a-ZSO works well as the electron injection layer in inverted OLEDs (Alq3/a-ZSO) because the injection barrier is small (∼ 0.1 eV). On the other hands, O2-plasma treated a-ZSO is more suitable for application to hybrid solar cells which is benefiting from higher exciton dissociation efficiency at polymer (P3HT)/ZSO interface.
A direct evidence of vibrationally delocalized response at ice surface.
Ishiyama, Tatsuya; Morita, Akihiro
2014-11-14
Surface-specific vibrational spectroscopic responses at isotope diluted ice and amorphous ice are investigated by molecular dynamics (MD) simulations combined with quantum mechanics/molecular mechanics calculations. The intense response specific to the ordinary crystal ice surface is predicted to be significantly suppressed in the isotopically diluted and amorphous ices, demonstrating the vibrational delocalization at the ordinary ice surface. The collective vibration at the ice surface is also analyzed with varying temperature by the MD simulation.
Spatial averaging for small molecule diffusion in condensed phase environments
NASA Astrophysics Data System (ADS)
Plattner, Nuria; Doll, J. D.; Meuwly, Markus
2010-07-01
Spatial averaging is a new approach for sampling rare-event problems. The approach modifies the importance function which improves the sampling efficiency while keeping a defined relation to the original statistical distribution. In this work, spatial averaging is applied to multidimensional systems for typical problems arising in physical chemistry. They include (I) a CO molecule diffusing on an amorphous ice surface, (II) a hydrogen molecule probing favorable positions in amorphous ice, and (III) CO migration in myoglobin. The systems encompass a wide range of energy barriers and for all of them spatial averaging is found to outperform conventional Metropolis Monte Carlo. It is also found that optimal simulation parameters are surprisingly similar for the different systems studied, in particular, the radius of the point cloud over which the potential energy function is averaged. For H2 diffusing in amorphous ice it is found that facile migration is possible which is in agreement with previous suggestions from experiment. The free energy barriers involved are typically lower than 1 kcal/mol. Spatial averaging simulations for CO in myoglobin are able to locate all currently characterized metastable states. Overall, it is found that spatial averaging considerably improves the sampling of configurational space.
NASA Astrophysics Data System (ADS)
Serra, R.; Oliveira, V.; Oliveira, J. C.; Kubart, T.; Vilar, R.; Cavaleiro, A.
2015-03-01
Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm2. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different circumstances. Processing of the amorphous films at low fluence (72 μJ) results in LIPSS formation only on localized spots on the film surface. LIPSS formation was also observed on the top of the undulations formed after laser processing with 78 μJ of the amorphous film deposited at 800 °C. Finally, large-area homogeneous LIPSS coverage of the boron carbide crystalline films surface was achieved within a large range of laser fluences although holes are also formed at higher laser fluences.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, K.H.
1998-06-30
A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, Kurt H.
1998-01-01
A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.
Spectroscopic identification of binary and ternary surface complexes of Np(V) on gibbsite.
Gückel, Katharina; Rossberg, André; Müller, Katharina; Brendler, Vinzenz; Bernhard, Gert; Foerstendorf, Harald
2013-12-17
For the first time, detailed molecular information on the Np(V) sorption species on amorphous Al(OH)3 and crystalline gibbsite was obtained by in situ time-resolved Attenuated Total Reflection Fourier-Transform Infrared (ATR FT-IR) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The results consistently demonstrate the formation of mononuclear inner sphere complexes of the NpO2(+) ion irrespective of the prevailing atmospheric condition. The impact of the presence of atmospheric equivalent added carbonate on the speciation in solution and on the surfaces becomes evident from vibrational data. While the 1:1 aqueous carbonato species (NpO2CO3(-)) was found to become predominant in the circumneutral pH range, it is most likely that this species is sorbed onto the gibbsite surface as a ternary inner sphere surface complex where the NpO2(+) moiety is directly coordinated to the functional groups of the gibbsite's surface. These findings are corroborated by results obtained from EXAFS spectroscopy providing further evidence for a bidentate coordination of the Np(V) ion on amorphous Al(OH)3. The identification of the Np(V) surface species on gibbsite constitutes a basic finding for a comprehensive description of the dissemination of neptunium in groundwater systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caro, Miguel A., E-mail: mcaroba@gmail.com; Department of Applied Physics, COMP Centre of Excellence in Computational Nanoscience, Aalto University, Espoo; Määttä, Jukka
2015-01-21
In this paper, we obtain the energy band positions of amorphous carbon (a–C) surfaces in vacuum and in aqueous environment. The calculations are performed using a combination of (i) classical molecular dynamics (MD), (ii) Kohn-Sham density functional theory with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, and (iii) the screened-exchange hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE). PBE allows an accurate generation of a-C and the evaluation of the local electrostatic potential in the a-C/water system, HSE yields an improved description of energetic positions which is critical in this case, and classical MD enables a computationally affordable description of water. Ourmore » explicit calculation shows that, both in vacuo and in aqueous environment, the a-C electronic states available in the region comprised between the H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O levels of water correspond to both occupied and unoccupied states within the a-C pseudogap region. These are localized states associated to sp{sup 2} sites in a-C. The band realignment induces a shift of approximately 300 meV of the a-C energy band positions with respect to the redox levels of water.« less
Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko
2016-07-11
In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. Copyright © 2016 Elsevier B.V. All rights reserved.
Amorphous Phases on the Surface of Mars
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.
2014-01-01
Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made up of mixed phases (e.g., palagonite) and synthetic single phases to determine their short-range order structures and calculate their XRD patterns to use in models of CheMin data. Finally, to address the timing of the alteration, we need to study rocks on the martian surface of different ages that may contain glass (volcanic or impact) with MSL and future rovers to better understand how glass alters on the martian surface, if that alteration mechanism is universal, and if alteration spans across long periods of time or if there is a time past which unaltered glass remains.
Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng
2015-01-01
Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation. PMID:25994377
Puri, Vibha; Dantuluri, Ajay K; Bansal, Arvind K
2012-01-01
Amorphous solid dispersions (ASDs) may entail tailor-made dosage form design to exploit their solubility advantage. Surface phenomena dominated the performance of amorphous celecoxib solid dispersion (ACSD) comprising of amorphous celecoxib (A-CLB), polyvinylpyrrolidone, and meglumine (7:2:1, w/w). ACSD cohesive interfacial interactions hindered its capsule dosage form dissolution (Puri V, Dhantuluri AK, Bansal AK 2011. J Pharm Sci 100:2460-2468). Furthermore, ACSD underwent significant devitrification under environmental stress. In the present study, enthalpy relaxation studies revealed its free surface to contribute to molecular mobility. Based on all these observations, barrier coated amorphous CLB solid dispersion layered particles (ADLP) were developed by Wurster process, using microcrystalline cellulose as substrate and polyvinyl alcohol (PVA), inulin, and polyvinyl acetate phthalate (PVAP) as coating excipients. Capsule formulations of barrier coated-ADLP could achieve rapid dispersibility and high drug release. Evaluation under varying temperature and RH conditions suggested the crystallization inhibitory efficiency in order of inulin < PVA ≈ PVAP; however, under only temperature treatment, crystallization inhibition increased with increase in T(g) of the coating material. Simulated studies using DSC evidenced drug-polymer mixing at the interface as a potential mechanism for surface stabilization. In conclusion, surface modification yielded a fast dispersing robust high drug load ASD based dosage form. Copyright © 2011 Wiley-Liss, Inc.
Effects of the addition of Co, Ni or Cr on the decolorization properties of Fe-Si-B amorphous alloys
NASA Astrophysics Data System (ADS)
Zhang, Changqin; Zhu, Zhengwang; Zhang, Haifeng
2017-11-01
Fe-based amorphous alloys show great potential in degrading azo dyes and other organic pollutants, and are widely investigated as a kind of environmental-friendly materials for wastewater remediation. In this paper, the effects of Co, Ni or Cr addition on the decolorization properties of Fe-Si-B amorphous alloys were studied, and the mechanism of their different effects was analyzed. Co addition could lower the activation energy of Fe-Si-B amorphous alloys in decolorizing azo dyes, and had no weakening effect on the decolorization capability of Fe-Si-B amorphous alloys. Ni addition led to partial crystallization of Fe-Si-B amorphous alloys, and the decolorization mechanism at low temperatures changed from chemical degradation to physical adsorption. Cr addition could enhance the corrosion resistance of Fe-Si-B amorphous alloys, but the amorphous alloys completely lost the decolorization capability no matter at lower or higher temperatures. The results of X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) indicated that the addition of Co, Ni or Cr could generate different surface structures that had significant influences on the decolorization process. Our work demonstrated that the effiecient decolorization of azo dyes by Fe-based alloys could be realized only when amorphous nature and incompact surface structure were simultaneously achieved for the alloys.
How does spallation microdamage nucleate in bulk amorphous alloys under shock loading?
NASA Astrophysics Data System (ADS)
Huang, X.; Ling, Z.; Zhang, H. S.; Ma, J.; Dai, L. H.
2011-11-01
Specially designed plate-impact experiments have been conducted on a Zr-based amorphous alloy using a single-stage light gas gun. To understand the microdamage nucleation process in the material, the samples are subjected to dynamic tensile loadings of identical amplitude (˜ 3.18 GPa) but with different durations (83-201 ns). A cellular pattern with an equiaxed shape is observed on the spallation surface, which shows that spallation in the tested amorphous alloy is a typical ductile fracture and that microvoids have been nucleated during the process. Based on the observed fracture morphologies of the spallation surface and free-volume theory, we propose a microvoid nucleation model of bulk amorphous alloys. It is found that nucleation of microvoids at the early stage of spallation in amorphous alloys results from diffusion and coalescence of free volume, and that high mean tensile stress plays a dominant role in microvoid nucleation.
Huang, J; Loeffler, M; Muehle, U; Moeller, W; Mulders, J J L; Kwakman, L F Tz; Van Dorp, W F; Zschech, E
2018-01-01
A Ga focused ion beam (FIB) is often used in transmission electron microscopy (TEM) analysis sample preparation. In case of a crystalline Si sample, an amorphous near-surface layer is formed by the FIB process. In order to optimize the FIB recipe by minimizing the amorphization, it is important to predict the amorphous layer thickness from simulation. Molecular Dynamics (MD) simulation has been used to describe the amorphization, however, it is limited by computational power for a realistic FIB process simulation. On the other hand, Binary Collision Approximation (BCA) simulation is able and has been used to simulate ion-solid interaction process at a realistic scale. In this study, a Point Defect Density approach is introduced to a dynamic BCA simulation, considering dynamic ion-solid interactions. We used this method to predict the c-Si amorphization caused by FIB milling on Si. To validate the method, dedicated TEM studies are performed. It shows that the amorphous layer thickness predicted by the numerical simulation is consistent with the experimental data. In summary, the thickness of the near-surface Si amorphization layer caused by FIB milling can be well predicted using the Point Defect Density approach within the dynamic BCA model. Copyright © 2017 Elsevier B.V. All rights reserved.
Cline, James P; Von Dreele, Robert B; Winburn, Ryan; Stephens, Peter W; Filliben, James J
2011-07-01
A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum (α-Al(2)O(3)) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Under the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% ± 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.
NASA Astrophysics Data System (ADS)
Sullivan, J. P.
2002-03-01
Pure carbon films can exhibit surprising complexity in structure and properties. Amorphous diamond (tetrahedrally-coordinated amorphous carbon) is an amorphous quasi-two phase mixture of four-fold and three-fold coordinated carbon which is produced by pulsed excimer laser deposition, an energetic deposition process that leads to film growth by sub-surface carbon implantation and the creation of local metastability in carbon bonding. Modest annealing, < 900K, produces significant irreversible strain relaxation which is thermally activated with activation energies ranging from < 1 eV to > 2 eV. During annealing the material remains amorphous, but there is a detectable increase in medium-range order as measured by fluctuation microscopy. The strain relaxation permits the residual strain in the films to be reduced to < 0.00001, which is a critical requirement for the fabrication of microelectromechanical systems (MEMS). Amorphous diamond MEMS have been fabricated in order to evaluate the mechanical properties of this material under tension and flexure, and this has enabled the determination of elastic modulus (800 GPa), tensile strength (8 GPa), and fracture toughness (8 MPa m^1/2). In addition, amorphous diamond MEMS structures have been fabricated to measure internal dissipation and surface adhesion. The high hardness and strength and hydrophobic nature of the surface makes this material particularly suitable for the fabrication of high wear resistance and low stiction MEMS. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the U.S. Dept. of Energy under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela; Oliveira-Silva, Rui P.; Prazeres, D. M. F.; Ribeiro, Ana P. C.; Alegria, Elisabete C. B. A.
2018-02-01
Localized surface plasmons (LSP) can be excited in metal nanoparticles (NP) by UV, visible or NIR light and are described as coherent oscillation of conduction electrons. Taking advantage of the tunable optical properties of NPs, we propose the realization of a plasmonic structure, based on the LSP interaction of NP with an embedding matrix of amorphous silicon. This study is directed to define the characteristics of NP and substrate necessary to the development of a LSP proteomics sensor that, once provided immobilized antibodies on its surface, will screen the concentration of selected antigens through the determination of LSPR spectra and peaks of light absorption. Metals of interest for NP composition are: Aluminium and Gold. Recent advances in nanoparticle production techniques allow almost full control over shapes and size, permitting full control over their optical and plasmonic properties and, above all, over their responsive spectra. Analytical solution is only possible for simple NP geometries, therefore our analysis, is realized recurring to computer simulation using the Discrete Dipole Approximation method (DDA). In this work we use the free software DDSCAT to study the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, shape, aspect-ratio and metal type. Experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.
Structure-property relationships of a biological mesocrystal in the adult sea urchin spine
Seto, Jong; Ma, Yurong; Davis, Sean A.; Meldrum, Fiona; Gourrier, Aurelien; Kim, Yi-Yeoun; Schilde, Uwe; Sztucki, Michael; Burghammer, Manfred; Maltsev, Sergey; Jäger, Christian; Cölfen, Helmut
2012-01-01
Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature’s demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials. PMID:22343283
NASA Astrophysics Data System (ADS)
Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman
2018-04-01
Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.
Pressure-induced amorphization of YVO₄:Eu³⁺ nanoboxes.
Ruiz-Fuertes, J; Gomis, O; León-Luis, S F; Schrodt, N; Manjón, F J; Ray, S; Santamaría-Pérez, D; Sans, J A; Ortiz, H M; Errandonea, D; Ferrer-Roca, C; Segura, A; Martínez-García, D; Lavín, V; Rodríguez-Mendoza, U R; Muñoz, A
2016-01-15
A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu(3+) nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu(3+) photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two (5)D0-->(7)F0 photoluminescence peaks confirms the existence of two local environments for Eu(3+), at least for the low-pressure phase. One environment is the expected for substituting Y(3+) and the other is likely a disordered environment possibly found at the surface of the nanoboxes.
Amorphous to amorphous transition in particle rafts
NASA Astrophysics Data System (ADS)
Varshney, Atul; Sane, A.; Ghosh, Shankar; Bhattacharya, S.
2012-09-01
Space-filling assemblies of athermal hydrophobic particles floating at an air-water interface, called particle rafts, are shown to undergo an unusual phase transition between two amorphous states, i.e., a low density “less-rigid” state and a high density “more-rigid” state, as a function of particulate number density (Φ). The former is shown to be a capillary bridged solid and the latter is shown to be a frictionally coupled one. Simultaneous studies involving direct imaging as well as measuring its mechanical response to longitudinal and shear stresses show that the transition is marked by a subtle structural anomaly and a weakening of the shear response. The structural anomaly is identified from the variation of the mean coordination number, mean area of the Voronoi cells, and spatial profile of the displacement field with Φ. The weakened shear response is related to local plastic instabilities caused by the depinning of the contact line of the underlying fluid on the rough surfaces of the particles.
Structure-property relationships of a biological mesocrystal in the adult sea urchin spine.
Seto, Jong; Ma, Yurong; Davis, Sean A; Meldrum, Fiona; Gourrier, Aurelien; Kim, Yi-Yeoun; Schilde, Uwe; Sztucki, Michael; Burghammer, Manfred; Maltsev, Sergey; Jäger, Christian; Cölfen, Helmut
2012-03-06
Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature's demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials.
Milowska, Katarzyna; Rybczyńska, Aneta; Mosiolek, Joanna; Durdyn, Joanna; Szewczyk, Eligia M; Katir, Nadia; Brahmi, Younes; Majoral, Jean-Pierre; Bousmina, Mosto; Bryszewska, Maria; El Kadib, Abdelkrim
2015-09-16
Hitherto, the field of nanomedicine has been overwhelmingly dominated by the use of mesoporous organosilicas compared to their metal oxide congeners. Despite their remarkable reactivity, titanium oxide-based materials have been seldom evaluated and little knowledge has been gained with respect to their "structure-biological activity" relationship. Herein, a fruitful association of phosphorus dendrimers (both "ammonium-terminated" and "phosphonate-terminated") and titanium dioxide has been performed by means of the sol-gel process, resulting in mesoporous dendrimer-coated nanosized crystalline titanium dioxide. A similar organo-coating has been reproduced using single branch-mimicking dendrimers that allow isolation of an amorphous titanium dioxide. The impact of these materials on red blood cells was evaluated by studying cell hemolysis. Next, their cytotoxicity toward B14 Chinese fibroblasts and their antimicrobial activity were also investigated. Based on their variants (cationic versus anionic terminal groups and amorphous versus crystalline titanium dioxide phase), better understanding of the role of the surface-interface composition and the nature of the framework has been gained. No noticeable discrimination was observed for amorphous and crystalline material. In contrast, hemolysis and cytotoxicity were found to be sensitive to the nature of the interface composition, with the ammonium-terminated dendrimer-coated titanium dioxide being the most hemolytic and cytotoxic material. This surface-functionalization opens the door for creating a new synergistic machineries mechanism at the cellular level and seems promising for tailoring the biological activity of nanosized organic-inorganic hybrid materials.
Thin-film limit formalism applied to surface defect absorption.
Holovský, Jakub; Ballif, Christophe
2014-12-15
The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.
Surface Temperature Dependence of Hydrogen Ortho-Para Conversion on Amorphous Solid Water.
Ueta, Hirokazu; Watanabe, Naoki; Hama, Tetsuya; Kouchi, Akira
2016-06-24
The surface temperature dependence of the ortho-to-para conversion of H_{2} on amorphous solid water is first reported. A combination of photostimulated desorption and resonance-enhanced multiphoton ionization techniques allowed us to sensitively probe the conversion on the surface of amorphous solid water at temperatures of 9.2-16 K. Within a narrow temperature window of 8 K, the conversion time steeply varied from ∼4.1×10^{3} to ∼6.4×10^{2} s. The observed temperature dependence is discussed in the context of previously suggested models and the energy dissipation process. The two-phonon process most likely dominates the conversion rate at low temperatures.
NASA Astrophysics Data System (ADS)
Chemtob, Steven M.; Rossman, George R.
2014-10-01
Young basalts from Kīlauea Volcano, Hawai'i, frequently feature opaque surface coatings, 1-80 μm thick, composed of amorphous silica and Fe-Ti oxides. These coatings are the product of interaction of the basaltic surface with volcanically-derived acidic fluids. Previous workers have identified these coatings in a variety of contexts on Hawai'i, but the timescales of coating development, coating growth rates, and factors controlling lateral coating heterogeneity were largely unconstrained. We sampled and analyzed young lava flows (of varying ages, from hours to ~ 40 years) along Kīlauea's southwest and east rift zones to characterize variation in silica coating properties across the landscape. Coating thickness varies as a function of flow age, flow surface type, and proximity to acid sources like local fissure vents and regional plumes emitted from Kīlauea Caldera and Pu'u Ō'ō. Silica coatings that form in immediate proximity to acid sources are more chemically pure than those forming in higher pH environments, which contain significant Al and Fe. Incipient siliceous alteration was observed on basalt surfaces as young as 8 days old, but periods of a year or more are required to develop contiguous coatings with obvious opaque coloration. Inferred coating growth rates vary with environmental conditions but were typically 1-5 μm/year. Coatings form preferentially on flow surfaces with glassy outer layers, such as spatter ramparts, volcanic bombs, and dense pahoehoe breakouts, due to glass strain weakening during cooling. Microtextural evidence suggests that the silica coatings form both by in situ dissolution-reprecipitation and by deposition of silica mobilized in solution. Thin films of water, acidified by contact with volcanic vapors, dissolved near-surface basalt, then precipitated amorphous silica in place, mobilizing more soluble cations. Additional silica was transported to and deposited on the surface by silica-bearing altering fluids derived from the basalt interior.
Thermochemistry of amorphous and crystalline zirconium and hafnium silicates.
NASA Astrophysics Data System (ADS)
Ushakov, S.; Brown, C. E.; Navrotsky, Alexandra; Boatner, L. A.; Demkov, A. A.; Wang, C.; Nguyen, B.-Y.
2003-03-01
Calorimetric investigation of amorphous and crystalline zirconium and hafnium silicates was performed as part of a research program on thermochemistry of alternative gate dielectrics. Amorphous hafnium and zirconium silicates with varying SiO2 content were synthesized by a sol-gel process. Crystalline zirconium and hafnium silicates (zircon and hafnon) were synthesized by solid state reaction at 1450 °C from amorphous gels and grown as single crystals from flux. High temperature oxide melt solution calorimetry in lead borate (2PbO.B2O3) solvent at 800 oC was used to measure drop solution enthalpies for amorphous and crystalline zirconium and hafnium silicates and corresponding oxides. Applying appropriate thermochemical cycles, formation enthalpy of crystalline ZrSiO4 (zircon) from binary oxides (baddeleite and quartz) at 298 K was calculated as -23 +/-2 kJ/mol and enthalpy difference between amorphous and crystalline zirconium silicate (vitrification enthalpy) was found to be 61 +/-3 kJ/mol. Crystallization onset temperatures of amorphous zirconium and hafnium silicates, as measured by differential scanning calorimetry (DSC), increased with silica content. The resulting crystalline phases, as characterized by X-ray diffraction (XRD), were tetragonal HfO2 and ZrO2. Critical crystallite size for tetragonal to monoclinic transformation of HfO2 in the gel was estimated as 6 +/-2 nm from XRD data Crystallization enthalpies per mole of hafnia and zirconia in gels decrease slightly together with crystallite size with increasing silica content, for example from -22 to -15 +/-1 kJ per mol of HfO2 crystallized at 740 and 1006 °C from silicates with 10 and 70 mol Applications of thermal analyses and solution calorimetry techniques together with first-principles density functional calculations to estimate interface and surface energies are discussed.
Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan
2018-01-01
As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling. PMID:29642379
Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan; He, Weifeng
2018-04-06
As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.
NASA Astrophysics Data System (ADS)
Woods, J.; O'Handley, R. C.
1990-05-01
The polarization of low-energy secondary electrons emitted from iron- and cobalt-based amorphous melt-spun ribbons is measured as a function of the applied in-plane magnetic field yielding surface hysteresis loops. The polarization is measured in real time up to a frequency of 10 kHz and hysteresis loops are displayed on an oscilloscope. The bulk losses are measured on the same samples in the same configuration with a secondary winding. The area of the loop (energy loss/cycle) is measured as a function of applied magnetic field switching rate for both the surface polarization and bulk magnetization measurements. The surface loss per cycle increases linearly with the switching rate and the bulk loss per cycle increases much more slowly with switching rate. This is the first discrimination of bulk and surface losses we are aware of.
Fluxing purification and its effect on magnetic properties of high-Bs FeBPSiC amorphous alloy
NASA Astrophysics Data System (ADS)
Pang, Jing; Wang, Anding; Yue, Shiqiang; Kong, Fengyu; Qiu, Keqiang; Chang, Chuntao; Wang, Xinmin; Liu, Chain-Tsuan
2017-07-01
A high-Bs amorphous alloy with the base composition Fe83B11P3Si2C1 was used to study the effects of fluxing purification on amorphous forming ability and magnetic properties of the alloy prepared with raw materials in industrialization. By using fluxing purification, the surface crystallization was suppressed and fully amorphous Fe83B11P3Si2C1 ribbons with a maximum thickness of 48 μm were successfully achieved by using an industrial process and materials. The amorphous ribbons made with industrial-purified alloys exhibit excellent magnetic properties, containing high-Bs of 1.65 T, low Hc of 2.0 A/m, and high μe of 9.7 × 103 at 1 kHz. Impurities in the melting alloys exist in three forms and have different effluences on magnetic properties. The surface crystallization was triggered by the impurities which exist as high melting point inclusions serving as nuclei. Thus, fluxing purification is a feasible way for industrialization of high-Bs FeBPSiC amorphous alloys.
Photochromic amorphous molecular materials and their applications
NASA Astrophysics Data System (ADS)
Shirota, Yasuhiko; Utsumi, Hisayuki; Ujike, Toshiki; Yoshikawa, Satoru; Moriwaki, Kazuyuki; Nagahama, Daisuke; Nakano, Hideyuki
2003-01-01
Two novel classes of photochromic amorphous molecular materials based on azobenzene and dithienylethene were designed and synthesized. They were found to readily form amorphous glasses with well-defined glass-transition temperatures when the melt samples were cooled on standing in air and to exhibit photochromism in their amorphous films as well as in solution. Photochromic properties of these materials are discussed in relation to their molecular structures. Surface relief grating was formed on the amorphous films of azobenzene-based photochromic amorphous molecular materials by irradiation with two coherent Ar + laser beams. Dual image was formed at the same location of the films of dithienylethene-based photochromic amorphous molecular materials by irradiation with two linearly polarized light beams perpendicular to each other.
Zhang, Si-Wei; Yu, Lian; Huang, Jun; Hussain, Munir A; Derdour, Lotfi; Qian, Feng; de Villiers, Melgardt M
2014-12-01
Amorphous drugs are used to improve the solubility, dissolution, and bioavailability of drugs. However, these metastable forms of drugs can transform into more stable, less soluble, crystalline counterparts. This study reports a method for evaluating the effect of commonly used excipients on the surface crystallization of amorphous drugs and its application to two model amorphous compounds, nifedipine and indomethacin. In this method, amorphous samples of the drugs were covered by excipients and stored in controlled environments. An inverted light microscope was used to measure in real time the rates of surface crystal nucleation and growth. For nifedipine, vacuum-dried microcrystalline cellulose and lactose monohydrate increased the nucleation rate of the β polymorph from two to five times when samples were stored in a desiccator, while D-mannitol and magnesium stearate increased the nucleation rate 50 times. At 50% relative humidity, the nucleation rates were further increased, suggesting that moisture played an important role in the crystallization caused by the excipients. The effect of excipients on the crystal growth rate was not significant, suggesting that contact with excipients influences the physical stability of amorphous nifedipine mainly through the effect on crystal nucleation. This effect seems to be drug specific because for two polymorphs of indomethacin, no significant change in the nucleation rate was observed under the excipients.
NASA Astrophysics Data System (ADS)
Peng, W. Q.; Li, Y.; Wang, Z.; Li, S. Y.
2018-01-01
Hydrodynamic effect polishing (HEP), in which the material removal relies on the chemisorption between nanoparticles and the workpiece surface in elastic mode, can realize automatic level smooth surface without surface/subsurface damage. The machinability of different types of optical material (such as monocrystalline silicon and crystalline quartz, amorphous silicate glass, Zerodur and so on) were investigated experimentally. The workpiece surfaces before and after being polished by HEP was observed by atomic force microscopy. The experimental results show the surface roughness of monocrystalline silicon and quartz, amorphous silicate glass have decreased from Rms 0.737nm to Rms 0.175nm, Rms 0.490nm to Rms 0.187nm, Rms 0.469nm to Rms 0.157nm respectively, and meanwhile all the defects and bumpy structures have been removed clearly. However the surface roughness has increased from Rms 0.213nm to Rms 0.321nm with the obvious increment of micro unevenness. By comparison, we can conclude that excellent performance is shown when HEP is applied on the optical material structure with a single monocrystalline or amorphous component. However the ultrasmooth surface cannot be obtained when HEP was applied on the combinational materials such as Zerodur glass. The micro unevenness increases gradually along with polishing process due to the different material removal of the monocrystalline and amorphous component.
NASA Astrophysics Data System (ADS)
Qin, Ting; Liao, Congwei; Huang, Shengxiang; Yu, Tianbao; Deng, Lianwen
2018-01-01
An analytical drain current model based on the surface potential is proposed for amorphous indium gallium zinc oxide (a-InGaZnO) thin-film transistors (TFTs) with a synchronized symmetric dual-gate (DG) structure. Solving the electric field, surface potential (φS), and central potential (φ0) of the InGaZnO film using the Poisson equation with the Gaussian method and Lambert function is demonstrated in detail. The compact analytical model of current-voltage behavior, which consists of drift and diffusion components, is investigated by regional integration, and voltage-dependent effective mobility is taken into account. Comparison results demonstrate that the calculation results obtained using the derived models match well with the simulation results obtained using a technology computer-aided design (TCAD) tool. Furthermore, the proposed model is incorporated into SPICE simulations using Verilog-A to verify the feasibility of using DG InGaZnO TFTs for high-performance circuit designs.
NASA Astrophysics Data System (ADS)
Kawabata, Hiroshi; Iyama, Tetsuji; Tachikawa, Hiroto
2008-01-01
Hybrid density functional theory (DFT) calculations have been carried out for the lithium adsorbed on a fluorinated graphene surface (F-graphene, C96F24) to elucidate the effect of fluorination of amorphous carbon on the diffusion mechanism of lithium ion. Also, direct molecular orbital-molecular dynamics (MO-MD) calculation [H. Tachikawa and A. Shimizu: J. Phys. Chem. B 109 (2005) 13255] was applied to diffusion processes of the Li+ ion on F-graphene. The B3LYP/LANL2MB calculation showed that the Li+ ion is most stabilized around central position of F-graphene, and the energy was gradually instabilized for the edge region. The direct MO-MD calculations showed that the Li+ ion diffuses on the bulk surface region of F-graphite at 300 K. The nature of the interaction between Li+ and F-graphene was discussed on the basis of theoretical results.
Tu, Zhiming; Yang, Gongzheng; Song, Huawei; Wang, Chengxin
2017-01-11
Due to its high theoretical capacity (978 mA h g -1 ), natural abundance, environmental friendliness, and low cost, zinc oxide is regarded as one of the most promising anode materials for lithium-ion batteries (LIBs). A lot of research has been done in the past few years on this topic. However, hardly any research on amorphous ZnO for LIB anodes has been reported despite the fact that the amorphous type could have superior electrochemical performance due to its isotropic nature, abundant active sites, better buffer effect, and different electrochemical reaction details. In this work, we develop a simple route to prepare an amorphous ZnO quantum dot (QDs)/mesoporous carbon bubble composite. The composite consists of two parts: mesoporous carbon bubbles as a flexible skeleton and monodisperse amorphous zinc oxide QDs (smaller than 3 nm) encapsulated in an amorphous carbon matrix as a continuous coating tightly anchored on the surface of mesoporous carbon bubbles. With the benefits of abundant active sites, amorphous nature, high specific surface area, buffer effect, hierarchical pores, stable interconnected conductive network, and multidimensional electron transport pathways, the amorphous ZnO QD/mesoporous carbon bubble composite delivers a high reversible capacity of nearly 930 mA h g -1 (at current density of 100 mA g -1 ) with almost 90% retention for 85 cycles and possesses a good rate performance. This work opens the possibility to fabricate high-performance electrode materials for LIBs, especially for amorphous metal oxide-based materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cline, J. P.; Von Dreele, R. B.; Winburn, R.
2011-07-01
A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum ({alpha}-Al{sub 2}O{sub 3}) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Undermore » the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% {+-} 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Cline; R Von Dreele; R Winburn
2011-12-31
A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum ({alpha}-Al{sub 2}O{sub 3}) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Undermore » the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% {+-} 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.« less
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1984-01-01
Friction and wear tests were conducted with 3.2- and 6.4-millimeter-diameter aluminum oxide spheres sliding, in reciprocating motion, on a Fe67Co18B14Si1 metallic foil. Crystallites with a size range of 10 to 150 nanometers were produced on the wear surface of the amorphous alloy. A strong interaction between transition metals and metalloids such as silicon and boron results in strong segregation during repeated sliding, provides preferential transition metal-metalloid clustering in the amorphous alloy, and subsequently produces the diffused honeycomb structure formed by dark grey bands and primary crystals, that is, alpha-Fe in the matrix. Large plastic flow occurs on an amorphous alloy surface with sliding and the flow film of the alloy transfers to the aluminum oxide pin surface. Multiple slip bands due to shear deformation are observed on the side of the wear track. Two distinct types of wear debris were observed as a result of sliding: an alloy wear debris, and/or powdery-whiskery oxide debris.
Germanium detector passivated with hydrogenated amorphous germanium
Hansen, William L.; Haller, Eugene E.
1986-01-01
Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.
Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J
2013-09-03
A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan; Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.
2013-07-09
A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
NASA Astrophysics Data System (ADS)
Yu, S. Q.; Ling, Y. H.; Wang, R. G.; Zhang, J.; Qin, F.; Zhang, Z. J.
2018-04-01
To eliminate harmful localized corrosion, a new approach by constructing superhydrophobic WO3@TiO2 hierarchical nanoflake surface beyond FeW amorphous alloy formed on stainless steel was proposed. Facile dealloying and liquid deposition was employed at low temperature to form a nanostructured layer composing inner WO3 nanoflakes coated with TiO2 nanoparticles (NPs) layer. After further deposition of PFDS on nanoflakes, the contact angle reached 162° while the corrosion potential showed a negative shift of 230 mV under illumination, resulting in high corrosion resistance in 3.5 wt% NaCl solution. The tradeoff between superhydrophobic surface and photo-electro response was investigated. It was found that this surface feature makes 316 SS be immune to localized corrosion and a pronounced photo-induced process of electron storage/release as well as the stability of the functional layer were detected with or without illumination, and the mechanism behind this may be related to the increase of surface potential due to water repellence and the delayed cathodic protection of semiconducting coating derived mainly from the valence state changes of WO3. This study demonstrates a simple and low-cost electrochemical approach for protection of steel and novel means to produce superhydrophobic surface and cathodic protection with controllable electron storage/release on engineering scale.
Synthesis of sponge-like hydrophobic NiBi3 surface by 200 keV Ar ion implantation
NASA Astrophysics Data System (ADS)
Siva, Vantari; Datta, D. P.; Chatterjee, S.; Varma, S.; Kanjilal, D.; Sahoo, Pratap K.
2017-07-01
Sponge-like nanostructures develop under Ar-ion implantation of a Ni-Bi bilayer with increasing ion fluence at room temperature. The surface morphology features different stages of evolution as a function of ion fluence, finally resulting in a planar surface at the highest fluence. Our investigations on the chemical composition reveal a spontaneous formation of NiBi3 phase on the surface of the as deposited bilayer film. Interestingly, we observe a competition between crystallization and amorphization of the existing poly-crystalline phases as a function of the implanted fluence. Measurements of contact angle by sessile drop method clearly show the ion-fluence dependent hydrophobic nature of the nano-structured surfaces. The wettability has been correlated with the variation in roughness and composition of the implanted surface. In fact, our experimental results confirm dominant effect of ion-sputtering as well as ion-induced mixing at the bilayer interface in the evolution of the sponge-like surface.
NASA Astrophysics Data System (ADS)
Edwards, Matthew; Guggilla, Padmaja; Reedy, Angela; Ijaz, Quratulann; Janen, Afef; Uba, Samuel; Curley, Michael
2017-08-01
Previously, we have reported measurements of temperature-dependent surface resistivity of pure and multi-walled carbon nanotube (MWNCT) doped amorphous Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C with humidity-controlled environment, we found the surface resistivity to decrease initially, but to rise steadily as the temperature continued to increase. Moreover, electric surface current density (Js) was measured on the surface of pure and MWCNT doped PVA thin films. In this regard, the surface current density and electric field relationship follow Ohm's law at low electric fields. Unlike Ohmic conduction in metals where free electrons exist, selected captive electrons are freed or provided from impurities and dopants to become conduction electrons from increased thermal vibration of constituent atoms in amorphous thin films. Additionally, a mechanism exists that seemingly decreases the surface resistivity at higher temperatures, suggesting a blocking effect for conducting electrons. Volume resistivity measurements also follow Ohm's law at low voltages (low electric fields), and they continue to decrease as temperatures increase in this temperature range, differing from surface resistivity behavior. Moreover, we report measurements of dielectric constant and dielectric loss as a function of temperature and frequency. Both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped PVA compared to pure PVA and commercial paper, and with frequency and temperature for all samples.
Influence of amorphous content on compaction behaviour of anhydrous alpha-lactose.
Ziffels, S; Steckel, H
2010-03-15
Modified lactoses are widely used as filler-binders in direct compression of tablets. Until today, little about the compaction behaviour of anhydrous alpha-lactose is known. In this study, a new method to prepare anhydrous alpha-lactose from alpha-lactose monohydrate by desiccation with heated ethanol was evaluated and the influence of amorphous content in the lactose powder prior to modification on powder properties, compaction behaviour and storage stability was determined. The modification process led to anhydrous alpha-lactose with decreased bulk and tapped density, increased flow rate and significantly higher specific surface area. Due to the higher specific surface area, the compaction behaviour of the anhydrous alpha-lactose was found to be significantly better than the compaction behaviour of powder blends consisting of alpha-lactose monohydrate and amorphous lactose. An influence of the amorphous content prior to modification could be observed only at higher compaction forces. In general, tablets of modified powders needed longer time to disintegrate directly after compression. However, the storage stability of modified tablets was found to be better compared to the amorphous-crystalline tablets which were influenced by storage conditions, initial crushing strength as well as amorphous content due to the re-crystallization of amorphous lactose during storage. 2009 Elsevier B.V. All rights reserved.
Tapia, A; Salgado, M S; Martín, María Pilar; Lapuerta, M; Rodríguez-Fernández, J; Rossi, M J; Cabañas, B
2016-03-15
Surface functional groups of two different types of combustion aerosols, a conventional diesel (EN 590) and a hydrotreated vegetable oil (HVO) soot, have been investigated using heterogeneous chemistry (i.e., gas-particle surface reactions). A commercial sample of amorphous carbon (Printex XE2-B) was analyzed as a reference substrate. A Knudsen flow reactor was used to carry out the experiments under molecular flow conditions. The selected gases for the titration experiments were: N(CH3)3 for the identification of acidic sites, NH2OH for the presence of carbonyl groups, CF3COOH and HCl for basic sites of different strength, and O3 and NO2 for reducing groups. Reactivity with N(CH3)3 indicates a lower density of acidic functionalities for Printex XE2-B in relation to diesel and HVO soot. Results for NH2OH experiments indicates that commercial amorphous carbon exhibits a lower abundance of available carbonyl groups at the interface compared to the results from diesel and HVO soot, the latter being the one with the largest abundance of carbonyl functions. Reactions with acids indicate the presence of weak basic oxides on the particle surface that preferentially interact with the strong acid CF3COOH. Finally, reactions with O3 and NO2 reveal that diesel and especially HVO have a significantly higher reactivity with both oxidizers compared to that of Printex XE2-B because they have more reducing sites by roughly a factor of 10 and 30, respectively. The kinetics of titration reactions have also been investigated.
Rapid heat treatment for anatase conversion of titania nanotube orthopedic surfaces
NASA Astrophysics Data System (ADS)
Bhosle, Sachin M.; Friedrich, Craig R.
2017-10-01
The amorphous to anatase transformation of anodized nanotubular titania surfaces has been studied by x-ray diffraction and transmission electron microscopy (TEM). A more rapid heat treatment for conversion of amorphous to crystalline anatase favorable for orthopedic implant applications was demonstrated. Nanotube titania surfaces were fabricated by electrochemical anodization of Ti6Al4V in an electrolyte containing 0.2 wt% NH4F, 60% ethylene glycol and 40% deionized water. The resulting surfaces were systematically heat treated in air with isochronal and isothermal experiments to study the temperature and time dependent transformation respectively. Energy dispersive spectroscopy shows that the anatase phase transformation of TiO2 in the as-anodized amorphous nanotube layer can be achieved in as little as 5 min at 350 °C in contrast to reports of higher temperature and much longer time. Crystallinity analysis at different temperatures and times yield transformation rate coefficients and activation energy for crystalline anatase coalescence. TEM confirms the (101) TiO2 presence within the nanotubes. These results confirm that for applications where amorphous titania nanotube surfaces are converted to crystalline anatase, a 5 min production flow-through heating process could be used instead of a 3 h batch process, reducing time, cost, and complexity.
Sklute, Elizabeth C; Rogers, A Deanne; Gregerson, Jason C; Jensen, Heidi B; Reeder, Richard J; Dyar, M Darby
2018-03-01
Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multi-component (Fe 2 (SO 4 ) 3 ± Ca, Na, Mg, Fe, Cl, HCO 3 ) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.
NASA Astrophysics Data System (ADS)
Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby
2018-03-01
Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multicomponent (Fe2(SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21 °C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.
Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby
2018-01-01
Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca–, Na–, Mg– and Fe–chloride brines and multi-component (Fe2 (SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe–chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials. PMID:29670302
Amorphization of quartz by friction: Implication to silica-gel lubrication of fault surfaces
NASA Astrophysics Data System (ADS)
Nakamura, Yu; Muto, Jun; Nagahama, Hiroyuki; Shimizu, Ichiko; Miura, Takashi; Arakawa, Ichiro
2012-11-01
To understand physico-chemical processes at real contacts (asperities) on fault surfaces, we conducted pin-on-disk friction experiments at room temperature, using single crystalline quartz disks and quartz pins. Velocity weakening from friction coefficient μ ˜ 0.6 to 0.4 was observed under apparent normal stresses of 8-19 (18 > 19), when the slip rate was increased from 0.003 to 2.6 m/s. Frictional surfaces revealed ductile deformation of wear materials. The Raman spectra of frictional tracks showed blue shifts and broadening of quartz main bands, and appearance of new peaks at 490-520 and 610 cm-1. All these features are indicative of pressure- and strain-induced amorphization of quartz. The mapping analyses of Fourier transform infrared (FT-IR) spectroscopy at room dry conditions suggest selective hydration of wear materials. It is possible that the strained Si-O-Si bridges in amorphous silica preferentially react with water to form silica-gel. In natural fault systems, amorphous materials would be produced at real fault contacts and accumulate over the fault surfaces with displacements. Subsequent hydration would lead to significant reduction of fault strength during slip.
Phase transitions in biogenic amorphous calcium carbonate
NASA Astrophysics Data System (ADS)
Gong, Yutao
Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.
Rajbhandari, Rinita; Shrestha, Lok Kumar; Pradhananga, Raja Ram
2012-09-01
Activated carbons were prepared from Lapsi (Choerospondias axillaris) seed stone by zinc chloride (ZnCl2) activation at three different Lapsi seed powder (LSP):ZnCl2 ratios: 1:0.5 (AC-0.5), 1:1 (AC-1), and 1:2 (AC-2). The properties of these activated carbons (ACs), including effective surface areas, pore volumes, and pore size distributions were characterized from N2 adsorption-desorption isotherms. The ACs obtained were essentially nanoporous (including both micro- and mesoporous) with effective surface area ranging from 1167 to 1328 m2/g. Fourier-transform infrared (FTIR) spectroscopy showed the presence of functional groups on the surface of ACs. Scanning electron microscopy (SEM) images showed a high pore development in the ACs. X-ray diffraction (XRD) patterns showed that, in addition to the amorphous structure, ACs contains crystalline ZnO formed during the carbonization. Presence of amorphous carbon is further confirmed by Raman scattering, where we observed only D and G bands. Iron impregnated nanoporous AC has been found to be very effective for arsenic removal from ground water; amount of arsenic is decreased from ca. 200 ppb to 10 ppb. These experimental results indicate the potential use of Lapsi seed as a precursor material for the preparation of high surface area nanoporous activated carbons.
Huang, Qiaoling; Yang, Yun; Hu, Ronggang; Lin, Changjian; Sun, Lan; Vogler, Erwin A
2015-01-01
Superhydrophilic and superhydrophobic TiO2 nanotube (TNT) arrays were fabricated on 316L stainless steel (SS) to improve corrosion resistance and hemocompatibility of SS. Vertically-aligned superhydrophilic amorphous TNTs were fabricated on SS by electrochemical anodization of Ti films deposited on SS. Calcination was carried out to induce anatase phase (superhydrophilic), and fluorosilanization was used to convert superhydrophilicity to superhydrophobicity. The morphology, structure and surface wettability of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The effects of surface wettability on corrosion resistance and platelet adhesion were investigated. The results showed that crystalline phase (anatase vs. amorphous) and wettability strongly affected corrosion resistance and platelet adhesion. The superhydrophilic amorphous TNTs failed to protect SS from corrosion whereas superhydrophobic amorphous TNTs slightly improved corrosion resistance of SS. Both superhydrophilic and superhydrophobic anatase TNTs significantly improved corrosion resistance of SS. The superhydrophilic amorphous TNTs minimized platelet adhesion and activation whereas superhydrophilic anatase TNTs activated the formation of fibrin network. On the contrary, both superhydrophobic TNTs (superhydrophobic amorphous TNTs and superhydrophobic anatase TNTs) reduced platelet adhesion significantly and improved corrosion resistance regardless of crystalline phase. Superhydrophobic anatase TNTs coating on SS surface offers the opportunity for the application of SS as a promising permanent biomaterial in blood contacting biomedical devices, where both reducing platelets adhesion/activation and improving corrosion resistance can be effectively combined. Copyright © 2014 Elsevier B.V. All rights reserved.
Martin, R A; Twyman, H; Qiu, D; Knowles, J C; Newport, R J
2009-04-01
Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass((R)) [(CaO)(26.9)(Na(2)O)(24.4)(SiO(2))(46.1)(P(2)O(5))(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass((R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass((R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass((R)) is dominated by a broad amorphous feature around 2.2 A(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass((R)) in SBF a second broad amorphous feature evolves ~1.6 A(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass((R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.
Amorphization of hard crystalline materials by electrosprayed nanodroplet impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamero-Castaño, Manuel, E-mail: mgameroc@uci.edu; Torrents, Anna; Borrajo-Pelaez, Rafael
2014-11-07
A beam of electrosprayed nanodroplets impacting on single-crystal silicon amorphizes a thin surface layer of a thickness comparable to the diameter of the drops. The phase transition occurs at projectile velocities exceeding a threshold, and is caused by the quenching of material melted by the impacts. This article demonstrates that the amorphization of silicon is a general phenomenon, as nanodroplets impacting at sufficient velocity also amorphize other covalently bonded crystals. In particular, we bombard single-crystal wafers of Si, Ge, GaAs, GaP, InAs, and SiC in a range of projectile velocities, and characterize the samples via electron backscatter diffraction and transmissionmore » electron microscopy to determine the aggregation state under the surface. InAs requires the lowest projectile velocity to develop an amorphous layer, followed by Ge, Si, GaAs, and GaP. SiC is the only semiconductor that remains fully crystalline, likely due to the relatively low velocities of the beamlets used in this study. The resiliency of each crystal to amorphization correlates well with the specific energy needed to melt it except for Ge, which requires projectile velocities higher than expected.« less
Extreme UV induced dissociation of amorphous solid water and crystalline water bilayers on Ru(0001)
NASA Astrophysics Data System (ADS)
Liu, Feng; Sturm, J. M.; Lee, Chris J.; Bijkerk, Fred
2016-04-01
The extreme ultraviolet (EUV, λ = 13.5 nm) induced dissociation of water layers on Ru(0001) was investigated. We irradiated amorphous and crystalline water layers on a Ru crystal with EUV light, and measured the surface coverage of remaining water and oxygen as a function of radiation dose by temperature programmed desorption (TPD). The main reaction products are OH and H with a fraction of oxygen from fully dissociated water. TPD spectra from a series of exposures reveal that EUV promotes formation of the partially dissociated water overlayer on Ru. Furthermore, loss of water due to desorption and dissociation is also observed. The water loss cross sections for amorphous and crystalline water are measured at 9 ± 2 × 10- 19 cm2 and 5 ± 1 × 10- 19 cm2, respectively. Comparison between the two cross sections suggests that crystalline water is more stable against EUV induced desorption/dissociation. The dissociation products can oxidize the Ru surface. For this early stage of oxidation, we measured a smaller (compared to water loss) cross section at 2 × 10- 20 cm2, which is 2 orders of magnitude smaller than the photon absorption cross section (at 92 eV) of gas phase water. The secondary electron (SE) contributions to the cross sections are also estimated. From our estimation, SE only forms a small part (20-25%) of the observed photon cross section.
NASA Astrophysics Data System (ADS)
Degioanni, S.; Jurdyc, A.-M.; Bessueille, F.; Coulm, J.; Champagnon, B.; Vouagner, D.
2013-12-01
In this paper, amorphous titanium dioxide (TiO2) thin films have been deposited on a commercially available Klarite substrate using the sol-gel process to produce surface-enhanced Raman scattering (SERS). The substrate consists of square arrays of micrometer-sized pyramidal pits in silicon with a gold coating. Several thin TiO2 layers have been deposited on the surface to study the influence of film thickness. Ultimately, we obtained information on SERS of an amorphous TiO2 layer by gold nanostructures, whose range is less than a few nanometers. Mechanisms responsible for the enhancement are the product of concomitant chemical and electromagnetic effects with an important contribution from plasmon-induced charge transfer.
NASA Astrophysics Data System (ADS)
Kim, Min-Uk; Kim, Do-Hyang; Han, Seung-hee; Fleury, Eric; Seok, Hyun-Kwang; Cha, Pil-Ryung; Kim, Yu-Chan
2011-04-01
Ni-based amorphous alloys with surface modification by carbon ion implantation are proposed as an alternative bipolar plate material for polymer electrolyte membrane fuel cells (PEMFCs). Both Ni60Nb20Ti10Zr10 alloys with and without carbon ion implantation have corrosion resistance as good as graphite as well as much lower contact resistance than 316L stainless steel in the PEMFC environment. The formation of conductive surface carbide due to carbon ion implantation results in a decrease in the contact resistance to a level comparable to that of graphite. This combination of excellent properties indicates that carbon ion implanted Ni-based amorphous alloys can be potential candidate materials for bipolar plates in PEMFCs.
Amorphization and nanocrystallization of silcon under shock compression
Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; ...
2015-11-06
High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energymore » changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.« less
Carbon Monoxide Hydrogenation on Ice Surfaces.
Kuwahata, Kazuaki; Ohno, Kaoru
2018-03-14
We have performed density functional calculations to investigate the carbon monoxide hydrogenation reaction (H+CO→HCO), which is important in interstellar clouds. We found that the activation energy of the reaction on amorphous ice is lower than that on crystalline ice. In the course of this study, we demonstrated that it is roughly possible to use the excitation energy of the reactant molecule (CO) in place of the activation energy. This relationship holds also for small water clusters at the CCSD level of calculation and the two-layer-level ONIOM (CCSD : X3LYP) calculation. Generally, since it is computationally demanding to estimate activation energies of chemical reactions in a circumstance of many water molecules, this relationship enables one to determine the activation energy of this reaction on ice surfaces from the knowledge of the excitation energy of CO only. Incorporating quantum-tunneling effects, we discuss the reaction rate on ice surfaces. Our estimate that the reaction rate on amorphous ice is almost twice as large as that on crystalline ice is qualitatively consistent with the experimental evidence reported by Hidaka et al. [Chem. Phys. Lett., 2008, 456, 36.]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.; Christoffersen, Roy
2016-01-01
Samples returned from the moon and Asteroid Itokawa by NASA's Apollo Missions and JAXA's Hayabusa Mission, respectively, provide a unique record of their interaction with the space environment. Space weathering effects result from micrometeorite impact activity and interactions with the solar wind. While the effects of solar wind interactions, ion implantation and solar flare particle track accumulation, have been studied extensively, the rate at which these effects accumulate in samples on airless bodies has not been conclusively determined. Results of numerical modeling and experimental simulations do not converge with observations from natural samples. We measured track densities and rim thicknesses of three olivine grains from Itokawa and multiple olivine and anorthite grains from lunar soils of varying exposure ages. Samples were prepared for analysis using a Leica EM UC6 ultramicrotome and an FEI Quanta 3D dual beam focused ion beam scanning electron microscope (FIB-SEM). Transmission electron microscope (TEM) analyses were performed on the JEOL 2500SE 200kV field emission STEM. The solar wind damaged rims on lunar anorthite grains are amorphous, lack inclusions, and are compositionally similar to the host grain. The rim width increases as a smooth function of exposure age until it levels off at approximately 180 nm after approximately 20 My (Fig. 1). While solar wind ion damage can only accumulate while the grain is in a direct line of sight to the Sun, solar flare particles can penetrate to mm-depths. To assess whether the track density accurately predicts surface exposure, we measured the rim width and track density in olivine and anorthite from the surface of rock 64455, which was never buried and has a surface exposure age of 2 My based on isotopic measurements. The rim width from 64455 (60-70nm) plots within error of the well-defined trend for solar wind amorphized rims in Fig. 1. Measured solar flare track densities are accurately reflecting the surface exposure of the grains. Track densities correlate with the amorphous rim thicknesses. While the space-weathered rims of anorthite grains are amorphous, the space-weathered rims on both Itokawa and lunar olivine grains show solar wind damaged rims that are not amorphous. Instead, the rims are nanocrystalline with high dislocation densities and sparse inclusions of nanophase Fe metal. The rim thicknesses on the olivine grains also correlate with track density. The Itokawa olivine grains have track densities that indicate surface exposures of approximately 10(exp 5) years. Longer exposures (up to approximately 10(exp 7) years) do not amorphize the rims, as evidenced by lunar soil olivines with high track densities (approximately 10(exp 11) cm(exp -2)). From the combined data, shown in Fig. 1, it is clear that olivine is damaged (but not amorphized) more rapidly by the solar wind compared to anorthite. The olivine damaged rim forms quickly (in approximately 10(exp 6) y) and saturates at approximately 120nm with longer exposure time. The anorthite damaged rims form more slowly, amorphize, and grow thicker than the olivine rims. This is in agreement with numerical modeling data which predicts that solar wind damaged rims on anorthite will be thicker than olivine. However, the models predict that both olivine and anorthite rims will amorphize and reach equilibrium widths in less than 10(exp 3) y, in contrast to what is observed for natural samples. Laboratory irradiation experiments, which show rapid formation of fully amorphous and blistered surfaces from simulated solar wind exposures are also in contrast to observations of natural samples. These results suggest that there is a flux dependence on the type and extent of irradiation damage that develops in olivine. This flux dependence suggests that great caution be used in extrapolating between high-flux laboratory experiments and the natural case, as demonstrated by. We constrain the space weathering rate through analysis of returned samples. Provided that the track densities and the solar wind damaged rim widths exhibited by the Itokawa grains are typical of the fine-grained regions of Itokawa, then the space weathering rate is on the order of 10(exp 5) y. Space weathering effects in lunar soils saturate within a few My of exposure while those in Itokawa regolith grains formed in approximately 10(exp 5) y. Olivine and anorthite respond differently to solar wind irradiation. The space weathering effects in olivine are particularly difficult to reconcile with laboratory irradiation studies and numerical models. Additional measurements, experiments, and modeling are required to resolve the discrepancies among the observations and calculations involving solar wind amorphization of different minerals on airless bodies.
Mechanism of solid state amorphization of glucose upon milling.
Dujardin, N; Willart, J F; Dudognon, E; Danède, F; Descamps, M
2013-02-07
Crystalline α-glucose is known to amorphize upon milling at -15 °C while it remains structurally invariant upon milling at room temperature. We have taken advantage of this behavior to compare the microstructural evolutions of the material in both conditions in order to identify the essential microstructural features which drive the amorphization process upon milling. The investigations have been performed by differential scanning calorimetry and by powder X-ray diffraction. The results indicate that two different amorphization mechanisms occur upon milling: an amorphization at the surface of crystallites due to the mechanical shocks and a spontaneous amorphization of the crystallites as they reach a critical size, which is close to 200 Å in the particular case of α-glucose.
Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V
2013-11-13
The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.
Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation.
Grieb, Tim; Tewes, Moritz; Schowalter, Marco; Müller-Caspary, Knut; Krause, Florian F; Mehrtens, Thorsten; Hartmann, Jean-Michel; Rosenauer, Andreas
2018-01-01
The chemical composition of four Si 1-x Ge x layers grown on silicon was determined from quantitative scanning transmission electron microscopy (STEM). The chemical analysis was performed by a comparison of the high-angle annular dark field (HAADF) intensity with multislice simulations. It could be shown that amorphous surface layers originating from the preparation process by focused-ion beam (FIB) at 30 kV have a strong influence on the quantification: the local specimen thickness is overestimated by approximately a factor of two, and the germanium concentration is substantially underestimated. By means of simulations, the effect of amorphous surface layers on the HAADF intensity of crystalline silicon and germanium is investigated. Based on these simulations, a method is developed to analyze the experimental HAADF-STEM images by taking the influence of the amorphous layers into account which is done by a reduction of the intensities by multiplication with a constant factor. This suggested modified HAADF analysis gives germanium concentrations which are in agreement with the nominal values. The same TEM lamella was treated with low-voltage ion milling which removed the amorphous surface layers completely. The results from subsequent quantitative HAADF analyses are in agreement with the nominal concentrations which validates the applicability of the used frozen-lattice based multislice simulations to describe the HAADF scattering of Si 1-x Ge x in STEM. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Lei; Peng, Jinhui; Meng, Binfang; Li, Wei; Liu, Bingguo; Luo, Huilong
2016-09-01
Amorphous nanoparticles have attracted a large amount of interest due to their superior catalytic activity and unique selectivity. The Ni-B amorphous nanoparticles were synthesized from aqueous reduction of NiSO4 by sodium borohydride in microscale interface at room temperature. The size, morphology, elemental compositions, and the chemical composition on the surface of Ni-B amorphous nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). All the results showed that the synthesized particles are Ni-B amorphous nanoparticles with uniform in size distribution and having good dispersion. The mean particle diameter of Ni-B amorphous nanoparticles was around 9 nm. The present work provides an alternative synthesis route for the Ni-B amorphous nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kai; Hrma, Pavel; Washton, Nancy
The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700°C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500°C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (~8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.
Chen, Huijun; Pui, Yipshu; Liu, Chengyu; Chen, Zhen; Su, Ching-Chiang; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Foster, Kimberly; Gudmundsson, Olafur; Qian, Feng
2018-01-01
Amorphous phase separation (APS) is commonly observed in amorphous solid dispersions (ASD) when exposed to moisture. The objective of this study was to investigate: (1) the phase behavior of amorphous solid dispersions composed of a poorly water-soluble drug with extremely low crystallization propensity, BMS-817399, and PVP, following exposure to different relative humidity (RH), and (2) the impact of phase separation on the intrinsic dissolution rate of amorphous solid dispersion. Drug-polymer interaction was confirmed in ASDs at different drug loading using infrared (IR) spectroscopy and water vapor sorption analysis. It was found that the drug-polymer interaction could persist at low RH (≤75% RH) but was disrupted after exposure to high RH, with the advent of phase separation. Surface morphology and composition of 40/60 ASD at micro-/nano-scale before and after exposure to 95% RH were also compared. It was found that hydrophobic drug enriched on the surface of ASD after APS. However, for the 40/60 ASD system, the intrinsic dissolution rate of amorphous drug was hardly affected by the phase behavior of ASD, which may be partially attributed to the low crystallization tendency of amorphous BMS-817399 and enriched drug amount on the surface of ASD. Intrinsic dissolution rate of PVP decreased resulting from APS, leading to a lower concentration in the dissolution medium, but supersaturation maintenance was not anticipated to be altered after phase separation due to the limited ability of PVP to inhibit drug precipitation and prolong the supersaturation of drug in solution. This study indicated that for compounds with low crystallization propensity and high hydrophobicity, the risk of moisture-induced APS is high but such phase separation may not have profound impact on the drug dissolution performance of ASDs. Therefore, application of ASD technology on slow crystallizers could incur low risks not only in physical stability but also in dissolution performance. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Sticking of Molecules on Nonporous Amorphous Water Ice
NASA Astrophysics Data System (ADS)
He, Jiao; Acharyya, Kinsuk; Vidali, Gianfranco
2016-05-01
Accurate modeling of physical and chemical processes in the interstellar medium (ISM) requires detailed knowledge of how atoms and molecules adsorb on dust grains. However, the sticking coefficient, a number between 0 and 1 that measures the first step in the interaction of a particle with a surface, is usually assumed in simulations of ISM environments to be either 0.5 or 1. Here we report on the determination of the sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on nonporous amorphous solid water. The sticking coefficient was measured over a wide range of surface temperatures using a highly collimated molecular beam. We showed that the standard way of measuring the sticking coefficient—the King-Wells method—leads to the underestimation of trapping events in which there is incomplete energy accommodation of the molecule on the surface. Surface scattering experiments with the use of a pulsed molecular beam are used instead to measure the sticking coefficient. Based on the values of the measured sticking coefficient, we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy. We use this formula in a simulation of ISM gas-grain chemistry to find the effect of sticking on the abundance of key molecules both on grains and in the gas phase.
STICKING OF MOLECULES ON NONPOROUS AMORPHOUS WATER ICE
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiao; Vidali, Gianfranco; Acharyya, Kinsuk, E-mail: gvidali@syr.edu
2016-05-20
Accurate modeling of physical and chemical processes in the interstellar medium (ISM) requires detailed knowledge of how atoms and molecules adsorb on dust grains. However, the sticking coefficient, a number between 0 and 1 that measures the first step in the interaction of a particle with a surface, is usually assumed in simulations of ISM environments to be either 0.5 or 1. Here we report on the determination of the sticking coefficient of H{sub 2}, D{sub 2}, N{sub 2}, O{sub 2}, CO, CH{sub 4}, and CO{sub 2} on nonporous amorphous solid water. The sticking coefficient was measured over a widemore » range of surface temperatures using a highly collimated molecular beam. We showed that the standard way of measuring the sticking coefficient—the King–Wells method—leads to the underestimation of trapping events in which there is incomplete energy accommodation of the molecule on the surface. Surface scattering experiments with the use of a pulsed molecular beam are used instead to measure the sticking coefficient. Based on the values of the measured sticking coefficient, we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy. We use this formula in a simulation of ISM gas–grain chemistry to find the effect of sticking on the abundance of key molecules both on grains and in the gas phase.« less
Computational design of surfaces, nanostructures and optoelectronic materials
NASA Astrophysics Data System (ADS)
Choudhary, Kamal
Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of the materials to ensure that no spurious phases had a lower cohesive energy. Thirdly, lanthanide doped and co-doped Y3Al5O 12 were examined using density functional theory (DFT) with semi-local and local functional. Theoretical results were compared and validated with experimental data and new co-doped materials with high efficiency were predicted. Finally, Transition element doped CH3NH3PbI3 were studied with DFT for validation of the model with experimental data and replacement materials for toxic Pb were predicted.
Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Zahidur R., E-mail: zr.chowdhury@utoronto.ca; Kherani, Nazir P., E-mail: kherani@ecf.utoronto.ca
2014-12-29
This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparentmore » passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.« less
Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.
Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva
2008-11-01
Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.
NASA Astrophysics Data System (ADS)
Song, Xin; Li, Kai; Ning, Ping; Wang, Chi; Sun, Xin; Tang, Lihong; Ruan, Haotian; Han, Shuang
2017-12-01
The influences of different preparation conditions for surface characteristics on removing organic sulfur were studied. From BET, XRD, FTIR, DRIFTS, TG/DTA, CO2-TPD results, it can be seen that these preparation conditions had great influences on the pore structure, specific surface area, crystal structure and surface functional groups. The micropore volume, amorphous structure and alkalinity site strength played major roles in desulfurization process. H2S was oxidized by oxygen containing functional groups, such as sbnd COO, sbnd Cdbnd O. H2O molecule could be converted into some groups, such as sbnd CH and Csbnd OH groups, and promoted the hydrolysis reaction. The strong alkalinity site was the key factor for chemical adsorption and hydrolysis. H2O molecule, sbnd CH, Csbnd OH groups promoted the hydrolysis reaction and sbnd COO, sbnd Cdbnd O groups promoted the oxidation of H2S on the surface of WSB. Meanwhile, the main desulfurization process over WSB after carbonization was adsorption and it changed to hydrolysis reaction after activation on the surface of WSB. Furthermore, the reaction mechanism was investigated by DRIFTS measurement according to the change of surface functional groups.
Tsuo, Y. Simon; Deb, Satyen K.
1990-01-01
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.
NASA Astrophysics Data System (ADS)
Gabardi, Silvia; Caravati, Sebastiano; Los, Jan H.; Kühne, Thomas D.; Bernasconi, Marco
2016-05-01
We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge2Sb2Te5 phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.
Gabardi, Silvia; Caravati, Sebastiano; Los, Jan H; Kühne, Thomas D; Bernasconi, Marco
2016-05-28
We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge2Sb2Te5 phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.
Amorphous-amorphous transition in a porous coordination polymer.
Ohtsu, Hiroyoshi; Bennett, Thomas D; Kojima, Tatsuhiro; Keen, David A; Niwa, Yasuhiro; Kawano, Masaki
2017-07-04
The amorphous state plays a key role in porous coordination polymer and metal-organic framework phase transitions. We investigate a crystalline-to-amorphous-to-amorphous-to-crystalline (CAAC) phase transition in a Zn based coordination polymer, by X-ray absorption fine structure (XAFS) and X-ray pair distribution function (PDF) analysis. We show that the system shows two distinct amorphous phases upon heating. The first involves a reversible transition to a desolvated form of the original network, followed by an irreversible transition to an intermediate phase which has elongated Zn-I bonds.
Etemadi, Omid; Yen, Teh Fu
2007-09-01
Surface properties of two different phases of alumina were studied through SEM images. Characterization of amorphous acidic alumina and crystalline boehmite by XRD explains the differences in adsorption capacities of each sample. Data from small angle neutron scattering (SANS) provide further results regarding the ordering in amorphous and crystalline samples of alumina. Quantitative measurements from SANS are used for pore size calculations. Higher disorder provides more topological traps, irregularities, and hidden grooves for higher adsorption capacity. An isotherm model was derived for adsorption of dibenzothiophene sulfone (DBTO) by amorphous acidic alumina to predict and calculate the adsorption of sulfur compounds. The Langmuir-Freundlich model covers a wide range of sulfur concentrations. Experiments prove that amorphous acidic alumina is the adsorbent of choice for selective adsorption in the ultrasound-assisted oxidative desulfurization (UAOD) process to produce ultra-low-sulfur fuel (ULSF).
Preparation and Characterization of ZnO Nanoparticles Supported on Amorphous SiO2
Chen, Ying; Ding, Hao; Sun, Sijia
2017-01-01
In order to reduce the primary particle size of zinc oxide (ZnO) and eliminate the agglomeration phenomenon to form a monodisperse state, Zn2+ was loaded on the surface of amorphous silica (SiO2) by the hydrogen bond association between hydroxyl groups in the hydrothermal process. After calcining the precursors, dehydration condensation among hydroxyl groups occurred and ZnO nanoparticles supported on amorphous SiO2 (ZnO–SiO2) were prepared. Furthermore, the SEM and TEM observations showed that ZnO nanoparticles with a particle size of 3–8 nm were uniformly and dispersedly loaded on the surface of amorphous SiO2. Compared with pure ZnO, ZnO–SiO2 showed a much better antibacterial performance in the minimum inhibitory concentration (MIC) test and the antibacterial properties of the paint adding ZnO–SiO2 composite. PMID:28796157
Kim, Yebyeol; Bae, Jaehyun; Song, Hyun Woo; An, Tae Kyu; Kim, Se Hyun; Kim, Yun-Hi; Park, Chan Eon
2017-11-15
Electrohydrodynamic-jet (EHD-jet) printing provides an opportunity to directly assembled amorphous polymer chains in the printed pattern. Herein, an EHD-jet printed amorphous polymer was employed as the active layer for fabrication of organic field-effect transistors (OFETs). Under optimized conditions, the field-effect mobility (μ FET ) of the EHD-jet printed OFETs was 5 times higher than the highest μ FET observed in the spin-coated OFETs, and this improvement was achieved without the use of complex surface templating or additional pre- or post-deposition processing. As the chain alignment can be affected by the surface energy of the dielectric layer in EHD-jet printed OFETs, dielectric layers with varying wettability were examined. Near-edge X-ray absorption fine structure measurements were performed to compare the amorphous chain alignment in OFET active layers prepared by EHD-jet printing and spin coating.
Friction and surface chemistry of some ferrous-base metallic glasses
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1982-01-01
The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.
NASA Astrophysics Data System (ADS)
Singh, Ashish Kumar
Fe-based amorphous alloys are gaining increasing attention due to their exceptional wear and corrosion resistance for potential structural applications. Two major challenges that are hindering the commercialization of these amorphous alloys are difficulty in processing of bulk shapes (diameter > 10 mm) and lack of ductility. Spark plasma sintering (SPS) is evolving as a promising technique for processing bulk shapes of amorphous and nanocrystalline materials. The objective of this work is to investigate densification behavior, nanocrystallization, and mechanical properties of SPS sintered Fe-based amorphous alloys of composition Fe48Cr15Mo14Y2C15B6. SPS processing was performed in three distinct temperature ranges of amorphous alloys: (a) below glass transition temperature (Tg), (b) between Tg and crystallization temperature (Tx), and (c) above Tx. Punch displacement data obtained during SPS sintering was correlated with the SPS processing parameters such as temperature, pressure, and sintering time. Powder rearrangement, plastic deformation below T g, and viscous flow of the material between Tg and Tx were observed as the main densification stages during SPS sintering. Micro-scale temperature distributions at the point of contact and macro-scale temperature distribution throughout the sample during SPS of amorphous alloys were modeled. The bulk amorphous alloys are expected to undergo structural relaxation and nanocrystallization during SPS sintering. X-ray diffraction (XRD), small angle neutron scattering (SANS), and transmission electron microscopy (TEM) was performed to investigate the evolution of nanocrystallites in SPS sintered Fe-based bulk amorphous alloys. The SANS analysis showed significant scattering for the samples sintered in the supercooled region indicating local structural and compositional changes with the profuse nucleation of nano-clusters (~4 nm). Compression tests and microhardness were performed on the samples sintered at different temperatures ranging from 570 °C to 800 °C. Maximum compression strength (1.1+/-0.2 MPa) was obtained for the samples sintered in the supercooled region. Effects of crystallization on tribological behavior of sintered samples were also investigated where crystallization resulted in increase in wear resistance. Laser surface hardening of SPS sintered amorphous samples were performed. Depending on the processing parameters, the laser surface irradiation causes structural relaxation and nanocrystallization, resulting in surface hardening.
Hussain, Shahzada Qamar; Oh, Woong-Kyo; Kim, Sunbo; Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Lee, Youngseok; Dao, Vinh Ai; Velumani, S; Yi, Junsin
2014-12-01
Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.
Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Solovyeva, Daria; Shibaev, Valery; Bogdanova, Yulia; Hamplová, Vĕra; Kašpar, Miroslav; Bubnov, Alexej
2016-06-09
Recently, photofluidization and mass-transfer effects have gained substantial interest because of their unique abilities of photocontrolled manipulation with material structure and physicochemical properties. In this work, the surface topographies of amorphous, nematic, and crystalline films of an azobenzene-containing bent-core (banana-shaped) compound were studied using a special experimental setup combining polarizing optical microscopy and atomic force microscopy. Spin-coating or rapid cooling of the samples enabled the formation of glassy amorphous or nematic films of the substance. The effects of UV and visible-light irradiation on the surface roughness of the films were investigated. It was found that UV irradiation leads to the fast isothermal transition of nematic and crystalline phases into the isotropic phase. This effect is associated with E-Z photoisomerization of the compound accompanied by a decrease of the anisometry of the bent-core molecules. Focused polarized visible-light irradiation (457.9 nm) results in mass-transfer phenomena and induces the formation of so-called "craters" in amorphous and crystalline films of the substance. The observed photofluidization and mass-transfer processes allow glass-forming bent-core azobenzene-containing substances to be considered for the creation of promising materials with photocontrollable surface topographies. Such compounds are of principal importance for the solution of a broad range of problems related to the investigation of surface phenomena in colloid and physical chemistry, such as surface modification for chemical and catalytic reactions, predetermined morphology of surfaces and interfaces in soft matter, and chemical and biochemical sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahnamoun, A.; Duin, A. C. T. van
We study the dynamics of the collisions between amorphous silica structures and amorphous and crystal ice clusters with impact velocities of 1 km/s, 4 km/s, and 7 km/s using the ReaxFF reactive molecular dynamics simulation method. The initial ice clusters consist of 150 water molecules for the amorphous ice cluster and 128 water molecules for the crystal ice cluster. The ice clusters are collided on the surface of amorphous fully oxidized and suboxide silica. These simulations show that at 1 km/s impact velocities, all the ice clusters accumulate on the surface and at 4 km/s and 7 km/s impact velocities, some of the ice cluster moleculesmore » bounce back from the surface. At 4 km/s and 7 km/s impact velocities, few of the water molecules dissociations are observed. The effect of the second ice cluster impacts on the surfaces which are fully covered with ice, on the mass loss/accumulation is studied. These studies show that at 1 km/s impacts, the entire ice cluster accumulates on the surface at both first and second ice impacts. At higher impact velocities, some ice molecules which after the first ice impacts have been attached to the surface will separate from the surface after the second ice impacts at 7 km/s impact velocity. For the 4 km/s ice cluster impact, ice accumulation is observed for the crystal ice cluster impacts and ice separation is observed for the amorphous ice impacts. Observing the temperatures of the ice clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting ice clusters increase to about 2000 K, with individual molecules occasionally reaching temperatures of over 8000 K and thus it will be prudent to consider the concept of electron excitation at these higher impact velocities, which goes beyond the current ReaxFF ability.« less
NASA Astrophysics Data System (ADS)
Gorlenko, A. O.; Davydov, S. V.
2018-01-01
The process of finishing plasma hardening with deposition of a multilayer amorphous coating of the Si - O - C - N system is considered as applied to hardening of the friction surfaces of spherical sliding bearings. The microrelief, the submicrorelief, and the tribological characteristics of the deposited wear-resistant antifriction amorphous coating, which are responsible for the elevated wear resistance of spherical sliding bearings, are investigated.
Investigation of embedded perovskite nanoparticles for enhanced capacitor permittivities.
Krause, Andreas; Weber, Walter M; Pohl, Darius; Rellinghaus, Bernd; Verheijen, Marcel; Mikolajick, Thomas
2014-11-26
Growth experiments show significant differences in the crystallization of ultrathin CaTiO3 layers on polycrystalline Pt surfaces. While the deposition of ultrathin layers below crystallization temperature inhibits the full layer crystallization, local epitaxial growth of CaTiO3 crystals on top of specific oriented Pt crystals occurs. The result is a formation of crystals embedded in an amorphous matrix. An epitaxial alignment of the cubic CaTiO3 ⟨111⟩ direction on top of the underlying Pt {111} surface has been observed. A reduced forming energy is attributed to an interplay of surface energies at the {111} interface of both materials and CaTiO3 nanocrystallites facets. The preferential texturing of CaTiO3 layers on top of Pt has been used in the preparation of ultrathin metal-insulator-metal capacitors with 5-30 nm oxide thickness. The effective CaTiO3 permittivity in the capacitor stack increases to 55 compared to capacitors with amorphous layers and a permittivity of 28. The isolated CaTiO3 crystals exhibit a passivation of the CaTiO3 grain surfaces by the surrounding amorphous matrix, which keeps the capacitor leakage current at ideally low values comparable for those of amorphous thin film capacitors.
pH control of the structure, composition, and catalytic activity of sulfated zirconia
NASA Astrophysics Data System (ADS)
Ivanov, Vladimir K.; Baranchikov, Alexander Ye.; Kopitsa, Gennady P.; Lermontov, Sergey A.; Yurkova, Lyudmila L.; Gubanova, Nadezhda N.; Ivanova, Olga S.; Lermontov, Anatoly S.; Rumyantseva, Marina N.; Vasilyeva, Larisa P.; Sharp, Melissa; Pranzas, P. Klaus; Tretyakov, Yuri D.
2013-02-01
We report a detailed study of structural and chemical transformations of amorphous hydrous zirconia into sulfated zirconia-based superacid catalysts. Precipitation pH is shown to be the key factor governing structure, composition and properties of amorphous sulfated zirconia gels and nanocrystalline sulfated zirconia. Increase in precipitation pH leads to substantial increase of surface fractal dimension (up to ˜2.7) of amorphous sulfated zirconia gels, and consequently to increase in specific surface area (up to ˜80 m2/g) and simultaneously to decrease in sulfate content and total acidity of zirconia catalysts. Complete conversion of hexene-1 over as synthesized sulfated zirconia catalysts was observed even under ambient conditions.
On sub-T(g) dewetting of nanoconfined liquids and autophobic dewetting of crystallites.
Souda, Ryutaro
2012-03-28
The glass transition temperature (T(g)) of thin films is reduced by nanoconfinement, but it is also influenced by the free surface and substrate interface. To gain more insights into their contributions, dewetting behaviors of n-pentane, 3-methylpentane, and toluene films are investigated on various substrates as functions of temperature and film thickness. It is found that monolayers of these molecules exhibit sub-T(g) dewetting on a perfluoro-alkyl modified Ni substrate, which is attributable to the evolution of a 2D liquid. The onset temperature of dewetting increases with film thickness because fluidity evolves via cooperative motion of many molecules; sub-T(g) dewetting is observed for films thinner than 5 monolayers. In contrast, monolayers wet substrates of graphite, silicon, and amorphous solid water until crystallization occurs. The crystallites exhibit autophobic dewetting on the substrate covered with a wetting monolayer. The presence of premelting layers is inferred from the fact that n-pentane crystallites disappear on amorphous solid water via intermixing. Thus, the properties of quasiliquid formed on the crystallite surface differ significantly from those of the 2D liquid formed before crystallization.
Universal aspects of sonolubrication in amorphous and crystalline materials
NASA Astrophysics Data System (ADS)
Pfahl, V.; Ma, C.; Arnold, W.; Samwer, K.
2018-01-01
We studied sonolubricity, a phenomenon reducing the friction between two sliding surfaces by ultrasound. Friction force measurements were performed using an atomic force microscope (AFM) when the tip-surface contact was excited to out-of-plane oscillations by a transducer attached to the rear of the sample or by oscillating the AFM cantilever by the built-in piezoelectric element in the cantilever holder. Experiments were carried out near or at the first cantilever contact-resonance. We studied friction on crystalline and amorphous Pd77.5Cu6Si16.5 ribbons, on a silicon wafer at room temperature, and on a La0.6Sr0.4MnO3 (LSMO) thin film at different temperatures. Measurements were carried out varying the cantilever amplitude, the ultrasonic frequency, and the normal static load. The effect of sonolubrication is explained by the non-linear force-distance curve between the sample and the tip due to the local interaction potential. The reduction of friction in LSMO as a function temperature is due to the direct coupling of the tip's stress-field to the electrons.
Glucose Sensing Using Functionalized Amorphous In-Ga-Zn-O Field-Effect Transistors.
Du, Xiaosong; Li, Yajuan; Motley, Joshua R; Stickle, William F; Herman, Gregory S
2016-03-01
Recent advances in glucose sensing have focused on the integration of sensors into contact lenses to allow noninvasive continuous glucose monitoring. Current technologies focus primarily on enzyme-based electrochemical sensing which requires multiple nontransparent electrodes to be integrated. Herein, we leverage amorphous indium gallium zinc oxide (IGZO) field-effect transistors (FETs), which have found use in a wide range of display applications and can be made fully transparent. Bottom-gated IGZO-FETs can have significant changes in electrical characteristics when the back-channel is exposed to different environments. We have functionalized the back-channel of IGZO-FETs with aminosilane groups that are cross-linked to glucose oxidase and have demonstrated that these devices have high sensitivity to changes in glucose concentrations. Glucose sensing occurs through the decrease in pH during glucose oxidation, which modulates the positive charge of the aminosilane groups attached to the IGZO surface. The change in charge affects the number of acceptor-like surface states which can deplete electron density in the n-type IGZO semiconductor. Increasing glucose concentrations leads to an increase in acceptor states and a decrease in drain-source conductance due to a positive shift in the turn-on voltage. The functionalized IGZO-FET devices are effective in minimizing detection of interfering compounds including acetaminophen and ascorbic acid. These studies suggest that IGZO FETs can be effective for monitoring glucose concentrations in a variety of environments, including those where fully transparent sensing elements may be of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Jagrati, E-mail: jdwivedi.phy@gmail.com; Mishra, Ashutosh; Gupta, Ranjeeta
2016-05-23
Structural changes occurring in a thin amorphous Co{sub 23}Fe{sub 60}B{sub 17} film sandwiched between two Mo layers, as a function of thermal annealing has been studied. Thermal stability of the Co{sub 23}Fe{sub 60}B{sub 17} film is found to be significantly lower than the bulk ribbons. SIMS measurements show that during crystallization, boron which is expelled out of the crystallites, has a tendency to move towards the surface. No significant diffusion of boron in Mo buffer layer is observed. This result is in contrast with some earlier studies where it was proposed that the role of buffer layer of refractory metalmore » is to absorb boron which is expelled out of the bcc FeCo phase during crystallization.« less
Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M
2015-09-01
Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Chen; Veblen, David R.; Blum, Alex E.; Chipera, Stephen J.
2006-09-01
Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 μm thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ˜10 5 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the possibility of this amorphous layer on feldspar surface.
Zhu, Chen; Veblen, D.R.; Blum, A.E.; Chipera, S.J.
2006-01-01
Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 ??m thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ???105 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the possibility of this amorphous layer on feldspar surface. ?? 2006 Elsevier Inc. All rights reserved.
Electron tunnelling into amorphous germanium and silicon.
NASA Technical Reports Server (NTRS)
Smith, C. W.; Clark, A. H.
1972-01-01
Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.
Tsuo, Y.S.; Deb, S.K.
1990-10-02
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.
Photoemission studies of amorphous silicon induced by P + ion implantation
NASA Astrophysics Data System (ADS)
Petö, G.; Kanski, J.
1995-12-01
An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.
NASA Technical Reports Server (NTRS)
Garofalini, S. H.; Halicioglu, T.; Pound, G. M.
1981-01-01
Molecular dynamics was used to study the structure, dispersion and short-time behavior of ten-atom clusters adsorbed onto amorphous and crystalline substrates, in which the cluster atoms differed from the substrate atoms. Two adatom-substrate model systems were chosen; one, in which the interaction energy between adatom pairs was greater than that between substrate pairs, and the other, in which the reverse was true. At relatively low temperature ranges, increased dispersion of cluster atoms occurred: (a) on the amorphous substrate as compared to the FCC(100) surface, (b) with increasing reduced temperature, and (c) with adatom-substrate interaction energy stronger than adatom-adatom interaction. Two-dimensional clusters (rafts) on the FCC(100) surface displayed migration of edge atoms only, indicating a mechanism for the cluster rotation and shape changes found in experimental studies.
NASA Astrophysics Data System (ADS)
Kwon, Woosung; Do, Sungan; Kim, Ji-Hee; Seok Jeong, Mun; Rhee, Shi-Woo
2015-07-01
Carbon nanodots (C-dots) are a kind of fluorescent carbon nanomaterials, composed of polyaromatic carbon domains surrounded by amorphous carbon frames, and have attracted a great deal of attention because of their interesting properties. There are still, however, challenges ahead such as blue-biased photoluminescence, spectral broadness, undefined energy gaps and etc. In this report, we chemically modify the surface of C-dots with a series of para-substituted anilines to control their photoluminescence. Our surface functionalization endows our C-dots with new energy levels, exhibiting long-wavelength (up to 650 nm) photoluminescence of very narrow spectral widths. The roles of para-substituted anilines and their substituents in developing such energy levels are thoroughly studied by using transient absorption spectroscopy. We finally demonstrate light-emitting devices exploiting our C-dots as a phosphor, converting UV light to a variety of colors with internal quantum yields of ca. 20%.
Schienle, Stefanie; Al-Ahmad, Ali; Kohal, Ralf Joachim; Bernsmann, Falk; Adolfsson, Erik; Montanaro, Laura; Palmero, Paola; Fürderer, Tobias; Chevalier, Jérôme; Hellwig, Elmar; Karygianni, Lamprini
2016-09-01
Biomaterial surfaces are at high risk for initial microbial colonization, persistence, and concomitant infection. The rationale of this study was to assess the initial adhesion on novel implant surfaces of Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans upon incubation. The tested samples were 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) samples with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coating (A) and 3Y-TZP samples coated with ceria-stabilized zirconia-based (Ce-TZP) composite and a-C:H:N (B). Uncoated 3Y-TZP samples (C) and bovine enamel slabs (BES) served as controls. Once the surface was characterized, the adherent microorganisms were quantified by estimating the colony-forming units (CFUs). Microbial vitality was assessed by live/dead staining, and microbial-biomaterial surface topography was visualized by scanning electron microscopy (SEM). Overall, A and B presented the lowest CFU values for all microorganisms, while C sheltered significantly less E. faecalis, P. aeruginosa, and C. albicans than BES. Compared to the controls, B demonstrated the lowest vitality values for E. coli (54.12 %) and C. albicans (67.99 %). Interestingly, A (29.24 %) exhibited higher eradication rates for S. aureus than B (13.95 %). Within the limitations of this study, a-C:H:N-coated 3Y-TZP surfaces tended to harbor less initially adherent microorganisms and selectively interfered with their vitality. This could enable further investigation of the new multi-functional zirconia surfaces to confirm their favorable antimicrobial properties in vivo.
Spectroscopic and volumetric characterization of a non-microporous amorphous ice
NASA Astrophysics Data System (ADS)
Manca, C.; Martin, C.; Roubin, P.
2002-10-01
The aim of this Letter is to re-investigate the characterization of ice porosity. N 2, CH 4 and Ar adsorption on amorphous ice has been compared to that on crystalline ice at low temperatures, using adsorption isotherm volumetry and infrared spectroscopy simultaneously. Here we show that amorphous ice can present a large specific surface area and nevertheless be non-microporous; this provides new ways for the understanding of interstellar reactivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitas, R. J.; Shimakawa, K.; Department of Electrical and Electronic Engineering, Gifu University, Gifu 501-1193
The article discusses the dynamics of photoinduced defect creations (PDC) in amorphous chalcogenides, which is described by the stretched exponential function (SEF), while the well known photodarkening (PD) and photoinduced volume expansion (PVE) are governed only by the exponential function. It is shown that the exponential distribution of the thermal activation barrier produces the SEF in PDC, suggesting that thermal energy, as well as photon energy, is incorporated in PDC mechanisms. The differences in dynamics among three major photoinduced effects (PD, PVE, and PDC) in amorphous chalcogenides are now well understood.
Method for depositing layers of high quality semiconductor material
Guha, Subhendu; Yang, Chi C.
2001-08-14
Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabardi, Silvia; Caravati, Sebastiano; Bernasconi, Marco, E-mail: marco.bernasconi@mater.unimib.it
2016-05-28
We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In{sub 3}SbTe{sub 2} compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtainedmore » with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge{sub 2}Sb{sub 2}Te{sub 5} phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.« less
Observation of the Amorphous-to-Crystalline Surface Transition in Al-AlxOy Using Slow Positrons
NASA Astrophysics Data System (ADS)
Lynn, K. G.
1980-05-01
The amorphous-to-crystalline surface transition of AlxOy on the Al(111) surface is observed between 650 and 800 K with different O2 exposures by measuring the positronium (Ps) fraction produced by e+ impinging on the surface. The data are interpreted in terms of vacancy-type defects in the film or at the metal-metal-oxide interface which as trapping sites for e+ or Ps. As the ordering process proceeds to completion the trapping centers anneal out and the Ps fraction increases, showing an irreversible transition. This technique provides a new experimental method to study interfaces.
Femtosecond laser pulse modification of amorphous silicon films: control of surface anisotropy
NASA Astrophysics Data System (ADS)
Shuleiko, D. V.; Potemkin, F. V.; Romanov, I. A.; Parhomenko, I. N.; Pavlikov, A. V.; Presnov, D. E.; Zabotnov, S. V.; Kazanskii, A. G.; Kashkarov, P. K.
2018-05-01
A one-dimensional surface relief with a 1.20 ± 0.02 µm period was formed in amorphous hydrogenated silicon films as a result of irradiation by femtosecond laser pulses (1.25 µm) with a fluence of 0.15 J cm‑2. Orientation of the formed structures was determined by the polarization vector of the radiation and the number of acting pulses. Nanocrystalline silicon phases with volume fractions from 40 to 67% were detected in the irradiated films according to the analysis of Raman spectra. Observed micro- and nanostructuring processes were caused by surface plasmon–polariton excitation and near-surface region nanocrystallization, respectively, in the high-intensity femtosecond laser field. Furthermore, the formation of Si-III and Si-XII silicon polymorphous modifications was observed after laser treatment with a large exposure dose. The conductivity of the film increased by three orders of magnitude at proper conditions after femtosecond laser nanocrystallization compared to the conductivity of the untreated amorphous surface. The conductivity anisotropy of the irradiated regions was also observed due to the depolarizing contribution of the surface structure, and the non-uniform intensity distribution in the cross-section of the laser beam used for modification.
NASA Astrophysics Data System (ADS)
Li, C. L.; Murray, J. W.; Voisey, K. T.; Clare, A. T.; McCartney, D. G.
2013-09-01
Amorphous Al-Co-Ce alloys are of interest because of their resistance to corrosion, but high cooling rates are generally required to suppress the formation of crystalline phases. In this study, the surface of a bulk crystalline Al-Co-Ce alloy of a glass-forming composition was treated using large area electron beam (LAEB) irradiation. Scanning electron microscopy shows that, compared to the microstructure of the original crystalline material, the treated surface exhibits greatly improved microstructural and compositional uniformity. Glancing angle X-ray diffraction conducted on the surface of treated samples indicates the formation of the amorphous phase following 25 and 50 pulses at 35 kV cathode voltage. However, when the samples are treated with 100 and 150 pulses at 35 kV cathode voltage of electron beam irradiation, the treated layer comprises localised crystalline regions in an amorphous matrix. In addition, the formation of cracks in the treated layer is found to be localised around the Al8Co2Ce phase in the bulk material. Overall, crack length per unit area had no clear change with an increase in the number of pulses.
Chan, W Y; Chian, K S; Tan, M J
2013-12-01
Amorphous zinc-rich Mg-Zn-Ca alloys have exhibited good tissue compatibility and low hydrogen evolution in vivo. However, suboptimal cell-surface interaction on magnesium alloy surface observed in vitro could lead to reduced integration with host tissue for regenerative purpose. This study aims to improve cell-surface interaction of amorphous Mg67Zn28Ca5 alloy by coating a gelatin layer by electrospinning. Coated/uncoated alloys were immersed and extracted for 3 days under different CO2. The immersion results showed that pH and metal ion release in the alloy extracts were affected by gelatin coating and CO2, suggesting their roles in alloy biocorrosion and a mechanism has been proposed for the alloy-CO2 system with/without coating. Cytotoxicity results are evident that gelatin-coated alloy with 2-day crosslinking not only exhibited no indirect cytotoxicity, but also supported attachment of L929 and MG63 cell lines around/on the alloy with high viability. Therefore, amorphous Mg67Zn28Ca5 alloy coated with gelatin by electrospinning technique provides a useful method to improve alloy biocompatibility. © 2013 Elsevier B.V. All rights reserved.
Shibata, Yusuke; Fujii, Makiko; Kokudai, Makiko; Noda, Shinobu; Okada, Hideko; Kondoh, Masuo; Watanabe, Yoshiteru
2007-06-01
Solid dispersion (SD) of indomethacin with crospovidone (CrosPVP) shows useful characteristics for preparation of dosage forms. This study aimed to determine the types of drugs that could adopt a stable amorphous form in SD. Twenty compounds with various melting points (70-218 degrees C), molecular weights (135-504) and functional groups (amide, amino, carbonyl, hydroxyl, ketone etc.) were prepared in SD with CrosPVP. The CrosPVP SDs were prepared using a mechanical mixing and heating method. Melting point and molecular weight were found to have no influence on the ability of a compound to maintain an amorphous state in SD. All compounds containing hydrogen-bond-donor functional groups existed in an amorphous state in SD for at least 6 months. Infrared spectra suggested an interaction between the functional groups of these compounds and amide carbonyl group of CrosPVP. Compounds without hydrogen-bond-donor groups could not maintain an amorphous state and underwent recrystallization within 1 month. It was suggested that the presence of a hydrogen-bond-donor functional group in a compound is an important factor affecting the stable formation of SD with CrosPVP, which contains a hydrogen-bond acceptor.
Compatibility of the totally replaced hip. Reduction of wear by amorphous diamond coating.
Santavirta, Seppo
2003-12-01
Particulate wear debris in totally replaced hips causes adverse local host reactions. The extreme form of such a reaction, aggressive granulomatosis, was found to be a distinct condition and different from simple aseptic loosening. Reactive and adaptive tissues around the totally replaced hip were made of proliferation of local fibroblast like cells and activated macrophages. Methylmethacrylate and high-molecular-weight polyethylene were shown to be essentially immunologically inert implant materials, but in small particulate form functioned as cellular irritants initiating local biological reactions leading to loosening of the implants. Chromium-cobalt-molybdenum is the most popular metallic implant material; it is hard and tough, and the bearings of this metal are partially self-polishing. In total hip implants, prerequisites for longevity of the replaced hip are good biocompatibility of the materials and sufficient tribological properties of the bearings. The third key issue is that the bearing must minimize frictional shear at the prosthetic bone-implant interface to be compatible with long-term survival. Some of the approaches to meet these demands are alumina-on-alumina and metal-on-metal designs, as well as the use of highly crosslinked polyethylene for the acetabular component. In order to avoid the wear-based deleterious properties of the conventional total hip prosthesis materials or coatings, the present work included biological and tribological testing of amorphous diamond. Previous experiments had demonstrated that a high adhesion of tetrahedral amorphous carbon coatings to a substrate can be achieved by using mixing layers or interlayers. Amorphous diamond was found to be biologically inert, and simulator testing indicated excellent wear properties for conventional total hip prostheses, in which either the ball or both bearing surfaces were coated with hydrogen-free tetrahedral amorphous diamond films. Simulator testing with such total hip prostheses showed no measurable wear or detectable delamination after 15,000,000 test cycles corresponding to 15 years of clinical use. The present work clearly shows that wear is one of the basic problems with totally replaced hips. Diamond coating of the bearing surfaces appears to be an attractive solution to improve longevity of the totally replaced hip.
Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces
NASA Astrophysics Data System (ADS)
Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong
2004-10-01
Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.
Method and apparatus for determining minority carrier diffusion length in semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, A.R.
1984-02-21
Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPB for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 voltsmore » couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.« less
Method and apparatus for determining minority carrier diffusion length in semiconductors
Moore, Arnold R.
1984-02-21
Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.
Features of surface phase formation during case-hardening of iron- and titanium-based alloys
NASA Astrophysics Data System (ADS)
Vintaikin, B. E.; Kamynin, A. V.; Kraposhin, V. S.; Smirnov, A. E.; Terezanova, K. V.; Cherenkova, S. A.; Sheykina, V. I.
2017-11-01
The article provides a detailed analysis of formation features for surface phases in technical iron and Cr20-Ni80 alloy samples that undergo case-hardening at a temperature of 850°C for 2, 4 and 6 hours of saturation in two different environments: acetylene, and molten salt consisting of sodium tetraborate and amorphous boron. We carried out an X-ray phase analysis to determine the phase structure of surface material layers that formed as a result of the case-hardening process. We discovered that after carburising it was possible to detect Fe3C and Fe-α phases on the surface of technical iron samples, and after boriding we found FeB, Fe2B and Fe3B phases; we noted a lack of characteristic Fe-α and Fe-γ peaks on the X-ray diffraction pattern. We detected many different phases in the Cr20-Ni80 alloy after the same type of case-hardening. Titanium oxides appeared after case-hardening of titanium in air at 800°C. We provide data on surface structure of samples subjected to vacuum carburising: over a 2 to 6 hour interval, the layer thickness is a parabolic function of time. When carrying out electrolysis-free liquid boriding, increasing exposure time from 2 to 6 hours alters the thickness of the strengthened layer only slightly, so, when carrying out case-hardening, it is less efficient to increase saturation time in molten salt containing sodium tetraborate and amorphous boron.
NASA Astrophysics Data System (ADS)
Tamura, T.; Kyono, A.; Kebukawa, Y.; Takagi, S.
2017-12-01
Recently, lichens as the earliest colonizers of terrestrial habitats are recognized to accelerate the mineral degradation at the interface between lichens and surface rocks. Much interest has been therefore devoted in recent years to the weathering induced by the lichen colonization. Here, we report nano-scale observations of the interface between lichens and basaltic rock by TEM and STXM techniques. Some samples of basaltic rocks totally covered by lichens were collected from the 1986 lava flows on the northwest part of Izu-Oshima volcano, Japan. To prepare specimens for the nano-scale observation, we utilized the focused ion beam (FIB) system. The microstructure and local chemistry of the specimens were thoroughly investigated by TEM equipped with energy-dispersive X-ray spectroscopy (EDX). Chemical components and chemical heterogeneity at the interface were observed by scanning transmission X-ray microscopy (STXM) at Advanced Light Source branch line 5.3.2.2. The collected rocks were classified into the augite-pigeonite-bronzite basalt including 6 to 8% plagioclase phenocrysts. The lichens adhering to the rocks were mainly Stereocaulon vesuvianum, fruticose lichen, which are widespread over the study area. The metabolites of the Stereocaulon vesuvianum exhibited a mean pH of 4.5 and dominance by acids. The STEM-EDX observations revealed that the interface between augite and the lichen was completely covered with amorphous silica multilayer with a thickness of less than 1 µm. Ca L-edge XANES spectra of the augite showed that the energy profile of the absorption edge at 349 eV was varied with the depth from the surface, indicating that the M2 site coordination accommodating Ca2+ undergoes significant change in shape as a function of distance from the surface. This behavior results from the fact that the M2 site is more distorted and more flexible in the C2/c clinopyroxene phase. Taking into consideration that the S. vesuvianum can produce acidic organic compounds during metabolism, the amorphous silica multilayers observed at the interface were produced by mineral dissolution induced by the lichen, and formed as a pseudomorphic replacement of augite by amorphous silica.
Liao, Zhengda; Huang, Zuqiang; Hu, Huayu; Zhang, Yanjuan; Tan, Yunfang
2011-09-01
This study has focused on the pretreatment of cassava stillage residue (CSR) by mechanical activation (MA) using a self-designed stirring ball mill. The changes in surface morphology, functional groups and crystalline structure of pretreated CSR were examined by using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) under reasonable conditions. The results showed that MA could significantly damage the crystal structure of CSR, resulting in the variation of surface morphology, the increase of amorphous region ratio and hydrogen bond energy, and the decrease in crystallinity and crystalline size. But no new functional groups generated during milling, and the crystal type of cellulose in CSR still belonged to cellulose I after MA. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sculpting bespoke mountains: Determining free energies with basis expansions
NASA Astrophysics Data System (ADS)
Whitmer, Jonathan K.; Fluitt, Aaron M.; Antony, Lucas; Qin, Jian; McGovern, Michael; de Pablo, Juan J.
2015-07-01
The intriguing behavior of a wide variety of physical systems, ranging from amorphous solids or glasses to proteins, is a direct manifestation of underlying free energy landscapes riddled with local minima separated by large barriers. Exploring such landscapes has arguably become one of statistical physics's great challenges. A new method is proposed here for uniform sampling of rugged free energy surfaces. The method, which relies on special Green's functions to approximate the Dirac delta function, improves significantly on existing simulation techniques by providing a boundary-agnostic approach that is capable of mapping complex features in multidimensional free energy surfaces. The usefulness of the proposed approach is established in the context of a simple model glass former and model proteins, demonstrating improved convergence and accuracy over existing methods.
Lü, Xujie; Hu, Qingyang; Yang, Wenge; Bai, Ligang; Sheng, Howard; Wang, Lin; Huang, Fuqiang; Wen, Jianguo; Miller, Dean J; Zhao, Yusheng
2013-09-18
Pressure-induced amorphization (PIA) in single-crystal Ta2O5 nanowires is observed at 19 GPa, and the obtained amorphous Ta2O5 nanowires show significant improvement in electrical conductivity. The phase transition process is unveiled by monitoring structural evolution with in situ synchrotron X-ray diffraction, pair distribution function, Raman spectroscopy, and transmission electron microscopy. The first principles calculations reveal the phonon modes softening during compression at particular bonds, and the analysis on the electron localization function also shows bond strength weakening at the same positions. On the basis of the experimental and theoretical results, a kinetic PIA mechanism is proposed and demonstrated systematically that amorphization is initiated by the disruption of connectivity between polyhedra (TaO6 octahedra or TaO7 bipyramids) at the particular weak-bonding positions along the a axis in the unit cell. The one-dimensional morphology is well-preserved for the pressure-induced amorphous Ta2O5, and the electrical conductivity is improved by an order of magnitude compared to traditional amorphous forms. Such pressure-induced amorphous nanomaterials with unique properties surpassing those in either crystalline or conventional amorphous phases hold great promise for numerous applications in the future.
Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke.
Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang
2014-01-01
In an attempt to produce effective and lower price gaseous Hg(0) adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mn (x+) , and O=C-OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg(0). Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously.
Characteristics and Stability of Mercury Vapor Adsorption over Two Kinds of Modified Semicoke
Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang
2014-01-01
In an attempt to produce effective and lower price gaseous Hg0 adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mnx+, and O=C–OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0. Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously. PMID:25309948
Magnesium-Assisted Continuous Growth of Strongly Iron-Enriched Incisors.
Srot, Vesna; Bussmann, Birgit; Salzberger, Ute; Deuschle, Julia; Watanabe, Masashi; Pokorny, Boštjan; Jelenko Turinek, Ida; Mark, Alison F; van Aken, Peter A
2017-01-24
Teeth are an excellent example where optimally designed nanoarchitectures with precisely constructed components consist of simple compounds. Typically, these simple constituent phases with insignificant properties show mechanical property amplifications when formed into composite architectures. Material properties of functional composites are generally regulated on the nanoscale, which makes their characterization particularly demanding. Using advanced analytical and imaging transmission electron microscopy techniques, we identified innovative microstructural adjustments combined with astonishing compositional adaptations in incisors of coypu. Unique constituents, recognized as an additional amorphous Fe-rich surface layer followed by a transition zone covering pigmented enamel, provide the required structural stability to withstand repeated mechanical load. The chemically diverse Fe-rich surface layer, including ferrihydrite and iron-calcium phosphates, gives the typical orange-brown coloration to the incisors. Within the spaces between elongated hydroxyapatite crystals in the pigmented enamel, only ferrihydrite was found, implying that enamel pigmentation is a very strictly controlled process. Most significantly, an unprecedentedly high amount of Mg was measured in the amorphous flake-like material within the dentinal tubules of the incisors, suggesting the presence of a (Mg,Ca) phosphate phase. This unusually high influx of Mg into the dentin of incisors, but not molars, suggests a substantial functionality of Mg in the initial formation stages and constant growth of incisors. The present results emphasize the strong mutual correlation among the microstructure, chemical composition, and mechanical properties of mineralized dental tissues.
NASA Astrophysics Data System (ADS)
Heimann, Robert B.
2016-06-01
This contribution discusses salient properties and functions of hydroxylapatite (HA)-based plasma-sprayed coatings, including the effect on biomedical efficacy of coating thickness, phase composition and distribution, amorphicity and crystallinity, porosity and surface roughness, cohesion and adhesion, micro- and nano-structured surface morphology, and residual coating stresses. In addition, it will provide details of the thermal alteration that HA particles undergo in the extremely hot plasma jet that leads to dehydroxylated phases such as oxyhydroxylapatite (OHA) and oxyapatite (OA) as well as thermal decomposition products such as tri-(TCP) and tetracalcium phosphates (TTCP), and quenched phases such as amorphous calcium phosphate (ACP). The contribution will further explain the role of ACP during the in vitro interaction of the as-deposited coatings with simulated body fluid resembling the composition of extracellular fluid (ECF) as well as the in vivo responses of coatings to the ECF and the host tissue, respectively. Finally, it will briefly describe performance profiles required to fulfill biological functions of osteoconductive bioceramic coatings designed to improve osseointegration of hip endoprostheses and dental root implants. In large parts, the content of this contribution is a targeted review of work done by the author and his students and coworkers over the last two decades. In addition, it is considered a stepping stone toward a standard operation procedure aimed at depositing plasma-sprayed bioceramic implant coatings with optimum properties.
Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan
2017-05-01
We demonstrate a simple way to fabricate amorphous micro-rings in crystalline silicon using direct laser writing. This method is based on the fact that the phase of a thin surface layer can be changed into the amorphous phase by irradiation with a few ultrashort laser pulses (800 nm wavelength and 100 fs duration). Surface-depressed amorphous rings with a central crystalline disk can be fabricated without the need for beam shaping, featuring attractive optical, topographical, and electrical properties. The underlying formation mechanism and phase change pathway have been investigated by means of fs-resolved microscopy, identifying fluence-dependent melting and solidification dynamics of the material as the responsible mechanism. We demonstrate that the lateral dimensions of the rings can be scaled and that the rings can be stitched together, forming extended arrays of structures not limited to annular shapes. This technique and the resulting structures may find applications in a variety of fields such as optics, nanoelectronics, and mechatronics.
The Surface Properties of Teeth Treated with Resin Infiltration or Amorphous Calcium Phosphate
2012-05-04
properties of color stability and surface roughness of demineralized enamel treated with resin infiltration (ICON) or with casein phosphopeptide...amorphous calcium phosphate (MI Paste, CPP-ACP). Methods: Fifty human enamel blocks (4 x 4 mm2) were prepared. Each block was treated with 1M HCl (pH...and 5 (see Figure 2). Conclusion: The results of this study do not provide conclusive evidence that the standard of care for enamel
Toledano, Manuel; Aguilera, Fátima S; López-López, Modesto T; Osorio, Estrella; Toledano-Osorio, Manuel; Osorio, Raquel
2016-10-01
The aim of this research was to assess the ability of amalgam restorations to induce amorphous mineral precipitation at the caries-affected dentin substrate. Sound and caries-affected dentin surfaces were subjected to both Zn-free and Zn-containing dental amalgam restorations. Specimens were submitted to thermocycling (100,000 cycles/5°C-55°C, 3 months). Dentin surfaces were studied by atomic force microscopy (nanoroughness), X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive analysis, for physical and morphological surface characterization. Zn-containing amalgam placement reduced crystallinity, crystallite size, and grain size of calcium phosphate crystallites at the dentin surface. Both microstrain and nanoroughness were augmented in caries-affected dentin restored with Zn-containing amalgams. Caries-affected dentin showed the shortest mineral crystallites (11.04 nm), when Zn-containing amalgams were used for restorations, probably leading to a decrease of mechanical properties which might favor crack propagation and deformation. Sound dentin restored with Zn-free amalgams exhibited a substantial increase in length of grain particles (12.44 nm) embedded into dentin crystallites. Zn-containing amalgam placement creates dentin mineralization and the resultant mineral was amorphous in nature. Amorphous calcium phosphate provides a local ion-rich environment, which is considered favorable for in situ generation of prenucleation clusters, promotong further dentin remineralization.
Dickmann, Robin S; Strasburg, Gale M; Romsos, Dale R; Wilson, Lori A; Lai, Grace H; Huang, Hsimin
2016-03-01
Ferric orthophosphate (FePO₄) has had limited use as an iron fortificant in ready-to-eat (RTE) cereal because of its variable bioavailability, the mechanism of which is poorly understood. Even though FePO₄ has desirable sensory properties as compared to other affordable iron fortificants, few published studies have well-characterized its physicochemical properties. Semi-crystalline materials such as FePO₄ have varying degrees of molecular disorder, referred to as amorphous content, which is hypothesized to be an important factor in bioavailability. The objective of this study was to systematically measure the physicochemical factors of particle size, surface area, amorphous content, and solubility underlying the variation in FePO₄ bioavailability. Five commercial FePO₄ sources and ferrous sulfate were added to individual batches of RTE cereal. The relative bioavailability value (RBV) of each iron source, determined using the AOAC Rat Hemoglobin Repletion Bioassay, ranged from 51% to 99% (p < 0.05), which is higher than typically reported. Solubility in dilute HCl accurately predicted RBV (R² = 0.93, p = 0.008). Amorphous content measured by Dynamic Vapor Sorption ranged from 1.7% to 23.8% and was a better determinant of solubility (R² = 0.91; p = 0.0002) than surface area (R² = 0.83; p = 0.002) and median particle size (R² = 0.59; p = 0.12). The results indicate that while solubility of FePO₄ is highly predictive of RBV, solubility, in turn, is strongly linked to amorphous content and surface area. This information may prove useful for the production of FePO₄ with the desired RBV.
Dickmann, Robin S.; Strasburg, Gale M.; Romsos, Dale R.; Wilson, Lori A.; Lai, Grace H.; Huang, Hsimin
2016-01-01
Ferric orthophosphate (FePO4) has had limited use as an iron fortificant in ready-to-eat (RTE) cereal because of its variable bioavailability, the mechanism of which is poorly understood. Even though FePO4 has desirable sensory properties as compared to other affordable iron fortificants, few published studies have well-characterized its physicochemical properties. Semi-crystalline materials such as FePO4 have varying degrees of molecular disorder, referred to as amorphous content, which is hypothesized to be an important factor in bioavailability. The objective of this study was to systematically measure the physicochemical factors of particle size, surface area, amorphous content, and solubility underlying the variation in FePO4 bioavailability. Five commercial FePO4 sources and ferrous sulfate were added to individual batches of RTE cereal. The relative bioavailability value (RBV) of each iron source, determined using the AOAC Rat Hemoglobin Repletion Bioassay, ranged from 51% to 99% (p < 0.05), which is higher than typically reported. Solubility in dilute HCl accurately predicted RBV (R2 = 0.93, p = 0.008). Amorphous content measured by Dynamic Vapor Sorption ranged from 1.7% to 23.8% and was a better determinant of solubility (R2 = 0.91; p = 0.0002) than surface area (R2 = 0.83; p = 0.002) and median particle size (R2 = 0.59; p = 0.12). The results indicate that while solubility of FePO4 is highly predictive of RBV, solubility, in turn, is strongly linked to amorphous content and surface area. This information may prove useful for the production of FePO4 with the desired RBV. PMID:26938556
Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.
Omar, Chalak S; Dhenge, Ranjit M; Osborne, James D; Althaus, Tim O; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D
2015-12-30
The effect of morphology and amorphous content, of three types of lactose, on the properties of ribbon produced using roller compaction was investigated. The three types of lactose powders were; anhydrous SuperTab21AN, α-lactose monohydrate 200 M, and spray dried lactose SuperTab11SD. The morphology of the primary particles was identified using scanning electron microscopy (SEM) and the powder amorphous content was quantified using NIR technique. SEM images showed that 21AN and SD are agglomerated type of lactose whereas the 200 M is a non-agglomerated type. During ribbon production, an online thermal imaging technique was used to monitor the surface temperature of the ribbon. It was found that the morphology and the amorphous content of lactose powders have significant effects on the roller compaction behaviour and on ribbon properties. The agglomerated types of lactose produced ribbon with higher surface temperature and tensile strength, larger fragment size, lower porosity and lesser fines percentages than the non-agglomerated type of lactose. The lactose powder with the highest amorphous content showed to result in a better binding ability between the primary particles. This type of lactose produced ribbons with the highest temperature and tensile strength, and the lowest porosity and amount of fines in the product. It also produced ribbon with more smooth surfaces in comparison to the other two types of lactose. It was noticed that there is a relationship between the surface temperature of the ribbon during production and the tensile strength of the ribbon; the higher the temperature of the ribbon during production the higher the tensile strength of the ribbon. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Fathauer, R. W.; George, T.; Ksendzov, A.; Lin, T. L.; Pike, W. T.; Vasquez, R. P.; Wu, Z.-C.
1992-01-01
Simple immersion of Si in stain etches of HF:HNO3:H2O or NaNO2 in aqueous HF was used to produce films exhibiting luminescence in the visible similar to that of anodically-etched porous Si. All of the luminescent samples consist of amorphous porous Si in at least the near surface region. No evidence was found for small crystalline regions within these amorphous layers.
Surface roughness in XeF{sub 2} etching of a-Si/c-Si(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, A.A.E.; Beijerinck, H.C.W.
2005-01-01
Single wavelength ellipsometry and atomic force microscopy (AFM) have been applied in a well-calibrated beam-etching experiment to characterize the dynamics of surface roughening induced by chemical etching of a {approx}12 nm amorphous silicon (a-Si) top layer and the underlying crystalline silicon (c-Si) bulk. In both the initial and final phase of etching, where either only a-Si or only c-Si is exposed to the XeF{sub 2} flux, we observe a similar evolution of the surface roughness as a function of the XeF{sub 2} dose proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}0.2. In the transition region from the pure amorphous to themore » pure crystalline silicon layer, we observe a strong anomalous increase of the surface roughness proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}1.5. Not only the growth rate of the roughness increases sharply in this phase, also the surface morphology temporarily changes to a structure that suggests a cusplike shape. Both features suggest that the remaining a-Si patches on the surface act effectively as a capping layer which causes the growth of deep trenches in the c-Si. The ellipsometry data on the roughness are corroborated by the AFM results, by equating the thickness of the rough layer to 6 {sigma}, with {sigma} the root-mean-square variation of the AFM's distribution function of height differences. In the AFM data, the anomalous behavior is reflected in a too small value of {sigma} which again suggests narrow and deep surface features that cannot be tracked by the AFM tip. The final phase morphology is characterized by an effective increase in surface area by a factor of two, as derived from a simple bilayer model of the reaction layer, using the experimental etch rate as input. We obtain a local reaction layer thickness of 1.5 monolayer consistent with the 1.7 ML value of Lo et al. [Lo et al., Phys. Rev. B 47, 648 (1993)] that is also independent of surface roughness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moerman, David; Colbert, Adam E.; Ginger, David S., E-mail: ginger@chem.washington.edu
We study the effects of modifying indium tin oxide electrodes with ultrathin titania (TiO{sub 2}) layers grown via plasma-enhanced atomic layer deposition (PE-ALD). We find an optimal thickness of PE-ALD-grown titania by tracking performance, which initially increases, peaks, and eventually decreases with increasing TiO{sub 2} thickness. We use scanning Kelvin probe microscopy (SKPM) to measure both the local work function and its distribution as a function of TiO{sub 2} thickness. We find that the variance in contact potential difference across the surface of the film is related to either the amorphous or anatase TiO{sub 2} form. Finally, we use localmore » SKPM recombination rate experiments, supported by bulk transient photovoltage and charge extraction measurements. We show that the optimum TiO{sub 2} thickness is the one for which the carrier lifetime is the longest and the charge carrier density is the highest, when the TiO{sub 2} is amorphous, in agreement with the device measurements.« less
NASA Astrophysics Data System (ADS)
Amalric, Julien; Marchand-Brynaert, Jacqueline
2011-12-01
A novel route for chalcogenide glass surface modification is disclosed. The formation of an organic monolayer from disulfide derivatives is studied on two different glasses of formula GexAsySez by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR). The potential anchoring group is the disulfide functionality. Since thioctic acid derivatives absorb around 335 nm, an irradiation step is included, in order to favor S-S disruption. Three types of disulfide compounds are grafted onto small glass breaks for contact angle and XPS analyses. The results show effective changes of surface state. According to contact angle measurement, the deposited organic layer functionalized by a small polyethylene glycol chain leads to a more hydrophilic surface, long alkyl chain or a perfluorinated carbon chain leads to a more hydrophobic surface. XPS shows the presence at the surface of an organic layer with sulfur and ethylene oxide chains, or augmentation of organic carbons or fluorine and Csbnd F bonds. The photo-assisted grafting of the disulfides onto an ATR prism made of chalcogenide glass shows that this surface modification process does not affect infrared transparency, despite UV treatment, and accurate structural analysis can be performed.
Effect of annealing on the optical properties of amorphous Se79Te10Sb4Bi7 thin films
NASA Astrophysics Data System (ADS)
Nyakotyo, H.; Sathiaraj, T. S.; Muchuweni, E.
2017-07-01
Thin films of Se79Te10Sb4Bi7, were prepared by Electron beam deposition technique. The structure of the as-prepared and annealed films has been studied by X-ray diffraction and the surface morphology by the scanning electron microscope (SEM). These studies show that there is a gradual change in structure and the formation of some polycrystalline structures in the amorphous phases is observed when the Se79Te10Sb4Bi7 film is annealed in the temperature range of 333-393 K. The optical transmission of these films has been studied as a function of photon wavelength in the range 300-2500 nm. It has been found that the optical band gap Egopt decreased with increasing annealing temperature in the range 333-393 K. The Urbach energy (Eu), optical conductivity (σopt), imaginary (εi), and real (εr) parts of the complex dielectric constant (ε) and lattice dielectric constant (εL) were also determined. The changes noticed in optical parameters with increasing annealing temperature were explained on the basis of structural relaxation as well as change in defect states and density of localized states due to amorphous-crystalline transformation.
Enamel-like apatite crown covering amorphous mineral in a crayfish mandible
Bentov, Shmuel; Zaslansky, Paul; Al-Sawalmih, Ali; Masic, Admir; Fratzl, Peter; Sagi, Amir; Berman, Amir; Aichmayer, Barbara
2012-01-01
Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite coexist in well-defined functional layers in close proximity within the mandible. The softer amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. Our findings suggest a unique case of convergent evolution, where similar functional challenges of mastication led to independent developments of structurally and mechanically similar, apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans. PMID:22588301
Bahl, Deepak; Bogner, Robin H
2006-10-01
To quantify the effects of the ratio of indomethacin to Neusilin US2 and the processing humidity on the amorphization kinetics, stability and nature of the interaction. A porcelain jar mill with zirconia balls was used to affect conversion of the physical mixtures (48 g) of indomethacin and Neusilin US2 (in the ratios 1:1 to 1:5) to amorphous states at room temperature (25 degrees C) employing either 0% RH or 75% RH. The percent crystallinity in the samples was determined from ATR-FTIR scans chemometrically. The physical stability of these co-ground amorphous powders was evaluated at 40 degrees C/75% RH and 40 degrees C/0% RH. The lower the ratio of indomethacin to Neusilin US2, the faster is the amorphization during co-grinding. Higher humidity facilitates amorphization with a more pronounced effect at the lower ratio of indomethacin to Neusilin US2. There is further amorphization of some of the partially amorphized samples on storage at 40 degrees C/75% RH for 3 months. Hydrogen bonding and surface interaction between metal ions of Neusilin US2 and indomethacin can explain changes in the FTIR spectra. The processing humidity and the ratio of indomethacin to Neusilin US2 are important factors to be considered to affect amorphization during ball milling. Amorphous indomethacin can be stabilized by co-grinding with Neusilin US2.
Oyane, Ayako; Araki, Hiroko; Nakamura, Maki; Shimizu, Yoshiki; Shubhra, Quazi T H; Ito, Atsuo; Tsurushima, Hideo
2016-05-01
Surface-mediated gene delivery systems have many potential applications in tissue engineering. We recently fabricated an assembly consisting of DNA-amorphous calcium phosphate (DNA-ACP) nanocomposite spheres on a polymer substrate via coprecipitation in a labile supersaturated calcium phosphate (CaP) solution and demonstrated the assembly's high gene delivery efficacy. In this study, we conducted a detailed investigation of the coprecipitation process in solution and revealed that the negatively charged DNA molecules were immobilized in the ACP spheres during the initial stage of coprecipitation and functioned as both sphere-dispersing and size-regulating agents. As a result, the DNA-ACP nanocomposites grew into size-regulated submicrospheres in solution and assembled onto the substrate via gravity sedimentation. The assembled nanocomposite spheres were chemically anchored to the substrate surface through an intermediate layer of CaP-based nanoparticles that was formed heterogeneously at the substrate surface. The coprecipitation conditions, i.e., coprecipitation time and Ca and P concentrations in solution, greatly affected the state of assembly of the nanocomposite spheres, thereby influencing the gene expression level of the cells cultured on the substrate. Increasing the number density and decreasing the size of the nanocomposite spheres did not always increase the assembly's gene delivery efficacy (per surface area of the substrate) due to adverse effects on cellular viability. As demonstrated herein, controlling the coprecipitation conditions is important for designing a cell-stimulating and biocompatible scaffold surface consisting of an assembly of DNA-ACP nanocomposite spheres. Copyright © 2016 Elsevier B.V. All rights reserved.
Arsenic Sorption on TiO2 Nanoparticles: Size And Crystallinity Effects
Single solute As (III) and As (V) sorption on nano-sized amorphous and crystalline TiO2 was investigated to determine: size and crystallinity effects on arsenic sorption capacities, possible As (III) oxidation, and the nature of surface complexes. Amorphous and cryst...
Simulations of carbon sputtering in fusion reactor divertor plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marian, J; Zepeda-Ruiz, L A; Gilmer, G H
2005-10-03
The interaction of edge plasma with material surfaces raises key issues for the viability of the International Thermonuclear Reactor (ITER) and future fusion reactors, including heat-flux limits, net material erosion, and impurity production. After exposure of the graphite divertor plate to the plasma in a fusion device, an amorphous C/H layer forms. This layer contains 20-30 atomic percent D/T bonded to C. Subsequent D/T impingement on this layer produces a variety of hydrocarbons that are sputtered back into the sheath region. We present molecular dynamics (MD) simulations of D/T impacts on amorphous carbon layer as a function of ion energymore » and orientation, using the AIREBO potential. In particular, energies are varied between 10 and 150 eV to transition from chemical to physical sputtering. These results are used to quantify yield, hydrocarbon composition and eventual plasma contamination.« less
Hierarchical and non-hierarchical mineralisation of collagen
Liu, Yan; Kim, Young-Kyung; Dai, Lin; Li, Nan; Khan, Sara; Pashley, David H.; Tay, Franklin R.
2010-01-01
Biomineralisation of collagen involves functional motifs incorporated in extracellular matrix protein molecules to accomplish the objectives of stabilising amorphous calcium phosphate into nanoprecursors and directing the nucleation and growth of apatite within collagen fibrils. Here we report the use of small inorganic polyphosphate molecules to template hierarchical intrafibrillar apatite assembly in reconstituted collagen in the presence of polyacrylic acid to sequester calcium and phosphate into transient amorphous nanophases. The use of polyphosphate without a sequestration analogue resulted only in randomly-oriented extrafibrillar precipitations along the fibrillar surface. Conversely, the use of polyacrylic acid without a templating analogue resulted only in non-hierarchical intrafibrillar mineralisation with continuous apatite strands instead of discrete crystallites. The ability of using simple non-protein molecules to recapitulate different levels of structural hierarchy in mineralised collagen signifies the ultimate simplicity in Nature’s biomineralisation design principles and challenges the need for using more complex recombinant matrix proteins in bioengineering applications. PMID:21040969
Directional amorphization of boron carbide subjected to laser shock compression.
Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A
2016-10-25
Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.
Energetics of zirconia stabilized by cation and nitrogen substitution
NASA Astrophysics Data System (ADS)
Molodetsky, Irina
Tetragonal and cubic zirconia are used in advanced structural ceramics, fuel cells, oxygen sensors, nuclear waste ceramics and many other applications. These zirconia phases are stabilized at room temperature (relative to monoclinic phase for pure zirconia) by cation and nitrogen substitution. This work is aimed at a better understanding of the mechanisms of stabilization of the high-temperature zirconia. phases. Experimental data are produced on the energetics of zirconia stabilized by yttria and calcia, energetics of nitrogen-oxygen substitution in zirconia and cation doped zirconia, and energetics of x-ray amorphous zirconia. obtained by low-temperature synthesis. High-temperature oxide melt solution enables direct measurement of enthalpies of formation of these refractory oxides. The enthalpy of the monoclinic to cubic phase transition of zirconia is DeltaHm-c = 12.2 +/- 1.2 kJ/mol. For cubic phases of YSZ at low yttria contents, a straight line DeltaH f,YSZ = -(52.4 +/- 3.6)x + (12.2 +/- 1.2) approximates the enthalpy of formation as a function of the yttria content, x (0. 1 < x < 0.3). Use of the quadratic fit DeltaHf,YSZ = 126.36 x 2 - 81.29 x + 12.37 (0.1 ≲ x ≲ 0.53) indicates that yttria stabilizes the cubic phase in enthalpy at low dopant content and destabilizes the cubic phase as yttria content increases. Positive entropy of mixing in YSZ and small enthalpy of long range ordering in 0.47ZrO2-0.53YO1.5, DeltaHord = -2.4 +/- 3.0 kJ/mol, indicate presence of short range ordering in YSZ. The enthalpy of formation of calcia stabilized zirconia as a function of calcia content x, is approximated as DeltaHf,c = (-91.4 +/- 3.8) x + (13.5 +/- 1.7) kJ/mol. The enthalpy of oxygen-nitrogen substitution, DeltaHO-N, in zirconium oxynitrides is a linear function of nitrogen content. DeltaH O-N ˜ -500 kJ/mol N is for Ca (Y)-Zr-N-O and Zr-N-O oxynitrides and DeltaHO-N ˜ -950 kJ/mol N is for Mg-Zr-N-O oxynitrides. X-ray amorphous zirconia is 58.6 +/- 3.3 kJ/mol less stable in enthalpy than monoclinic zirconia. The difference between the surface energies of amorphous and tetragonal zirconia phases is ˜1.19 +/- 0.05 J/m2, with a lower surface energy for the amorphous material.
Mechanism of wiggling enhancement due to HBr gas addition during amorphous carbon etching
NASA Astrophysics Data System (ADS)
Kofuji, Naoyuki; Ishimura, Hiroaki; Kobayashi, Hitoshi; Une, Satoshi
2015-06-01
The effect of gas chemistry during etching of an amorphous carbon layer (ACL) on wiggling has been investigated, focusing especially on the changes in residual stress. Although the HBr gas addition reduces critical dimension loss, it enhances the surface stress and therefore increases wiggling. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the increase in surface stress was caused by hydrogenation of the ACL surface with hydrogen radicals. Three-dimensional (3D) nonlinear finite element method analysis confirmed that the increase in surface stress is large enough to cause the wiggling. These results also suggest that etching with hydrogen compound gases using an ACL mask has high potential to cause the wiggling.
Grazing incidence X-ray absorption characterization of amorphous Zn-Sn-O thin film
NASA Astrophysics Data System (ADS)
Moffitt, S. L.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.
2016-05-01
We report a surface structure study of an amorphous Zn-Sn-O (a-ZTO) transparent conducting film using the grazing incidence X-ray absorption spectroscopy technique. By setting the measuring angles far below the critical angle at which the total external reflection occurs, the details of the surface structure of a film or bulk can be successfully accessed. The results show that unlike in the film where Zn is severely under coordinated (N < 4), it is fully coordinated (N = 4) near the surface while the coordination number around Sn is slightly smaller near the surface than in the film. Despite a 30% Zn doping, the local structure in the film is rutile-like.
Friction and wear of some ferrous-base metallic glasses
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1983-01-01
Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.
Friction and wear of some ferrous-base metallic glasses
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1984-01-01
Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.
Ghodsi, Mohammadi Ziarani; Shakiba Nahad, Monireh; Lashgari, Negar; Alireza, Badiei
2015-01-01
Octakis(1-propyl-1H-1,2,3-triazole-4-yl(methyl 2-chlorobenzoate))octasilsesquioxanes as functionalized silsesquioxanes were synthesized via click reaction (copper-catalyzed Huisgen 1,3-dipolar cycloaddition reaction) between azidemoiety functionalized silsesquioxane and prop-2-ynyl 2-chlorobenzoate. The latter one was synthesized via the condensation reaction of propargyl alcohol and 2-chlorobenzoyl chloride in the presence of SBA-Pr-NH(2) (Santa Barbara Amorphous type material) as a nano basic catalyst. This approach provides a simple and convenient route to efficiently functionalize a wide range of new structures on the surface of silsesquioxanes.
Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy
ERIC Educational Resources Information Center
Bogle, Stephanie Nicole
2009-01-01
Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…
The Structure of Liquid and Amorphous Hafnia.
Gallington, Leighanne C; Ghadar, Yasaman; Skinner, Lawrie B; Weber, J K Richard; Ushakov, Sergey V; Navrotsky, Alexandra; Vazquez-Mayagoitia, Alvaro; Neuefeind, Joerg C; Stan, Marius; Low, John J; Benmore, Chris J
2017-11-10
Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf-O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that show density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf-Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf-Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO 6,7 polyhedra resembling that observed in the monoclinic phase.
The Structure of Liquid and Amorphous Hafnia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallington, Leighanne; Ghadar, Yasaman; Skinner, Lawrie
Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that showmore » density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO 6,7 polyhedra resembling that observed in the monoclinic phase.« less
The Structure of Liquid and Amorphous Hafnia
Gallington, Leighanne; Ghadar, Yasaman; Skinner, Lawrie; ...
2017-11-10
Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that showmore » density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO 6,7 polyhedra resembling that observed in the monoclinic phase.« less
Sharp, Kenneth G.; D'Errico, John J.
1988-01-01
The invention relates to a method of forming amorphous, photoconductive, and semiconductive silicon films on a substrate by the vapor phase thermal decomposition of a fluorohydridodisilane or a mixture of fluorohydridodisilanes. The invention is useful for the protection of surfaces including electronic devices.
NASA Astrophysics Data System (ADS)
Godet, Christian; David, Denis
2017-12-01
Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged < ɛ ( q, ω) > q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) < Im[-1/ ɛ ( q, ω)] > q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.
Werner, L; Shugar, J K; Apple, D J; Pandey, S K; Escobar-Gomez, M; Visessook, N; Evans, B B
2000-11-01
To report the pathological and ultrastructural features and interval surgical management of an atypical case of opacification between piggyback intraocular lenses (IOLs). Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, and Nature Coast EyeCare Institute and Surgery Center, Perry, Florida, USA. Opacification between 2 acrylic piggyback lenses was observed 16 months after implantation, with decreased best corrected visual acuity and a hyperopic shift. Elschnig pearls were observed in the peripheral interface between the lenses, and the central interface was occupied by an amorphous material. The pearls were surgically aspirated, but attempts to remove the central material were unsuccessful. The lenses were explanted and sent to the laboratory. Staining with hematoxylin and eosin (H&E), examination under a light microscope, and scanning electron microscopic analysis were performed. The surfaces of the anterior IOL were relatively clear. The amorphous material, mostly attached to the center of the anterior surface of the posterior IOL, was homogeneously stained with H&E. No cell nucleus was observed in this region. Scanning electron microscopy showed that the IOL edge presented a smooth, regular surface relatively free of deposits. The most central region was covered by an irregular layer of an amorphous compact material with some cracks, fissures, or both on its surface. Although the exact composition of the material between the lenses could not be established, hypotheses were advanced to understand the pathological mechanism associated with this condition. This case is different from those in previous reports of opacification composed of cortex and cells between piggyback IOLs.
Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sifontes, Ángela B., E-mail: asifonte@ivic.gob.ve; González, Gema; Tovar, Leidy M.
2013-02-15
Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m{sup 2} g{sup −1}. -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N{sub 2} adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity,more » respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m{sup 2} g{sup −1}.« less
Moghimian, Pouya; Srot, Vesna; Rothenstein, Dirk; Facey, Sandra J; Harnau, Ludger; Hauer, Bernhard; Bill, Joachim; van Aken, Peter A
2014-09-30
A versatile method for the directional assembly of M13 phage using amorphous carbon and SiO2 thin films was demonstrated. A high affinity of the M13 phage macromolecules for incorporation into aligned structures on an amorphous carbon surface was observed at the concentration range, in which the viral nanofibers tend to disorder. In contrast, the viral particles showed less freedom to adopt an aligned orientation on SiO2 films when deposited in close vicinity. Here an interpretation of the role of the carbon surface in significant enhancement of adsorption and generation of viral arrays with a high orientational order was proposed in terms of surface chemistry and competitive electrostatic interactions. This study suggests the use of amorphous carbon substrates as a template for directional organization of a closely-packed and two-dimensional M13 viral film, which can be a promising route to mineralize a variety of smooth and homogeneous inorganic nanostructure layers.
NASA Technical Reports Server (NTRS)
Heinemann, K.; Poppa, H.
1975-01-01
Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single crystalline thin graphite substrates were studied by in-situ transmission electron microscopy (TEM) under controlled environmental conditions (residual gas pressure of 10 to the minus 9th power torr) in the temperature range from 25 to 450 C. Sputter cleaning of the substrate surface, metal deposition, and annealing were monitored by TEM observation. Pseudostereographic presentation of micrographs in different annealing stages, the observation of the annealing behavior at cast shadow edges, and measurements with an electronic image analyzing system were employed to aid the visual perception and the analysis of changes in deposit structure recorded during annealing. Slow Ostwald ripening was found to occur in the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility.
Magnetic Properties and the Giant Magnetoimpedance of Amorphous Co-Based Wires with a Carbon Coating
NASA Astrophysics Data System (ADS)
Golubeva, E. V.; Stepanova, E. A.; Balymov, K. G.; Volchkov, S. O.; Kurlyandskaya, G. V.
2018-04-01
A comparative analysis of the magnetic properties and specific features of the giant magnetoimpedance has been carried out for amorphous rapidly quenched wires with a composition of (Co0.94Fe0.06)72.5Si12.5B15 in the initial state and after the deposition of a carbon coating. The deposition of the defective graphene-like carbon layer was carried out under normal conditions during the exposure in toluene (methylbenzene). The method of the energy-dispersive X-ray spectroscopy made it possible to reliably show that after the modification in toluene, the carbon content on the surface significantly exceeds the natural amount of carbon. The deposition of the carbon coating induced changes in the distribution of the initial quenching stresses in the near-surface layer of amorphous wires. A comparative analysis of the magnetic and magnetoimpedance properties of the samples before and after exposure in the aromatic solvent confirms the occurrence of changes in the effective magnetic anisotropy as a result of this surface treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccard, Mathieu; Holman, Zachary C.
Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide beingmore » shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
Ji, Xuqiang; Hao, Shuai; Qu, Fengli; Liu, Jingquan; Du, Gu; Asiri, Abdullah M; Chen, Liang; Sun, Xuping
2017-06-14
The exploration of high-performance and earth-abundant water oxidation catalysts operating under mild conditions is highly attractive and challenging. In this communication, core-shell CoFe 2 O 4 @Co-Fe-Bi nanoarray on carbon cloth (CoFe 2 O 4 @Co-Fe-Bi/CC) was successfully fabricated by in situ surface amorphization of CoFe 2 O 4 nanoarray on CC (CoFe 2 O 4 /CC). As a 3D water oxidation electrode, CoFe 2 O 4 @Co-Fe-Bi/CC shows outstanding activity with an overpotential of 460 mV to drive a geometrical catalytic current density of 10 mA cm -2 in 0.1 M potassium borate (pH 9.2). Notably, it also demonstrates superior long-term durability for at least 20 h with 96% Faradic efficiency. Density functional theory calculations indicate that the conversion from OOH* to O 2 is the rate-limiting step and the high water oxidation activity of CoFe 2 O 4 @Co-Fe-Bi/CC is associated with the lower free energy of 1.84 eV on a Co-Fe-Bi shell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, A.; Tanenbaum, D.; Laracuente, A.
1995-08-01
Properties of the hydrogenated amorphous silicon (a-Si:H) films used in photovoltaic (PV) panels are reported. The atomic-scale topology of the surface of intrinsic a-Si:H films, measured by scanning tunneling microscopy (STM) as a function of film thickness, are reported and diagnosed. For 1-500-nm-thick films deposited under normal device-quality conditions from silane discharges, most portions of these surfaces are uniformly hilly without indications of void regions. However, the STM images indicate that 2-6-nm silicon particulates are continuously deposited into the growing film from the discharge and fill approximately 0.01% of the film volume. Although the STM data are not sensitive tomore » the local electronic properties near these particulates, it is very likely that the void regions grow around them and have a deleterious effect on a-Si:H photovoltaics. Preliminary observations of particulates in the discharge, based on light scattering, confirm that particulates are present in the discharge and that many collect and agglomerate immediately downstream of the electrodes. Progress toward STM measurements of the electronic properties of cross-sectioned a-Si:H PV cells is also reported.« less
Li, Hao; Xu, Qun; Wang, Xuzhe; Liu, Wei
2018-06-07
Surface-enhanced Raman spectroscopy (SERS) based on plasmonic semiconductive material has been proved to be an efficient tool to detect trace of substances, while the relatively weak plasmon resonance compared with noble metal materials restricts its practical application. Herein, for the first time a facile method to fabricate amorphous H x MoO 3 quantum dots with tunable plasmon resonance is developed by a controlled oxidization route. The as-prepared amorphous H x MoO 3 quantum dots show tunable plasmon resonance in the region of visible and near-infrared light. Moreover, the tunability induced by SC CO 2 is analyzed by a molecule kinetic theory combined with a molecular thermodynamic model. More importantly, the ultrahigh enhancement factor of amorphous H x MoO 3 quantum dots detecting on methyl blue can be up to 9.5 × 10 5 with expending the limit of detection to 10 -9 m. Such a remarkable porperty can also be found in this H x MoO 3 -based sensor with Rh6G and RhB as probe molecules, suggesting that the amorphous H x MoO 3 quantum dot is an efficient candidate for SERS on molecule detection in high precision. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directional amorphization of boron carbide subjected to laser shock compression
Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.
2016-01-01
Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C. PMID:27733513
Directional amorphization of boron carbide subjected to laser shock compression
Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; ...
2016-10-12
Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. When using high-power pulsed-laser-driven shock compression, an unprecedented high strain rates can be achieved; we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45~50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. We also propose that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversionmore » calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4C.« less
In situ observation of shear-driven amorphization in silicon crystals.
He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X
2016-10-01
Amorphous materials are used for both structural and functional applications. An amorphous solid usually forms under driven conditions such as melt quenching, irradiation, shock loading or severe mechanical deformation. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.
NASA Astrophysics Data System (ADS)
Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang
2018-03-01
This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.
NASA Astrophysics Data System (ADS)
Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang
2018-06-01
This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.
NASA Astrophysics Data System (ADS)
Ferreira, F. V.; Mariano, M.; Rabelo, S. C.; Gouveia, R. F.; Lona, L. M. F.
2018-04-01
This work presents the isolation and functionalization of cellulose nanocrystals (CNCs) extracted from sugarcane bagasse (SCB). CNCs were obtained by acid hydrolysis of bleached bagasse pulp and functionalized with adipic acid. The results showed that unmodified CNCs exhibit both a high crystallinity index and a significant aspect ratio. Surface modification with adipic acid decreases the nanocrystal dimensions due to removal of the amorphous region between the crystalline domains and also changes the electrostatic repulsion and hydrophilic affinity of CNCs. Unmodified CNCs offer potential applications as reinforcing phase in hydrophilic polymeric matrices, while modified CNCs interact better with hydrophobic matrices. The use of CNCs as reinforcement in polymer nanocomposites expands the application of this renewable material and increases its added value, providing nonenergy-based markets for the main biomass of the sugarcane industry.
Scanning electron microscopy of the surfaces of ion implanted SiC
NASA Astrophysics Data System (ADS)
Malherbe, Johan B.; van der Berg, N. G.; Kuhudzai, R. J.; Hlatshwayo, T. T.; Thabethe, T. T.; Odutemowo, O. S.; Theron, C. C.; Friedland, E.; Botha, A. J.; Wendler, E.
2015-07-01
This paper gives a brief review of radiation damage caused by particle (ions and neutrons) bombardment in SiC at different temperatures, and its annealing, with an expanded discussion on the effects occurring on the surface. The surface effects were observed using SEM (scanning electron microscopy) with an in-lens detector and EBSD (electron backscatter diffraction). Two substrates were used, viz. single crystalline 6H-SiC wafers and polycrystalline SiC, where the majority of the crystallites were 3C-SiC. The surface modification of the SiC samples by 360 keV ion bombardment was studied at temperatures below (i.e. room temperature), just at (i.e. 350 °C), or above (i.e. 600 °C) the critical temperature for amorphization of SiC. For bombardment at a temperature at about the critical temperature an extra step, viz. post-bombardment annealing, was needed to ascertain the microstructure of bombarded layer. Another aspect investigated was the effect of annealing of samples with an ion bombardment-induced amorphous layer on a 6H-SiC substrate. SEM could detect that this layer started to crystalize at 900 °C. The resulting topography exhibited a dependence on the ion species. EBSD showed that the crystallites forming in the amorphized layer were 3C-SiC and not 6H-SiC as the substrate. The investigations also pointed out the behaviour of the epitaxial regrowth of the amorphous layer from the 6H-SiC interface.
The magnetic properties of a magnetic detector using oxidized amorphous Co 95- xFe 5(BSi) x alloys
NASA Astrophysics Data System (ADS)
Ahn, S. J.; Kim, C. K.; Kim, S. J.; Choi, D. K.; O'Handley, R. C.
2000-07-01
A comparative oxidation study of several amorphous Co 75- xFe 5(BSi) 20+ x alloys was carried out. Reentrant magnetization behavior and field-induced anisotropy which are of a critical importance for a magnetic detector were obtained after oxidation of the amorphous Co-rich ribbons. During this oxidation, the ribbons develop surface oxides which are primarily nonmagnetic borosilicate or a combination of borosilicate and magnetic oxides such CoO or FeO. Beneath this lies a 100-1000 Å thick Co-rich magnetic alloy which may be either HCP or FCC in its crystal structure. The thickness of the Co-crystallized layer is determined by the type of the surface oxides. The oxidation products such as appear to affect the reentrant magnetization behavior of Co-rich amorphous alloys significantly. We have determined the amount of metalloids (a critical concentration of B and Si) which is necessary to form a continuous layer of the most thermodynamically stable oxide, in our case borosilicate, on the surface. We also observed that there is a good correlation between reentrant magnetization and the thickness of Co layer. The best reentrant M- H loop for the magnetic detector was obtained in ribbons with a surface borate-rich borosilicate since it ensures conditions such as (1) metalloid depletion in the substrate and (2) formation of oxygen impurity faults in Co grains that are required for strong reentrant magnetization behavior.
Molecular dynamics simulations of hydrogen bombardment of tungsten carbide surfaces
NASA Astrophysics Data System (ADS)
Träskelin, P.; Juslin, N.; Erhart, P.; Nordlund, K.
2007-05-01
The interaction between energetic hydrogen and tungsten carbide (WC) is of interest both due to the use of hydrogen-containing plasmas in thin-film manufacturing and due to the presence of WC in the divertor of fusion reactors. In order to study this interaction, we have carried out molecular dynamics simulations of the low-energy bombardment of deuterium impinging onto crystalline as well as amorphous WC surfaces. We find that prolonged bombardment leads to the formation of an amorphous WC surface layer, regardless of the initial structure of the WC sample. Loosely bound hydrocarbons, which can erode by swift chemical sputtering, are formed at the surface. Carbon-terminated surfaces show larger sputtering yields than tungsten-terminated surfaces. In both cumulative and noncumulative simulations, C is seen to sputter preferentially. Implications for mixed material erosion in ITER are discussed.
Zhang, Wei; Liu, Caihong; Zheng, Tong; Ma, Jun; Zhang, Gaosheng; Ren, Guohui; Wang, Lu; Liu, Yulei
2018-04-19
Owing to the high toxicity and mobility, the removal of arsenite (As(III)) is significantly more difficult than arsenate (As(V)), thus representing a major challenge in arsenite-contaminated water treatment. For efficient elimination of As(III), we successfully fabricated a novel Ti-Mn binary oxide via a simultaneous oxidation and coprecipitation process. The amorphous oxide was aggregated from nanosized particles with a high specific surface area of 349.5 m 2 /g. It could effectively oxidize As(III) to As(V) and had a high As(III) sorption capacity of 107.0 mg/g. As(III) sorption occurred rapidly and equilibrium was achieved within 24 h. The kinetic data was well fitted by the pseudo-second-order equation, indicating a chemical sorption process. The material was almost independent upon the presence of competitive ions. The As(III) removal by the sorbent is a combined process coupled oxidation with sorption, where the MnO 2 content is mainly responsible for oxidizing As(III) to As(V) and the formed As(V) is then adsorbed onto the surface of amorphous TiO 2 content, through replacing the surface hydroxyl group or the adsorbed As(III) and forming inner-sphere surface complexes. Furthermore, the arsenic-containing oxide could be effectively regenerated and reused. The bi-functional sorbent could be used as a potentially attractive sorbent for As(III) removal in drinking water treatment and environmental remediation. Copyright © 2018. Published by Elsevier B.V.
Leitão, E; Barbosa, M A; de Groot, K
1997-07-01
The formation of an apatite-like layer was achieved by immersing Ti-6A1-4V, Ti-Al-2.5Fe, and 316 L stainless-steel substrata in Hank's balanced salt solution (HBSS). The layer was characterized by surface analysis techniques, namely X-ray microanalysis and X-ray diffraction, and the morphology was observed by scanning electron microscopy and atomic force microscopy. The concentrations of Ca and P were monitored as a function of time. The morphology of the precipitate layer seems to be dependent both on the type of metal substrate and its surface finish. Polished Ti-6A1-4V and Ti-Al-2.5Fe surfaces exhibit a plate precipitate morphology, whereas rougher surfaces show scattered crystal-like precipitation. The results suggest that the layer produced by immersion of polished titanium alloys in HBSS is constituted by an amorphous apatite.
Surface Brillouin scattering of opaque solids and thin supported films
Comins; Every; Stoddart; Zhang; Crowhurst; Hearne
2000-03-01
Surface Brillouin scattering (SBS) has been used successfully for the study of acoustic excitations in opaque solids and thin supported films, at both ambient and high temperatures. A number of different systems have been investigated recently by SBS including crystalline silicon, amorphous silicon layers produced by ion bombardment and their high temperature recrystallisation, vanadium carbides, and a nickel-based superalloy. The most recent development includes the measurement of a supported gold film at high pressure. The extraction of the elastic constants is successfully accomplished by a combination of the angular dependence of surface wave velocities and the longitudinal wave threshold within the Lamb shoulder. The application of surface Green's function methods successfully reproduces the experimental SBS spectra. The discrepancies often observed between surface wave velocities and by ultrasonics measurements have been investigated and a detailed correction procedure for the SBS measurements has been developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria, E-mail: Valeria.Molinero@utah.edu
Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition ismore » amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.« less
NASA Astrophysics Data System (ADS)
Zhang, Huiyan; Feng, Yuping; Nieto, Daniel; García-Lecina, Eva; Mcdaniel, Clare; Díaz-Marcos, Jordi; Flores-Arias, María Teresa; Gerard M., O.'connor; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi
2016-05-01
Periodic ripple and nanoripple patterns are formed at the surface of amorphous steel after femtosecond pulsed laser irradiation (FSPLI). Formation of such ripples is accompanied with the emergence of a surface ferromagnetic behavior which is not initially present in the non-irradiated amorphous steel. The occurrence of ferromagnetic properties is associated with the laser-induced devitrification of the glassy structure to form ferromagnetic (α-Fe and Fe3C) and ferrimagnetic [(Fe,Mn)3O4 and Fe2CrO4] phases located in the ripples. The generation of magnetic structures by FSPLI turns out to be one of the fastest ways to induce magnetic patterning without the need of any shadow mask. Furthermore, local variations of the adhesion force, wettability and nanomechanical properties are also observed and compared to those of the as-cast amorphous alloy. These effects are of interest for applications (e.g., biological, magnetic recording, etc.) where both ferromagnetism and tribological/adhesion properties act synergistically to optimize material performance.
Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.
2005-05-01
Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances andmore » surface mechanical properties and possible mechanisms are suggested.« less
Semiconductor with protective surface coating and method of manufacture thereof. [Patent application
Hansen, W.L.; Haller, E.E.
1980-09-19
Passivation of predominantly crystalline semiconductor devices is provided for by a surface coating of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating of amorphous germanium onto the etched and quenched diode surface in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices, which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating compensates for pre-existing undesirable surface states as well as protecting the semiconductor device against future impregnation with impurities.
Li, Jing; Xu, Lu; Yang, Baixue; Wang, Hongyu; Bao, Zhihong; Pan, Weisan; Li, Sanming
2015-08-15
The present paper reported amino group functionalized anionic surfactant templated mesoporous silica (Amino-AMS) for loading and release of poorly water-soluble drug indomethacin (IMC) and carboxyl group functionalized cationic surfactant templated mesoporous silica (Carboxyl-CMS) for loading and release of poorly water-soluble drug famotidine (FMT). Herein, Amino-AMS and Carboxyl-CMS were facilely synthesized using co-condensation method through two types of silane coupling agent. Amino-AMS was spherical nanoparticles, and Carboxyl-CMS was well-formed spherical nanosphere with a thin layer presented at the edge. Drug loading capacity was obviously enhanced when using Amino-AMS and Carboxyl-CMS as drug carriers due to the stronger hydrogen bonding force formed between surface modified carrier and drug. Amino-AMS and Carboxyl-CMS had the ability to transform crystalline state of loaded drug from crystalline phase to amorphous phase. Therefore, IMC loaded Amino-AMS presented obviously faster release than IMC because amorphous phase of IMC favored its dissolution. The application of asymmetric membrane capsule delayed FMT release significantly, and Carboxyl-CMS favored sustained release of FMT due to its long mesoporous channels and strong interaction formed between its carboxyl group and amino group of FMT. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, S.; Aoki, Y.; Habazaki, H.
2011-07-01
Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.
Mesoscale modeling of strain induced solid state amorphization in crystalline materials
NASA Astrophysics Data System (ADS)
Lei, Lei
Solid state amorphization, and in particular crystalline to amorphous transformation, can be observed in metallic alloys, semiconductors, intermetallics, minerals, and also molecular crystals when they undergo irradiation, hydrogen gas dissolution, thermal interdiffusion, mechanical alloying, or mechanical milling. Although the amorphization mechanisms may be different, the transformation occurs due to the high level of disorder introduced into the material. Milling induced solid state amorphization is proposed to be the result of accumulation of crystal defects, specifically dislocations, as the material is subjected to large deformations during the high energy process. Thus, understanding the deformation mechanisms of crystalline materials will be the first step in studying solid state amorphization in crystalline materials, which not only has scientific contributions, but also technical consequences. A phase field dislocation dynamics (PFDD) approach is employed in this work to simulate plastic deformation of molecular crystals. This PFDD model has the advantage of tracking all of the dislocations in a material simultaneously. The model takes into account the elastic interaction between dislocations, the lattice resistance to dislocation motion, and the elastic interaction of dislocations with an external stress field. The PFDD model is employed to describe the deformation of molecular crystals with pharmaceutical applications, namely, single crystal sucrose, acetaminophen, gamma-indomethacin, and aspirin. Stress-strain curves are produced that result in expected anisotropic material response due to the activation of different slip systems and yield stresses that agree well with those from experiments. The PFDD model is coupled to a phase transformation model to study the relation between plastic deformation and the solid state amorphization of crystals that undergo milling. This model predicts the amorphous volume fraction in excellent agreement with experimental observation. Finally, we incorporate the effect of stress free surfaces to model the behavior of dislocations close to these surfaces and in the presence of voids.
Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco
2012-10-01
We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.
CO Diffusion into Amorphous H2O Ices
NASA Astrophysics Data System (ADS)
Lauck, Trish; Karssemeijer, Leendertjan; Shulenberger, Katherine; Rajappan, Mahesh; Öberg, Karin I.; Cuppen, Herma M.
2015-03-01
The mobility of atoms, molecules, and radicals in icy grain mantles regulates ice restructuring, desorption, and chemistry in astrophysical environments. Interstellar ices are dominated by H2O, and diffusion on external and internal (pore) surfaces of H2O-rich ices is therefore a key process to constrain. This study aims to quantify the diffusion kinetics and barrier of the abundant ice constituent CO into H2O-dominated ices at low temperatures (15-23 K), by measuring the mixing rate of initially layered H2O(:CO2)/CO ices. The mixed fraction of CO as a function of time is determined by monitoring the shape of the infrared CO stretching band. Mixing is observed at all investigated temperatures on minute timescales and can be ascribed to CO diffusion in H2O ice pores. The diffusion coefficient and final mixed fraction depend on ice temperature, porosity, thickness, and composition. The experiments are analyzed by applying Fick’s diffusion equation under the assumption that mixing is due to CO diffusion into an immobile H2O ice. The extracted energy barrier for CO diffusion into amorphous H2O ice is ˜160 K. This is effectively a surface diffusion barrier. The derived barrier is low compared to current surface diffusion barriers in use in astrochemical models. Its adoption may significantly change the expected timescales for different ice processes in interstellar environments.
Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu
2017-01-01
Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID). PMID:28079165
NASA Astrophysics Data System (ADS)
Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu
2017-01-01
Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).
NASA Astrophysics Data System (ADS)
Pilarczyk, Wirginia
2016-06-01
Metallic glasses exhibit metastable structure and maintain this relatively stable amorphous state within certain temperature range. High intensity laser beam was used for the surface irradiation of Fe-Co-B-Si-Nb bulk metallic glasses. The variable parameter was laser beam pulse energy. For the analysis of structure and properties of bulk metallic glasses and their surface after laser remelting the X-ray analysis, microscopic observation and test of mechanical properties were carried out. Examination of the nanostructure of amorphous materials obtained by high pressure copper mold casting method and the irradiated with the use of TITAN 80-300 HRTEM was carried out. Nanohardness and reduced Young's modulus of particular amorphous and amorphous-crystalline material zone of the laser beam were examined with the use of Hysitron TI950 Triboindenter nanoindenter and with the use of Berkovich's indenter. The XRD and microscopic analysis showed that the test material is amorphous in its structure before irradiation. Microstructure observation with electron transmission microscopy gave information about alloy crystallization in the irradiated process. Identification of given crystal phases allows to determine the kind of crystal phases created in the first place and also further changes of phase composition of alloy. The main value of the nanohardness of the surface prepared by laser beam has the order of magnitude similar to bulk metallic glasses formed by casting process irrespective of the laser beam energy used. Research results analysis showed that the area between parent material and fusion zone is characterized by extraordinarily interesting structure which is and will be the subject of further analysis in the scope of bulk metallic glasses amorphous structure and high energy concentration source. The main goal of this work is the results' presentation of structure and chosen properties of the selected bulk metallic glasses after casting process and after irradiation process employing the high energy concentration sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, J.; Sun, C.; Dholabhai, P. P.
A potentially enhanced radiation resistance of nanocrystalline materials, as a consequence of the high density of interfaces and surfaces, has attracted much attention both to understand the fundamental role of these defect sinks and to develop them for high-radiation environments. Here, irradiation response of nanocrystalline A 2Ti 2O 7 (A = Gd, Ho and Lu) pyrochlore powders with grain sizes of 20–30 nm was investigated by 1-MeV Kr 2+ ion bombardment. In situ transmission electron microscopy (TEM) revealed that the critical amorphization fluence for each nanocrystalline compound at room temperature was greater than that for their coarse-grained counterparts, indicating anmore » enhanced amorphization resistance. The effect of temperature on the irradiation response of one of these compounds, nanocrystalline Lu 2Ti 2O 7, was further examined by performing ion irradiation at an elevated temperature range of 480–600 K. The critical amorphization temperature (T c) was found to be noticeably higher in nanocrystalline Lu 2Ti 2O 7 (610 K) than its coarse-grained counterpart (480 K), revealing that nanocrystalline Lu 2Ti 2O 7 is less resistant to amorphization compared to its coarse-grained phase under high temperatures. We interpret these results with the aid of atomistic simulations. Molecular statics calculations find that cation antisite defects are less energetically costly to form near surfaces than in the bulk, suggesting that the nanocrystalline form of these materials is generally less susceptible to amorphization than coarse-grained counterparts at low temperatures where defect kinetics are negligible. In contrast, at high temperatures, the annealing efficiency of antisite defects by cation interstitials is significantly reduced due to the sink properties of the surfaces in the nanocrystalline pyrochlore, which contributes to the observed higher amorphization temperature in the nano-grained phase than in coarse-grained counterpart. Altogether, these results provide new insight into the behavior of nanocrystalline materials under irradiation.« less
Wen, J.; Sun, C.; Dholabhai, P. P.; ...
2016-03-21
A potentially enhanced radiation resistance of nanocrystalline materials, as a consequence of the high density of interfaces and surfaces, has attracted much attention both to understand the fundamental role of these defect sinks and to develop them for high-radiation environments. Here, irradiation response of nanocrystalline A 2Ti 2O 7 (A = Gd, Ho and Lu) pyrochlore powders with grain sizes of 20–30 nm was investigated by 1-MeV Kr 2+ ion bombardment. In situ transmission electron microscopy (TEM) revealed that the critical amorphization fluence for each nanocrystalline compound at room temperature was greater than that for their coarse-grained counterparts, indicating anmore » enhanced amorphization resistance. The effect of temperature on the irradiation response of one of these compounds, nanocrystalline Lu 2Ti 2O 7, was further examined by performing ion irradiation at an elevated temperature range of 480–600 K. The critical amorphization temperature (T c) was found to be noticeably higher in nanocrystalline Lu 2Ti 2O 7 (610 K) than its coarse-grained counterpart (480 K), revealing that nanocrystalline Lu 2Ti 2O 7 is less resistant to amorphization compared to its coarse-grained phase under high temperatures. We interpret these results with the aid of atomistic simulations. Molecular statics calculations find that cation antisite defects are less energetically costly to form near surfaces than in the bulk, suggesting that the nanocrystalline form of these materials is generally less susceptible to amorphization than coarse-grained counterparts at low temperatures where defect kinetics are negligible. In contrast, at high temperatures, the annealing efficiency of antisite defects by cation interstitials is significantly reduced due to the sink properties of the surfaces in the nanocrystalline pyrochlore, which contributes to the observed higher amorphization temperature in the nano-grained phase than in coarse-grained counterpart. Altogether, these results provide new insight into the behavior of nanocrystalline materials under irradiation.« less
Oriented niobate ferroelectric thin films for electrical and optical devices
Wessels, Bruce W.; Nystrom, Michael J.
2001-01-01
Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.
Evidence for a shear horizontal resonance in supported thin films
NASA Astrophysics Data System (ADS)
Zhang, X.; Manghnani, M. H.; Every, A. G.
2000-07-01
We report evidence for a different type of acoustic film excitation, identified as a shear horizontal resonance, in amorphous silicon oxynitride films on GaAs substrate. Observation of this excitation has been carried out using surface Brillouin scattering of light. A Green's function formalism is used for analyzing the experimental spectra, and successfully simulates the spectral features associated with this mode. The attributes of this mode are described; these include its phase velocity which is nearly equal to that of a bulk shear wave propagating parallel to the surface and is almost independent of film thickness and scattering angle, its localization mainly in the film, and its polarization in the shear horizontal direction.
Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.
Gao, Zhengxin; Zhai, Xianglin; Liu, Feng; Zhang, Ming; Zang, Deli; Wang, Chengyu
2015-09-05
A composite filter paper with super-hydrophobicity was obtained by adhering micro/nano structure of amorphous titanium dioxide on the filter paper surface with modifying low surface energy material. By virtue of the coupling agent, which plays an important part in bonding amorphous titanium dioxide and epoxy resin, the structure of super-hydrophobic thin film on the filter paper surface is extremely stable. The microstructure of super-hydrophobic filter paper was characterized by scanning electron microscopy (SEM), the images showed that the as-prepared filter paper was covered with uniform amorphous titanium dioxide particles, generating a roughness structure on the filter paper surface. The super-hydrophobic performance of the filter paper was characterized by water contact angle measurements. The observations showed that the wettability of filter paper samples transformed from super-hydrophilicity to super-hydrophobicity with the water contact angle of 153 ± 1°. Some experiments were also designed to test the effect of water-oil separation and UV-resistant by the super-hydrophobic filter paper. The prepared super-hydrophobic filter paper worked efficiently and simply in water-oil separation as well as enduringly in anti-UV property after the experiments. This method offers an opportunity to the practical applications of the super-hydrophobic filter paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
Iwata, Masanori; Teshima, Midori; Seki, Takahiro; Yoshioka, Shinya; Takeoka, Yukikazu
2017-07-01
Inspired by Steller's jay, which displays angle-independent structural colors, angle-independent structurally colored materials are created, which are composed of amorphous arrays of submicrometer-sized fine spherical silica colloidal particles. When the colloidal amorphous arrays are thick, they do not appear colorful but almost white. However, the saturation of the structural color can be increased by (i) appropriately controlling the thickness of the array and (ii) placing the black background substrate. This is similar in the case of the blue feather of Steller's jay. Based on the knowledge gained through the biomimicry of structural colored materials, colloidal amorphous arrays on the surface of a black particle as the core particle are also prepared as colorful photonic pigments. Moreover, a structural color on-off system is successfully built by controlling the background brightness of the colloidal amorphous arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene.
Michałowski, Paweł Piotr; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek
2018-07-27
Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp 2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 10 14 atoms cm -2 ) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.
Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene
NASA Astrophysics Data System (ADS)
Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek
2018-07-01
Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.
Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia
2017-01-01
Recently, amorphous alloys have attracted many researchers’ attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil. PMID:28772886
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccard, Mathieu; Holman, Zachary C.
With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
Boccard, Mathieu; Holman, Zachary C.
2015-08-14
With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia
2017-05-12
Recently, amorphous alloys have attracted many researchers' attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil.
Amorphous Silica Micro Powder Additive Influence on Tensile Strength of One-Ply Particle Board
NASA Astrophysics Data System (ADS)
Pitukhin, A. V.; Kolesnikov, G. N.; Panov, N. G.; Vasilyev, S. B.
2018-03-01
The methods and results of experimental investigation on the additive influence of amorphous silica micro powder when mixed in the glue for one-ply particle board are presented in the article. Wooden particles of coniferous and hardwood species as well as glue solution based on carbamide-formaldehyde resin were used for boards manufacturing. The amorphous silica micro powder contained particles on the average 8 μm by the size and specific surface 120…400 m2/g was used in experiment. The samples were tested to determine their physical-mechanical properties. It was found that 1 % amorphous silica micro powder additive increases the breaking point of one-ply particle board under tensile stress by 143 %.
Large-Scale Structure and Hyperuniformity of Amorphous Ices
NASA Astrophysics Data System (ADS)
Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto
2017-09-01
We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.
Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy
NASA Astrophysics Data System (ADS)
Zhang, Y.; Liu, L.; Zou, G.; Chen, N.; Wu, A.; Bai, H.; Zhou, Y.
2015-01-01
In this study, the femtosecond laser-induced crystallization of CuNiSnP amorphous ribbons was investigated by utilizing an amplified Ti:sapphire laser system. X-ray diffraction and scanning electronic microscope were applied to examine the phase and morphology changes of the amorphous ribbons. Micromachining without crystallization, surface patterning, and selective crystallization were successfully achieved by changing laser parameters. Obvious crystallization occurred under the condition that the laser fluence was smaller than the ablation threshold, indicating that the structural evolution of the material depends strongly on the laser parameters. Back cooling method was used to inhibit heat accumulation; a reversible transformation between the disordered amorphous and crystalline phases can be achieved by using this method.
Ye, Chang; Zhou, Xianfeng; Telang, Abhishek; Gao, Hongyu; Ren, Zhencheng; Qin, Haifeng; Suslov, Sergey; Gill, Amrinder S; Mannava, S R; Qian, Dong; Doll, Gary L; Martini, Ashlie; Sahai, Nita; Vasudevan, Vijay K
2016-01-01
We report herein the effects of Ultrasonic Nano-crystal Surface Modification (UNSM), a severe surface plastic deformation process, on the microstructure, mechanical (hardness, wear), wettability and biocompatibility properties of NiTi shape memory alloy. Complete surface amorphization of NiTi was achieved by this process, which was confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The wear resistance of the samples after UNSM processing was significantly improved compared with the non-processed samples due to increased surface hardness of the alloy by this process. In addition, cell culture study demonstrated that the biocompatibility of the samples after UNSM processing has not been compromised compared to the non-processed sample. The combination of high wear resistance and good biocompatibility makes UNSM an appealing process for treating alloy-based biomedical devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Small nanoparticles, surface geometry and contact forces.
Takato, Yoichi; Benson, Michael E; Sen, Surajit
2018-03-01
In this molecular dynamics study, we examine the local surface geometric effects of the normal impact force between two approximately spherical nanoparticles that collide in a vacuum. Three types of surface geometries-(i) crystal facets, (ii) sharp edges, and (iii) amorphous surfaces of small nanoparticles with radii R <10 nm-are considered. The impact forces are compared with their macroscopic counterparts described by nonlinear contact forces based on Hertz contact mechanics. In our simulations, edge and amorphous surface contacts with weak surface energy reveal that the average impact forces are in excellent agreement with the Hertz contact force. On the other hand, facet collisions show a linearly increasing force with increasing compression. Our results suggest that the nearly spherical nanoparticles are likely to enable some nonlinear dynamic phenomena, such as breathers and solitary waves observed in granular materials, both originating from the nonlinear contact force.
NASA Astrophysics Data System (ADS)
Godelitsas, A.; Kokkoris, M.; Chatzitheodoridis, E.; Misaelides, P.
2008-05-01
The surface of a typical Greek (Thassian) dolomitic marble was studied after interaction with U- and Th-containing aqueous solutions (1000 mg/L, free-drift experiments for 1 week at atmospheric PCO2), using 12C-RBS and Laser μ-Raman spectroscopy. Powder-XRD and SEM-EDS were also applied to investigate the phases deposited on the surface of the interacted samples. The obtained results indicated a considerable removal of U from the aqueous medium mainly due to massive surface precipitation of amorphous UO2-hydroxide phases forming a relatively thick (μm-sized) coating on the carbonate substrate. The interaction of Th with dolomitic marble surface is also intense leading to a formation of an amorphous Th-hydroxide layer of similar thickness but of significantly lower elemental atomic proportion.
Size effect on atomic structure in low-dimensional Cu-Zr amorphous systems.
Zhang, W B; Liu, J; Lu, S H; Zhang, H; Wang, H; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z
2017-08-04
The size effect on atomic structure of a Cu 64 Zr 36 amorphous system, including zero-dimensional small-size amorphous particles (SSAPs) and two-dimensional small-size amorphous films (SSAFs) together with bulk sample was investigated by molecular dynamics simulations. We revealed that sample size strongly affects local atomic structure in both Cu 64 Zr 36 SSAPs and SSAFs, which are composed of core and shell (surface) components. Compared with core component, the shell component of SSAPs has lower average coordination number and average bond length, higher degree of ordering, and lower packing density due to the segregation of Cu atoms on the shell of Cu 64 Zr 36 SSAPs. These atomic structure differences in SSAPs with various sizes result in different glass transition temperatures, in which the glass transition temperature for the shell component is found to be 577 K, which is much lower than 910 K for the core component. We further extended the size effect on the structure and glasses transition temperature to Cu 64 Zr 36 SSAFs, and revealed that the T g decreases when SSAFs becomes thinner due to the following factors: different dynamic motion (mean square displacement), different density of core and surface and Cu segregation on the surface of SSAFs. The obtained results here are different from the results for the size effect on atomic structure of nanometer-sized crystalline metallic alloys.
Amorphous Metals and Composites as Mirrors and Mirror Assemblies
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)
2016-01-01
A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira, M.; Fantoni, A.; Martins, R.
1994-12-31
Using the Flying Spot Technique (FST) the authors have studied minority carrier transport parallel and perpendicular to the surface of amorphous silicon films (a-Si:H). To reduce slow transients due to charge redistribution in low resistivity regions during the measurement they have applied a strong homogeneously absorbed bias light. The defect density was estimated from Constant Photocurrent Method (CPM) measurements. The steady-state photocarrier grating technique (SSPG) is a 1-dimensional approach. However, the modulation depth of the carrier profile is also dependent on film surface properties, like surface recombination velocity. Both methods yield comparable diffusion lengths when applied to a-Si:H.
Kumar, Lokesh; Popat, Dharmesh; Bansal, Arvind K.
2011-01-01
This manuscript studied the effect of counterion on the glass transition and recrystallization behavior of amorphous salts of prazosin. Three amorphous salts of prazosin, namely, prazosin hydrochloride, prazosin mesylate and prazosin tosylate were prepared by spray drying, and characterized by optical-polarized microscopy, differential scanning calorimetry and powder X-ray diffraction. Modulated differential scanning calorimetry was used to determine the glass transition and recrystallization temperature of amorphous salts. Glass transition of amorphous salts followed the order: prazosin mesylate > prazosin tosylate ∼ prazosin hydrochloride. Amorphous prazosin mesylate and prazosin tosylate showed glass transition, followed by recrystallization. In contrast, amorphous prazosin hydrochloride showed glass transition and recrystallization simultaneously. Density Functional Theory, however, suggested the expected order of glass transition as prazosin hydrochloride > prazosin mesylate > prazosin tosylate. The counterintuitive observation of amorphous prazosin hydrochloride having lower glass transition was explained in terms of its lower activation energy (206.1 kJ/mol) for molecular mobility at Tg, compared to that for amorphous prazosin mesylate (448.5 kJ/mol) and prazosin tosylate (490.7 kJ/mol), and was further correlated to a difference in hydrogen bonding strength of the amorphous and the corresponding recrystallized salts. This study has implications in selection of an optimal amorphous salt form for pharmaceutical development. PMID:24310595
Kumar, Lokesh; Popat, Dharmesh; Bansal, Arvind K
2011-08-25
This manuscript studied the effect of counterion on the glass transition and recrystallization behavior of amorphous salts of prazosin. Three amorphous salts of prazosin, namely, prazosin hydrochloride, prazosin mesylate and prazosin tosylate were prepared by spray drying, and characterized by optical-polarized microscopy, differential scanning calorimetry and powder X-ray diffraction. Modulated differential scanning calorimetry was used to determine the glass transition and recrystallization temperature of amorphous salts. Glass transition of amorphous salts followed the order: prazosin mesylate > prazosin tosylate ~ prazosin hydrochloride. Amorphous prazosin mesylate and prazosin tosylate showed glass transition, followed by recrystallization. In contrast, amorphous prazosin hydrochloride showed glass transition and recrystallization simultaneously. Density Functional Theory, however, suggested the expected order of glass transition as prazosin hydrochloride > prazosin mesylate > prazosin tosylate. The counterintuitive observation of amorphous prazosin hydrochloride having lower glass transition was explained in terms of its lower activation energy (206.1 kJ/mol) for molecular mobility at Tg, compared to that for amorphous prazosin mesylate (448.5 kJ/mol) and prazosin tosylate (490.7 kJ/mol), and was further correlated to a difference in hydrogen bonding strength of the amorphous and the corresponding recrystallized salts. This study has implications in selection of an optimal amorphous salt form for pharmaceutical development.
Effect of radiation-induced amorphization on smectite dissolution.
Fourdrin, C; Allard, T; Monnet, I; Menguy, N; Benedetti, M; Calas, G
2010-04-01
Effects of radiation-induced amorphization of smectite were investigated using artificial irradiation. Beams of 925 MeV Xenon ions with radiation dose reaching 73 MGy were used to simulate the effects generated by alpha recoil nuclei or fission products in the context of high level nuclear waste repository. Amorphization was controlled by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. An important coalescence of the smectite sheets was observed which lead to a loss of interparticle porosity. The amorphization is revealed by a loss of long-range structure and accompanied by dehydroxylation. The dissolution rate far-from-equilibrium shows that the amount of silica in solution is two times larger in the amorphous sample than in the reference clay, a value which may be enhanced by orders of magnitude when considering the relative surface area of the samples. Irradiation-induced amorphization thus facilitates dissolution of the clay-derived material. This has to be taken into account for the safety assessment of high level nuclear waste repository, particularly in a scenario of leakage of the waste package which would deliver alpha emitters able to amorphize smectite after a limited period of time.
Adu, Kofi W; Li, Qixiu; Desai, Sharvil C; Sidorov, Anton N; Sumanasekera, Gamini U; Lueking, Angela D
2009-01-06
The response of two carbide derived carbons (CDCs) films to NH(3), N(2)O, and room air is investigated by four probe resistance at room temperature and pressures up to 760 Torr. The two CDC films were synthesized at 600 (CDC-600) and 1000 degrees C (CDC-1000) to vary the carbon morphology from completely amorphous to more ordered, and determine the role of structure, surface area, and porosity on sensor response. Sensor response time followed kinetic diameter and indicated a more ordered carbon structure slowed response due to increased tortuosity caused by the formation of graphitic layers at the particle fringe. Steady state sensor response was greater for the less-ordered material, despite its decreased surface area, decreased micropore volume, and less favorable surface chemistry, suggesting carbon structure is a stronger predictor of sensor response than surface chemistry. The lack of correlation between adsorption of the probe gases and sensor response suggests chemical interaction (charge transfer) drive sensor response within the material; N(2)O response, in particular, did not follow simple adsorption behavior. Based on Raman and FTIR characterization, carbon morphology (disorder) appeared to be the determining factor in overall sensor response, likely due to increased charge transfer between gases and carbon defects of amorphous or disordered regions. The response of the amorphous CDC-600 film to NH(3) was 45% without prior oxidation, showing amorphous CDCs have promise as chemical sensors without additional pretreatment common to other carbon sensors.
Infrared Spectra and Band Strengths of Amorphous and Crystalline N2O
NASA Technical Reports Server (NTRS)
Hudson, R. L.; Loeffler, M. J.; Gerakines, P. A.
2017-01-01
Infrared transmission spectra from 4000 to 400 cm (exp -1), and associated band strengths and absorption coefficients, are presented for the first time for both amorphous and crystalline N2O. Changes in the spectra as a function of ice thickness and ice temperature are shown. New measurements of density, refractive index, and specific refraction are reported for amorphous and crystalline N2O. Comparisons are made to published results, and the most-likely reason for some recent disagreements in the literature is discussed. As with CO2, its isoelectronic congener, the formation of amorphous N2O is found to require greater care than the formation of amorphous solids from more-polar molecules.
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kudryashov, S. I.; Levchenko, A. O.; Nguyen, L. V.; Saraeva, I. N.; Rudenko, A. A.; Ageev, E. I.; Potorochin, D. V.; Veiko, V. P.; Borisov, E. V.; Pankin, D. V.; Kirilenko, D. A.; Brunkov, P. N.
2017-09-01
High-pressure Si-XII and Si-III nanocrystalline polymorphs, as well as amorphous Si phase, appear consequently during multi-shot femtosecond-laser exposure of crystalline Si wafer surface above its spallation threshold along with permanently developing quasi-regular surface texture (ripples, microcones), residual hydrostatic stresses and subsurface damage, which are characterized by scanning and transmission electron microscopy, as well as by Raman micro-spectroscopy. The consequent yields of these structural Si phases indicate not only their spatially different appearance, but also potentially enable to track nanoscale, transient laser-induced high-pressure, high-temperature physical processes - local variation of ablation mechanism and rate, pressurization/pressure release, melting/resolidification, amorphization, annealing - versus cumulative laser exposure and the related development of the surface topography.
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1973-01-01
Sliding friction experiments were conducted with amorphous and fully graphitized carbons sliding on copper and on films of chromium and aluminum on copper. Auger emission spectroscopy analysis was used to monitor carbon transfer to the metal surfaces. Friction and wear were also measured. Metal surfaces were examined both in the clean state and with normal oxides present. Results indicate that different metals have an important effect on friction, wear, and transfer characteristics. With amorphous carbon, the least chemically active metal gave the highest wear and amount of carbon transfer. Both forms of carbon gave lower friction and wear and lower transfer rates when in contact with clean, as opposed to oxide-covered, chromium surfaces. With copper, the reverse was true; cleaning was detrimental.
Cao, Anping; Shan, Meixia; Paltrinieri, Laura; Evers, Wiel H; Chu, Liangyong; Poltorak, Lukasz; Klootwijk, Johan H; Seoane, Beatriz; Gascon, Jorge; Sudhölter, Ernst J R; de Smet, Louis C P M
2018-04-19
Recently various porous organic frameworks (POFs, crystalline or amorphous materials) have been discovered, and used for a wide range of applications, including molecular separations and catalysis. Silicon nanowires (SiNWs) have been extensively studied for diverse applications, including as transistors, solar cells, lithium ion batteries and sensors. Here we demonstrate the functionalization of SiNW surfaces with POFs and explore its effect on the electrical sensing properties of SiNW-based devices. The surface modification by POFs was easily achieved by polycondensation on amine-modified SiNWs. Platinum nanoparticles were formed in these POFs by impregnation with chloroplatinic acid followed by chemical reduction. The final hybrid system showed highly enhanced sensitivity for methanol vapour detection. We envisage that the integration of SiNWs with POF selector layers, loaded with different metal nanoparticles will open up new avenues, not only in chemical and biosensing, but also in separations and catalysis.
NASA Astrophysics Data System (ADS)
Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan
2013-10-01
In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiOx films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV-vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of sbnd NH2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).
NASA Astrophysics Data System (ADS)
Cao, Chuntao
The aim of this research was to explore new directions for carbon dioxide. The first project emphasized silyl monolayer synthesis. Silylation reactions were performed in both liquid and supercritical carbon dioxide. Different monofunctional organosilanes reacted with silica surfaces, forming covalently attached monolayers. These monolayers were characterized using contact angle measurements, X-ray photoelectron spectroscopy, and ellipsometry. Reaction kinetics were established, and compared with silylations in organic solvents. The reaction rate in CO2 is higher than that in conventional solvents while the final coverage is slightly lower than the optimized conditions for conventional solvents. Other multi-functional silanes were also studied. The silylation of nanoporous silica surfaces showed bonding densities almost as high as the maximum value reported in literature for small-pore substrates. Overall, CO2 is a good solvent for silylations on silica surfaces. The second project was to synthesize polymer/polymer nanocomposites using a CO2-assisted templating method. Semicrystalline polymers are composed of tens-of-nanometer thick crystalline lamellae and an amorphous matrix. CO2 normally swells only the amorphous and interlamellar regions. The goal of this research was to selectively bring monomers to the amorphous and interlamellar regions with the help of CO2. In situ polymerization and precipitation fixes the structure, replicating the nano-structure of the semicrystalline polymer substrate. Ring-opening metathesis polymerization was performed inside of CO2-swollen poly(4-methyl-1-pentene) (PMP) of high crystallinity. Several polymer/polymer nanocomposites were successfully produced using this method. They were characterized by a variety of techniques, such as transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and wide angle X-ray diffraction (WAXD). Infrared studies and TEM indicated that one type of composite, polynorbomene/PMP, had a gradient distribution of polynorbornene inside of the PMP matrix. Another composite, polyoctenamer/PMP prepared by cis-cyclooctene polymerization, exhibited very interesting mechanical properties. The poly(dicyclopentadiene)/PMP composites are unique nanometer-scale blends of a highly crosslinked thermoset with a thermoplastic polymer.
Multi-scale modeling of spin transport in organic semiconductors
NASA Astrophysics Data System (ADS)
Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo
In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.
Density Functional Theory Calculations of the Role of Defects in Amorphous Silicon Solar Cells
NASA Astrophysics Data System (ADS)
Johlin, Eric; Wagner, Lucas; Buonassisi, Tonio; Grossman, Jeffrey C.
2010-03-01
Amorphous silicon holds promise as a cheap and efficient material for thin-film photovoltaic devices. However, current device efficiencies are severely limited by the low mobility of holes in the bulk amorphous silicon material, the cause of which is not yet fully understood. This work employs a statistical analysis of density functional theory calculations to uncover the implications of a range of defects (including internal strain and substitution impurities) on the trapping and mobility of holes, and thereby also on the total conversion efficiency. We investigate the root causes of this low mobility and attempt to provide suggestions for simple methods of improving this property.
Dhumal, Ravindra S; Biradar, Shailesh V; Yamamura, Shigeo; Paradkar, Anant R; York, Peter
2008-09-01
The aim of the present work was to prepare amorphous discreet nanoparticles by sonoprecipitation method for enhancing oral bioavailability of cefuroxime axetil (CA), a poorly water-soluble drug. CA nanoparticles (SONO-CA) were prepared by sonoprecipitation and compared with particles obtained by precipitation without sonication (PPT-CA) and amorphous CA obtained by spray drying. Spray drying present broad particle size distribution (PSD) with mean particle size of 10 microm and low percent yield, whereas, precipitation without sonication resulted in large amorphous aggregates with broad PSD. During sonoprecipitation, particle size and yield improve with an increase in the amplitude of sonication and lowering the operation temperature due to instantaneous supersaturation and nucleation. The overall symmetry and purity of CA molecule was maintained as confirmed by FTIR and HPLC, respectively. All the three methods resulted in the formation of amorphous CA with only sonoprecipitation resulting in uniform sized nanoparticles. Sonoprecipitated CA nanoparticles showed enhanced dissolution rate and oral bioavailability in Wistar rat due to an increased solubility attributed to combination of effects like amorphization and nanonization with increased surface area and reduced diffusion pathway.
NASA Astrophysics Data System (ADS)
Konicek, A. R.; Grierson, D. S.; Sumant, A. V.; Friedmann, T. A.; Sullivan, J. P.; Gilbert, P. U. P. A.; Sawyer, W. G.; Carpick, R. W.
2012-04-01
Highly sp3-bonded, nearly hydrogen-free carbon-based materials can exhibit extremely low friction and wear in the absence of any liquid lubricant, but this physical behavior is limited by the vapor environment. The effect of water vapor on friction and wear is examined as a function of applied normal force for two such materials in thin film form: one that is fully amorphous in structure (tetrahedral amorphous carbon, or ta-C) and one that is polycrystalline with <10 nm grains [ultrananocrystalline diamond (UNCD)]. Tribologically induced changes in the chemistry and carbon bond hybridization at the surface are correlated with the effect of the sliding environment and loading conditions through ex situ, spatially resolved near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. At sufficiently high relative humidity (RH) levels and/or sufficiently low loads, both films quickly achieve a low steady-state friction coefficient and subsequently exhibit low wear. For both films, the number of cycles necessary to reach the steady-state is progressively reduced for increasing RH levels. Worn regions formed at lower RH and higher loads have a higher concentration of chemisorbed oxygen than those formed at higher RH, with the oxygen singly bonded as hydroxyl groups (C-OH). While some carbon rehybridization from sp3 to disordered sp2 bonding is observed, no crystalline graphite formation is observed for either film. Rather, the primary solid-lubrication mechanism is the passivation of dangling bonds by OH and H from the dissociation of vapor-phase H2O. This vapor-phase lubrication mechanism is highly effective, producing friction coefficients as low as 0.078 for ta-C and 0.008 for UNCD, and wear rates requiring thousands of sliding passes to produce a few nanometers of wear.
Electronic, thermodynamics and mechanical properties of LaB6 from first-principles
NASA Astrophysics Data System (ADS)
Ivashchenko, V. I.; Turchi, P. E. A.; Shevchenko, V. I.; Medukh, N. R.; Leszczynski, Jerzy; Gorb, Leonid
2018-02-01
Up to date, the electronic structure properties of amorphous lanthanum hexaboride, a-LaB6, were not yet investigated, and the thermodynamic and mechanical properties of crystalline lanthanum hexaboride (c-LaB6) were studied incompletely. The goal of this work was to fill these gaps in the study of lanthanum hexaborides. The electronic and phonon structures, thermodynamic and mechanical properties of both crystalline and amorphous lanthanum hexaborides (c-LaB6, a-LaB6, respectively) were investigated within the density functional theory. An amorphyzation of c-LaB6 gives rise to the metal - semiconductor transition. The thermal conductivity decreases on going from c-LaB6 to a-LaB6. The elastic moduli, hardness, ideal tensile and shear strengths of a-LaB6 are significantly lower compared to those of the crystalline counterpart, despite the formation of the icosahedron-like boron network in the amorphous phase. For c-LaB6, the stable boron octahedrons are preserved after the failure under tensile and shear strains. The peculiarity in the temperature dependence of heat capacity, Cp(T), at 50 K is explained by the availability of a sharp peak at 100 cm-1 in the phonon density of states of c-LaB6. An analysis of the Fermi surface indicates that this peak is not related to the shape of the Fermi surface, and is caused by the vibration of lanthanum atoms. In the phonon spectrum of a-LaB6, the peak at 100 cm-1 is significantly broader than in the spectrum of c-LaB6, for which reason the anomaly in the Cp(T) dependence of a-LaB6 does not appear. The calculated characteristics are in good agreement with the available experimental data.
Density driven structural transformations in amorphous semiconductor clathrates
Tulk, Christopher A.; dos Santos, Antonio M.; Neuefeind, Joerg C.; ...
2015-01-16
The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection of the mechanisms associated with pressure induced amorphization in these systems, as well as the structure of the recovered phase. It is observed that, between 14.7 and 35 GPa the second peak in the structure factor function gradually disappears. Analysis of the radial distribution function extracted from those data indicate that this feature is associated with gradual cage collapse and breakdown of the tetrahedral structure with themore » consequent systematic lengthening of the nearest-neighbor framework bonds. This suggests an overall local coordination change to an even higher density amorphous form. Upon recovery from high pressure, the sample remains amorphous, and while there is some indication of the guest-host cage reforming, it doesn't seem that the tetrahedral coordination is recovered. As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms.« less
Single crystalline thin films as a novel class of electrocatalysts
Snyder, Joshua; Markovic, Nenad; Stamenkovic, Vojislav
2013-01-01
The ubiquitous use of single crystal metal electrodes has garnered invaluable insight into the relationship between surface atomic structure and functional electrochemical properties. But, the sensitivity of their electrochemical response to surface orientation and the amount of precious metal required can limit their use. We present here a generally applicable procedure for producing thin metal films with a large proportion of atomically flat (111) terraces without the use of an epitaxial template. Thermal annealing in a controlled atmosphere induces long-range ordering of magnetron sputtered thin metal films deposited on an amorphous substrate. The ordering transition in these thin metal filmsmore » yields characteristic (111) electrochemical signatures with minimal amount of material and provides an adequate replacement for oriented bulk single crystals. Our procedure can be generalized towards a novel class of practical multimetallic thin film based electrocatalysts with tunable near-surface compositional profile and morphology. Annealing of atomically corrugated sputtered thin film Pt-alloy catalysts yields an atomically smooth structure with highly crystalline, (111)-like ordered and Pt segregated surface that displays superior functional properties, bridging the gap between extended/bulk surfaces and nanoscale systems.« less
Ion Sensitive Transparent-Gate Transistor for Visible Cell Sensing.
Sakata, Toshiya; Nishimura, Kotaro; Miyazawa, Yuuya; Saito, Akiko; Abe, Hiroyuki; Kajisa, Taira
2017-04-04
In this study, we developed an ion-sensitive transparent-gate transistor (IS-TGT) for visible cell sensing. The gate sensing surface of the IS-TGT is transparent in a solution because a transparent amorphous oxide semiconductor composed of amorphous In-Ga-Zn-oxide (a-IGZO) with a thin SiO 2 film gate that includes an indium tin oxide (ITO) film as the source and drain electrodes is utilized. The pH response of the IS-TGT was found to be about 56 mV/pH, indicating approximately Nernstian response. Moreover, the potential signals of the IS-TGT for sodium and potassium ions, which are usually included in biological environments, were evaluated. The optical and electrical properties of the IS-TGT enable cell functions to be monitored simultaneously with microscopic observation and electrical measurement. A platform based on the IS-TGT can be used as a simple and cost-effective plate-cell-sensing system based on thin-film fabrication technology in the research field of life science.
NASA Technical Reports Server (NTRS)
Mohanty, D. K.; Lowery, R. C.; Lyle, G. D.; Mcgrath, J. E.
1987-01-01
A series of amine terminal amorphous poly(arylene ether ketone) oligomers of controlled molecular weights (2-15 K) were synthesized. These oligomers have been found to undergo 'self-crosslinking' reactions upon heating above 220 C, via the reaction of the terminal amine groups with the in-chain keto carbonyl functionalities. The resulting networks are ductile, chemically resistant, and nonporous. The networks obtained via generated ketimine functionality were characterized by solid state NMR. They have also been found to be remarkably stable toward hydrolysis. Ketimine functional bishalide monomers have also been synthesized. Such monomers have been utilized to synthesize a wide variety of amorphous poly(arylene ether) ketimine polymers. A high molecular weight hydroquinone functional poly(arylene ether) ketimine has been acid treated to regenerate a poly(arylene ether ketone) backbone in solution. This novel procedure thus allows for the synthesis of important matrix resins under relatively mild conditions.
Electrolytic etch for preventing electrical shorts in solar cells on polymer surfaces
Weber, Michael F.
1991-10-08
A method for preventing shorts and shunts in solar cells having in order, an insulating substrate, a conductive metal layer on the substrate, an amorphous silicon layer and a transparent conductive layer. The method includes anodic etching of exposed portions of the metal layer after deposition of the amorphous silicon and prior to depositing the transparent conductive layer.
Tribological properties of amorphous alloys and the role of surfaces in abrasive wear of materials
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1982-01-01
The research approach undertaken by the authors relative to the subject, and examples of results from the authors are reviewed. The studies include programs in adhesion, friction, and various wear mechanisms (adhesive and abrasive wear). The materials which have been studied include such ceramic and metallic materials as silicon carbide, ferrites, diamond, and amorphous alloys.
Bennett, Thomas D; Todorova, Tanya K; Baxter, Emma F; Reid, David G; Gervais, Christel; Bueken, Bart; Van de Voorde, B; De Vos, Dirk; Keen, David A; Mellot-Draznieks, Caroline
2016-01-21
The mechanism and products of the structural collapse of the metal–organic frameworks (MOFs) UiO-66, MIL-140B and MIL-140C upon ball-milling are investigated through solid state 13C NMR and pair distribution function (PDF) studies, finding amorphization to proceed by the breaking of a fraction of metal–ligand bonding in each case. The amorphous products contain inorganic–organic bonding motifs reminiscent of the crystalline phases. Whilst the inorganic Zr6O4(OH)4 clusters of UiO-66 remain intact upon structural collapse, the ZrO backbone of the MIL-140 frameworks undergoes substantial distortion. Density functional theory calculations have been performed to investigate defective models of MIL-140B and show, through comparison of calculated and experimental 13C NMR spectra, that amorphization and defects in the materials are linked.
Wessels, B.W.; Nystrom, M.J.
1998-05-19
Sr{sub x}Ba{sub 1{minus}x}Nb{sub 2}O{sub 6}, where x is greater than 0.25 and less than 0.75, and KNbO{sub 3} ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface are disclosed. Such films can be used in electronic, electro-optic, and frequency doubling components. 8 figs.
Wessels, Bruce W.; Nystrom, Michael J.
1998-01-01
Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.
Nanoscale solely amorphous layer in silicon wafers induced by a newly developed diamond wheel
Zhang, Zhenyu; Guo, Liangchao; Cui, Junfeng; Wang, Bo; Kang, Renke; Guo, Dongming
2016-01-01
Nanoscale solely amorphous layer is achieved in silicon (Si) wafers, using a developed diamond wheel with ceria, which is confirmed by high resolution transmission electron microscopy (HRTEM). This is different from previous reports of ultraprecision grinding, nanoindentation and nanoscratch, in which an amorphous layer at the top, followed by a crystalline damaged layer beneath. The thicknesses of amorphous layer are 43 and 48 nm at infeed rates of 8 and 15 μm/min, respectively, which is verified using HRTEM. Diamond-cubic Si-I phase is verified in Si wafers using selected area electron diffraction patterns, indicating the absence of high pressure phases. Ceria plays an important role in the diamond wheel for achieving ultrasmooth and bright surfaces using ultraprecision grinding. PMID:27734934
Surface temperatures and glassy state investigations in tribology, part 2
NASA Technical Reports Server (NTRS)
Bair, S. S.; Winer, W. O.
1979-01-01
Measurements of lubricant shear rheological behavior in the amorphous solid region and near the liquid solid transition are reported. Elastic, plastic and viscous behavior was observed. The maximum yield shear stress (limiting shear stress) is a function of temperature and pressure and is believed to be the property which determines the maximum traction in elastohydrodynamic contacts such as traction drives. A shear rheological model based on primary laboratory data is proposed for concentrated contact lubrication. The model is Maxwell model modified with a limiting shear stress. Three material properties are required: low shear stress viscosity, limiting elastic shear modulus, and the limiting shear stress the material can withstand. All three are functions of temperature and pressure.
Linh, Nguyen Ngoc; Hoang, Vo Van
2008-07-02
The surface structure of liquid and amorphous aluminosilicate nanoparticles of composition Al(2)O(3)·2SiO(2) has been investigated in a model of different sizes ranging from 2.0 to 5.0 nm with the Born-Mayer type pair potential under non-periodic boundary conditions. Models have been obtained by cooling from the melts at a constant density of 2.6 g cm(-3) via molecular dynamics (MD) simulation. The surface structure has been investigated via the coordination number, bond-angle distributions and structural point defects. Calculations show that surface effects on surface static and thermodynamic properties of models are significant according to the change in the number of Al atoms in the surface layers. Evolution of the local environment of oxygen in the surface shell of nanoparticles upon cooling from the melt toward the glassy state was also found and discussed. In addition, the nanosize dependence of the glass transition temperature was presented.
Surface structure and structural point defects of liquid and amorphous aluminosilicate nanoparticles
NASA Astrophysics Data System (ADS)
Linh, Nguyen Ngoc; Van Hoang, Vo
2008-07-01
The surface structure of liquid and amorphous aluminosilicate nanoparticles of composition Al2O3·2SiO2 has been investigated in a model of different sizes ranging from 2.0 to 5.0 nm with the Born-Mayer type pair potential under non-periodic boundary conditions. Models have been obtained by cooling from the melts at a constant density of 2.6 g cm-3 via molecular dynamics (MD) simulation. The surface structure has been investigated via the coordination number, bond-angle distributions and structural point defects. Calculations show that surface effects on surface static and thermodynamic properties of models are significant according to the change in the number of Al atoms in the surface layers. Evolution of the local environment of oxygen in the surface shell of nanoparticles upon cooling from the melt toward the glassy state was also found and discussed. In addition, the nanosize dependence of the glass transition temperature was presented.
Superconducting state parameters of bulk amorphous alloys
NASA Astrophysics Data System (ADS)
Vora, A. M.
2012-12-01
Well recognized empty core pseudopotential of Ashcroft is used to investigate the superconducting state parameters viz; electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature T C , isotope effect exponent α and effective interaction strength N O V of some (Ni33Zr67)1- x V x ( x = 0, 0.05, 0.1, 0.15) bulk amorphous alloys. We have incorporated five different types of local field correction functions, proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The T C obtained from local field correction function proposed by Sarkar et al. (S) is in excellent agreement with available theoretical data. Quadratic T C equation has been proposed providing successfully the T C values of bulk amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirm the superconducting phase in the s bulk amorphous alloys.
Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1999-01-01
The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.
First principles prediction of amorphous phases using evolutionary algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nahas, Suhas, E-mail: shsnhs@iitk.ac.in; Gaur, Anshu, E-mail: agaur@iitk.ac.in; Bhowmick, Somnath, E-mail: bsomnath@iitk.ac.in
2016-07-07
We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bondmore » angle are within ∼2% of those reported by ab initio MD calculations and experimental studies.« less
Zhao, Ming; Ji, Yuan; Wang, Mengyue; Zhong, Ning; Kang, Zinan; Asao, Naoki; Jiang, Wen-Jie; Chen, Qiang
2017-10-11
Amorphous materials have been widely researched in heterogeneous catalysis and for next-generation batteries. However, the well-defined production of high-quality (e.g., monodisperse and high surface area) amorphous alloy nanomaterials has rarely been reported. In this work, we investigated the correlations among the composition, morphology, and catalysis of various Pd-M-P nanoparticles (NPs) (M = Cu or Ni), which indicated that less Cu (≤20 atom %) was necessary for the formation of an amorphous morphology. The amorphous Pd-Cu-Ni-P NPs were fabricated with a controllable size and characterized carefully, which show excellent selective catalysis in the semihydrogenation of alkynes, hydrogenation of quinoline, and oxidation of primary alcohols. The uniqueness of the catalytic performance was confirmed by control experiments with monometallic Pd, amorphous Pd-Ni-P NPs, crystalline Pd-Cu-P NPs, and a crystalline counterpart of Pd-Cu-Ni-P catalyst. The catalytic selectivity likely arose from improved Pd-M (M = Cu or Ni) synergistic effects in the amorphous phase and the electron deficiency of Pd. The model reactions proceeded under H 2 or O 2 gas without any additives, bases, or metal oxide supports, and the catalyst could be reused several times. This report is expected to shed light on the design of amorphous alloy nanomaterials as green and inexpensive catalysts for atom-economic and selective reactions.
A field effect glucose sensor with a nanostructured amorphous In-Ga-Zn-O network.
Du, Xiaosong; Li, Yajuan; Herman, Gregory S
2016-11-03
Amorphous indium gallium zinc oxide (IGZO) field effect transistors (FETs) are a promising technology for a wide range of electronic applications. Herein, we fabricated and characterized FETs with a nanostructured IGZO network as a sensing transducer. The IGZO was patterned using colloidal lithography and electrohydrodynamic printing, where an 8 μm wide nanostructured close-packed hexagonal IGZO network was obtained. Electrical characterization of the nanostructured IGZO network FET demonstrated a drain-source current on-off ratio of 6.1 × 10 3 and effective electron mobilities of 3.6 cm 2 V -1 s -1 . The nanostructured IGZO network was functionalized by aminosilane groups with cross-linked glucose oxidase. The devices demonstrated a decrease in drain-source conductance and a more positive V ON with increasing glucose concentration. These changes are ascribed to the acceptor-like surface states associated with positively charged aminosilane groups attached to the nanostructured IGZO surface. Continuous monitoring of the drain-source current indicates a stepwise and fully reversible response to glucose concentrations with a short response time. The specific catalytic reaction between the GOx enzyme and glucose eliminates interference from acetaminophen/ascorbic acid. We demonstrate that nanostructured IGZO FETs have improved sensitivity compared to non-nanostructured IGZO for sensing glucose and can be potentially extended to other biosensor technologies.
NASA Technical Reports Server (NTRS)
Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.
2015-01-01
Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.
Nelson, Joey; Wasylenki, Laura; Bargar, John R.; ...
2017-08-05
Metal ion-mineral surface interactions and the attendant isotopic fractionation depend on the properties of the mineral surface and the local atomic-level chemical environment. Furthermore, these factors have not been systematically examined for phases of the same composition with different levels of surface disorder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Joey; Wasylenki, Laura; Bargar, John R.
Metal ion-mineral surface interactions and the attendant isotopic fractionation depend on the properties of the mineral surface and the local atomic-level chemical environment. Furthermore, these factors have not been systematically examined for phases of the same composition with different levels of surface disorder.
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Johnson, Natasha M.
2011-01-01
When hydrogen, nitrogen and CO are exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions. Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these reactions. The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic material. Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.
Fenton-treated functionalized diamond nanoparticles as gene delivery system.
Martín, Roberto; Alvaro, Mercedes; Herance, José Raúl; García, Hermenegildo
2010-01-26
When raw diamond nanoparticles (Dnp, 7 nm average particle size) obtained from detonation are submitted to harsh Fenton-treatment, the resulting material becomes free of amorphous soot matter and the process maintains the crystallinity, reduces the particle size (4 nm average particle size), increases the surface OH population, and increases water solubility. All these changes are beneficial for subsequent Dnp covalent functionalization and for the ability of Dnp to cross cell membranes. Fenton-treated Dnps have been functionalized with thionine and the resulting sample has been observed in HeLa cell nuclei. A triethylammonium-functionalized Dnp pairs electrostatically with a plasmid having the green fluorescent protein gene and acts as gene delivery system permitting the plasmid to cross HeLa cell membrane, something that does not occur for the plasmid alone without assistance of polycationic Dnp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajachidambaram, Jaana Saranya; Sanghavi, Shail P.; Nachimuthu, Ponnusamy
Amorphous zinc tin oxide (ZTO) was investigated to determine the effect of deposition and post annealing conditions on film structure, composition, surface contamination, and thin film transistor (TFT) device performance. X-ray diffraction results indicated that the ZTO films remain amorphous even after annealing to 600 °C. We found that the bulk Zn:Sn ratio of the sputter deposited films were slightly tin rich compared to the composition of the ceramic sputter target, and there was a significant depletion of zinc at the surface. X-ray photoelectron spectroscopy also indicated that residual surface contamination depended strongly on the sample post-annealing conditions where water,more » carbonate and hydroxyl species were absorbed to the surface. Electrical characterization of ZTO films, using TFT test structures, indicated that mobilities as high as 17 cm2/Vs could be obtained for depletion mode devices.« less
Molecular Dynamical Simulation of Thermal Conductivity in Amorphous Structures
NASA Astrophysics Data System (ADS)
Deangelis, Freddy; Henry, Asegun
While current descriptions of thermal transport exists for well-ordered materials such as crystal latices, new methods are needed to describe thermal transport in disordered materials, including amorphous solids. Because such structures lack periodic, long-range order, a group velocity cannot be defined for thermal modes of vibration; thus, the phonon gas model cannot be applied to these structures. Instead, a new framework must be applied to analyze such materials. Using a combination of density functional theory and molecular dynamics, we have analyzed thermal transport in amorphous structures, chiefly amorphous germanium. The analysis allows us to categorize vibrational modes as propagons, diffusons, or locons, and to determine how they contribute to thermal conductivity within amorphous structures. This method is also being extended to other disordered structures such as amorphous polymers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1148903.
NASA Astrophysics Data System (ADS)
Chen, Yong; Hu, Liangbin; Qiu, Changjun; He, Bin; Wang, Zhongchang
2017-08-01
The Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings were prepared on a martensitic steel by laser in situ reaction technique and impose irradiation with 200 keV He ions at different doses. The helium ion irradiation goes 1.55 μm deep from the surface of coating, and the displacement per atom (dpa) for the Al2O3-TiO2 coating is 20.0. When the irradiation fluency is 5 × 1017 ions/cm2, defects are identified in crystalline areas and there form interfacial areas in the coating. These crystal defects tend to migrate and converge at the interfaces. Moreover, helium ion irradiation is found to exert no effect on surface chemical composition and phase constitution of the coatings, while surface mechanical properties for the coatings after irradiation differ from those before irradiation. Further nano-indentation experiments reveal that surface nano-hardness of the Al2O3-TiO2 multiphase coatings decreases as the helium ions irradiation flux increases. Such Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings exhibit the strongest resistance against helium ion irradiation which shall be applied as candidate structural materials for accelerator-driven sub-critical system to handle the nuclear waste under extreme conditions.
In situ TEM observation of preferential amorphization in single crystal Si nanowire
NASA Astrophysics Data System (ADS)
Su, Jiangbin; Zhu, Xianfang
2018-06-01
The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.
In situ TEM observation of preferential amorphization in single crystal Si nanowire.
Su, Jiangbin; Zhu, Xianfang
2018-06-08
The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.
Shi, Peipei; Li, Li; Hua, Li; Qian, Qianqian; Wang, Pengfei; Zhou, Jinyuan; Sun, Gengzhi; Huang, Wei
2017-01-24
Solid-state fiber-based supercapacitors have been considered promising energy storage devices for wearable electronics due to their lightweight and amenability to be woven into textiles. Efforts have been made to fabricate a high performance fiber electrode by depositing pseudocapacitive materials on the outer surface of carbonaceous fiber, for example, crystalline manganese oxide/multiwalled carbon nanotubes (MnO 2 /MWCNTs). However, a key challenge remaining is to achieve high specific capacitance and energy density without compromising the high rate capability and cycling stability. In addition, amorphous MnO 2 is actually preferred due to its disordered structure and has been proven to exhibit superior electrochemical performance over the crystalline one. Herein, by incorporating amorphous MnO 2 onto a well-aligned MWCNT sheet followed by twisting, we design an amorphous MnO 2 @MWCNT fiber, in which amorphous MnO 2 nanoparticles are distributed in MWCNT fiber uniformly. The proposed structure gives the amorphous MnO 2 @MWCNT fiber good mechanical reliability, high electrical conductivity, and fast ion-diffusion. Solid-state supercapacitor based on amorphous MnO 2 @MWCNT fibers exhibits improved energy density, superior rate capability, exceptional cycling stability, and excellent flexibility. This study provides a strategy to design a high performance fiber electrode with microstructure control for wearable energy storage devices.
Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.
Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka
2015-12-03
In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.
NASA Technical Reports Server (NTRS)
Smith, R. J.; Horgan, B.; Rampe, E.; Dehouck, E.; Morris, R. V.
2017-01-01
X-ray diffraction (XRD) amorphous phases have been found as major components (approx.15-60 wt%) of all rock and soil samples measured by the CheMin XRD instrument in Gale Crater, Mars. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., allophane) phases. Amorphous phases form in abundance during surface weathering on Earth. Yet, these materials are poorly characterized, and it is not certain how properties like composition and structure change with formation environment. The presence of poorly crystalline phases can be inferred from XRD patterns by the appearance of a low angle rise (< or approx.10deg 2(theta)) or broad peaks in the background at low to moderate 2(theta) angles (amorphous humps). CheMin mineral abundances combined with bulk chemical composition measurements from the Alpha Particle X-ray Spectrometer (APXS) have been used to estimate the abundance and composition of the XRD amorphous materials in soil and rock samples on Mars. Here we apply a similar approach to a diverse suite of terrestrial samples - modern soils, glacial sediments, and paleosols - in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of X-ray amorphous phases.
Grobelny, Pawel; Kazakevich, Irina; Zhang, Dan; Bogner, Robin
2015-01-01
The aim of this study was to investigate the effects of solid carriers and processing routes on the properties of amorphous solid dispersions of itraconazole. Three solid carriers with a range of surface properties were studied, (1) a mesoporous silicate, magnesium aluminum silicate (Neusilin US2), (2) a nonporous silicate of corresponding composition (Veegum) and (3) a non-silicate, inorganic excipient, calcium phosphate dibasic anhydrous (A-TAB). The drug was incorporated via either solvent-deposition or ball milling. Both the maximum drug deposited by solvent-based method that produced an amorphous composite and the time for complete amorphization by co-milling was determined by X-ray powder diffraction (XRPD). Changes in the drug and excipients were monitored by nitrogen adsorption and wettability of the powder. The ability of the excipients to amorphize the drug and enhance its dissolution was related to the powder characteristics. Neusilin provided the fastest amorphization time in the mill and highest drug loading by solvent-deposition, compared with the other two excipients. Solvent-deposition provided greater dissolution enhancement than milling, due to the reduction in Neusilin porosity during high energy milling.This study confirms that substrates as well as the processing routes have notable influence on the drug deposition, amorphization, physical stability and drug in vitro release.
NASA Astrophysics Data System (ADS)
Xia, Hongbo; Wu, Suli; Bi, Jiajie; Zhang, Shufen
2017-11-01
Here a simple and effective method was explored to fabricate M/TiO2 (M = Ag, Au) composites, which required neither pre-treatment of TiO2 nor any additives as reducing agent. Using amorphous TiO2 spheres functionalized with SH groups as starting materials, the noble metallic ions (Ag, Au) can be adsorbed by TiO2 due to their special affinity with SH groups, which is beneficial to the uniform dispersion of metallic ions on the surface of TiO2. Then the adsorbed ions were reduced to form noble metal nanoparticles by heating process (95 °C) directly without additive as reduction agent. Meanwhile, the amorphous TiO2 was transformed into anatase phase during the heating process. Thus, the transformation of TiO2 along with the reduction of noble metallic ions (Ag, Au) was simultaneously carried out by heating. The XRD patterns proved the formation of anatase TiO2 after heating. The characterizations of XPS and TEM proved the formation of Ag and Au nanoparticles on the surface of TiO2. The element mapping indicated that Ag nanoparticles are dispersed uniformly on the surface of TiO2. The photocatalytic activity of the composites has been investigated by the degradation of methyl orange under visible light irradiation. The results showed that when Ag/TiO2 (2.8 wt%) was used as photocatalyst, about 98% of the MO molecules were degraded in 70 min.
NASA Astrophysics Data System (ADS)
Dupuy, John L.; Lewis, Steven P.; Stancil, P. C.
2016-11-01
Gas-grain and gas-phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas-grain reactions require a substrate (e.g., a dust or ice grain) on which the reaction is able to occur. The formation of molecular hydrogen (H2) in the ISM is the prototypical example of a gas-grain reaction. In these reactions, an atom of hydrogen will strike a surface, stick to it, and diffuse across it. When it encounters another adsorbed hydrogen atom, the two can react to form molecular hydrogen and then be ejected from the surface by the energy released in the reaction. We perform in-depth classical molecular dynamics simulations of hydrogen atoms interacting with an amorphous water-ice surface. This study focuses on the first step in the formation process; the sticking of the hydrogen atom to the substrate. We find that careful attention must be paid in dealing with the ambiguities in defining a sticking event. The technical definition of a sticking event will affect the computed sticking probabilities and coefficients. Here, using our new definition of a sticking event, we report sticking probabilities and sticking coefficients for nine different incident kinetic energies of hydrogen atoms [5-400 K] across seven different temperatures of dust grains [10-70 K]. We find that probabilities and coefficients vary both as a function of grain temperature and incident kinetic energy over the range of 0.99-0.22.
Kimura, Shunsuke; Kasatani, Sachiha; Tanaka, Megumi; Araki, Kaeko; Enomura, Masakazu; Moriyama, Kei; Inoue, Daisuke; Furubayashi, Tomoyuki; Tanaka, Akiko; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira
2016-02-01
The amorphization has been generally known to improve the absorption and permeation of poorly water-soluble drugs through the enhancement of the solubility. The present study focused on the direct contact of amorphous solid particles with the surface of the membrane using curcumin as a model for water-insoluble drugs. Amorphous nanoparticles of curcumin (ANC) were prepared with antisolvent crystallization method using a microreactor. The solubility of curcumin from ANC was two orders of magnitude higher than that of crystalline curcumin (CC). However, the permeation of curcumin from the saturated solution of ANC was negligible. The transepithelial permeation of curcumin from ANC suspension was significantly increased as compared to CC suspension, while the permeation was unlikely correlated with the solubility, and the increase in the permeation was dependent on the total concentration of curcumin in ANC suspension. The absorptive transport of curcumin (from apical to basal, A to B) from ANC suspension was much higher than the secretory transport (from basal to apical, B to A). In vitro transport of curcumin through air-interface monolayers is large from ANC but negligible from CC particles. These findings suggest that the direct contact of ANC with the absorptive membrane can play an important role in the transport of curcumin from ANC suspension. The results of the study suggest that amorphous particles may be directly involved in the transepithlial permeation of curcumin.
First-principles calculations of the thermal stability of Ti 3SiC 2(0001) surfaces
NASA Astrophysics Data System (ADS)
Orellana, Walter; Gutiérrez, Gonzalo
2011-12-01
The energetic, thermal stability and dynamical properties of the ternary layered ceramic Ti3SiC2(0001) surface are addressed by density-functional theory calculations and molecular dynamic (MD) simulations. The equilibrium surface energy at 0 K of all terminations is contrasted with thermal stability at high temperatures, which are investigated by ab initio MD simulations in the range of 800 to 1400 °C. We find that the toplayer (sublayer) surface configurations: Si(Ti2) and Ti2(Si) show the lowest surface energies with reconstruction features for Si(Ti2). However, at high temperatures they are unstable, forming disordered structures. On the contrary, Ti1(C) and Ti2(C) despite their higher surface energies, show a remarkable thermal stability at high temperatures preserving the crystalline structures up to 1400 °C. The less stable surfaces are those terminated in C atoms, C(Ti1) and C(Ti2), which at high temperatures show surface dissociation forming amorphous TiCx structures. Two possible atomic scale mechanisms involved in the thermal stability of Ti3SiC2(0001) are discussed.
Interactions between glycine and amorphous solid water nanoscale films
NASA Astrophysics Data System (ADS)
Tzvetkov, George; Koller, Georg; Netzer, Falko P.
2012-12-01
The interactions of glycine (Gly) with amorphous solid water (ASW) nanolayers (≤ 100 ML), vapor-deposited on single crystalline AlOx surfaces at 100 K, have been investigated by near-edge X-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K-edge, temperature-programmed thermal desorption (TPD), X-ray photoelectron spectroscopy (XPS), and temperature-dependent work function measurements. Gly-on-ASW, ASW-on-Gly, and Gly on top of ASW-on-Gly ultrathin films have been fabricated. In contrast to the uniform ASW films grown directly on the hydrophilic AlOx, water molecules adsorb on the hydrophobic Gly films in the form of 3D ASW clusters. This leads to significant differences in the NEXAFS and work function data obtained from ASW-on-AlOx and ASW-on-Gly films, respectively. Furthermore, these structural differences influence the chemical state of Gly molecules (neutral vs. zwitterionic) adsorbed on top of ASW films. N1s XPS measurements revealed an increased amount of neutral Gly molecules in the film top-deposited on the ASW-on-Gly structure in comparison to the neutral Gly in the films directly condensed on AlOx or grown on the ASW substrate. H2O TPD spectra demonstrate that the crystallization and desorption processes of ASW are affected in a different way by the Gly layers, top-deposited on to ASW-on-AlOx and ASW-on-Gly films. At the same time, Gly adlayers sink into the ASW film during crystallization/desorption of the latter and land softly on the alumina surface in the form of zwitterionic clusters.
Poleunis, Claude; Cristaudo, Vanina; Delcorte, Arnaud
2018-01-01
In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Ar n + clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar 2 + /(Ar 2 + + Ar 3 + ) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (T g ) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. Graphical abstract ᅟ.
Effects of humidity and surfaces on the melt crystallization of ibuprofen.
Lee, Dong-Joo; Lee, Suyang; Kim, Il Won
2012-01-01
Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with -CH(3), -OH, and -COOH functional groups. Effects of the humidity were studied at room temperature (18-20 °C) with relative humidity 33%, 75%, and 100%. Effects of the surfaces were observed at -20 °C (relative humidity 36%) to enable close monitoring with slower crystal growth. The nucleation time of ibuprofen was faster at high humidity conditions probably due to the local formation of the unfavorable ibuprofen melt/water interface. The crystal morphologies of ibuprofen were governed by the nature of the surfaces, and they could be associated with the growth kinetics by the Avrami equation. The current study demonstrated the effective control of the melt crystallization of ibuprofen through the melt/atmosphere and melt/surface interfaces.
Single atom catalysts on amorphous supports: A quenched disorder perspective
NASA Astrophysics Data System (ADS)
Peters, Baron; Scott, Susannah L.
2015-03-01
Phenomenological models that invoke catalyst sites with different adsorption constants and rate constants are well-established, but computational and experimental methods are just beginning to provide atomically resolved details about amorphous surfaces and their active sites. This letter develops a statistical transformation from the quenched disorder distribution of site structures to the distribution of activation energies for sites on amorphous supports. We show that the overall kinetics are highly sensitive to the precise nature of the low energy tail in the activation energy distribution. Our analysis motivates further development of systematic methods to identify and understand the most reactive members of the active site distribution.
Magnetomechanical coupling in thermal amorphous solids
NASA Astrophysics Data System (ADS)
Hentschel, H. George E.; Ilyin, Valery; Mondal, Chandana; Procaccia, Itamar
2018-05-01
Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film "width" and its change due to the magnetostriction effect.
Crystalline and amorphous H2O on Charon
NASA Astrophysics Data System (ADS)
Dalle Ore, Cristina M.; Cruikshank, Dale P.; Grundy, Will M.; Ennico, Kimberly; Olkin, Catherine B.; Stern, S. Alan; Young, Leslie A.; Weaver, Harold A.
2015-11-01
Charon, the largest satellite of Pluto, is a gray-colored icy world covered mostly in H2O ice, with spectral evidence for NH3, as previously reported (Cook et al. 2007, Astrophys. J. 663, 1406-1419 Merlin, et al. 2010, Icarus, 210, 930; Cook, et al. 2014, AAS/Division for Planetary Sciences Meeting Abstracts, 46, #401.04). Images from the New Horizons spacecraft reveal a surface with terrains of widely different ages and a moderate degree of localized coloration. The presence of H2O ice in its crystalline form (Brown & Calvin 2000 Science 287, 107-109; Buie & Grundy 2000 Icarus 148, 324-339; Merlin et al, 2010) along with NH3 is consistent with a fresh surface.The phase of H2O ice is a key tracer of variations in temperature and physical conditions on the surface of outer Solar System objects. At Charon’s surface temperature H2O is expected to be amorphous, but ground-based observations (e.g., Merlin et al. 2010) show a clearly crystalline signature. From laboratory experiments it is known that amorphous H2O ice becomes crystalline at temperatures of ~130 K. Other mechanisms that can change the phase of the ice from amorphous to crystalline include micro-meteoritic bombardment (Porter et al. 2010, Icarus, 208, 492) or resurfacing processes such as cryovolcanism.New Horizons observed Charon with the LEISA imaging spectrometer, part of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Science Reviews, 140, 129). Making use of high spatial resolution (better than 10 km/px) and spectral resolving power of 240 in the wavelength range 1.25-2.5 µm, and 560 in the range 2.1-2.25 µm, we report on an analysis of the phase of H2O ice on parts of Charon’s surface with a view to investigate the recent history and evolution of this small but intriguing object.This work was supported by NASA’s New Horizons project.
Silicate Phases on the Surfaces of Trojan Asteroids
NASA Astrophysics Data System (ADS)
Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.
2017-10-01
Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt objects were separated from Trojans during large planet migration.
Development of new metal-oxide thin film gas sensors by conductivity and workfunction correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doll, T.; Mutschall, D.; Winter, R.
1996-12-31
Commercially available semiconducting gas sensors usually are based on tin dioxide, although there is a wide variety of metal oxides with capabilities for gas sensing. This derives from restrictions to predict the gas sensitivity under real conditions from clean surface measurements or sensitivity deviations due to different preparation techniques. Hence tedious sample variation and testing is required. It is known that beside pure conductivity studies, combined methods provide a better distinction between preparation-dependent and general chemical effects. For samples with a polycrystalline grain size smaller than the Debye length of the material the correlation of workfunction responses A{Delta}{Phi} to conductivitymore » measurements with the relation {Delta}{Phi} {approximately} log G is one powerful combination. In the present paper, this comparison is shown for nickel oxide layers prepared in two different ways: Reactive sputtering, which leads to partly polycrystalline layers of grain sizes of about 5 to 15 nm according to, and amorphous nickel oxide prepared by ozone enhanced molecular beam epitaxy. The work function and conductivity responses to H{sub 2}, NH{sub 3}, NO{sub 2}, SO{sub 2}, CO and Cl{sub 2} in synthetic air show a very similar sensitivity for the amorphous and the polycrystalline nickeloxides which indicates that the above mentioned correlation range includes amorphous states, too.« less
NASA Astrophysics Data System (ADS)
Lee, Min-Jung; Lee, Tae Il; Park, Jee Ho; Kim, Jung Han; Chae, Gee Sung; Jun, Myung Chul; Hwang, Yong Kee; Baik, Hong Koo; Lee, Woong; Myoung, Jae-Min
2012-05-01
The structure of thin-film transistors (TFTs) based on amorphous In-Ga-Zn-O (a-IGZO) was modified by spin coating a suspension of In2O3 nanoparticles on a SiO2/p++ Si layered wafer surface prior to the deposition of IGZO layer by room-temperature sputtering. The number of particles per unit area (surface density) of the In2O3 nanoparticles could be controlled by applying multiple spin coatings of the nanoparticle suspension. During the deposition of IGZO, the In2O3 nanoparticles initially located on the substrate surface migrated to the top of the IGZO layer indicating that they were not embedded within the IGZO layer, but they supplied In to the IGZO layer to increase the In concentration in the channel layer. As a result, the channel characteristics of the a-IGZO TFT were modulated so that the device showed an enhanced performance as compared with the reference device prepared without the nanoparticle treatment. Such an improved device performance is attributed to the nano-scale changes in the structure of (InO)n ordering assisted by increased In concentration in the amorphous channel layer.
Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.
Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E
2009-05-01
Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.
Magnetism from Fe2O3 nanoparticles embedded in amorphous SiO2 matrix
NASA Astrophysics Data System (ADS)
Sendil Kumar, A.; Bhatnagar, Anil K.
2018-02-01
Fe2O3 nanoparticles are embedded in amorphous SiO2 matrix by coprecipitation method with varying concentrations. Conditions are optimized to get almost monodispersed Fe2O3 nanoparticles with high chemical stability. Microstructure of synthesized nanoparticles is well characterized and found that Fe2O3 is in nanocrystalline form and embedded uniformly in amorphous SiO2 matrix. Enhanced surface reactivity is found for nanoparticles which influences physical properties of the SiO2 supported Fe2O3 system due to adsorption. In oxide nanoparticles, significant number of defect sites at the surface is expected but when supported medium such as SiO2 it reduces this defect concentration. Field- and temperature-dependent magnetisation studies on these samples show superparamagnetic behaviour. Superparamagnetic behaviour is seen in all the concentration systems but the coercivity observed in the lower concentration systems is found to be anomalous compared to that of higher concentrations. The observed magnetic behaviour comes from either unsaturated bond existing due to the absence of anions at the surface of nanoparticles or reconstruction of atomic orbitals taking place at interface of Fe2O3-SiO2 system.
One-dimensional nanostructured materials for lithium-ion battery and supercapacitor electrodes
NASA Astrophysics Data System (ADS)
Chan, Candace Kay
The need for improved electrochemical storage devices has necessitated research on new and advanced electrode materials. One-dimensional nanomaterials such as nanowires, nanotubes, and nanoribbons, can provide a unique opportunity to engineer electrochemical devices to have improved electronic and ionic conductivity as well as electrochemical and structural transformations. Silicon and germanium nanowires (NWs) were studied as negative electrode materials for lithiumion batteries because of their ability to alloy with large amounts of lithium, leading to 4-10 times higher specific capacities than the graphite standard. These nanowires could be grown vertically off of metallic current collector substrates using the gold-catalyzed vapor-liquid-solid synthesis. Electrochemical measurements of the SiNWs showed that capacities greater than 3,500 mAh/g could be obtained for tens of cycles, while hundreds of cycles could be obtained at lower capacities. As opposed to bulk Si, the SiNWs were observed to maintain their morphology during cycling and did not pulverize due to the large volume changes. Detailed TEM and XRD characterization showed that the SiNWs became amorphous during the first lithiation (charge) and formed a two-phase region between crystalline Si and amorphous Li xSi. Afterwards, the SiNWs remained amorphous and subsequent reaction was through a single-phase cycling of amorphous Si. The good cycling behavior compared to bulk and micron-sized Si particles was attributed to the nanowire morphology and electrode design. The surface chemistry and solid-electrolyte interphase (SEI) were studied using XPS as a function of charge and discharge potential. The common reduction productions expected in the electrolyte (1 M LiPF6 in 1:1 EC/DEC) were observed, with the main component being Li2CO3. The morphology of the SEI was found to change at different potentials, indicating a dynamic process involving deposition, dissolution, and re-deposition on the SiNWs. Longterm cycling performance of the SiNWs in different electrolytes, with various surface modifications and coatings, and other experimental parameters were evaluated. The electrochemical reaction of GeNWs with lithium resulted in capacities of ˜1000 mAh/g for tens of cycles. The GeNWs were also observed to become amorphous after the first charge. Interestingly, very large irreversible capacities were observed in the GeNWs, indicating surface instabilities or reactivity with the electrolyte. To passivate the surface, a thin layer of amorphous Si was used to coat the GeNWs and make Ge-Si coreshell nanowires. This passivation helped to reduce the irreversibly capacity loss and gave reversible capacities typical for the GeNWs. Two positive electrode materials for Li-ion batteries were synthesized in nano-morphologies and characterized. Transformation of layered structured V2O5 nanoribbons into the fully lithiated o-Li 3V2O5 phase was found to depend not only on the width but also the thickness of the nanoribbons. For the first time, complete delithiation of o-Li3V2O5 back to the single-crystalline, pristine V2O5 nanoribbon was observed, indicating a 30% higher energy density. Nanostructured BiOCl, a conversion material, was also synthesized and characterized for its Li insertion properties. Networks of silver nanowires (AgNWs) and single-walled carbon nanotubes (SWNTs) were explored as highly conducting, high surface area, and printable materials for flexible, light-weight supercapacitors. Use of the solution-processible AgNWs and SWNTs, as well as a polymer electrolyte, facilitated the fabrication of an entirely printable device on plastic substrates. The devices showed promising results for high energy and power density supercapacitors, with energy and power densities reaching 24 Wh/kg and 42 kW/kg for the AgNW/SWNT composite.
Rosenholm, Jessica M; Sahlgren, Cecilia; Lindén, Mika
2011-07-01
The main objective in the development of nanomedicine is to obtain delivery platforms for targeted delivery of drugs or imaging agents for improved therapeutic efficacy, reduced side effects and increased diagnostic sensitivity. A (nano)material class that has been recognized for its controllable properties on many levels is ordered mesoporous inorganic materials, typically in the form of amorphous silica (SiO2). Characteristics for this class of materials include mesoscopic order, tunable pore dimensions in the (macro)molecular size range, a high pore volume and surface area, the possibility for selective surface functionality as well as morphology control. The robust but biodegradable ceramic matrix moreover provides shelter for incorporated agents (drugs, proteins, imaging agents, photosensitizers) leaving the outer particle surface free for further modification. The unique features make these materials particularly amenable to modular design, whereby functional moieties and features may be interchanged or combined to produce multifunctional nanodelivery systems combining targeting, diagnostic, and therapeutic actions. This review covers the latest developments related to the use of mesoporous silica nanoparticles (MSNs) as nanocarriers in biomedical applications, with special focus on cancer therapy and diagnostics.
NASA Astrophysics Data System (ADS)
Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun
2018-05-01
The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.
NASA Astrophysics Data System (ADS)
Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo
2016-03-01
Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.
Zhou, Dan; He, Liangbo; Zhang, Rong; Hao, Shuai; Hou, Xiandeng; Liu, Zhiang; Du, Gu; Asiri, Abdullah M; Zheng, Chengbin; Sun, Xuping
2017-11-07
It is highly desirable to develop a simple, fast and straightforward method to boost the alkaline water oxidation of metal oxide catalysts. In this communication, we report our recent finding that the generation of amorphous Co-borate layer on Co 3 O 4 nanowire arrays supported on Ti mesh (Co 3 O 4 @Co-Bi NA/TM) leads to significantly boosted OER activity. The as-prepared Co 3 O 4 @Co-Bi NA/TM demands overpotential of 304 mV to drive a geometrical current density of 20 mA cm -2 in 1.0 M KOH, which is 109 mV less than that for Co 3 O 4 NA/TM, with its catalytic activity being preserved for at least 20 h. It suggests that the existence of amorphous Co-Bi layer promotes more CoO x (OH) y generation on Co 3 O 4 surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity
NASA Astrophysics Data System (ADS)
Zhu, Xiaobo; Zhou, Shengguo; Yan, Qingqing
2018-04-01
A novel superhydrophobic ternary graphene/amorphous carbon/nickel (G-Ni/a-C:H) carbon-based film was fabricated by a green approach of high-voltage electrochemical deposition without using aqueous solution, which was systematically investigated including the structure and relating applications on self-cleaning and corrosion resistance. Graphene and nickel nano-particle inserts were effective to tailor the feature of nanocrystallite/amorphous microstructure as well as micro-nanoscale hierarchical rose-petal-like surface for G-Ni/a-C:H carbon-based film. Surprisingly, this deposit could present outstanding superhydrophobicity with the contact angle of 158.98 deg and sliding angle of 2.75 deg without any further surface modification meanwhile it could possess fairly well adhesion. Furthermore, the superhydrophobic G-Ni/a-C:H carbon-based film could exhibit excellent corrosion resistance and self-cleaning performances compared to no graphene incorporated deposit. The procedure of fabricating deposit might be simple, scalable, and environmental friendly, indicating a promising prospect for industrial applications in the field of anti-fouling, anti-corrosion and drag resistance.
NASA Astrophysics Data System (ADS)
Mori, Takanori; Sakurai, Takachika; Sato, Taiki; Shirakura, Akira; Suzuki, Tetsuya
2016-04-01
Hydrogenated amorphous carbon films with various thicknesses were synthesized by dielectric barrier discharge-based plasma deposition under atmospheric pressure diluted with nitrogen (N2) and helium (He) at various pulse frequencies. The C2H2/N2 film showed cauliflower-like-particles that grew bigger with the increase in film’s thickness. At 5 kHz, the film with a thickness of 2.7 µm and smooth surface was synthesized. On the other hand, the films synthesized from C2H2/He had a smooth surface and was densely packed with domed particles. The domed particles extended with the increase in the film thickness, enabling it to grow successfully to 37 µm with a smooth surface.
Bachman, Daniel; Chen, Zhijiang; Fedosejevs, Robert; Tsui, Ying Y; Van, Vien
2013-05-06
We demonstrate the fine tuning capability of femtosecond laser surface modification as a permanent trimming mechanism for silicon photonic components. Silicon microring resonators with a 15 µm radius were irradiated with single 400 nm wavelength laser pulses at varying fluences. Below the laser ablation threshold, surface amorphization of the crystalline silicon waveguides yielded a tuning rate of 20 ± 2 nm/J · cm(-2)with a minimum resonance wavelength shift of 0.10nm. Above that threshold, ablation yielded a minimum resonance shift of -1.7 nm. There was some increase in waveguide loss for both trimming mechanisms. We also demonstrated the application of the method by using it to permanently correct the resonance mismatch of a second-order microring filter.
Ma, Zhongyuan; Ni, Xiaodong; Zhang, Wenping; Jiang, Xiaofan; Yang, Huafeng; Yu, Jie; Wang, Wen; Xu, Ling; Xu, Jun; Chen, Kunji; Feng, Duan
2014-11-17
A significant enhancement of blue light emission from amorphous oxidized silicon nitride (a-SiNx:O) films is achieved by introduction of ordered and size-controllable arrays of Ag nanoparticles between the silicon substrate and a-SiNx:O films. Using hexagonal arrays of Ag nanoparticles fabricated by nanosphere lithography, the localized surface plasmons (LSPs) resonance can effectively increase the internal quantum efficiency from 3.9% to 13.3%. Theoretical calculation confirms that the electromagnetic field-intensity enhancement is through the dipole surface plasma coupling with the excitons of a-SiNx:O films, which demonstrates a-SiNx:O films with enhanced blue emission are promising for silicon-based light-emitting applications by patterned Ag arrays.
Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.
Kalkan, B; Sen, S; Clark, S M
2011-09-28
The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics
Radiation damage in dielectric and semiconductor single crystals (direct observation)
NASA Astrophysics Data System (ADS)
Adawi, M. A.; Didyk, A. Yu.; Varichenko, V. S.; Zaitsev, A. M.
1998-11-01
The surfaces of boron-doped synthetic and natural diamonds have been investigated by using the scanning tunnelling microscope (STM) and the scanning electronic microscope (SEM) before and after irradiating the samples with 40Ar (25 MeV), 84Kr (210 MeV) and 125Xe (124 MeV) ions. The structures observed after irradiation showed craters with diameters ranging from 3 nm up to 20 nm, which could be interpreted as single ion tracks and multiple hits of ions at the nearest positions of the surface. In the case of argon ion irradiation, the surface was found to be completely amorphous, but after xenon irradiation one could see parts of surface without amorphism. This can be explained by the influence of high inelastic energy losses. The energy and temperature criteria of crater formation as a result of heavy ion irradiation are introduced.
NASA Astrophysics Data System (ADS)
Kayed, Kamal
2018-06-01
The aim of this paper is to investigate the relationship between the micro structure and the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films prepared by laser ablation method. The study results show that the charge effect coefficient (E) is not just a correction factor. We found that the changes in this coefficient value due to incorporation of nitrogen atoms into the carbon network are related to the spatial configurations of the sp2 bonded carbon atoms, order degree and sp2 clusters size. In addition, results show that the curve E vs. C(sp3)-N is a characteristic curve of the micro structure. This means that using this curve makes it easy to sorting the samples according to the micro structure (hexagonal rings or chains).
Comprehensive characterization of chitosan/PEO/levan ternary blend films.
Bostan, Muge Sennaroglu; Mutlu, Esra Cansever; Kazak, Hande; Sinan Keskin, S; Oner, Ebru Toksoy; Eroglu, Mehmet S
2014-02-15
Ternary blend films of chitosan, PEO (300,000) and levan were prepared by solution casting method and their phase behavior, miscibility, thermal and mechanical properties as well as their surface energy and morphology were characterized by different techniques. FT-IR analyses of blend films indicated intermolecular hydrogen bonding between blend components. Thermal and XRD analysis showed that chitosan and levan suppressed the crystallinity of PEO up to nearly 25% of PEO content in the blend, which resulted in more amorphous film structures at higher PEO/(chitosan+levan) ratios. At more than 30% of PEO concentration, contact angle (CA) measurements showed a surface enrichment of PEO whereas at lower PEO concentrations, chitosan and levan were enriched on the surfaces leading to more amorphous and homogenous surfaces. This result was further confirmed by atomic force microscopy (AFM) images. Cell proliferation and viability assay established the high biocompatibility of the blend films. Copyright © 2013 Elsevier Ltd. All rights reserved.
Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response
NASA Astrophysics Data System (ADS)
Ortiz, Rocío; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon
2011-11-01
The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.
NASA Astrophysics Data System (ADS)
Parsard, Gregory G.
Boron carbide is a lightweight ceramic commonly used in applications requiring high hardness. At sufficiently high stresses, the material experiences a localized phase transformation (amorphization) which seemingly weakens its structure. Raman spectroscopy is used to distinguish these transformed regions from crystalline material based on the evolution of new peaks in collected Raman spectra. Vickers indentations of various loads were created at quasistatic and dynamic strain rates to trigger amorphization. The resulting imprints and subsurface regions were scanned with Raman spectroscopy to map amorphization intensity at several depths to generate three-dimensional representations of the amorphized zones, which were analyzed to determine the influence of load and strain rate upon amorphized zone characteristics. The square of amorphized zone depth beneath Vickers indentations increases linearly with load and shows little to no strain rate dependence. Sudden decreases in amorphization intensity at certain depths coincided with the presence of lateral cracks, suggesting that lateral cracks may lead to a loss of amorphized material during mechanical polishing. Experimental results were compared against finite element simulations to estimate critical values of stress and strain associated with amorphization. Raman spectra were also analyzed to determine the indentation-induced residual compressive pressure in crystalline boron carbide. In unstressed crystalline boron carbide, a peak exists near 1088 cm-1 which shifts to higher wavenumbers with the application of compressive pressure. The change in position of this crystalline peak was tracked across surfaces at various depths beneath the indentations and then converted into pressure using the piezospectroscopic coefficient of boron carbide. Residual compressive pressures on the order of gigapascals were found near the indentations, with stress relaxation near regions affected by radial cracks, spall, and graphitic inclusions. These measured residual compressive pressures were consistently higher than those predicted by finite element simulations at various loads, suggesting that amorphization, which was not accounted for by the simulations, may increase compressive residual stress in the crystalline material. Amorphization may cause affected regions to expand relative to their formerly crystalline state and exerting radial compressive forces upon the surrounding crystalline regions and circumferential tension along its boundary, thus promoting crack propagation within the amorphized region.
Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru
2017-04-30
Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation concentration of a metastable drug from solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.
Shi, Chenyang; Teerakapibal, Rattavut; Yu, Lian; ...
2017-07-10
Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accurate in situmore » structural studies for a wide range of materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Chenyang; Teerakapibal, Rattavut; Yu, Lian
2017-07-10
Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accuratein situstructuralmore » studies for a wide range of materials.« less
Synthesis of long T₁ silicon nanoparticles for hyperpolarized ²⁹Si magnetic resonance imaging.
Atkins, Tonya M; Cassidy, Maja C; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M; Kauzlarich, Susan M
2013-02-26
We describe the synthesis, materials characterization, and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na₄Si₄) and silicon tetrachloride (SiCl₄) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ∼10 nm with long size-adjusted ²⁹Si spin-lattice relaxation (T₁) times (>600 s), which are retained after hyperpolarization by low-temperature DNP.
Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging
Atkins, Tonya M.; Cassidy, Maja C.; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M.; Kauzlarich, Susan M.
2013-01-01
We describe the synthesis, materials characterization and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na4Si4) and silicon tetrachloride (SiCl4) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted 29Si spin lattice relaxation (T1) times (> 600 s), which are retained after hyperpolarization by low temperature DNP. PMID:23350651
Impurity incorporation, deposition kinetics, and microstructural evolution in sputtered Ta films
NASA Astrophysics Data System (ADS)
Whitacre, Jay Fredric
There is an increasing need to control the microstructure in thin sputtered Ta films for application as high-temperature coatings or diffusion barriers in microelectronic interconnect structures. To this end, the relationship between impurity incorporation, deposition kinetics, and microstructural evolution was examined for room-temperature low growth rate DC magnetron sputtered Ta films. Impurity levels present during deposition were controlled by pumping the chamber to various base pressures before growth. Ar pressures ranging from 2 to 20 mTorr were used to create contrasting kinetic environments in the sputter gas. This affected both the distribution of adatom kinetic energies at the substrate as well as the rate of impurity desorption from the chamber walls: at higher Ar pressures adatoms has lower kinetic energies, and there was an increase in impurity concentration. X-ray diffraction, high-resolution transmission electron microscopy (HREM), transmission electron diffraction (TED), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and x-ray photoelectron. spectroscopy (XPS) were used to examine film crystallography, microstructure, and composition. A novel laboratory-based in-situ x-ray diffractometer was constructed. This new set-up allowed for the direct observation of microstructural evolution during growth. Films deposited at increasingly higher Ar pressures displayed a systematic decrease in grain size and degree of texturing, while surface morphology was found to vary from a nearly flat surface to a rough surface with several length scales of organization. In-situ x-ray results showed that the rate of texture evolution was found to be much higher in films grown using lower Ar pressures. These effects were studied in films less than 200 A thick using high resolution x-ray diffraction in conjunction with a synchrotron light source (SSRL B.L. 7-2). Films grown using higher Ar pressures (above 10 mTorr) with a pre-growth base pressure of 1 x 10--6 Torr had grains less than 10 nm in diameter and significant amorphous content Calculated radial distribution functions show a significant increase in average inter-atomic spacing in films grown using higher base pressures and Ar pressures. The amorphous content in the films was determined via comparison between ideal crystalline diffraction patterns and actual data. Thinner films grown at higher Ar pressures had relatively greater amorphous content. Real-time process control using the in-situ diffractometer was also demonstrated. The effects observed are discussed in the context of previous theories and experiments that document room-temperature sputter film growth. The changes in film microstructure observed were impurity mediated. Specifically, oxygen desorbed from the chamber walls during growth were incorporated into the film and subsequently limited grain development and texturing. A second phase consisting of amorphous Ta2O5 formed between the grain nuclei. Adatom kinetics played a role in determining surface morphology: at low Ar pressures (2 mTorr) significant adatom kinetic energies served to flattened the film surface, though impurity levels dominated grain development even in these conditions.
Brar, Gurlal Singh; Arora, Amandeep Singh; Khinda, Vineet Inder Singh; Kallar, Shiminder; Arora, Karuna
2017-01-01
Continuous balanced demineralization and remineralization are natural dynamic processes in enamel. If the balance is interrupted and demineralization process dominates, it may eventually lead to the development of carious lesions in enamel and dentine. Fluoride helps control decay by enhancing remineralization and altering the structure of the tooth, making the surface less soluble. One hundred and twenty sound human permanent incisors randomly and equally distributed into six groups as follows: Group I - Control, II - Sodium fluoride solution, III - Sodium fluoride gel, IV - Sodium fluoride varnish, V - Clinpro Tooth Crème (3M ESPE), and VI-GC Tooth Mousse Plus or MI Paste Plus. The samples were kept in artificial saliva for 12 months, and the topical fluoride agents were applied to the respective sample groups as per the manufacturer instructions. Scanning electron microscope (SEM) evaluation of all the samples after 6 and 12 months was made. Morphological changes on the enamel surface after application of fluoride in SEM revealed the presence of globular precipitate in all treated samples. Amorphous, globular, and crystalline structures were seen on the enamel surface of the treated samples. Clear differences were observed between the treated and untreated samples. Globular structures consisting of amorphous CaF2precipitates, which acted as a fluoride reservoir, were observed on the enamel surface after action of different sodium fluoride agents. CPP-ACPF (Tooth Mousse) and Tricalcium phosphate with fluoride (Clinpro tooth crème) are excellent delivery vehicles available in a slow release amorphous form to localize fluoride at the tooth surface.
Song, Lei; Kästner, Johannes
2016-10-26
Investigating how formamide forms in the interstellar medium is a hot topic in astrochemistry, which can contribute to our understanding of the origin of life on Earth. We have constructed a QM/MM model to simulate the hydrogenation of isocyanic acid on amorphous solid water surfaces to form formamide. The binding energy of HNCO on the ASW surface varies significantly between different binding sites, we found values between ∼0 and 100 kJ mol -1 . The barrier for the hydrogenation reaction is almost independent of the binding energy, though. We calculated tunneling rate constants of H + HNCO → NH 2 CO at temperatures down to 103 K combining QM/MM with instanton theory. Tunneling dominates the reaction at such low temperatures. The tunneling reaction is hardly accelerated by the amorphous solid water surface compared to the gas phase for this system, even though the activation energy of the surface reaction is lower than the one of the gas-phase reaction. Both the height and width of the barrier affect the tunneling rate in practice. Strong kinetic isotope effects were observed by comparing to rate constants of D + HNCO → NHDCO. At 103 K we found a KIE of 231 on the surface and 146 in the gas phase. Furthermore, we investigated the gas-phase reaction NH 2 + H 2 CO → NH 2 CHO + H and found it unlikely to occur at cryogenic temperatures. The data of our tunneling rate constants are expected to significantly influence astrochemical models.
Nanoscale decomposition of Nb-Ru-O
NASA Astrophysics Data System (ADS)
Music, Denis; Geyer, Richard W.; Chen, Yen-Ting
2016-11-01
A correlative theoretical and experimental methodology has been employed to explore the decomposition of amorphous Nb-Ru-O at elevated temperatures. Density functional theory based molecular dynamics simulations reveal that amorphous Nb-Ru-O is structurally modified within 10 ps at 800 K giving rise to an increase in the planar metal - oxygen and metal - metal population and hence formation of large clusters, which signifies atomic segregation. The driving force for this atomic segregation process is 0.5 eV/atom. This is validated by diffraction experiments and transmission electron microscopy of sputter-synthesized Nb-Ru-O thin films. Room temperature samples are amorphous, while at 800 K nanoscale rutile RuO2 grains, self-organized in an amorphous Nb-O matrix, are observed, which is consistent with our theoretical predictions. This amorphous/crystalline interplay may be of importance for next generation of thermoelectric devices.
In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution
NASA Astrophysics Data System (ADS)
Chen, Feng; Luo, Wei; Mo, Yanping; Yu, Huogen; Cheng, Bei
2018-02-01
Cocatalyst modification of photocatalysts is an important strategy to enhance the photocatalytic performance by promoting effective separation of photoinduced electron-hole pairs and providing abundant active sites. In this study, a facile in situ photodeposition method was developed to prepare amorphous CoSx-modified TiO2 photocatalysts. It was found that amorphous CoSx nanoparticles were solidly loaded on the TiO2 surface, resulting in a greatly improved photocatalytic H2-evolution performance. When the amount of amorphous CoSx was 10 wt%, the hydrogen evolution rate of the CoSx/TiO2 reached 119.7 μmol h-1, which was almost 16.7 times that of the pure TiO2. According to the above experimental results, a reasonable mechanism of improved photocatalytic performance is proposed for the CoSx/TiO2 photocatalysts, namely, the photogenerated electrons of TiO2 can rapidly transfer to amorphous CoSx nanoparticles due to the solid contact between them, and then amorphous CoSx can provide plenty of sulfur active sites to rapidly adsorb protons from solution to produce hydrogen by the photogenerated electrons. Considering the facile synthesis method, the present cheap and highly efficient amorphous CoSx-modified TiO2 photocatalysts would have great potential for practical use in photocatalytic H2 production.
Bertacche, Vittorio; Pini, Elena; Stradi, Riccardo; Stratta, Fabio
2006-01-01
The purpose of this study is the development of a quantification method to detect the amount of amorphous cyclosporine using Fourier transform infrared (FTIR) spectroscopy. The mixing of different percentages of crystalline cyclosporine with amorphous cyclosporine was used to obtain a set of standards, composed of cyclosporine samples characterized by different percentages of amorphous cyclosporine. Using a wavelength range of 450-4,000 cm(-1), FTIR spectra were obtained from samples in potassium bromide pellets and then a partial least squares (PLS) model was exploited to correlate the features of the FTIR spectra with the percentage of amorphous cyclosporine in the samples. This model gave a standard error of estimate (SEE) of 0.3562, with an r value of 0.9971 and a standard error of prediction (SEP) of 0.4168, which derives from the cross validation function used to check the precision of the model. Statistical values reveal the applicability of the method to the quantitative determination of amorphous cyclosporine in crystalline cyclosporine samples.
NASA Astrophysics Data System (ADS)
Lu, Xujie; Hu, Qingyang; Yang, Wenge; Bai, Ligang; Sheng, Howard; Wang, Lin; Huang, Fuqiang; Wen, Jianguo; Miller, Dean; Zhao, Yusheng
2014-03-01
Pressure-induced amorphization (PIA) in single-crystal Ta2O5 nanowires is observed at 19 GPa and the obtained amorphous Ta2O5 nanowires show significant improvement in electrical conductivity. The phase transition process is unveiled by monitoring structural evolution with in-situ synchrotron XRD, PDF, Raman spectroscopy and TEM. The first principles calculations reveal the phonon modes softening during compression at particular bonds, and the analysis on the electron localization function also shows bond strength weakening at the same positions. Based on the experimental and theoretical results, a kinetic PIA mechanism is proposed and demonstrated systematically that amorphization is initiated by the disruption of connectivity between polyhedra at the particular weak-bonding positions along the a-axis in the unit cell. The one-dimensional morphology is well preserved for the pressure-induced amorphous Ta2O5 and the electrical conductivity is improved by an order of magnitude compared to traditional amorphous forms.
Roediger, P; Wanzenboeck, H D; Waid, S; Hochleitner, G; Bertagnolli, E
2011-06-10
Recently focused-electron-beam-induced etching of silicon using molecular chlorine (Cl(2)-FEBIE) has been developed as a reliable and reproducible process capable of damage-free, maskless and resistless removal of silicon. As any electron-beam-induced processing is considered non-destructive and implantation-free due to the absence of ion bombardment this approach is also a potential method for removing focused-ion-beam (FIB)-inflicted crystal damage and ion implantation. We show that Cl(2)-FEBIE is capable of removing FIB-induced amorphization and gallium ion implantation after processing of surfaces with a focused ion beam. TEM analysis proves that the method Cl(2)-FEBIE is non-destructive and therefore retains crystallinity. It is shown that Cl(2)-FEBIE of amorphous silicon when compared to crystalline silicon can be up to 25 times faster, depending on the degree of amorphization. Also, using this method it has become possible for the first time to directly investigate damage caused by FIB exposure in a top-down view utilizing a localized chemical reaction, i.e. without the need for TEM sample preparation. We show that gallium fluences above 4 × 10(15) cm(-2) result in altered material resulting from FIB-induced processes down to a depth of ∼ 250 nm. With increasing gallium fluences, due to a significant gallium concentration close beneath the surface, removal of the topmost layer by Cl(2)-FEBIE becomes difficult, indicating that gallium serves as an etch stop for Cl(2)-FEBIE.
A shear localization mechanism for lubricity of amorphous carbon materials
Ma, Tian-Bao; Wang, Lin-Feng; Hu, Yuan-Zhong; Li, Xin; Wang, Hui
2014-01-01
Amorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces. Here we show instead that lubricity arises from shear induced strain localization, which, instead of homogeneous deformation, dominates the shearing process. Shear localization is characterized by covalent bond reorientation, phase transformation and structural ordering preferentially in a localized region, namely tribolayer, resulting in shear weakening. We further demonstrate an anomalous pressure induced transition from stick-slip friction to continuous sliding with ultralow friction, due to gradual clustering and layering of graphitic sheets in the tribolayer. The proposed shear localization mechanism sheds light on the mechanism of superlubricity, and would enrich our understanding of lubrication mechanism of a wide variety of amorphous materials. PMID:24412998
Solar cells with gallium phosphide/silicon heterojunction
NASA Astrophysics Data System (ADS)
Darnon, Maxime; Varache, Renaud; Descazeaux, Médéric; Quinci, Thomas; Martin, Mickaël; Baron, Thierry; Muñoz, Delfina
2015-09-01
One of the limitations of current amorphous silicon/crystalline silicon heterojunction solar cells is electrical and optical losses in the front transparent conductive oxide and amorphous silicon layers that limit the short circuit current. We propose to grow a thin (5 to 20 nm) crystalline Gallium Phosphide (GaP) by epitaxy on silicon to form a more transparent and more conducting emitter in place of the front amorphous silicon layers. We show that a transparent conducting oxide (TCO) is still necessary to laterally collect the current with thin GaP emitter. Larger contact resistance of GaP/TCO increases the series resistance compared to amorphous silicon. With the current process, losses in the IR region associated with silicon degradation during the surface preparation preceding GaP deposition counterbalance the gain from the UV region. A first cell efficiency of 9% has been obtained on ˜5×5 cm2 polished samples.
NASA Astrophysics Data System (ADS)
Paz, Alejandro Pérez; Lebedeva, Irina V.; Tokatly, Ilya V.; Rubio, Angel
2014-12-01
One of the most accepted models that describe the anomalous thermal behavior of amorphous materials at temperatures below 1 K relies on the quantum mechanical tunneling of atoms between two nearly equivalent potential energy wells forming a two-level system (TLS). Indirect evidence for TLSs is widely available. However, the atomistic structure of these TLSs remains an unsolved topic in the physics of amorphous materials. Here, using classical molecular dynamics, we found several hitherto unknown bistable structural motifs that may be key to understanding the anomalous thermal properties of amorphous alumina at low temperatures. We show through free energy profiles that the complex potential energy surface can be reduced to canonical TLSs. The tunnel splitting predicted from instanton theory, the number density, dipole moment, and coupling to external strain of the discovered motifs are consistent with experiments.
Corsini, Niccolo R C; Zhang, Yuanpeng; Little, William R; Karatutlu, Ali; Ersoy, Osman; Haynes, Peter D; Molteni, Carla; Hine, Nicholas D M; Hernandez, Ignacio; Gonzalez, Jesus; Rodriguez, Fernando; Brazhkin, Vadim V; Sapelkin, Andrei
2015-11-11
Over the last two decades, it has been demonstrated that size effects have significant consequences for the atomic arrangements and phase behavior of matter under extreme pressure. Furthermore, it has been shown that an understanding of how size affects critical pressure-temperature conditions provides vital guidance in the search for materials with novel properties. Here, we report on the remarkable behavior of small (under ~5 nm) matrix-free Ge nanoparticles under hydrostatic compression that is drastically different from both larger nanoparticles and bulk Ge. We discover that the application of pressure drives surface-induced amorphization leading to Ge-Ge bond overcompression and eventually to a polyamorphic semiconductor-to-metal transformation. A combination of spectroscopic techniques together with ab initio simulations were employed to reveal the details of the transformation mechanism into a new high density phase-amorphous metallic Ge.
Thermal infrared reflectance and emission spectroscopy of quartzofeldspathic glasses
Byrnes, J.M.; Ramsey, M.S.; King, P.L.; Lee, R.J.
2007-01-01
This investigation seeks to better understand the thermal infrared (TIR) spectral characteristics of naturally-occurring amorphous materials through laboratory synthesis and analysis of glasses. Because spectra of glass phases differ markedly from their mineral counterparts, examination of glasses is important to accurately determine the composition of amorphous surface materials using remote sensing datasets. Quantitatively characterizing TIR (5-25 ??m) spectral changes that accompany structural changes between glasses and mineral crystals provides the means to understand natural glasses on Earth and Mars. A suite of glasses with compositions analogous to common terrestrial volcanic glasses was created and analyzed using TIR reflectance and emission techniques. Documented spectral characteristics provide a basis for comparison with TIR spectra of other amorphous materials (glasses, clays, etc.). Our results provide the means to better detect and characterize glasses associated with terrestrial volcanoes, as well as contribute toward understanding the nature of amorphous silicates detected on Mars. Copyright 2007 by the American Geophysical Union.
Liu, Wei; Xu, Qun
2018-04-20
Localized surface plasmon resonances (LSPRs) of ultra-thin two-dimensional (2D) nanomaterials opened a new regime in plasmonics in the last several years. 2D plasmonic materials are yet concentrated on the crystal structure, amorphous materials are hardly reported because of their limited preparation methods rather than undesired plasmonic properties. Taking molybdenum oxides as an example, herein, we elaborate the 2D amorphous plasmons prepared with the assistance of supercritical CO2. In brief, we examine the reported characteristic plasmonic properties of molybdenum oxides, and applications of supercritical CO2 in formations of 2D layer materials as well as introduced phase and disorder engineering based on our researchs. Furthermore, we propose our perspective on the development of 2D plasmons, especially for amorphous layer materials in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Turri, Rafael G.; Santos, Ricardo M.; Rangel, Elidiane C.; da Cruz, Nilson C.; Bortoleto, José R. R.; Dias da Silva, José H.; Antonio, César Augusto; Durrant, Steven F.
2013-09-01
Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD.
Numerical modeling of mineral dissolution - precipitation kinetics integrating interfacial processes
NASA Astrophysics Data System (ADS)
Azaroual, M. M.
2016-12-01
The mechanisms of mineral dissolution/precipitation are complex and interdependent. Within a same rock, the geochemical modelling may have to manage kinetic reactions with high ratios between the most reactive minerals (i.e., carbonates, sulfate salts, etc.) and less reactive minerals (i.e., silica, alumino-silicates, etc.). These ratios (higher than 10+6) induce numerical instabilities for calculating mass and energy transfers between minerals and aqueous phases at the appropriate scales of time and space. The current scientific debate includes: i) changes (or not) of the mineral reactive surface with the progress of the dissolution/precipitation reactions; ii) energy jumps (discontinuity) in the thermodynamic affinity function of some dissolution/precipitation reactions and iii) integration of processes at the "mineral - aqueous solution" interfaces for alumino-silicates, silica and carbonates. In recent works dealing with the specific case of amorphous silica, measurements were performed on nano-metric cross-sections indicating the presence of surface layer between the bulk solution and the mineral. This thin layer is composed by amorphous silica and hydrated silica "permeable" to the transfer of water and ionic chemical constituents. The boundary/interface between the initial mineral and the silica layer is characterized by a high concentration jump of chemical products at the nanoscale and some specific interfacial dissolution/precipitation processes.In this study, the results of numerical simulations dealing with different mechanisms of silicate and carbonate dissolution/precipitation reactions and integrating interfacial processes will be discussed. The application of this approach to silica precipitation is based on laboratory experiments and it highlights the significant role of the "titration" surface induced by surface complexation reactions in the determination of the kinetics of precipitation.
Characteristics of amorphous kerogens fractionated from terrigenous sedimentary rocks
NASA Astrophysics Data System (ADS)
Suzuki, Noriyuki
1984-02-01
A preliminary attempt to fractionate amorphous kerogens from terrigenous bulk kerogen by a benzene-water two phase partition method under acidic condition was made. Microscopic observation revealed that amorphous kerogens and structured kerogens were fractionated effectively by this method. Characteristics of the amorphous and structured kerogens fractionated by this method were examined by some chemical analyses and compared with those of the bulk kerogen and humic acid isolated from the same rock sample (Haizume Formation, Pleistocene, Japan). The elemental and infrared (IR) analyses showed that the amorphous kerogen fraction had the highest atomic H/C ratio and the lowest atomic N/C ratio and was the richest in aliphatic structures and carbonyl and carboxyl functional groups. Quantities of fatty acids from the saponification products of each geopolymer were in agreement with the results of elemental and IR analyses. Distribution of the fatty acids was suggestive that more animal lipids participate in the formation of amorphous kerogens because of the abundance of relatively lower molecular weight fatty acids (such as C 16 and C 18 acids) in saponification products of amorphous kerogens. On the other hand, although the amorphous kerogen fraction tends to be rich in aliphatic structures compared with bulk kerogen of the same rock samples, van Krevelen plots of elemental compositions of kerogens from the core samples (Nishiyama Oil Field, Tertiary, Japan) reveal that the amorphous kerogen fraction is not necessarily characterized by markedly high atomic H/C ratio. This was attributed to the oxic environment of deposition and the abundance of biodegraded terrestrial amorphous organic matter in the amorphous kerogen fraction used in this work.
Protein adsorption on thin films of carbon and carbon nitride monitored with in situ ellipsometry.
Berlind, T; Tengvall, P; Hultman, L; Arwin, H
2011-03-01
Thin films of amorphous carbon and amorphous, graphitic and fullerene-like carbon nitride were deposited by reactive magnetron sputtering and optically characterized with spectroscopic ellipsometry. Complementary studies using scanning electron microscopy and atomic force microscopy were performed. The films were exposed to human serum albumin (HSA) and the adsorption was monitored in situ using dynamic ellipsometry. From the ellipsometric data the adsorbed amount of proteins was quantified in terms of surface mass density using de Feijter's model. The results indicate larger adsorption of proteins onto the amorphous films compared to the films with a more textured structure. Complementary studies with 125I-labeled HSA showed an apparent protein adsorption up to six times larger compared to the ellipsometry measurement. In addition, the four types of films were incubated in blood plasma followed by exposure to anti-fibrinogen, anti-HMWK or anti-C3c, revealing the materials' response to complement and contact activation. The amorphous and graphitic carbon nitride exhibit rather high immune activity compared to a titanium reference, whereas the amorphous carbon and the fullerene-like CNx show less immune complement deposition. Compared to the reference, all films exhibit indications of a stronger ability to initiate the intrinsic pathway of coagulation. Finally, the surfaces' bone-bonding ability was investigated by examination of their ability to form calcium phosphate crystals in a simulated body fluid, with a-CNx depositing most calcium phosphate after 21 days of incubation. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence
NASA Astrophysics Data System (ADS)
Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.
2018-05-01
Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.
Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter
2015-01-01
Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co3+/4+ ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions. PMID:26456525
Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter
2015-10-12
Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co(3+/4+) ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions.
Xie, Yike; Chen, Zhongjian; Su, Rui; Li, Ye; Qi, Jianping; Wu, Wei; Lu, Yi
2017-01-01
Ursodeoxycholic acid, usually used to dissolve cholesterol gallstones in clinic, is a typical hydrophobic drug with poor oral bioavailability due to dissolution rate-limited performance. The objective of this study was to increase the dissolution of ursodeoxycholic acid by amorphous nanosuspensions. Nanoprecipitation based on acid-base neutralization was used to prepare the nanosuspensions with central composite design to optimize the formula. The nanosuspensions were characterized by particle size, morphology, crystallology and dissolution. The ursodeoxycholic acid nanosuspensions showed mean particle size around 380 nm with polydispersion index value about 0.25. Scanning electron microscope observed high coverage of HPMC-E50 onto the surface of the nanosuspensions. Differential scanning calorimetry and powder X-ray diffractometry revealed amorphous structure of the ursodeoxycholic acid nanosuspensions. A significant increase of dissolution in acidic media was achieved by the amorphous nanosuspensions compared with the physical mixture. It can be predicted that the amorphous nanosuspensions show great potential in improving the oral bioavailability of ursodeoxycholic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Lu, Xiaoyan; Ji, Cai; Jin, Tingting; Fan, Xiaohui
2015-05-01
Engineered nanoparticles, with unconventional properties, are promising platforms for biomedical applications. Since they may interact with a wide variety of biomolecules, it is critical to understand the impact of the physicochemical properties of engineered nanoparticles on biological systems. In this study, the effects of particle size and surface modification alone or in combination of amorphous silica particles (SPs) on biological responses were determined using a suite of general toxicological assessments and metabonomics analysis in mice model. Our results suggested that amino or carboxyl surface modification mitigated the liver toxicity of plain-surface SPs. 30 nm SPs with amino surface modification were found to be the most toxic SPs among all the surface-modified SP treatments at the same dosage. When treatment dose was increased, submicro-sized SPs with amino or carboxyl surface modification also induced liver toxicity. Biodistribution studies suggested that 70 nm SPs were mainly accumulated in liver and spleen regardless of surface modifications. Interestingly, these two organs exhibited different uptake trends. Furthermore, metabonomics studies indicated that surface modification plays a more dominant role to affect the liver metabolism than particle size.
Cardiac Calcified Amorphous Tumor of the Mitral Valve Presenting as Transient Ischemic Attack
Abbasi Teshnizi, Mohammad; Ghorbanzadeh, Atefeh; Zirak, Nahid; Manafi, Babak
2017-01-01
Cardiac calcified amorphous tumors (CATs) are an extremely rare nonneoplastic intracardiac masses. They have been reported in the literature in only a few cases. Thus, the incidence, pathogenesis, and best approach to the treatment are not certain. We report a case of CATs on the atrial surface of the anterior mitral valve leaflet in a 37-year-old female who was diagnosed by histopathological examination after surgical removal. PMID:28194283
Cardiac Calcified Amorphous Tumor of the Mitral Valve Presenting as Transient Ischemic Attack.
Abbasi Teshnizi, Mohammad; Ghorbanzadeh, Atefeh; Zirak, Nahid; Manafi, Babak; Moeinipour, Aliasghar
2017-01-01
Cardiac calcified amorphous tumors (CATs) are an extremely rare nonneoplastic intracardiac masses. They have been reported in the literature in only a few cases. Thus, the incidence, pathogenesis, and best approach to the treatment are not certain. We report a case of CATs on the atrial surface of the anterior mitral valve leaflet in a 37-year-old female who was diagnosed by histopathological examination after surgical removal.
Characterization of PEG-Like Macromolecular Coatings on Plasma Modified NiTi Alloy
NASA Astrophysics Data System (ADS)
Yang, Jun; Gao, Jiacheng; Chang, Peng; Wang, Jianhua
2008-04-01
A poly (ethylene glycol) (PEG-like) coating was developed to improve the biocompatibility of Nickel-Titanium (NiTi) alloy implants. The PEG-like macromolecular coatings were deposited on NiTi substrates at a room temperature of 298 K through a ECR (electron-cyclotron resonance) cold-plasma enhanced chemical vapor deposition method using tetraglyme (CH3-O-(CH2-CH2-O)4-CH3) as a precursor. A power supply with a frequency of 2.45 GHz was applied to ignite the plasma with Ar(argon) used as the carrier gas. Based on the atomic force microscopy (AFM) studies, a thin smooth coating on NiTi substrates with highly amorphous functional groups on the modified NiTi surfaces were mainly the same accumulated stoichiometric ratio of C and O with PEG. The vitro studies showed that platelet-rich plasma (PRP) adsorption on the modified NiTi alloy surface was significantly reduced. This study indicated that plasma surface modification changes the surface components of NiTi alloy and subsequently improves its biocompatibility.
USDA-ARS?s Scientific Manuscript database
Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...
Metal electrode for amorphous silicon solar cells
Williams, Richard
1983-01-01
An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.
Characterization of bio char derived from tapioca skin
NASA Astrophysics Data System (ADS)
Hasnan, F. I.; Iamail, K. N.; Musa, M.; Jaapar, J.; Alwi, H.; Hamid, K. K. K.
2018-03-01
Pyrolysis of tapioca skin was conducted to produce bio chars in the range between 500°C–800°C. Surface modification treatment were performed on bio chars by using chemicals within 24 hours at 30°C and hot water within 1 hour to enhance the bio char’s adsorption properties according to surface area, pore volume, pore size, crystallinity structure and functional groups. The samples were characterized by using BET, XRD, FTIR and Methylene Blue adsorption. Based on BET result, it showed the surface area increased as the pyrolysis temperature increased followed by pore volume and pore size for S0. The optimum temperature for SNaOH, SHW and SMeOH was at 600°C, 700°C and 800°C with the surface area of 75.9874, 274.5066 and 351.5531 m2/g respectively compared to S0 while SP3HO4 has the worst result since it felt on macroporous structure. The percentage of MB adsorption was followed the size of bio chars surface area. Based on FTIR result, at temperature 500°C to 700°C, the bio chars still have functional groups while at 800°C, many functional groups were diminished due to high temperature struck on them. XRD result showed all the bio chars were amorphous. In conclusion, the best surface modification treatment was by Methanol followed by hot water and Sodium Hydroxide at temperature of 700°C and 800°C while Ortho-Phosphoric acid was the worst one and was not suitable for bio char’s surface modification for adsorption purpose.
NASA Astrophysics Data System (ADS)
Droeger, J.; Burchard, M.; Lattard, D.
2011-12-01
Amorphous silicates of olivine and pyroxene composition are thought to be common constituents of circumstellar, interstellar, and interplanetary dust. In proto-planetary discs amorphous dust crystallize essentially as a result of thermal annealing. The present project aims at deciphering the kinetics of crystallization pyroxene in proto-planetary dust on the basis of experiments on amorphous thin films. The thin films are deposited on Si-wafers (111) by pulsed laser deposition (PLD). The thin films are completely amorphous, chemically homogeneous (on the MgSiO3 composition) and with a continuous and flat surface. They are subsequently annealed for 1 to 216 h at 1073K and 1098K in a vertical quench furnace and drop-quenched on a copper block. To monitor the progress of crystallization, the samples are characterized by AFM and SEM imaging and IR spectroscopy. After short annealing durations (1 to 12 h) AFM and SE imaging reveal small shallow polygonal features (diameter 0.5-1 μm; height 2-3 nm) evenly distributed at the otherwise flat surface of the thin films. These shallow features are no longer visible after about 3 h at 1098 K, resp. >12 h at 1073 K. Meanwhile, two further types of features appear small protruding pyramids and slightly depressed spherolites. The orders of appearance of these features depend on temperature, but both persist and steadily grow with increasing annealing duration. Their sizes can reach about 12 μm. From TEM investigations on annealed thin films on the Mg2SiO4 composition we know that these features represent crystalline sites, which can be surrounded by a still amorphous matrix (Oehm et al. 2010). A quantitative evaluation of the size of the features will give insights on the progress of crystallization. IR spectra of the unprocessed thin films show only broad bands. In contrast, bands characteristic of crystalline enstatite are clearly recognizable in annealed samples, e.g. after 12 h at 1078 K. Small bands can also be assigned to crystalline forsterite. Compared to the findings of Murata et al. (2009), our preliminary results point to smaller crystallization rates of enstatite from amorphous precursors.
Free energy of adhesion of lipid bilayers on silica surfaces
NASA Astrophysics Data System (ADS)
Schneemilch, M.; Quirke, N.
2018-05-01
The free energy of adhesion per unit area (hereafter referred to as the adhesion strength) of lipid arrays on surfaces is a key parameter that determines the nature of the interaction between materials and biological systems. Here we report classical molecular simulations of water and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers at model silica surfaces with a range of silanol densities and structures. We employ a novel technique that enables us to estimate the adhesion strength of supported lipid bilayers in the presence of water. We find that silanols on the silica surface form hydrogen bonds with water molecules and that the water immersion enthalpy for all surfaces varies linearly with the surface density of these hydrogen bonds. The adhesion strength of lipid bilayers is a linear function of the surface density of hydrogen bonds formed between silanols and the lipid molecules on crystalline surfaces. Approximately 20% of isolated silanols form such bonds but more than 99% of mutually interacting geminal silanols do not engage in hydrogen bonding with water. On amorphous silica, the bilayer displays much stronger adhesion than expected from the crystalline surface data. We discuss the implications of these results for nanoparticle toxicity.
NASA Astrophysics Data System (ADS)
Chen, Lai; Zeng, Diping; Liu, Zhiyi; Bai, Song; Li, Junlin
2018-02-01
The surface microhardness, as well as the fatigue crack propagation (FCP) resistance of 2524-T3 alloy, is improved by producing a 20-μm-thick amorphous electroless Ni-12% P coating on its surface. Compared to the substrate, this deposited EN coating possesses higher strength properties and exhibits a greater ability of accommodating the plastic deformation at the fatigue crack tip, thereby remarkably improving the FCP resistance in near-threshold and early Paris regimes. Regardless of the similar FCP rates in Paris regime (Δ K ≥ 16.2 MPa m0.5), the coated sample exhibits extended Paris regime and enhanced damage tolerance.
Trapping Planetary Noble Gases During the Fischer-Tropsch-Type Synthesis of Organic Materials
NASA Technical Reports Server (NTRS)
Nuth, Joseph A.; Johnson, N. M.; Meshik, A.
2010-01-01
When hydrogen, nitrogen and CO arc exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions!, Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these rcactions:u . The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic materiaL Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.
Kroh, M; Hendriks, H; Kirby, E G; Sassen, M M
1976-08-01
Development of haploid meiospores of Allomyces arbuscula into germling cells with rhizoids and hyphae was followed during incubation in complete growth medium. The surface structure of encysted meiospores, rhizoids and hyphae before and after extraction of amorphous materials with ethanolic KOH was studied by means of carbon-platinum replicas. After 2--3 min incubation in complete medium 10% of the meiospores were surrounded by a cell wall containing microfibrils embedded in a matrix. Structure of cell walls of encysted meiospores, rhizoids, and hyphae differ from one another by the location of amorphous materials and by the arrangement of chitin microfibrils.
NASA Technical Reports Server (NTRS)
Anton, R.; Poppa, H.; Flanders, D. C.
1982-01-01
The graphoepitaxial alignment of vapor-deposited discrete metal crystallites is investigated in the nucleation and growth stages and during annealing by in situ UHV/TEM techniques. Various stages of nucleation, growth and coalescence of vapor deposits of Au, Ag, Pb, Sn, and Bi on amorphous, topographically structured C substrates are analyzed by advanced dark-field techniques to detect preferred local orientations. It is found that the topography-induced orientation of metal crystallites depends strongly on their mobility and their respective tendency to develop pronounced crystallographic shapes. Lowering of the average surface free energies and increasing the crystallographic surface energy anisotropies cause generally improved graphoepitaxial alignments.
Li, Tiantian; Zhang, Qixing; Ni, Jian; Huang, Qian; Zhang, Dekun; Li, Baozhang; Wei, Changchun; Yan, Baojie; Zhao, Ying; Zhang, Xiaodan
2017-03-29
We used silver nanoparticles (Ag-NPs) embedded in the p-type semiconductor layer of hydrogenated amorphous silicon (a-Si:H) solar cells in the Schottky barrier contact design to modify the interface between aluminum-doped ZnO (ZnO:Al, AZO) and p-type hydrogenated amorphous silicon carbide (p-a-SiC:H) without plasmonic absorption. The high work function of the Ag-NPs provided a good channel for the transport of photogenerated holes. A p-type nanocrystalline SiC:H layer was used to compensate for the real surface defects and voids on the surface of Ag-NPs to reduce recombination at the AZO/p-type layer interface, which then enhanced the photovoltage of single-junction a-Si:H solar cells to values as high as 1.01 V. The Ag-NPs were around 10 nm in diameter and thermally stable in the p-type a-SiC:H film at the solar-cell process temperature. We will also show that a wide range of photovoltages between 1.01 and 2.89 V could be obtained with single-, double-, and triple-junction solar cells based on the single-junction a-Si:H solar cells with tunable high photovoltage. These solar cells are suitable photocathodes for solar water-splitting applications.
The Use of Atomic-Force Microscopy for Studying the Crystallization Process of Amorphous Alloys
NASA Astrophysics Data System (ADS)
Elmanov, G. N.; Ivanitskaya, E. A.; Dzhumaev, P. S.; Skrytniy, V. I.
The crystallization process of amorphous alloys is accompanied by the volume changes as a result of structural phase transitions. This leads to changes in the surface topography, which was studied by atomic force microscopy (AFM). The changes of the surface topography, structure and phase composition during multistage crystallization process of the metallic glasses with composition Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 (AWS BNi2) has been investigated. The obtained results on changing of the surface topography in crystallization process are in good agreement with the data of X-ray diffraction analysis (XRD). The nature of redistribution of some alloy components in the crystallization process has been suggested.
Liu, Cong; Li, Yanqing; Liao, Ruijin; Liao, Qiang; Tang, Chao
2018-01-01
Cellulose insulation polymer is an important component of oil-paper insulation, which is widely used in power transformer. The weight of the cellulose insulation polymer materials is as high as tens of tons in the larger converter transformer. Excellent performance of oil-paper insulation is very important for ensuring the safe operation of larger converter transformer. An effective way to improve the insulation and the physicochemical property of the oil impregnated insulation pressboard/paper is currently a popular research topic. In this paper, the polytetrafluoroethylene (PTFE) functional film was coated on the cellulose insulation pressboard by radio frequency (RF) magnetron sputtering to improve its breakdown voltage and the hydrophobicity properties. X-ray photoelectron spectroscopy (XPS) results show that the nano-structure PTFE functional film was successfully fabricated on the cellulose insulation pressboard surface. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) present that the nanoscale size PTFE particles were attached to the pressboard surface and it exists in the amorphous form. Atomic force microscopy (AFM) shows that the sputtered pressboard surface is still rough. The rough PTFE functional film and the reduction of the hydrophilic hydroxyl of the surface due to the shielding effect of PTFE improve the breakdown and the hydrophobicity properties of the cellulose insulation pressboard obviously. This paper provides an innovative way to improve the performance of the cellulose insulation polymer. PMID:29883376
Hao, Jian; Liu, Cong; Li, Yanqing; Liao, Ruijin; Liao, Qiang; Tang, Chao
2018-05-21
Cellulose insulation polymer is an important component of oil-paper insulation, which is widely used in power transformer. The weight of the cellulose insulation polymer materials is as high as tens of tons in the larger converter transformer. Excellent performance of oil-paper insulation is very important for ensuring the safe operation of larger converter transformer. An effective way to improve the insulation and the physicochemical property of the oil impregnated insulation pressboard/paper is currently a popular research topic. In this paper, the polytetrafluoroethylene (PTFE) functional film was coated on the cellulose insulation pressboard by radio frequency (RF) magnetron sputtering to improve its breakdown voltage and the hydrophobicity properties. X-ray photoelectron spectroscopy (XPS) results show that the nano-structure PTFE functional film was successfully fabricated on the cellulose insulation pressboard surface. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) present that the nanoscale size PTFE particles were attached to the pressboard surface and it exists in the amorphous form. Atomic force microscopy (AFM) shows that the sputtered pressboard surface is still rough. The rough PTFE functional film and the reduction of the hydrophilic hydroxyl of the surface due to the shielding effect of PTFE improve the breakdown and the hydrophobicity properties of the cellulose insulation pressboard obviously. This paper provides an innovative way to improve the performance of the cellulose insulation polymer.
Gao, G T; Mikulski, Paul T; Harrison, Judith A
2002-06-19
Classical molecular dynamics simulations have been conducted to investigate the atomic-scale friction and wear when hydrogen-terminated diamond (111) counterfaces are in sliding contact with diamond (111) surfaces coated with amorphous, hydrogen-free carbon films. Two films, with approximately the same ratio of sp(3)-to-sp(2) carbon, but different thicknesses, have been examined. Both systems give a similar average friction in the load range examined. Above a critical load, a series of tribochemical reactions occur resulting in a significant restructuring of the film. This restructuring is analogous to the "run-in" observed in macroscopic friction experiments and reduces the friction. The contribution of adhesion between the probe (counterface) and the sample to friction was examined by varying the saturation of the counterface. Decreasing the degree of counterface saturation, by reducing the hydrogen termination, increases the friction. Finally, the contribution of long-range interactions to friction was examined by using two potential energy functions that differ only in their long-range forces to examine friction in the same system.
Liu, Yang-Yi; Liu, Lei; Chen, Si-Ming; Chang, Fu-Jia; Mao, Li-Bo; Gao, Huai-Ling; Ma, Tao; Yu, Shu-Hong
2018-05-22
Bio-inspired mineralization is an effective way for fabricating complex inorganic materials, which inspires us to develop new methods to synthesize materials with fascinating properties. In this article, we report that the charged tellurium nanowires (TeNWs) can be used as biomacromolecule analogues to direct the formation of amorphous calcium carbonate (ACC) nanosheets (ACCNs) in a mixed solvent. The effects of surface charges and the concentration of the TeNWs on the formation of ACCNs have been investigated. Particularly, the produced ACCNs can be functionalized by Fe 3 O 4 nanoparticles to produce magnetic ACC/Fe 3 O 4 hybrid nanosheets that can be used to construct ACC/Fe 3 O 4 composite films through a self-evaporation process. Moreover, sodium alginate-ACC nanocomposite films with remarkable toughness and good transmittance can also be fabricated by using such ACCNs as nanoscale building blocks. This mineralization approach in a mixed solvent using charged TeNWs as biomacromolecule analogues provides a new way for the synthesis of ACCNs, which can be used as nanoscale building blocks for the fabrication of biomimetic composite films.
Synthesis and structural characterization of CdS nanoparticles
NASA Astrophysics Data System (ADS)
Kotkata, M. F.; Masoud, A. E.; Mohamed, M. B.; Mahmoud, E. A.
2009-08-01
Amorphous CdS nanoparticles capped with cetyltrimethyl ammonium bromide (CTAB) were synthesised under various conditions using a coprecipitation method. A blue shift in the band gap was observed in the UV-visible absorption spectra indicating the formation of nanoparticles of an approximate size of 8 nm. The recorded transmission electron micrographs confirmed this result. The phase-nature, phase transformation as well as the structure of the synthesised CdS nanoparticles have been extensively characterized using X-ray diffraction (XRD), radial distribution function (RDF), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Raman scattering (RS) and/or heat stage X-ray diffraction (HSXRD). Analysis of the obtained results revealed that the synthesised amorphous CdS nanoparticles could be transformed into CdS nanocrystals having a zinc blende or a wurtzite structure, relying on the applied heat treatment scheme. The rate of nanocrystal growth depends on the aging period, prior filtering the reacted materials, and its relation to the quality of the capping process. Five days aging period tends to enhance the stability of the grown phase with a remarkable surface stability.
Evolution of the secondary electron emission during the graphitization of thin C films
NASA Astrophysics Data System (ADS)
Larciprete, Rosanna; Grosso, Davide Remo; Di Trolio, Antonio; Cimino, Roberto
2015-02-01
The relation between the atomic hybridization and the secondary electron emission yield (SEY) in carbon materials has been investigated during the thermal graphitization of thin amorphous carbon layers deposited by magnetron sputtering on Cu substrates. C1s core level, valence band and Raman spectroscopy were used to follow the sp3→sp2 structural reorganization while the SEY curves as a function of the kinetic energy of the incident electron beam were measured in parallel. We found that an amorphous C layer with a thickness of a few tens of nanometers is capable to modify the secondary emission properties of the clean copper surface, reducing the maximum yield from 1.4 to 1.2. A further SEY decrease observed with the progressive conversion of sp3 hybrids into six-fold aromatic domains was related to the electronic structure close to the Fermi level of the C-films. We found that a moderate structural quality of the C layer is sufficient to notably decrease the SEY as aromatic clusters of limited size approach the secondary emission properties of graphite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, D.; Devkota, J.; Ruiz, A.
2014-09-28
A systematic study of the effect of depositing CoFe₂O₄ (CFO) films of various thicknesses (d = 0–600 nm) on the giant magneto-impedance (GMI) response of a soft ferromagnetic amorphous ribbon Co₆₅Fe₄Ni₂Si₁₅B₁₄ has been performed. The CFO films were grown on the amorphous ribbons by the pulsed laser deposition technique. X-ray diffraction and transmission electron microscopy revealed a structural variation of the CFO film from amorphous to polycrystalline as the thickness of the CFO film exceeded a critical value of 300 nm. Atomic force microscopy evidenced the increase in surface roughness of the CFO film as the thickness of the CFOmore » film was increased. These changes in the crystallinity and morphology of the CFO film were found to have a distinct impact on the GMI response of the ribbon. Relative to the bare ribbon, coating of amorphous CFO films significantly enhanced the GMI response of the ribbon, while polycrystalline CFO films decreased it considerably. The maximum GMI response was achieved near the onset of the structural transition of the CFO film. These findings are of practical importance in developing high-sensitivity magnetic sensors.« less
Kim, Min-Soo; Jin, Shun-Ji; Kim, Jeong-Soo; Park, Hee Jun; Song, Ha-Seung; Neubert, Reinhard H H; Hwang, Sung-Joo
2008-06-01
In this work, amorphous atorvastatin calcium nanoparticles were successfully prepared using the supercritical antisolvent (SAS) process. The effect of process variables on particle size and distribution of atorvastatin calcium during particle formation was investigated. Solid state characterization, solubility, intrinsic dissolution, powder dissolution studies and pharmacokinetic study in rats were performed. Spherical particles with mean particle size ranging between 152 and 863 nm were obtained by varying process parameters such as precipitation vessel pressure and temperature, drug solution concentration and feed rate ratio of CO2/drug solution. XRD, TGA, FT-IR, FT-Raman, NMR and HPLC analysis indicated that atorvastatin calcium existed as anhydrous amorphous form and no degradation occurred after SAS process. When compared with crystalline form (unprocessed drug), amorphous atorvastatin calcium nanoparticles were of better performance in solubility and intrinsic dissolution rate, resulting in higher solubility and faster dissolution rate. In addition, intrinsic dissolution rate showed a good correlation with the solubility. The dissolution rates of amorphous atorvastatin calcium nanoparticles were highly increased in comparison with unprocessed drug by the enhancement of intrinsic dissolution rate and the reduction of particle size resulting in an increased specific surface area. The absorption of atorvastatin calcium after oral administration of amorphous atorvastatin calcium nanoparticles to rats was markedly increased.
Trapping guests within a nanoporous metal-organic framework through pressure-induced amorphization.
Chapman, Karena W; Sava, Dorina F; Halder, Gregory J; Chupas, Peter J; Nenoff, Tina M
2011-11-23
The release of guest species from within a nanoporous metal-organic framework (MOF) has been inhibited by amorphization of the guest-loaded framework structure under applied pressure. Thermogravimetric analyses have shown that by amorphizing ZIF-8 following sorption of molecular I(2), a hazardous radiological byproduct of nuclear energy production, the pore apertures in the framework are sufficiently distorted to kinetically trap I(2) and improve I(2) retention. Pair distribution function (PDF) analysis indicates that the local structure of the captive I(2) remains essentially unchanged upon amorphization of the framework, with the amorphization occurring under the same conditions for the vacant and guest-loaded framework. The low, accessible pressure range needed to effect this change in desorption is much lower than in tradition sorbents such as zeolites, opening the possibility for new molecular capture, interim storage, or controlled release applications.
Kang, Joonhee; Han, Byungchan
2015-06-03
Using first-principles calculations, we study how to enhance thermal stability of high Ni compositional cathodes in Li-ion battery application. Using the archetype material LiNiO2 (LNO), we identify that ultrathin coating of Al2O3 (0001) on LNO(012) surface, which is the Li de-/intercalation channel, substantially improves the instability problem. Density functional theory calculations indicate that the Al2O3 deposits show phase transition from the corundum-type crystalline (c-Al2O3) to amorphous (a-Al2O3) structures as the number of coating layers reaches three. Ab initio molecular dynamic simulations on the LNO(012) surface coated by a-Al2O3 (about 0.88 nm) with three atomic layers oxygen gas evolution is strongly suppressed at T=400 K. We find that the underlying mechanism is the strong contacting force at the interface between LNO(012) and Al2O3 deposits, which, in turn, originated from highly ionic chemical bonding of Al and O at the interface. Furthermore, we identify that thermodynamic stability of the a-Al2O3 is even more enhanced with Li in the layer, implying that the protection for the LNO(012) surface by the coating layer is meaningful over the charging process. Our approach contributes to the design of innovative cathode materials with not only high-energy capacity but also long-term thermal and electrochemical stability applicable for a variety of electrochemical energy devices including Li-ion batteries.
Tachikawa, Hiroto; Shimizu, Akira
2005-07-14
Diffusion processes of the Li+ ion on a model surface of amorphous carbon (Li+C96H24 system) have been investigated by means of the direct molecular orbital (MO) dynamics method at the semiempirical AM1 level. The total energy and energy gradient on the full-dimensional AM1 potential energy surface were calculated at each time step in the dynamics calculation. The optimized structure, where Li+ is located in the center of the cluster, was used as the initial structure at time zero. The dynamics calculation was carried out in the temperature range 100-1000 K. The calculations showed that the Li+ ion vibrates around the equilibrium point below 200 K, while the Li+ ion moves on the surface above 250 K. At intermediate temperatures (300 K < T < 400 K), the ion moves on the surface and falls in the edge regions of the cluster. At higher temperatures (600 K < T), the Li+ ion transfers freely on the surface and edge regions. The diffusion pathway of the Li+ ion was discussed on the basis of theoretical results.
Srujana, P; Radhakrishnan, T P
2015-06-15
Functional phase-change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous-crystalline transformation of materials like Ge-Sb-Te find use in advanced applications such as information storage. Reversible amorphous-crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Colaco, Martin Francis
The creation of useful composite materials requires precise control of the interface between the components in order to tune the overall shape and material properties. Despite the current research into nanotechnology, our ability to create materials with nanoscale precision is nascent. However, nature has a paradigm for the creation of finely structured composites under mild conditions called biomineralization. Through control of protein template assembly, solution conditions, and physical confinement, organisms are able to create useful optical and structural materials, such as bones, teeth, and mollusk shells. The objective of this thesis is to elucidate the importance of these various controls in synthetic systems to further our ability to create nanostructured materials. We begin by examining the formation of self-assembled monolayers (SAMs) of organosilanes on silica oxides. The formation of functionalized surfaces can help control the mineralization of amorphous or crystalline calcium carbonate. Long-chained organosilanes organize on surfaces to form dense, solid-like films, with the terminal groups determining the hydrophobicity and stereochemistry of the film. Our work has shown that uniform hydrophobic and hydrophilic films can be formed by using cleaned silica over glass or mica and through a vapor phase reaction over a liquid one. Additionally, we showed that mixed SAMs with phase-separated domains could be created through the selection of organosilanes and reaction conditions. We have built on these functionalized surfaces through the use of microfabrication and a gas permeable polymer to create three-dimensionally confined microcrystallizers. Other researchers have shown that one-dimensional confinement with a multi-functional surface (patterned with a small nucleating ordered region in a disordered SAM) can stabilize the creation of an amorphous calcium carbonate film before a single, large, micropatterned crystal is grown. Our work has determined that this methodology does not extend to three-dimensional confined systems, as the water has no method of escape. Through the addition of an insoluble hydroscopic polymer to our microreactors, amorphous calcium carbonate of controllable sizes can be grown. However, crystalline calcium carbonate cannot be grown without some type of templating. Studies of calcium carbonate templating have predominantly been performed on SAMs or in poorly characterized gels or protein films. The use of ordered protein or polypeptide aggregates for templating permits both geometry and charge surface density to be varied. We have studied the kinetics and final morphology of ordered aggregates of poly-L-glutamic acid and a copolymer of glutamic acid and alanine through experiments and simulations. Electrostatics, not structure, of the monomer appeared to be the dominating factor in the aggregation, as pH and salt concentration changes led to dramatic changes in the kinetics. Examining our experimental with existing models provided inconsistent results, so we developed a new model that yielded physically realistic rate constants, while generating better fits with longer lag phases and faster growths. However, despite the similarity of aggregation conditions, the two polypeptides yielded vastly different morphologies, with the PEA forming typical amyloid-like fibrils and PE forming larger, twisted lamellar aggregates. Templating with these aggregates also yielded dramatically different patterns. Polycrystalline rhombohedral calcite with smooth faces and edges grew on PEA fibrils, with minimal templating in evidence. However, on PE, numerous calcite crystals with triangular projections tracked the surface of the aggregate. The PE lamellae are characterized by extensive beta-sheet structure. In this conformation, the glutamic acid spacings on the surface of the aggregates can mimic the spacings of the carboxylates in the calcite lattice. In addition, the high negative charge density on the polypeptide surface led to a large number of nucleation sites. As the crystals grow, they impinge on each other but are limited to grow in one direction, perpendicular to the aggregate surface. Thus, the crystal structure propagates even at large length scales.
Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb
NASA Astrophysics Data System (ADS)
Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.
2013-08-01
The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.
Mineralogy of Sediments on a Cold and Icy Early Mars
NASA Astrophysics Data System (ADS)
Rampe, E. B.; Horgan, B. H. N.; Smith, R.; Scudder, N.; Rutledge, A. M.; Bamber, E.; Morris, R. V.
2017-12-01
The water-related minerals discovered in ancient martian terrains suggest liquid water was abundant on the surface and/or near subsurface during Mars' early history. The debate remains, however, whether these minerals are indicative of a warm and wet or cold and icy climate. To characterize mineral assemblages of cold and icy mafic terrains, we analyzed pro- and supraglacial rocks and sediments from the Collier and Diller glacial valleys in Three Sisters, Oregon. We identified primary and secondary phases using X-ray diffraction (XRD), scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible/short-wave-infrared (VSWIR) and thermal-infrared (TIR) spectroscopies. Samples from both glacial valleys are dominated by primary igneous minerals (i.e., plagioclase and pyroxene). Sediments in the Collier glacial valley contain minor to trace amounts of phyllosilicates and zeolites, but these phases are likely detrital and sourced from hydrothermally altered units on North Sister. We find that the authigenic phases in cold and icy mafic terrains are poorly crystalline and/or amorphous. TEM-EDS analyses of the <2 um size fraction of glacial flour shows the presence of many different nanophase materials, including iron oxides, devitrified volcanic glass, and Fe-Si-Al (e.g., proto-clay) phases. A variety of primary and secondary amorphous materials (e.g., volcanic glass, leached glass, allophane) have been suggested from orbital IR data from Mars, and the CheMin XRD on the Curiosity rover has identified X-ray amorphous materials in all rocks and soils measured to date. The compositions of the Gale Crater amorphous components cannot be explained by primary volcanic glass alone and likely include secondary silicates, iron oxides, and sulfates. We suggest that the prevalence of amorphous materials on the martian surface and the variety of amorphous components may be a signature of a cold and icy climate on Early Mars.
Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi
2017-02-15
We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND andante or amine ND amine , carboxyl ND vox or hydroxyl groups ND H and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. ND andante and ND H showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on ND andante and ND H and reduced on ND amine and ND vox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
Intrinsic charge trapping in amorphous oxide films: status and challenges
NASA Astrophysics Data System (ADS)
Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.
2018-06-01
We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions.
Laser micro-processing of amorphous and partially crystalline Cu45Zr48Al7 alloy
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.; Kovacs, Z.; Browne, D. J.
2010-11-01
This paper presents a microstructural study of laser micro-processed high-purity Cu45Zr48Al7 alloys prepared by arc melting and Cu-mould casting. Microprocessing of the Cu45Zr48Al7 alloy was performed using a Rofin DC-015 diffusion-cooled CO2 slab laser system with 10.6-μm wavelength. The laser was defocused to a spot size of 0.2 mm on the sample surface. The laser parameters were set to give 300- and 350-W peak power, 30% duty cycle and a 3000-Hz laser pulse repetition frequency (PRF). About 100-micrometer-wide channels were scribed on the surfaces of disk-shaped amorphous and partially crystalline samples at traverse speeds of 500 and 5000 mm/min. These channels were analysed using scanning electron microscopy (SEM) and 2D stylus profilometry. The metallographic study and profile of these processed regions are discussed in terms of the applied laser processing parameters. The SEM micrographs showed that striation marks developed at the edge and inside these regions as a result of the laser processing. The results from this work showed that microscale features can be produced on the surface of amorphous Cu-Zr-Al alloys by CO2 laser processing.
NASA Astrophysics Data System (ADS)
Pahari, D.; Das, N. S.; Das, B.; Chattopadhyay, K. K.; Banerjee, D.
2016-09-01
Zinc oxide (ZnO) nanorods were synthesized at room temperature on potassium permanganate activated silicon and glass substrate by simple chemical method using zinc acetate as precursor. To modify the surface energy of the as prepared ZnO thin films the samples were coated with amorphous graphene (a-G) synthesized by un-zipping of chemically synthesized amorphous carbon nanotubes (a-CNTs). All the pure and coated samples were characterized by x-ray diffraction, field emission scanning electron microscope, Raman spectroscopy, and Fourier transformed infrared spectroscopy. The roughness analysis of the as prepared samples was done by atomic force microscopic analysis. The detail optical properties of all the samples were studied with the help of a UV-Visible spectrophotometer. The surface energy of the as prepared pure and coated samples was calculated by measuring the contact angle of two different liquids. It is seen that the water repellence of ZnO nanorods got increased after they are being coated with a-Gs. Also even after UV irradiation the contact angle remain same unlike the case for the uncoated sample where the contact angle gets decreased significantly after UV irradiation. Existing Cassie-Wenzel model has been employed along with the Owen's approach to determine the different components of surface energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terai, Tsuyoshi; Itoh, Yoichi; Oasa, Yumiko
We present a measurement of H{sub 2}O ice crystallinity on the surface of trans-neptunian objects with near-infrared narrow-band imaging. The newly developed photometric technique allows us to efficiently determine the strength of a 1.65 μ m absorption feature in crystalline H{sub 2}O ice. Our data for three large objects—Haumea, Quaoar, and Orcus—which are known to contain crystalline H{sub 2}O ice on the surfaces, show a reasonable result with high fractions of the crystalline phase. It can also be pointed out that if the grain size of H{sub 2}O ice is larger than ∼20 μ m, the crystallinities of these objectsmore » are obviously below 1.0, which suggests the presence of the amorphous phase. In particular, Orcus exhibits a high abundance of amorphous H{sub 2}O ice compared to Haumea and Quaoar, possibly indicating a correlation between the bulk density of the bodies and the degree of surface crystallization. We also found the presence of crystalline H{sub 2}O ice on Typhon and 2008 AP{sub 129}, both of which are smaller than the minimum size limit for inducing cryovolcanism as well as a transition from amorphous to crystalline phase through thermal evolution due to the decay of long-lived isotopes.« less
Precursor-Surface Reactions in Plasma Deposition of Silicon Thin Films
NASA Astrophysics Data System (ADS)
Bakos, Tamas
2005-03-01
Device-quality hydrogenated amorphous silicon (a-Si:H) thin films are usually grown by plasma deposition under conditions where the SiH3 radical is the dominant deposition precursor. In this presentation, we report results of first-principles density functional theory calculations on the interactions of the SiH3 radical with the crystalline Si(100)-(2x1):H surface in conjunction with molecular-dynamics simulations of a-Si:H thin film growth by SiH3 radicals, which elucidate the pathways and energetics of surface reactions that govern important film properties. In particular, we show that an SiH3 radical can insert into strained surface Si-Si dimer bonds, abstract surface H through an Eley-Rideal mechanism, and passivate surface dangling bonds; these reactions follow exothermic and barrierless pathways that lead to a temperature-independent growth rate in agreement with experimental measurements. We also identify a thermally activated surface H abstraction process, in which the SiH3 radical diffuses through overcoordinated surface Si atoms until it encounters a favorable site for H abstraction; the diffusion and H-abstraction steps have commensurate activation barriers. This mechanism explains partly the reduction of the film H content at elevated substrate temperatures.
Amorphization driven by defect-induced mechanical instability.
Jiang, Chao; Zheng, Ming-Jie; Morgan, Dane; Szlufarska, Izabela
2013-10-11
Using ab initio molecular dynamics simulations, we perform a comparative study of the defect accumulation process in silicon carbide (SiC) and zirconium carbide (ZrC). Interestingly, we find that the fcc Si sublattice in SiC spontaneously and gradually collapses following the continuous introduction of C Frenkel pairs (FPs). Above a critical amorphization dose of ~0.33 displacements per atom (dpa), the pair correlation function exhibits no long-range order. In contrast, the fcc Zr sublattice in ZrC remains structurally stable against C sublattice displacements up to the highest dose of 1.0 dpa considered. Consequently, ZrC cannot be amorphized by the accumulation of C FPs. We propose defect-induced mechanical instability as the key mechanism driving the amorphization of SiC under electron irradiation.
Preparation and properties of porous microspheres made from borate glass.
Conzone, Samuel D; Day, Delbert E
2009-02-01
Dysprosium lithium-borate glass microspheres and particles, ranging from 45 to 150 microm in diameter, were reacted with a 0.25 M phosphate solution at 37 degrees C, whose pH was either 3 or 8.8. The glass reacted nonuniformly and was converted into a porous, amorphous, hydrated, dysprosium phosphate reaction product. The amorphous product had the same volume and shape (pseudomorphic) as the unreacted glass, and could be dried without cracking. After heating at 300 degrees C for 1 h, the amorphous reaction product had a specific surface area of approximately 200 m(2)/g, a pore size of approximately 30 nm, and nominal crushing strength of approximately 10 MPa. When the reaction product was heated to 600 degrees C for 15 min, the specific surface area decreased to approximately 90 m(2)/g and the nominal crushing strength increased to 35 MPa. Heating above 615 degrees C converted the amorphous dysprosium phosphate product into crystalline DyPO(4), which contained open porosity until heated above 800 degrees C for 15 min. Highly porous materials of different chemical composition can be prepared by chemically reacting a borate-based glass with an aqueous solution at low-temperature (<100 degrees C). These highly porous materials are easy to process, and are considered candidates for controlled drug delivery, catalysis, chromatographic separation, filtration, and as bioactive materials.
Park, Junsung; Park, Hee Jun; Cho, Wonkyung; Cha, Kwang-Ho; Kang, Young-Shin; Hwang, Sung-Joo
2010-08-30
The aim of this study was to investigate the effects of micronization and amorphorization of cefdinir on solubility and dissolution rate. The amorphous samples were prepared by spray-drying (SD) and supercritical anti-solvent (SAS) process, respectively and their amorphous natures were confirmed by DSC, PXRD and FT-IR. Thermal gravimetric analysis was performed by TGA. SEM was used to investigate the morphology of particles and the processed particle had a spherical shape, while the unprocessed crystalline particle had a needle-like shape. The mean particle size and specific surface area were measured by dynamic light scattering (DLS) and BET, respectively. The DLS result showed that the SAS-processed particle was the smallest, followed by SD and the unprocessed cefdinir. The BET result was the same as DLS result in that the SAS-processed particle had the largest surface area. Therefore, the processed cefdinir, especially the SAS-processed particle, appeared to have enhanced apparent solubility, improved intrinsic dissolution rate and better drug release when compared with SD-processed and unprocessed crystalline cefdinir due not only to its amorphous nature, but also its reduced particle size. Conclusions were that the solubility and dissolution rate of crystalline cefdinir could be improved by physically modifying the particles using SD and SAS-process. Furthermore, SAS-process was a powerful methodology for improving the solubility and dissolution rate of cefdinir. Copyright 2010 Elsevier B.V. All rights reserved.
Yonggang, Yan; Wolke, Joop G C; Yubao, Li; Jansen, John A
2007-06-01
Surface chemical compositions, such as calcium/phosphorus ratio and phase content, have a strong influence on the bioactivity and biocompatibility of calcium phosphate (CaP) coatings as applied on orthopedic and dental implants. Hydroxylapatite (HA) and dicalcium pyrophosphate (DCPP) coatings were prepared on titanium substrates by RF magnetron sputter deposition. The surfaces were left as-prepared (amorphous HA coating; A-HA, amorphous DCPP coating; A-DCPP) or heat treated with: infrared (IR) at 550 degrees C (I-HA) or at 650 degrees C (I-DCPP), and a water steam at 140 degrees C (S-HA and S-DCPP). The surface changes of these coatings were determined after incubation in simulated body fluid (SBF). Also, the growth of rat bone marrow cells (RBM) was studied with scanning electron microscopy (SEM). Both IR and water steam heat treatment changed the sputter-deposited coatings from the amorphous into the crystalline phase. As-prepared amorphous coatings dissolved partially in SBF within 4 weeks of incubation, while heat-treated coatings supported the deposition of a precipitate, i.e., carbonated apatite on both I-HA and S-HA specimens, and tricalciumphosphate on the I-DCPP and S-DCPP specimens. The Ca/P ratio of the A-HA, I-HA, S-HA, A-DCPP, I-DCPP and S-DCPP coatings changed, respectively, from 1.98 to 1.12, 2.01 to 1.76, 1.91 to 1.68, 0.76 to 1.23, 0.76 to 1.26 and 1.62 to 1.55 after 4 weeks of incubation in SBF. Finally, the RBM cells grew well on all heat-treated coatings, but showed different mineralization morphology during cell culturing. The different heat-treatment procedures for the sputtered HA and DCPP coatings influenced the surface characteristics of these coatings, whereby a combination of crystallinity and specific phase composition (Ca/P ratio) strongly affected their in vitro bioactivity.
GABE: A Cloud Brokerage System for Service Selection, Accountability and Enforcement
ERIC Educational Resources Information Center
Sundareswaran, Smitha
2014-01-01
Much like its meteorological counterpart, "Cloud Computing" is an amorphous agglomeration of entities. It is amorphous in that the exact layout of the servers, the load balancers and their functions are neither known nor fixed. Its an agglomerate in that multiple service providers and vendors often coordinate to form a multitenant system…
Interactions of hydrogen with amorphous hafnium oxide
NASA Astrophysics Data System (ADS)
Kaviani, Moloud; Afanas'ev, Valeri V.; Shluger, Alexander L.
2017-02-01
We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a -HfO2 ) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state) . Our results show that in a -HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016)., 10.1103/PhysRevB.94.020103] forming a [etr -+O -H ] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a -HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Gang; Liu, Zelin; Murton, Jaclyn K.
2011-06-13
Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) of the interaction of a fungal enzyme extract (T. viride) and an endoglucanse from A. niger with amorphous cellulose films. The use of amorphous cellulose is motivated by that the fact that several biomassmore » pretreatments currently under investigation disrupt the native crystalline structure of cellulose and increase the amorphous content. NR reveals the profile of water through the film at nanometer resolution and is highly sensitive to interfacial roughness, whereas QCM-D provides changes in mass and film stiffness. NR can be performed using either H₂O- or D₂O-based aqueous reservoirs. NR measurement of swelling of a cellulose film in D₂O and in H₂O revealed that D/H exchange on the cellulose chains must be taken into account when a D₂O-based reservoir is used. The results also show that cellulose films swell slightly more in D₂O than in H₂O. Regarding enzymatic digestion, at 20 °C in H₂O buffer the T. viride cocktail rapidly digested the entire film, initially roughening the surface, followed by penetration and activity throughout the bulk of the film. In contrast, over the same time period, the endoglucanase was active mainly at the surface of the film and did not increase the surface roughness.« less
Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.
2008-01-01
Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).
Annealing optimization of hydrogenated amorphous silicon suboxide film for solar cell application
NASA Astrophysics Data System (ADS)
Guangzhi, Jia; Honggang, Liu; Hudong, Chang
2011-05-01
We investigate a passivation scheme using hydrogenated amorphous silicon suboxide (a-SiOx:H) film for industrial solar cell application. The a-SiOx:H films were deposited using plasma-enhanced chemical vapor deposition (PECVD) by decomposing nitrous oxide, helium and silane at a substrate temperature of around 250 °C. An extensive study has been carried out on the effect of thermal annealing on carrier lifetime and surface recombination velocity, which affect the final output of the solar cell. Minority carrier lifetimes for the deposited a-SiOx:H films without and with the thermal annealing on 4 Ω·cm p-type float-zone silicon wafers are 270 μs and 670 μs, respectively, correlating to surface recombination velocities of 70 cm/s and 30 cm/s. Optical analysis has revealed a distinct decrease of blue light absorption in the a-SiOx:H films compared to the commonly used intrinsic amorphous silicon passivation used in solar cells. This paper also reports that the low cost and high quality passivation fabrication sequences employed in this study are suitable for industrial processes.
NASA Astrophysics Data System (ADS)
Oehm, B.; Burchard, M.; Lattard, D.; Dohmen, R.; Chakraborty, S.
2009-12-01
Observations of accretion disks of Young Stellar Objects revealed dust of crystalline Mg-silicates, in particular of forsterite, which is assumed to result from high temperature annealing of amorphous cosmic dust particles. We are performing annealing experiments to obtain kinetic parameters of the crystallization that are necessary for the numerical modeling of accretion disks. We use thin films obtained by Pulsed Laser Deposition (PLD) on Si (111) wafers. The thin films are completely amorphous, chemically homogeneous (on the Mg2SiO4 composition) and with a continuous and flat surface. They are annealed for 1 to 260 h at 1073K in a vertical furnace and drop-quenched. To monitor the progress of crystallization, the samples are characterized by AFM and SEM imaging and IR spectroscopy. After 2.5 h of annealing AFM images reveal elliptical features, below 1 µm in diameter, with a central elevation and surrounded by a lowering of the surface which indicate material transport within the elliptical domains. These elliptical features most probably represent early nucleation sites in an amorphous matrix. The IR spectra still show the broad bands of Si-O stretching modes typical of amorphous silica without clear evidence for crystalline forsterite. After 6 h of annealing, AFM and SEM images show circular and square features both with a central elevation in the range of 80 to 120 nm. IR spectra show a few weak bands that can be assigned to crystalline forsterite (bending and stretching of tetrahedra). After 10 h of annealing planar faces appear in the former pyramidal features and the surrounding matrix evolves into domains with spherolitic appearance. IR spectra of these samples display typical bands of crystalline forsterite. With increasing annealing time AFM images picture the further growth of the planar faces towards idiomorphic crystals. SEM imaging shows surface roughening with increasing annealing time. The quantitative evaluation of the surface roughness of AFM images point to three evolutionary stages during annealing. The quantitative evaluation of IR spectra reveals that the forsterite bands continuously grow with increasing annealing time up to 64 h but that no significant change appears for longer run durations. AFM imaging proves to be a powerful tool to detect the very first signs of crystallization and to trace its further evolution.
Electrodeposition at room temperature of amorphous silicon and germanium nanowires in ionic liquid
NASA Astrophysics Data System (ADS)
Martineau, F.; Namur, K.; Mallet, J.; Delavoie, F.; Endres, F.; Troyon, M.; Molinari, M.
2009-11-01
The electrodeposition at room temperature of silicon and germanium nanowires from the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P1,4) containing SiCl4 as Si source or GeCl4 as Ge source is investigated by cyclic voltammetry. By using nanoporous polycarbonate membranes as templates, it is possible to reproducibly grow pure silicon and germanium nanowires of different diameters. The nanowires are composed of pure amorphous silicon or germanium. The nanowires have homogeneous cylindrical shape with a roughness of a few nanometres on the wire surfaces. The nanowires' diameters and lengths well match with the initial membrane characteristics. Preliminary photoluminescence experiments exhibit strong emission in the near infrared for the amorphous silicon nanowires.
Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D. B.; ...
2017-12-27
Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has beenmore » inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D. B.
Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has beenmore » inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.« less
Effects of Humidity and Surfaces on the Melt Crystallization of Ibuprofen
Lee, Dong-Joo; Lee, Suyang; Kim, Il Won
2012-01-01
Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with –CH3, –OH, and –COOH functional groups. Effects of the humidity were studied at room temperature (18–20 °C) with relative humidity 33%, 75%, and 100%. Effects of the surfaces were observed at −20 °C (relative humidity 36%) to enable close monitoring with slower crystal growth. The nucleation time of ibuprofen was faster at high humidity conditions probably due to the local formation of the unfavorable ibuprofen melt/water interface. The crystal morphologies of ibuprofen were governed by the nature of the surfaces, and they could be associated with the growth kinetics by the Avrami equation. The current study demonstrated the effective control of the melt crystallization of ibuprofen through the melt/atmosphere and melt/surface interfaces. PMID:22949861
In Situ Poling and Imidization of Amorphous Piezoelectric Polyimides
NASA Technical Reports Server (NTRS)
Park, Cheol; Ounaies, Zoubeida; Wise, Kristopher E.; Harrison, Joycelyn S.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
An amorphous piezoelectric polyimide containing polar functional groups has been developed using a combination of experimental and molecular modeling for potential use in high temperature applications. This amorphous polyimide, (Beta-CN)APB/ODPA, has exhibited good thermal stability and piezoelectric response at temperatures up to 150C. Density functional calculations predicted that a partially cured amic acid (open imide ring) possesses a dipole moment four times larger than the fully imidized closed ring. In situ poling and imidization of the partially cured (Beta-CN)APB/ODPA, was studied in an attempt to maximize the degree of dipolar orientation and the resultant piezoelectric response. A positive corona poling was used to minimize localized arcing during poling and to allow use of higher poling fields without dielectric breakdown. The dielectric relaxation strength, remanent polarization, and piezoelectric response were evaluated as a function of the poling profile. The partially cured, corona poled polymers exhibited higher dielectric relaxation strength (delta varepsilon), remanent polarization (Pr) and piezoelectric strain coefficient (d33) than the fully cured, conventionally poled ones.
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.
Mechanistic Analysis of Mechano-Electrochemical Interaction in Silicon Electrodes with Surface Film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Ankit; Mukherjee, Partha P.
2017-11-17
High-capacity anode materials for lithium-ion batteries, such as silicon, are prone to large volume change during lithiation/delithiation which may cause particle cracking and disintegration, thereby resulting in severe capacity fade and reduction in cycle life. In this work, a stochastic analysis is presented in order to understand the mechano-electrochemical interaction in silicon active particles along with a surface film during cycling. Amorphous silicon particles exhibiting single-phase lithiation incur lower amount of cracking as compared to crystalline silicon particles exhibiting two-phase lithiation for the same degree of volumetric expansion. Rupture of the brittle surface film is observed for both amorphous andmore » crystalline silicon particles and is attributed to the large volumetric expansion of the silicon active particle with lithiation. The mechanical property of the surface film plays an important role in determining the amount of degradation in the particle/film assembly. A strategy to ameliorate particle cracking in silicon active particles is proposed.« less
First-Principles Prediction of Densities of Amorphous Materials: The Case of Amorphous Silicon
NASA Astrophysics Data System (ADS)
Furukawa, Yoritaka; Matsushita, Yu-ichiro
2018-02-01
A novel approach to predict the atomic densities of amorphous materials is explored on the basis of Car-Parrinello molecular dynamics (CPMD) in density functional theory. Despite the determination of the atomic density of matter being crucial in understanding its physical properties, no first-principles method has ever been proposed for amorphous materials until now. We have extended the conventional method for crystalline materials in a natural manner and pointed out the importance of the canonical ensemble of the total energy in the determination of the atomic densities of amorphous materials. To take into account the canonical distribution of the total energy, we generate multiple amorphous structures with several different volumes by CPMD simulations and average the total energies at each volume. The density is then determined as the one that minimizes the averaged total energy. In this study, this approach is implemented for amorphous silicon (a-Si) to demonstrate its validity, and we have determined the density of a-Si to be 4.1% lower and its bulk modulus to be 28 GPa smaller than those of the crystal, which are in good agreement with experiments. We have also confirmed that generating samples through classical molecular dynamics simulations produces a comparable result. The findings suggest that the presented method is applicable to other amorphous systems, including those for which experimental knowledge is lacking.
Accessing the application of in situ cosmogenic 14C to surface exposure dating of amorphous SiO2
NASA Astrophysics Data System (ADS)
Cesta, J. M.; Goehring, B. M.; Ward, D. J.
2017-12-01
We assess the feasibility and utility of in situ cosmogenic 14C as a geochronometer for landforms composed of amorphous SiO2 through the comparison of 14C surface exposure ages to independently determined eruption ages on Obsidian Dome, California. Landforms composed of amorphous SiO2 phases are difficult to date by conventional cosmogenic nuclide methods due to several complications that may arise (e.g., inability to remove meteoric contamination). The onset of an increased understanding of production rates and analytical measurement of in situ 14C in SiO2 provides an opportunity to address this limitation. Obsidian Dome is a 600-year-old phreatomagmatic dome of the Mono-Inyo Craters located in Inyo County, California, and consists of vesicular pumice, obsidian, and rhyolite. Exposure ages from eight obsidian and banded pumice and obsidian surface samples range from 3947 ± 678 to 914 ± 134 years, all significantly older than the accepted radiocarbon age of 650-550 years. δ13C values for the samples range between +2.65‰ and +1.34‰ and show a negative correlation with CO2 yield. The `too old' exposure ages coupled with this negative correlation between δ13C and CO2 yield suggests the incorporation of an atmospheric component of 14C. Measurement of 14C concentrations in shielded, subsurface samples will assist in isolating the atmospheric 14C component and aid in correcting the surface exposure ages.
Chen, Gao; Zhou, Wei; Guan, Daqin; Sunarso, Jaka; Zhu, Yanping; Hu, Xuefeng; Zhang, Wei; Shao, Zongping
2017-01-01
Perovskite oxides exhibit potential for use as electrocatalysts in the oxygen evolution reaction (OER). However, their low specific surface area is the main obstacle to realizing a high mass-specific activity that is required to be competitive against the state-of-the-art precious metal–based catalysts. We report the enhanced performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) for the OER with intrinsic activity that is significantly higher than that of the benchmark IrO2, and this result was achieved via fabrication of an amorphous BSCF nanofilm on a surface-oxidized nickel substrate by magnetron sputtering. The surface nickel oxide layer of the Ni substrate and the thickness of the BSCF film were further used to tune the intrinsic OER activity and stability of the BSCF catalyst by optimizing the electronic configuration of the transition metal cations in BSCF via the interaction between the nanofilm and the surface nickel oxide, which enables up to 315-fold enhanced mass-specific activity compared to the crystalline BSCF bulk phase. Moreover, the amorphous BSCF–Ni foam anode coupled with the Pt–Ni foam cathode demonstrated an attractive small overpotential of 0.34 V at 10 mA cm−2 for water electrolysis, with a BSCF loading as low as 154.8 μg cm−2. PMID:28691090
Arsenate adsorption mechanisms at the allophane - Water interface
Arai, Y.; Sparks, D.L.; Davis, J.A.
2005-01-01
We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As(V)]0 from 50 to 1000 ??M (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0-10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V) predominantly forms bidentate binuclear surface species on aluminum octahedral structures, and these species are stable up to 11 months. Solubility calculations and powder XRD analyses indicate no evidence of crystalline AI-As(V) precipitates in the experimental systems. Overall, macroscopic and spectroscopic evidence suggest that the As(V) adsorption mechanisms at the allophane-water interface are attributable to ligand exchange reactions between As(V) and surface-coordinated water molecules and hydroxyl and silicate ions. The research findings imply that dissolved tetrahedral oxyanions (e.g., H2PO42- and H2AsO42-) are readily retained on amorphous aluminosilicate minerals in aquifer and soils at near neutral pH. The innersphere adsorption mechanisms might be important in controlling dissolved arsenate and phosphate in amorphous aluminosilicate-rich low-temperature geochemical environments. ?? 2005 American Chemical Society.
Li, Chengcheng; Wang, Tuo; Zhao, Zhi-Jian; Yang, Weimin; Li, Jian-Feng; Li, Ang; Yang, Zhilin; Ozin, Geoffrey A; Gong, Jinlong
2018-05-04
A hundred years on, the energy-intensive Haber-Bosch process continues to turn the N 2 in air into fertilizer, nourishing billions of people while causing pollution and greenhouse gas emissions. The urgency of mitigating climate change motivates society to progress toward a more sustainable method for fixing N 2 that is based on clean energy. Surface oxygen vacancies (surface O vac ) hold great potential for N 2 adsorption and activation, but introducing O vac on the very surface without affecting bulk properties remains a great challenge. Fine tuning of the surface O vac by atomic layer deposition is described, forming a thin amorphous TiO 2 layer on plasmon-enhanced rutile TiO 2 /Au nanorods. Surface O vac in the outer amorphous TiO 2 thin layer promote the adsorption and activation of N 2 , which facilitates N 2 reduction to ammonia by excited electrons from ultraviolet-light-driven TiO 2 and visible-light-driven Au surface plasmons. The findings offer a new approach to N 2 photofixation under ambient conditions (that is, room temperature and atmospheric pressure). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Guohui; Zhao, Tianhai; Wan, Jie; Liu, Chengmei; Liu, Wei; Wang, Risi
2015-01-12
The glass transition temperature, diffusion behavior and plasticization of β-cyclodextrin (β-CD), and three amorphous β-CD/water mixtures (3%, 5% and 10% [w/w] water, respectively) were investigated by molecular dynamics simulation, which were performed using Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field and isothermal-isobaric ensembles. The specific volumes of four amorphous cells were obtained as a function of temperature. The glass transition temperatures (T(g)) were estimated to be 334.25 K, 325.12 K, 317.32 K, and 305.41 K for amorphous β-CD containing 0%, 3%, 5% and 10% w/w water, respectively, which compares well with the values observed in published literature. The radial distribution function was computed to elucidate the intermolecular interactions between amorphous β-CD and water, which acts as a plasticizer. These results indicate that the hydrogen bond interactions of oxygen in hydroxyl ions was higher than oxygen in acetal groups in β-CD amorphous mixtures with that in water, due to less accessibility of ring oxygens to the surrounding water molecules. The mobility of water molecules was investigated over various temperature ranges, including the rubbery and glassy phases of the β-CD/water mixtures, by calculating the diffusion coefficients and the fractional free volume. In β-CD amorphous models, the higher mobility of water molecules was observed at temperatures above Tg, and almost no change was observed at temperatures below T(g). Copyright © 2014 Elsevier Ltd. All rights reserved.
Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; ...
2015-07-05
By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb 3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb 3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb 3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb 6 octahedra with motifs highly resembling the local structure in crystalline FeSb 3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb 3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less
Jensen, Kirsten M. Ø.; Blichfeld, Anders B.; Bauers, Sage R.; Wood, Suzannah R.; Dooryhée, Eric; Johnson, David C.; Iversen, Bo B.; Billinge, Simon J. L.
2015-01-01
By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF) analysis have been obtained from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The ‘tfPDF’ method is illustrated through studies of as-deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films. PMID:26306190
Electroluminescence and transport properties in amorphous silicon nanostructures
NASA Astrophysics Data System (ADS)
Irrera, Alessia; Iacona, Fabio; Crupi, Isodiana; Presti, Calogero D.; Franzò, Giorgia; Bongiorno, Corrado; Sanfilippo, Delfo; Di Stefano, Gianfranco; Piana, Angelo; Fallica, Pier Giorgio; Canino, Andrea; Priolo, Francesco
2006-03-01
We report the results of a detailed study on the structural, electrical and optical properties of light emitting devices based on amorphous Si nanostructures. Amorphous nanostructures may constitute an interesting system for the monolithic integration of optical and electrical functions in Si ULSI technology. In fact, they exhibit an intense room temperature electroluminescence (EL), with the advantage of being formed at a temperature of 900 °C, while at least 1100 °C is needed for the formation of Si nanocrystals. Optical and electrical properties of amorphous Si nanocluster devices have been studied in the temperature range between 30 and 300 K. The EL is seen to have a bell-shaped trend as a function of temperature with a maximum at around 60 K. The efficiency of these devices is comparable to that found in devices based on Si nanocrystals, although amorphous nanostructures exhibit peculiar working conditions (very high current densities and low applied voltages). Time resolved EL measurements demonstrate the presence of a short lifetime, only partially due to the occurrence of non-radiative phenomena, since the very small amorphous clusters formed at 900 °C are characterized by a short radiative lifetime. By forcing a current through the device a phenomenon of charge trapping in the Si nanostructures has been observed. Trapped charges affect luminescence through an Auger-type non-radiative recombination of excitons. Indeed, it is shown that unbalanced injection of carriers (electrons versus holes) is one of the main processes limiting luminescence efficiency. These data will be reported and the advantages and limitations of this approach will be discussed.
Optimal atomic structure of amorphous silicon obtained from density functional theory calculations
NASA Astrophysics Data System (ADS)
Pedersen, Andreas; Pizzagalli, Laurent; Jónsson, Hannes
2017-06-01
Atomic structure of amorphous silicon consistent with several reported experimental measurements has been obtained from annealing simulations using electron density functional theory calculations and a systematic removal of weakly bound atoms. The excess energy and density with respect to the crystal are well reproduced in addition to radial distribution function, angular distribution functions, and vibrational density of states. No atom in the optimal configuration is locally in a crystalline environment as deduced by ring analysis and common neighbor analysis, but coordination defects are present at a level of 1%-2%. The simulated samples provide structural models of this archetypal disordered covalent material without preconceived notion of the atomic ordering or fitting to experimental data.
Modeling Subsidence-Like Events on Cometary Nuclei
NASA Astrophysics Data System (ADS)
Rosenberg, Eric; Prialnik, Dina
2017-10-01
There is ample evidence, particularly from the Rosetta mission, that cometary nuclei have very low tensile strength. Consequently, morphological changes are expected to occur, caused by buildup of pressure due to gas release in the interior of the nucleus. Such changes have been observed on the surface of comet 67P/Churyumov-Gerasimenko, as reported for example by Groussin et al.(2015). A mechanism for explaining comet surface depressions has been recently proposed by Prialnik & Sierks (2017). Here we report on a numerical study, elaborating on this mechanism. Essentially, the model considers a cometary nucleus composed of a low-density mixture of ice and dust, assuming that the ice is amorphous and traps volatile gasses, such as CO and CO2. The model assumes that the tensile strength of the subsurface material is low and that the surface is covered by a thin crust of low permeability. As the comet evolves, the amorphous ice crystallizes, and the crystallization front recedes from the surface, releasing the trapped gasses, which accumulate beneath the surface, building up pressure. The gas pressure weakens the material strength, but sustains the gas-filled layer against hydrostatic pressure. Eventually, the gas will break its way through the outer crust in an outburst. The rapid pressure drop may cause the collapse of the gas depleted layer, as seen on the nucleus of 67P/Churyumov-Gerasimenko. This mechanism is similar to subsidence events in gas fields on earth.We have performed quasi-3D numerical simulations in an attempt to determine the extent of the area that would be affected by such a mechanism. The frequency of such subsidence events and the depth of the collapse are investigated as functions of solar angle and spin axis inclination. The necessary conditions for outburst-induced collapse are determined and confronted with observations.References:Groussin, O., Sierks, H., et al. 2015, A&A, 583, A35Prialnik, D. & Sierks, H., 2017, MNRAS, in press