Sample records for surface gas injection

  1. Determination of ammonia and greenhouse gas emissions from land application of swine slurry: a comparison of three application methods.

    PubMed

    Lovanh, Nanh; Warren, Jason; Sistani, Karamat

    2010-03-01

    In this study, the comparison and monitoring of the initial greenhouse gas (GHG) emissions using a flux chamber and gas analyzer from three different liquid manure application methods at a swine farm in Kentucky were carried out. Swine slurry was applied to farmland by row injection, surface spray, and Aerway injection. Ammonia and GHG concentrations were monitored immediately after application, 72 and 216h after application. The results showed that the initial ammonia flux ranged from 5.80 mg m(-2)h(-1) for the surface spray method to 1.80 mg m(-2)h(-1) for the row injection method. The initial fluxes of methane ranged from 8.75 mg m(-2)h(-1) for surface spray to 2.27 mg m(-2)h(-1) for Aerway injection, carbon dioxide ranged from 4357 mg m(-2)h(-1) for surface spray to 60 mg m(-2)h(-1) for row injection, and nitrous oxide ranged from 0.89 mg m(-2)h(-1) for surface spray to 0.22 mg m(-2)h(-1) for row injection. However, the Aerway injection method seemed to create the highest gas (GHG) concentrations inside the monitoring chambers at the initial application and produced the highest gas fluxes at subsequent sampling time (e.g., 72h after application). Nevertheless, the surface spray method appeared to produce the highest gas fluxes, and the row injection method appeared to emit the least amount of greenhouse gases into the atmosphere. Gas fluxes decreased over time and did not depend on the initial headspace concentration in the monitoring flux chambers. Published by Elsevier Ltd.

  2. Subsurface capture of carbon dioxide

    DOEpatents

    Blount, Gerald; Siddal, Alvin A.; Falta, Ronald W.

    2014-07-22

    A process and apparatus of separating CO.sub.2 gas from industrial off-gas source in which the CO.sub.2 containing off-gas is introduced deep within an injection well. The CO.sub.2 gases are dissolved in the, liquid within the injection well while non-CO.sub.2 gases, typically being insoluble in water or brine, are returned to the surface. Once the CO.sub.2 saturated liquid is present within the injection well, the injection well may be used for long-term geologic storage of CO.sub.2 or the CO.sub.2 saturated liquid can be returned to the surface for capturing a purified CO.sub.2 gas.

  3. Vertical gas injection into liquid cross-stream beneath horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Lee, In-Ho; Makiharju, Simo; Lee, Inwon; Perlin, Marc; Ceccio, Steve

    2013-11-01

    Skin friction drag reduction on flat bottomed ships and barges can be achieved by creating an air layer immediately beneath the horizontal surface. The simplest way of introducing the gas is through circular orifices; however the dynamics of gas injection into liquid cross-streams under horizontal surfaces is not well understood. Experiments were conducted to investigate the development of the gas topology following its vertical injection through a horizontal surface. The liquid cross-flow, orifice diameter and gas flow rate were varied to investigate the effect of different ratios of momentum fluxes. The testing was performed on a 4.3 m long and 0.73 m wide barge model with air injection through a hole in the transparent bottom hull. The incoming boundary layer was measured via a pitot tube. Downstream distance based Reynolds number at the injection location was 5 × 105 through 4 × 106 . To observe the flow topology, still images and video were recorded from above the model (i.e. through the transparent hull), from beneath the bottom facing upward, and from the side at an oblique angle. The transition point of the flow topology was determined and analyzed.

  4. Simulation of the Transverse Injection of a Pulsed Jet from the Surface of a Flat Plate into a Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Emelyanov, V. N.; Yakovchuk, M. S.

    2017-11-01

    The transverse injection of a pulsed jet into a supersonic flow for thrust vectoring in solid rocket motors is investigated. The gas flow through the injection nozzle is controlled by a piston which performs reciprocating motion. Reynolds-averaged Navier-Stokes equations and the ( k- ɛ) turbulence model equations are discretized using the finite volume method and moving grids. The pressure distributions on the plate surface obtained using various approaches to the description of the flow field and difference schemes are compared. The solution obtained for the case of injection of a pulsed jet is compared with the solution for the case where a valve prevents gas flow through the injection nozzle. The dependence of the control force produced by gas injection on time is investigated.

  5. Reductant injection and mixing system

    DOEpatents

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  6. Spark gap switch with spiral gas flow

    DOEpatents

    Brucker, John P.

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  7. Effect of gas injection on drag and surface heat transfer rates for a 30° semi-apex angle blunt body flying at Mach 5.75

    NASA Astrophysics Data System (ADS)

    Sahoo, N.; Kulkarni, V.; Jagadeesh, G.; Reddy, K. P. J.

    Effect of coolant gas injection in the stagnation region on the surface heat transfer rates and aerodynamic drag for a large angle blunt body flying at hypersonic Mach number is reported for two stagnation enthalpies. A 60° apex-angle blunt cone model is employed for this purpose with air injection at the nose through a hole of 2mm diameter. The convective surface heating rates and aerodynamic drag are measured simultaneously using surface mounted platinum thin film sensors and internally mounted accelerometer balance system, respectively. About 35-40% reduction in surface heating rates is observed in the vicinity of stagnation region whereas 15-25% reduction in surface heating rates is felt beyond the stagnation region at stagnation enthalpy of 1.6MJ/kg. The aerodynamic drag expressed in terms of drag coefficient is found to increase by 20% due to the air injection.

  8. Uncertainty Quantification for CO2-Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Middleton, R.; Bauman, J.; Viswanathan, H.; Fessenden-Rahn, J.; Pawar, R.; Lee, S.

    2013-12-01

    CO2-Enhanced Oil Recovery (EOR) is currently an option for permanently sequestering CO2 in oil reservoirs while increasing oil/gas productions economically. In this study we have developed a framework for understanding CO2 storage potential within an EOR-sequestration environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. By coupling a EOR tool--SENSOR (CEI, 2011) with a uncertainty quantification tool PSUADE (Tong, 2011), we conduct an integrated Monte Carlo simulation of water, oil/gas components and CO2 flow and reactive transport in the heterogeneous Morrow formation to identify the key controlling processes and optimal parameters for CO2 sequestration and EOR. A global sensitivity and response surface analysis are conducted with PSUADE to build numerically the relationship among CO2 injectivity, oil/gas production, reservoir parameters and distance between injection and production wells. The results indicate that the reservoir permeability and porosity are the key parameters to control the CO2 injection, oil and gas (CH4) recovery rates. The distance between the injection and production wells has large impact on oil and gas recovery and net CO2 injection rates. The CO2 injectivity increases with the increasing reservoir permeability and porosity. The distance between injection and production wells is the key parameter for designing an EOR pattern (such as a five (or nine)-spot pattern). The optimal distance for a five-spot-pattern EOR in this site is estimated from the response surface analysis to be around 400 meters. Next, we are building the machinery into our risk assessment framework CO2-PENS to utilize these response surfaces and evaluate the operation risk for CO2 sequestration and EOR at this site.

  9. Flow visualization of discrete hole film cooling for gas turbine applications

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.

    1975-01-01

    Film injection from discrete holes in a three row staggered array with 5-diameter spacing is studied. The boundary layer thickness-to-hole diameter ratio and Reynolds number are typical of gas turbine film cooling applications. Two different injection locations are studied to evaluate the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air are obtained by photographing neutrally buoyant helium filled soap bubbles which follow the flow field. The bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their origin. Visualization of surface temperature patterns obtained from infrared photographs of a similar film cooled surface are also included.

  10. Mapping of local argon impingement on a virtual surface: an insight for gas injection during FEBID

    NASA Astrophysics Data System (ADS)

    Wanzenboeck, H. D.; Hochleitner, G.; Mika, J.; Shawrav, M. M.; Gavagnin, M.; Bertagnolli, E.

    2014-12-01

    During the last decades, focused electron beam induced deposition (FEBID) has become a successful approach for direct-write fabrication of nanodevices. Such a deposition technique relies on the precursor supply to the sample surface which is typically accomplished by a gas injection system using a tube-shaped injector nozzle. This precursor injection strategy implies a position-dependent concentration gradient on the surface, which affects the geometry and chemistry of the final nanodeposit. Although simulations already proposed the local distribution of nozzle-borne gas molecules impinging on the surface, this isolated step in the FEBID process has never been experimentally measured yet. This work experimentally investigates the local distribution of impinging gas molecules on the sample plane, isolating the direct impingement component from surface diffusion or precursor depletion by deposition. The experimental setup used in this work maps and quantifies the local impinging rate of argon gas over the sample plane. This setup simulates the identical conditions for a precursor molecule during FEBID. Argon gas was locally collected with a sniffer tube, which is directly connected to a residual gas analyzer for quantification. The measured distribution of impinging gas molecules showed a strong position dependence. Indeed, a 300-µm shift of the deposition area to a position further away from the impingement center spot resulted in a 50 % decrease in the precursor impinging rate on the surface area. With the same parameters, the precursor distribution was also simulated by a Monte Carlo software by Friedli and Utke and showed a good correlation between the empirical and the simulated precursor distribution. The results hereby presented underline the importance of controlling the local precursor flux conditions in order to obtain reproducible and comparable deposition results in FEBID.

  11. Effects of the injected plasma on the breakdown process of the trigatron gas switch under low working coefficient

    NASA Astrophysics Data System (ADS)

    Chen, Li; Yang, Lanjun; Qiu, Aici; Huang, Dong; Liu, Shuai

    2018-01-01

    Based on the surface flashover discharge, the injected plasma was generated, and the effects on the breakdown process of the trigatron gas switch were studied in this paper. The breakdown model caused by the injected plasma under the low working coefficient (<0.7) was established. The captured framing images showed that the injected plasma distorted the electrical field of the gap between the frontier of the injected plasma and the opposite electrode, making it easier to achieve the breakdown critical criterion. The calculation results indicated that the breakdown delay time was mainly decided by the development of the injected plasma, as without considering the effects of the photo-ionization and the invisible expansion process, the breakdown delay time of the calculation results was 20% higher than the experimental results. The morphology of the injected plasma generated by polyethylene surface flashover was more stable and regular than ceramic, leading to a 30% lower breakdown delay time when the working coefficient is larger than 0.2, and the difference increased sharply when the working coefficient is lower than 0.2. This was significant for improving the trigger performance of the trigatron gas switch under low working coefficient.

  12. Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Arthur W; Diehl, J Rodney; Strazisar, Brian R

    2012-05-01

    Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 × 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period ofmore » 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 20–30% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.« less

  13. Vadose Zone and Surficial Monitoring a Controlled Release of Methane in the Borden Aquifer, Ontario.

    NASA Astrophysics Data System (ADS)

    Forde, O.; Mayer, K. U.; Cahill, A.; Parker, B. L.; Cherry, J. A.

    2015-12-01

    Development of shale gas resources and potential impacts on groundwater and fugitive gas emissions necessitates further research on subsurface methane gas (CH4) migration and fate. To address this issue, a controlled release experiment is undertaken at the Borden research aquifer, Ontario, Canada. Due to low solubility, it is expected that the injection will lead to gas exsolution and ebullition. Gas migration is expected to extend to the unsaturated zone and towards the ground surface, and may possibly be affected by CH4 oxidation. The project consists of multiple components targeting the saturated zone, unsaturated zone, and gas emissions at the ground surface. This presentation will focus on the analysis of surficial CO2 and CH4 effluxes and vadose zone gas composition to track the temporal and spatial evolution of fugitive gas. Surface effluxes are measured with flux chambers connected to a laser-based gas analyzer, and subsurface gas samples are being collected via monitoring wells equipped with sensors for oxygen, volumetric water content, electrical conductivity, and temperature to correlate with changes in gas composition. First results indicate rapid migration of CH4 to the ground surface in the vicinity of the injection locations. We will present preliminary data from this experiment and evaluate the distribution and rate of gas migration. This research specifically assesses environmental risks associated with fugitive gas emissions related to shale gas resource development.

  14. Flow visualization of discrete hole film cooling for gas turbine applications

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.

    1975-01-01

    Film injection from discrete holes in a three row staggered array with 5-diameter spacing is studied for three different hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the mainstream, and (3) slanted 30 deg to the surface and 45 deg laterally to the mainstream. The boundary layer thickness-to-hole diameter ratio and Reynolds number are typical of gas turbine film cooling applications. Two different injection locations are studied to evaluate the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air are obtained by photographing very small neutrally buoyant helium filled 'soap' bubbles which follow the flow field. Unlike smoke, which diffuses rapidly in the high turbulent mixing region associated with discrete hole blowing, the bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their origin. Visualization of surface temperature patterns obtained from infrared photographs of a similar film cooled surface are also included.

  15. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.

    PubMed

    Ahmed, Ahmed Khaled Abdella; Sun, Cuizhen; Hua, Likun; Zhang, Zhibin; Zhang, Yanhao; Zhang, Wen; Marhaba, Taha

    2018-07-01

    Generation of gaseous nanobubbles (NBs) by simple, efficient, and scalable methods is critical for industrialization and applications of nanobubbles. Traditional generation methods mainly rely on hydrodynamic, acoustic, particle, and optical cavitation. These generation processes render issues such as high energy consumption, non-flexibility, and complexity. This research investigated the use of tubular ceramic nanofiltration membranes to generate NBs in water with air, nitrogen and oxygen gases. This system injects pressurized gases through a tubular ceramic membrane with nanopores to create NBs. The effects of membrane pores size, surface energy, and the injected gas pressures on the bubble size and zeta potential were examined. The results show that the gas injection pressure had considerable effects on the bubble size, zeta potential, pH, and dissolved oxygen of the produced NBs. For example, increasing the injection air pressure from 69 kPa to 414 kPa, the air bubble size was reduced from 600 to 340 nm respectively. Membrane pores size and surface energy also had significant effects on sizes and zeta potentials of NBs. The results presented here aim to fill out the gaps of fundamental knowledge about NBs and development of efficient generation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The stability of the boundary layer compressible gas with heat and mass transfer from the surface

    NASA Astrophysics Data System (ADS)

    Gaponov, S. A.; Terekhova, N. M.

    2016-10-01

    This work continues the research on modeling of the flow regime control in the compressible boundary layer. The effect of the distributed heat and mass transfer on the stability characteristics of the supersonic boundary layer at Mach number M = 5.35 is considered. The main attention is paid to modeling of acoustic disturbances both in conditions of a normal injection, when only the component of the average velocity V is nonzero, and the injection of other direction, including tangential one, when only the component U is nonzero at the wall. It is assumed that the effect of an injection of a homogeneous gas of the different temperature is similar to blowing of the gas of a different density, namely, blowing of the cold gas simulates blowing of the heavy gas and vice versa. Therefore in the present work this modeling is achieved by the change of a temperature factor (heating or cooling of the walls). There are the variant when the so-called locking regime when the velocity perturbations on the porous surface can be taken as zero.

  17. Method and System for Weakening Shock Wave Strength at Leading Edge Surfaces of Vehicle in Supersonic Atmospheric Flight

    NASA Technical Reports Server (NTRS)

    Pritchett, Victor E., II (Inventor); Wang, Ten-See (Inventor); Blankson, Isaiah M. (Inventor); Daso, Endwell O. (Inventor); Farr, Rebecca Ann (Inventor); Auslender, Aaron Howard (Inventor); Plotkin, Kenneth J. (Inventor)

    2015-01-01

    A method and system are provided to weaken shock wave strength at leading edge surfaces of a vehicle in atmospheric flight. One or more flight-related attribute sensed along a vehicle's outer mold line are used to control the injection of a non-heated, non-plasma-producing gas into a local external flowfield of the vehicle from at least one leading-edge surface location along the vehicle's outer mold line. Pressure and/or mass flow rate of the gas so-injected is adjusted in order to cause a Rankine-Hugoniot Jump Condition along the vehicle's outer mold line to be violated.

  18. Cooler and particulate separator for an off-gas stack

    DOEpatents

    Wright, George T.

    1992-01-01

    An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  19. Impact of hydrogeological and geomechanical properties on surface uplift at a CO2 injection site: Parameter estimation and uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Newell, P.; Yoon, H.; Martinez, M. J.; Bishop, J. E.; Arnold, B. W.; Bryant, S.

    2013-12-01

    It is essential to couple multiphase flow and geomechanical response in order to predict a consequence of geological storage of CO2. In this study, we estimate key hydrogeologic features to govern the geomechanical response (i.e., surface uplift) at a large-scale CO2 injection project at In Salah, Algeria using the Sierra Toolkit - a multi-physics simulation code developed at Sandia National Laboratories. Importantly, a jointed rock model is used to study the effect of postulated fractures in the injection zone on the surface uplift. The In Salah Gas Project includes an industrial-scale demonstration of CO2 storage in an active gas field where CO2 from natural gas production is being re-injected into a brine-filled portion of the structure downdip of the gas accumulation. The observed data include millimeter scale surface deformations (e.g., uplift) reported in the literature and injection well locations and rate histories provided by the operators. Our preliminary results show that the intrinsic permeability and Biot coefficient of the injection zone are important. Moreover pre-existing fractures within the injection zone affect the uplift significantly. Estimation of additional (i.e., anisotropy ratio) and coupled parameters will help us to develop models, which account for the complex relationship between mechanical integrity and CO2 injection-induced pressure changes. Uncertainty quantification of model predictions will be also performed using various algorithms including null-space Monte Carlo and polynomial-chaos expansion methods. This work will highlight that our coupled reservoir and geomechanical simulations associated with parameter estimation can provide a practical solution for designing operating conditions and understanding subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. The Mechanism of Atomization Accompanying Solid Injection

    NASA Technical Reports Server (NTRS)

    Castleman, R A , Jr

    1933-01-01

    A brief historical and descriptive account of solid injection is followed by a detailed review of the available theoretical and experimental data that seem to throw light on the mechanism of this form of atomization. It is concluded that this evidence indicates that (1) the atomization accompanying solid injection occurs at the surface of the liquid after it issues as a solid stream from the orifice; and (2) that such atomization has a mechanism physically identical with the atomization which takes place in an air stream, both being due merely to the formation, at the gas-liquid interface, of fine ligaments under the influence of the relative motion of gas and liquid, and to their collapse, under the influence of surface tension, to form the drops in the spray.

  1. Mathematical Investigation of Fluid Flow, Mass Transfer, and Slag-steel Interfacial Behavior in Gas-stirred Ladles

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu

    2018-06-01

    In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.

  2. Cooler and particulate separator for an off-gas stack

    DOEpatents

    Wright, G.T.

    1991-04-08

    This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  3. Premixing direct injector

    DOEpatents

    Johnson, Thomas Edward [Greer, SC; Stevenson, Christian Xavier [Inman, SC; York, William David [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2012-04-17

    A fuel injection nozzle comprises a body member having an upstream wall opposing a downstream wall, a baffle member having an upstream surface and a downstream surface, a first chamber, a second chamber, a fuel inlet communicative with the first chamber operative to emit a first gas into the first chamber, and a plurality of mixing tubes, each of the mixing tubes having a tube inner surface, a tube outer surface, a first inlet communicative with an aperture in the upstream wall operative to receive a second gas, a second inlet communicative with the tube outer surface and the tube inner surface operative to translate the first gas into the mixing tube, a mixing portion operative to mix the first gas and the second gas, and an outlet communicative with an aperture in the downstream wall operative to emit the mixed first and second gasses.

  4. Process for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, P.L.; Giammarise, A.W.

    1991-10-29

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  5. Apparatus for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, P.L.; Giammarise, A.W.

    1995-02-21

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice`s interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figs.

  6. Apparatus for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, Paul L.; Giammarise, Anthony W.

    1995-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  7. Apparatus and process for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, Paul L.; Giammarise, Anthony W.

    1994-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  8. Process for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, Paul L.; Giammarise, Anthony W.

    1991-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance toerosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  9. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process; (2) In situ production of uranium or other metals; this category includes only in situ production... described in § 144.6, injection wells are classified as follows: (a) Class I. (1) Wells used by generators...) Class II. Wells which inject fluids: (1) Which are brought to the surface in connection with natural gas...

  10. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process; (2) In situ production of uranium or other metals; this category includes only in situ production... described in § 144.6, injection wells are classified as follows: (a) Class I. (1) Wells used by generators...) Class II. Wells which inject fluids: (1) Which are brought to the surface in connection with natural gas...

  11. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process; (2) In situ production of uranium or other metals; this category includes only in situ production... described in § 144.6, injection wells are classified as follows: (a) Class I. (1) Wells used by generators...) Class II. Wells which inject fluids: (1) Which are brought to the surface in connection with natural gas...

  12. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process; (2) In situ production of uranium or other metals; this category includes only in situ production... described in § 144.6, injection wells are classified as follows: (a) Class I. (1) Wells used by generators...) Class II. Wells which inject fluids: (1) Which are brought to the surface in connection with natural gas...

  13. Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed

    NASA Astrophysics Data System (ADS)

    Sahoo, Niranjan; Kulkarni, Vinayak; Saravanan, S.; Jagadeesh, G.; Reddy, K. P. J.

    2005-03-01

    Effectiveness of film cooling technique to reduce convective heating rates for a large angle blunt cone flying at hypersonic Mach number and its effect on the aerodynamic characteristics is investigated experimentally by measuring surface heat-transfer rates and aerodynamic drag coefficient simultaneously. The test model is a 60° apex-angle blunt cone with an internally mounted accelerometer balance system for measuring aerodynamic drag and an array of surface mounted platinum thin film gauges for measuring heat-transfer rates. The coolant gas (air, carbon dioxide, and/or helium) is injected into the hypersonic flow at the nose of the test model. The experiments are performed at a flow free stream Mach number of 5.75 and 0° angle of attack for stagnation enthalpies of 1.16MJ/kg and 1.6MJ/kg with and without gas injection. About 30%-45% overall reduction in heat-transfer rates is observed with helium as coolant gas except at stagnation regions. With all other coolants, the reduction in surface heat-transfer rate is between 10%-25%. The aerodynamic drag coefficient is found to increase by 12% with helium injection whereas with other gases this increase is about 27%.

  14. Control of high-Z PFC erosion by local gas injection in DIII-D

    NASA Astrophysics Data System (ADS)

    Rudakov, D. L.; Stangeby, P. C.; Wong, C. P. C.; McLean, A. G.; Wampler, W. R.; Watkins, J. G.; Boedo, J. A.; Briesemeister, A.; Buchenauer, D. A.; Chrobak, C. P.; Elder, J. D.; Fenstermacher, M. E.; Guo, H. Y.; Lasnier, C. J.; Leonard, A. W.; Maingi, R.; Moyer, R. A.

    2015-08-01

    Reduced erosion of a high-Z PFC divertor surface was observed in DIII-D with local injection of methane and deuterium gases. Molybdenum-coated silicon samples were exposed in the lower divertor of DIII-D using DiMES under plasma conditions previously shown to cause significant net erosion of Mo. Three exposures with 13CH4 and one exposure with D2 gas injection about 12 cm upstream of the samples located within 1-2 cm of the attached strike point were performed. Reduction of Mo erosion was evidenced in-situ by the suppression of MoI line radiation at 386.4 nm once the gas injection started. Post-mortem ion beam analysis demonstrated that the net erosion of molybdenum near the center of the samples exposed with 13CH4 injection was below the measurement resolution of 0.5 nm, corresponding to a rate of ⩽0.04 nm/s. Compared to the previously measured erosion rates, this constitutes a reduction by a factor of >10.

  15. Feedback system for divertor impurity seeding based on real-time measurements of surface heat flux in the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Brunner, D.; Burke, W.; Kuang, A. Q.; LaBombard, B.; Lipschultz, B.; Wolfe, S.

    2016-02-01

    Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.

  16. Feedback system for divertor impurity seeding based on real-time measurements of surface heat flux in the Alcator C-Mod tokamak.

    PubMed

    Brunner, D; Burke, W; Kuang, A Q; LaBombard, B; Lipschultz, B; Wolfe, S

    2016-02-01

    Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.

  17. Geomechanical response to seasonal gas storage in depleted reservoirs: A case study in the Po River basin, Italy

    NASA Astrophysics Data System (ADS)

    Teatini, P.; Castelletto, N.; Ferronato, M.; Gambolati, G.; Janna, C.; Cairo, E.; Marzorati, D.; Colombo, D.; Ferretti, A.; Bagliani, A.; Bottazzi, F.

    2011-06-01

    Underground gas storage (UGS) in depleted hydrocarbon reservoirs is a strategic practice to cope with the growing energy demand and occurs in many places in Europe and North America. In response to summer gas injection and winter gas withdrawal the reservoir expands and contracts essentially elastically as a major consequence of the fluid (gas and water) pore pressure fluctuations. Depending on a number of factors, including the reservoir burial depth, the difference between the largest and the smallest gas pore pressure, and the geomechanical properties of the injected formation and the overburden, the porous medium overlying the reservoir is subject to three-dimensional deformation with the related cyclic motion of the land surface being both vertical and horizontal. We present a methodology to evaluate the environmental impact of underground gas storage and sequestration from the geomechanical perspective, particularly in relation to the ground surface displacements. Long-term records of injected and removed gas volume and fluid pore pressure in the "Lombardia" gas field, northern Italy, are available together with multiyear detection of vertical and horizontal west-east displacement of the land surface above the reservoir by an advanced permanent scatterer interferometric synthetic aperture radar (PSInSAR) analysis. These data have been used to calibrate a 3-D fluid-dynamic model and develop a 3-D transversally isotropic geomechanical model. The latter has been successfully implemented and used to reproduce the vertical and horizontal cyclic displacements, on the range of 8-10 mm and 6-8 mm, respectively, measured between 2003 and 2007 above the reservoir where a UGS program has been underway by Stogit-Eni S.p.A. since 1986 following a 5 year field production life. Because of the great economical interest to increase the working gas volume as much as possible, the model addresses two UGS scenarios where the gas pore overpressure is pushed from the current 103%pi, where pi is the gas pore pressure prior to the field development, to 107%pi and 120%pi. Results of both scenarios show that there is a negligible impact on the ground surface, with deformation gradients that remain well below the most restrictive admissible limits for the civil structures and infrastructures.

  18. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process.

    PubMed

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-08-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly used to decrease this problem. Foam which is formed on the contact of nitrogen and surfactant increases viscosity of injected gas. This increases the oil-gas contact and sweep efficiency, although adsorption of surfactant on rock surface can causes difficulties and increases costs of process. Many parameters must be considered in design of SAG process. One of the most important parameters is SAG ratio that should be in optimum value to improve the flooding efficiency. In this study, initially the concentration of surfactant was optimized due to minimization of adsorption on rock surface which results in lower cost of surfactant. So, different sodium dodecyl sulfate (SDS) concentrations of 100, 500, 1000, 2000, 3000 and 4000 ppm were used to obtain the optimum concentration at 70 °C and 144.74×10 5  Pa. A simple, clean and relatively fast spectrophotometric method was used for determination of surfactant which is based on the formation of an ion-pair. Then the effect of surfactant to gas volume ratio on oil recovery in secondary oil recovery process during execution of immiscible surfactant alternating gas injection was examined experimentally. The experiments were performed with sand pack under certain temperature, pressure and constant rate. Experiments were performed with surfactant to gas ratio of 1:1, 1:2, 1:3, 2:1 and 3:1 and 1.2 pore volume injected. Then, comparisons were made between obtained results (SAG) with water flooding, gas flooding and water alternating gas (WAG) processes. This study shows that using the concentration of 1500 ppm of surfactant solution is practical and economical. Results also show that the SAG ratio of 1:1 with 0.2 cm 3 /min at temperature and pressure of 70 °C and 144.74×10 5  Pa, has the maximum oil removal efficiency. In this SAG ratio, stable foam was formed and viscous fingering delayed in comparison to other ratios. Finally, the results demonstrated that SAG injection has higher oil recovery in comparison to other displacement methods (water flooding, gas flooding and WAG).

  19. Apparatus and process for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, P.L.; Giammarise, A.W.

    1994-12-20

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  20. Liquid additives for particulate emissions control

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon

    1999-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  1. Method for removing undesired particles from gas streams

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1998-11-10

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  2. Method and apparatus for decreased undesired particle emissions in gas streams

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Bustard, C.J.

    1999-04-13

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 5 figs.

  3. Method and apparatus for decreased undesired particle emissions in gas streams

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Bustard, Cynthia Jean

    1999-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  4. Method for removing undesired particles from gas streams

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon

    1998-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  5. Process-based approach for the detection of CO2 injectate leakage

    DOEpatents

    Romanak, Katherine; Bennett, Philip C.

    2017-11-14

    The present invention includes a method for distinguishing between a natural source of deep gas and gas leaking from a CO.sub.2 storage reservoir at a near surface formation comprising: obtaining one or more surface or near surface geological samples; measuring a CO.sub.2, an O.sub.2, a CH.sub.4, and an N.sub.2 level from the surface or near surface geological sample; determining the water vapor content at or above the surface or near surface geological samples; normalizing the gas mixture of the CO.sub.2, the O.sub.2, the CH.sub.4, the N.sub.2 and the water vapor content to 100% by volume or 1 atmospheric total pressure; determining: a ratio of CO.sub.2 versus N.sub.2; and a ratio of CO.sub.2 to N.sub.2, wherein if the ratio is greater than that produced by a natural source of deep gas CO.sub.2 or deep gas methane oxidizing to CO.sub.2, the ratio is indicative of gas leaking from a CO.sub.2 storage reservoir.

  6. Recent progress in online ultrasonic process monitoring

    NASA Astrophysics Data System (ADS)

    Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres

    1998-03-01

    On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.

  7. Curved film cooling admission tube

    NASA Astrophysics Data System (ADS)

    Graham, R. W.; Papell, S. S.

    1980-10-01

    Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.

  8. Curved film cooling admission tube

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Papell, S. S. (Inventor)

    1980-01-01

    Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.

  9. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, J.; Vasco, D.W.; Myer, L.

    2009-11-01

    In Salah Gas Project in Algeria has been injecting 0.5-1 million tonnes CO{sub 2} per year over the past five years into a water-filled strata at a depth of about 1,800 to 1,900 m. Unlike most CO{sub 2} storage sites, the permeability of the storage formation is relatively low and comparatively thin with a thickness of about 20 m. To ensure adequate CO{sub 2} flow-rates across the low-permeability sand-face, the In Salah Gas Project decided to use long-reach (about 1 to 1.5 km) horizontal injection wells. In an ongoing research project we use field data and coupled reservoir-geomechanical numerical modelingmore » to assess the effectiveness of this approach and to investigate monitoring techniques to evaluate the performance of a CO{sub 2}-injection operation in relatively low permeability formations. Among the field data used are ground surface deformations evaluated from recently acquired satellite-based inferrometry (InSAR). The InSAR data shows a surface uplift on the order of 5 mm per year above active CO{sub 2} injection wells and the uplift pattern extends several km from the injection wells. In this paper we use the observed surface uplift to constrain our coupled reservoir-geomechanical model and conduct sensitivity studies to investigate potential causes and mechanisms of the observed uplift. The results of our analysis indicates that most of the observed uplift magnitude can be explained by pressure-induced, poro-elastic expansion of the 20 m thick injection zone, but there could also be a significant contribution from pressure-induced deformations within a 100 m thick zone of shaly sands immediately above the injection zone.« less

  10. Environmental risks associated with unconventional gas extraction: an Australian perspective

    NASA Astrophysics Data System (ADS)

    Mallants, Dirk; Bekele, Elise; Schmidt, Wolfgang; Miotlinski, Konrad; Gerke Gerke, Kirill

    2015-04-01

    Coal seam gas is naturally occurring methane gas (CH4) formed by the degradation of organic material in coal seam layers over geological times, typically over several millions of years. Unlike conventional gas resources, which occur as discrete accumulations in traps formed by folds and other structures in sedimentary layers, coal seam gas is generally trapped in low permeable rock by adsorption of the gas molecules within the rock formation and cannot migrate to a trap and form a conventional gas deposit. Extraction of coal seam gas requires producers to de pressurise the coal measures by abstracting large amounts of groundwater through pumping. For coal measures that have too low permeabilities for gas extraction to be economical, mechanical and chemical techniques are required to increase permeability and thus gas yield. One such technique is hydraulic fracturing (HF). Hydraulic fracturing increases the rate and total amount of gas extracted from coal seam gas reservoirs. The process of hydraulic fracturing involves injecting large volumes of hydraulic fracturing fluids under high pressure into the coal seam layers to open up (i.e. fracture) the gas-containing coal layers, thus facilitating extraction of methane gas through pumping. After a hydraulic fracturing operation has been completed in a coal seam gas well, the fracturing fluid pressure is lowered and a significant proportion of the injected fluid returns to the surface as "flowback" water via coal seam gas wells. Flowback water is fluid that returns to the surface after hydraulic fracturing has occurred but before the well is put into production; whereas produced water is fluid from the coal measure that is pumped to the surface after the well is in production. This paper summarises available literature data from Australian coal seam gas practices on i) spills from hydraulic fracturing-related fluids used during coal seam gas drilling and hydraulic fracturing operations, ii) leaks to soil and shallow groundwater of flowback water and produced water from surface impoundments, iii) risks from well integrity failure, and iv) increased gas in water bores.

  11. Liquid additives for particulate emissions control

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1999-01-05

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  12. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    PubMed

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    USGS Publications Warehouse

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  14. Wintertime Air-Sea Gas Transfer Rates and Air Injection Fluxes at Station Papa in the NE Pacific

    NASA Astrophysics Data System (ADS)

    McNeil, C.; Steiner, N.; Vagle, S.

    2008-12-01

    In recent studies of air-sea fluxes of N2 and O2 in hurricanes, McNeil and D'Asaro (2007) used a simplified model formulation of air-sea gas flux to estimate simultaneous values of gas transfer rate, KT, and air injection flux, VT. The model assumes air-sea gas fluxes at high to extreme wind speeds can be explained by a combination of two processes: 1) air injection, by complete dissolution of small bubbles drawn down into the ocean boundary layer by turbulent currents, and 2) near-surface equilibration processes, such as occurs within whitecaps. This analysis technique relies on air-sea gas flux estimates for two gases, N2 and O2, to solve for the two model parameters, KT and VT. We present preliminary results of similar analysis of time series data collected during winter storms at Station Papa in the NE Pacific during 2003/2004. The data show a clear increase in KT and VT with increasing NCEP derived wind speeds and acoustically measured bubble penetration depth.

  15. Dimpled/grooved face on a fuel injection nozzle body for flame stabilization and related method

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo; Zuo, Baifang

    2013-08-20

    A fuel injection head for a fuel nozzle used in a gas turbine combustor includes a substantially hollow body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween. A plurality of pre-mix tubes or passages extend axially through the hollow body with inlets at the upstream end face and outlets at the downstream end face. An exterior surface of the downstream end face is formed with three-dimensional surface features that increase a total surface area of the exterior surface as compared to a substantially flat, planar downstream end face.

  16. Streakline flow visualization of discrete-hole film cooling with normal, slanted, and compound angle injection

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.

    1976-01-01

    Film injection from discrete holes in a three-row, staggered array with five-diameter spacing was studied for three hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the main stream, and (3) slanted 30 deg to the surface and 45 deg laterally to the main stream. The ratio of the boundary layer thickness-to-hole diameter and Reynolds number were typical of gas-turbine film-cooling applications. Detailed streaklines showing the turbulent motion of the injected air were obtained by photographing very small neutrally buoyant, helium-filled soap bubbles which follow the flow field.

  17. Lean direct wall fuel injection method and devices

    NASA Technical Reports Server (NTRS)

    Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)

    2000-01-01

    A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.

  18. The influence of cavitation in the breakup of liquid free jets

    NASA Astrophysics Data System (ADS)

    Bode, Juergen

    1991-03-01

    The interaction between a diesel injection nozzle flow and the atomizing jet was investigated over a wide range of Reynolds numbers. If the pressure gradient towards the centerline of the injection nozzle, generated by the curved streamlines, becomes too large, cavitation occurs at the inlet corner. The cavitation region grows in length and boundary surface with increasing Reynolds number. The instability of the reentry flow causes unsteady fluctuations of the cavitation which influences the breakup of the liquid jet, whereby liquid films are generated which take off from the jet. Cavitation amplifies the mechanism of the atomization, based on the interaction between the jet and surrounding gas. The influence of the cavitation on the atomization is restricted to the region directly behind the nozzle exit. The injection pressure and the temperature of the gas hardly affect the atomization. The jet angle depends mainly on the density of the surrounding gas.

  19. Premixed direct injection nozzle for highly reactive fuels

    DOEpatents

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  20. Method for the protection of extreme ultraviolet lithography optics

    DOEpatents

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  1. Development of a design model for airfoil leading edge film cooling

    NASA Astrophysics Data System (ADS)

    Wadia, A. R.; Nealy, D. A.

    1985-03-01

    A series of experiments on scaled cylinder models having injection through holes inclined at 20, 30, 45, and 90 degrees are presented. The experiments were conducted in a wind tunnel on several stainless steel test specimens in which flow and heat transfer parameters were measured over simulated airfoil leading edge surfaces. On the basis of the experimental results, an engineering design model is proposed that treats the gas-to-surface heat transfer coefficient with film cooling in a manner suggested by Luckey and L'Ecuyer (1981). It is shown that the main factor influencing the averaged film cooling effectiveness in the showerhead region is the inclination of the injection holes. The effectiveness parameter was not affected by variations in the coolant-to-gas stream pressure ratio, the freestream Mach number, the gas to coolant temperature ratio, or the gas stream Reynolds number. Experience in the wind tunnel tests is reflected in the design of the model in which the coolant side heat transfer coefficient is offset by a simultaneous increase in the gas side film coefficient. The design applications of the analytical model are discussed, with emphasis given to high temperature first stage turbine vanes and rotor blades.

  2. Study on cyclic injection gas override in condensate gas reservoir

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhu, Weiyao; Xia, Jing; Li, Baozhu

    2018-02-01

    Cyclic injection gas override in condensate gas reservoirs for the large density difference between injection gas and condensate gas has been studied, but no relevant mathematical models have been built. In this paper, a mathematical model of cyclic injection gas override in condensate gas reservoir is established, considering density difference between the injected gas and the remaining condensate gas in the formation. The vertical flow ratio and override degree are used to reflect the override law of injected dry gas. Combined with the actual data of Tarim gas condensate reservoir, the parameters of injected dry gas override are calculated and analysed. The results show that the radial pressure rises or falls rapidly and the pressure gradient varies greatly in the near wells. The radial pressure varies slowly and the pressure gradient changes little in the reservoir which is within a certain distance from the wells. In the near injection well, the injected dry gas mainly migrates along the radial direction, and the vertical migration is relatively not obvious. With the distance from the injection well, the vertical flow ratio and override degree of injected dry gas increases, and the vertical flow ratio reaches the maximum in the middle of the injection well and the production well.

  3. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.

    PubMed

    Park, Jeongmin; Lee, Sang-Sup

    2018-04-25

    Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.

  4. Glass melter off-gas system

    DOEpatents

    Jantzen, Carol M.

    1997-01-01

    Apparatus and method for melting glass in a glass melter in such a way as to reduce deposition of particulates in the off-gas duct. Deposit accumulation is reduced by achieving an off-gas velocity above approximately 15 meters/second and an off-gas temperature as close as possible to, but not higher than, the glass softening point. Because the deposits are largely water-soluble, those that do form on the interior surface of the duct can be readily removed by injecting water or steam directly into the off-gas duct from its entrance or exit.

  5. Detection of CO2 leakage by the surface-soil CO2-concentration monitoring (SCM) system in a small scale CO2 release test

    NASA Astrophysics Data System (ADS)

    Chae, Gitak; Yu, Soonyoung; Sung, Ki-Sung; Choi, Byoung-Young; Park, Jinyoung; Han, Raehee; Kim, Jeong-Chan; Park, Kwon Gyu

    2015-04-01

    Monitoring of CO2 release through the ground surface is essential to testify the safety of CO2 storage projects. We conducted a feasibility study of the multi-channel surface-soil CO2-concentration monitoring (SCM) system as a soil CO2 monitoring tool with a small scale injection. In the system, chambers are attached onto the ground surface, and NDIR sensors installed in each chamber detect CO2 in soil gas released through the soil surface. Before injection, the background CO2 concentrations were measured. They showed the distinct diurnal variation, and were positively related with relative humidity, but negatively with temperature. The negative relation of CO2 measurements with temperature and the low CO2 concentrations during the day imply that CO2 depends on respiration. The daily variation of CO2 concentrations was damped with precipitation, which can be explained by dissolution of CO2 and gas release out of pores through the ground surface with recharge. For the injection test, 4.2 kg of CO2 was injected 1 m below the ground for about 30 minutes. In result, CO2 concentrations increased in all five chambers, which were located less than 2.5 m of distance from an injection point. The Chamber 1, which is closest to the injection point, showed the largest increase of CO2 concentrations; while Chamber 2, 3, and 4 showed the peak which is 2 times higher than the average of background CO2. The CO2 concentrations increased back after decreasing from the peak around 4 hours after the injection ended in Chamber 2, 4, and 5, which indicated that CO2 concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data in Chamber 2 and 5, which had low increase rates in the CO2 injection test, were used for statistical analysis. The result shows that the coefficient of variation (CV) of CO2 measurements for 30 minutes is efficient to determine a leakage signal, with reflecting the abnormal change in CO2 concentrations. The CV of CO2 measurements for 30 minutes exceeded 5% about 5 minutes before the maximum CO2 concentration was detected. The contributions of this work are as follows: (1) SCM is an efficient monitoring tool to detect the CO2 release through the ground surface. (2) The statistical analysis method to determine the leakage and a monitoring frequency are provided, with analyzing background concentrations and CO2 increases in a small-scale injection test. (3) The 5% CV of CO2 measurements for 30 minutes can be used for the early warning in CO2 storage sites.

  6. Method for creating an aeronautic sound shield having gas distributors arranged on the engines, wings, and nose of an aircraft

    NASA Technical Reports Server (NTRS)

    Corda, Stephen (Inventor); Smith, Mark Stephen (Inventor); Myre, David Daniel (Inventor)

    2008-01-01

    The present invention blocks and/or attenuates the upstream travel of acoustic disturbances or sound waves from a flight vehicle or components of a flight vehicle traveling at subsonic speed using a local injection of a high molecular weight gas. Additional benefit may also be obtained by lowering the temperature of the gas. Preferably, the invention has a means of distributing the high molecular weight gas from the nose, wing, component, or other structure of the flight vehicle into the upstream or surrounding air flow. Two techniques for distribution are direct gas injection and sublimation of the high molecular weight solid material from the vehicle surface. The high molecular weight and low temperature of the gas significantly decreases the local speed of sound such that a localized region of supersonic flow and possibly shock waves are formed, preventing the upstream travel of sound waves from the flight vehicle.

  7. Turbine vane leading edge gas film cooling with spanwise angled coolant holes

    NASA Technical Reports Server (NTRS)

    Hanus, G. J.; Lecuyer, M. R.

    1976-01-01

    An experimental film cooling study was conducted on a 3x size model turbine vane. Injection at the leading edge was from a single row of holes angled in a spanwise direction for two configurations of holes at 18 or 35 deg to the surface. The reduction in the local Stanton number for injection at a coolant-to-mainstream density ratio of 2.18 was calculated from heat flux measurements downstream of injection. Results indicate that optimum cooling occurs near a coolant-to-mainstream velocity ratio of 0.5. Shallow injection angles appear to be most beneficial when injecting into a highly accelerated mainstream.

  8. Methane Transmission and Oxidation throughout the Soil Column from Three Central Florida Sites

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Fansler, S.; Becker, K. E.; Hinkle, C. R.; Bailey, V. L.

    2015-12-01

    When methane (CH4) is generated in anoxic soil sites, it may be subsequently re-oxidized to carbon dioxide (CO2). Understanding the controls on, and magnitudes of, these processes is necessary to accurately represent greenhouse gas production and emission from soils. We used a laboratory incubation to examine the influence of variable conditions on methane transmission and oxidation, and identify critical reaction zones throughout the soil column. Sandy soils were sampled from three different sites at Disney Wilderness Preserve (DWP), Florida, USA: a depression marsh characterized by significant surface organic matter accumulation, a dry pine flatwood site with water intrusion and organic horizon at depth (200+ cm); and an intermediate-drainage site. Contiguous, 30-cm long cores were sampled from N=4 random boreholes at each site, from the surface to the water table (varying from 90 to 240 cm). In the lab, each core was monitored for 50 hours to quantify baseline (pretreatment) gas fluxes before injection with 6 ml CH4 (an amount commensurate with previous field collar measurements) at the base of each core. We then monitored CH4 and CO2 evolution for 100 hours after injection, calculating per-gas and total C evolution. Methane emissions spiked ~10 hours after injection for all cores, peaking at 0.001 μmol/g soil/hr, ~30x larger than pre-injection flux rates. On a C basis, CO2 emissions were orders of magnitude larger, and rose significantly after injection, with elevated rates generally sustained throughout the incubation. Cores from the depression marsh and shallower depths had significantly higher fluxes of both gases. We estimate that 99.1% of the original CH4 injection was oxidized to CO2. These findings suggest either that the methane measured in the field at DWP originates from within a few centimeters of the surface, or that it is produced in much larger quantities deeper in the profile before most is subsequently oxidized. This highlights the need for better understanding and modeling the multiple processes that result in soil-atmosphere CO2 and CH4 fluxes.

  9. Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA

    USGS Publications Warehouse

    White, S.P.; Allis, R.G.; Moore, J.; Chidsey, T.; Morgan, C.; Gwynn, W.; Adams, M.

    2005-01-01

    This paper investigates injection of CO2 into non-dome-shaped geological structures that do not provide the traps traditionally deemed necessary for the development of artificial CO2 reservoirs. We have developed a conceptual and two numerical models of the geology and groundwater along a cross-section lying approximately NW-SE and in the vicinity of the Hunter power station on the Colorado Plateau, Central Utah and identified a number of potential sequestration sites on this cross-section. Preliminary modeling identified the White Rim Sandstone as appearing to offer the properties required of a successful sequestration site. Detailed modeling of injection of CO2 into the White Rim Sandstone using the reactive chemical simulator ChemTOUGH found that 1000 years after the 30 year injection period began approximately 21% of the injected CO2 was permanently sequestered as a mineral, 52% was beneath the ground surface as a gas or dissolved in the groundwater and 17% had leaked to the surface and leakage to the surface was continuing. ?? 2005 Elsevier B.V. All rights reserved.

  10. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First,more » water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.« less

  11. Sequential injection gas guns for accelerating projectiles

    DOEpatents

    Lacy, Jeffrey M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID

    2011-11-15

    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  12. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  13. Method and system for control of upstream flowfields of vehicle in supersonic or hypersonic atmospheric flight

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O. (Inventor); Pritchett, II, Victor E. (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor)

    2012-01-01

    The upstream flowfield of a vehicle traveling in supersonic or hypersonic atmospheric flight is actively controlled using attribute(s) experienced by the vehicle. Sensed attribute(s) include pressure along the vehicle's outer mold line, temperature along the vehicle's outer mold line, heat flux along the vehicle's outer mold line, and/or local acceleration response of the vehicle. A non-heated, non-plasma-producing gas is injected into an upstream flowfield of the vehicle from at least one surface location along the vehicle's outer mold line. The pressure of the gas so-injected is adjusted based on the attribute(s) so-sensed.

  14. Surface Deformation Observed by InSAR due to Fluid Injection: a Test Study in the Central U.S.

    NASA Astrophysics Data System (ADS)

    Deng, F.; Dixon, T. H.

    2017-12-01

    The central and eastern U.S. has undergone a dramatic increase in seismicity over the past few years. Many of these recent earthquakes were likely induced by human activities, with underground fluid injection for oil and gas extraction being one of the main contributors. Surface deformation caused by fluid injection has been captured by GPS and InSAR observations in several areas. For example, surface uplift of up to 10 cm due to CO2 injection between 2007 and 2011 was measured by InSAR at an enhanced oil recovery site in west Texas. We are using Texas and Oklahoma as test areas to analyze the potential relationship between surface deformation, underground fluid injection and induced earthquakes. C-band SAR data from ENVISAT and Sentinel-1, and L-band SAR data from ALOS and ALOS-2 are used to form decade-long time series. Based on the surface deformation derived from the time series InSAR data, subsurface volume change and volumetric strain in an elastic half space are estimated. Seismic data provided by the USGS are used to analyze the spatial and temporal distribution pattern of earthquakes, and the potential link between surface deformation and induced earthquakes. The trigger mechanism will be combined with forward modeling to predict seismicity and assess related hazard for future study.

  15. The gas fluxing of aluminum: Mathematical modeling and experimental investigations

    NASA Astrophysics Data System (ADS)

    Fjeld, Autumn Marie

    Chlorine fluxing is an essential purification step in aluminum refining in which impurities such as Ca, Na, Li, and Mg are removed by bubbling a mixture of chlorine and argon gas through molten aluminum. The gas is injected into the fluxing vessel through a rotating shaft and impeller which simultaneously agitates the melt, while breaking up and dispersing gas bubbles through the liquid phase. The efficiency of impurity removal and control of toxic chlorine and chloride emissions are dependent upon the extent of gas dispersion or mixing, residence time of the bubbles, and surface area of the bubbles. Clearly the gas injection and distribution within the liquid metal cannot be directly observed and such operations are often poorly controlled and not well understood. Problems arise when the injection gas, i.e. chlorine, is not completely consumed by reaction with impurities and the excess is reported as emissions of chlorides such as toxic HCl. The intention is to improve the technology to eliminate this waste (saving on the energy entailed in the chlorine production and reducing pollution) by better dispersion of the injected gas throughout the metal. Previous experimental investigations using a capacitance probe, capable of immersion in liquid aluminum for several hours, have been carried out to detect bubbles in an industrial fluxing unit at the Alcoa Technical Center. Bubble frequency data have shown the bubbles to be fairly well dispersed in the areas of the fluxing unit, decreasing in observed bubble frequency with increasing distance from the impeller (source of gas injection). To gain further insight and add to our experimental findings, two computational models have been developed to simulate the complex two-phase fluid dynamics of a rotary gas injection system. The results of these two modeling approaches are presented and analyzed and compared to experimental bubble measurements gathered using the capacitance probe. Bubble size distributions and residence times from the discrete phase model were incorporated in an external demagging reaction model to predict chlorine utilization efficiency. This simplified model included several assumptions regarding the kinetics and reaction path, however the model showed reasonable agreement to prior experimental magnesium removal data and provides valuable information related to the interplay of reaction progress in a fluxing unit and the fluid dynamics, in terms of bubble size, trajectory and resulting bubble residence time.

  16. Theoretical analysis of hot electron dynamics in nanorods

    PubMed Central

    Kumarasinghe, Chathurangi S.; Premaratne, Malin; Agrawal, Govind P.

    2015-01-01

    Localised surface plasmons create a non-equilibrium high-energy electron gas in nanostructures that can be injected into other media in energy harvesting applications. Here, we derive the rate of this localised-surface-plasmon mediated generation of hot electrons in nanorods and the rate of injecting them into other media by considering quantum mechanical motion of the electron gas. Specifically, we use the single-electron wave function of a particle in a cylindrical potential well and the electric field enhancement factor of an elongated ellipsoid to derive the energy distribution of electrons after plasmon excitation. We compare the performance of nanorods with equivolume nanoparticles of other shapes such as nanospheres and nanopallets and report that nanorods exhibit significantly better performance over a broad spectrum. We present a comprehensive theoretical analysis of how different parameters contribute to efficiency of hot-electron harvesting in nanorods and reveal that increasing the aspect ratio can increase the hot-electron generation and injection, but the volume shows an inverse dependency when efficiency per unit volume is considered. Further, the electron thermalisation time shows much less influence on the injection rate. Our derivations and results provide the much needed theoretical insight for optimization of hot-electron harvesting process in highly adaptable metallic nanorods. PMID:26202823

  17. The mechanism study between 3D Space-time deformation and injection or extraction of gas pressure change, the Hutubi Underground gas storage

    NASA Astrophysics Data System (ADS)

    Xiaoqiang, W.; Li, J.; Daiqing, L.; Li, C.

    2017-12-01

    The surface deformation of underground gas reservoir with the change of injection pressure is an excellent opportunity to study the load response under the action of tectonic movement and controlled load. This paper mainly focuses on the elastic deformation of underground structure caused by the change of the pressure state of reservoir rock under the condition of the irregular change of pressure in the underground gas storage of Hutubi, the largest underground gas storage in Xinjiang, at the same time, it makes a fine study on the fault activities of reservoir and induced earthquakes along with the equilibrium instability caused by the reservoir. Based on the 34 deformation integrated observation points and 3 GPS continuous observation stations constructed in the underground gas storage area of Hutubi, using modern measurement techniques such as GPS observation, precise leveling survey, flow gravity observation and so on, combined with remote sensing technology such as InSAR, the 3d space-time sequence images of the surface of reservoir area under pressure change were obtained. Combined with gas well pressure, physical parameters and regional seismic geology and geophysical data, the numerical simulation and analysis of internal changes of reservoir were carried out by using elastic and viscoelastic model, the deformation mechanical relationship of reservoir was determined and the storage layer under controlled load was basically determined. This research is financially supported by National Natural Science Foundation of China (Grant No.41474016, 41474051, 41474097)

  18. Carbon Dioxide Sequestration in Depleted Oil/Gas Fields: Evaluation of Gas Microseepage and Carbon Dioxide Fate at Rangely, Colorado USA

    NASA Astrophysics Data System (ADS)

    Klusman, R. W.

    2002-12-01

    Large-scale CO2 dioxide injection for purposes of enhanced oil recovery (EOR) has been operational at Rangely, Colorado since 1986. The Rangely field serves as an onshore prototype for CO2 sequestration in depleted fields by production of a valuable commodity which partially offsets infrastructure costs. The injection is at pressures considerably above hydrostatic pressure, enhancing the possibility for migration of buoyant gases toward the surface. Methane and CO2 were measured in shallow soil gas, deep soil gas, and as fluxes into the atmosphere in both winter and summer seasons. There were large seasonal variations in surface biological noise. The direct measurement of CH4 flux to the atmosphere gave an estimate of 400 metric tonnes per year over the 78 km2 area, and carbon dioxide flux was between 170 and 3800 metric tonnes per year. Both stable carbon isotopes and carbon-14 were used in constructing these estimates. Computer modeling of the unsaturated zone migration, and of methanotrophic oxidation rates suggests a large portion of the CH4 is oxidized in the summer, and at a much lower rate in the winter. However, deep-sourced CH4 makes a larger contribution to the atmosphere than CO2, in terms of GWP. The 23+ million tonnes of carbon dioxide that have been injected at Rangely are largely stored as dissolved CO2 and a lesser amount as bicarbonate. Scaling problems, as a result of acid gas dissolution of carbonate cement, and subsequent precipitation of CaSO4 will be an increasing problem as the system matures. Evidence for mineral sequestration was not found in the scales. Ultimate injector and field capacities will be determined by mineral precipitation in the formation as it affects porosity and permeability.

  19. Methods and systems for fabricating high quality superconducting tapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majkic, Goran; Selvamanickam, Venkat

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  20. Preparation of fine-particles at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Globus, H.

    1970-01-01

    Flash freezing process yields gelling agent for use at cryogenic temperatures. Vaporized material, diluted with an inert gas, is injected below the surface of an agitated cryogenic liquid. This method disperses particles of chlorine trifluoride in liquid oxygen difluoride.

  1. CO2 migration in the vadose zone: experimental and numerical modelling of controlled gas injection

    NASA Astrophysics Data System (ADS)

    gasparini, andrea; credoz, anthony; grandia, fidel; garcia, david angel; bruno, jordi

    2014-05-01

    The mobility of CO2 in the vadose zone and its subsequent transfer to the atmosphere is a matter of concern in the risk assessment of the geological storage of CO2. In this study the experimental and modelling results of controlled CO2 injection are reported to better understanding of the physical processes affecting CO2 and transport in the vadose zone. CO2 was injected through 16 micro-injectors during 49 days of experiments in a 35 m3 experimental unit filled with sandy material, in the PISCO2 facilities at the ES.CO2 centre in Ponferrada (North Spain). Surface CO2 flux were monitored and mapped periodically to assess the evolution of CO2 migration through the soil and to the atmosphere. Numerical simulations were run to reproduce the experimental results, using TOUGH2 code with EOS7CA research module considering two phases (gas and liquid) and three components (H2O, CO2, air). Five numerical models were developed following step by step the injection procedure done at PISCO2. The reference case (Model A) simulates the injection into a homogeneous soil(homogeneous distribution of permeability and porosity in the near-surface area, 0.8 to 0.3 m deep from the atmosphere). In another model (Model B), four additional soil layers with four specific permeabilities and porosities were included to predict the effect of differential compaction on soil. To account for the effect of higher soil temperature, an isothermal simulation called Model C was also performed. Finally, the assessment of the rainfall effects (soil water saturation) on CO2 emission on surface was performed in models called Model D and E. The combined experimental and modelling approach shows that CO2 leakage in the vadose zone quickly comes out through preferential migration pathways and spots with the ranges of fluxes in the ground/surface interface from 2.5 to 600 g·m-2·day-1. This gas channelling is mainly related to soil compaction and climatic perturbation. This has significant implications to design adapted detection and monitoring strategies of early leakage in commercial CO2 storage. The presence of soils with different compactions at surface influences the CO2 dispersion. The inclusion of soils with different permeability, porosity and liquid saturation results in preferential pathways. The formation of preferential pathways in the soil and hot spots on the surface has commonly been observed in natural systems where deep CO2 fluxes interact with shallow aquifers. Increase of ambient temperature increases CO2 fluxes intensity whereas rainfall decreases CO2 emission in gas phase and trap it as aqueous species in the porous media of the soil. A good accuracy has been obtained for surface CO2 fluxes location and intensity between experimental and modelling results taking into account the selected equation of state, the soil characteristics and the operational conditions. Phenomena of compaction and preferential pathways located only in the first centimetres of the soil can explain the heterogeneity of CO2 fluxes in the 16 m2 surface area of PISCO2 experimental platform.

  2. Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities.

    PubMed

    Drollette, Brian D; Hoelzer, Kathrin; Warner, Nathaniel R; Darrah, Thomas H; Karatum, Osman; O'Connor, Megan P; Nelson, Robert K; Fernandez, Loretta A; Reddy, Christopher M; Vengosh, Avner; Jackson, Robert B; Elsner, Martin; Plata, Desiree L

    2015-10-27

    Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency's maximum contaminant levels, and low levels of both gasoline range (0-8 ppb) and diesel range organic compounds (DRO; 0-157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation.

  3. Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities

    PubMed Central

    Drollette, Brian D.; Hoelzer, Kathrin; Warner, Nathaniel R.; Darrah, Thomas H.; Karatum, Osman; O’Connor, Megan P.; Nelson, Robert K.; Fernandez, Loretta A.; Reddy, Christopher M.; Vengosh, Avner; Jackson, Robert B.; Elsner, Martin; Plata, Desiree L.

    2015-01-01

    Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency’s maximum contaminant levels, and low levels of both gasoline range (0–8 ppb) and diesel range organic compounds (DRO; 0–157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation. PMID:26460018

  4. Injection-induced earthquakes

    USGS Publications Warehouse

    Ellsworth, William L.

    2013-01-01

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  5. Flue gas desulfurization

    DOEpatents

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  6. PIC code modeling of spacecraft charging potential during electron beam injection into a background of neutral gas and plasma, part 1

    NASA Technical Reports Server (NTRS)

    Koga, J. K.; Lin, C. S.; Winglee, R. M.

    1989-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.

  7. High-performance serial block-face SEM of nonconductive biological samples enabled by focal gas injection-based charge compensation.

    PubMed

    Deerinck, T J; Shone, T M; Bushong, E A; Ramachandra, R; Peltier, S T; Ellisman, M H

    2018-05-01

    A longstanding limitation of imaging with serial block-face scanning electron microscopy is specimen surface charging. This charging is largely due to the difficulties in making biological specimens and the resins in which they are embedded sufficiently conductive. Local accumulation of charge on the specimen surface can result in poor image quality and distortions. Even minor charging can lead to misalignments between sequential images of the block-face due to image jitter. Typically, variable-pressure SEM is used to reduce specimen charging, but this results in a significant reduction to spatial resolution, signal-to-noise ratio and overall image quality. Here we show the development and application of a simple system that effectively mitigates specimen charging by using focal gas injection of nitrogen over the sample block-face during imaging. A standard gas injection valve is paired with a precisely positioned but retractable application nozzle, which is mechanically coupled to the reciprocating action of the serial block-face ultramicrotome. This system enables the application of nitrogen gas precisely over the block-face during imaging while allowing the specimen chamber to be maintained under high vacuum to maximise achievable SEM image resolution. The action of the ultramicrotome drives the nozzle retraction, automatically moving it away from the specimen area during the cutting cycle of the knife. The device described was added to a Gatan 3View system with minimal modifications, allowing high-resolution block-face imaging of even the most charge prone of epoxy-embedded biological samples. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  8. Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction

    DOEpatents

    Rosocha, Louis A.

    2006-06-20

    A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.

  9. Impact of nitrate-enhanced leachate recirculation on gaseous releases from a landfill bioreactor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallec, G.; Bureau, C.; Peu, P.

    2009-07-15

    This study evaluates the impact of nitrate injection on a full scale landfill bioreactor through the monitoring of gaseous releases and particularly N{sub 2}O emissions. During several weeks, we monitored gas concentrations in the landfill gas collection system as well as surface gas releases with a series of seven static chambers. These devices were directly connected to a gas chromatograph coupled to a flame ionisation detector and an electron capture detector (GC-FID/ECD) placed directly on the field. Measurements were performed before, during and after recirculation of raw leachate and nitrate-enhanced leachate. Raw leachate recirculation did not have a significant effectmore » on the biogas concentrations (CO{sub 2}, CH{sub 4} and N{sub 2}O) in the gas extraction network. However, nitrate-enhanced leachate recirculation induced a marked increase of the N{sub 2}O concentrations in the gas collected from the recirculation trench (100-fold increase from 0.2 ppm to 23 ppm). In the common gas collection system however, this N{sub 2}O increase was no more detectable because of dilution by gas coming from other cells or ambient air intrusion. Surface releases through the temporary cover were characterized by a large spatial and temporal variability. One automated chamber gave limited standard errors over each experimental period for N{sub 2}O releases: 8.1 {+-} 0.16 mg m{sup -2} d{sup -1} (n = 384), 4.2 {+-} 0.14 mg m{sup -2} d{sup -1} (n = 132) and 1.9 {+-} 0.10 mg m{sup -2} d{sup -1} (n = 49), during, after raw leachate and nitrate-enhanced leachate recirculation, respectively. No clear correlation between N{sub 2}O gaseous surface releases and recirculation events were evidenced. Estimated N{sub 2}O fluxes remained in the lower range of what is reported in the literature for landfill covers, even after nitrate injection.« less

  10. Supersonic Pulsed Injection

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Harding, G. C.; Diskin, G. S.

    2001-01-01

    An injector has been developed to provide high-speed high-frequency (order 10 kHz) pulsed a supersonic crossflow. The injector nozzle is formed between the fixed internal surface of the nozzle and a freely rotating three- or four-sided wheel embedded within the device. Flow-induced rotation of the wheel causes the nozzle throat to open and close at a frequency proportional to the speed of sound of the injected gas. Measurements of frequency and mass flow rate as a function of supply pressure are discussed for various injector designs. Preliminary results are presented for wall-normal injection of helium into a Mach-2 ducted airflow. The data include schlieren images in the injectant plume in a plane normal to the flow, downstream of injection.

  11. High Power Helicon Plasma Source for Plasma Processing

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth E.

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is developing a high power helicon plasma source. The high power nature and pulsed neutral gas make this source unique compared to traditional helicon source. These properties produce a plasma flow along the magnetic field lines, and therefore allow the source to be decoupled from the reaction chamber. Neutral gas can be injected downstream, which allows for precision control of the ion-neutral ratio at the surface of the sample. Although operated at high power, the source has demonstrated very low impurity production. This source has applications to nanoparticle productions, surface modification, and ionized physical vapor deposition.

  12. Molecular gap and energy level diagram for pentacene adsorbed on filled d-band metal surfaces

    NASA Astrophysics Data System (ADS)

    Baldacchini, Chiara; Mariani, Carlo; Betti, Maria Grazia; Gavioli, L.; Fanetti, M.; Sancrotti, M.

    2006-10-01

    The authors present a combined photoemission and scanning-tunneling spectroscopy study of the filled electronic states, the molecular energy gap, and the energy level diagram of highly ordered arrays of pentacene deposited on the Cu(119) vicinal surface. The states localized at the interface are clearly singled out, comparing the results at different pentacene thicknesses and with gas-phase photoemission data. The molecular gap of 2.35eV, the hole injection barrier of 1.05eV, and the electron injection barrier of 1.30eV determine the energy level diagram of the states localized at the pentacene molecules.

  13. Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin

    NASA Astrophysics Data System (ADS)

    Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas

    2016-09-01

    Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.

  14. Effect of Surface Nonequilibrium Thermochemistry in Simulation of Carbon Based Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kang; Gokcen, Tahir

    2012-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver using finite-rate gas/surface interaction model provides time-accurate solutions for multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal Response and Ablation Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas momentum conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of gas/surface interaction chemistry between air and carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was a Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.

  15. Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2012-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.

  16. 3-D simulation of gases transport under condition of inert gas injection into goaf

    NASA Astrophysics Data System (ADS)

    Liu, Mao-Xi; Shi, Guo-Qing; Guo, Zhixiong; Wang, Yan-Ming; Ma, Li-Yang

    2016-12-01

    To prevent coal spontaneous combustion in mines, it is paramount to understand O2 gas distribution under condition of inert gas injection into goaf. In this study, the goaf was modeled as a 3-D porous medium based on stress distribution. The variation of O2 distribution influenced by CO2 or N2 injection was simulated based on the multi-component gases transport and the Navier-Stokes equations using Fluent. The numerical results without inert gas injection were compared with field measurements to validate the simulation model. Simulations with inert gas injection show that CO2 gas mainly accumulates at the goaf floor level; however, a notable portion of N2 gas moves upward. The evolution of the spontaneous combustion risky zone with continuous inert gas injection can be classified into three phases: slow inerting phase, rapid accelerating inerting phase, and stable inerting phase. The asphyxia zone with CO2 injection is about 1.25-2.4 times larger than that with N2 injection. The efficacy of preventing and putting out mine fires is strongly related with the inert gas injecting position. Ideal injections are located in the oxidation zone or the transitional zone between oxidation zone and heat dissipation zone.

  17. Test Case RCM-3 Using CPS

    DTIC Science & Technology

    2001-03-01

    influence We observe an important variation of the flame length with the ratio gas / liquid injected (Figure 6 and Figure 7). The flame length increases with...fraction, the flame length increases (Figure 7). This is due to the increase of the oxygen injection speed to obtain the correct amount of oxygen...influence of C, with have made calculation with an arbitrary value for a witch is 10-6 N / m. The flame length decrease with the surface tension

  18. Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon.

    PubMed

    Gros, Jonas; Socolofsky, Scott A; Dissanayake, Anusha L; Jun, Inok; Zhao, Lin; Boufadel, Michel C; Reddy, Christopher M; Arey, J Samuel

    2017-09-19

    During the Deepwater Horizon disaster, a substantial fraction of the 600,000-900,000 tons of released petroleum liquid and natural gas became entrapped below the sea surface, but the quantity entrapped and the sequestration mechanisms have remained unclear. We modeled the buoyant jet of petroleum liquid droplets, gas bubbles, and entrained seawater, using 279 simulated chemical components, for a representative day (June 8, 2010) of the period after the sunken platform's riser pipe was pared at the wellhead (June 4-July 15). The model predicts that 27% of the released mass of petroleum fluids dissolved into the sea during ascent from the pared wellhead (1,505 m depth) to the sea surface, thereby matching observed volatile organic compound (VOC) emissions to the atmosphere. Based on combined results from model simulation and water column measurements, 24% of released petroleum fluid mass became channeled into a stable deep-water intrusion at 900- to 1,300-m depth, as aqueously dissolved compounds (∼23%) and suspended petroleum liquid microdroplets (∼0.8%). Dispersant injection at the wellhead decreased the median initial diameters of simulated petroleum liquid droplets and gas bubbles by 3.2-fold and 3.4-fold, respectively, which increased dissolution of ascending petroleum fluids by 25%. Faster dissolution increased the simulated flows of water-soluble compounds into biologically sparse deep water by 55%, while decreasing the flows of several harmful compounds into biologically rich surface water. Dispersant injection also decreased the simulated emissions of VOCs to the atmosphere by 28%, including a 2,000-fold decrease in emissions of benzene, which lowered health risks for response workers.

  19. Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon

    PubMed Central

    Gros, Jonas; Socolofsky, Scott A.; Dissanayake, Anusha L.; Jun, Inok; Zhao, Lin; Boufadel, Michel C.; Reddy, Christopher M.; Arey, J. Samuel

    2017-01-01

    During the Deepwater Horizon disaster, a substantial fraction of the 600,000–900,000 tons of released petroleum liquid and natural gas became entrapped below the sea surface, but the quantity entrapped and the sequestration mechanisms have remained unclear. We modeled the buoyant jet of petroleum liquid droplets, gas bubbles, and entrained seawater, using 279 simulated chemical components, for a representative day (June 8, 2010) of the period after the sunken platform’s riser pipe was pared at the wellhead (June 4–July 15). The model predicts that 27% of the released mass of petroleum fluids dissolved into the sea during ascent from the pared wellhead (1,505 m depth) to the sea surface, thereby matching observed volatile organic compound (VOC) emissions to the atmosphere. Based on combined results from model simulation and water column measurements, 24% of released petroleum fluid mass became channeled into a stable deep-water intrusion at 900- to 1,300-m depth, as aqueously dissolved compounds (∼23%) and suspended petroleum liquid microdroplets (∼0.8%). Dispersant injection at the wellhead decreased the median initial diameters of simulated petroleum liquid droplets and gas bubbles by 3.2-fold and 3.4-fold, respectively, which increased dissolution of ascending petroleum fluids by 25%. Faster dissolution increased the simulated flows of water-soluble compounds into biologically sparse deep water by 55%, while decreasing the flows of several harmful compounds into biologically rich surface water. Dispersant injection also decreased the simulated emissions of VOCs to the atmosphere by 28%, including a 2,000-fold decrease in emissions of benzene, which lowered health risks for response workers. PMID:28847967

  20. Monovalve with integrated fuel injector and port control valve, and engine using same

    DOEpatents

    Milam, David M.

    2001-11-06

    An engine includes an engine casing that defines a hollow piston cavity separated from an exhaust passage and an intake passage by a valve seat. A gas exchange valve member is positioned adjacent the valve seat and is moveable between an open position and a closed position. The gas exchange valve member also defines an opening that opens into the hollow piston cavity. A needle valve member is positioned in the gas exchange valve member adjacent a nozzle outlet and is moveable between an inject position and a blocked position. A port control valve member, which has a hydraulic surface, is mounted around the gas exchange valve member and moveable between an intake position and an exhaust position. A pilot valve is moveable between a first position at which the port control hydraulic surface is exposed to a source of high pressure fluid, and a second position at which the port control hydraulic surface is exposed to a source of low pressure fluid.

  1. Impact of plasma treatment under atmospheric pressure on surface chemistry and surface morphology of extruded and injection-molded wood-polymer composites (WPC)

    NASA Astrophysics Data System (ADS)

    Hünnekens, Benedikt; Avramidis, Georg; Ohms, Gisela; Krause, Andreas; Viöl, Wolfgang; Militz, Holger

    2018-05-01

    The influence of plasma treatment performed at atmospheric pressure and ambient air as process gas by a dielectric barrier discharge (DBD) on the morphological and chemical surface characteristics of wood-polymer composites (WPC) was investigated by applying several surface-sensitive analytical methods. The surface free energy showed a distinct increase after plasma treatment for all tested materials. The analyzing methods for surface topography-laser scanning microscopy (LSM) and atomic force microscopy (AFM)-revealed a roughening induced by the treatment which is likely due to a degradation of the polymeric surface. This was accompanied by the formation of low-molecular-weight oxidized materials (LMWOMs), appearing as small globular structures. With increasing discharge time, the nodules increase in size and the material degradation proceeds. The surface degradation seems to be more serious for injection-molded samples, whereas the formation of nodules became more apparent and were evenly distributed on extruded surfaces. These phenomena could also be confirmed by scanning electron microscopy (SEM). In addition, differences between extruded and injection-molded surfaces could be observed. Besides the morphological changes, the chemical composition of the substrates' surfaces was affected by the plasma discharge. Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) indicated the formation of new oxygen containing polar groups on the modified surfaces.

  2. Evaluation of crystallization behavior on the surface of nifedipine solid dispersion powder using inverse gas chromatography.

    PubMed

    Miyanishi, Hideo; Nemoto, Takayuki; Mizuno, Masayasu; Mimura, Hisashi; Kitamura, Satoshi; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2013-02-01

    To investigate crystallization behavior on the surface of amorphous solid dispersion powder using inverse gas chromatography (IGC) and to predict the physical stability at temperatures below the glass transition temperature (T (g)). Amorphous solid dispersion powder was prepared by melt-quenching of a mixture of crystalline nifedipine and polyvinylpyrrolidon (PVP) K-30. IGC was conducted by injecting undecane (probe gas) and methane (reference gas) repeatedly to the solid dispersion at temperatures below T (g). Surface crystallization was evaluated by the retention volume change of undecane based on the observation that the surface of the solid dispersion with crystallized nifedipine gives an increased retention volume. On applying the retention volume change to the Hancock-Sharp equation, surface crystallization was found to follow a two-dimensional growth of nuclei mechanism. Estimation of the crystallization rates at temperatures far below T (g) using the Avrami-Erofeev equation and Arrhenius equation showed that, to maintain its quality for at least three years, the solid dispersion should be stored at -20°C (T (g) - 65°C). IGC can be used to evaluate crystallization behavior on the surface of a solid dispersion powder, and, unlike traditional techniques, can also predict the stability of the solid dispersion based on the surface crystallization behavior.

  3. Particle control and plasma performance in the Lithium Tokamak eXperimenta)

    NASA Astrophysics Data System (ADS)

    Majeski, R.; Abrams, T.; Boyle, D.; Granstedt, E.; Hare, J.; Jacobson, C. M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D. P.; Lucia, M.; Merino, E.; Schmitt, J.; Stotler, D.; Biewer, T. M.; Canik, J. M.; Gray, T. K.; Maingi, R.; McLean, A. G.; Kubota, S.; Peebles, W. A.; Beiersdorfer, P.; Clementson, J. H. T.; Tritz, K.

    2013-05-01

    The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.

  4. A Novel Method for Determining the Gas Transfer Velocity of Carbon Dioxide in Streams

    NASA Astrophysics Data System (ADS)

    McDowell, M. J.; Johnson, M. S.

    2016-12-01

    Characterization of the global carbon cycle relies on the accurate quantification of carbon fluxes into and out of natural and human-dominated ecosystems. Among these fluxes, carbon dioxide (CO2) evasion from surface water has received increasing attention in recent years. However, limitations of current methods, including determination of the gas transfer velocity (k), compromise our ability to evaluate the significance of CO2 fluxes between freshwater systems and the atmosphere. We developed an automated method to determine gas transfer velocities of CO2 (kCO2), and tested it under a range of flow conditions for a first-order stream of a headwater catchment in southwestern British Columbia, Canada. Our method uses continuous in situ measurements of CO2 concentrations using two non-dispersive infrared (NDIR) sensors enclosed in water impermeable, gas permeable membranes (Johnson et al., 2010) downstream from a gas diffuser. CO2 was injected into the stream at regular intervals via a compressed gas tank connected to the diffuser. CO2 injections were controlled by a datalogger at fixed time intervals and in response to storm-induced changes in streamflow. Following the injection, differences in CO2 concentrations at known distances downstream from the diffuser relative to pre-injection baseline levels allowed us to calculate kCO2. Here we present relationships between kCO2 and hydro-geomorphologic (flow velocity, streambed slope, stream width, stream depth), atmospheric (wind speed and direction), and water quality (stream temperature, pH, electrical conductivity) variables. This method has advantages of being automatable and field-deployable, and it does not require supplemental gas chromatography, as is the case for propane injections typically used to determine k. The dataset presented suggests the potential role of this method to further elucidate the role that CO2 fluxes from headwater streams play in the global carbon cycle. Johnson, M. S., Billett, M. F., Dinsmore, K. J., Wallin, M., Dyson, K. E., & Jassal, R. S. (2010). Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications. Ecohydrology, 3(1), 68-78. http://doi.org/10.1002/eco.95

  5. Study of the deoxidation of steel with aluminum wire injection in a gas-stirred ladle

    NASA Astrophysics Data System (ADS)

    Beskow, K.; Jonsson, L.; Sichen, Du; Viswanathan, N. N.

    2001-04-01

    In the present work, the deoxidation of liquid steel with aluminum wire injection in a gas-stirred ladle was studied by mathematical modeling using a computational fluid dynamics (CFD) approach. This was complemented by an industrial trial study conducted at Uddeholm Tooling AB (Hagfors, Sweden). The results of the industrial trials were found to be in accordance with the results of the model calculation. In order to study the aspect of nucleation of alumina, emphasis was given to the initial period of deoxidation, when aluminum wire was injected into the bath. The concentration distributions of aluminum and oxygen were calculated both by considering and not considering the chemical reaction. Both calculations revealed that the driving force for the nucleation fo Al2O3 was very high in the region near the upper surface of the bath and close to the wire injection. The estimated nucleation rate in the vicinity of the aluminum wire injection point was much higher than the recommended value for spontaneously homogeneous nucleation, 103 nuclei/(cm3/s). The results of the model calculation also showed that the alumina nuclei generated at the vicinity of the wire injection point are transported to other regions by the flow.

  6. 30 CFR 250.118 - Will MMS approve gas injection?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 250.118 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS... injection of gas. (b) The Regional Supervisor will approve gas injection applications that: (1) Enhance recovery; (2) Prevent flaring of casinghead gas; or (3) Implement other conservation measures approved by...

  7. Plasma profile evolution during disruption mitigation via massive gas injection on MAST

    NASA Astrophysics Data System (ADS)

    Thornton, A. J.; Gibson, K. J.; Chapman, I. T.; Harrison, J. R.; Kirk, A.; Lisgo, S. W.; Lehnen, M.; Martin, R.; Scannell, R.; Cullen, A.; the MAST Team

    2012-06-01

    Massive gas injection (MGI) is one means of ameliorating disruptions in future devices such as ITER, where the stored energy in the plasma is an order of magnitude larger than in present-day devices. The penetration of the injected impurities during MGI in MAST is diagnosed using a combination of high-speed (20 kHz) visible imaging and high spatial (1 cm) and temporal (0.1 ms) resolution Thomson scattering (TS) measurements of the plasma temperature and density. It is seen that the rational surfaces, in particular q = 2, are the critical surfaces for disruption mitigation. The TS data shows the build-up of density on rational surfaces in the edge cooling period of the mitigation, leading to the collapse of the plasma in a thermal quench. The TS data are confirmed by the visible imaging, which shows filamentary structures present at the start of the thermal quench. The filamentary structures have a topology which matches that of a q = 2 field line in MAST, suggesting that they are located on the q = 2 surface. Linearized magnetohydrodynamic stability analysis using the TS profiles suggests that the large density build-up on the rational surfaces drives modes within the plasma which lead to the thermal quench. The presence of such modes is seen experimentally in the form of magnetic fluctuations on Mirnov coils and the growth of an n = 1 toroidal mode in the period prior to the thermal quench. These results support the observations of other machines that the 2/1 mode is the likely trigger for the thermal quench in a mitigated disruption and suggests that the mitigation process in spherical tokamaks is similar to that in conventional aspect ratio devices.

  8. Numerical modeling of underground storage system for natural gas

    NASA Astrophysics Data System (ADS)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  9. Characterization of Radium and Radon Isotopes in Hydraulic Fracturing Flowback Fluid and Gas from the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Bardsley, A.

    2015-12-01

    High volume hydraulic fracturing of unconventional deposits has expanded rapidly over the past decade in the US, with much attention focused on the Marcellus Shale gas reservoir in the northeastern US. We use naturally occurring radium isotopes and 222Rn to explore changes in formation characteristics as a result of hydraulic fracturing. Gas and produced waters were analyzed from time series samples collected soon after hydraulic fracturing at three Marcellus Shale well sites in the Appalachian Basin, USA. Analyses of δ18O, Cl- , and 226Ra in flowback fluid are consistent with two end member mixing between injected slick water and formation brine. All three tracers indicate that the ratio of injected water to formation brine declines with time across both time series. Cl- concentration (max ~1.5-2.2 M) and 226Ra activity (max ~165-250 Bq/Kg) in flowback fluid are comparable at all three sites. There are differences evident in the stable isotopic composition (δ18O & δD) of injected slick water across the three sites, but all appear to mix with formation brine of similar isotopic composition. On a plot of water isotopes, δ18O in formation brine-dominated fluid is enriched by ~3-4 permille relative to the Global Meteoric Water Line, indicating oxygen exchange with shale. The ratio of 223Ra/226Ra and 228Ra/226Ra in produced waters is quite low relative to shale samples analyzed. This indicates that most of the 226Ra in the formation brine must be sourced from shale weathering or dissolution rather than emanation due to alpha recoil from the rock surface. During the first week of flowback, ratios of short lived isotopes 223Ra and 224Ra to longer lived radium isotopes change modestly, suggesting rock surface area per unit of produced water volume did not change substantially. For one well, longer term gas samples were collected. The 222Rn/methane ratio in produced gas from this site declines with time and may represent a decrease in the brine to gas ratio in the reservoir over the course of six months after initial fracturing. Naturally occurring radium and radon isotopes show promise in elucidating sub-surface dynamics following hydraulic fracturing plays.

  10. COMPARISON OF MERCURY CAPTURE EFFICIENCIES OF THREE DIFFERENT IN SITU GENERATED SORBENTS

    EPA Science Inventory

    Three different sorbent materials (Ti, Si and Ca based) were compared for their mercury capture efficiencies in an entrained flow reactor. Agglomerated particles with a high specific surface area were generated in situ by injecting gas phase sorbent precursors into a high tempera...

  11. Parametric performance analysis of steam-injected gas turbine with a thermionic-energy-converter-lined combustor

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.; Burns, R. K.

    1982-01-01

    The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems; a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.

  12. In-injection port thermal desorption for explosives trace evidence analysis.

    PubMed

    Sigman, M E; Ma, C Y

    1999-10-01

    A gas chromatographic method utilizing thermal desorption of a dry surface wipe for the analysis of explosives trace chemical evidence has been developed and validated using electron capture and negative ion chemical ionization mass spectrometric detection. Thermal desorption was performed within a split/splitless injection port with minimal instrument modification. Surface-abraded Teflon tubing provided the solid support for sample collection and desorption. Performance was characterized by desorption efficiency, reproducibility, linearity of the calibration, and method detection and quantitation limits. Method validation was performed with a series of dinitrotoluenes, trinitrotoluene, two nitroester explosives, and one nitramine explosive. The method was applied to the sampling of a single piece of debris from an explosion containing trinitrotoluene.

  13. 30 CFR 250.124 - Will MMS approve gas injection into the cap rock containing a sulphur deposit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Will MMS approve gas injection into the cap... SHELF General Performance Standards § 250.124 Will MMS approve gas injection into the cap rock containing a sulphur deposit? To receive the Regional Supervisor's approval to inject gas into the cap rock...

  14. Finite-Rate Ablation Boundary Conditions for Carbon-Phenolic Heat-Shield

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, Frank S.

    2003-01-01

    A formulation of finite-rate ablation surface boundary conditions, including oxidation, nitridation, and sublimation of carbonaceous material with pyrolysis gas injection, has been developed based on surface species mass conservation. These surface boundary conditions are discretized and integrated with a Navier-Stokes solver. This numerical procedure can predict aerothermal heating, chemical species concentration, and carbonaceous material ablation rate over the heatshield surface of re-entry space vehicles. In this study, the gas-gas and gas-surface interactions are established for air flow over a carbon-phenolic heatshield. Two finite-rate gas-surface interaction models are considered in the present study. The first model is based on the work of Park, and the second model includes the kinetics suggested by Zhluktov and Abe. Nineteen gas phase chemical reactions and four gas-surface interactions are considered in the present model. There is a total of fourteen gas phase chemical species, including five species for air and nine species for ablation products. Three test cases are studied in this paper. The first case is a graphite test model in the arc-jet stream; the second is a light weight Phenolic Impregnated Carbon Ablator at the Stardust re-entry peak heating conditions, and the third is a fully dense carbon-phenolic heatshield at the peak heating point of a proposed Mars Sample Return Earth Entry Vehicle. Predictions based on both finite-rate gas- surface interaction models are compared with those obtained using B' tables, which were created based on the chemical equilibrium assumption. Stagnation point convective heat fluxes predicted using Park's finite-rate model are far below those obtained from chemical equilibrium B' tables and Zhluktov's model. Recession predictions from Zhluktov's model are generally lower than those obtained from Park's model and chemical equilibrium B' tables. The effect of species mass diffusion on predicted ablation rate is also examined.

  15. Thermodynamic analysis of steam-injected advanced gas turbine cycles

    NASA Astrophysics Data System (ADS)

    Pandey, Devendra; Bade, Mukund H.

    2017-12-01

    This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.

  16. Small Gas Bubble Experiment for Mitigation of Cavitation Damage and Pressure Waves in Short-pulse Mercury Spallation Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendel, Mark W; Felde, David K; Sangrey, Robert L

    2014-01-01

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubblermore » provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.« less

  17. Helium ionization detection apparatus

    NASA Technical Reports Server (NTRS)

    Nagai, R.

    1984-01-01

    In a gas chromatograph apparatus comprising a gas supply (He carrier gas), a sample injection apparatus, a chromatograph column, a He ion detector, and connecting tubes, a foreign gas (other than He) injection apparatus is installed between the sample injection apparatus and the detector. Mixing of the sample gas and foreign gas takes place readily, the sample gas is always maintained at a stable concentrator range, and accurate measurements are possible, especially at low sample gas concentrations.

  18. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    NASA Astrophysics Data System (ADS)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery preventing financial, economic and resource loss that previously occurred.

  19. An experimental study of the cryoentrainment pump and the behavior of nude ionization gauge at low temperature

    NASA Technical Reports Server (NTRS)

    Daggerhart, J. A.

    1972-01-01

    The use of cryopumping techniques to obtain a contamination free vacuum is discussed. Of those gases that are normally present in an initially air filled vacuum system, only carbon dioxide and water vapor will be effectively pumped at 77 degrees Kelvin. In order to circumvent this restriction on the types of gases that are pumped at this temperature, it is postulated that a gas which is easily condensable at 77 degrees K be injected into the system in the form of a directed stream. The stream would then entrain the normally noncondensable species by a momentum transfer mechanism. After sweeping through the volume to be pumped, the injected gas stream would then be condensed on a cryopumping surface maintained at 77 degrees Kelvin.

  20. CO2 Injection Into CH4 Hydrate Reservoirs: Quantifying Controls of Micro-Scale Processes

    NASA Astrophysics Data System (ADS)

    Bigalke, N. K.; Deusner, C.; Kossel, E.; Haeckel, M.

    2014-12-01

    The exchangeability of methane for carbon dioxide in gas hydrates opens the possibility of producing emission-neutral hydrocarbon energy. Recent field tests have shown that the production of natural gas from gas hydrates is feasible via injection of carbon dioxide into sandy, methane-hydrate-bearing sediment strata. Industrial-scale application of this method requires identification of thermo- and fluid-dynamic as well as kinetic controls on methane yield from and carbon dioxide retention within the reservoir. Extraction of gas via injection of carbon dioxide into the hydrate reservoir triggers a number of macroscopic effects, which are revealed for example by changes of the hydraulic conductivity and geomechanical stability. Thus far, due to analytical limitations, localized reactions and fluid-flow phenomena held responsible for these effects remain unresolved on the microscale (1 µm - 1 mm) and at near-natural reservoir conditions. We address this deficit by showing results from high-resolution, two-dimensional Raman spectroscopy mappings of an artificial hydrate reservoir during carbon dioxide injection under realistic reservoir conditions. The experiments allow us to resolve hydrate conversion rate and efficiency as well as activation of fluid pathways in space and time and their effect on methane yield, carbon-dioxide retention and hydraulic conductivity of the reservoir. We hypothesize that the conversion of single hydrate grains is a diffusion-controlled process which starts at the grain surface before continuing into the grain interior and show that the conversion can be modeled simply by using published permeation coefficients for CO2 and CH4 in hydrate and grain size as only input parameters.

  1. Disruption mitigation with high-pressure helium gas injection on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Qian, J. P.; Zhuang, H. D.; Zeng, L.; Duan, Y.; Shi, T.; Wang, H.; Sun, Y.; Xiao, B. J.

    2018-03-01

    High pressure noble gas injection is a promising technique to mitigate the effect of disruptions in tokamaks. In this paper, results of mitigation experiments with low-Z massive gas injection (helium) on the EAST tokamak are reported. A fast valve has been developed and successfully implemented on EAST, with valve response time  ⩽150 μs, capable of injecting up to 7 × 1022 particles, corresponding to 300 times the plasma inventory. Different amounts of helium gas were injected into stable plasmas in the preliminary experiments. It is seen that a small amount of helium gas (N_He≃ N_plasma ) can not terminate a discharge, but can trigger MHD activity. Injection of 40 times the plasma inventory impurity (N_He≃ 40× N_plasma ) can effectively radiate away part of the thermal energy and make the electron density increase rapidly. The mitigation result is that the current quench time and vertical displacement can both be reduced significantly, without resulting in significantly higher loop voltage. This also reduces the risk of runaway electron generation. As the amount of injected impurity gas increases, the gas penetration time decreases slowly and asymptotes to (˜7 ms). In addition, the impurity gas jet has also been injected into VDEs, which are more challenging to mitigate that stable plasmas.

  2. CFD Modeling of Boron Removal from Liquid Silicon with Cold Gases and Plasma

    NASA Astrophysics Data System (ADS)

    Vadon, Mathieu; Sortland, Øyvind; Nuta, Ioana; Chatillon, Christian; Tansgtad, Merete; Chichignoud, Guy; Delannoy, Yves

    2018-03-01

    The present study focuses on a specific step of the metallurgical path of purification to provide solar-grade silicon: the removal of boron through the injection of H2O(g)-H2(g)-Ar(g) (cold gas process) or of Ar-H2-O2 plasma (plasma process) on stirred liquid silicon. We propose a way to predict silicon and boron flows from the liquid silicon surface by using a CFD model (©Ansys Fluent) combined with some results on one-dimensional diffusive-reactive models to consider the formation of silica aerosols in a layer above the liquid silicon. The comparison of the model with experimental results on cold gas processes provided satisfying results for cases with low and high concentrations of oxidants. This confirms that the choices of thermodynamic data of HBO(g) and the activity coefficient of boron in liquid silicon are suitable and that the hypotheses regarding similar diffusion mechanisms at the surface for HBO(g) and SiO(g) are appropriate. The reasons for similar diffusion mechanisms need further enquiry. We also studied the effect of pressure and geometric variations in the cold gas process. For some cases with high injection flows, the model slightly overestimates the boron extraction rate, and the overestimation increases with increasing injection flow. A single plasma experiment from SIMaP (France) was modeled, and the model results fit the experimental data on purification if we suppose that aerosols form, but it is not enough to draw conclusions about the formation of aerosols for plasma experiments.

  3. CFD Modeling of Boron Removal from Liquid Silicon with Cold Gases and Plasma

    NASA Astrophysics Data System (ADS)

    Vadon, Mathieu; Sortland, Øyvind; Nuta, Ioana; Chatillon, Christian; Tansgtad, Merete; Chichignoud, Guy; Delannoy, Yves

    2018-06-01

    The present study focuses on a specific step of the metallurgical path of purification to provide solar-grade silicon: the removal of boron through the injection of H2O(g)-H2(g)-Ar(g) (cold gas process) or of Ar-H2-O2 plasma (plasma process) on stirred liquid silicon. We propose a way to predict silicon and boron flows from the liquid silicon surface by using a CFD model (©Ansys Fluent) combined with some results on one-dimensional diffusive-reactive models to consider the formation of silica aerosols in a layer above the liquid silicon. The comparison of the model with experimental results on cold gas processes provided satisfying results for cases with low and high concentrations of oxidants. This confirms that the choices of thermodynamic data of HBO(g) and the activity coefficient of boron in liquid silicon are suitable and that the hypotheses regarding similar diffusion mechanisms at the surface for HBO(g) and SiO(g) are appropriate. The reasons for similar diffusion mechanisms need further enquiry. We also studied the effect of pressure and geometric variations in the cold gas process. For some cases with high injection flows, the model slightly overestimates the boron extraction rate, and the overestimation increases with increasing injection flow. A single plasma experiment from SIMaP (France) was modeled, and the model results fit the experimental data on purification if we suppose that aerosols form, but it is not enough to draw conclusions about the formation of aerosols for plasma experiments.

  4. Enhanced tunability of the composition in silicon oxynitride thin films by the reactive gas pulsing process

    NASA Astrophysics Data System (ADS)

    Aubry, Eric; Weber, Sylvain; Billard, Alain; Martin, Nicolas

    2014-01-01

    Silicon oxynitride thin films were sputter deposited by the reactive gas pulsing process. Pure silicon target was sputtered in Ar, N2 and O2 mixture atmosphere. Oxygen gas was periodically and solely introduced using exponential signals. In order to vary the injected O2 quantity in the deposition chamber during one pulse at constant injection time (TON), the tau mounting time τmou of the exponential signals was systematically changed for each deposition. Taking into account the real-time measurements of the discharge voltage and the I(O*)/I(Ar*) emission lines ratio, it is shown that the oscillations of the discharge voltage during the TON and TOFF times (injection of O2 stopped) are attributed to the preferential adsorption of the oxygen compared to that of the nitrogen. The sputtering mode alternates from a fully nitrided mode (TOFF time) to a mixed mode (nitrided and oxidized mode) during the TON time. For the highest injected O2 quantities, the mixed mode tends toward a fully oxidized mode due to an increase of the trapped oxygen on the target. The oxygen (nitrogen) concentration in the SiOxNy films similarly (inversely) varies as the oxygen is trapped. Moreover, measurements of the contamination speed of the Si target surface are connected to different behaviors of the process. At low injected O2 quantities, the nitrided mode predominates over the oxidized one during the TON time. It leads to the formation of Si3N4-yOy-like films. Inversely, the mixed mode takes place for high injected O2 quantities and the oxidized mode prevails against the nitrided one producing SiO2-xNx-like films.

  5. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  6. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elmiligui, Alaa A. (Inventor)

    2017-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  7. Effects of injection pressure and injection timing to exhaust gas opacity for a conventional indirect diesel engine

    NASA Astrophysics Data System (ADS)

    Budiman, Agus; Majid, Akmal Irfan; Pambayun, Nirmala Adhi Yoga; Yuswono, Lilik Chaerul; Sukoco

    2016-06-01

    In relation to pollution control and environmental friendliness, the quality of exhaust gas from diesel engine needs to be considered. The influences of injection pressure and timing to exhaust gas opacity were investigated. A series of experiments were conducted in a one-cylinder conventional diesel engine with a naturally aspirated system and indirect injection. The default specification of injection pressure was 120 kg/cm2. To investigate the injection pressure, the engine speed was retained on 1000 rpm with pressure variations from 80 to 215 kg/cm2. On the other hand, the various injection timing (8, 10, 12, 16 degrees before TDC point and exact 18 degrees before TDC point) were used to determine their effects to exhaust gas opacity. In this case, the engine speed was varied from 1000 to 2400 rpm. The injector tester was used to measure injection pressure whereas the exhaust gas opacity was determined by the smoke meter. Those data were also statistically analyzed by product moment correlation. As the results, the injection pressure of diesel engine had a non-significant positive correlation to the exhaust gas opacity with r = 0.113 and p > 5 %. Injection pressure should be adjusted to the specification listed on the diesel engine as if it was too high or too low will lead to the higher opacity. Moreover, there was a significant positive correlation between injection timing and the exhaust gas opacity in all engine speeds.

  8. Injection of sodium borohydride and nzvi solutions into homogeneous sands: H2 gas production and implications

    NASA Astrophysics Data System (ADS)

    Mohammed, O.; Mumford, K. G.; Sleep, B. E.

    2016-12-01

    Gases are commonly introduced into the subsurface via external displacement (drainage). However, gases can also be produced by internal drainage (exsolution). One example is the injection of reactive solutions for in situ groundwater remediation, such as nanoscale zero-valent iron (nzvi), which produces hydrogen gas (H2). Effective implementation of nzvi requires an understanding of H2 gas generation and dynamics, and their effects on aqueous permeability, contaminant mass transfer and potential flow diversion. Several studies have reported using excess sodium borohydride (NaBH4) in nzvi applications to promote complete reaction and to ensure uniform nzvi particle growth, which also produces H2 gas. The aim of this study was to visualize and quantify H2 produced by exsolution from the injection of NaBH4 and nzvi solutions into homogeneous sands, and to investigate the reduction of hydraulic conductivity caused by the H2 gas and the subsequent increase in hydraulic conductivity as the gas dissolved. Bench-scale experiments were performed using cold (4 °C) NaBH4 solutions injected in sand packed in a 22 cm × 34 cm × 1 cm flow cell. The injected solution was allowed to warm to room temperature, for controlled production of a uniform distribution of exsolved gas. A light transmission method was used to quantify gas production and dissolution over time. The results indicate a reduction of hydraulic conductivity due to the existence of H2 and increased hydraulic conductivity as H2 gas dissolves, which could be represented using traditional relative permeability expressions. Additional experiments were performed in the flow cell to compare H2 gas exsolving from nzvi and NaBH4 solutions injected as either a point injection or a well injection. The results indicated greater amounts of H2 gas produced when injecting nzvi solutions prepared with high concentrations of excess NaBH4. H2 gas pooling at the top of the flow cell, and H2 gas trapped near the injection point created preferential flow through the middle of the cell. These results demonstrate that H2 gas produced during remediation by nzvi injection can be controlled by limiting the excess NaBH4 concentrations. The trapped H2 gas produced by injection of nzvi, or NaBH4 alone may provide a source of H2 that could facilitate bioremediation as a secondary treatment.

  9. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.

  10. Noble Gas signatures of Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.

    2017-12-01

    Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble gas baseline values for pristine vs. recently modified (EOR, hydraulic fracturing) zones will be critical for interpreting the origin of any fugitive gases identified in nearby aquifers. [1] Ballentine et al., (1996) GCA, 60, 831-849 [2] Barry et al., (2016) GCA, 194, 291-309. [3] Barry et al., (2017) Geology, 45, 9. Darrah et al., (2014) PNAS 111, 39.

  11. Aerodynamic losses calculation of a turbine blade with film cooling with forward and backward injection by numerical method

    NASA Astrophysics Data System (ADS)

    Prajapati, Anil

    Thermal efficiency and power output of gas turbines can be increased by increasing the turbine blade inlet temperature. However, the main problem is the durability of the turbine blade due to the thermal stress on it at high temperature. This has led to the development of film cooling technology, in which coolant is injected from a series of cooling holes made on the blade surface to form an insulating blanket over the blade surface. However, it has to pay the aerodynamic penalties due to the injection of coolant, which are not fully understood. Pressure loss coefficient is one of the easy and widely used parameters to determine the aerodynamic loss occurred on a turbine blade. The losses occurred on the turbine blade with forward injection and backward injection cooling are studied at a different blowing ratios by a numerical simulation, which shows that the loss is higher in the case of backward injection than in forward injection. Fan-shaped cooling holes are also considered to compare with the cylindrical holes. It is observed that the loss is increased due to the fan-shaped holes in the forward injection whereas there is not a substantial difference due to the fan-shaped holes in the backward injection. The aerodynamic loss due to the location of coolant injection is studied by using injection from the leading edge, pressure side, suction side and trailing edge respectively. The study is performed to determine the effect of incidence angles and coolant injection angles on the aerodynamic loss.

  12. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOEpatents

    Wanlass, M.

    1985-02-19

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  13. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOEpatents

    Wanlass, Mark

    1987-01-01

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  14. Laboratory estimates of trace gas emissions following surface application and injection of cattle slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flessa, H.; Beese, F.

    2000-02-01

    Applying cattle slurry to soil may induce emissions of the greenhouse gases N{sub 2}O and CH{sub 4}. Their objective was to determine the effects of different application techniques (surface application and slit injection) of cattle (Bostaurus) slurry on the decomposition of slurry organic matter and the emissions of N{sub 2}O and CH{sub 4}. The effects of slurry application (43.6 m{sup 3} ha{sup {minus}1}) were studied for 9 wk under controlled laboratory conditions using a soil microcosm system with automated monitoring of the CO{sub 2}, N{sub 2}O, and CH{sub 4} fluxes. The soil used was a silty loam (Ap horizon ofmore » a cambisol) with a constant water-filled pore space of 67% during the experiment. About 38% of the organic matter applied with the slurry was decomposed within 9 wk. Production of CO{sub 2} was not affected by the application technique. Emissions of N{sub 2}O and CH{sub 4} from the injected slurry were significantly higher than from the surface-applied slurry, probably because of restricted aeration at the injected-slurry treatment. Total N{sub 2}O-N emissions were 0.2% (surface application) and 3.3% (slit injection) of the slurry N added. Methane emission occurred only during the first few days following application. The total net flux of CH{sub 4}-C for 2 wk was {minus}12 g ha{sup {minus}1} for the control (CH{sub 4} uptake), 2 g ha{sup {minus}1} for the surface-applied slurry, and 39 g ha{sup {minus}1} for the injected slurry. Slurry injection, which is recommended to reduce NH{sub 3} volatilization, appears to increase emissions of the greenhouse gases N{sub 2}O and CH{sub 4} from the fertilized fields.« less

  15. A Nonlinear Model for Fuel Atomization in Spray Combustion

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave

    2003-01-01

    Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.

  16. Lab-In-Syringe automation of stirring-assisted room-temperature headspace extraction coupled online to gas chromatography with flame ionization detection for determination of benzene, toluene, ethylbenzene, and xylenes in surface waters.

    PubMed

    Horstkotte, Burkhard; Lopez de Los Mozos Atochero, Natalia; Solich, Petr

    2018-06-22

    Online coupling of Lab-In-Syringe automated headspace extraction to gas chromatography has been studied. The developed methodology was successfully applied to surface water analysis using benzene, toluene, ethylbenzene, and xylenes as model analytes. The extraction system consisted of an automatic syringe pump with a 5 mL syringe into which all solutions and air for headspace formation were aspirated. The syringe piston featured a longitudinal channel, which allowed connecting the syringe void directly to a gas chromatograph with flame ionization detector via a transfer capillary. Gas injection was achieved via opening a computer-controlled pinch valve and compressing the headspace, upon which separation was initialized. Extractions were performed at room temperature; yet sensitivity comparable to previous work was obtained by high headspace to sample ratio V HS /V Sample of 1.6:1 and injection of about 77% of the headspace. Assistance by in-syringe magnetic stirring yielded an about threefold increase in extraction efficiency. Interferences were compensated by using chlorobenzene as an internal standard. Syringe cleaning and extraction lasting over 10 min was carried out in parallel to the chromatographic run enabling a time of analysis of <19 min. Excellent peak area repeatabilities with RSD of <4% when omitting and <2% RSD when using internal standard corrections on 100 μg L -1 level were achieved. An average recovery of 97.7% and limit of detection of 1-2 μg L -1 were obtained in analyses of surface water. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Problem of intensity reduction of acoustic fields generated by gas-dynamic jets of motors of the rocket-launch vehicles at launch

    NASA Astrophysics Data System (ADS)

    Vorobyov, A. M.; Abdurashidov, T. O.; Bakulev, V. L.; But, A. B.; Kuznetsov, A. B.; Makaveev, A. T.

    2015-04-01

    The present work experimentally investigates suppression of acoustic fields generated by supersonic jets of the rocket-launch vehicles at the initial period of launch by water injection. Water jets are injected to the combined jet along its perimeter at an angle of 0° and 60°. The solid rocket motor with the rocket-launch vehicles simulator case is used at tests. Effectiveness of reduction of acoustic loads on the rocket-launch vehicles surface by way of creation of water barrier was proved. It was determined that injection angle of 60° has greater effectiveness to reduce pressure pulsation levels.

  18. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2003-01-01

    The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.

  19. Environmental cell assembly for use in for use in spectroscopy and microscopy applications

    DOEpatents

    Stowe, Ashley Clinton; Smyrl, Norman; Hallman, Jr., Russell L.

    2014-09-02

    An environmental cell assembly for use in microscopy and spectroscopy applications, including: an environmentally sealed body assembly configured to selectively hold and contain a sample; a plurality of ports manufactured into one or more surfaces of the body assembly for one or more of evacuating the body assembly and injecting a gas into or removing a gas from the body assembly; a port manufactured into a surface of the body assembly for receiving a translating stage configured to move the sample within the body assembly; and a port manufactured into a surface of the body assembly for receiving one or more lenses utilized in a microscopy or spectroscopy application; wherein the one or more lenses are disposed adjacent the sample without intervening structures disposed there between. The cell assembly also includes a port manufactured into a surface of the body assembly for retaining a window and providing visualization of the sample.

  20. Downhole monitoring of biogenic gas production at the Maguelone shallow injection experimental site (Languedoc coastline, France).

    NASA Astrophysics Data System (ADS)

    Abdelghafour, H.; Brondolo, F.; Denchik, N.; Pezard, P. A.

    2014-12-01

    The controllability of CO2 geological storage can ensure the integrity of storage operations, requiring a precise monitoring of reservoir fluids and properties during injection and over time. In this context, deep saline aquifers offer a large capacity of storing CO2, but the accessibility to long term behavior studies remains limited until now. The Maguelone shallow experimental site located near Montpellier (Languedoc, France) provides such an opportunity for the understanding and accuracy of hydrogeophysical monitoring methods. The geology, petrophysic and hydrology of this site have been studied in details in previous studies, revealing the presence of a thin saline aquifer at 13-16 m depth surrounded by clay-rich materials. The site as a whole provides a natural laboratory to study CO2 injection at field scale, shallow depth, hence reasonable costs. The monitoring setup is composed of a series of hydrogeophysical and geochemical methods offering measurements of fluid pore pressure, electrical resistivity, acoustic velocities as well as pH and fluid properties and chemistry. To assess the response of the reservoir during CO2 injection, all measurements need to be compared to a representative baseline. Long after a series of gas injection experiments at Maguelone, fluctuations overtime of reservoir fluids and properties (such as pore fluid pH) were discovered at steady state, demonstrating the natural variability of the site in terms of biogenic gas (H2S, CH4, CO2) production and transfer. For this, a new resistivity baseline had to be constructed for all observatories. From this, the downhole gas saturation was determined versus depth and time from time-lapse resistivity logs analysed on the basis of other logs and laboratory measurements. The Waxman and Smits model (1968) for electrical properties of sand-clay formations was modified to estimate the gas saturation in 4D, to account for surface conductivity and pore connectivity. High frequency logging and monitoring of electrical properties both, with several measurements per hour and a dm-scale resolution, provide and insight into subsurface dynamics in terms of gas flow and storage, with biogenic gas saturations ranging from 0.1 to 5.0 %. This natural contribution has to be taken into account for upcoming experiments.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. D. White; B. P. McGrail; S. K. Wurstner

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to poremore » clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.« less

  2. Subcritical and supercritical fuel injection and mixing in single and binary species systems

    NASA Astrophysics Data System (ADS)

    Roy, Arnab

    Subcritical and supercritical fluid injection using a single round injector into a quiescent atmosphere comprising single and binary species was investigated using optical diagnostics. Different disintegration and mixing modes are expected for the two cases. In the binary species case, the atmosphere comprised an inert gas of a different composition than that of the injected fluid. In single species case, the atmosphere consisted of the same species as that of the injected fluid. Density values were quantified and density gradient profiles were inferred from the experimental data. A novel method was applied for the detection of detailed structures throughout the entire jet center plane. Various combinations of injectant and chamber conditions were tested and a wide range of density ratios were covered. The subcritical cases demonstrated the importance of surface tension and inertial forces, while the supercritical cases showed no signs of surface tension and, in most situations, resembled the mixing characteristics of a gaseous jet injected into a gaseous environment. A comparison between the single and binary species systems has also been provided. A detailed laser calibration procedure was undertaken to account for the laser absorption through the gas and liquid phases and for fluorescence in the non-linear excitation regime for high laser pulse energy. Core lengths were measured for binary species cases and correlated with visualization results. An eigenvalue approach was taken to determine the location of maximum gradients for determining the core length. Jet divergence angles were also calculated and were found to increase with chamber-to-injectant density ratio for both systems. A model was proposed for the spreading angle dependence on density ratio for both single and binary species systems and was compared to existing theoretical studies and experimental work. Finally, a linear stability analysis was performed for the jet injected into both subcritical and supercritical atmospheres. The subcritical cases showed good correlation with previous and current experimental results. The supercritical solutions, which have not yet been solved earlier by researchers, are found here through an asymptotic solution of the dispersion equation for exceedingly high Weber numbers.

  3. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    NASA Astrophysics Data System (ADS)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir simulations also indicate that original rock properties are the dominant factor for the ultimate oil recovery for both primary recovery and gas injection EOR. Because reservoir simulations provide critical inputs for project planning and management, more effort needs to be invested into reservoir modeling and simulation, including building enhanced geologic models, fracture characterization and modeling, and history matching with field data. Gas injection EOR projects are integrated projects, and the viability of a project also depends on different economic conditions.

  4. Modeling of rapid shutdown in the DIII-D tokamak by core deposition of high-Z material

    DOE PAGES

    Izzo, Valerie A.; Parks, Paul B.

    2017-06-22

    MHD modeling of shell-pellet injection for disruption mitigation is carried out under the assumption of idealized delivery of the radiating payload to the core, neglecting the physics of shell ablation. The shell pellet method is designed to produce an inside-out thermal quench in which core thermal heat is radiated while outer flux surfaces remain intact, protecting the divertor from large conducted heat loads. In the simulation, good outer surfaces remain until the thermal quench is nearly complete, and a high radiated energy fraction is achieved. As a result, when the outermost surfaces are destroyed, runaway electron test orbits indicate thatmore » the rate of runaway electron loss is very fast compared with prior massive gas injection simulations, which is attributed to the very different current profile evolution that occurs with central cooling.« less

  5. Intravitreal gas injection without vitrectomy for macular detachment associated with an optic disk pit.

    PubMed

    Akiyama, Hideo; Shimoda, Yukitoshi; Fukuchi, Mariko; Kashima, Tomoyuki; Mayuzumi, Hideyasu; Shinohara, Yoichiro; Kishi, Shoji

    2014-02-01

    To evaluate the clinical outcomes after gas tamponade without vitrectomy for retinal detachment associated with an optic disk pit using optical coherence tomography. Intravitreal gas injection was performed on 8 consecutive patients (mean age, 35.0 years; range, 15-74 years) with unilateral macular detachment associated with an optic disk pit. A 0.3-mL injection of 100% sulfur hexafluoride 6 gas was carried out without an anterior chamber tap. Patients treated with gas injection were instructed to remain facedown for 5 days. Complete retinal reattachment after only gas tamponade was achieved in four out of eight eyes. The mean number of gas injections was 1.8. The mean best-corrected visual acuity before and after the treatment with gas tamponade was approximately 30/100 and 20/20, respectively. The period required for reattachment after final gas treatment was 12 months. There were no incidences of recurrence after complete reattachment by gas tamponade in any of the cases during the 94-month average follow-up period (range, 64-132 months). Gas tamponade appears to be an effective alternative method for macular detachment associated with an optic disk pit, even though the mechanisms of optic disk pit maculopathy are still unknown.

  6. Integration of inorganic and isotopic geochemistry with endocrine disruption activity assays to assess risks to water resources near unconventional oil and gas development in Garfield County, CO.

    NASA Astrophysics Data System (ADS)

    Harkness, J.; Kassotis, C.; Cornelius, J.; Nagel, S.; Vengosh, A.

    2016-12-01

    The rise of hydraulic fracturing in the United States has sparked a debate about the impact of oil and gas development on the quality of water resources. Wastewater associated with hydraulic fracturing includes injection fluid that is a mixture of sand, freshwater and synthetic organic chemicals, flowback water that is a mixture of injection fluid and formation brine, and produced water that is primarily brine. The fluids range in salinity and chemical composition that can have different environmental impacts. We analyzed the inorganic and isotope geochemistry of 58 surface and groundwater samples near and away from unconventional oil and gas operations (UOG), along with hormonal profiles via bioassays. Cl (0.12 to 198 mg/L), Na (1.2 to 518 mg/L) and Sr (1.4 to 2410 ug/L) were higher in both groundwater and surface water near UOG wells. Four surface waters and one groundwater had Br/Cl indicative of brine contamination (>1.5x10-3). Three of the SW samples also had 87Sr/86Sr ratios similar to values found in produced or flowback water (0.7118 and 0.7158, respectively) from the Williams-Fork formation and elevated compared to background ratios (0.71062 to 0.7115). Increased progestogenic activity was observed in groundwater near UOG operations and inncreased estrogenic, androgenic, progestogenic, anti-androgenic, anti-progestogenic, and anti-glucocorticoid activities in surface water near UOG operations. The association of increased EDCs with inorganic and isotopic indicators of UOG wastewater provides evidence for possible environmental and health impacts from drilling activity.

  7. Electromagnetic Monitoring of Hydraulic Fracturing: Relationship to Permeability, Seismicity, and Stress

    NASA Astrophysics Data System (ADS)

    Thiel, Stephan

    2017-09-01

    Hydraulic fracking is a geoengineering application designed to enhance subsurface permeability to maximize fluid and gas flow. Fracking is commonly used in enhanced geothermal systems (EGS), tight shale gas, and coal seam gas (CSG) plays and in CO_2 storage scenarios. Common monitoring methods include microseismics and mapping small earthquakes with great resolution associated with fracture opening at reservoir depth. Recently, electromagnetic (EM) methods have been employed in the field to provide an alternative way of direct detection of fluids as they are pumped in the ground. Surface magnetotelluric (MT) measurements across EGS show subtle yet detectable changes during fracking derived from time-lapse MT deployments. Changes are directional and are predominantly aligned with current stress field, dictating preferential fracture orientation, supported by microseismic monitoring of frack-related earthquakes. Modeling studies prior to the injection are crucial for survey design and feasibility of monitoring fracks. In particular, knowledge of sediment thickness plays a fundamental role in resolving subtle changes. Numerical forward modeling studies clearly favor some form of downhole measurement to enhance sensitivity; however, these have yet to be conclusively demonstrated in the field. Nevertheless, real surface-based monitoring examples do not necessarily replicate the expected magnitude of change derived from forward modeling and are larger than expected in some cases from EGS and CSG systems. It appears the injected fluid volume alone cannot account for the surface change in resistivity, but connectedness of pore space is also significantly enhanced and nonlinear. Recent numerical studies emphasize the importance of percolation threshold of the fracture network on both electrical resistivity and permeability, which may play an important role in accounting for temporal changes in surface EM measurements during hydraulic fracking.

  8. Cryogenic and Simulated Fuel Jet Breakup in Argon, Helium and Nitrogen Gas Flows

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1995-01-01

    Two-phase flow atomization of liquid nitrogen jets was experimentally investigated. They were co-axially injected into high-velocity gas flows of helium, nitrogen and argon, respectively, and atomized internally inside a two-fluid fuel nozzle. Cryogenic sprays with relatively high specific surface areas were produced, i.e., ratios of surface area to volume were fairly high. This was indicated by values of reciprocal Sauter mean diameters, RSMD's, as measured with a scattered- light scanning instrument developed at NASA Lewis Research Center. Correlating expressions were derived for the three atomizing gases over a gas temperature range of 111 to 422 K. Also, the correlation was extended to include waterjet breakup data that had been previously obtained in simulating fuel jet breakup in sonic velocity gas flow. The final correlating expression included a new dimensionless molecular-scale acceleration group. It was needed to correlate RSMD data, for LN2 and H2O sprays, with the fluid properties of the liquid jets and atomizing gases used in this investigation.

  9. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development.

    PubMed

    Heilweil, Victor M; Stolp, Bert J; Kimball, Briant A; Susong, David D; Marston, Thomas M; Gardner, Philip M

    2013-01-01

    Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point-specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4 ) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1-D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine-Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ(13) CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1-D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine-Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream-gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  10. Can a fractured caprock self-heal?

    NASA Astrophysics Data System (ADS)

    Elkhoury, Jean E.; Detwiler, Russell L.; Ameli, Pasha

    2015-05-01

    The ability of geologic seals to prevent leakage of fluids injected into the deep subsurface is critical for mitigating risks associated with greenhouse-gas sequestration and natural-gas production. Fractures caused by tectonic or injection-induced stresses create potential leakage pathways that may be further enhanced by mineral dissolution. We present results from reactive-flow experiments in fractured caprock (dolomitic anhydrite), where additional dissolution occurs in the rock matrix adjacent to the fracture surfaces. Preferential dissolution of anhydrite left a compacted layer of dolomite in the fractures. At lower flow rate, rock-fluid reactions proceeded to near equilibrium within the fracture with preferential flow paths persisting over the 6-month duration of the experiment and a negligible change in permeability. At higher flow rate, permeability decreased by a dramatic two orders of magnitude. This laboratory-scale observation of self-healing argues against the likelihood of runaway permeability growth in fractured porous caprock composed of minerals with different solubilities and reaction kinetics. However, scaling arguments suggest that at larger length scales this self-healing process may be offset by the formation of dissolution channels. Our results have relevance beyond the greenhouse-gas sequestration problem. Chemical disequilibrium at waste injection sites and in hydrothermal reservoirs will lead to reactive flows that may also significantly alter formation permeability.

  11. Review of Quantitative Monitoring Methodologies for Emissions Verification and Accounting for Carbon Dioxide Capture and Storage for California’s Greenhouse Gas Cap-and-Trade and Low-Carbon Fuel Standard Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis M.; Birkholzer, Jens T.

    The Cap-and-Trade and Low Carbon Fuel Standard (LCFS) programs being administered by the California Air Resources Board (CARB) include Carbon Dioxide Capture and Storage (CCS) as a potential means to reduce greenhouse gas (GHG) emissions. However, there is currently no universal standard approach that quantifies GHG emissions reductions for CCS and that is suitable for the quantitative needs of the Cap-and-Trade and LCFS programs. CCS involves emissions related to the capture (e.g., arising from increased energy needed to separate carbon dioxide (CO 2) from a flue gas and compress it for transport), transport (e.g., by pipeline), and storage of COmore » 2 (e.g., due to leakage to the atmosphere from geologic CO 2 storage sites). In this project, we reviewed and compared monitoring, verification, and accounting (MVA) protocols for CCS from around the world by focusing on protocols specific to the geologic storage part of CCS. In addition to presenting the review of these protocols, we highlight in this report those storage-related MVA protocols that we believe are particularly appropriate for CCS in California. We find that none of the existing protocols is completely appropriate for California, but various elements of all of them could be adopted and/or augmented to develop a rigorous, defensible, and practical surface leakage MVA protocol for California. The key features of a suitable surface leakage MVA plan for California are that it: (1) informs and validates the leakage risk assessment, (2) specifies use of the most effective monitoring strategies while still being flexible enough to accommodate special or site-specific conditions, (3) quantifies stored CO 2, and (4) offers defensible estimates of uncertainty in monitored properties. California’s surface leakage MVA protocol needs to be applicable to the main CO 2 storage opportunities (in California and in other states with entities participating in California’s Cap-and-Trade or LCFS programs), specifically CO 2-enhanced oil recovery (CO 2-EOR), CO 2 injection into depleted gas reservoirs (with or without CO 2-enhanced gas recovery (CO 2-EGR)), as well as deep saline storage. Regarding the elements of an effective surface leakage MVA protocol, our recommendations for California are that: (1) both CO 2 and methane (CH 4) surface leakage should be monitored, especially for enhanced recovery scenarios, (2) emissions from all sources not directly related to injection and geologic storage (e.g., from capture, or pipeline transport) should be monitored and reported under a plan separate from the surface leakage MVA plan that is included as another component of the quantification methodology (QM), (3) the primary objective of the surface leakage MVA plan should be to quantify surface leakage of CO 2 and CH 4 and its uncertainty, with consideration of best-practices and state-of-the-art approaches to monitoring including attribution assessment, (4) effort should be made to monitor CO 2 storage and migration in the subsurface to anticipate future surface leakage monitoring needs, (5) detailed descriptions of specific monitoring technologies and approaches should be provided in the MVA plan, (6) the main purpose of the CO 2 injection project (CO 2-EOR, CO 2-EGR, or pure geologic carbon sequestration (GCS)) needs to be stated up front, (7) approaches to dealing with missing data and quantifying uncertainty need to be described, and (8) post-injection monitoring should go on for a period consistent with or longer than that prescribed by the U.S. EPA.« less

  12. --No Title--

    Science.gov Websites

    and Cuttings Repository Oil & Gas Oil & Gas (Map-Based) Spills (Environmental Events) Tanks Exploration Notice of Intent Uranium Exploration Permit Oil & Gas Approved Oil & Gas Permits Oil and Gas Maps Undergound Injection Control - Class II Well Production/Injection Report Oil & Gas

  13. swimming

    Science.gov Websites

    and Cuttings Repository Oil & Gas Oil & Gas (Map-Based) Spills (Environmental Events) Tanks Exploration Notice of Intent Uranium Exploration Permit Oil & Gas Approved Oil & Gas Permits Oil and Gas Maps Undergound Injection Control - Class II Well Production/Injection Report Oil & Gas

  14. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE PAGES

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; ...

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  15. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  16. Very Few Exercise-Induced Arterialized Gas Bubbles Reach the Cerebral Vasculature.

    PubMed

    Barak, Otto F; Madden, Dennis; Lovering, Andrew T; Lambrechts, Kate; Ljubkovic, Marko; Dujic, Zeljko

    2015-09-01

    Arterialization of venous gas emboli (VGE) formed after surfacing from SCUBA diving can become arterial gas emboli (AGE) through intrapulmonary arterial-venous anastomoses that open with exercise. We recruited twenty patent foramen ovale-negative SCUBA divers and conducted a field and a laboratory study with the aim of investigating the appearance of AGE in intracranial vessels. At the field, they performed a single dive to a depth of 18-m sea water with a 47-min bottom time and a direct ascent to the surface. Transthoracic echocardiography was used to score VGE and AGE, and transcranial Doppler was used to visualize middle and posterior cerebral arteries with automated objective bubble detection. Observations were conducted for 45-min after dive at rest and at the laboratory after agitated saline injection at rest and throughout an incremental cycle supine exercise test until exhaustion and for 10 min of recovery. After resurfacing, all divers presented endogenous VGE and arterialization was present in three divers. Saline contrast injection led to AGE in nine of 19 subjects at rest. AGE that reached the cerebral arteries after dive were recorded in two divers at 60 W, three at 90 W, five at 120 W, six at 150 W, and four at 180 W and in three, four, five, nine, and nine, respectively, after saline contrast injection in the laboratory. All divers had AGE grades of 1 or 2, and only single AGE reached the cerebral vasculature. These data suggest that few emboli of venous origin reach the brain through exercise-induced intrapulmonary arterial-venous anastomoses but cerebral embolization is not high risk in the studied population.

  17. THE PHOTOCHEMICAL FORMATION AND GAS-PARTICLE PARTITIONING OF OXIDATION PRODUCTS OF DECAMETHYL CYCLOPENTASILOXANE AND DECAMETHYL TETRASILOXANE IN THE ATMOSPHERE. (R826771)

    EPA Science Inventory

    Abstract

    Decamethyl cyclopentasiloxane (D5) and decamethyl tetrasiloxane (MD2M) were injected into a smog chamber containing fine Arizona road dust particles (95% surface area <2.6 Gas turbine blade with intra-span snubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, Gary B.; Mayer, Clinton

    2014-07-29

    A gas turbine blade (10) including a hollow mid-span snubber (16). The snubber is affixed to the airfoil portion (14) of the blade by a fastener (20) passing through an opening (24) cast into the surface (22) of the blade. The opening is defined during an investment casting process by a ceramic pedestal (38) which is positioned between a ceramic core (32) and a surrounding ceramic casting shell (48). The pedestal provides mechanical support for the ceramic core during both wax and molten metal injection steps of the investment casting process.

  18. Method for excluding salt and other soluble materials from produced water

    DOEpatents

    Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN

    2009-08-04

    A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.

  19. Streakline flow visualization of discrete hole film cooling with holes inclined 30 deg to surface

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.; Lane, J. M.

    1976-01-01

    Film injection from three rows of discrete holes angled 30 deg to the surface in line with mainstream flow and spaced 5 diameters apart in a staggered array was visualized by using helium bubbles as tracer particles. Both the main stream and the film injectant were ambient air. Detailed streaklines showing the turbulent motion of the film mixing with the main stream were obtained by photographing small, neutrally buoyant helium-filled soap bubbles which followed the flow field. The ratio of boundary layer thickness to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. The results showed the behavior of the film and its interaction with the main stream for a range of blowing rates and two initial boundary layer thicknesses.

  1. Determination of endocrine disrupting chemicals and antiretroviral compounds in surface water: A disposable sorptive sampler with comprehensive gas chromatography - Time-of-flight mass spectrometry and large volume injection with ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Wooding, Madelien; Rohwer, Egmont R; Naudé, Yvette

    2017-05-05

    Many rural dwellers and inhabitants of informal settlements in South Africa are without access to treated water and collect untreated water from rivers and dams for personal use. Endocrine disrupting chemicals (EDCs) have been detected in surface water and wildlife of South Africa. EDCs are often present in complex environmental matrices at ultra-trace levels complicating detection thereof. We report a simplified multi-residue approach for the detection and quantification of EDCs, emerging EDCs, and antiretroviral drugs in surface water. A low cost (less than one US dollar), disposable, sorptive extraction sampler was prepared in-house. The disposable samplers consisted of polydimethylsiloxane (PDMS) tubing fashioned into a loop which was then placed in water samples to concentrate EDCs and emerging pollutants. The PDMS samplers were thermally desorbed directly in the inlet of a GC, thereby eliminating the need for expensive consumable cryogenics. Comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was used for compound separation and identification. Linear retention indices of EDCs and emerging pollutants were determined on a proprietary Crossbond ® phase Rtx ® -CLPesticides II GC capillary column. In addition, large volume injection of surface water into an ultra-performance liquid chromatograph tandem mass spectrometer (UPLC-MS/MS) was used as complementary methodology for the detection of less volatile compounds. Large volume injection reduced tedious and costly sample preparation steps. Limits of detection for the GC method ranged from 1 to 98pg/l and for the LC method from 2 to 135ng/l. Known and emerging EDCs such as pharmaceuticals, personal care products and pesticides, as well as the antiretroviral compounds, efavirenz and nevirapine, were detected in surface water from South Africa at concentration levels ranging from 0.16ng/l to 227ng/l. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Multiscale Characterization and Quantification of Arsenic Mobilization and Attenuation During Injection of Treated Coal Seam Gas Coproduced Water into Deep Aquifers

    NASA Astrophysics Data System (ADS)

    Rathi, Bhasker; Siade, Adam J.; Donn, Michael J.; Helm, Lauren; Morris, Ryan; Davis, James A.; Berg, Michael; Prommer, Henning

    2017-12-01

    Coal seam gas production involves generation and management of large amounts of co-produced water. One of the most suitable methods of management is injection into deep aquifers. Field injection trials may be used to support the predictions of anticipated hydrological and geochemical impacts of injection. The present work employs reactive transport modeling (RTM) for a comprehensive analysis of data collected from a trial where arsenic mobilization was observed. Arsenic sorption behavior was studied through laboratory experiments, accompanied by the development of a surface complexation model (SCM). A field-scale RTM that incorporated the laboratory-derived SCM was used to simulate the data collected during the field injection trial and then to predict the long-term fate of arsenic. We propose a new practical procedure which integrates laboratory and field-scale models using a Monte Carlo type uncertainty analysis and alleviates a significant proportion of the computational effort required for predictive uncertainty quantification. The results illustrate that both arsenic desorption under alkaline conditions and pyrite oxidation have likely contributed to the arsenic mobilization that was observed during the field trial. The predictive simulations show that arsenic concentrations would likely remain very low if the potential for pyrite oxidation is minimized through complete deoxygenation of the injectant. The proposed modeling and predictive uncertainty quantification method can be implemented for a wide range of groundwater studies that investigate the risks of metal(loid) or radionuclide contamination.

  3. Effect of the chamber wall on fluorocarbon-assisted atomic layer etching of SiO2 using cyclic Ar/C4F8 plasma

    PubMed Central

    Kawakami, Masatoshi; Metzler, Dominik; Li, Chen; Oehrlein, Gottlieb S.

    2016-01-01

    The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO2 using a steady-state Ar plasma, periodic injection of a defined number of C4F8 molecules, and synchronized plasma-based Ar+ ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change in the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C4F8 injection. The C4F8 and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number. PMID:27375342

  4. Nondestructive natural gas hydrate recovery driven by air and carbon dioxide.

    PubMed

    Kang, Hyery; Koh, Dong-Yeun; Lee, Huen

    2014-10-14

    Current technologies for production of natural gas hydrates (NGH), which include thermal stimulation, depressurization and inhibitor injection, have raised concerns over unintended consequences. The possibility of catastrophic slope failure and marine ecosystem damage remain serious challenges to safe NGH production. As a potential approach, this paper presents air-driven NGH recovery from permeable marine sediments induced by simultaneous mechanisms for methane liberation (NGH decomposition) and CH₄-air or CH₄-CO₂/air replacement. Air is diffused into and penetrates NGH and, on its surface, forms a boundary between the gas and solid phases. Then spontaneous melting proceeds until the chemical potentials become equal in both phases as NGH depletion continues and self-regulated CH4-air replacement occurs over an arbitrary point. We observed the existence of critical methane concentration forming the boundary between decomposition and replacement mechanisms in the NGH reservoirs. Furthermore, when CO₂ was added, we observed a very strong, stable, self-regulating process of exchange (CH₄ replaced by CO₂/air; hereafter CH₄-CO₂/air) occurring in the NGH. The proposed process will work well for most global gas hydrate reservoirs, regardless of the injection conditions or geothermal gradient.

  5. Nondestructive natural gas hydrate recovery driven by air and carbon dioxide

    PubMed Central

    Kang, Hyery; Koh, Dong-Yeun; Lee, Huen

    2014-01-01

    Current technologies for production of natural gas hydrates (NGH), which include thermal stimulation, depressurization and inhibitor injection, have raised concerns over unintended consequences. The possibility of catastrophic slope failure and marine ecosystem damage remain serious challenges to safe NGH production. As a potential approach, this paper presents air-driven NGH recovery from permeable marine sediments induced by simultaneous mechanisms for methane liberation (NGH decomposition) and CH4-air or CH4-CO2/air replacement. Air is diffused into and penetrates NGH and, on its surface, forms a boundary between the gas and solid phases. Then spontaneous melting proceeds until the chemical potentials become equal in both phases as NGH depletion continues and self-regulated CH4-air replacement occurs over an arbitrary point. We observed the existence of critical methane concentration forming the boundary between decomposition and replacement mechanisms in the NGH reservoirs. Furthermore, when CO2 was added, we observed a very strong, stable, self-regulating process of exchange (CH4 replaced by CO2/air; hereafter CH4-CO2/air) occurring in the NGH. The proposed process will work well for most global gas hydrate reservoirs, regardless of the injection conditions or geothermal gradient. PMID:25311102

  6. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  7. 40 CFR 49.143 - Construction and operational control measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: (i) An operating system designed to recover and inject all the produced natural gas into a natural... closed-vent system to: (i) An operating system designed to recover and inject the natural gas emissions... that pipeline injection of all or part of the natural gas collected in an operating system designed to...

  8. 40 CFR 49.143 - Construction and operational control measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: (i) An operating system designed to recover and inject all the produced natural gas into a natural... closed-vent system to: (i) An operating system designed to recover and inject the natural gas emissions... that pipeline injection of all or part of the natural gas collected in an operating system designed to...

  9. Gas injected vacuum switch

    DOEpatents

    Hardin, K. Dan

    1977-01-01

    The disclosure relates to a gas injected vacuum switch comprising a housing having an interior chamber, a conduit for evacuating the interior chamber, within the chamber an anode and a cathode spaced from the anode, and a detonator for injecting electrically conductive gas into the chamber between the anode and the cathode to provide a current path therebetween.

  10. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron.

    PubMed

    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao

    Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.

  11. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy-duty diesel engine. Pollutant emissions for the engine operating with different injection velocity profiles reflected the sensitivity of diesel engines to the location of pollutants within the combustion chamber, as influenced by the fuel injection.

  12. Ion beam neutralization using three-dimensional electron confinement by surface modification of magnetic poles

    NASA Astrophysics Data System (ADS)

    Nicolaescu, Dan; Sakai, Shigeki; Gotoh, Yasuhito; Ishikawa, Junzo

    2011-07-01

    Advanced implantation systems used for semiconductor processing require transportation of quasi-parallel ion beams, which have low energy (11B+, 31P+,75As+, Eion=200-1000 eV). Divergence of the ion beam due to space charge effects can be compensated through injection of electrons into different regions of the ion beam. The present study shows that electron confinement takes place in regions of strong magnetic field such as collimator magnet provided with surface mirror magnetic fields and that divergence of the ion beam passing through such regions is largely reduced. Modeling results have been obtained using Opera3D/Tosca/Scala. Electrons may be provided by collision between ions and residual gas molecules or may be injected by field emitter arrays. The size of surface magnets is chosen such as not to disturb ion beam collimation, making the approach compatible with ion beam systems. Surface magnets may form thin magnetic layers with thickness h=0.5 mm or less. Conditions for spacing of surface magnet arrays for optimal electron confinement are outlined.

  13. Toward the Active Control of Heat Transfer in the Hot Gas Path of Gas Turbines

    NASA Technical Reports Server (NTRS)

    Oertling, Jeremiah E.

    2003-01-01

    The work at NASA this summer has focused on assisting the Professor's project, namely "Toward the Active Control of Heat Transfer in the Hot Gas Path of Gas Turbines." The mode of controlling the Heat Transfer that the project focuses on is film cooling. Film cooling is used in high temperature regions of a gas turbine and extends the life of the components exposed to these extreme temperatures. A "cool" jet of air is injected along the surface of the blade and this layer of cool air shields the blade from the high temperatures. Cool is a relative term. The hot gas path temperatures reach on the order of 1500 to 2000 K. The "coo" air is on the order of 700 to 1000 K. This cooler air is bled off of an appropriate compressor stage. The next parameter of interest is the jet s position and orientation in the flow-field.

  14. The state of the art of conventional flow visualization techniques for wind tunnel testing

    NASA Technical Reports Server (NTRS)

    Settles, G. S.

    1982-01-01

    Conventional wind tunnel flow visualization techniques which consist of surface flow methods, tracers, and optical methods are presented. Different surface flow methods are outlined: (1) liquid films (oil and fluorescent dye and UV lighting, renewable film via porous dispenser in model, volatile carrier fluid, cryogenic colored oil dots, oil film interferometry); (2) reactive surface treatment (reactive gas injection, reversible dye); (3) transition and heat transfer detectors (evaporation, sublimation, liquid crystals, phase change paints, IR thermography); and (4) tufts (fluorescent mini tufts, cryogenic suitability). Other methods are smoke wire techniques, vapor screens, and optical methods.

  15. Analysis and comparison of wall cooling schemes for advanced gas turbine applications

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.

    1972-01-01

    The relative performance of (1) counterflow film cooling, (2) parallel-flow film cooling, (3) convection cooling, (4) adiabatic film cooling, (5) transpiration cooling, and (6) full-coverage film cooling was investigated for heat loading conditions expected in future gas turbine engines. Assumed in the analysis were hot-gas conditions of 2200 K (3500 F) recovery temperature, 5 to 40 atmospheres total pressure, and 0.6 gas Mach number and a cooling air supply temperature of 811 K (1000 F). The first three cooling methods involve film cooling from slots. Counterflow and parallel flow describe the direction of convection cooling air along the inside surface of the wall relative to the main gas flow direction. The importance of utilizing the heat sink available in the coolant for convection cooling prior to film injection is illustrated.

  16. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.

    1991-01-01

    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevik, James; Pamminger, Michael; Wallner, Thomas

    Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of naturalmore » gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions. Steady-state tests were performed on a single-cylinder research engine representative of current gasoline direct-injection engines. Tests were performed with direct-injection in the central and side location. The start of injection was varied under stoichiometric conditions in order to study the effects on the mixture formation process. In addition, exhaust gas recirculation was introduced at select conditions in order to investigate the dilution tolerance. Relevant combustion metrics were then analyzed for each scenario. Experimental results suggest that regardless of the injector location, varying the start of injection has a strong impact on the mixture formation process. Delaying the start of injection from 300 to 120°CA BTDC can reduce the early flame development process by nearly 15°CA. While injecting into the cylinder after the intake valves have closed has shown to produce the fastest combustion process, this does not necessarily lead to the highest efficiency, due to increases in pumping and wall heat losses. When comparing the two injection configurations, the side location shows the best performance in terms of combustion metrics and efficiencies. For both systems, part-load dilution tolerance is affected by the injection timing, due to the induced turbulence from the gaseous injection event. CFD simulation results have shown that there is a fundamental difference in how the two injection locations affect the mixture formation process. Delayed injection timing increases the turbulence level in the cylinder at the time of the spark, but reduces the available time for proper mixing. Side injection delivers a gaseous jet that interacts more effectively with the intake induced flow field, and this improves the engine performance in terms of efficiency.« less

  18. Thermally-enhanced oil recovery method and apparatus

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  19. Charge balancing in GaN-based 2-D electron gas devices employing an additional 2-D hole gas and its influence on dynamic behaviour of GaN-based heterostructure field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Herwig, E-mail: hahn@gan.rwth-aachen.de; Reuters, Benjamin; Geipel, Sascha

    2015-03-14

    GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance R{sub on,dyn} vs. the breakdown voltage V{sub bd}. In literature, it has been shown that with a high V{sub bd}, R{sub on,dyn} is deteriorated. The impairment of R{sub on,dyn} is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing conceptmore » which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.« less

  20. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  1. Passive microseismic monitoring at an Australian CO2 geological storage site

    NASA Astrophysics Data System (ADS)

    Siggins, Anthony

    2010-05-01

    Passive microseismic monitoring at an Australian CO2 geological storage site A.F. Siggins1 and T. Daley2 1. CO2CRC at CSIRO Earth Science and Resource Engineering, Clayton, Victoria, Australia 2. Lawrence Berkeley National Labs, Berkeley, CA, USA Prior to the injection of CO2, background micro-seismic (MS) monitoring commenced at the CO2CRC Otway project site in Victoria, south-eastern Australia on the 4th of October 2007. The seismometer installation consisted of a solar powered ISS MS™ seismometer connected to two triaxial geophones placed in a gravel pack in a shallow borehole at 10m and 40 m depth respectively. The seismometer unit was interfaced to a digital radio which communicated with a remote computer containing the seismic data base. This system was designed to give a qualitative indication of any natural micro-seismicity at the site and to provide backup to a more extensive geophone array installed at the reservoir depth of approximately 2000m. During the period, October to December 2007 in excess of 150 two-station events were recorded. These events could all be associated with surface engineering activities during the down-hole installation of instruments at the nearby Naylor 1 monitoring well and surface seismic weight drop investigations on site. Source location showed the great majority of events to be clustered on the surface. MS activity then quietened down with the completion of these tasks. Injection of a CO2 rich gas commenced in mid March 2008 continuing until late August 2009 with approximately 65,000 tonnes being injected at 2050m depth in to a depleted natural gas formation. Only a small number of subsurface MS events were recorded during 2008 although the monitoring system suffered from long periods of down-time due to power supply failures and frequent mains power outages in the region. In March 2009 the surface installation was upgraded with new hardware and software. The seismometer was replaced with a more sensitive ISS 32-bit GS™ unit. Internet access to the monitoring system and data base was then established with a Telstra Next G connection. Due to the higher sensitivity of the seismometer, many more low amplitude sub-surface events are now being recorded, possibly associated with deep truncated faults in the south west corner of the injection site although any causal link with the CO2 injection remains to be determined.

  2. Organic Substances from Unconventional Oil and Gas Production in Shale

    NASA Astrophysics Data System (ADS)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic composition of shale formation water, and that some injected organic substances are retained on the shale and slowly released. Thus, appropriate safe disposal of produced water is needed long into production. Changes in organic substances in formation water may impact microbial communities. Current work is focused on UOG production in the Permian Basin, Texas.

  3. 30 CFR 250.124 - Will BSEE approve gas injection into the cap rock containing a sulphur deposit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rock containing a sulphur deposit? 250.124 Section 250.124 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF General Performance Standards § 250.124 Will BSEE approve gas injection into the cap rock containing a sulphur deposit? To receive the Regional Supervisor's approval to inject gas into the cap rock...

  4. 30 CFR 250.124 - Will BSEE approve gas injection into the cap rock containing a sulphur deposit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rock containing a sulphur deposit? 250.124 Section 250.124 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF General Performance Standards § 250.124 Will BSEE approve gas injection into the cap rock containing a sulphur deposit? To receive the Regional Supervisor's approval to inject gas into the cap rock...

  5. 30 CFR 250.124 - Will BSEE approve gas injection into the cap rock containing a sulphur deposit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rock containing a sulphur deposit? 250.124 Section 250.124 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF General Performance Standards § 250.124 Will BSEE approve gas injection into the cap rock containing a sulphur deposit? To receive the Regional Supervisor's approval to inject gas into the cap rock...

  6. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2006-01-01

    The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.

  7. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-guo; Wu, Liyin; Li, Qinglian; Li, Chun

    2014-09-01

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. The injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674-2686 (2008)] and Wang et al. [AIAA J. 50, 1360-1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.

  8. Risk assessing study for Bio-CCS technology

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Sakamoto, Y.; Kano, Y.; Higashino, H.; Suzumura, M.; Tosha, T.; Nakao, S.; Komai, T.

    2013-12-01

    We have started a new R&D project titled 'Energy resources creation by geo-microbes and CCS'. It is new concept of a technology which cultivate methanogenic geo-microbes in reservoirs of geological CCS conditions to produce methane gas effectively and safely. As one of feasibility studies, we are evaluating risks around its new Bio-CCS technology. Our consideration involves risk scenarios about Bio-CCS in geological strata, marine environment, surface facilities, ambient air and injection sites. To cover risk scenarios in these areas, we are carrying out a sub-project with five sub-themes. Four sub-themes out of five are researches for identifying risk scenarios: A) Underground strata and injection well, B) Ambient air, C) Surface facilities and D) Seabed. We are developing risk assessment tool,named GERAS-CO2GS (Geo-environmental Risk Assessment System,CO2 Geological Storage Risk Assessment System. We are going to combine identified risk scenarios into GERAS-CO2GS accordingly. It is expected that new GERAS-CO2GS will contribute to risk assessment and management for not only Bio-CCS but also individual injection sites, and facilitate under standing of risks among legislators and concerned peoples around injection site.

  9. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    NASA Astrophysics Data System (ADS)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  10. Precipitated Silica from Pumice and Carbon Dioxide Gas (Co2) in Bubble Column Reactor

    NASA Astrophysics Data System (ADS)

    Dewati, R.; Suprihatin, S.; Sumada, K.; Muljani, S.; Familya, M.; Ariani, S.

    2018-01-01

    Precipitated silica from silica and carbon dioxide gas has been studied successfully. The source of silica was obtained from pumice stone while precipitation process was carried out with carbon dioxide gas (CO2). The sodium silicate solution was obtained by extracting the silica from pumice stone with sodium hydroxide (NaOH) solution and heated to 100 °C for 1 h. The carbon dioxide gas is injected into the aqueous solution of sodium silicate in a bubble column reactor to form precipitated silica. m2/g. The results indicate that the products obtained are precipitate silica have surface area in the range of 100 - 227 m2/g, silica concentration more than 80%, white in appearance, and silica concentration reached 90% at pH 7.

  11. New stable isotope results for reservoir and above zone monitoring in CCS from the Ketzin pilot site, Germany

    NASA Astrophysics Data System (ADS)

    Nowak, Martin; van Geldern, Robert; Myrttinen, Anssi; Veith, Becker; Zimmer, Martin; Barth, Johannes

    2013-04-01

    With rising atmospheric greenhouse gas concentrations, CCS technologies are a feasible option to diminish consequences of uncontrolled anthropogenic CO2 emissions and related climate change. However, application of CCS technologies requires appropriate and routine monitoring tools in order to ensure a safe and effective CO2 injection. Stable isotope techniques have proven as a useful geochemical monitoring tool at several CCS pilot projects worldwide. They can provide important information about gas - water - rock interactions, mass balances and CO2 migration in the reservoir and may serve as a tool to detect CO2 leakage in the subsurface and surface. Since the beginning of injection in 2008 at the Ketzin pilot site in Germany, more than 450 samples of fluids and gases have been analysed for their carbon and oxygen isotopic composition. Analytical advancements were achieved by modifying a conventional isotope ratio mass-spectrometer with a He dilution system. This allowed analyses of a larger number of CO2 gas samples from the injection well and observation wells. With this, a high-resolution monitoring program was established over a time period of one year. Results revealed that two isotopical distinct kinds of CO2 are injected at the Ketzin pilot site. The most commonly injected CO2 is so-called 'technical' CO2 with an average carbon isotopic value of about -31 ‰. Sporadically, natural source CO2 with an average δ13C value of -3 ‰ was injected. The injection of natural source CO2 generated a distinct isotope signal at the injection well that can be used as an ideal tracer. CO2 isotope values analysed at the observation wells indicate a highly dispersive migration of the supercritical CO2 that results in mixing of the two kinds of CO2 within the reservoir. Above-reservoir monitoring includes the first overlying aquifer above the cap rock. An observation well within this zone comprises an U-tube sampling device that allows frequent sampling of unaltered brine. The fluids were analysed among others for their carbon isotopic compositions of dissolved inorganic carbon (DIC). δ13CDIC values allowed to assess impacts of the carbonate-based drilling fluid during well development and helped to monitor successive geochemical re-equilibration processes of the brine. Based on the determined δ13C baseline values of the aquifer fluid, first concepts indicate the scale of change of the δ13CDIC values that would be necessary to detect CO2 leakage from the underlying storage reservoir. Recent efforts aim at applications of new laser-based isotope sensors that allow online measurements in the field. These devices are applied for CO2 gas tracer experiments as well as for monitoring of isotope composition of soil gases in the vicinity of the pilot site. This new development will allow much better temporal and spatial resolution of measurements at a lower price. Therefore, stable isotope analyses can become a strong and promising tool for subsurface as well as surface monitoring at future CCS sites.

  12. CO2 Capture by Injection of Flue Gas or CO2-N2 Mixtures into Hydrate Reservoirs: Dependence of CO2 Capture Efficiency on Gas Hydrate Reservoir Conditions.

    PubMed

    Hassanpouryouzband, Aliakbar; Yang, Jinhai; Tohidi, Bahman; Chuvilin, Evgeny; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2018-04-03

    Injection of flue gas or CO 2 -N 2 mixtures into gas hydrate reservoirs has been considered as a promising option for geological storage of CO 2 . However, the thermodynamic process in which the CO 2 present in flue gas or a CO 2 -N 2 mixture is captured as hydrate has not been well understood. In this work, a series of experiments were conducted to investigate the dependence of CO 2 capture efficiency on reservoir conditions. The CO 2 capture efficiency was investigated at different injection pressures from 2.6 to 23.8 MPa and hydrate reservoir temperatures from 273.2 to 283.2 K in the presence of two different saturations of methane hydrate. The results showed that more than 60% of the CO 2 in the flue gas was captured and stored as CO 2 hydrate or CO 2 -mixed hydrates, while methane-rich gas was produced. The efficiency of CO 2 capture depends on the reservoir conditions including temperature, pressure, and hydrate saturation. For a certain reservoir temperature, there is an optimum reservoir pressure at which the maximum amount of CO 2 can be captured from the injected flue gas or CO 2 -N 2 mixtures. This finding suggests that it is essential to control the injection pressure to enhance CO 2 capture efficiency by flue gas or CO 2 -N 2 mixtures injection.

  13. 77 FR 48878 - Approval and Promulgation of Federal Implementation Plan for Oil and Natural Gas Well Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... the sales natural gas pipeline or to an emissions control unit when a natural gas sales pipeline is... vapor recovery unit (VRU) to be injected into a natural gas sales pipeline for conveyance to a natural gas plant. In the event that pipeline injection of recoverable natural gas is temporarily infeasible...

  14. Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into the spray chamber during analysis

    NASA Astrophysics Data System (ADS)

    Al-Ammar, Assad S.; Gupta, Rajesh K.; Barnes, Ramon M.

    2000-06-01

    Injection of 10-20 ml/min of ammonia gas into an inductively coupled plasma-mass spectrometry (ICP-MS) spray chamber during boron determination eliminates the memory effect of a 1 μg/ml B solution within a 2-min washing time. Ammonia gas injection also reduces the boron blank by a factor of four and enhances the sensitivity by 33-90%. Boron detection limits are improved from 12 and 14 to 3 and 4 ng/ml, respectively, for two ICP-MS instruments. Trace boron concentrations in certified reference materials agree well using ammonia gas injection.

  15. Measurements of Skin Friction of the Compressible Turbulent Boundary Layer on a Cone with Foreign Gas Injection

    NASA Technical Reports Server (NTRS)

    Pappas, Constantine C.; Ukuno, Arthur F.

    1960-01-01

    Measurements of average skin friction of the turbulent boundary layer have been made on a 15deg total included angle cone with foreign gas injection. Measurements of total skin-friction drag were obtained at free-stream Mach numbers of 0.3, 0.7, 3.5, and 4.7 and within a Reynolds number range from 0.9 x 10(exp 6) to 5.9 x 10(exp 6) with injection of helium, air, and Freon-12 (CCl2F2) through the porous wall. Substantial reductions in skin friction are realized with gas injection within the range of Mach numbers of this test. The relative reduction in skin friction is in accordance with theory-that is, the light gases are most effective when compared on a mass flow basis. There is a marked effect of Mach number on the reduction of average skin friction; this effect is not shown by the available theories. Limited transition location measurements indicate that the boundary layer does not fully trip with gas injection but that the transition point approaches a forward limit with increasing injection. The variation of the skin-friction coefficient, for the lower injection rates with natural transition, is dependent on the flow Reynolds number and type of injected gas; and at the high injection rates the skin friction is in fair agreement with the turbulent boundary layer results.

  16. Design and Testing of Trace Contaminant Injection and Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Broerman, Craig D.; Sweterlitsch, Jeff

    2009-01-01

    In support of the Carbon dioxide And Moisture Removal Amine Swing-bed (CAMRAS) testing, a contaminant injection system as well as a contaminant monitoring system has been developed by the Johnson Space Center Air Revitalization Systems (JSC-ARS) team. The contaminant injection system has been designed to provide trace level concentrations of contaminants generated by humans in a closed environment during space flight missions. The contaminant injection system continuously injects contaminants from three gas cylinders, two liquid reservoirs and three permeation ovens. The contaminant monitoring system has been designed to provide real time gas analysis with accurate flow, humidity and gas concentration measurements for collection during test. The contaminant monitoring system consists of an analytical real time gas analyzer, a carbon monoxide sensor, and an analyzer for ammonia and water vapor.

  17. Method of producing silicon. [gas phase reactor multiple injector liquid feed system

    NASA Technical Reports Server (NTRS)

    Wolf, C. B.; Meyer, T. N. (Inventor)

    1980-01-01

    A liquid reactant injector assembly suited for the injection of liquid reactant into a high temperature metal reductant vapor and carrier gas stream for the production of metal is presented. The assembly is especially adapted for the continuous production of high purity silicon by the reduction of SiCl4 with sodium. The assembly includes a refractory-lined, hollow metal shell having ten equally-spaced, concentric, radially directed ports provided in the shell and wall. A hydraulic, atomizing type spray nozzle is mounted in each of the ports recessed from the inner wall surface.

  18. Apparatus and method to inject a reductant into an exhaust gas feedstream

    DOEpatents

    Viola, Michael B [Macomb Township, MI

    2009-09-22

    An exhaust aftertreatment system for an internal combustion engine is provided including an apparatus and method to inject a reductant into the exhaust gas feedstream. Included is a fuel metering device adapted to inject reductant into the exhaust gas feedstream and a controllable pressure regulating device. A control module is operatively connected to the reductant metering device and the controllable pressure regulating device, and, adapted to effect flow of reductant into the exhaust gas feedstream over a controllable flow range.

  19. Radiological issues associated with the recent boom in oil and gas hydraulic fracturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Alejandro

    As the worldwide hydraulic fracturing 'fracking' market continued to grow to an estimated $37 Billion in 2012, the need to understand and manage radiological issues associated with fracking is becoming imperative. Fracking is a technique that injects pressurized fluid into rock layer to propagate fractures that allows natural gas and other petroleum products to be more easily extracted. Radioactivity is associated with fracking in two ways. Radioactive tracers are frequently a component of the injection fluid used to determine the injection profile and locations of fractures. Second, because there are naturally-occurring radioactive materials (NORM) in the media surrounding and containingmore » oil and gas deposits, the process of fracking can dislodge radioactive materials and transport them to the surface in the wastewater and gases. Treatment of the wastewater to remove heavy metals and other contaminates can concentrate the NORM into technologically-enhanced NORM (TENORM). Regulations to classify, transport, and dispose of the TENORM and other radioactive waste can be complicated and cumbersome and vary widely in the international community and even between states/provinces. In many cases, regulations on NORM and TENORM do not even exist. Public scrutiny and regulator pressure will only continue to increase as the world demands on oil and gas continue to rise and greater quantities of TENORM materials are produced. Industry experts, health physicists, regulators, and public communities must work together to understand and manage radiological issues to ensure reasonable and effective regulations protective of the public, environment, and worker safety and health are implemented. (authors)« less

  20. Effects of Jet Swirl on Mixing of a Light Gas Jet in a Supersonic Airstream

    NASA Technical Reports Server (NTRS)

    Doerner, Steven E.; Cutler, Andrew D.

    1999-01-01

    A non reacting experiment was performed to investigate the effects of jet swirl on mixing of a light gas jet in a supersonic airstream. The experiment consisted of two parts. The first part was an investigation of the effects of jet swirl and skew on the mixing and penetration of a 25 deg. supersonic jet injected from a flat surface (flush wall injection) into a supersonic ducted airflow. Specifically, the objective was to determine whether the jet would mix more rapidly if the jet were swirling, and whether swirl, with and without skew, causes the injectant-air plume to have a net circulation (i.e., a single or dominant vortex). The second part was a preliminary study of the mixing of swirling jets injected from the base of a skewed ramp. The hypothesis was that favorable interactions between vorticity generated by the swirling jet and vortices generated by the ramp could produce mixing enhancements. Both parts of the experiment were conducted at equal injectant mass flow rate and total pressure. The results for the flush wall injection cases indicate that, except relatively close to the injection point, swirl, with or without skew, does not enhance the mixing of the jet, and can in fact reduce penetration. In addition, a plume with significant net circulation is not generated, as had previously been believed. The results for the ramp cases indicated no improvements in mixing in comparison with the baseline (swept ramp injector) case. However, it was not possible to determine the vorticity mechanisms underlying the poor performance, since no measurements of vorticity were made. Thus, since many geometric parameters were chosen arbitrarily, the results are inconclusive for this class of injector.

  1. Technical Path Evaluation for High Efficiency, Low Emission Natural Gas Engine

    DTIC Science & Technology

    2002-05-01

    Modeling and Mitigation for Large Bore Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine ...Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine Water Spray Injection for Knock...91 vi D. MICROFINE WATER SPRAY INJECTION FOR

  2. CO2 plume management in saline reservoir sequestration

    USGS Publications Warehouse

    Frailey, S.M.; Finley, R.J.

    2011-01-01

    A significant difference between injecting CO2 into saline aquifers for sequestration and injecting fluids into oil reservoirs or natural gas into aquifer storage reservoirs is the availability and use of other production and injection wells surrounding the primary injection well(s). Of major concern for CO2 sequestration using a single well is the distribution of pressure and CO2 saturation within the injection zone. Pressure is of concern with regards to caprock integrity and potential migration of brine or CO2 outside of the injection zone, while CO2 saturation is of interest for storage rights and displacement efficiency. For oil reservoirs, the presence of additional wells is intended to maximize oil recovery by injecting CO2 into the same hydraulic flow units from which the producing wells are withdrawing fluids. Completing injectors and producers in the same flow unit increases CO2 throughput, maximizes oil displacement efficiency, and controls pressure buildup. Additional injectors may surround the CO2 injection well and oil production wells in order to provide external pressure to these wells to prevent the injected CO2 from migrating from the pattern between two of the producing wells. Natural gas storage practices are similar in that to reduce the amount of "cushion" gas and increase the amount of cycled or working gas, edge wells may be used for withdrawal of gas and center wells used for gas injection. This reduces loss of gas to the formation via residual trapping far from the injection well. Moreover, this maximizes the natural gas storage efficiency between the injection and production wells and reduces the areal extent of the natural gas plume. Proposed U.S. EPA regulations include monitoring pressure and suggest the "plume" may be defined by pressure in addition to the CO2 saturated area. For pressure monitoring, it seems that this can only be accomplished by injection zone monitoring wells. For pressure, these wells would not need to be very close to the injection well, compared to monitoring wells intended to measure CO2 saturation via fluid sampling or cased-hole well logs. If pressure monitoring wells become mandated, these wells could be used for managing the CO2 saturation and aquifer pressure distribution. To understand the relevance and effectiveness of producing and injecting brine to improve storage efficiency, direct the plume to specific pore space, and redistribute the pressure, numerical models of CO2 injection into aquifers are used. Simulated cases include various aquifer properties at a single well site and varying the number and location of surrounding wells for plume management. Strategies in terms of completion intervals can be developed to effectively contact more vertical pore space in relatively thicker geologic formations. Inter-site plume management (or cooperative) wells for the purpose of pressure monitoring and plume management may become the responsibility of a consortium of operators or a government entity, not individual sequestration site operators. ?? 2011 Published by Elsevier Ltd.

  3. Anisotropic mechanical behaviour of sedimentary basins inferred by advanced radar interferometry above gas storage fields

    NASA Astrophysics Data System (ADS)

    Teatini, P.; Gambolati, G.; Ferretti, A.

    2010-12-01

    Natural gas is commonly stored underground in depleted oil and gas fields to provide safe storage capacity and deliverability to market areas where production is limited, or to take advantage of seasonal price swings. In response to summer gas injection and winter gas withdrawal the reservoir expands and contracts with the overlying land that moves accordingly. Depending on the field burial depth, a few kilometres of the upper lithosphere are subject to local three-dimensional deformations with the related cyclic motion of the ground surface being both vertical and horizontal. Advanced Persistent Scatterer Interferometry (PSI) data, obtained by combining ascending and descending RADARSAT-1 images acquired from 2003 to 2008 above gas storage fields located in the sedimentary basin of the Po river plain, Italy, provide reliable measurement of these seasonal vertical ups and downs as well as horizontal displacements to and from the injection/withdrawal wells. Combination of the land surface movements together with an accurate reconstruction of the subsurface geology made available by three-dimensional seismic surveys and long-time records of fluid pore pressure within the 1000-1500 m deep reservoirs has allowed for the development of an accurate 3D poro-mechanical finite-element model of the gas injection/removal occurrence. Model calibration based on the observed cyclic motions, which are on the range of 10-15 mm and 5-10 mm in the vertical and horizontal west-east directions, respectively, helps characterize the nonlinear hysteretic geomechanical properties of the basin. First, using a basin-scale relationship between the oedometric rock compressibility cM in virgin loading conditions versus the effective intergranular stress derived from previous experimental studies, the modeling results show that the ratio s between loading and unloading-reloading cM is about 4, consistent with in-situ expansions measured by the radioactive marker technique in similar reservoirs of the same basin. Even more interestingly, a traditional isotropic stress-strain model does not prove suitable for simultaneously matching both the vertical and the horizontal displacements. The basin overall 3D deformation is indeed well captured by a transversally isotropic model where the medium elastic properties in a horizontal plane differ from those in a vertical plane. In particular, the satellite observations are successfully predicted by setting s=4 and with a horizontal/vertical Young modulus ratio of 3, a Poisson ratio equal to 0.15 and 0.25 in the horizontal and vertical plane, respectively, and the same shear modulus in the two directions.

  4. Viscous drag reduction in boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  5. Bubble Formation from Wall Orifice in Liquid Cross-Flow Under Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2000-01-01

    Two-phase flows present a wide variety of applications for spacecraft thermal control systems design. Bubble formation and detachment is an integral part of the two phase flow science. The objective of the present work is to experimentally investigate the effects of liquid cross-flow velocity, gas flow rate, and orifice diameter on bubble formation in a wall-bubble injection configuration. Data were taken mainly under reduced gravity conditions but some data were taken in normal gravity for comparison. The reduced gravity experiment was conducted aboard the NASA DC-9 Reduced Gravity Aircraft. The results show that the process of bubble formation and detachment depends on gravity, the orifice diameter, the gas flow rate, and the liquid cross-flow velocity. The data are analyzed based on a force balance, and two different detachment mechanisms are identified. When the gas momentum is large, the bubble detaches from the injection orifice as the gas momentum overcomes the attaching effects of liquid drag and inertia. The surface tension force is much reduced because a large part of the bubble pinning edge at the orifice is lost as the bubble axis is tilted by the liquid flow. When the gas momentum is small, the force balance in the liquid flow direction is important, and the bubble detaches when the bubble axis inclination exceeds a certain angle.

  6. Gas-injection-start and shutdown characteristics of a 2-kilowatt to 15-kilowatt Brayton power system

    NASA Technical Reports Server (NTRS)

    Cantoni, D. A.

    1972-01-01

    Two methods of starting the Brayton power system have been considered: (1) using the alternator as a motor to spin the Brayton rotating unit (BRU), and (2) spinning the BRU by forced gas injection. The first method requires the use of an auxiliary electrical power source. An alternating voltage is applied to the terminals of the alternator to drive it as an induction motor. Only gas-injection starts are discussed in this report. The gas-injection starting method requires high-pressure gas storage and valves to route the gas flow to provide correct BRU rotation. An analog computer simulation was used to size hardware and to determine safe start and shutdown procedures. The simulation was also used to define the range of conditions for successful startups. Experimental data were also obtained under various test conditions. These data verify the validity of the start and shutdown procedures.

  7. On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures

    NASA Astrophysics Data System (ADS)

    Dahms, Rainer N.; Oefelein, Joseph C.

    2013-09-01

    A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for liquid injection is developed that quantifies the conditions under which classical sprays transition to dense-fluid jets. It is shown that the chamber pressure required to support diffusion-dominated mixing dynamics depends on the composition and temperature of the injected liquid and ambient gas. To illustrate the method and analysis, we use conditions typical of diesel engine injection. We also present a companion set of high-speed images to provide experimental validation of the presented theory. The basic theory is quite general and applies to a wide range of modern propulsion and power systems such as liquid rockets, gas turbines, and reciprocating engines. Interestingly, the regime diagram associated with diesel engine injection suggests that classical spray phenomena at typical injection conditions do not occur.

  8. The Inherent Tracer Fingerprint of Captured CO2

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Gyore, Domokos; Stuart, Finlay; Boyce, Adrian; Haszeldine, Stuart; Chalaturnyk, Rick; Gilfillan, Stuart

    2017-04-01

    Inherent tracers, the isotopic and trace gas composition of captured CO2 streams, are potentially powerful tracers for use in CCS technology [1,2]. Despite this potential, the inherent tracer fingerprint in captured CO2 streams has yet to be robustly investigated and documented [3]. Here, we will present the first high quality systematic measurements of the carbon and oxygen isotopic and noble gas fingerprints measured in anthropogenic CO2 captured from combustion power stations and fertiliser plants, using amine capture, oxyfuel and gasification processes, and derived from coal, biomass and natural gas feedstocks. We will show that δ13C values are mostly controlled by the feedstock composition, as expected. The majority of the CO2 samples exhibit δ18O values similar to atmospheric O2 although captured CO2 samples from biomass and gas feedstocks at one location in the UK are significantly higher. Our measured noble gas concentrations in captured CO2 are generally as expected [2], typically being two orders of magnitude lower in concentration than in atmospheric air. Relative noble gas elemental abundances are variable and often show an opposite trend to that of a water in contact with the atmosphere. Expected enrichments in radiogenic noble gases (4He and 40Ar) for fossil fuel derived CO2 were not always observed due to dilution with atmospheric noble gases during the CO2 generation and capture process. Many noble gas isotope ratios indicate that isotopic fractionation takes place during the CO2 generation and capture processes, resulting in isotope ratios similar to fractionated air. We conclude that phase changes associated with CO2 transport and sampling may induce noble gas elemental and isotopic fractionation, due to different noble gas solubilities between high (liquid or supercritical) and low (gaseous) density CO2. Data from the Australian CO2CRC Otway test site show that δ13C of CO2 will change once injected into the storage reservoir, but that this change is small and can be quantitatively modelled in order to determine the proportion of CO2 that has dissolved into the formation waters. Furthermore, noble gas data from the Otway storage reservoir post-injection, shows evidence of noble gas stripping of formation water and contamination with Kr and Xe related to an earlier injection experiment. Importantly, He data from SaskPower's Aquistore illustrates that injected CO2 will inherit distinctive crustal radiogenic noble gas fingerprints from the subsurface once injected into an undisturbed geological storage reservoir, meaning this could be used to identify unplanned migration of the CO2 to the surface and shallow subsurface [4]. References [1] Mayer et al., (2015) IJGGC, Vol. 37, 46-60 http://dx.doi.org/10.1016/j.ijggc.2015.02.021 [2] Gilfillan et al., (2014) Energy Procedia, Vol. 63, 4123-4133 http://dx.doi.org/10.1016/j.egypro.2014.11.443 [3] Flude et al., (2016) Environ. Sci. Technol., 50 (15), pp 7939-7955 DOI: 10.1021/acs.est.6b01548 [4] Gilfillan et al., (2011) IJGGC, Vol. 5 (6) 1507-1516 http://dx.doi.org/10.1016/j.ijggc.2011.08.008

  9. Surface tailoring of newly developed amorphous Znsbnd Sisbnd O thin films as electron injection/transport layer by plasma treatment: Application to inverted OLEDs and hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Hongsheng; Kim, Junghwan; Yamamoto, Koji; Xing, Xing; Hosono, Hideo

    2018-03-01

    We report a unique amorphous oxide semiconductor Znsbnd Sisbnd O (a-ZSO) which has a small work function of 3.4 eV for as-deposited films. The surface modification of a-ZSO thin films by plasma treatments is examined to apply it to the electron injection/transport layer of organic devices. It turns out that the energy alignment and exciton dissociation efficiency at a-ZSO/organic semiconductor interface significantly changes by choosing different gas (oxygen or argon) for plasma treatments (after a-ZSO was exposed to atmospheric environment for 5 days). In situ ultraviolet photoelectron spectroscopy (UPS) measurement reveals that the work function of a-ZSO is increased to 4.0 eV after an O2-plasma treatment, while the work function of 3.5 eV is recovered after an Ar-plasma treatment which indicates this treatment is effective for surface cleaning. To study the effects of surface treatments to device performance, OLEDs and hybrid polymer solar cells with O2-plasma or Ar-plasma treated a-ZSO are compared. Effects of these surface treatments on performance of inverted OLEDs and hybrid polymer solar cells are examined. Ar-plasma treated a-ZSO works well as the electron injection layer in inverted OLEDs (Alq3/a-ZSO) because the injection barrier is small (∼ 0.1 eV). On the other hands, O2-plasma treated a-ZSO is more suitable for application to hybrid solar cells which is benefiting from higher exciton dissociation efficiency at polymer (P3HT)/ZSO interface.

  10. Laboratory Study of the Displacement Coalbed CH4 Process and Efficiency of CO2 and N2 Injection

    PubMed Central

    Wang, Liguo; Wang, Yongkang

    2014-01-01

    ECBM displacement experiments are a direct way to observe the gas displacement process and efficiency by inspecting the produced gas composition and flow rate. We conducted two sets of ECBM experiments by injecting N2 and CO2 through four large parallel specimens (300 × 50 × 50 mm coal briquette). N2 or CO2 is injected at pressures of 1.5, 1.8, and 2.2 MPa and various crustal stresses. The changes in pressure along the briquette and the concentration of the gas mixture flowing out of the briquette were analyzed. Gas injection significantly enhances CBM recovery. Experimental recoveries of the original extant gas are in excess of 90% for all cases. The results show that the N2 breakthrough occurs earlier than the CO2 breakthrough. The breakthrough time of N2 is approximately 0.5 displaced volumes. Carbon dioxide, however, breaks through at approximately 2 displaced volumes. Coal can adsorb CO2, which results in a slower breakthrough time. In addition, ground stress significantly influences the displacement effect of the gas injection. PMID:24741346

  11. Lumped Multi-Bubble Analysis of Injection Cooling System for Storage of Cryogenic Liquids

    NASA Astrophysics Data System (ADS)

    Saha, Pritam; Sandilya, Pavitra

    2017-12-01

    Storage of cryogenic liquids is a critical issue in many cryogenic applications. Subcooling of the liquid by bubbling a gas has been suggested to extend the storage period by reducing the boil-off loss. Liquid evaporation into the gas may cause liquid subcooling by extracting the latent heat of vaporization from the liquid. The present study aims at studying the factors affecting the liquid subcooling during gas injection. A lumped parameter model is presented to capture the effects of bubble dynamics (coalescence, breakup, deformation etc.) on the heat and mass transport between the gas and the liquid. The liquid subcooling has been estimated as a function of the key operating variables such as gas flow rate and gas injection temperature. Numerical results have been found to predict the change in the liquid temperature drop reasonably well when compared with the previously reported experimental results. This modelling approach can therefore be used in gauging the significance of various process variables on the liquid subcooling by injection cooling, as well as in designing and rating an injection cooling system.

  12. The Influence of Structure Heights and Opening Angles of Micro- and Nanocones on the Macroscopic Surface Wetting Properties

    NASA Astrophysics Data System (ADS)

    Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael

    2016-02-01

    We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures.

  13. Effect of the chamber wall on fluorocarbon-assisted atomic layer etching of SiO{sub 2} using cyclic Ar/C{sub 4}F{sub 8} plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, Masatoshi; Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu

    2016-07-15

    The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO{sub 2} using a steady-state Ar plasma, periodic injection of a defined number of C{sub 4}F{sub 8} molecules, and synchronized plasma-based Ar{sup +} ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change inmore » the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C{sub 4}F{sub 8} injection. The C{sub 4}F{sub 8} and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number.« less

  14. Substance P in the dorsal vagal complex inhibits medullary TRH-induced gastric acid secretion in rats.

    PubMed

    Yang, H; Taché, Y

    1997-05-01

    Neurons that contain substance P (SP) and thyrotropin-releasing hormone (TRH) in medullary midline raphe nuclei project to the dorsal vagal complex (DVC). The modulatory role of SP on basal gastric acid secretion (GAS) and TRH on DVC-induced stimulation of GAS was studied in urethan-anesthetized rats. The stable SP agonist, DiMe-C7 ([pGlu5, MePhe8, MeGly9]SP5-11, 50 and 100 pmol), injected unilaterally into the DVC reduced the GAS response (47 +/- 12 mumol/60 min) to coinjected TRH analog, RX 77368 (25 pmol), by 53% and 85%, respectively, whereas DiMe-C7 (100 pmol) alone had no effect on basal and pentagastrin-stimulated GAS. DiMe-C7 (100 pmol/site) inhibited the GAS response to kainic acid injected into the raphe pallidus (Rpa) when it was injected bilaterally into the DVC but not the hypoglossal nuclei. The SP nourokinin-1-receptor antagonist, CP-96,345, injected bilaterally into the DVC (1 nmol/ site) increased basal GAS (33 +/- 8 mumol/90 min) and potentiated the GAS response to kainic acid injected into the Rpa by 40%. These results suggest that SP acts on neurokinin-1 receptors in the DVC to reduce medullary TRH-induced stimulation of GAS in rats.

  15. Pressurized feed-injection spray-forming apparatus

    DOEpatents

    Berry, R.A.; Fincke, J.R.; McHugh, K.M.

    1995-08-29

    A spray apparatus and method are disclosed for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers. 22 figs.

  16. Pressurized feed-injection spray-forming apparatus

    DOEpatents

    Berry, Ray A.; Fincke, James R.; McHugh, Kevin M.

    1995-01-01

    A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.

  17. 30 CFR 250.121 - What happens when the reservoir contains both original gas in place and injected gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What happens when the reservoir contains both... OPERATIONS IN THE OUTER CONTINENTAL SHELF General Performance Standards § 250.121 What happens when the reservoir contains both original gas in place and injected gas? If the reservoir contains both original gas...

  18. Bubbling at high flow rates in inviscid and viscous liquids (slags)

    NASA Astrophysics Data System (ADS)

    Engh, T. Abel; Nilmani, M.

    1988-02-01

    The behavior of gas discharging into melts at high velocities but still in the bubbling regime has been investigated in a laboratory modeling study for constant flow conditions. Air or helium was injected through a vertical tuyere into water, zinc-chloride, and aqueous glycerol solutions. High speed cinematography and pressure measurements in the tuyere have been carried out simultaneously. Pressure fluctuations at the injection point were monitored and correlated to the mode of bubble formation. The effects of high gas flow rates and high liquid viscosities have been examined in particular. Flow rates were employed up to 10-3 m3/s and viscosity to 0.5 Ns/m2. In order to attain a high gas momentum, the tuyere diameter was only 3 x 10-3 m. The experimental conditions and modeling liquids were chosen with special reference to the established practice of submerged gas injection to treat nonferrous slags. Such slags can be highly viscous. Bubble volume is smaller than that calculated from existing models such as those given by Davidson and Schüler10,11 due to the effect of gas momentum elongating the bubbles. On the other hand, viscosity tends to retard the bubble rise velocity, thus increasing volumes. To take elongation into account, a mathematical model is presented that assumes a prolate ellipsoidal shape of the bubbles. The unsteady potential flow equations for the liquid are solved for this case. Viscous effects are taken into account by noting that flow deviates from irrotational motion only in a thin boundary layer along the surface of the bubble. Thus, drag on the bubble can be obtained by calculating the viscous energy dissipation for potential flow past an ellipse. The time-dependent inertia coefficient for the ellipsoid is found by equating the vertical pressure increase inside and outside the bubble. This pressure change in the bubble is obtained by assuming that gas enters as a homogeneous jet and then calculating the stagnation pressure at the apex of the bubble.

  19. Gas Transport through Fractured Rock near the U20az Borehole, Pahute Mesa, Nevada.

    NASA Astrophysics Data System (ADS)

    Rockhold, M.; Lowrey, J. D.; Kirkham, R.; Olsen, K.; Waichler, S.; White, M. D.; Wurstner White, S.

    2017-12-01

    Field experiments were performed in 2012-13 and 2016-17 at the U-20az testbed at the Nevada National Security Site to develop and evaluate capabilities for monitoring and modeling noble gas transport associated with underground nuclear explosions (UNE). Experiments were performed by injecting both chemical (CF2BR2, SF6) and radioactive (37Ar, 127Xe) gas species into the deep subsurface at this legacy UNE site and monitoring the breakthrough of the gases at different locations on or near the ground surface. Gas pressures were also monitored in both the chimney and at ground surface. Field experiments were modeled using the parallel, non-isothermal, two-phase flow and transport simulator, STOMP-GT. A site conceptual-numerical model was developed from a geologic framework model, and using a dual-porosity/permeability model for the constitutive relative permeability-saturation-capillary pressure relations of the fractured rock units. Comparisons of observed and simulated gas species concentrations show that diffusion is a highly effective transport mechanism under ambient conditions in the water-unsaturated fractured rock. Over-pressurization of the cavity during one of the field campaigns, and barometric pressure fluctuations are shown to result in enhanced gas transport by advection through fractures.

  20. A model for correlating flat plate film cooling effectiveness for rows of round holes

    NASA Astrophysics Data System (ADS)

    Lecuyer, M. R.; Soechting, F. O.

    1985-09-01

    An effective method of cooling, that has found widespread application in aircraft gas turbines, is the injection of a film of cooling air through holes into the hot mainstream gas to provide a buffer layer between the hot gas and the airfoil surface. Film cooling has been extensively investigated and the results have been reported in the literature. However, there is no generalized method reported in the literature to predict the film cooling performance as influenced by the major variables. A generalized film cooling correlation has been developed, utilizing data reported in the literature, for constant velocity and flat plate boundary layer development. This work provides a basic understanding of the complex interaction of the major variables effecting film cooling performance.

  1. Gas-blowout control by water injection through relief wells: a theoretical analysis. [Injection of water into the formation through relief wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehner, F.; Williamson, A.S.

    1974-08-01

    Koninklijke/Shell Exploratie en Produktie Laboratorium in The Netherlands suggests bringing a gas blowout under control by injecting water into the formation through relief wells. By avoiding direct contact between relief well and blowout well, this technique reduces the inflow of gas by creating sufficient back pressure in the formation itself. The mechanics of the technique are considered.

  2. Single hole multi-parameter downhole monitoring of shallow CO2 injection at Maguelone experimental site (Languedoc, France)

    NASA Astrophysics Data System (ADS)

    Denchik, N.; Pezard, P. A.; Abdoulghafour, H.; Lofi, J.; Neyens, D.; Perroud, H.; Henry, G.; Rolland, B.

    2015-12-01

    The Maguelone experimental site for shallow subsurface hydrogeophysical monitoring, located along the Mediterranean Lido near Montpellier (Languedoc, France) has proven over the years to provide a unique setup to test gas storage monitoring methods at shallow depth. The presence of two small reservoirs (R1: 13-16 m and R2: 8-9 m) with impermeable boundaries provides an opportunity to study a saline formation for geological storage both in the field and in a laboratory context. This integrated monitoring concept was first applied at Maguelone for characterization of the reservoir state before and during N2 and CO2 injections as part of the MUSTANG FP7 project. Multimethod monitoring was shown to be sensitive to gas storage within a saline reservoir with clear data changes immediately after the beginning of injection. Pressure remains the first indicator of gas storage at ~8-9 m depth in a small permeable unit (gravels/shells) under the Holocene lagoonal sediments. A good correlation is also obtained between the resistivity response and geochemical parameters from pore fluid sampling (pH, minor and major cation concentrations) at this depth. On the basis of previous gas injection experiments, new holes were drilled as part of PANACEA (EC project) in 2014, including an injection hole targeted for injection at 8-9 m depth in the R2 reservoir in order to have gas injection and gas storage at the same depth, a single hole multi-parameter observatory, and a seismic source hole. A total volume of ~48 m3 of CO2 was injected over ~2 hours on December 4, 2014. The injection rate varied from 24 to 30 m3/h, with a well head pressure of 1.8 bars. All downhole monitoring technologies (resistivity, temperature, pressure, SP and seismic measurements) were combined in the single hole observatory. Such device allows monitoring the downhole system before and after injection and the gas migration from the injection hole, helping to characterize the transport mechanism. Decreasing the number of monitoring-measurements and verification (MMV) holes enables a significant decrease of gas leakage risk. This specific monitoring approach is expected to give information about the safety and reliability of CO2 storage operation that guarantees public acceptance.

  3. 40 CFR Appendix A to Part 75 - Specifications and Test Procedures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA, 703-605-6585 or... specified in section 5.2 of this appendix. Introduce the calibration gas at the gas injection port, as... 5.1 of this appendix. Introduce the calibration gas at the gas injection port, as specified in...

  4. Water Injected Turbomachinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    From antiquity, water has been a source of cooling, lubrication, and power for energy transfer devices. More recent applications in gas turbines demonstrate an added facet, emissions control. Fogging gas turbine inlets or direct injection of water into gas turbine combustors, decreases NOx and increases power. Herein we demonstrate that injection of water into the air upstream of the combustor reduces NOx by factors up to three in a natural gas fueled Trapped Vortex Combustor (TVC) and up to two in a liquid JP-8 fueled (TVC) for a range in water/fuel and fuel/air ratios.

  5. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jean Bustard; Charles Lindsey; Paul Brignac

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particlemore » control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.« less

  6. Estimating the gas and dye quantities for modified tracer technique measurements of stream reaeration coefficients

    USGS Publications Warehouse

    Rathbun, R.E.

    1979-01-01

    Measuring the reaeration coefficient of a stream with a modified tracer technique has been accomplished by injecting either ethylene or ethylene and propane together and a rhodamine-WT dye solution into the stream. The movement of the tracers through the stream reach after injection is described by a one-dimensional diffusion equation. The peak concentrations of the tracers at the downstream end of the reach depend on the concentrations of the tracers in the stream at the injection site, the longitudinal dispersion coefficient, the mean water velocity, the length of the reach, and the duration of the injection period. The downstream gas concentrations also depend on the gas desorption coefficients of the reach. The concentrations of the tracer gases in the stream at the injection site depend on the flow rates of the gases through the injection diffusers, the efficiency of the gas absorption process, and the stream discharge. The concentration of dye in the stream at the injection site depends on the flow rate of the dye solution, the concentration of the dye solution, and the stream discharge. Equations for estimating the gas flow rates, the quantities of the gases, the dye concentration, and the quantity of dye together with procedures for determining the variables in these equations are presented. (Woodard-USGS)

  7. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical andmore » near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.« less

  8. QUANTITATIVE ANALYSIS OF 68 POLAR COMPOUNDS FROM TEN CHEMICAL CLASSES BY DIRECT AQUEOUS INJECTION GAS CHROMATOGRAPHY

    EPA Science Inventory

    Porous polymer packings have been used successfully in many applications of direct aqueous injection gas chromatography. The authors have expanded the use of aqueous injection to the quantitative analysis of 68 alcohols, acetates, ketones, ethers, sulfides, aldehydes, diols, dion...

  9. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    USGS Publications Warehouse

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  10. Deposition of Composite LSCF-SDC and SSC-SDC Cathodes by Axial-Injection Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Harris, Jeffrey; Qureshi, Musab; Kesler, Olivera

    2012-06-01

    The performance of solid oxide fuel cell cathodes can be improved by increasing the number of electrochemical reaction sites, by controlling microstructures, or by using composite materials that consist of an ionic conductor and a mixed ionic and electronic conductor. LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) and SSC (Sm0.5Sr0.5CoO3) cathodes were manufactured by axial-injection atmospheric plasma spraying, and composite cathodes were fabricated by mixing SDC (Ce0.8Sm0.2O1.9) into the feedstock powders. The plasma power was varied by changing the proportion of nitrogen in the plasma gas. The microstructures of cathodes produced with different plasma powers were characterized by scanning electron microscopy and gas permeation measurements. The deposition efficiencies of these cathodes were calculated based on the mass of the sprayed cathode. Particle surface temperatures were measured in-flight to enhance understanding of the relationship between spray parameters, microstructure, and deposition efficiency.

  11. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhen-guo, E-mail: wangzhenguo-wzg@163.com; Wu, Liyin; Li, Qinglian

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. Themore » injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674–2686 (2008)] and Wang et al. [AIAA J. 50, 1360–1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.« less

  12. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, N.; Parker, G.W.; DeLong, L.L.

    1987-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes.Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas.This manual describes the slug-injection and constant-rate injection methods of performing gas-tracer desorption measurements. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients.

  13. Measuring Compartment Size and Gas Solubility in Marine Mammals

    DTIC Science & Technology

    2014-09-30

    analyzed by gas chromatography . Injection of the sample into the gas chromatograph is done using a sample loop to minimize volume injection error. We...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Measuring Compartment Size and Gas Solubility in Marine...study is to develop methods to estimate marine mammal tissue compartment sizes, and tissue gas solubility. We aim to improve the data available for

  14. The U.S. Gas Flooding Experience: CO2 Injection Strategies and Impact on Ultimate Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunez-Lopez, Vanessa; Hosseini, Seyyed; Gil-Egui, Ramon

    The Permian Basin in West Texas and southwestern New Mexico has seen 45 years of oil reserve growth through CO2 enhanced oil recovery (CO2 EOR). More than 60 CO2 EOR projects are currently active in the region’s limestone, sandstone and dolomite reservoirs. Water alternating gas (WAG) has been the development strategy of choice in the Permian for several technical and economic reasons. More recently, the technology started to get implemented in the much more porous and permeable clastic depositional systems of the onshore U.S. Gulf Coast. Continued CO2 injection (CGI), as opposed to WAG, was selected as the injection strategymore » to develop Gulf Coast oil fields, where CO2 injection volumes are significantly larger (up to 6 times larger) than those of the Permian. We conducted a compositional simulation based study with the objective of comparing the CO2 utilization ratios (volume of CO2 injected to produce a barrel of oil) of 4 conventional and novel CO2 injection strategies: (1) continuous gas injection (CGI), (2) water alternating gas (WAG), (3) water curtain injection (WCI), and (4) WAG and WCI combination. These injection scenarios were simulated using the GEM module from the Computer Modeling Group (CMG). GEM is an advanced general equation-of-state compositional simulator, which includes equation of state, CO2 miscible flood, CO2/brine interactions, and complex phase behavior. The simulator is set up to model three fluid phases including water, oil, and gas. Our study demonstrates how the selected field development strategy has a significant impact on the ultimate recovery of CO2-EOR projects, with GCI injection providing maximum oil recovery in absolute volume terms, but with WAG offering a more balanced technical-economical approach.« less

  15. Surface hole gas enabled transparent deep ultraviolet light-emitting diode

    NASA Astrophysics Data System (ADS)

    Zhang, Jianping; Gao, Ying; Zhou, Ling; Gil, Young-Un; Kim, Kyoung-Min

    2018-07-01

    The inherent deep-level nature of acceptors in wide-band-gap semiconductors makes p-ohmic contact formation and hole supply difficult, impeding progress for short-wavelength optoelectronics and high-power high-temperature bipolar electronics. We provide a general solution by demonstrating an ultrathin rather than a bulk wide-band-gap semiconductor to be a successful hole supplier and ohmic contact layer. Free holes in this ultrathin semiconductor are assisted to activate from deep acceptors and swept to surface to form hole gases by a large electric field, which can be provided by engineered spontaneous and piezoelectric polarizations. Experimentally, a 6 nm thick AlN layer with surface hole gas had formed p-ohmic contact to metals and provided sufficient hole injection to a 280 nm light-emitting diode, demonstrating a record electrical-optical conversion efficiency exceeding 8.5% at 20 mA (55 A cm‑2). Our approach of forming p-type wide-band-gap semiconductor ohmic contact is critical to realizing high-efficiency ultraviolet optoelectronic devices.

  16. Modelling gas transport in the shallow subsurface in the Maguelone field experiment

    NASA Astrophysics Data System (ADS)

    Basirat, Farzad; Niemi, Auli; Perroud, Hervé; Lofi, Johanna; Denchik, Nataliya; Lods, Gérard; Pezard, Philippe; Sharma, Prabhakar; Fagerlund, Fritjof

    2013-04-01

    Developing reliable monitoring techniques to detect and characterize CO2 leakage in shallow subsurface is necessary for the safety of any GCS project. To test different monitoring techniques, shallow injection-monitoring experiment have and are being carried out at the Maguelone, along the Mediterranean lido of the Gulf of Lions, near Montpellier, France. This experimental site was developed in the context of EU FP7 project MUSTANG and is documented in Lofi et al. (2012). Gas injection experiments are being carried out and three techniques of pressure, electrical resistivity and seismic monitoring have been used to detect the nitrogen and CO2 release in the near surface environment. In the present work we use the multiphase and multicomponent TOUGH2/EOS7CA model to simulate the gaseous nitrogen and CO2 transport of the experiments carried out so far. The objective is both to gain understanding of the system performance based on the model analysis as well as to further develop and validate modelling approaches for gas transport in the shallow subsurface, against the well-controlled data sets. Numerical simulation can also be used for the prediction of experimental setup limitations. We expect the simulations to represent the breakthrough time for the different tested injection rates. Based on the hydrogeological formation data beneath the lido, we also expect the vertical heterogeneities in grain size distribution create an effective capillary barrier against upward gas transport in numerical simulations. Lofi J., Pezard P.A., Bouchette F., Raynal O., Sabatier P., Denchik N., Levannier A., Dezileau L., and Certain R. Integrated onshore-offshore geophysical investigation of a layered coastal aquifer, NW Mediterranean. Ground Water, (2012).

  17. A Survey of Measurement, Mitigation, and Verification Field Technologies for Carbon Sequestration Geologic Storage

    NASA Astrophysics Data System (ADS)

    Cohen, K. K.; Klara, S. M.; Srivastava, R. D.

    2004-12-01

    The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared sensors and; aerial and satellite imagery. This abstract will describe results, similarities, and contrasts for funded studies from the U.S. DOE's Carbon Sequestration Program including examples from the Sleipner North Sea Project, the Canadian Weyburn Field/Dakota Gasification Plant Project, the Frio Formation Texas Project, and Yolo County Bioreactor Landfill Project. The abstract will also address the following: How are the terms ``measurement,'' ``mitigation''and ``verification'' defined in the Program? What is the U.S. DOE's Carbon Sequestration Program Roadmap and what are the Roadmap goals for MM&V? What is the current status of MM&V technologies?

  18. Assessment of steam-injected gas turbine systems and their potential application

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.

    1982-01-01

    Results were arrived at by utilizing and expanding on information presented in the literature. The results were analyzed and compared with those for simple gas turbine and combined cycles for both utility power generation and industrial cogeneration applications. The efficiency and specific power of simple gas turbine cycles can be increased as much as 30 and 50 percent, respectively, by the injection of steam into the combustor. Steam-injected gas turbines appear to be economically competitive with both simple gas turbine and combined cycles for small, clean-fuel-fired utility power generation and industrial cogeneration applications. For large powerplants with integrated coal gasifiers, the economic advantages appear to be marginal.

  19. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. II. Radiation-Gas Interactions and Outflows

    NASA Astrophysics Data System (ADS)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.

  20. Electrical Resistivity Tomography Monitoring of Soil Remediation for a Garbage Dump

    NASA Astrophysics Data System (ADS)

    shi, X.; Luo, Z.; Zhang, Y.; Fu, Q.; Xu, Z.

    2011-12-01

    Electrical resistivity tomography (ERT) survey was firstly used to investigate the distribution of contaminated soil in a garbage dump area, Wuhan city, China. The result shows that sulfated soil resistivity is about 4 to 7 ohm-m, which is relatively lower than normal soil resistivity of about 15 to 25 ohm-m. The distribution of contaminated soil was delineated using ERT images. Then, ERT survey was carried out in this area for monitoring of remediation of contaminated soil and groundwater. Werner measurements with 60 electrodes of 1 m spacing were taken during the 9-well oxygen injection and nutrition liquid injection period. The difference of apparent resistivity between before gas injection and after gas injection was used to delineate the channel of gas and the trace of gas migration in the porous garbage dump. The electrical resitivity changes between before and after nutrition liquid injection were used to analyze the liquid migration and distribution. The dynamic procedures of gas and water migration are outlined. The results suggest that ERT is a powerful technique for monitoring of soil remediation.

  1. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blunt, Martin J.; Orr, Franklin M.

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1997 - September 1998 under the second year of a three-year grant from the Department of Energy on the "Prediction of Gas Injection Performance for Heterogeneous Reservoirs." The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments, and numerical simulation. The original proposal described research in four areas: (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factorsmore » influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each state of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.« less

  2. Injection related anxiety in insulin-treated diabetes.

    PubMed

    Zambanini, A; Newson, R B; Maisey, M; Feher, M D

    1999-12-01

    The presence of injection related anxiety and phobia may influence compliance, glycaemic control and quality of life in patients with insulin-treated diabetes. Unselected consecutive, insulin-treated patients attending a diabetes clinic for follow-up, completed a standardised questionnaire providing an injection anxiety score (IAS) and general anxiety score (GAS). A total of 115 insulin-treated (80 Type 1 and 35 Type 2) diabetic patients completed the questionnaire. Injections had been avoided secondary to anxiety in 14% of cases and 42% expressed concern at having to inject more frequently. An IAS > or = 3 was seen in 28% of patients and of these, 66% injected insulin one to two times/day, 45% had avoided injections, and 70% would be bothered by more frequent injections. A significant correlation between IAS and GAS was seen (Kendall's tau-a 0.30, 95% CI 0.19-0.41, P < 0.001). GAS was significantly associated with both previous injection avoidance and expressed concern at increased injection frequency. No significant correlation was seen with HbA1c and injection or general anxiety scores. Symptoms relating to insulin injection anxiety and phobia have a high prevalence in an unselected group of diabetic patients requiring insulin injections and are associated with higher levels of general anxiety.

  3. Disruption mitigation by injection of small quantities of noble gas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pautasso, G.; Bernert, M.; Dibon, M.; Duval, B.; Dux, R.; Fable, E.; Fuchs, J. C.; Conway, G. D.; Giannone, L.; Gude, A.; Herrmann, A.; Hoelzl, M.; McCarthy, P. J.; Mlynek, A.; Maraschek, M.; Nardon, E.; Papp, G.; Potzel, S.; Rapson, C.; Sieglin, B.; Suttrop, W.; Treutterer, W.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-01-01

    The most recent experiments of disruption mitigation by massive gas injection in ASDEX Upgrade have concentrated on small—relatively to the past—quantities of noble gas injected, and on the search for the minimum amount of gas necessary for the mitigation of the thermal loads on the divertor and for a significant reduction of the vertical force during the current quench. A scenario for the generation of a long-lived runaway electron beam has been established; this allows the study of runaway current dissipation by moderate quantities of argon injected. This paper presents these recent results and discusses them in the more general context of physical models and extrapolation, and of the open questions, relevant for the realization of the ITER disruption mitigation system.

  4. Enhancing the use of coals by gas reburning-sorbent injection: Volume 3 -- Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at thismore » site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.« less

  5. Estimating gas exchange of CO2 and CH4 between headwater systems and the atmosphere in Southwest Sweden

    NASA Astrophysics Data System (ADS)

    Somlai, Celia; Natchimuthu, Sivakiruthika; Bastviken, David; Lorke, Andreas

    2015-04-01

    Quantifying the role of inland water systems in terms of carbon sinks and sources and their connection to the terrestrial ecosystems and landscapes is fundamental for improving the balance approach of regional and global carbon budgets. Recent research showed that freshwater bodies emit significant amounts of CO2 and CH4 into the atmosphere. The extent of the emissions from small streams and headwaters, however, remains uncertain due to a limited availability of data. Studies have shown that headwater systems receive most of the terrestrial organic carbon, have the highest dissolved CO2 concentration and the highest gas exchange velocities and cover the largest fractional surface area within fluvial networks. The gas exchange between inland waters and the atmosphere is controlled by two factors: the difference between the dissolved gas concentration and its atmospheric equilibrium concentration, and the gas exchange velocity. The direct measurement of the dissolved gas concentration of greenhouse gases can be measured straightforwardly, for example, by gas chromatography from headspace extraction of water sample. In contrast, direct measurement of gas exchange velocity is more complex and time consuming, as simultaneous measurements with a volatile and nonvolatile inert tracer gas are needed. Here we analyze measurements of gas exchange velocities, concentrations and fluxes of dissolved CO2 and CH4, as well as loads of total organic and inorganic carbon in 10 reaches in headwater streams in Southwest Sweden. We compare the gas exchange velocities measured directly through tracer injections with those estimated through various empirical approaches, which are based on modelled and measured current velocity, stream depth and slope. Furthermore, we estimate the resulting uncertainties of the flux estimates. We also present different time series of dissolved CO2, CH4 and O2 concentration, water temperature, barometric pressure, electro conductivity, and pH values measured during the period of tracer injection.

  6. Method for preventing plugging in the pyrolysis of agglomerative coals

    DOEpatents

    Green, Norman W.

    1979-01-23

    To prevent plugging in a pyrolysis operation where an agglomerative coal in a nondeleteriously reactive carrier gas is injected as a turbulent jet from an opening into an elongate pyrolysis reactor, the coal is comminuted to a size where the particles under operating conditions will detackify prior to contact with internal reactor surfaces while a secondary flow of fluid is introduced along the peripheral inner surface of the reactor to prevent backflow of the coal particles. The pyrolysis operation is depicted by two equations which enable preselection of conditions which insure prevention of reactor plugging.

  7. Surface-downhole and crosshole geoelectrics for monitoring of brine injection at the Ketzin CO2 storage site

    NASA Astrophysics Data System (ADS)

    Rippe, Dennis; Bergmann, Peter; Labitzke, Tim; Wagner, Florian; Schmidt-Hattenberger, Cornelia

    2016-04-01

    The Ketzin pilot site in Germany is the longest operating on-shore CO2 storage site in Europe. From June 2008 till August 2013, a total of ˜67,000 tonnes of CO2 were safely stored in a saline aquifer at depths of 630 m to 650 m. The storage site has now entered the abandonment phase, and continuation of the multi-disciplinary monitoring as part of the national project "CO2 post-injection monitoring and post-closure phase at the Ketzin pilot site" (COMPLETE) provides the unique chance to participate in the conclusion of the complete life cycle of a CO2 storage site. As part of the continuous evaluation of the functionality and integrity of the CO2 storage in Ketzin, from October 12, 2015 till January 6, 2015 a total of ˜2,900 tonnes of brine were successfully injected into the CO2 reservoir, hereby simulating in time-lapse the natural backflow of brine and the associated displacement of CO2. The main objectives of this brine injection experiment include investigation of how much of the CO2 in the pore space can be displaced by brine and if this displacement of CO2 during the brine injection differs from the displacement of formation fluid during the initial CO2 injection. Geophysical monitoring of the brine injection included continuous geoelectric measurements accompanied by monitoring of pressure and temperature conditions in the injection well and two adjacent observation wells. During the previous CO2 injection, the geoelectrical monitoring concept at the Ketzin pilot site consisted of permanent crosshole measurements and non-permanent large-scale surveys (Kiessling et al., 2010). Time-lapse geoelectrical tomographies derived from the weekly crosshole data at near-wellbore scale complemented by six surface-downhole surveys at a scale of 1.5 km showed a noticeable resistivity signature within the target storage zone, which was attributed to the CO2 plume (Schmidt-Hattenberger et al., 2011) and interpreted in terms of relative CO2 and brine saturations (Bergmann et al., 2012). During the brine injection, usage of a new data acquisition unit allowed the daily collection of an extended crosshole data set. This data set was complemented by an alternative surface-downhole acquisition geometry, which for the first time allowed for regular current injections from three permanent surface electrodes into the existing electrical resistivity downhole array without the demand of an extensive field survey. This alternative surface-downhole acquisition geometry is expected to be characterized by good data quality and well confined sensitivity to the target storage zone. Time-lapse geoelectrical tomographies have been derived from both surface-downhole and crosshole data and show a conductive signature around the injection well associated with the displacement of CO2 by the injected brine. In addition to the above mentioned objectives of this brine injection experiment, comparative analysis of the surface-downhole and crosshole data provides the opportunity to evaluate the alternative surface-downhole acquisition geometry with respect to its resolution within the target storage zone and its ability to quantitatively constrain the displacement of CO2 during the brine injection. These results will allow for further improvement of the deployed alternative surface-downhole acquisition geometries. References Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., Rücker, C., Labitzke, T., Henninges, J., Baumann, G., Schütt, H. (2012). Surface-Downhole Electrical Resistivity Tomography applied to Monitoring of the CO2 Storage Ketzin (Germany). Geophysics, 77, B253-B267. Kiessling, D., Schmidt-Hattenberger, C., Schuett, H., Schilling, F., Krueger, K., Schoebel, B., Danckwardt, E., Kummerow, J., CO2SINK Group (2010). Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). International Journal of Greenhouse Gas Control, 4(5), 816-826. Schmidt-Hattenberger, C., Bergmann, P., Kießling, D., Krüger, K., Rücker, C., Schütt, H., Ketzin Group (2011). Application of a Vertical Electrical Resistivity Array (VERA) for monitoring CO2 migration at the Ketzin site: First performance evaluation. Energy Procedia, 4, 3363-3370.

  8. Estimation of seismically detectable portion of a gas plume: CO2CRC Otway project case study

    NASA Astrophysics Data System (ADS)

    Pevzner, Roman; Caspari, Eva; Bona, Andrej; Galvin, Robert; Gurevich, Boris

    2013-04-01

    CO2CRC Otway project comprises of several experiments involving CO2/CH4 or pure CO2 gas injection into different geological formations at the Otway test site (Victoria, Australia). During the first stage of the project, which was finished in 2010, more than 64,000 t of gas were injected into the depleted gas reservoir at ~2 km depth. At the moment, preparations for the next stage of the project aiming to examine capabilities of seismic monitoring of small scale injection (up to 15,000 t) into saline formation are ongoing. Time-lapse seismic is one of the most typical methods for CO2 geosequestration monitoring. Significant experience was gained during the first stage of the project through acquisition and analysis of the 4D surface seismic and numerous time-lapse VSP surveys. In order to justify the second stage of the project and optimise parameters of the experiment, several modelling studies were conducted. In order to predict seismic signal we populate realistic geological model with elastic properties, model their changes using fluid substitution technique applied to the fluid flow simulation results and compute synthetic seismic baseline and monitor volumes. To assess detectability of the time-lapse signal caused by the injection, we assume that the time-lapse noise level will be equivalent to the level of difference between the last two Otway 3D surveys acquired in 2009 and 2010 using conventional surface technique (15,000 lbs vibroseis sources and single geophones as the receivers). In order to quantify the uncertainties in plume imaging/visualisation due to the time-lapse noise realisation we propose to use multiple noise realisations with the same F-Kx-Ky amplitude spectra as the field noise for each synthetic signal volume. Having signal detection criterion defined in the terms of signal/time- lapse noise level on a single trace we estimate visible portion of the plume as a function of this criterion. This approach also gives an opportunity to attempt to evaluate probability of the signal detection. The authors acknowledge the funding provided by the Australian government through its CRC program to support this CO2CRC research project. We also acknowledge the CO2CRC's corporate sponsors and the financial assistance provided through Australian National Low Emissions Coal Research and Development (ANLEC R&D). ANLEC R&D is supported by Australian Coal Association Low Emissions Technology Limited and the Australian Government through the Clean Energy Initiative.

  9. 40 CFR 49.4164 - Construction and operational control measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... closed-vent system to: (i) An operating system designed to recover and inject all the produced natural... through a closed-vent system to: (i) An operating system designed to recover and inject the natural gas... operating system designed to recover and inject natural gas becomes temporarily infeasible and there is no...

  10. 40 CFR 49.4164 - Construction and operational control measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... closed-vent system to: (i) An operating system designed to recover and inject all the produced natural... through a closed-vent system to: (i) An operating system designed to recover and inject the natural gas... operating system designed to recover and inject natural gas becomes temporarily infeasible and there is no...

  11. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  12. Method and apparatus for preventing overspeed in a gas turbine

    DOEpatents

    Walker, William E.

    1976-01-01

    A method and apparatus for preventing overspeed in a gas turbine in response to the rapid loss of applied load is disclosed. The method involves diverting gas from the inlet of the turbine, bypassing the same around the turbine and thereafter injecting the diverted gas at the turbine exit in a direction toward or opposing the flow of gas through the turbine. The injected gas is mixed with the gas exiting the turbine to thereby minimize the thermal shock upon equipment downstream of the turbine exit.

  13. Electron kinetics in capacitively coupled plasmas modulated by electron injection

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Peng, Yanli; Innocenti, Maria Elena; Jiang, Wei; Wang, Hong-yu; Lapenta, Giovanni

    2017-09-01

    The controlling effect of an electron injection on the electron energy distribution function (EEDF) and on the energetic electron flux, in a capacitive radio-frequency argon plasma, is studied using a one-dimensional particle-in-cell/Monte Carlo collisions model. The input power of the electron beam is as small as several tens of Watts with laboratory achievable emission currents and energies. With the electron injection, the electron temperature decreases but with a significant high energy tail. The electron density, electron temperature in the sheath, and electron heating rate increase with the increasing emission energy. This is attributed to the extra heating of the energetic electrons in the EEDF tail. The non-equilibrium EEDF is obtained for strong non-local distributions of the electric field, electron heating rate, excitation, and ionization rate, indicating the discharge has transited from a volume heating (α-mode dominated) into a sheath heating (γ-mode dominated) type. In addition, the electron injection not only modifies the self-bias voltage, but also enhances the electron flux that can reach the electrodes. Moreover, the relative population of energetic electrons significantly increases with the electron injection compared to that without the electron injection, relevant for modifying the gas and surface chemistry reactions.

  14. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative fuels. Optical patternation data and line of sight laser diffraction data show that there is significant difference between jet fuels. Particularly at low fuel injection pressures (0.345 MPa) and cold temperatures (-40 C), the patternation data shows that the total surface area in the spray at 38.1 mm from the pressure swirl injector for the JP-10 fuel type is one-sixth the amount of the JP-8. Finally, this study compares the atomizer performance of a pressure swirl nozzle to a hybrid air blast nozzle. The total surface area for both the hybrid air blast nozzle and the pressure swirl nozzle show a similar decline in atomization performance at low fuel injection pressures and cold temperatures. However, the optical patternator radial profile data and the line of sight laser diffraction data show that the droplet size and spray distribution data are less affected by injection conditions and fuel type in the hybrid air blast nozzle, than they are in the pressure swirl nozzle. One explanation is that the aerodynamic forces associated with the swirler on the hybrid air blast nozzle control the distribution droplets in the spray. This is in contrast to the pressure swirl nozzle droplet distribution that is controlled by internal geometry and droplet ballistics.

  15. Inverse modeling of ground surface uplift and pressure with iTOUGH-PEST and TOUGH-FLAC: The case of CO2 injection at In Salah, Algeria

    NASA Astrophysics Data System (ADS)

    Rinaldi, Antonio P.; Rutqvist, Jonny; Finsterle, Stefan; Liu, Hui-Hai

    2017-11-01

    Ground deformation, commonly observed in storage projects, carries useful information about processes occurring in the injection formation. The Krechba gas field at In Salah (Algeria) is one of the best-known sites for studying ground surface deformation during geological carbon storage. At this first industrial-scale on-shore CO2 demonstration project, satellite-based ground-deformation monitoring data of high quality are available and used to study the large-scale hydrological and geomechanical response of the system to injection. In this work, we carry out coupled fluid flow and geomechanical simulations to understand the uplift at three different CO2 injection wells (KB-501, KB-502, KB-503). Previous numerical studies focused on the KB-502 injection well, where a double-lobe uplift pattern has been observed in the ground-deformation data. The observed uplift patterns at KB-501 and KB-503 have single-lobe patterns, but they can also indicate a deep fracture zone mechanical response to the injection. The current study improves the previous modeling approach by introducing an injection reservoir and a fracture zone, both responding to a Mohr-Coulomb failure criterion. In addition, we model a stress-dependent permeability and bulk modulus, according to a dual continuum model. Mechanical and hydraulic properties are determined through inverse modeling by matching the simulated spatial and temporal evolution of uplift to InSAR observations as well as by matching simulated and measured pressures. The numerical simulations are in agreement with both spatial and temporal observations. The estimated values for the parameterized mechanical and hydraulic properties are in good agreement with previous numerical results. In addition, the formal joint inversion of hydrogeological and geomechanical data provides measures of the estimation uncertainty.

  16. Early direct-injection, low-temperature combustion of diesel fuel in an optical engine utilizing a 15-hole, dual-row, narrow-included-angle nozzle.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehrke, Christopher R.; Radovanovic, Michael S.; Milam, David M.

    2008-04-01

    Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70/mD and 5 holes x 35/mD) with 103-/gmm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70/mD before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around amore » 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with pool-fire activity. Smoke and NO/dx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.« less

  17. Inverse modeling of ground surface uplift and pressure with iTOUGH-PEST and TOUGH-FLAC: The case of CO2 injection at In Salah, Algeria

    DOE PAGES

    Rinaldi, Antonio P.; Rutqvist, Jonny; Finsterle, Stefan; ...

    2016-10-24

    Ground deformation, commonly seen in storage projects, carries useful information about processes occurring in the injection formation. The Krechba gas field at In Salah (Algeria) is one of the best-known sites for studying ground surface deformation during geological carbon storage. At this first industrial-scale on-shore CO 2 demonstration project, satellite-based ground-deformation monitoring data of high quality are available and used to study the large-scale hydrological and geomechanical response of the system to injection. In this work, we carry out coupled fluid flow and geomechanical simulations to understand the uplift at three different CO 2 injection wells (KB-501, KB-502, KB-503). Previousmore » numerical studies focused on the KB-502 injection well, where a double-lobe uplift pattern has been observed in the ground-deformation data. The observed uplift patterns at KB-501 and KB-503 have single-lobe patterns, but they can also indicate a deep fracture zone mechanical response to the injection.The current study improves the previous modeling approach by introducing an injection reservoir and a fracture zone, both responding to a Mohr-Coulomb failure criterion. In addition, we model a stress-dependent permeability and bulk modulus, according to a dual continuum model. Mechanical and hydraulic properties are determined through inverse modeling by matching the simulated spatial and temporal evolution of uplift to InSAR observations as well as by matching simulated and measured pressures. The numerical simulations are in agreement with both spatial and temporal observations. The estimated values for the parameterized mechanical and hydraulic properties are in good agreement with previous numerical results. In addition, the formal joint inversion of hydrogeological and geomechanical data provides measures of the estimation uncertainty.« less

  18. 30 CFR 250.120 - How does injecting, storing, or treating gas affect my royalty payments?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF General...) If you produce gas from an OCS lease and inject it into a reservoir on the lease or unit for the... the reservoir. (b) If you produce gas from an OCS lease and store it according to § 250.119, you must...

  19. Laboratory Measurements of Oxygen Gas Release from Basaltic Minerals Exposed to UV- Radiation: Implications for the Viking Gas Exchange Experiments

    NASA Astrophysics Data System (ADS)

    Hurowitz, J. A.; Yen, A. S.

    2007-12-01

    The biology experiments onboard the Viking Landers determined that the Martian soils at Chryse and Utopia Planitia contain an unknown chemical compound of a highly oxidizing nature. The Gas Exchange Experiments (GEx) demonstrated that the humidification of a 1-cc Martian soil sample resulted in the production of as much as 790 nanomoles of oxygen gas. Yen et al. (2000) have provided experimental evidence that superoxide radicals can be generated on plagioclase feldspar (labradorite) grain surfaces by exposure to ultraviolet (UV) light in the presence of oxygen gas. Adsorbed superoxide radicals are thought to react readily with water vapor, and produce oxygen gas in quantities sufficient to explain the Viking GEx results. Direct evidence for the formation of oxygen gas, however, was not provided in the experiments of Yen et al (2000). Accordingly, the motivation of this study is to determine whether superoxide radicals adsorbed on labradorite surfaces are capable of producing oxygen gas upon exposure to water vapor. We have constructed an experimental apparatus that is capable of monitoring oxygen gas release from basaltic mineral powders that have been exposed to UV-radiation under Martian atmospheric pressure conditions. The apparatus consists of a stainless-steel vacuum chamber with a UV- transparent window where sample radiation exposures are performed. The vacuum chamber has multiple valved ports for injection of gases and water vapor. The vacuum chamber is connected via a precision leak valve to a quadrupole mass spectrometer, which measures changes in the composition of the headspace gases over our mineral samples. We will report on the results of our experiments, which are aimed at detecting and quantifying oxygen gas release from UV-exposed basaltic mineral samples using this new experimental facility. These results will further constrain whether superoxide ions adsorbed on mineral surfaces provide a viable explanation for the Viking GEx results, which have been of considerable controversy in the roughly three decades since the measurements were first made.

  20. Investigating the Hydro-geochemical Impact of Fugitive Methane on Groundwater: The Borden Aquifer Controlled Release Study

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.

    2014-12-01

    Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.

  1. Investigating the Hydro-geochemical Impact of Fugitive Methane on Groundwater: The Borden Aquifer Controlled Release Study

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.

    2015-12-01

    Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.

  2. Bubble Formation at a Submerged Orifice in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1994-01-01

    The dynamic regime of gas injection through a circular plate orifice into an ideally wetting liquid is considered, when successively detached bubbles may be regarded as separate identities. In normal gravity and at relatively low gas flow rates, a growing bubble is modeled as a spherical segment touching the orifice perimeter during the whole time of its evolution. If the flow rate exceeds a certain threshold value, another stage of the detachment process takes place in which an almost spherical gas envelope is connected with the orifice by a nearly cylindrical stem that lengthens as the bubble rises above the plate. The bubble shape resembles then that of a mushroom and the upper envelope continues to grow until the gas supply through the stem is completely cut off. Such a stage is always present under conditions of sufficiently low gravity, irrespective of the flow rate. Two major reasons make for bubble detachment: the buoyancy force and the force due to the momentum inflow into the bubble with the injected gas. The former force dominates the process at normal gravity whereas the second one plays a key role under negligible gravity conditions. It is precisely this fundamental factor that conditions the drastic influence on bubble growth and detachment that changes in gravity are able to cause. The frequency of bubble formation is proportional to and the volume of detached bubbles is independent of the gas flow rate in sufficiently low gravity, while at normal and moderately reduced gravity conditions the first variable slightly decreases and the second one almost linearly increases as the flow rate grows. Effects of other parameters, such as the orifice radius, gas and liquid densities, and surface tension are discussed.

  3. Radioactive 133-Xenon gas-filled balloon to prevent restenosis: dosimetry, efficacy, and safety considerations.

    PubMed

    Apple, Marc; Waksman, Ron; Chan, Rosanna C; Vodovotz, Yoram; Fournadjiev, Jana; Bass, Bill G

    2002-08-06

    Ionizing radiation administered intraluminally via catheter-based systems using solid beta and gamma sources or liquid-filled balloons has shown reduction in the neointima formation after injury in the porcine model. We propose a novel system that uses a 133-Xenon (133Xe) radioactive gas-filled balloon catheter system. Overstretch balloon injury was performed in the coronary arteries of 33 domestic pigs. A novel 133Xe radioactive gas-filled balloon (3.5/45 mm) was positioned to overlap the injured segment with margins. After vacuum was obtained in the balloon catheter, approximately 2.5 cc of 133Xe gas was injected to fill the balloon. Doses of 0, 7.5, 15, and 30 Gy were delivered to a distance of 0.25 mm from the balloon surface. The dwell time ranged from 1.0 to 4.0 minutes, depending on the dose. Localization of 133Xe in the balloon was verified by a gamma camera. The average activity in a 3.5/45-mm balloon was measured at 67.7+/-12.1 mCi, and the total diffusion loss of the injected dose was 0.26% per minute of the injected dose. Bedside radiation exposure measured between 2 and 6 mR/h, and the shallow dose equivalent was calculated as 0.037 mrem per treatment. Histomorphometric analysis at 2 weeks showed inhibition of the intimal area (intimal area corrected for medial fracture length [IA/FL]) in the irradiated segments of 0.26+/-0.08 with 30 Gy, 0.07+/-0.24 with 15 Gy, and 0.12+/-0.89 with 7.5 Gy versus 0.76+/-0.08 with control P<0.001. 133Xe gas-filled balloon is feasible and effective in the reduction of neointima formation in the porcine model and safe for use in coronary arteries.

  4. Development of a Fast Valve for Disruption Mitigation and its Preliminary Application to EAST and HT-7

    NASA Astrophysics Data System (ADS)

    Zhuang, Huidong; Zhang, Xiaodong

    2013-08-01

    In large tokamaks, disruption of high current plasma would damage plasma facing component surfaces (PFCs) or other inner components due to high heat load, electromagnetic force load and runaway electrons. It would also influence the subsequent plasma discharge due to production of impurities during disruptions. So the avoidance and mitigation of disruptions is essential for the next generation of tokamaks, such as ITER. Massive gas injection (MGI) is a promising method of disruption mitigation. A new fast valve has been developed successfully on EAST. The valve can be opened in 0.5 ms, and the duration of open state is largely dependent on the gas pressure and capacitor voltage. The throughput of the valve can be adjusted from 0 mbar·L to 700 mbar·L by changing the capacitor voltage and gas pressure. The response time and throughput of the fast valve can meet the requirement of disruption mitigation on EAST. In the last round campaign of EAST and HT-7 in 2010, the fast valve has operated successfully. He and Ar was used for the disruption mitigation on HT-7. By injecting the proper amount of gas, the current quench rate could be slowed down, and the impurities radiation would be greatly improved. In elongated plasmas of EAST discharges, the experimental data is opposite to that which is expected.

  5. High productivity injection practices at Rouge Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, D.H.; Hegler, G.L.; Falls, C.E.

    1995-12-01

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day ormore » 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.« less

  6. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  7. Plasma discharge elemental detector for a mass spectrometer

    NASA Astrophysics Data System (ADS)

    Heppner, R. A.

    1983-06-01

    A material to be analyzed is injected into a mirowave-induced plasma discharge unit, in which the material is carried with a flow of buffer gas through an intense microwave energy field which produces a plasma discharge in the buffer gas. As the material exits from the plasma discharge, the material is sampled and conveyed along a capillary transfer tube to a mass spectrometer where it is analyzed. The plasma discharge causes dissociation of complex organic molecules into simpler molecules which return to the neutral ground state before they are analyzed in the mass spectrometer. The buffer gas is supplied to one end portion of the discharge tube and is withdrawn from the other end portion by a vacuum pump which maintains a subatmospheric pressure in the discharge tube. The sample material is injected by a capillary injection tube into the buffer gas flow as it enters the plasma discharge zone. The dissociated materials are sampled by an axial sampling tube having an entrance where the buffer gas exits from the plasma discharge zone. The sample material may be supplied by a gas chromatography having a capillary effluent line connected to the capillary injection tube, so that the effluent material is injected into the microwave induced plasma discharge. The microwave field is produced by a cavity resonator through which the discharge tube passes.

  8. Method for minimizing decarburization and other high temperature oxygen reactions in a plasma sprayed material

    DOEpatents

    Lenling, William J.; Henfling, Joseph A.; Smith, Mark F.

    1993-06-08

    A method is disclosed for spray coating material which employs a plasma gun that has a cathode, an anode, an arc gas inlet, a first powder injection port, and a second powder injection port. A suitable arc gas is introduced through the arc gas inlet, and ionization of the arc gas between the cathode and the anode forms a plasma. The plasma is directed to emenate from an open-ended chamber defined by the boundary of the anode. A coating is deposited upon a base metal part by suspending a binder powder within a carrier gas that is fed into the plasma through the first powder injection port; a material subject to degradation by high temperature oxygen reactions is suspended within a carrier gas that is fed into the plasma through the second injection port. The material fed through the second injection port experiences a cooler portion of the plasma and has a shorter dwell time within the plasma to minimize high temperature oxygen reactions. The material of the first port and the material of the second port intermingle within the plasma to form a uniform coating having constituent percentages related to the powder-feed rates of the materials through the respective ports.

  9. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  10. Computational Investigation of Combustion Instabilities in a Laboratory-Scale LDI Gas Turbine Engine

    DTIC Science & Technology

    2013-06-01

    combustor by the insertion of a slotted inlet and an exit nozzle , whereas the reduced geometry is acoustically open. Table 2 Summary of Cases Considered... nozzle located at the right-end surface, an outlet condition is imposed by a characteristic back pressure condition. The fuel spray is injected at the...Computational Mesh visualized around the fuel nozzle and swirler III. Decomposition Methods For Combustion Dynamics Diagnostics To understand the

  11. Case history of the Seven Rivers Sand Waterflood, Crockett County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, E.A.; Bates, T.P.

    1965-04-22

    The Noelke Field is located approximately 6 1/2 miles SE of Iraan in Crockett County, Texas. The field covers some 2760 proven productive acres with an estimated 1300 acres being oil-productive and the remainder being high enough structurally to carry gas saturation. This report covers only the southern segment. The Noelke field produces from the Seven Rivers sand of the Permian System. The sand is found at depths ranging from 1006 to 1756 ft from the surface. Illustrations show field location, gas cap and oil segments, structure of the southern segment, isopachs, production history of the southern segment, and themore » injection pattern. Initial water injection was realized on Nov. 17, 1957, with all wells taking water readily at zero pressure. Initial flood response was detected in the first well in July 1958, or 8 months after initial injection. The response was positive and significant, reaching 75 bbl oil per day and no water in a month. Production rapidly increased during all of 1959 and reached a peak rate of 2580 bbl in Jan. 1960. Production declined mildly thereafter, and reached a level of 401 bbl during Dec. 1962, then gradually declined thereafter through 1964 to the economic limit. This shallow waterflood project proved highly successful.« less

  12. The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the Common Era.

    PubMed

    Vidal, Céline M; Métrich, Nicole; Komorowski, Jean-Christophe; Pratomo, Indyo; Michel, Agnès; Kartadinata, Nugraha; Robert, Vincent; Lavigne, Franck

    2016-10-10

    Large explosive eruptions inject volcanic gases and fine ash to stratospheric altitudes, contributing to global cooling at the Earth's surface and occasionally to ozone depletion. The modelling of the climate response to these strong injections of volatiles commonly relies on ice-core records of volcanic sulphate aerosols. Here we use an independent geochemical approach which demonstrates that the great 1257 eruption of Samalas (Lombok, Indonesia) released enough sulphur and halogen gases into the stratosphere to produce the reported global cooling during the second half of the 13th century, as well as potential substantial ozone destruction. Major, trace and volatile element compositions of eruptive products recording the magmatic differentiation processes leading to the 1257 eruption indicate that Mt Samalas released 158 ± 12 Tg of sulphur dioxide, 227 ± 18 Tg of chlorine and a maximum of 1.3 ± 0.3 Tg of bromine. These emissions stand as the greatest volcanogenic gas injection of the Common Era. Our findings not only provide robust constraints for the modelling of the combined impact of sulphur and halogens on stratosphere chemistry of the largest eruption of the last millennium, but also develop a methodology to better quantify the degassing budgets of explosive eruptions of all magnitudes.

  13. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    DOE PAGES

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; ...

    2015-01-09

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less

  14. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less

  15. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Y. L.; Southwestern Institute of Physics, Chengdu 610041; Wang, Z. H., E-mail: zhwang@swip.ac.cn

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heatmore » and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less

  16. Subsurface brine injection: Proactive approach to close the produced water loop in the western desert of Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farid, E.E.; Nour, M.H.

    1996-11-01

    In 1988 a major onshore production facility was producing oil from eight formations in six oil fields located in the western desert of Egypt. Two of these formations include active water drive reservoirs, in addition; three reservoirs at that date were receiving water injection to enhance oil recovery. To handle the increasing volumes of the produced water (which is contaminated with oil, production chemicals and other pollutants), three alternatives were investigated: (1) Injection into disposal wells. (2) Dumping in surface disposal pits. (3) Re-injection to waterflood some oil reservoirs. The investigation revealed that the first two options are technically unfavorable,more » also they are conventional Waste Management Technologies (WMT) which provide short-term remedial solution. In contrast, Produced Water Re-Injection (PWRI) is an Environmental Control Technology (ECT) which minimize the environmental impact through process improvements. A state -of-the-art re-injection process was utilized using chemical treatment, gas liberation, settling, filtration and injection. This process represents a combination of two (ECT) methods: Reuse (for water flooding) and Recycling (when brine is redisposed underground). This process reduce the overall volumes of produced water to be disposed, increase the oil reserves, reservoir pressure and oil production and converse the underground water reserve.« less

  17. Performance and stability analysis of gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems

    NASA Astrophysics Data System (ADS)

    Yoo, Yeon-Jong

    The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the optimized stable design of the gas-injection enhanced natural circulation of STAR-LM with substantially improved power level and economical competitiveness. Furthermore, combined with the parametric study, this research could contribute a guideline for the design of other similar heavy-liquid-metal-cooled natural circulation systems with gas injection.

  18. Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2002-01-01

    Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the design speed, and similar results were obtained. In most cases, the greatest improvement in surge margin occurred at fairly low levels of injected flow rate. Externally supplied injection air was used in these experiments. However, the injected flow rates that provided the greatest benefit could be produced using injection air that is recirculating between the diffuser discharge and nozzles located in the diffuser vaneless region. Future experiments will evaluate the effectiveness of recirculating air injection.

  19. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.

    PubMed

    Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke

    2014-11-01

    A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating by the helium ion beam, it was observed that an original probe shape was transformed. AFM measurement of a reference sample (pitch 100-500 nm, depth 100 nm) of the lines and spaces was performed using the above probes. The conventional probes which did not bring up platinum was not able to get into the ditch enough. Therefore it was found that a salient was big and a reentrant was shallow. On the other hand, the probe which brought up platinum was able to enter enough to the depths of the ditch.jmicro;63/suppl_1/i30-a/DFU075F1F1DFU075F1Fig.1.SHIM image of the AFM probe with the Pt nano-pillar fabricated by ion-beam induced deposition. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; Watkins, Thomas R.; List, III, Frederick Alyious

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offersmore » an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.« less

  1. Evaluation of fumigation and surface seal methods on fumigant emissions in an orchard replant field.

    PubMed

    Gao, Suduan; Trout, Thomas J; Schneider, Sally

    2008-01-01

    Soil fumigation is an important management practice for controlling soil pests and enabling successful replanting of orchards. Reducing emissions is required to minimize the possible worker and bystander risk and the contribution of fumigants to the atmosphere as volatile organic compounds that lead to the formation of ground-level ozone. A field trial was conducted in a peach orchard replant field to investigate the effects of fumigation method (shank-injection vs. subsurface drip-application treatments) and surface treatments (water applications and plastic tarps) on emissions of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) from shank-injection of Telone C-35 and drip application of InLine. Treatments included control (no water or soil surface treatment); standard high-density polyethylene (HDPE) tarp, virtually impermeable film (VIF) tarp, and pre-irrigation, all over shank injection; and HDPE tarp over and irrigation with micro-sprinklers before and after the drip application. The highest 1,3-D and CP emission losses over a 2-wk monitoring period were from the control (36% 1,3-D and 30% CP) and HDPE tarp (43% 1,3-D and 17% CP) over shank injection. The pre-irrigation 4 d before fumigation and VIF tarp over shank injection had similar total emission losses (19% 1,3-D and 8-9% CP). The HDPE tarp and irrigations over subsurface drip-application treatments resulted in similar and the lowest emission losses (12-13% 1,3-D, and 2-3% CP). Lower fumigant concentrations in the soil-gas phase were observed with drip-application than in the shank-injection treatments; however, all treatments provided 100% kill to citrus nematodes in bags buried from 30 to 90 cm depth. Pre-irrigation and drip application seem to be effective to minimize emissions of 1,3-D and CP.

  2. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.

    1989-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed whereby a radioactive tracer gas was injected into a stream-the principle being that the tracer gas would be desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. This manual describes the slug-injection and constant-rate-injection methods of measuring gas-tracer desorption. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, on methods of injection, sampling, and analysis, and on techniques for computing desorption and reaeration coefficients.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.B.

    This paper reports on experiments to examine gas migration rates in drilling muds that were performed in a 15-m-long, 200-mm-ID inclinable flow loop where air injection simulates gas entry during a kick. These tests were conducted using a xanthum gum (a common polymer used in drilling fluids) solution to simulate drilling muds as the liquid phase and air as the gas phase. This work represents a significant extension of existing correlations for gas/liquid flows in large pipe diameters with non- Newtonian fluids. Bubbles rise faster in drilling muds than in water despite the increased viscosity. This surprising result is causedmore » by the change in the flow regime, with large slug-type bubbles forming at lower void fractions. The gas velocity is independent of void fraction, thus simplifying flow modeling. Results show that a gas influx will rise faster in a well than previously believed. This has major implications for kick simulation, with gas arriving at the surface earlier than would be expected and the gas outflow rate being higher than would have been predicted. A model of the two-phase gas flow in drilling mud, including the results of this work, has been incorporated into the joint Schlumberger Cambridge Research (SCR)/BP Intl. kick model.« less

  4. A method to predict equilibrium conditions of gas hydrate formation in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, M.A.; Pooladi-Darvish, M.; Bishnoi, P.R.

    1999-06-01

    In the petroleum industry, it is desirable to avoid the formation of gas hydrates. When gas hydrates form, they tend to agglomerate and block pipelines and process equipment. However, naturally occurring gas hydrates that form in the permafrost region or in deep oceans represent a vast untouched natural gas reserve. Although the exact amount of gas in the hydrate form is not known, it is believed to be comparable to the known amount of gas in the free state. Numerous methods for the recovery of natural gas from hydrate fields have been proposed. These techniques include thermal decomposition, depressurization, andmore » chemical injection. To fully exploit hydrate reserves, it will be necessary to know the decomposition/formation conditions of the gas hydrate in porous media. A predictive model has been developed to determine the incipient hydrate formation conditions in porous media. The only additional information that is needed to determine the incipient hydrate formation conditions is the pore radius, surface energy per unit area, and wetting angle. It was found that the model performed well in predicting the experimental data of Handa and Stupin.« less

  5. CO2 adsorption-assisted CH4 desorption on carbon models of coal surface: A DFT study

    NASA Astrophysics Data System (ADS)

    Xu, He; Chu, Wei; Huang, Xia; Sun, Wenjing; Jiang, Chengfa; Liu, Zhongqing

    2016-07-01

    Injection of CO2 into coal is known to improve the yields of coal-bed methane gas. However, the technology of CO2 injection-enhanced coal-bed methane (CO2-ECBM) recovery is still in its infancy with an unclear mechanism. Density functional theory (DFT) calculations were performed to elucidate the mechanism of CO2 adsorption-assisted CH4 desorption (AAD). To simulate coal surfaces, different six-ring aromatic clusters (2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6, and 7 × 7) were used as simplified graphene (Gr) carbon models. The adsorption and desorption of CH4 and/or CO2 on these carbon models were assessed. The results showed that a six-ring aromatic cluster model (4 × 4) can simulate the coal surface with limited approximation. The adsorption of CO2 onto these carbon models was more stable than that in the case of CH4. Further, the adsorption energies of single CH4 and CO2 in the more stable site were -15.58 and -18.16 kJ/mol, respectively. When two molecules (CO2 and CH4) interact with the surface, CO2 compels CH4 to adsorb onto the less stable site, with a resulting significant decrease in the adsorption energy of CH4 onto the surface of the carbon model with pre-adsorbed CO2. The Mulliken charges and electrostatic potentials of CH4 and CO2 adsorbed onto the surface of the carbon model were compared to determine their respective adsorption activities and changes. At the molecular level, our results showed that the adsorption of the injected CO2 promoted the desorption of CH4, the underlying mechanism of CO2-ECBM.

  6. Seasonal persistence of faecal indicator organisms in soil following dairy slurry application to land by surface broadcasting and shallow injection.

    PubMed

    Hodgson, Christopher J; Oliver, David M; Fish, Robert D; Bulmer, Nicholas M; Heathwaite, A Louise; Winter, Michael; Chadwick, David R

    2016-12-01

    Dairy farming generates large volumes of liquid manure (slurry), which is ultimately recycled to agricultural land as a valuable source of plant nutrients. Different methods of slurry application to land exist; some spread the slurry to the sward surface whereas others deliver the slurry under the sward and into the soil, thus helping to reduce greenhouse gas (GHG) emissions from agriculture. The aim of this study was to investigate the impact of two slurry application methods (surface broadcast versus shallow injection) on the survival of faecal indicator organisms (FIOs) delivered via dairy slurry to replicated grassland plots across contrasting seasons. A significant increase in FIO persistence (measured by the half-life of E. coli and intestinal enterococci) was observed when slurry was applied to grassland via shallow injection, and FIO decay rates were significantly higher for FIOs applied to grassland in spring relative to summer and autumn. Significant differences in the behaviour of E. coli and intestinal enterococci over time were also observed, with E. coli half-lives influenced more strongly by season of application relative to the intestinal enterococci population. While shallow injection of slurry can reduce agricultural GHG emissions to air it can also prolong the persistence of FIOs in soil, potentially increasing the risk of their subsequent transfer to water. Awareness of (and evidence for) the potential for 'pollution-swapping' is critical in order to guard against unintended environmental impacts of agricultural management decisions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Secondary flow and heat transfer control in gas turbine inlet nozzle guide vanes

    NASA Astrophysics Data System (ADS)

    Burd, Steven Wayne

    1998-12-01

    Endwall heat transfer is a very serious problem in the inlet nozzle guide vane region of gas turbine engines. To resolve heat transfer concerns and provide the desired thermal protection, modern cooling flows for the vane endwalls tend to be excessive leading to lossy and inefficient designs. Coolant introduction is further complicated by the flow patterns along vane endwall surfaces. They are three-dimensional and dominated by strong, complex secondary flows. To achieve performance goals for next-generation engines, more aerodynamically efficient and advanced cooling concepts, including combustor bleed cooling, must be investigated. To this end, the overall performance characteristics of several combustor bleed flow designs are assessed in this experimental study. In particular, their contributions toward secondary flow control and component cooling are documented. Testing is performed in a large-scale, guide vane simulator comprised of three airfoils encased between one contoured and one flat endwall. Core flow is supplied to this simulator at an inlet chord Reynolds number of 350,000 and turbulence intensity of 9.5%. Combustor bleed cooling flow is injected through the contoured endwall via inclined slots. The slots vary in cross-sectional area, have equivalent slot widths, and are positioned with their leeward edges 10% of the axial chord ahead of the airfoil leading edges. Measurements with hot-wire anemometry characterize the inlet and exit flow fields of the cascade. Total and static pressure measurements document aerodynamic performance. Thermocouple measurements detail thermal fields and permit evaluation of surface adiabatic effectiveness. To elucidate the effects of bleed injection, data are compared to an experiment taken without bleed. The influence of bleed mass flow rate and slot geometry on the aerodynamic losses and thermal protection arc given. This study suggests that such combustor bleed flow cooling offers significant thermal protection without imposing aerodynamic penalties. Such performance is contrary to the performance of present vane cooling schemes. The results of this investigation support designs which incorporate combustor coolant injection upstream of the airfoil leading edges. To complement, a short exploratory study regarding the effects of surface roughness was also performed. Results indicate modified cooling performance and significantly higher aerodynamic losses with rough surfaces.

  8. Detecting the global and regional effects of sulphate aerosol geoengineering

    NASA Astrophysics Data System (ADS)

    Lo, Eunice; Charlton-Perez, Andrew; Highwood, Ellie

    2017-04-01

    Climate warming is unequivocal. In addition to carbon dioxide emission mitigation, some geoengineering ideas have been proposed to reduce future surface temperature rise. One of these proposals involves injecting sulphate aerosols into the stratosphere to increase the planet's albedo. Monitoring the effectiveness of sulphate aerosol injection (SAI) would require us to be able to distinguish and detect its cooling effect from the climate system's internal variability and other externally forced temperature changes. This research uses optimal fingerprinting techniques together with simulations from the GeoMIP data base to estimate the number of years of observations that would be needed to detect SAI's cooling signal in near-surface air temperature, should 5 Tg of sulphur dioxide be injected into the stratosphere per year on top of RCP4.5 from 2020-2070. The first part of the research compares the application of two detection methods that have different null hypotheses to SAI detection in global mean near-surface temperature. The first method assumes climate noise to be dominated by unforced climate variability and attempts to detect the SAI cooling signal and greenhouse gas driven warming signal in the "observations" simultaneously against this noise. The second method considers greenhouse gas driven warming to be a non-stationary background climate and attempts to detect the net cooling effect of SAI against this background. Results from this part of the research show that the conventional multi-variate detection method that has been extensively used to attribute climate warming to anthropogenic sources could also be applied for geoengineering detection. The second part of the research investigates detection of geoengineering effects on the regional scale. The globe is divided into various sub-continental scale regions and the cooling effect of SAI is looked for in the temperature time series in each of these regions using total least squares multi-variate detection. Results show that surface temperature observations would be most useful for SAI detection in the Northern Hemisphere mid-latitudes, especially in East Asia. This can be used to indicate the optimal observational network for monitoring the effectiveness of SAI in the future, should that be needed.

  9. Observation of ground deformation associated with hydraulic fracturing and seismicity in the Western Canadian Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Kubanek, J.; Liu, Y.; Harrington, R. M.; Samsonov, S.

    2017-12-01

    In North America, the number of induced earthquakes related to fluid injection due to the unconventional recovery of oil and gas resources has increased significantly within the last five years. Recent studies demonstrate that InSAR is an effective tool to study surface deformation due to large-scale wastewater injection, and highlight the value of surface deformation monitoring with respect to understanding evolution of pore pressure and stress at depth - vital parameters to forecast fault reactivation, and thus, induced earthquakes. In contrast to earthquakes related to the injection of large amounts of wastewater, seismic activity related to the hydraulic fracturing procedure itself was, until recently, considered to play a minor role without significant hazard. In the Western Canadian Sedimentary Basin (WCSB), however, Mw>4 earthquakes have recently led to temporary shutdown of industrial injection activity, causing multi-million dollar losses to operators and raising safety concerns with the local population. Recent studies successfully utilize seismic data and modeling to link seismic activity with hydraulic fracturing in the WCSB. Although the study of surface deformation is likely the most promising tool for monitoring integrity of a well and to derive potential signatures prior to moderate or large induced events, InSAR has, to date, not been utilized to detect surface deformation related to hydraulic fracturing and seismicity. We therefore plan to analyze time-series of SAR data acquired between 1991 to present over two target sites in the WCSB that will enable the study of long- and short-term deformation. Since the conditions for InSAR are expected to be challenging due to spatial and temporal decorrelation, we have designed corner reflectors that will be installed at one target site to improve interferometric performance. The corner reflectors will be collocated with broadband seismometers and Trimble SeismoGeodetic Systems that simultaneously measure GNSS positioning and acceleration. We expect the joint data analysis of dense seismic and geodetic observations to give new insights about the correlation between surface deformation, fluid injection, and induced seismicity that can be used to assess the hazard potential of hydraulic fracturing in the WCSB.

  10. Characterization of Gas Transport Properties of Fractured Rocks By Borehole and Chamber Tests.

    NASA Astrophysics Data System (ADS)

    Shimo, M.; Shimaya, S.; Maejima, T.

    2014-12-01

    Gas transport characteristics of fractured rocks is a great concern to variety of engineering applications such as underground storage of LPG, nuclear waste disposal, CCS and gas flooding in the oil field. Besides absolute permeability, relative permeability and capillary pressure as a function of water saturation have direct influences to the results of two phase flow simulation. However, number of the reported gas flow tests for fractured rocks are limited, therefore, the applicability of the conventional two-phase flow functions used for porous media, such as Mualem-van Genuchten model, to prediction of the gas transport in the fractured rock mass are not well understood. The authors conducted the two types of in-situ tests, with different scales, a borehole gas-injection test and a chamber gas-injection test in fractured granitic rock. These tests were conducted in the Cretaceous granitic rocks at the Namikata underground LPG storage cavern construction site in Ehime Prefecture in Japan, preceding to the cavern scale gas-tightness test. A borehole injection test was conducted using vertical and sub-vertical boreholes drilled from the water injection tunnel nearly at the depth of the top of the cavern, EL-150m. A new type downhole gas injection equipment that is capable to create a small 'cavern' within a borehole was developed. After performing a series of preliminary tests to investigate the hydraulic conductivity and gas-tightness, i.e. threshold pressure, gas injection tests were conducted under different gas pressure. Fig.1 shows an example of the test results From a chamber test using a air pressurizing chamber with volume of approximately166m3, the gas-tightness was confirmed within the uncertainty of 22Pa under the storage pressure of 0.7MPa, however, significant air leakage occurred possibly through an open fracture intersecting the chamber just after cavern pressure exceeds the initial hydrostatic pressure at the ceiling level of the chamber. Anomalies were detected in the data of the pore pressure as well as AE monitoring around the chamber. Results from the above two tests were simulated using a multi-phase transport simulator, TOUGH2, developed at Lawrence Berkeley National Laboratory. Fig.2 shows the model and an example of the simulation.

  11. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber.

    PubMed

    Guerra, V G; Gonçalves, J A S; Coury, J R

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  12. Carbon dioxide coronary angiography: A mechanical feasibility study with a cardiovascular simulator

    NASA Astrophysics Data System (ADS)

    Corazza, Ivan; Taglieri, Nevio; Pirazzini, Edoardo; Rossi, Pier Luca; Lombi, Alessandro; Scalise, Filippo; Caridi, James G.; Zannoli, Romano

    2018-01-01

    The aim of this study was to carry out a bench evaluation of the biomechanical feasibility of carbon dioxide (CO2) coronary arteriography. Many patients among the aging population of individuals requiring cardiac intervention have underlying renal insufficiency making them susceptible to contrast-induced nephropathy. To include those patients, it is imperative to find an alternative and safe technique to perform coronary imaging on cardiac ischemic patients. As CO2 angiography has no renal toxicity, it may be a possible solution offering good imaging with negligible collateral effects. Theoretically, by carefully controlling the gas injection process, new automatic injectors may avoid gas reflux into the aorta and possible cerebral damage. A feasibility study is mandatory. A mechanical mock of the coronary circulation was developed and employed. CO2 was injected into the coronary ostium with 2 catheters (2F and 6F) and optical images of bubbles flowing inside the vessels at different injection pressures were recorded. The gas behavior was then carefully studied for quantitative and qualitative analysis. Video recordings showed that CO2 injection at a precise pressure in the interval between the arterial dicrotic notch and the minimum diastolic value does not result in gas reflow into the aorta. Gas reflow was easier to control with the smaller catheter, but the gas bubbles were smaller with different vascular filling. Our simulation demonstrates that carefully selected injection parameters allow CO2 coronary imaging without any risk of gas reflux into the aorta.

  13. Characterization of nanoporous shales with gas sorption

    NASA Astrophysics Data System (ADS)

    Joewondo, N.; Prasad, M.

    2017-12-01

    The understanding of the fluid flow in porous media requires the knowledge of the pore system involved. Fluid flow in fine grained shales falls under different regime than transport regime in conventional reservoir due to the different average pore sizes in the two materials; the average pore diameter of conventional sandstones is on the micrometer scale, while of shales can be as small as several nanometers. Mercury intrusion porosimetry is normally used to characterize the pores of conventional reservoir, however with increasingly small pores, the injection pressure required to imbibe the pores becomes infinitely large due to surface tension. Characterization of pores can be expressed by a pore size distribution (PSD) plot, which reflects distribution of pore volume or surface area with respect to pore size. For the case of nanoporous materials, the surface area, which serves as the interface between the rock matrix and fluid, becomes increasingly large and important. Physisorption of gas has been extensively studied as a method of nanoporous solid characterization (particularly for the application of catalysis, metal organic frameworks, etc). The PSD is obtained by matching the experimental result to the calculated theoretical result (using Density Functional Theory (DFT), a quantum mechanics based modelling method for molecular scale interactions). We present the challenges and experimental result of Nitrogen and CO2 gas sorption on shales with various mineralogy and the interpreted PSD obtained by DFT method. Our result shows significant surface area contributed by the nanopores of shales, hence the importance of surface area measurements for the characterization of shales.

  14. Underground Injection Control, Hydraulic Fracturing, and Sources of Drinking Water in the Western United States

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Kang, M.

    2016-12-01

    Oil and gas extraction is expanding in the United States, attributable to the success of high-volume hydraulic fracturing, and associated wastewater disposal is increasing as a result. The United States currently has approximately 180,000 Class II injection wells associated with the oil and gas industry, more than 50,000 of them in California. Hydraulic fracturing and underground injection often occur many thousands of feet belowground. Previously, however, we documented shallow hydraulic fracturing and other oil and gas activities across the western United States in particular, including California and Wyoming. In eight CA counties, for example, as many as 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively (Kang and Jackson 2016 PNAS). Here we expand this analysis to examine the underground injection control program and accompanying hydrogeologic variables found in California and elsewhere.

  15. Commercial air travel after intraocular gas injection.

    PubMed

    Houston, Stephen; Graf, Jürgen; Sharkey, James

    2012-08-01

    Passengers with intraocular gas are at risk of profound visual loss when exposed to reduced absolute pressure within the cabin of a typical commercial airliner. Information provided on the websites of the world's 10 largest airlines offer a considerable range of opinion as to when it might be safe to fly after gas injection. Physicians responsible for clearing pseassengers as 'fit to fly' should be aware modern retinal surgical techniques increasingly employ long-acting gases as vitreous substitutes. The kinetics of long-acting intraocular gases must be considered when deciding how long after surgery it is safe to travel. It is standard practice to advise passengers not to fly in aircraft until the gas is fully resorbed. To achieve this, it may be necessary to delay travel for approximately 2 wk after intraocular injection of sulfur hexafluoride (SF6) and for 6 wk after injection of perfluoropropane (C3F8).

  16. Method for gasification of deep, thin coal seams. [DOE patent

    DOEpatents

    Gregg, D.W.

    1980-08-29

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  17. Method for gasification of deep, thin coal seams

    DOEpatents

    Gregg, David W.

    1982-01-01

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  18. The effect of pre-existing islands on disruption mitigation in MHD simulations of DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzo, V. A.

    Locked-modes are the most likely cause of disruptions in ITER, so large islands are expected to be common when the ITER disruption mitigation system is deployed. MHD modeling of disruption mitigation by massive gas injection is carried out for DIII-D plasmas with stationary, pre-existing islands. Results show that the magnetic topology at the q=2 surface can affect the parallel spreading of injected impurities, and that, in particular, the break-up of large 2/1 islands into smaller 4/2 islands chains can favorably affect mitigation metrics. The direct imposition of a 4/2 mode is found to have similar results to the case inmore » which the 4/2 harmonic grows spontaneously.« less

  19. The effect of pre-existing islands on disruption mitigation in MHD simulations of DIII-D

    DOE PAGES

    Izzo, V. A.

    2017-02-27

    Locked-modes are the most likely cause of disruptions in ITER, so large islands are expected to be common when the ITER disruption mitigation system is deployed. MHD modeling of disruption mitigation by massive gas injection is carried out for DIII-D plasmas with stationary, pre-existing islands. Results show that the magnetic topology at the q=2 surface can affect the parallel spreading of injected impurities, and that, in particular, the break-up of large 2/1 islands into smaller 4/2 islands chains can favorably affect mitigation metrics. The direct imposition of a 4/2 mode is found to have similar results to the case inmore » which the 4/2 harmonic grows spontaneously.« less

  20. Comparative evaluation of gas-turbine engine combustion chamber starting and stalling characteristics for mechanical and air-injection

    NASA Technical Reports Server (NTRS)

    Dyatlov, I. N.

    1983-01-01

    The effectiveness of propellant atomization with and without air injection in the combustion chamber nozzle of a gas turbine engine is studied. Test show that the startup and burning performance of these combustion chambers can be improved by using an injection during the mechanical propellant atomization process. It is shown that the operational range of combustion chambers can be extended to poorer propellant mixtures by combined air injection mechanical atomization of the propellant.

  1. Assessment of Factors Influencing Effective CO 2 Storage Capacity and Injectivity in Eastern Gas Shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godec, Michael

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO 2) storage in these formations. The potential storage of CO 2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO 2 storage capacity in conventional reservoirs. The goal of this cooperativemore » research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO 2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO 2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO 2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO 2 injection; (5) Identify and evaluate potential constraints to economic CO 2 storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO 2 storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO 2 injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO 2 storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO 2 storage activities would commence consistent with the historical development practices. Alternative CO 2 injection/EGR scenarios were considered and compared to well production without CO 2 injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO 2 that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO 2 in the Marcellus, Utica, Antrim, and Devonian Ohio shales.« less

  2. Design of a secondary ionization target for direct production of a C- beam from CO2 pulses for online AMS.

    PubMed

    Salazar, Gary; Ognibene, Ted

    2013-01-01

    We designed and optimized a novel device "target" that directs a CO 2 gas pulse onto a Ti surface where a Cs + beam generates C - from the CO 2 . This secondary ionization target enables an accelerator mass spectrometer to ionize pulses of CO 2 in the negative mode to measure 14 C/ 12 C isotopic ratios in real time. The design of the targets were based on computational flow dynamics, ionization mechanism and empirical optimization. As part of the ionization mechanism, the adsorption of CO 2 on the Ti surface was fitted with the Jovanovic-Freundlich isotherm model using empirical and simulation data. The inferred adsorption constants were in good agreement with other works. The empirical optimization showed that amount of injected carbon and the flow speed of the helium carrier gas improve the ionization efficiency and the amount of 12 C - produced until reaching a saturation point. Linear dynamic range between 150 and 1000 ng of C and optimum carrier gas flow speed of around 0.1 mL/min were shown. It was also shown that the ionization depends on the area of the Ti surface and Cs + beam cross-section. A range of ionization efficiency of 1-2.5% was obtained by optimizing the described parameters.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djabbarah, N.F.

    A miscible displacement process for recovering oil from a subterranean, oil-containing formation penetrated by at least one injection well and at least one spaced-apart production well and having fluid communication between the injection and the production wells is described comprising: (a) injecting a slug of til oil into the formation through the injection well; (b) injecting a slug of a displacing fluid into the formation through the injection well, the displacing fluid being selected from the group consisting of carbon monoxide, carbon dioxide, methane, nitrogen, air, flue gas, combustion gas and mixtures thereof, the injection of the tall oil loweringmore » the minimum miscibility pressure of the displacing fluid in the formation oil; and (c) recovering the oil through the production well.« less

  4. Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currentlymore » fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.« less

  5. Performance of CO2 enrich CNG in direct injection engine

    NASA Astrophysics Data System (ADS)

    Firmansyah, W. B.; Ayandotun, E. Z.; Zainal, A.; Aziz, A. R. A.; Heika, M. R.

    2015-12-01

    This paper investigates the potential of utilizing the undeveloped natural gas fields in Malaysia with high carbon dioxide (CO2) content ranging from 28% to 87%. For this experiment, various CO2 proportions by volume were added to pure natural gas as a way of simulating raw natural gas compositions in these fields. The experimental tests were carried out using a 4-stroke single cylinder spark ignition (SI) direct injection (DI) compressed natural gas (CNG) engine. The tests were carried out at 180° and 300° before top dead centre (BTDC) injection timing at 3000 rpm, to establish the effects on the engine performance. The results show that CO2 is suppressing the combustion of CNG while on the other hand CNG combustion is causing CO2 dissociation shown by decreasing CO2 emission with the increase in CO2 content. Results for 180° BTDC injection timing shows higher performance compared to 300° BTDC because of two possible reasons, higher volumetric efficiency and higher stratification level. The results also showed the possibility of increasing the CO2 content by injection strategy.

  6. Influence of gas injection on viscous and viscoelastic properties of Xanthan gum.

    PubMed

    Bobade, Veena; Cheetham, Madalyn; Hashim, Jamal; Eshtiaghi, Nicky

    2018-05-01

    Xanthan gum is widely used as a model fluid for sludge to mimic the rheological behaviour under various conditions including impact of gas injection in sludge. However, there is no study to show the influence of gas injection on rheological properties of xanthan gum specifically at the concentrations at which it is used as a model fluid for sludge with solids concentration above 2%. In this paper, the rheological properties of aqueous xanthan gum solutions at different concentrations were measured over a range of gas injection flow rates. The effect of gas injection on both the flow and viscoelastic behaviour of Xanthan gum (using two different methods - a creep test and a time sweep test) was evaluated. The viscosity curve of different solid concentrations of digested sludge and waste activated sludge were compared with different solid concentrations of Xanthan gum and the results showed that Xanthan gum can mimic the flow behaviour of sludge in flow regime. The results in linear viscoelastic regime showed that increasing gas flow rate increases storage modulus (G'), indicating an increase in the intermolecular associations within the material structure leading to an increase in material strength and solid behaviour. Similarly, in creep test an increase in the gas flow rate decreased strain%, signifying that the material has become more resistant to flow. Both observed behaviour is opposite to what occurs in sludge under similar conditions. The results of both the creep test and the time sweep test indicated that choosing Xanthan gum aqueous solution as a transparent model fluid for sludge in viscoelastic regime under similar conditions involving gas injection in a concentration range studied is not feasible. However Xanthan gum can be used as a model material for sludge in flow regime; because it shows a similar behaviour to sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Methods of Si based ceramic components volatilization control in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  8. A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells.

    PubMed

    Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M

    2015-08-04

    Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale.

  9. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    DOE PAGES

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; ...

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO 2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 millionmore » m 3/yr -1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.« less

  10. Tibetan Plateau glacier and hydrological change under stratospheric aerosol injection

    NASA Astrophysics Data System (ADS)

    Ji, D.

    2017-12-01

    As an important inland freshwater resource, mountain glaciers are highly related to human life, they provide water for many large rivers and play a very important role in regional water cycles. The response of mountain glaciers to future climate change is a topic of concern especially to the many people who rely on glacier-fed rivers for purposes such as irrigation. Geoengineering by stratospheric aerosol injection is a method of offsetting the global temperature rise from greenhouse gases. How the geoengineering by stratospheric aerosol injection affects the mass balance of mountain glaciers and adjacent river discharge is little understood. In this study, we use regional climate model WRF and catchment-based river model CaMa-Flood to study the impacts of stratospheric aerosol injection to Tibetan Plateau glacier mass balance and adjacent river discharge. To facilitate mountain glacier mass balance study, we improve the description of mountain glacier in the land surface scheme of WRF. The improvements include: (1) a fine mesh nested in WRF horizontal grid to match the highly non-uniform spatial distribution of the mountain glaciers, (2) revising the radiation flux at the glacier surface considering the surrounding terrain. We use the projections of five Earth system models for CMIP5 rcp45 and GeoMIP G4 scenarios to drive the WRF and CaMa-Flood models. The G4 scenario, which uses stratospheric aerosols to reduce the incoming shortwave while applying the rcp4.5 greenhouse gas forcing, starts stratospheric sulfate aerosol injection at a rate of 5 Tg per year over the period 2020-2069. The ensemble projections suggest relatively slower glacier mass loss rates and reduced river discharge at Tibetan Plateau and adjacent regions under geoengineering scenario by stratospheric aerosol injection.

  11. Compact Torus Fueling of the STOR-M Tokamak

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Hirose, A.; Zawalski, W.; White, D.; Raman, R.; Decoste, R.; Gregory, B. C.; Martin, F.

    1996-11-01

    Tangential injection of accelerated compact torus (CT) has been performed on the STOR-M tokamak (R/a=46/12 cm, B_t<1 T, I_p<= 50 kA, barn_e=(0.5 - 1)×10^13 cm-3) using the University of Saskatchewan Compact Torus Injector (USCTI). The CT parameters are: m~=1 μg, v=120 km/sec, B=0.1 T and n=(2 - 4)×10^15 cm-3. After CT injection, the electron density in tokamak doubles and the poloidal β-value increases. Indications of reduction in the loop voltage and H_α emission level have also been observed. Currently, following efforts are being made: (a) to coat chromium on the electrode surface, (b) to increase the on-line baking temperature, and (c) to reduce the neutral gas load which follows the CT plasma. In addition, numerical calculation of CT motion in a tokamak magnetic field has been carried out. For horizontal injection, the initial CT magnetic dipole direction should be aligned with the CT velocity for deeper penetration. In the case of vertical injection, the CT trajectory is independent of the initial magnetic dipole direction and central penetration is facilitated by off-axis injection.

  12. Effects of Ionization in a Laser Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.

    2010-11-04

    Experimental results are presented from studies of the ionization injection process in laser wakefield acceleration using the Hercules laser with laser power up to 100 TW. Gas jet targets consisting of gas mixtures reduced the density threshold required for electron injection and increased the maximum beam charge. Gas mixture targets produced smooth beams even at densities which would produce severe beam breakup in pure He targets and the divergence was found to increase with gas mixture pressure.

  13. Effect of inert propellant injection on Mars ascent vehicle performance

    NASA Technical Reports Server (NTRS)

    Colvin, James E.; Landis, Geoffrey A.

    1992-01-01

    A Mars ascent vehicle is limited in performance by the propellant which can be brought from Earth. In some cases the vehicle performance can be improved by injecting inert gas into the engine, if the inert gas is available as an in-situ resource and does not have to be brought from Earth. Carbon dioxide, nitrogen, and argon are constituents of the Martian atmosphere which could be separated by compressing the atmosphere, without any chemical processing step. The effect of inert gas injection on rocket engine performance was analyzed with a numerical combustion code that calculated chemical equilibrium for engines of varying combustion chamber pressure, expansion ratio, oxidizer/fuel ratio, and inert injection fraction. Results of this analysis were applied to several candidate missions to determine how the required mass of return propellant needed in low Earth orbit could be decreased using inert propellant injection.

  14. Limits, complementarity and improvement of Advanced SAR Interferometry monitoring of anthropogenic subsidence/uplift due to long term CO2 storage

    NASA Astrophysics Data System (ADS)

    de Michele, M.; Raucoules, D.; Rohmer, J.; Loschetter, A.; Raffard, D.; Le Gallo, Y.

    2013-12-01

    A prerequisite to the large scale industrial development of CO2 Capture and geological Storage is the demonstration that the storage is both efficient and safe. In this context, precise uplift/subsidence monitoring techniques constitute a key component of any CO2 storage risk management. Space-borne Differential SAR (Synthetic Aperture Radar) interferometry is a promising monitoring technique. It can provide valuable information on vertical positions of a set of scatterer undergoing surface deformation induced by volumetric changes through time and space caused by CO2 injection in deep aquifers. To what extent ? To date, InSAR techniques have been successfully used in a variety of case-studies involving the measure of surface deformation caused by subsurface fluid withdrawal / injection. For instance, groundwater flow characterization in complex aquifers systems, oil / gas field characterization, verification of enhanced oil recovery efficiency, monitoring of seasonal gas storage. The successful use of InSAR is strictly related to the favourable scattering conditions in terms of spatial distribution of targets and their temporal stability. In arid regions, natural radar scatterers density can be very high, exceeding 1,000 per square km. But future onshore industrial-scale CO2 storage sites are planned in more complex land-covers such as agricultural or vegetated terrains. Those terrains are characterized by poor to moderate radar scatterers density, which decrease the detection limits of the space-borne interferometric technique. The present study discusses the limits and constraints of advanced InSAR techniques applied to deformation measurements associated with CO2 injection/storage into deep aquifers in the presence of agricultural and vegetated land-covers. We explore different options to enhance the measurement performances of InSAR techniques. As a first option, we propose to optimize the deployment of a network of 'artificial' scatterers, i.e. corner reflectors (artificial devices installed on ground to provide high backscatter to the radar signal) to complement the existing 'natural' network. The methodology is iterative and adaptive to the spatial and temporal extent of the detectable deforming region. We take into account the need of a change in sensors characteristics (for a very long term monitoring 10-50 years) that could result in a need of re-organisation of the network. Our discussion is supported by the estimates of the expected spatio-temporal evolution of surface vertical displacements caused by CO2 injection at depth by combining the approximate analytical solutions for pressure build-up during CO2 injection in deep aquifers and the poro-elastic behaviour of the reservoir under injection. As second option, we then review different advanced InSAR algorithms that could improve the displacement measurements using natural scatterers over vegetated areas.

  15. Quantification of CO2-FLUID-ROCK Reactions Using Reactive and Non-Reactive Tracers

    NASA Astrophysics Data System (ADS)

    Matter, J.; Stute, M.; Hall, J. L.; Mesfin, K. G.; Gislason, S. R.; Oelkers, E. H.; Sigfússon, B.; Gunnarsson, I.; Aradottir, E. S.; Alfredsson, H. A.; Gunnlaugsson, E.; Broecker, W. S.

    2013-12-01

    Carbon dioxide mineralization via fluid-rock reactions provides the most effective and long-term storage option for geologic carbon storage. Injection of CO2 in geologic formations induces CO2 -fluid-rock reactions that may enhance or decrease the storage permanence and thus the long-term safety of geologic carbon storage. Hence, quantitative characterization of critical CO2 -fluid-rock interactions is essential to assess the storage efficiency and safety of geologic carbon storage. In an attempt to quantify in-situ fluid-rock reactions and CO2 transport relevant for geologic carbon storage, we are testing reactive (14C, 13C) and non-reactive (sodium fluorescein, amidorhodamine G, SF5CF3, and SF6) tracers in an ongoing CO2 injection in a basaltic storage reservoir at the CARBFIX pilot injection site in Iceland. At the injection site, CO2 is dissolved in groundwater and injected into a permeable basalt formation located 500-800 m below the surface [1]. The injected CO2 is labeled with 14C by dynamically adding calibrated amounts of H14CO3-solution into the injection stream in addition to the non-reactive tracers. Chemical and isotopic analyses of fluid samples collected in a monitoring well, reveal fast fluid-rock reactions. Maximum SF6 concentration in the monitoring well indicates the bulk arrival of the injected CO2 solution but dissolved inorganic carbon (DIC) concentration and pH values close to background, and a potentially lower 14C to SF6 ratio than the injection ratio suggest that most of the injected CO2 has reacted with the basaltic rocks. This is supported by δ13CDIC, which shows a drop from values close to the δ 13C of the injected CO2 gas (-3‰ VPDB) during breakthrough of the CO2 plume to subsequent more depleted values (-11.25‰ VPDB), indicating precipitation of carbonate minerals. Preliminary mass balance calculations using mixing relationships between the background water in the storage formation and the injected solution, suggest that approximately 85% of the injected CO2 must have reacted along the flow path from the injection well to the monitoring well within less than one year. Monitoring is still going on and we will extend the time series and the mass balance accordingly. Our study demonstrates that by combining reactive and non-reactive tracers, we are able to quantify CO2-fluid-rock interactions on a reservoir scale. [1] Gislason et al. (2010), Int. J. Greenh. Gas Con. 4, 537-545.

  16. An investigation of improved airbag performance by vent control and gas injection

    NASA Astrophysics Data System (ADS)

    Lee, Calvin; Rosato, Nick; Lai, Francis

    Airbags are currently being investigated as an impact energy absorber for U.S. Army airdrop. Simple airbags with constant vent areas have been found to be unsatisfactory in yielding high G forces. In this paper, a method of controlling the vent area and a method of injecting gas into the airbag during its compression stroke to improve airbag performance are presented. Theoretical analysis of complex airbags using these two methods show that they provide lower G forces than simple airbags. Vertical drop tests of a vent-control airbag confirm this result. Gas-injection airbags are currently being tested.

  17. Impact of the Injection Protocol on an Impurity's Stationary State

    NASA Astrophysics Data System (ADS)

    Gamayun, Oleksandr; Lychkovskiy, Oleg; Burovski, Evgeni; Malcomson, Matthew; Cheianov, Vadim V.; Zvonarev, Mikhail B.

    2018-06-01

    We examine stationary-state properties of an impurity particle injected into a one-dimensional quantum gas. We show that the value of the impurity's end velocity lies between zero and the speed of sound in the gas and is determined by the injection protocol. This way, the impurity's constant motion is a dynamically emergent phenomenon whose description goes beyond accounting for the kinematic constraints of the Landau approach to superfluidity. We provide exact analytic results in the thermodynamic limit and perform finite-size numerical simulations to demonstrate that the predicted phenomena are within the reach of the ultracold gas experiments.

  18. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    NASA Astrophysics Data System (ADS)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  19. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening.

    PubMed

    Wilson, Ryan B; Siegler, W Christopher; Hoggard, Jamin C; Fitz, Brian D; Nadeau, Jeremy S; Synovec, Robert E

    2011-05-27

    By taking into consideration band broadening theory and using those results to select experimental conditions, and also by reducing the injection pulse width, peak capacity production (i.e., peak capacity per separation time) is substantially improved for one dimensional (1D-GC) and comprehensive two dimensional (GC×GC) gas chromatography. A theoretical framework for determining the optimal linear gas velocity (the linear gas velocity producing the minimum H), from experimental parameters provides an in-depth understanding of the potential for GC separations in the absence of extra-column band broadening. The extra-column band broadening is referred to herein as off-column band broadening since it is additional band broadening not due to the on-column separation processes. The theory provides the basis to experimentally evaluate and improve temperature programmed 1D-GC separations, but in order to do so with a commercial 1D-GC instrument platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a resistively heated transfer line is coupled to a high-speed diaphragm valve to provide a suitable injection pulse width (referred to herein as modified injection). Additionally, flame ionization detection (FID) was modified to provide a data collection rate of 5kHz. The use of long, relatively narrow open tubular capillary columns and a 40°C/min programming rate were explored for 1D-GC, specifically a 40m, 180μm i.d. capillary column operated at or above the optimal average linear gas velocity. Injection using standard auto-injection with a 1:400 split resulted in an average peak width of ∼1.5s, hence a peak capacity production of 40peaks/min. In contrast, use of modified injection produced ∼500ms peak widths for 1D-GC, i.e., a peak capacity production of 120peaks/min (a 3-fold improvement over standard auto-injection). Implementation of modified injection resulted in retention time, peak width, peak height, and peak area average RSD%'s of 0.006, 0.8, 3.4, and 4.0%, respectively. Modified injection onto the first column of a GC×GC coupled with another high-speed valve injection onto the second column produced an instrument with high peak capacity production (500-800peaks/min), ∼5-fold to 8-fold higher than typically reported for GC×GC. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. High resolution spatial and temporal evolution of dissolved gases in groundwater during a controlled natural gas release experiment.

    PubMed

    Cahill, Aaron G; Parker, Beth L; Mayer, Bernhard; Mayer, K Ulrich; Cherry, John A

    2018-05-01

    Fugitive gas comprised primarily of methane (CH 4 ) with traces of ethane and propane (collectively termed C 1-3 ) may negatively impact shallow groundwater when unintentionally released from oil and natural gas wells. Currently, knowledge of fugitive gas migration, subsurface source identification and oxidation potential in groundwater is limited. To advance understanding, a controlled release experiment was performed at the Borden Research Aquifer, Canada, whereby 51m 3 of natural gas was injected into an unconfined sand aquifer over 72days with dissolved gases monitored over 323days. During active gas injection, a dispersed plume of dissolved C 1-3 evolved in a depth discrete and spatially complex manner. Evolution of the dissolved gas plume was driven by free-phase gas migration controlled by small-scale sediment layering and anisotropy. Upon cessation of gas injection, C 1-3 concentrations increased to the greatest levels observed, particularly at 2 and 6m depths, reaching up to 31.5, 1.5 and 0.1mg/L respectively before stabilizing and persisting. At no time did groundwater become fully saturated with natural gas at the scale of sampling undertaken. Throughout the experiment the isotopic composition of injected methane (δ 13 C of -42.2‰) and the wetness parameter (i.e. the ratio of C 1 to C 2+ ) constituted excellent tracers for the presence of fugitive gas at concentrations >2mg/L. At discrete times C 1-3 concentrations varied by up to 4 orders of magnitude over 8m of aquifer thickness (e.g. from <0.01 to 30mg/L for CH 4 ), while some groundwater samples lacked evidence of fugitive gas, despite being within 10m of the injection zone. Meanwhile, carbon isotope ratios of dissolved CH 4 showed no evidence of oxidation. Our results show that while impacts to aquifers from a fugitive gas event are readily detectable at discrete depths, they are spatially and temporally variable and dissolved methane has propensity to persist. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Centrifugal accelerator, system and method for removing unwanted layers from a surface

    DOEpatents

    Foster, Christopher A.; Fisher, Paul W.

    1995-01-01

    A cryoblasting process having a centrifugal accelerator for accelerating frozen pellets of argon or carbon dioxide toward a target area utilizes an accelerator throw wheel designed to induce, during operation, the creation of a low-friction gas bearing within internal passages of the wheel which would otherwise retard acceleration of the pellets as they move through the passages. An associated system and method for removing paint from a surface with cryoblasting techniques involves the treating, such as a preheating, of the painted surface to soften the paint prior to the impacting of frozen pellets thereagainst to increase the rate of paint removal. A system and method for producing large quantities of frozen pellets from a liquid material, such as liquid argon or carbon dioxide, for use in a cryoblasting process utilizes a chamber into which the liquid material is introduced in the form of a jet which disintegrates into droplets. A non-condensible gas, such as inert helium or air, is injected into the chamber at a controlled rate so that the droplets freeze into bodies of relatively high density.

  2. Integrated vacuum absorption steam cycle gas separation

    DOEpatents

    Chen, Shiaguo [Champaign, IL; Lu, Yonggi [Urbana, IL; Rostam-Abadi, Massoud [Champaign, IL

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  3. Development of a large volume injection method using a programmed temperature vaporization injector - gas chromatography hyphenated to ICP-MS for the simultaneous determination of mercury, tin and lead species at ultra-trace levels in natural waters.

    PubMed

    Terán-Baamonde, J; Bouchet, S; Tessier, E; Amouroux, D

    2018-04-27

    The current EU legislation lays down Environmental Quality Standards (EQS) for 45 priority substances in surface waters; among them levels for (organo)metallic species of Hg, Sn and Pb are set between ng L -1 (for Hg and Sn) and μg L -1 (for Pb). To date, only a few analytical methods can reach these very restrictive limits and there is thus a need for comprehensive methods able to analyze these species down to these levels in natural waters. The aim of this work was to develop an online automated pre-concentration method using large volume injections with a Programmed Temperature Vaporization (PTV) injector fitted with a sorbent packed liner coupled to GC-ICP-MS to further improve the detection limits associated to this well-established method. The influence of several parameters such as the PTV transfer temperature and time, carrier gas flow rate and amount of packing material was investigated. Finally, the maximum volume injected through single or multiple injection modes was optimized to obtain the best compromise between chromatographic resolution and sensitivity. After optimization, very satisfactory results in terms of absolute and methodological detection limits were achieved, down to the pg L -1 level for all species studied. The potential of the method was exemplified by determining the concentrations of organometallic compounds in unpolluted river waters samples from the Adour river basin (SW France) and results were compared with conventional (splitless) GC-ICP-MS. The strength of this analytical method lies in the low detection limits reached for the simultaneous analysis of a wide group of organometallic compounds, and the potential to transfer this method to other gas chromatographic applications with inherent lower sensitivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. CO 2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE PAGES

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; ...

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO 2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO 2 emissions involves coupling CO 2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO 2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gasesmore » (CH 4 and CO 2) and associated economic consequences. Where enhanced condensation of CO 2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH 4. Volumetric changes to montmorillonites occur during exposure to CO 2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO 2 intercalation. Thus, experimental evidence suggests CH 4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH 4:CO 2 gas systems, where CH 4 concentrations prevail, indicate preferential CO 2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO 2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH 4/CO 2 exchange rates to obtain peak natural gas production.« less

  5. Reservoir model for Hillsboro gas storage field management

    USGS Publications Warehouse

    Udegbunam, Emmanuel O.; Kemppainen, Curt; Morgan, Jim; ,

    1995-01-01

    A 3-dimensional reservoir model is used to understand the behavior of the Hillsboro Gas Storage Field and to investigate the field's performance under various future development. Twenty-two years of the gas storage reservoir history, comprising the initial gas bubble development and seasonal gas injection and production cycles, are examined with a full-field, gas water, reservoir simulation model. The results suggest that the gas-water front is already in the vicinity of the west observation well that increasing the field's total gas-in-place volume would cause gas to migrate beyond the east, north and west observation well. They also suggest that storage enlargement through gas injection into the lower layers may not prevent gas migration. Moreover, the results suggest that the addition of strategically-located new wells would boost the simulated gas deliverabilities.

  6. Reservoir fluid and gas chemistry during CO2 injection at the Cranfield field, Mississippi, USA

    NASA Astrophysics Data System (ADS)

    Lu, J.; Kharaka, Y. K.; Cole, D. R.; Horita, J.; Hovorka, S.

    2009-12-01

    At Cranfield field, Mississippi, USA, a monitored CO2-EOR project provides a unique opportunity to understand geochemical interactions of injected CO2 within the reservoir. Cranfield field, discovered in 1943, is a simple anticlinal four-way closure and had a large gas cap surrounded by an oil ring (Mississippi Oil and Gas Board, 1966). The field was abandoned in 1966. The reservoir returned to original reservoir pressure (hydrostatic pressure) by a strong aquifer drive by 2008. The reservoir is in the lower Tuscaloosa Formation at depths of more than 3000 m. It is composed of stacked and incised channel fills and is highly heterogeneous vertically and horizontally. A variable thickness (5 to 15 m) of terrestrial mudstone directly overlies the basal sandstone providing the primary seal, isolating the injection interval from a series of fluvial sand bodies occurring in the overlying 30 m of section. Above these fluvial channels, the marine mudstone of the Middle Tuscaloosa forms a continuous secondary confining system of approximately 75 m. The sandstones of the injection interval are rich in iron, containing abundant diagenetic chamosite (ferroan chlorite), hematite and pyrite. Geochemical modeling suggests that the iron-bearing minerals will be dissolved in the face of high CO2 and provide iron for siderite precipitation. CO2 injection by Denbury Resources Inc. begun in mid-July 2008 on the north side of the field with rates at ~500,000 tones per year. Water and gas samples were taken from seven production wells after eight months of CO2 injection. Gas analyses from three wells show high CO2 concentrations (up to 90 %) and heavy carbon isotopic signatures similar to injected CO2, whereas the other wells show original gas composition and isotope. The mixing ratio between original and injected CO2 is calculated based on its concentration and carbon isotope. However, there is little variation in fluid samples between the wells which have seen various levels of CO2. Comparison between preinjection and postinjection fluid analyses also shows little difference. It suggests that CO2 injection has not induced significant mineral-water reactions to change water chemistry. In October 2009, CO2 will be injected into the down-dip, non-productive Tuscaloosa Formation on the east side of the same field. In-situ fluid and gas samples will be collected using downhole U-tube. Fluid chemistry data through time will reveal mineral reactions during and after injection and confine timescales of the interactions. This project was funded thought the National Energy Technology Laboratory Regional Carbon Sequestration Partnership Program as part of the Southeast Regional Carbon Sequestration Partnership.

  7. Revised Earthquake Catalog and Relocated Hypocenters Near Fluid Injection Wells and the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico

    NASA Astrophysics Data System (ADS)

    Edel, S.; Bilek, S. L.; Garcia, K.

    2014-12-01

    Induced seismicity is a class of crustal earthquakes resulting from human activities such as surface and underground mining, impoundment of reservoirs, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground cavities. Within the Permian basin in southeastern New Mexico lies an active area of oil and gas production, as well as the Waste Isolation Pilot Plant (WIPP), a geologic nuclear waste repository located just east of Carlsbad, NM. Small magnitude earthquakes have been recognized in the area for many years, recorded by a network of short period vertical component seismometers operated by New Mexico Tech. However, for robust comparisons between the seismicity patterns and the injection well locations and rates, improved locations and a more complete catalog over time are necessary. We present results of earthquake relocations for this area by using data from the 3-component broadband EarthScope Flexible Array SIEDCAR experiment that operated in the area between 2008-2011. Relocated event locations tighten into a small cluster of ~38 km2, approximately 10 km from the nearest injection wells. The majority of events occurred at 10-12 km depth, given depth residuals of 1.7-3.6 km. We also present a newly developed more complete catalog of events from this area by using a waveform cross-correlation algorithm and the relocated events as templates. This allows us to detect smaller magnitude events that were previously undetected with the short period network data. The updated earthquake catalog is compared with geologic maps and cross sections to identify possible fault locations. The catalog is also compared with available well data on fluid injection and production. Our preliminary results suggest no obvious connection between seismic moment release, fluid injection, or production given the available monthly industry data. We do see evidence in the geologic and well data of previously unidentified faults in the area.

  8. Multi-dimensional computer simulation of MHD combustor hydrodynamics

    NASA Astrophysics Data System (ADS)

    Berry, G. F.; Chang, S. L.; Lottes, S. A.; Rimkus, W. A.

    1991-04-01

    Argonne National Laboratory is investigating the nonreacting jet gas mixing patterns in an MHD second stage combustor by using a 2-D multiphase hydrodynamics computer program and a 3-D single phase hydrodynamics computer program. The computer simulations are intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may lead to improvement of the downstream MHD channel performance. A 2-D steady state computer model, based on mass and momentum conservation laws for multiple gas species, is used to simulate the hydrodynamics of the combustor in which a jet of oxidizer is injected into an unconfined cross stream gas flow. A 3-D code is used to examine the effects of the side walls and the distributed jet flows on the non-reacting jet gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  9. The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil

    NASA Astrophysics Data System (ADS)

    Ganot, Y.; Weisbrod, N.; Dragila, M. I.

    2011-12-01

    Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.

  10. Optimizations of packed sorbent and inlet temperature for large volume-direct aqueous injection-gas chromatography to determine high boiling volatile organic compounds in water.

    PubMed

    Yu, Bofan; Song, Yonghui; Han, Lu; Yu, Huibin; Liu, Yang; Liu, Hongliang

    2014-08-22

    For the expanded application area, fast trace analysis of certain high boiling point (i.e., 150-250 °C) volatile organic compounds (HVOCs) in water, a large volume-direct aqueous injection-gas chromatography (LV-DAI-GC) method was optimized for the following parameters: packed sorbent for sample on-line pretreatment, inlet temperature and detectors configuration. Using the composite packed sorbent self-prepared with lithium chloride and a type of diatomite, the method enabled safe injection of an approximately 50-100 μL sample at an inlet temperature of 150 °C in the splitless mode and separated HVOCs from water matrix in 2 min. Coupled with a flame ionization detector (FID), an electron capture detector (ECD) and a flame photometric detector (FPD), the method could simultaneously quantify 27 HVOCs that belong to seven subclasses (i.e., halogenated aliphatic hydrocarbons, chlorobenzenes, nitrobenzenes, anilines, phenols, polycyclic aromatic hydrocarbons and organic sulfides) in 26 min. Injecting a 50 μL sample without any enrichment step, such as cryotrap focusing, the limits of quantification (LOQs) for the 27 HVOCs was 0.01-3 μg/L. Replicate analyses of the 27 HVOCs spiked source and river water samples exhibited good precision (relative standard deviations ≤ 11.3%) and accuracy (relative errors ≤ 17.6%). The optimized LV-DAI-GC was robust and applicable for fast determination and automated continuous monitoring of HVOCs in surface water. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Fixed dilated pupil (Urrets-Zavalia syndrome) after air/gas injection after deep lamellar keratoplasty for keratoconus.

    PubMed

    Maurino, Vincenzo; Allan, Bruce D S; Stevens, Julian D; Tuft, Stephen J

    2002-02-01

    To describe three cases of fixed dilated pupil and presumed iris ischemia (Urrets-Zavalia syndrome) after anterior chamber air/gas injection after deep lamellar keratoplasty for keratoconus. Interventional case series. Three eyes of three patients with keratoconus underwent deep lamellar keratoplasty and intraoperative or postoperative injection of air/gas in the anterior chamber to appose the host-donor lamellar graft interface. Urrets-Zavalia syndrome was diagnosed on clinical grounds in three cases and was associated with the Descemet membrane microperforation intraoperatively and introduction of air/gas into the anterior chamber intraoperatively or postoperatively. A fixed dilated pupil is an uncommon complication of penetrating keratoplasty for keratoconus that can also develop after deep lamellar keratoplasty. Leaving an air or gas bubble in the anterior chamber of a phakic eye after deep lamellar keratoplasty is a risk factor and should therefore be avoided.

  12. Reactor and method for hydrocracking carbonaceous material

    DOEpatents

    Duncan, Dennis A.; Beeson, Justin L.; Oberle, R. Donald; Dirksen, Henry A.

    1980-01-01

    Solid, carbonaceous material is cracked in the presence of hydrogen or other reducing gas to provide aliphatic and aromatic hydrocarbons of lower molecular weight for gaseous and liquid fuels. The carbonaceous material, such as coal, is entrained as finely divided particles in a flow of reducing gas and preheated to near the decomposition temperature of the high molecular weight polymers. Within the reactor, small quantities of oxygen containing gas are injected at a plurality of discrete points to burn corresponding amounts of the hydrogen or other fuel and elevate the mixture to high temperatures sufficient to decompose the high molecular weight, carbonaceous solids. Turbulent mixing at each injection point rapidly quenches the material to a more moderate bulk temperature. Additional quenching after the final injection point can be performed by direct contact with quench gas or oil. The reactions are carried out in the presence of a hydrogen-containing reducing gas at moderate to high pressure which stabilizes the products.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, R.; Rudakov, D. L.; Stangeby, P. C.

    Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. We have investigated different methods such as electrical biasing and local gas injection to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducingmore » the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH 4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. The inter-ELM W erosion we measured in H-mode plasmas, rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.« less

  14. The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the Common Era

    PubMed Central

    Vidal, Céline M.; Métrich, Nicole; Komorowski, Jean-Christophe; Pratomo, Indyo; Michel, Agnès; Kartadinata, Nugraha; Robert, Vincent; Lavigne, Franck

    2016-01-01

    Large explosive eruptions inject volcanic gases and fine ash to stratospheric altitudes, contributing to global cooling at the Earth’s surface and occasionally to ozone depletion. The modelling of the climate response to these strong injections of volatiles commonly relies on ice-core records of volcanic sulphate aerosols. Here we use an independent geochemical approach which demonstrates that the great 1257 eruption of Samalas (Lombok, Indonesia) released enough sulphur and halogen gases into the stratosphere to produce the reported global cooling during the second half of the 13th century, as well as potential substantial ozone destruction. Major, trace and volatile element compositions of eruptive products recording the magmatic differentiation processes leading to the 1257 eruption indicate that Mt Samalas released 158 ± 12 Tg of sulphur dioxide, 227 ± 18 Tg of chlorine and a maximum of 1.3 ± 0.3 Tg of bromine. These emissions stand as the greatest volcanogenic gas injection of the Common Era. Our findings not only provide robust constraints for the modelling of the combined impact of sulphur and halogens on stratosphere chemistry of the largest eruption of the last millennium, but also develop a methodology to better quantify the degassing budgets of explosive eruptions of all magnitudes. PMID:27721477

  15. Simulation Studies on Cooling of Cryogenic Propellant by Gas Bubbling

    NASA Astrophysics Data System (ADS)

    Sandilya, Pavitra; Saha, Pritam; Sengupta, Sonali

    Injection cooling was proposed to store cryogenic liquids (Larsen et al. [1], Schmidt [2]). When a non-condensable gas is injected through a liquid, the liquid component would evaporate into the bubble if its partial pressure in the bubble is lower than its vapour pressure. This would tend to cool the liquid. Earlier works on injection cooling was analysed by Larsen et al. [1], Schmidt [2], Cho et al. [3] and Jung et al. [4], considering instantaneous mass transfer and finite heat transfer between gas bubble and liquid. It is felt that bubble dynamics (break up, coalescence, deformation, trajectory etc.) should also play a significant role in liquid cooling. The reported work are based on simple assumptions like single bubble, zero bubble deformation, and no inter-bubble interactions. Hence in this work, we propose a lumped parameter model considering both heat and mass interactions between bubble and the liquid to gain a preliminary insight into the cooling phenomenon during gas injection through a liquid.

  16. Pore-scale interfacial dynamics during gas-supersaturated water injection in porous media - on nucleation, growth and advection of disconnected fluid phases (Invited)

    NASA Astrophysics Data System (ADS)

    Or, D.; Ioannidis, M.

    2010-12-01

    Degassing and in situ development of a mobile gas bubbles occur when injecting supersaturated aqueous phase into water-saturated porous media. Supersaturated water injection (SWI) has potentially significant applications in remediation of soils contaminated by non-aqueous phase liquids and in enhanced oil recovery. Pore network simulations indicate the formation of a region near the injection boundary where gas phase nuclei are activated and grow by mass transfer from the flowing supersaturated aqueous phase. Ramified clusters of gas-filled pores develop which, owing to the low prevailing Bond number, grow laterally to a significant extent prior to the onset of mobilization, and are thus likely to coalesce. Gas cluster mobilization invariably results in fragmentation and stranding, such that a macroscopic region containing few tenuously connected large gas clusters is established. Beyond this region, gas phase nucleation and mass transfer from the aqueous phase are limited by diminishing supply of dissolved gas. New insights into SWI dynamics are obtained using rapid micro-visualization in transparent glass micromodels. Using high-speed imaging, we observe the nucleation, initial growth and subsequent fate (mobilization, fragmentation, collision, coalescence and stranding) of CO2 bubbles and clusters of gas-filled pores and analyze cluster population statistics. We find significant support for the development of invasion-percolation-like patterns, but also report on hitherto unaccounted for gas bubble behavior. Additionally, we report for the first time on the acoustic emission signature of SWI in porous media and relate it to the dynamics of bubble nucleation and growth. Finally, we identify the pore-scale mechanisms associated with the mobilization and subsequent recovery of a residual non-aqueous phase liquid due to gas bubble dynamics during SWI.

  17. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection

    NASA Astrophysics Data System (ADS)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.

    2015-12-01

    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  18. Physical, chemical, and biological aspects of subsurface organic waste injection near Wilmington, North Carolina

    USGS Publications Warehouse

    Leenheer, J.A.; Malcolm, R.L.; White, W.R.

    1976-01-01

    From May 1968 to December 1972, an industrial organic waste was injected at rates of 100 to 200 gallons per minute (6.3 to 12.6 litres per second) into a sand, gravel, and limestone aquifer of Late Cretaceous age by Hercules Inc. located near Wilmington, North Carolina. This report presents both field and laboratory data pertaining to the physical, chemical, and biological effects of waste injection into the subsurface at this particular site, a case history of the operation, predictions of the reactions between certain organic wastes and the aquifer components, and descriptions of the effects of these reactions on the subsurface movement of the wastes. The case history documents a situation in which subsurface waste injection could not be considered a successful means of waste disposal. The first injection well was used only for 1 year due to excessive wellhead pressure build-up above the specified pressure limit of 150 pounds per square inch (10.3 bars). A second injection well drilled as a replacement operated for only 5 months before it too began to have problems with plugging. Upward leakage of waste into shallower aquifers was also detected at several wells in the injection-observation well system. The multiple problems of plugging, high pressures, and waste leakage suggested that the reactive nature of the waste with the aquifer into which it was injected was the primary reason for the difficulties experienced with waste injection. A site study was initiated in June 1971 to investigate waste-aquifer interactions. The first stage of the study determined the hydrogeologic conditions at the site, and characterized the industrial waste and the native ground water found in the injection zone and other aquifers. The injection zone consisted of multiple permeable zones ranging in depth from about 850 to 1,000 feet (259 to 305 metres) below land surface. In addition to the injection zone, aquifers were found near depths of 60, 300, 500, and 700 feet (18, 91, 152, and 213 metres) below land surface. The aquifers from 300 feet (91 metres) down to the injection zone were flowing artesian with the natural pressure of the injection zone being 65 feet (20 metres) above land surface at the site. The dissolved solids concentration in the native ground water increased with depth to an average value of 20,800 mg/l (milligram per litre) (two-thirds that of seawater) in the water from the injection zone. Sodium chloride was the major dissolved solid, and all of the ground water below 300-feet (91-metres) depth was slightly alkaline. Dissolved organic carbon of the industrial waste averaged 7,100 mg/l and 95 percent of the organic carbon was identified and quantified. The major organic waste constituents in order of decreasing abundance were acetic acid, formic acid, p-toluic acid, formaldehyde, methanol, terephthalic acid, phthalic acid, and benzoic acid. Prior to injection, the waste was neutralized with lime to pH 4 so that the major inorganic waste constituent was calcium at a concentration of 1,300 mg/l. The second stage of the site study involved the observation of waste-aquifer interactions at various wells as the waste arrived and passed by the wells. Water samples obtained from three observation wells located 1,500 to 2,000 feet (457 to 607 metres) from the original injection well gave evidence for biochemical waste transformations at low waste concentrations. Gas that effervesced from these water samples contained up to 54 percent methane by volume. Ferrous iron concentrations as high as 35 mg/l, hydrogen sulfide gas, and sulfide precipitates were additional indicators of biochemical reductive processes in the subsurface environment. Approximately 3,000 organisms per millilitre were found in uncontaminated ground water from the injection zone whereas in waste-contaminated wells, the number increased to levels as high as 1,000,000 organisms per millilitre. High concentrations of waste were found to be toxic to microo

  19. Density and mixture fraction measurements in a GO2/GH2 uni-element rocket chamber

    NASA Technical Reports Server (NTRS)

    Moser, M. D.; Pal, S.; Santoro, R. J.

    1994-01-01

    In recent years, there has been a renewed interest in gas/gas injectors for rocket combustion. Specifically, the proposed new concept of full-flow oxygen rich preburner systems calls for the injection of both oxygen and hydrogen into the main chamber as gaseous propellants. The technology base for gas/gas injection must mature before actual booster class systems can be designed and fabricated. Since the data base for gas/gas injection is limited to studies focusing on the global parameters of small reaction engines, there is a critical need for experiment programs that emphasize studying the mixing and combustion characteristics of GO2 and GH2 propellants from a uni-element injector point of view. The experimental study of the combusting GO2/GH2 propellant combination in a uni-element rocket chamber also provides a simplified environment, in terms of both geometry and chemistry, that can be used to verify and validate computational fluid dynamic (CFD) models.

  20. Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, James; Li, Lei; Yu, Yang

    The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminatedmore » owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.« less

  1. Noncircular Cross Sections Could Enhance Mixing in Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Abdel-Hameed, Hesham

    2003-01-01

    A computational study has shown that by injecting drops in jets of gas having square, elliptical, triangular, or other noncircular injection cross sections, it should be possible to increase (relative to comparable situations having circular cross section) the entrainment and dispersion of liquid drops. This finding has practical significance for a variety of applications in which it is desirable to increase dispersion of drops. For example, in chemical-process sprays, increased dispersion leads to increases in chemical- reaction rates; in diesel engines, increasing the dispersion of drops of sprayed fuel reduces the production of soot; and in household and paint sprays, increasing the dispersion of drops makes it possible to cover larger surfaces. It has been known for some years that single-phase fluid jets that enter flow fields through noncircular inlets entrain more fluid than do comparable jets entering through circular inlets. The computational study reported here was directed in part toward determining whether and how this superior mixing characteristic of noncircular single phase jets translates to a similar benefit in cases of two-phase jets (that is, sprays). The study involved direct numerical simulations of single- and two-phase free jets with circular, elliptical, rectangular, square, and triangular inlet cross sections. The two-phase jets consisted of gas laden with liquid drops randomly injected at the inlets. To address the more interesting case of evaporating drops, the carrier gas in the jets was specified to be initially unvitiated by the vapor of the liquid chemical species and the initial temperature of the drops was chosen to be smaller than that of the gas. The mathematical model used in the study was constructed from the conservation equations for the two-phase flow and included complete couplings of mass, momentum, and energy based on thermodynamically self-consistent specification of the enthalpy, internal energy, and latent heat of vaporization of the vapor.

  2. Injection of dust into the Martian atmosphere - Evidence from the Viking Gas Exchange experiment

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Harris, S. L.; Carter, R.

    1986-01-01

    The hypothesis that predawn midlatitude storms are triggered by a soil humidification process is examined. A freeze/thaw model of the process is evaluated in the Viking Gas Exchange experiments conducted on Mars. The humidification-driven desorption and desiccation state of Martian soil samples are analyzed. The periodic humidification of equatorial regolith soil is studied in terms of pore space pressure during desorption events and soil diffusivity; the thermal properties of the regolith surface layer are modeled using the program of Clifford (1984). Consideration is given to the diurnal and seasonal cycles of the humidification process, the permanent, low-albedo features in the midlatitudes, and the production of H2SO4 and HCl aerosols.

  3. Pneumatic testing in 45-degree-inclined boreholes in ash-flow tuff near Superior, Arizona

    USGS Publications Warehouse

    LeCain, G.D.

    1995-01-01

    Matrix permeability values determined by single-hole pneumatic testing in nonfractured ash-flow tuff ranged from 5.1 to 20.3 * 1046 m2 (meters squared), depending on the gas-injection rate and analysis method used. Results from the single-hole tests showed several significant correlations between permeability and injection rate and between permeability and test order. Fracture permeability values determined by cross-hole pneumatic testing in fractured ash-flow tuff ranged from 0.81 to 3.49 * 1044 m2, depending on injection rate and analysis method used. Results from the cross-hole tests monitor intervals showed no significant correlation between permeability and injection rate; however, results from the injection interval showed a significant correlation between injection rate and permeability. Porosity estimates from the 'cross-hole testing range from 0.8 to 2.0 percent. The maximum temperature change associated with the pneumatic testing was 1.2'(2 measured in the injection interval during cross-hole testing. The maximum temperature change in the guard and monitor intervals was O.Ip C. The maximum error introduced into the permeability values due to temperature fluctuations is approximately 4 percent. Data from temperature monitoring in the borehole indicated a positive correlation between the temperature decrease in the injection interval during recovery testing and the gas-injection rate. The thermocouple psychrometers indicated that water vapor was condensing in the boreholes during testing. The psychrometers in the guard and monitor intervals detected the drier injected gas as an increase in the dry bulb reading. The relative humidity in the test intervals was always higher than the upper measurement limit of the psychrometers. Although the installation of the packer system may have altered the water balance of the borehole, the gas-injection testing resulted in minimal or no changes in the borehole relative humidity.

  4. CO 2 water-alternating-gas injection for enhanced oil recovery: Optimal well controls and half-cycle lengths

    DOE PAGES

    Chen, Bailian; Reynolds, Albert C.

    2018-03-11

    We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less

  5. CO 2 water-alternating-gas injection for enhanced oil recovery: Optimal well controls and half-cycle lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bailian; Reynolds, Albert C.

    We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less

  6. Effect of injection-gas concentration on the electron beam quality from a laser-plasma accelerator

    NASA Astrophysics Data System (ADS)

    Mirzaie, Mohammad; Zhang, Guobo; Li, Song; Gao, Kai; Li, Guangyu; Ain, Quratul; Hafz, Nasr A. M.

    2018-04-01

    By using 25-45 TW ultra-short (30 fs) laser pulses, we report on the effect of the injection gas concentration on the quality of electron beams generated by a laser-driven plasma wakefield acceleration employing the ionization-injection. For a plasma formed from helium-nitrogen gas mixture and depending on the concentration of the nitrogen gas, we could distinguish a clear trend for the quality of the generated electron beams in terms of their peak energy, energy-spread, divergence angle, and beam charge. The results clearly showed that the lower the nitrogen concentration, the better the quality (higher peak energy, smaller energy spread, and smaller emittance) of the generated electron beams. The results are in reasonable agreement with two-dimensional particle-in-cell simulations.

  7. Impurity mixing and radiation asymmetry in massive gas injection simulations of DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzo, V. A.

    Simulations of neon massive gas injection into DIII-D are performed with the 3D MHD code NIMROD. The poloidal and toroidal distribution of the impurity source is varied. This report will focus on the effects of the source variation on impurity mixing and radiated power asymmetry. Even toroidally symmetric impurity injection is found to produce asymmetric radiated power due to asymmetric convective heat flux produced by the 1/1 mode. When the gas source is toroidally localized, the phase relationship between the mode and the source location is important, affecting both radiation peaking and impurity mixing. Under certain circumstances, a single, localizedmore » gas jet could produce better radiation symmetry during the disruption thermal quench than evenly distributed impurities.« less

  8. Gras Dowr joins world`s FPSO fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-05

    The Gras Dowr, a floating production, storage, and offloading vessel (FPSD) for Amerada Hess Ltd.`s North Sea Durward and Dauntless fields, is one of the latest additions to the world`s growing FPSO fleet. The Gras Dowr, anchored in about 90 m of water, lies between the Durward (U.K. Block 21/16) and Dauntless (U.K. Block 21/11) fields, about 3.5 km from the subsea wellhead locations. The Gras Dowr`s main functions, according to Bluewater Offshore Production Systems Ltd., are to: receive fluids from well risers; process incoming fluids to separate the fluid into crude, water, and gas; store dry crude oil andmore » maintain the required temperature; treat effluent to allow for water discharge to the sea; compress gas for gas lift as a future option; provide chemical injection skid for process chemical injection; use a part of the produced gas for fuel gas, and flare excess gas; inject treated seawater into the injection wells; house power generation for process and offloading operation and utilities; offload to a tandem moored shuttle tanker including receiving liquid fuel from the same tanker; provide accommodations for operating and maintenance crews; allow helicopters landings and takeoffs; allow handling and storage of goods transported by supply vessels; moor a shuttle tanker; and control the subsea wells.« less

  9. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells.

    PubMed

    Cluff, Maryam A; Hartsock, Angela; MacRae, Jean D; Carter, Kimberly; Mouser, Paula J

    2014-06-03

    Microorganisms play several important roles in unconventional gas recovery, from biodegradation of hydrocarbons to souring of wells and corrosion of equipment. During and after the hydraulic fracturing process, microorganisms are subjected to harsh physicochemical conditions within the kilometer-deep hydrocarbon-bearing shale, including high pressures, elevated temperatures, exposure to chemical additives and biocides, and brine-level salinities. A portion of the injected fluid returns to the surface and may be reused in other fracturing operations, a process that can enrich for certain taxa. This study tracked microbial community dynamics using pyrotag sequencing of 16S rRNA genes in water samples from three hydraulically fractured Marcellus shale wells in Pennsylvania, USA over a 328-day period. There was a reduction in microbial richness and diversity after fracturing, with the lowest diversity at 49 days. Thirty-one taxa dominated injected, flowback, and produced water communities, which took on distinct signatures as injected carbon and electron acceptors were attenuated within the shale. The majority (>90%) of the community in flowback and produced fluids was related to halotolerant bacteria associated with fermentation, hydrocarbon oxidation, and sulfur-cycling metabolisms, including heterotrophic genera Halolactibacillus, Vibrio, Marinobacter, Halanaerobium, and Halomonas, and autotrophs belonging to Arcobacter. Sequences related to halotolerant methanogenic genera Methanohalophilus and Methanolobus were detected at low abundance (<2%) in produced waters several months after hydraulic fracturing. Five taxa were strong indicators of later produced fluids. These results provide insight into the temporal trajectory of subsurface microbial communities after "fracking" and have important implications for the enrichment of microbes potentially detrimental to well infrastructure and natural gas fouling during this process.

  10. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas

    PubMed Central

    Gan, Wei; Frohlich, Cliff

    2013-01-01

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast–southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006–2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957–1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change. PMID:24191019

  11. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas.

    PubMed

    Gan, Wei; Frohlich, Cliff

    2013-11-19

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast-southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006-2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957-1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change.

  12. Leakage risk assessment of the In Salah CO2 storage project: Applying the Certification Framework in a dynamic context.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, C.M.; Jordan, P.D.; Nicot, J.-P.

    2010-08-01

    The Certification Framework (CF) is a simple risk assessment approach for evaluating CO{sub 2} and brine leakage risk at geologic carbon sequestration (GCS) sites. In the In Salah CO{sub 2} storage project assessed here, five wells at Krechba produce natural gas from the Carboniferous C10.2 reservoir with 1.7-2% CO{sub 2} that is delivered to the Krechba gas processing plant, which also receives high-CO{sub 2} natural gas ({approx}10% by mole fraction) from additional deeper gas reservoirs and fields to the south. The gas processing plant strips CO{sub 2} from the natural gas that is then injected through three long horizontal wellsmore » into the water leg of the Carboniferous gas reservoir at a depth of approximately 1,800 m. This injection process has been going on successfully since 2004. The stored CO{sub 2} has been monitored over the last five years by a Joint Industry Project (JIP) - a collaboration of BP, Sonatrach, and Statoil with co-funding from US DOE and EU DG Research. Over the years the JIP has carried out extensive analyses of the Krechba system including two risk assessment efforts, one before injection started, and one carried out by URS Corporation in September 2008. The long history of injection at Krechba, and the accompanying characterization, modeling, and performance data provide a unique opportunity to test and evaluate risk assessment approaches. We apply the CF to the In Salah CO{sub 2} storage project at two different stages in the state of knowledge of the project: (1) at the pre-injection stage, using data available just prior to injection around mid-2004; and (2) after four years of injection (September 2008) to be comparable to the other risk assessments. The main risk drivers for the project are CO{sub 2} leakage into potable groundwater and into the natural gas cap. Both well leakage and fault/fracture leakage are likely under some conditions, but overall the risk is low due to ongoing mitigation and monitoring activities. Results of the application of the CF during these different state-of-knowledge periods show that the assessment of likelihood of various leakage scenarios increased as more information became available, while assessment of impact stayed the same. Ongoing mitigation, modeling, and monitoring of the injection process is recommended.« less

  13. Numerical investigation on cryogenic liquid jet under transcritical and supercritical conditions

    NASA Astrophysics Data System (ADS)

    Li, Liang; Xie, Maozhao; Wei, Wu; Jia, Ming; Liu, Hongsheng

    2018-01-01

    Cryogenic fluid injection and mixing under transcritical and supercritical conditions is numerically investigated with emphasis on the difference of the mechanism and characteristics between the two injections. A new solver is developed which is capable of handling the nonideality of the equation of state and the anomalies in fluid transport properties and is incorporated into the CFD software OpenFOAM. The new solver has been validated against available experimental data and exhibits a good performance. Computational results indicates that the differences between transcritical and supercritical injections are mainly induced by the pseudo-boiling phenomenon, resulting in that the transcritical jet has a longer cold liquid core and an isothermal expansion occurs at the surface of the cold core. The thickness of the supercritical mixing layer and its increase value along the jet direction are greater than its transcritical counterpart. The high-temperature jet whose initial temperature is above the pseudo-boiling temperature has the ability of enhancing the mixing of the jet with the surrounding gas.

  14. Highly Segmented Thermal Barrier Coatings Deposited by Suspension Plasma Spray: Effects of Spray Process on Microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio

    2016-12-01

    Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.

  15. Effects of Hydraulic Frac Fluids on Subsurface Microbial Communities in Gas Shales

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Krüger, Martin

    2014-05-01

    Shale gas is being considered as a complementary energy resource to coal or other fossil fuels. The exploitation of unconventional gas reservoirs requires the use of advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemical additives) are injected at high pressures into the formations, to produce fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluids partly remain in the formation, while about 20 to 40% of the originally injected fluid flows back to the surface, together with formation waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The overall production operation will likely affect and be affected by subsurface microbial communities associated to the shale formations. On the one hand microbial activity (like growth, biofilm formation) can cause unwanted processes like corrosion, clogging, etc. On the other hand, the introduction of frac fluids could either enhance microbial growth or cause toxicity to the shale-associated microbial communities. To investigate the potential impacts of changing environmental reservoir conditions, like temperature, salinity, oxgen content and pH, as well as the introduction of frac or geogenic chemicals on subsurface microbial communities, laboratory experiments under in situ conditions (i.e. high temperatures and pressures) are being conducted. Enrichment cultures with samples from several subsurface environments (e.g. shale and coal deposits, gas reservoirs, geothermal fluids) have been set up using a variety of carbon sources, including hydrocarbons and typical frac chemicals. Classical microbiological and molecular analysis are used to determine changes in the microbial abundance, community structure and function after the exposure to different single frac chemicals, "artificial" frac fluids or production waters. On the other hand, potential transformation reactions of frac or geogenic chemicals by subsurface microbiota and their lifetime are investigated. In our "fracking simulation" experiments, an increasing number of hydrocarbon-degrading or halophilic microorganisms is to be expected after exposure of subsurface communities to artificial production waters. Whereas the introduction of freshwater and of easily biodegradable substrates might favor the proliferation of fast-growing generalistic heterotrophs in shale-associated communities. Nevertheless toxicity of some of the frac components cannot be excluded.

  16. Implicit Coupling Approach for Simulation of Charring Carbon Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2013-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption

  17. Pinus Pinaster surface treatment realized in spatial and temporal afterglow DBD conditions

    NASA Astrophysics Data System (ADS)

    Lecoq, E.; Clément, F.; Panousis, E.; Loiseau, J.-F.; Held, B.; Castetbon, A.; Guimon, C.

    2008-04-01

    This experimental work deals with the exposition of Pinus Pinaster wood samples to a DBD afterglow. Electrical parameters like duty cycle and injected energy in the gas are being varied and the modifications induced by the afterglow on the wood are analysed by several macroscopic and microscopic ways like wettability, XPS analyses and also soaking tests of treated wood in a commercial fungicide solution. Soaking tests show that plasma treatment could enhance the absorption of fungicide into the wood. The wettability results point out that the plasma treatment can inflict on the wood different surface properties, making it hydrophilic or hydrophobic, when varying electrical parameters. XPS analyses reveal several chemical modifications like an increase of the O/C ratio and the presence of carboxyl groups on the surface after plasma treatments.

  18. Permeability Evolution of Propped Artificial Fractures in Green River Shale

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Feng, Zijun; Han, Gang; Elsworth, Derek; Marone, Chris; Saffer, Demian; Cheon, Dae-Sung

    2017-06-01

    This paper compares the evolution of permeability with effective stress in propped fractures in shale for native CH4 compared with that for sorbing CO2, slightly sorbing N2 and non-sorbing He. We examine the response for laboratory experiments on artificial propped fractures in Green River Shale to explore mechanisms of proppant embedment and fracture diagenesis. Split cylindrical specimens sandwich a proppant bead-pack at a constant confining stress of 20 MPa and with varied pore pressure. Permeability and sorption characteristics are measured with the pulse transient method. To explore the effect of swelling and embedment on fracture surface geometry, we measure the evolution of conductivity characteristics for different proppant geometries (single layer vs. multilayer), gas saturation and specimen variation in order to simulate both production and enhanced gas recovery. The resulting morphology of embedment is measured by white light interferometry and characterized via surface roughness parameter of mean, maximum and root-mean-square amplitudes. For both strongly (CO2, CH4) and slightly adsorptive gases (N2), the permeability first decreases with an increase in gas pressure due to swelling before effective stress effects dominate above the Langmuir pressure threshold. CO2 with its highest adsorption affinity produces the lowest permeability among these three gas permeants. Monolayer propped specimens show maximum swelling and lowered k/k 0 ratio and increased embedment recorded in the surface roughness relative to the multilayered specimens. Permeabilities measured for both injection and depletion cycles generally overlap and are repeatable with little hysteresis. This suggests the dominant role of reversible swelling over irreversible embedment. Gas permeant composition and related swelling have an important effect on the permeability evolution of shales.

  19. Charcateristics of Plasma Waves Excited During Gas Release and Plasma Injection Into The Ionosphere

    NASA Astrophysics Data System (ADS)

    Klos, Z.; Gdalevich, G. L.; Mikhailov, I.

    Waves in broad frequency range are generated during the injection of fast plasma as well as release of neutral gas into ionosphere from the spacecraft. The excited wave modes depend on the environmental plasma parameters, geometry of injection as well as on the rate of ionisation of plasma in the stream. The neutral xenon gas was released from the board of the ACTIVE satellite (in 1989) and parallel with the release process the VLF as well as HF waves were diagnosed. On the other hand the xenon plasma from gun generator was injected into the ionosphere from the board of APEX satellite (in 1991) and also broad frequency range of emission was registered. In the present paper are compared the plasma waves characteristics observed in these two types of experiments.

  20. Estimate for interstage water injection in air compressor incorporated into gas-turbine cycles and combined power plants cycles

    NASA Astrophysics Data System (ADS)

    Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.

    2017-05-01

    The objects of study are the gas turbine (GT) plant and combined cycle power plant (CCPP) with opportunity for injection between the stages of air compressor. The objective of this paper is technical and economy optimization calculations for these classes of plants with water interstage injection. The integrated development environment "System of machine building program" was a tool for creating the mathematic models for these classes of power plants. Optimization calculations with the criterion of minimum for specific capital investment as a function of the unit efficiency have been carried out. For a gas-turbine plant, the economic gain from water injection exists for entire range of power efficiency. For the combined cycle plant, the economic benefit was observed only for a certain range of plant's power efficiency.

  1. Posterior subtenon triamcinolone acetonide in gas-filled eyes as an adjunctive treatment for complicated proliferative diabetic retinopathy.

    PubMed

    Lee, Yongeun; Kang, Seungbum; Park, Young-Hoon

    2013-02-01

    To evaluate the effect of adjunctive subtenon injection of triamcinolone acetonide (TA) in gas-filled eyes after vitrectomy for complicated proliferative diabetic retinopathy (PDR). This nonrandomized comparative study included 27 patients (27 eyes) who underwent pars plana vitrectomy and gas tamponade for treatment of PDR with tractional or combined tractional-rhegmatogenous retinal detachment and who received subtenon injection of TA (40 mg) at the end of surgery. The study group was compared with the control group (29 eyes), which was matched with the study group for preoperative and intraoperative parameters, but underwent pars plana vitrectomy and gas tamponade without a subtenon injection of TA. Retinal reattachments without reoperation were achieved in 25 eyes (92.6%) and 26 eyes (89.7%) at 6 months (p = 1.000) in the study and control groups, respectively. The study group and the control group did not differ significantly in the frequency of postoperative proliferative vitreoretinopathy, retinal redetachment rate, reoperation rate, macular pucker formation, postoperative vitreous hemorrhage, gain in visual acuity, intraocular pressure, and intraocular inflammation (p > 0.05). The clinical results of pars plana vitrectomy for complicated PDR are not improved significantly by an adjunctive subtenon TA injection in gas-filled eyes.

  2. Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow

    NASA Technical Reports Server (NTRS)

    Bakirov, F. G.; Shaykhutdinov, Z. G.

    1985-01-01

    An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.

  3. Development and applications of various optimization algorithms for diesel engine combustion and emissions optimization

    NASA Astrophysics Data System (ADS)

    Ogren, Ryan M.

    For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.

  4. Non-mechanical traumatic gas gangrene: forgotten but not gone.

    PubMed

    Senthilkumaran, Subramanian; Menezes, Ritesh G; Pant, Sadip; Khartode, Chhagan P; Balamurugan, Namasivayam; Thirumalaikolundusubramanian, Ponniah

    2012-04-01

    We report a case of gas gangrene (GG) in a non-diabetic HIV seronegative man who died within 60 hours following an intramuscular injection in rural India. The occurrence of GG after intramuscular injection is rare and only a few cases have been reported in the published literature.

  5. Understanding the interaction of injected CO2 and reservoir fluids in the Cranfield enhanced oil recovery (EOR) field (MS, USA) by non-radiogenic noble gas isotopes

    NASA Astrophysics Data System (ADS)

    Gyore, Domokos; Stuart, Finlay; Gilfillan, Stuart

    2016-04-01

    Identifying the mechanism by which the injected CO2 is stored in underground reservoirs is a key challenge for carbon sequestration. Developing tracing tools that are universally deployable will increase confidence that CO2 remains safely stored. CO2 has been injected into the Cranfield enhanced oil recovery (EOR) field (MS, USA) since 2008 and significant amount of CO2 has remained (stored) in the reservoir. Noble gases (He, Ne, Ar, Kr, Xe) are present as minor natural components in the injected CO2. He, Ne and Ar previously have been shown to be powerful tracers of the CO2 injected in the field (Györe et al., 2015). It also has been implied that interaction with the formation water might have been responsible for the observed CO2 loss. Here we will present work, which examines the role of reservoir fluids as a CO2 sink by examining non-radiogenic noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe). Gas samples from injection and production wells were taken 18 and 45 months after the start of injection. We will show that the fractionation of noble gases relative to Ar is consistent with the different degrees of CO2 - fluid interaction in the individual samples. The early injection samples indicate that the CO2 injected is in contact with the formation water. The spatial distribution of the data reveal significant heterogeneity in the reservoir with some wells exhibiting a relatively free flow path, where little formation water is contacted. Significantly, in the samples, where CO2 loss has been previously identified show active and ongoing contact. Data from the later stage of the injection shows that the CO2 - oil interaction has became more important than the CO2 - formation water interaction in controlling the noble gas fingerprint. This potentially provides a means to estimate the oil displacement efficiency. This dataset is a demonstration that noble gases can resolve CO2 storage mechanisms and its interaction with the reservoir fluids with high resolution. References: Györe, D., Stuart, F.M., Gilfillan, S.M.V., Waldron, S., 2015. Tracing injected CO2 in the Cranfield enhanced oil recovery field (MS, USA) using He, Ne and Ar isotopes. Int. J. Greenh. Gas Con. 42, 554-561.

  6. Modeling of surface-dominated plasmas: from electric thruster to negative ion source.

    PubMed

    Taccogna, F; Schneider, R; Longo, S; Capitelli, M

    2008-02-01

    This contribution shows two important applications of the particle-in-cell/monte Carlo technique on ion sources: modeling of the Hall thruster SPT-100 for space propulsion and of the rf negative ion source for ITER neutral beam injection. In the first case translational degrees of freedom are involved, while in the second case inner degrees of freedom (vibrational levels) are excited. Computational results show how in both cases, plasma-wall and gas-wall interactions play a dominant role. These are secondary electron emission from the lateral ceramic wall of SPT-100 and electron capture from caesiated surfaces by positive ions and atoms in the rf negative ion source.

  7. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection

    DTIC Science & Technology

    2014-06-01

    Vitaly G. Soudakov; Ivett A Leyva 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q0AF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...cases of low injection rates in which the N -factors in the near field region are below the critical level, shaping can produce a significant...distribution unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander V. Fedorov* and Vitaly G. Soudakov

  8. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection (Briefing Charts)

    DTIC Science & Technology

    2014-06-01

    Vitaly G. Soudakov; Ivett A Leyva 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q0AF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...cases of low injection rates in which the N -factors in the near field region are below the critical level, shaping can produce a significant...Release; Distribution Unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander Fedorov and Vitaly Soudakov Moscow

  9. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decreasemore » of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.« less

  10. Groundwater remediation engineering sparging using acetylene--study on the flow distribution of air.

    PubMed

    Zheng, Yan-Mei; Zhang, Ying; Huang, Guo-Qiang; Jiang, Bin; Li, Xin-Gang

    2005-01-01

    Air sparging (AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.

  11. Analogue modelling of caprock failure and sediment mobilisation due to pore fluid overpressure in shallow reservoirs

    NASA Astrophysics Data System (ADS)

    Warsitzka, Michael; Kukowski, Nina; May, Franz

    2017-04-01

    Injection of CO2 in geological formations may cause excess pore fluid pressure by enhancing the fluid volume in the reservoir rock and by buoyancy-driven flow. If sediments in the reservoir and the caprock are undercompacted, pore fluid overpressure can lead to hydro-fractures in the caprock and fluidisation of sediments. Eventually, these processes trigger the formation of pipe structures, gas chimneys, gas domes or sand injections. Generally, such structures serve as high permeable pathways for fluid migration through a low-permeable seal layer and have to be considered in risk assessment or modelling of caprock integrity of CO2 storage sites. We applied scaled analogue experiments to characterise and quantify mechanisms determining the onset and migration of hydro-fractures in a low-permeable, cohesive caprock and fluidisation of unconsolidated sediments of the reservoir layer. The caprock is simulated by different types of cohesive powder. The reservoir layer consists of granulates with small particle density. Air injected through the base of the experiment and additionally through a single needle valve reaching into the analogue material is applied to generate fluid pressure within the materials. With this procedure, regional fluid pressure increase or a point-like local fluid pressure increase (e.g. injection well), respectively, can be simulated. The deformation in the analogue materials is analysed with a particle tracking imaging velocimetry technique. Pressure sensors at the base of the experiment and in the needle valve record the air pressure during an experimental run. The structural evolution observed in the experiments reveal that the cohesive cap rock first forms a dome-like anticline. Extensional fractures occur at the hinges of the anticline. A further increase of fluid pressure causes a migration of this fractures towards the surface, which is followed by intrusion of reservoir material into the fractures and the collapse of the anticline. The breakthrough of the fractures at the surface is accompanied by a significant drop of air pressure at the base of the analogue materials. The width of the dome shaped uplift is narrower and the initiating fluid pressure in the needle valve is lower, if the fluid pressure at the base of the experiment is larger. The experimental outcomes help to evaluate if the injection of CO2 into a reservoir potentially provokes initiation or reactivation of fractures and sediment mobilisation structures.

  12. Advanced gas atomization production of oxide dispersion strengthened (ODS) Ni-base superalloys through process and solidification control

    NASA Astrophysics Data System (ADS)

    Meyer, John Louis Lamb

    A novel gas atomization reaction synthesis (GARS) method was utilized to produce precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE)-containing intermetallic. Although Al is necessary for industrial superalloy production, the Ni-Cr base alloy system was selected as a simplified system more amenable to characterization. This was done in an effort to better study the effects of processing parameters. Consolidation and heat-treatment were performed to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nanometric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiment that found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloys, but the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was easier to characterize, and make observations on the effects of processing parameters, the Ti-containing system was used for experimental atomization trials. An internal oxidation model was used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed to investigate the effects of gas atomization pressure and reactive-gas concentration on the particle size distribution (PSD). Also, the effect on the rapidly solidified microstructure (as a function of powder size) was investigated as a function of reactive-gas composition and bulk alloy composition. The results indicate that the pulsation mechanism and optimum PSDs reported in the literature were not observed. Also, it was determined that reactive gas may marginally improve the PSD, but further experiments are required. The oxygen content in the gas was also not found to be detrimental to the microstructure (i.e., did not catalyze nucleation), but may have removed potent catalytic nucleation sites, although not enough to significantly alter the microstructure. Overall, the downstream injection of oxygen was not found to significantly affect either the PSD or undercooling (as inferred from microstructure and XRD observations), but injection further upstream, including in the gas atomization nozzle, remains to be investigated.

  13. Modeling the Influence of Injection Modes on the Evolution of Solution Sprays in a Plasma Jet

    NASA Astrophysics Data System (ADS)

    Shan, Y.; Coyle, T. W.; Mostaghimi, J.

    2010-01-01

    Solution precursor plasma spraying (SPPS) is a novel technology with great potential for depositing finely structured ceramic coatings with nano- and sub-micrometric features. The solution is injected into the plasma jet either as a liquid stream or gas atomized droplets. Solution droplets or the stream interact with the plasma jet and break up into fine droplets. The solvent vaporizes very fast as the droplets travel downstream. Solid particles are finally formed, and the particle are heated up and accelerated to the substrate to generate the coating. The deposition process and the properties of coatings obtained are extremely sensitive to the process parameters, such as torch operating conditions, injection modes, injection parameters, and substrate temperatures. This article numerically investigates the effect of injection modes, a liquid stream injection and a gas-blast injection, on the size distribution of injected droplets. The particle/droplet size, temperature, and position distributions on the substrate are predicted for different injection modes.

  14. Numerical analysis of a microwave torch with axial gas injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru

    2013-07-15

    The characteristics of a microwave discharge in an argon jet injected axially into a coaxial channel with a shortened inner electrode are numerically analyzed using a self-consistent equilibrium gas-dynamic model. The specific features of the excitation and maintenance of the microwave discharge are determined, and the dependences of the discharge characteristics on the supplied electromagnetic power and gas flow rate are obtained. The calculated results are compared with experimental data.

  15. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil reservoir management methodology to maximize both fluid recovery and free up currently injected HC gases for domestic consumption. Moreover, this study identified the main uncertainty parameters impacting the gas and oil production performance with all proposed alternatives. Maximizing both fluids oil and gas in oil rim reservoir are challenging. The reservoir heterogeneity will have a major impact on the performance of non hydrocarbon gas flooding. Therefore, good reservoir description is a key to achieve acceptable development process and make reliable prediction. The lab study data were used successfully to as a tool to identify the range of uncertainty parameters that are impacting the hydrocarbon recovery.

  16. Development of septum-free injector for gas chromatography and its application to the samples with a high boiling point.

    PubMed

    Ito, Hiroshi; Hayakawa, Kazuichi; Yamamoto, Atsushi; Murase, Atsushi; Hayakawa, Kazumi; Kuno, Minoru; Inoue, Yoshinori

    2006-11-03

    A novel apparatus with a simple structure has been developed for introducing samples into the vaporizing chamber of a gas chromatograph. It requires no septum due to the gas sealing structure over the carrier gas supply line. The septum-free injector made it possible to use injection port temperatures as high as 450 degrees C. Repetitive injection of samples with boiling points below 300 degrees C resulted in peak areas with relative standard deviations between 1.25 and 3.28% (n=5) and good linearity (r(2)>0.9942) for the calibration curve. In the analysis of polycyclic aromatic hydrocarbons and a base oil, the peak areas of components with high boiling points increased as the injection port temperature was increased to 450 degrees C.

  17. [Profile-effect on quality control of Houttuynia cordata injection].

    PubMed

    Lu, Hong-mei; Liang, Yi-zeng; Qian, Pin

    2005-12-01

    To find corresponding relationship between the fingerprint of Houttuynia cordata injections from different factories and their effects. Houttuynia cordata injections from six different factories were determined by gas chromatography (GC) and gas chromatography-mass spectra (GC-MS), and GC fingerprints were classified by hierarchical clustering. The anti-inflammatory activity of Houttuynia cordata injections was characterized through the rat pleurisy model induced by carrageenin and the mice ear edema model by dimethylbenzene. The anti-inflammatory effect of the injections from the first class factories on the two model was significant, while those from the second class not. GC-MS analysis result indicated that main effect compounds in Houttuynia cordata injections are methyl n-nonyl ketone, decanoylacetaldehyde, lauryl aldehyde, capryl aldehyde, beta-pinene, beta-linalool, 1-nonanol, 4-terpineol, alpha-terpineol, bornyl acetate, n-decanoic acid and acetic acid, geraniol ester etc. There is corresponding relationship between the fingerprint of Houttuynia cordata injections and effect to a certain extent.

  18. Development of Advanced Carbon Face Seals for Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Falaleev, S. V.; Bondarchuk, P. V.; Tisarev, A. Yu

    2018-01-01

    Modern aircraft gas turbine engines require the development of seals which can operate for a long time with low leakages. The basic type of seals applied for gas turbine engine rotor supports is face seal. To meet the modern requirements of reliability, leak-tightness and weight, low-leakage gas-static and hydrodynamic seals have to be developed. Dry gas seals use both gas-static and hydrodynamic principles. In dry gas seals microgrooves are often used, which ensure the reverse injection of leakages in the sealed cavity. Authors have developed a calculation technique including the concept of coupled hydrodynamic, thermal and structural calculations. This technique allows to calculate the seal performance taking into account the forces of inertia, rupture of the lubricant layer and the real form of the gap. Authors have compared the efficiency of seals with different forms of microgrooves. Results of calculations show that seal with rectangular form of microgrooves has a little gap leading to both the contact of seal surfaces and the wear. Reversible microgrooves have a higher oil mass flow rate, whereas HST micro-grooves have good performance, but they are difficult to produce. Spiral microgrooves have both an acceptable leakages and a high stiffness of liquid layer that is important in terms of ensuring of sealing performance at vibration conditions. Therefore, the spiral grooves were chosen for the developed seal. Based on calculation results, geometric dimensions were chosen to ensure the reliability of the seal operation by creating a guaranteed liquid film, which eliminates the wear of the sealing surfaces. Seals designed were tested both at the test rig and in the engine.

  19. Transient and translating gas jet modeling for pressure gain combustion applications

    NASA Astrophysics Data System (ADS)

    Wijeyakulasuriya, Sameera Devsritha

    Major mechanisms governing the mixing process of a gas injected into a long confined chamber is analyzed when there's a relative motion between the two. Such applications arise in a wave rotor combustor (WRCVC) where the moving combustion chambers receive gas from stationary injectors for fueling and ignition. Counter rotating vortices govern the mixing process in such problems, which moves across the channel enhancing mixing. The actions of vortices were seen to localize the injected gas in the vicinity of the injector end wall which can prove advantages during fueling to make a rich mixture near the ignition source and during hot gas injection for ignition to minimize the drop of temperature. The vortex structures can alter the exit conditions of the injector due to its strong near field interactions. The confinement is also important in which it suppresses the development and motion of such vortices and hence affect mixing. The thesis discusses several important features in a WRCVC. Namely, the effect of a combustion channel being opened to the preceding exit port prior to its opening to the gas injectors, on mixing of injected gas with channel gases. This prior opening was seen to deposit vorticity on the channel wall which gets convected along them. This convecting vorticity resulted in enhanced jet penetration. The effect of combustible mixture non-uniformity on ignition success of a WRCVC was also analyzed using 2D and 1D computations. The predictions are validated against measured data from a WRCVC test rig. Ignition locations and combustion pressures were successfully predicted. Limited 3D computations of the hot gas jet mixing with the channel gases were carried out and measure temperature data from the WRCVC test rig was used to verify the axial penetration predictions of the jet. A methodology is proposed to quantify the level of mixing and ignition success by comparing the amount of injected gas inside the channel which is above a certain threshold temperature and mass fraction limits, to the total amount of injected mass trapped inside it at that particular time. Conclusions were made on the level of mixing and the 'ignitability' of the mixture by looking at the time variation of these defined quantities.

  20. An intelligent emissions controller for fuel lean gas reburn in coal-fired power plants.

    PubMed

    Reifman, J; Feldman, E E; Wei, T Y; Glickert, R W

    2000-02-01

    The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.

  1. Comparative study of oxihydrogen injection in turbocharged compression ignition engines

    NASA Astrophysics Data System (ADS)

    Barna, L.; Lelea, D.

    2018-01-01

    This document proposes for analysis, comparative study of the turbocharged, compression-ignition engine, equipped with EGR valve, operation in case the injection in intake manifold thereof a maximum flow rate of 1l/min oxyhydrogen resulted of water electrolysis, at two different injection pressures, namely 100 Pa and 3000 Pa, from the point of view of flue gas opacity. We found a substantial reduction of flue gas opacity in both cases compared to conventional diesel operation, but in different proportions.

  2. Use of Activated Carbon to Control Volatilization of Organic Contaminants from the Indiana Harbor Confined Disposal Facility

    DTIC Science & Technology

    2012-09-01

    PAHs (17 priority pollutant PAHs) were extracted from sediment by USEPA SW-846 Method 3545 and analyzed by gas chromatography /mass spectrometry...slurry at concentrations of 0.025, 0.05, and 0.10 g/L. The carbon- sediment mixture was equilibrated by tumbling in zero headspace jars for 15 minutes...cooled injection gas chromatography injection system at -40 °C. Once the analytes were transferred, the injection port was heated to 240 °C and

  3. 30 CFR 250.124 - Will MMS approve gas injection into the cap rock containing a sulphur deposit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Will MMS approve gas injection into the cap rock containing a sulphur deposit? 250.124 Section 250.124 Mineral Resources BUREAU OF OCEAN ENERGY... increase potential hazards to present or future sulphur mining operations. Fees ...

  4. Mixer Assembly for a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Smith, Lance L. (Inventor); Fotache, Catalin G. (Inventor); Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Hautman, Donald J. (Inventor)

    2015-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  5. Mixer Assembly for a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor); Hautman, Donald J. (Inventor); Smith, Lance L. (Inventor)

    2018-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  6. 40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for both the liquid and propellant phases), California Air Resources Board Method 310—Determination of... Pollutant Compounds in Paints and Coatings by Direct Injection into a Gas Chromatograph (40 CFR part 63... Injection into a Gas Chromatograph (40 CFR part 63, appendix A) results, the California Air Resources Board...

  7. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    EPA Pesticide Factsheets

    LBNL, in consultation with the EPA, expanded upon a previous study by injecting directly into a 3D representation of a hypothetical fault zone located in the geologic units between the shale-gas reservoir and the drinking water aquifer.

  8. Continuous TDEM for monitoring shale hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yan, Liang-Jun; Chen, Xiao-Xiong; Tang, Hao; Xie, Xing-Bing; Zhou, Lei; Hu, Wen-Bao; Wang, Zhong-Xin

    2018-03-01

    Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, timeconsuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.

  9. Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid.

    PubMed

    Edwards, Ryan W J; Doster, Florian; Celia, Michael A; Bandilla, Karl W

    2017-12-05

    Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.

  10. Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iver

    2014-08-05

    A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibitedmore » five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a function of powder size) was investigated at Ames Lab as a function of reactive gas composition and bulk alloy composition. The results indicated that the pulsatile gas atomization mechanism and a significantly enhanced yield of fine powders reported in the literature for this type of process were not observed. Also it was determined that reactive gas may marginally improve the fine powder yield but further experiments are required. The oxygen content in the gas also did not have any detrimental effect on the microstructure (i.e. did not significantly reduce undercooling). On the contrary, the oxygen addition to the atomization gas may have mitigated some potent catalytic nucleation sites, but not enough to significantly alter the microstructure vs. particle size relationship. Overall the downstream injection of oxygen was not found to significantly affect either the particle size distribution or undercooling (as inferred from microstructure and XRD observations) but injection further upstream, including in the gas atomization nozzle, remains to be investigated in later work.« less

  11. Apparatus and method for preparing oxygen-15 labeled water H.sub.2 [.sup.15 O] in an injectable form for use in positron emission tomography

    DOEpatents

    Ferrieri, Richard A.; Schlyer, David J.; Alexoff, David

    1996-01-09

    A handling and processing apparatus for preparing Oxygen-15 labeled water (H.sub.2 [.sup.15 O]) in injectable form for use in Positron Emission Tomography from preferably H.sub.2 [.sup.15 O] produced by irradiating a flowing gas target of nitrogen and hydrogen. The apparatus includes a collector for receiving and directing a gas containing H.sub.2 [.sup.15 O] gas and impurities, mainly ammonia (NH.sub.3) gas into sterile water to trap the H.sub.2 [.sup.15 O] and form ammonium (NH.sub.4.sup.+) in the sterile water. A device for displacing the sterile water containing H.sub.2 [.sup.15 O] and NH.sub.4.sup.+ through a cation resin removes NH.sub.4.sup.+ from the sterile water. A device for combining the sterile water containing H.sub.2 [.sup.15 O] with a saline solution produces an injectable solution. Preferably, the apparatus includes a device for delivering the solution to a syringe for injection into a patient. Also, disclosed is a method for preparing H.sub.2 [.sup.15 O] in injectable form for use in Positron Emission Tomography in which the method neither requires isotopic exchange reaction nor application of high temperature.

  12. Background gas density and beam losses in NIO1 beam source

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Veltri, P.; Cavenago, M.; Serianni, G.

    2016-02-01

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  13. First Production of C60 Nanoparticle Plasma Jet for Study of Disruption Mitigation for ITER

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.; Brockington, S.; Case, A.; Messer, S. J.; Witherspoon, F. D.

    2012-10-01

    Unique fast response and large mass-velocity delivery of nanoparticle plasma jets (NPPJs) provide a novel application for ITER disruption mitigation, runaway electrons diagnostics and deep fueling. NPPJs carry a much larger mass than usual gases. An electromagnetic plasma gun provides a very high injection velocity (many km/s). NPPJ has much higher ram pressure than any standard gas injection method and penetrates the tokamak confining magnetic field. Assimilation is enhanced due to the NP large surface-to-volume ratio. Radially expanding NPPJs help achieving toroidal uniformity of radiation power. FAR-TECH's NPPJ system was successfully tested: a coaxial plasma gun prototype (˜35 cm length, 96 kJ energy) using a solid state TiH2/C60 pulsed power cartridge injector produced a hyper-velocity (>4 km/s), high-density (>10^23 m-3), C60 plasma jet in ˜0.5 ms, with ˜1-2 ms overall response-delivery time. We present the TiH2/C60 cartridge injector output characterization (˜180 mg of sublimated C60 gas) and first production results of a high momentum C60 plasma jet (˜0.6 g.km/s).

  14. Modeling of diesel/CNG mixing in a pre-injection chamber

    NASA Astrophysics Data System (ADS)

    Abdul-Wahhab, H. A.; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.

    2015-12-01

    Diesel engines performance can be improved by adding combustible gases to the liquid diesel. In this paper, the propagation of a two phase flow liquid-gas fuel mixture into a pre-mixer is investigated numerically by computational fluid dynamics simulation. CNG was injected into the diesel within a cylindrical conduit operates as pre-mixer. Four injection models of Diesel-CNG were simulated using ANSYS-FLUENT commercial software. Two CNG jet diameters were used of 1 and 2 mm and the diesel pipe diameter was 9 mm. Two configurations were considered for the gas injection. In the first the gas was injected from one side while for the second two side entries were used. The CNG to Diesel pressure ratio was varied between 1.5 and 3. The CNG to Diesel mass flow ratios were varied between 0.7 and 0.9. The results demonstrate that using double-sided injection increased the homogeneity of the mixture due to the swirl and acceleration of the mixture. Mass fraction, in both cases, was found to increase as the mixture flows towards the exit. As a result, this enhanced mixing is likely to lead to improvement in the combustion performance.

  15. Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream

    DOEpatents

    Meltser, Mark Alexander; Gutowski, Stanley; Weisbrod, Kirk

    2001-01-01

    A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.

  16. SEPAC data analysis in support of the environmental interaction program

    NASA Technical Reports Server (NTRS)

    Lin, Chin S.

    1990-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a two dimensional electrostatic particle code. The ionization effects of spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged space craft produced an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the space craft charging potential measured during the SEPAC experiments from Spacelab 1. A second paper is presented in which a two dimensional electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.

  17. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged over fivefold the "typical" values for comparable landfill waste. In terms of "greenhouse benefit," fractional VOC and methane energy recovery are estimated to exceed 90%, with corresponding methane and VOC emission reductions. Analyses done for the greenhouse gas mitigation program of the U.S. Department of Energy National Energy Technology Laboratory indicate favorable economics justified on landfill life extension, as well as environmental benefits. The "controlled landfill" project findings suggest potential for low-cost mitigation of waste greenhouse methane emissions, maximum landfill carbon sequestration, and maximization of beneficial energy capture from landfills. Details and results obtained since 1994 will be presented.

  18. Development of selective surfaces. Semiannual technical progress report, September 11, 1978-April 30, 1979. [Multilayer coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, J.A.

    1979-06-15

    Magnetron sputtering technology, which permits coatings to be deposited over large areas with significantly increased deposition rates, is reviewed with particular emphasis on cylindrical magnetrons and their application to reactive sputtering. Work is reported in which cylindrical-post magnetron sputtering sources have been used to deposit both graded and multi-layered cermet-type coatings by sputtering chromium and type 304 stainless steel in Ar and O/sub 2/ and Ar and CO gas mixtures under various conditions of reactive gas injection. The substrates are aluminum-coated glass and aluminum foil. The coatings are of an interference type, typically about 100 nm thick, with a metal-rich,more » highly absorbing layer adjacent to the substrate and a dielectric material at the surface. In some cases a reactively sputtered aluminum oxide anti-reflective surface layer has also been used. No advantages have been found for using chromium as opposed to the more readily available stainless steel. The reactive sputtering with CO is attractive because under many conditions the sputtering rates are relatively large compared to oxygen. Hemispherical absorptance and emittance data are reported. Typical absorptances are about 0.90 with emittances of 0.10.« less

  19. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    NASA Astrophysics Data System (ADS)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  20. Formation of Micro-Scale Gas Pockets From Underwater Wall Orifices

    NASA Astrophysics Data System (ADS)

    Pereira, Francisco A.; Gharib, Morteza

    2012-11-01

    Our experiments examine the formation of micro-scale gas pockets from orifices on walls with hydrophilic and hydrophobic wetting properties. Bubble injection is operated in a liquid at rest at constant flow rate and in a quasi-static regime, and the mechanism of bubble growth is investigated through high speed recordings. The growth dynamics is studied in terms of orifice size, surface wetting properties and buoyancy sign. The bubble formation is characterized by an explosive growth, with a pressure wave that causes the bubble to take highly transient shapes in its very initial stages, before stabilizing as a sphere and growing at a relatively slow rate. In case of positive buoyancy, the bubble elongates with the formation of a neck before detaching from the wall. When buoyancy acts towards the wall, the bubble attaches to the wall and expands laterally with a moving contact line. In presence of hydrophobic surfaces, the bubble attaches immediately to the wall irrespective of buoyancy direction and takes a hemispherical shape, expanding radially along the surface. A force balance is outlined to explain the different figures. The work was performed by FAP while on leave from CNR-INSEAN, and is supported by the Office of Naval Research (ONR).

  1. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Rupe, J. H.; Kushida, R. O. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by injecting air and hydrocarbon fuel at one end of a cylindrically shaped chamber to form a mixture and igniting the mixture to provide hot combustion gases by partial oxidation of the hydrocarbon fuel. The combustion gases move away from the ignition region to another region where water is injected to be turned into steam by the hot combustion gases. The steam which is formed mixes with the hot gases to yield a uniform hot gas whereby a steam reforming reaction with the hydrocarbon fuel takes place to produce a hydrogen rich gas.

  2. Local heat transfer in turbine disk-cavities. I - Rotor and stator cooling with hub injection of coolant

    NASA Astrophysics Data System (ADS)

    Bunker, R. S.; Metzger, D. E.; Wittig, S.

    1990-06-01

    Detailed radial heat-transfer coefficient distributions applicable to the cooling of disk-cavity regions of gas turbines are obtained experimentally from local heat-transfer data on both the rotating and stationary surfaces of a parallel-geometry disk-cavity system. Attention is focused on the hub injection of a coolant over a wide range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. It is shown that rotor heat transfer exhibits regions of impingement and rotational domination with a transition region between, while stator heat transfer displays flow reattachment and convection regions with an inner recirculation zone.

  3. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    USGS Publications Warehouse

    Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  4. A Process to Reduce DC Ingot Butt Curl and Swell

    NASA Astrophysics Data System (ADS)

    Yu, Ho

    1980-11-01

    A simple and effective process to reduce DC ingot butt curl and swell has been developed in the Ingot Casting Division of Alcoa Technical Center.1 In the process, carbon dioxide gas is dissolved under high pressure into the ingot cooling water upstream of the mold during the first several inches of the ingot cast. As the cooling water exits from the mold, the dissolved gas evolves as micron-size bubbles, forming a temporary effective insulation layer on the ingot surface. This reduces thermal stress in the ingot butt. An insulation pad covering about 60% of the bottom block is used in conjunction with the carbon dioxide injection when maximum butt swell reduction is desired. The process, implemented in four Alcoa ingot plants, has proven extremely successful.

  5. Dynamic wet-ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere.

    PubMed

    Yoshida, Kenta; Bright, Alexander N; Ward, Michael R; Lari, Leonardo; Zhang, Xudong; Hiroyama, Tomoki; Boyes, Edward D; Gai, Pratibha L

    2014-10-24

    The gas injection line of the latest spherical aberration-corrected environmental transmission electron microscope has been modified for achieving real-time/atomic-scale observations in moisturised gas atmospheres for the first time. The newly developed Wet-TEM system is applied to platinum carbon electrode catalysts to investigate the effect of water molecules on the platinum/carbon interface during deactivation processes such as sintering and corrosion. Dynamic in situ movies obtained in dry and 24% moisturised nitrogen environments visualize the rapid rotation, migration and agglomeration of platinum nanoparticles due to the physical adsorption of water and the hydroxylation of the carbon surface. The origin of the long-interconnected aggregation of platinum nanoparticles was discovered to be a major deactivation process in addition to conventional carbon corrosion.

  6. Optimization analysis of the motor cooling method in semi-closed single screw refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Shen, Y. F.; Wang, Z. B.; Wang, J.

    2017-08-01

    Semi-closed single screw refrigeration compressors (SSRC) are widely used in refrigeration and air conditioning systems owing to the advantages of simple structure, balanced forces on the rotor, high volumetric efficiency and so on. In semi-closed SSRCs, motor is often cooled by suction gas or injected refrigerant liquid. Motor cooling method will changes the suction gas temperature, this to a certain extent, is an important factor influencing the thermal dynamic performance of a compressor. Thus the effects of motor cooling method on the performance of the compressor must be studied. In this paper mathematical models of motor cooling process by using these two methods were established. Influences of motor cooling parameters such as suction gas temperature, suction gas quantity, temperature of the injected refrigerant liquid and quantity of the injected refrigerant liquid on the thermal dynamic performance of the compressor were analyzed. The performances of the compressor using these two kinds of motor cooling methods were compared. The motor cooling capacity of the injected refrigerant liquid is proved to be better than the suction gas. All analysis results obtained can be useful for optimum design of the motor cooling process to improve the efficiency and the energy efficiency of the compressor.

  7. Dual-phase gas-permeation flow-injection thermometric analysis for the determination of carbon dioxide.

    PubMed

    Liu, S J; Tubino, M

    1998-11-01

    A flow-injection configuration based on a dual-phase gas-permeation system from a liquid donor to a gas acceptor stream with a thermistor flow-through detector is proposed for the direct analysis of the gas in the acceptor. This system was applied for the determination of carbon dioxide (in the form of carbonate) using the following chemical reaction: CO(2)(g)+2NH(3)(g)+H(2)O(g)=(NH(4))(2)CO(3)(s), with a linear response from 1x10(-3) to 50x10(-3) mol l(-1) of CO(3)(2-). Carbon dioxide was produced in the liquid donor and permeated into the gaseous acceptor stream of air/water vapor. The detection limit is 1x10(-3) mol l(-1) of carbonate, and a sampling frequency of 60 h(-1) is achieved with a relative standard deviation of 4.1% for replicate injections. The dual-phase gas-permeation flow-injection manifold, along with the membrane and phase separations, as well as the chemical reaction, provides enhanced selectivity when compared with the system employing a liquid acceptor stream, as serious interferents in this system, for instance, acetate and formate, among others, do not interfere in the proposed system.

  8. Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China.

    PubMed

    Lei, Xinglin; Huang, Dongjian; Su, Jinrong; Jiang, Guomao; Wang, Xiaolong; Wang, Hui; Guo, Xin; Fu, Hong

    2017-08-11

    This paper presents a timely and detailed study of significant injection-induced seismicity recently observed in the Sichuan Basin, China, where shale-gas hydraulic fracturing has been initiated and the aggressive production of shale gas is planned for the coming years. Multiple lines of evidence, including an epidemic-type aftershock sequence model, relocated hypocenters, the mechanisms of 13 large events (M W  > 3.5), and numerically calculated Coulomb failure stress results, convincingly suggest that a series of earthquakes with moment magnitudes up to M W 4.7 has been induced by "short-term" (several months at a single well pad) injections for hydraulic fracturing at depths of 2.3 to 3 km. This, in turn, supports the hypothesis that they represent examples of injection-induced fault reactivation. The geologic reasons why earthquake magnitudes associated with hydraulic fracturing operations are so high in this area are discussed. Because hydraulic fracturing operations are on the rise in the Sichuan Basin, it would be beneficial for the geoscience, gas operator, regulator, and academic communities to work collectively to elucidate the local factors governing the high level of injection-induced seismicity, with the ultimate goal of ensuring that shale gas fracking can be carried out effectively and safely.

  9. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOEpatents

    Rao, Dandina N [Baton Rouge, LA

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  10. The radiation asymmetry in MGI rapid shutdown on J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Tong, Ruihai; Chen, Zhongyong; Huang, Duwei; Cheng, Zhifeng; Zhang, Xiaolong; Zhuang, Ge; J-TEXT Team

    2017-10-01

    Disruptions, the sudden termination of tokamak fusion plasmas by instabilities, have the potential to cause severe material wall damage to large tokamaks like ITER. The mitigation of disruption damage is an essential part of any fusion reactor system. Massive gas injection (MGI) rapid shutdown is a technique in which large amounts of noble gas are injected into the plasma in order to safely radiate the plasma energy evenly over the entire plasma-facing first wall. However, the radiated energy during the thermal quench (TQ) in massive gas injection (MGI) induced disruptions is found toroidal asymmetric, and the degrees of asymmetry correlate with the gas penetration and MGI induced magnetohydrodynamics (MHD) activities. A toroidal and poloidal array of ultraviolet photodiodes (AXUV) has been developed to investigate the radiation asymmetry on J-TEXT tokamak. Together with the upgraded mirnov probe arrays, the relation between MGI triggered MHD activities with radiation asymmetry is studied.

  11. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking

    NASA Astrophysics Data System (ADS)

    Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.

    2016-04-01

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

  12. Motion of a distinguishable Impurity in the Bose gas: Arrested expansion without a lattice and impurity snaking

    DOE PAGES

    Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.

    2016-04-07

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less

  13. Low cost solar array project silicon materials task. Development of a process for high capacity arc heater production of silicon for solar arrays

    NASA Technical Reports Server (NTRS)

    Fey, M. G.

    1981-01-01

    The experimental verification system for the production of silicon via the arc heater-sodium reduction of SiCl4 was designed, fabricated, installed, and operated. Each of the attendant subsystems was checked out and operated to insure performance requirements. These subsystems included: the arc heaters/reactor, cooling water system, gas system, power system, Control & Instrumentation system, Na injection system, SiCl4 injection system, effluent disposal system and gas burnoff system. Prior to introducing the reactants (Na and SiCl4) to the arc heater/reactor, a series of gas only-power tests was conducted to establish the operating parameters of the three arc heaters of the system. Following the successful completion of the gas only-power tests and the readiness tests of the sodium and SiCl4 injection systems, a shakedown test of the complete experimental verification system was conducted.

  14. The CarbFix Pilot Project in Iceland - CO2 capture and mineral storage in basaltic rocks

    NASA Astrophysics Data System (ADS)

    Sigurdardottir, H.; Sigfusson, B.; Aradottir, E. S.; Gunnlaugsson, E.; Gislason, S. R.; Alfredsson, H. A.; Broecker, W. S.; Matter, J. M.; Stute, M.; Oelkers, E.

    2010-12-01

    The overall objective of the CarbFix project is to develop and optimize a practical and cost-effective technology for capturing CO2 and storing it via in situ mineral carbonation in basaltic rocks, as well as to train young scientist to carry the corresponding knowledge into the future. The project consists of a field injection of CO2 charged water at the Hellisheidi geothermal power plant in SW Iceland, laboratory experiments, numerical reactive transport modeling, tracer tests, natural analogue and cost analysis. The CO2 injection site is situated about 3 km south of the Hellisheidi geothermal power plant. Reykjavik Energy operates the power plant, which currently produces 60,000 tons/year CO2 of magmatic origin. The produced geothermal gas mainly consists of CO2 and H2S. The two gases will be separated in a pilot gas treatment plant, and CO2 will be transported in a pipeline to the injection site. There, CO2 will be fully dissolved in 20 - 25°C water during injection at 25 - 30 bar pressure, resulting in a single fluid phase entering the storage formation, which consists of relatively fresh basaltic lavas. The CO2 charged water is reactive and will dissolve divalent cations from the rock, which will combine with the dissolved carbon to form solid thermodynamically stable carbonate minerals. The injection test is designed to inject 2200 tons of CO2 per year. In the past three years the CarbFix project has been addressing background fluid chemistries at the injection site and characterizing the target reservoir for the planned CO2 injection. Numerous groundwater samples have been collected and analysed. A monitoring and accounting plan has been developed, which integrates surface, subsurface and atmospheric monitoring. A weather station is operating at the injection site for continuous monitoring of atmospheric CO2 and to track all key parameters for the injection. Environmental authorities have granted licenses for the CO2 injection and the use of tracers, based on the monitoring plan. Pipelines, injection and monitoring wells have been installed and equipment test runs are in the final phase. A bailer has been constructed to be used to retrieve samples at reservoir conditions. Hydrological parameters of a three dimensional field model have been calibrated and reactive transport simulations are ongoing. The key risks that the project is currently facing are technical and financial. Until now the project has been facing incidences that have already impacted the time schedule in the CarbFix project. Furthermore the project is facing world-wide exchange rate uncertainty plus the inherited uncertainty that innovative research projects contain. However, the CarbFix group remains optimistic that injection will start in near future.

  15. Transport properties associated with carbon-phenolic ablators

    NASA Technical Reports Server (NTRS)

    Biolsi, L.

    1982-01-01

    Entry vehicle heat shields designed for entry into the atmosphere of the outer planets are usually made of carbonaceous material such as carbon-phenolic ablator. Ablative injection of this material is an important mechanism for reducing the heat at the surface of the entry vehicle. Conductive transport properties in the shock layer are important for some entry conditions. The kinetic theory of gases has been used to calculate the transport properties for 17 gaseous species obtained from the ablation of carbon-phenolic heat shields. Results are presented for the pure species and for the gas mixture.

  16. Purged window apparatus utilizing heated purge gas

    DOEpatents

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  17. U.S. Space Station Freedom waste fluid disposal system with consideration of hydrazine waste gas injection thrusters

    NASA Technical Reports Server (NTRS)

    Winters, Brian A.

    1990-01-01

    The results are reported of a study of various methods for propulsively disposing of waste gases. The options considered include hydrazine waste gas injection, resistojets, and eutectic salt phase change heat beds. An overview is given of the waste gas disposal system and how hydrozine waste gas injector thruster is implemented within it. Thruster performance for various gases are given and comparisons with currently available thruster models are made. The impact of disposal on station propellant requirements and electrical power usage are addressed. Contamination effects, reliability and maintainability assessments, safety issues, and operational scenarios of the waste gas thruster and disposal system are considered.

  18. A 3-Dimensional Numerical Modelling Study on the Effects of Different Stress Regimes on the Magnitude of Induced Seismic Events

    NASA Astrophysics Data System (ADS)

    Amini, A.; Eberhardt, E.

    2016-12-01

    Producing oil and gas from shale reservoirs requires permeability enhancement treatments. This is achieved by injecting fluid under pressure to either propagate cracks through the rock (hydraulic fracture) or to stimulate slip across pre-existing fractures (hydroshear), which allows gas or oil to flow more readily into the well bore. After treatment is performed, the fluid is disposed of by injecting it back into the ground. The injection of these fluids, whether related to permeability enhancement or waste water disposal , into deep formations serves to create localized increases in pore pressures and reductions in the effective normal stresses acting on critically stressed faults, resulting in induced earthquakes. There have been numerous reports of anomalous seismic events with high magnitudes felt on surface that have given rise to public concerns. However, it must be recognized that different producing fields in Canada and the U.S. are situated in different tectonic regimes that favour different fault slip mechanisms. This study will explore the importance of stress regime, comparing the generation of induced seismicity under thrust versus strike slip conditions, with focus on their respective magnitudes distributions. To do so, we will first study empirical data pertaining to recorded seismicity related to hydraulic fracture operations with respect to source mechanisms and magnitude distributions. These will be analyzed in parallel with a series of advanced 3-dimensional numerical models using the distinct element code 3DEC to simulate fault slip under different stress regimes.

  19. Advances in understanding of high- Z material erosion and re-deposition in low- Z wall environment in DIII-D

    DOE PAGES

    Ding, R.; Rudakov, D. L.; Stangeby, P. C.; ...

    2017-03-24

    Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. We have investigated different methods such as electrical biasing and local gas injection to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducingmore » the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH 4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. The inter-ELM W erosion we measured in H-mode plasmas, rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.« less

  20. CO 2 Sequestration and Enhanced Oil Recovery at Depleted Oil/Gas Reservoirs

    DOE PAGES

    Dai, Zhenxue; Viswanathan, Hari; Xiao, Ting; ...

    2017-08-18

    This study presents a quantitative evaluation of the operational and technical risks of an active CO 2-EOR project. A set of risk factor metrics is defined to post-process the Monte Carlo (MC) simulations for statistical analysis. The risk factors are expressed as measurable quantities that can be used to gain insight into project risk (e.g. environmental and economic risks) without the need to generate a rigorous consequence structure, which include (a) CO 2 injection rate, (b) net CO 2 injection rate, (c) cumulative CO 2 storage, (d) cumulative water injection, (e) oil production rate, (f) cumulative oil production, (g) cumulativemore » CH 4 production, and (h) CO 2 breakthrough time. The Morrow reservoir at the Farnsworth Unit (FWU) site, Texas, is used as an example for studying the multi-scale statistical approach for CO 2 accounting and risk analysis. A set of geostatistical-based MC simulations of CO 2-oil/gas-water flow and transport in the Morrow formation are conducted for evaluating the risk metrics. A response-surface-based economic model has been derived to calculate the CO 2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO 2 capture and operating expenses reduce, more realizations would be profitable.« less

  1. CO 2 Sequestration and Enhanced Oil Recovery at Depleted Oil/Gas Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Zhenxue; Viswanathan, Hari; Xiao, Ting

    This study presents a quantitative evaluation of the operational and technical risks of an active CO 2-EOR project. A set of risk factor metrics is defined to post-process the Monte Carlo (MC) simulations for statistical analysis. The risk factors are expressed as measurable quantities that can be used to gain insight into project risk (e.g. environmental and economic risks) without the need to generate a rigorous consequence structure, which include (a) CO 2 injection rate, (b) net CO 2 injection rate, (c) cumulative CO 2 storage, (d) cumulative water injection, (e) oil production rate, (f) cumulative oil production, (g) cumulativemore » CH 4 production, and (h) CO 2 breakthrough time. The Morrow reservoir at the Farnsworth Unit (FWU) site, Texas, is used as an example for studying the multi-scale statistical approach for CO 2 accounting and risk analysis. A set of geostatistical-based MC simulations of CO 2-oil/gas-water flow and transport in the Morrow formation are conducted for evaluating the risk metrics. A response-surface-based economic model has been derived to calculate the CO 2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO 2 capture and operating expenses reduce, more realizations would be profitable.« less

  2. Direct charge carrier injection into Ga2O3 thin films using an In2O3 cathode buffer layer: their optical, electrical and surface state properties

    NASA Astrophysics Data System (ADS)

    Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.

    2017-04-01

    Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.

  3. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Peiffer, Loïc; Wanner, Christoph; Lewicki, Jennifer L.

    2018-02-01

    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d-1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107-108 t) in a shallow gas reservoir. Moreover, we show that both, short-lived (months to years) and long-lived (hundreds of years) events of magmatic fluid injection can lead to critical pressures within the reservoir and potentially trigger fault reactivation. Our sensitivity analysis suggests that observed temporal fluctuations in surface degassing are only indirectly controlled by variations in magmatic degassing and are mainly the result of temporally variable fault permeability. Finally, we suggest that long-term CO2 emission monitoring, seismic tomography and coupled thermal-hydraulic-mechanical modeling are important for CO2-related hazard mitigation.

  4. Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D

    NASA Astrophysics Data System (ADS)

    Shiraki, D.; Commaux, N.; Baylor, L. R.; Cooper, C. M.; Eidietis, N. W.; Hollmann, E. M.; Paz-Soldan, C.; Combs, S. K.; Meitner, S. J.

    2018-05-01

    We report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuterium injection is observed to have the opposite effect from neon, reducing the high-Z impurity content and thus decreasing the dissipation, and causing the background thermal plasma to completely recombine. When injecting mixtures of the two species, deuterium levels as low as  ∼10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.

  5. Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraki, D.; Commaux, N.; Baylor, L. R.

    Here, we report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuteriummore » injection is observed to have the opposite effect from neon, causing the background thermal plasma to completely recombine, reducing the high-Z impurity content and thus decreasing the dissipation. When injecting mixtures of the two species, deuterium levels as low as ~10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.« less

  6. Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D

    DOE PAGES

    Shiraki, D.; Commaux, N.; Baylor, L. R.; ...

    2018-03-07

    Here, we report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuteriummore » injection is observed to have the opposite effect from neon, causing the background thermal plasma to completely recombine, reducing the high-Z impurity content and thus decreasing the dissipation. When injecting mixtures of the two species, deuterium levels as low as ~10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.« less

  7. Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.

    Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less

  8. Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

    DOE PAGES

    Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.; ...

    2017-07-18

    Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less

  9. Dynamic interaction of CO/H 2O mixtures with gold nanocrystals: Real-time imaging and local chemical probing

    NASA Astrophysics Data System (ADS)

    Visart de Bocarmé, Thierry; Chau, Thoi-Dai; Kruse, Norbert

    2006-09-01

    The dynamic interaction of pure gold nanocrystals ("tips") with H 2O/CO gas mixtures was studied by means of video-field ion microscopy (FIM). While imaging with nano-scale resolution selected areas of the equivalent of ˜200 atomic Au sites were analysed for their chemical composition using short field pulses and injecting respective ions into a time-of-flight mass spectrometer (pulsed field desorption mass spectrometry, PFDMS). At room temperature the exposure of a clean Au sample to water gas at 10 -4 Pa, in the presence of an electric field of ˜10 V/nm, led to water adsorption and formation of bright patterns in FIM. Additional exposure to CO gas at 5 × 10 -3 Pa led to the removal of the water layer. This was associated with the occurrence of bright wave fronts which ignited simultaneously in several regions of the Au surface with no preference for a certain crystallographic surface plane. In some cases wave fronts were seen to collide resulting in more complicated patterns such as concentric rings. Surface areas free of water appeared with low brightness. The phenomena were completely reversible. PFDMS demonstrated water ions to be responsible for image formation. Surface hydroxyl was also detected mass spectrometrically and respective ion intensities decreased during the titration with CO. The results suggest that gold nanocrystals, in the absence of oxidic support materials, may be active in the reaction between water and CO at temperatures as low as 300 K and in the presence of an electric field of ˜10 V/nm.

  10. Phase and flow behavior of mixed gas hydrate systems during gas injection

    NASA Astrophysics Data System (ADS)

    Darnell, K.; Flemings, P. B.; DiCarlo, D. A.

    2017-12-01

    We present one-dimensional, multi-phase flow model results for injections of carbon dioxide and nitrogen mixtures, or flue gas, into methane hydrate bearing reservoirs. Our flow model is coupled to a thermodynamic simulator that predicts phase stabilities as a function of composition, so multiple phases can appear, disappear, or change composition as the injection invades the reservoir. We show that the coupling of multi-phase fluid flow with phase behavior causes preferential phase fractionation in which each component flows through the system at different speeds and in different phases. We further demonstrate that phase and flow behavior within the reservoir are driven by hydrate stability of each individual component in addition to the hydrate stability of the injection composition. For example, if carbon dioxide and nitrogen are both individually hydrate stable at the reservoir P-T conditions, then any injection composition will convert all available water into hydrate and plug the reservoir. In contrast, if only carbon dioxide is hydrate stable at the reservoir P-T conditions, then nitrogen preferentially stays in the gaseous phase, while the carbon dioxide partitions into the hydrate and liquid water phases. For all injections of this type, methane originally held in hydrate is released by dissociation into the nitrogen-rich gaseous phase. The net consequence is that a gas phase composed of nitrogen and methane propagates through the reservoir in a fast-moving front. A slower-moving front lags behind where carbon dioxide and nitrogen form a mixed hydrate, but methane is absent due to dissociation-induced methane stripping from the first, fast-moving front. The entire composition path traces through the phase space as the flow develops with each front moving at different, constant velocities. This behavior is qualitatively similar to the dynamics present in enhanced oil recovery or enhanced coalbed methane recovery. These results explain why the inclusion of nitrogen in mixed gas injection into methane hydrate reservoirs has been far more successful at producing methane than pure carbon dioxide injections. These results also provide a test for the validity of equilibrium thermodynamics in transport-dominated mixed hydrate systems that can be validated by laboratory-scale flow-through experiments.

  11. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scalemore » geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.« less

  12. Smart Application of Direct Gas Injection using a new conceptual model on Coherent and Incoherent Flow: From Bench Scale to Field Scale.

    NASA Astrophysics Data System (ADS)

    Geistlinger, H.; Samani, S.; Pohlert, M.; Martienssen, M.; Engelmann, F.; Hüttmann, S.

    2008-12-01

    Within the framework of the OXYWALL field experiment we developed the direct gas injection (DGI) of oxygen as a remediation technology, which allows the cost-efficient and large-scale cleaning of groundwater contaminated with organic contaminants. That technology can be used as wide-banded, unselective remediation method for complex contaminant mixtures. Particularly, it could be proofed in field experiments that mineral oil hydrocarbons, aromatic hydrocarbons (BTEX), the rather persistent gasoline component Methyl tertiary-butyl ether (MTBE), and chlorinated aliphatic and aromatic hydrocarbons, like Trichloroethene and Monochlorobenzene, can be aerobically metabolized by autochthon microorganisms. Over the last 8 years the field site was investigated and a dense monitoring network was installed using Geoprobe direct- push technology and standard hydrogeological investigations were conducted, like EC-Logs, Injections-Logs, Gamma-Logs, TDR-probes, oxygen measurements with in-situ optodes, and tracer test with test gases SF6, Ar, and Oxygen. The key parameter for controling and regulating the DGI is the spatial and temporal distribution of the gas phase. High-resolution optical bench scale experiments were conducted in order to investigate local gas flow pattern and integral flow properties caused by point-like gas injection into water-saturated glass beads and natural sands. We observed a grain-size (dk)- and flow-rate (Q) dependent transition from incoherent to coherent flow. Conceptualizing the stationary tortuous gas flow as core-annulus flow and applying Hagen- Poiseuille flow for a straight capillary, we propose a flow-rate- and grain-size dependent stability criterion that could describe our experimental results and was used for classifying the experiments in a dk-Q-diagram (flow chart). Since DGI simulations are mainly based on continuum models, we also test the validity of the continuum approach for two-fluid flow in macroscopic homogeneous media by comparing our experimental flow pattern with the theoretical ones. It was found that a pulse-like function yields the best fit for the lateral gas saturation profile. This strange behaviour of a relatively sharp saturation transition is in contradiction to the widely anticipated picture of a smooth Gaussian-like transition, which is obtained by the continuum approach. Based on lab experiments, the proposed flow chart, and computer simulations the DGI-technology will be advanced and optimized at the field scale. A proper application of continuum models to direct gas injection should check, whether stable coherent flow is achieved; estimate the coherence length, and account for the channelized flow pattern by a realistic capillary pressure - saturation relationship. Further research is needed for modeling of direct gas injection to include appropriate stability criteria, the transition from coherent to incoherent flow, and bubble trapping. Geistlinger, H., Krauss, G., Lazik, D., and Luckner, L. (2006) Direct gas injection into saturated glass beads: transition from incoherent to coherent gas flow pattern. Water Resour. Res., 42 (7) W07403. Lazik, D., G. Krauss, H. Geistlinger, and H.-J. Vogel (2008) Multi-scale optical analyses of dynamic gas saturation during air sparging into glass beads, Transp. Porous Media. 74, 87-104.

  13. Rapid quantitative detection of glucose content in glucose injection by reaction headspace gas chromatography.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2017-10-20

    This work investigates an automated technique for rapid detecting the glucose content in glucose injection by reaction headspace gas chromatography (HS-GC). This method is based on the oxidation reaction of glucose in glucose injection with potassium dichromate. The carbon dioxide (CO 2 ) formed from the oxidation reaction can be quantitatively detected by GC. The results show that the relative standard deviation (RSD) of the present method was within 2.91%, and the measured glucose contents in glucose injection closely match those quantified by the reference method (relative differences <6.45%). The new HS-GC technique is rapid, practical and can be used to the batch detection of the glucose content in glucose injection related applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania

    USGS Publications Warehouse

    Révész, K. M.; Breen, K.J.; Baldassare, A.J.; Burruss, R.C.

    2010-01-01

    The origin of the combustible gases in groundwater from glacial-outwash and fractured-bedrock aquifers was investigated in northern Tioga County, Pennsylvania. Thermogenic methane (CH4) and ethane (C2H6) and microbial CH4 were found. Microbial CH4 is from natural in situ processes in the shale bedrock and occurs chiefly in the bedrock aquifer. The δ13C values of CH4 and C2H6 for the majority of thermogenic gases from water wells either matched or were between values for the samples of non-native storage-field gas from injection wells and the samples of gas from storage-field observation wells. Traces of C2H6 with microbial CH4 and a range of C and H isotopic compositions of CH4 indicate gases of different origins are mixing in sub-surface pathways; gas mixtures are present in groundwater. Pathways for gas migration and a specific source of the gases were not identified. Processes responsible for the presence of microbial gases in groundwater could be elucidated with further geochemical study.

  15. Outbreak of pyogenic abscesses after diphtheria and tetanus toxoids and pertussis vaccination.

    PubMed

    Simon, P A; Chen, R T; Elliott, J A; Schwartz, B

    1993-05-01

    Nine children who received diphtheria and tetanus toxoids and pertussis vaccine from the same vial at a clinic in Colorado developed pyogenic abscesses at the site of injection. Eight abscesses required surgical drainage and five children were hospitalized. Group A Streptococcus (GAS) was cultured from eight wounds and Staphylococcus aureus was also isolated from four. Epidemiologic investigation revealed that within the hour of the first child's vaccination, three children had been diagnosed in the clinic with GAS pharyngitis. GAS recovered from repeat throat swabs from two of these children and the eight case-isolates were all serotype M-12, T-12 and had identical immunoblot patterns on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Laboratory simulation studies demonstrated that GAS can survive for at least 4 days on the external surface of a vaccine vial rubber stopper and contaminate needles inserted through the stopper. Swabbing the stopper with 70% isopropyl alcohol resulted in effective disinfection. To prevent potential contamination meticulous attention to sterile technique is important when withdrawing vaccine from multidose vaccine vials.

  16. Coarsening of firefighting foams containing fluorinated hydrocarbon surfactants

    NASA Astrophysics Data System (ADS)

    Kennedy, Matthew J.; Dougherty, John A.; Otto, Nicholas; Conroy, Michael W.; Williams, Bradley A.; Ananth, Ramagopal; Fleming, James W.

    2013-03-01

    Diffusion of gas between bubbles in foam causes growth of large bubbles at the expense of small bubbles and leads to increasing mean bubble size with time thereby affecting drainage. Experimental data shows that the effective diffusivity of nitrogen gas in aqueous film forming foam (AFFF), which is widely used in firefighting against burning liquids, is several times smaller than in 1% sodium dodecyl sulfate (SDS) foam based on time-series photographs of bubble size and weighing scale recordings of liquid drainage. Differences in foam structure arising from foam production might contribute to the apparent difference in the rates of coarsening. AFFF solution produces wetter foam with initially smaller bubbles than SDS solution due in part to the lower gas-liquid surface tension provided by the fluorosurfactants present in AFFF. Present method of foam production generates microbubble foam by high-speed co-injection of surfactant solution and gas into a tube of 3-mm diameter. These results contribute to our growing understanding of the coupling between foam liquid fraction, bubble size, surfactant chemistry, and coarsening. NRC Resident Research Associate at NRL

  17. The role of nonsteroidal anti-inflammatory drugs intramuscular injection in the development and severity of deep soft tissue infection in mice.

    PubMed

    Ture, Zeynep; Demiraslan, Hayati; Kontas, Olgun; Alp, Emine; Doganay, Mehmet

    2018-04-01

    The aim of this study was to determine the role of nonsteroidal anti-inflammatory drugs (NSAID) injection on the severity of local infection and the effect on the progression of soft tissue infection (STI).The mouse model of STI with Group A streptococcus (GAS) was developed and treated with diclofenac sodium (DS) intramuscularly. Mice were divided into five groups: administered DS for 48 h before GAS (Group 1), GAS-DS and maintained DS for 48 h (Group 2), DS for 48 h (Group 3), GAS on zero time (Group 4), and control (Group 5). In vitro, a high concentration (40 mg/L) of DS inhibited GAS growth, whereas a lower concentration (0.4 mg/L) was not effective. Sepsis was observed in animals with DS and GAS inoculation (group 1 and 2). Group 4 had statistically significant higher bacterial load than groups 1 and 2. All groups had a higher inflammation rate than the control group. The median of TNF-alpha and mean IL-6 in the groups 1, 2, and 4 was significantly higher than those in the control group. Even if the animals that were treated with DS injection prior to the GAS inoculation had similar inflammation score, similar cytokine levels and low bacterial load in the tissue, they had a rather high rate of sepsis. In conclusion, DS injection prior to bacterial inoculation might predispose to bacteremia and sepsis. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  18. Thermal protection performance of opposing jet generating with solid fuel

    NASA Astrophysics Data System (ADS)

    Shen, Binxian; Liu, Weiqiang

    2018-03-01

    A light and small gas supply device, which uses fuel gas generating with solid fuel as coolant gas, is introduced for opposing jet thermal protection in hypersonic vehicles. A numerical study on heat flux reduction in hypersonic flow with opposing jet is conducted to investigate the cooling efficiency of fuel gas. Flow field and cooling efficiency at different jet temperatures, as well as the effect of fuel gas, are determined. Detailed results show that shock stand-off distance changes with an increase in jet pressure ratio and remains constant with an increase in jet temperature. Cooling efficiency weakens with an increase in jet temperature and can be strengthened by enhancing jet pressure. Lastly, a remarkable heat flux reduction is observed with fuel gas injection with respect to no fuel gas injection when jet temperature reaches 900 K, thereby proving the positive cooling efficiency of fuel gas.

  19. Assessment of the Potential Impacts of Hydraulic Fracturing for ...

    EPA Pesticide Factsheets

    This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity of any potential impacts. The scope of this assessment is defined by the hydraulic fracturing water cycle which includes five main activities: Water acquisition – the withdrawal of ground or surface water needed for hydraulic fracturing fluids;Chemical mixing – the mixing of water, chemicals, and proppant on the well pad to create the hydraulic fracturing fluid;Well injection – the injection of hydraulic fracturing fluids into the well to fracture the geologic formation; Flowback and Produced water – the return of injected fluid and water produced from the formation to the surface, and subsequent transport for reuse, treatment, or disposal; andWastewater treatment and waste disposal – the reuse, treatment and release, or disposal of wastewater generated at the well pad, including produced water. This report can be used by federal, tribal, state, and local officials; industry; and the public to better understand and address vulnerabilities of drinking water resources to hydraulic fracturing activities. To assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of s

  20. Combuston method of oil shale retorting

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1977-08-16

    A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.

  1. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    NASA Astrophysics Data System (ADS)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  2. The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding. Sixteenth quarterly progress report, October 1--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, L.R.; Vadie, A.A.

    1998-01-20

    There are ten injection wells receiving nutrients and twenty producing wells in test patterns are being monitoring for responses. Petrophysical studies of recovered core sample from the 3 newly drilled wells are still in progress. Monthly collection of produced fluids from the test and control wells in all patterns continued with the following tasks being performed: aliphatic profile (gas chromatographic analysis); API gravity and absolute viscosity under reservoir temperature; pH of produced water; surface tension (ST) of produced water (water-air); interfacial tension (IFT) for produced oil-water system; microbiological population; and inorganic analyses (nitrate, phosphate, sulfate, sulfide, chloride, potassium, and hardness).more » Production data on all wells in all patterns continues to be evaluated. Increased gas production that has been noted in some wells could be the result of microbial activity or from previous unswept areas of the reservoir. Samples of gas were collected from selected production wells and analyzed by gas chromatography using a Fisher Model No. 12 Gas Partitioner. The results of analyses from four sets of samples are given.« less

  3. Turbine vane gas film cooling with injection in the leading edge region from a single row of spanwise angled holes

    NASA Technical Reports Server (NTRS)

    Lecuyer, M. R.; Hanus, G. J.

    1976-01-01

    An experimental study of gas film cooling was conducted on a 3X size model turbine vane. Injection in the leading edge region was from a single row of holes angled in a spanwise direction. Measurements of the local heat flux downstream from the row of coolant holes, both with and without film coolant flow, were used to determine the film cooling performance presented in terms of the Stanton number ratio. Results for a range of coolant blowing ratio, M = 0 to 2.0, indicate a reduction in heat flux of up to 15 to 30 percent at a point 10 to 11 hole diameters downstream from injection. An optimum coolant blowing ratio corresponds to a coolant-to-freestream velocity ratio in the range of 0.5. The shallow injection angle resulted in superior cooling performance for injection closest to stagnation, while the effect of injection angle was insignificant for injection further from stagnation.

  4. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  5. Melt layer formation in stainless steel under transient thermal loads

    NASA Astrophysics Data System (ADS)

    Steudel, I.; Klimov, N. S.; Linke, J.; Loewenhoff, Th.; Pintsuk, G.; Pitts, R. A.; Wirtz, M.

    2015-08-01

    To investigate the performance of stainless steel under transient thermal events, such as photon pulses caused by disruptions mitigated by massive gas injection (MGI), the material has been exposed to electron beam loads with ITER relevant power densities slightly above the melting threshold (245 MW/m2) and a pulse duration of 3 ms (Sugihara et al., 2012; Klimov et al., 2013; Pitts et al., 2013). The samples were manufactured from different steel grades with slightly modified chemical composition. To investigate the effect of repetitive surface heat loads on the melting process and the melt motion, identical heat pulses in the range of 100-3000 were applied. All tested materials showed intense melt-induced surface roughening, driven by repeated shallow surface melting up to several ten micrometre and fast re-solidification with epitaxial grain growth. During the liquid phase, melt motion induced by cohesive forces results in the formation of a wavy surface structure with apexes. Further experiments have been performed to study the effects of non-perpendicular surfaces or leading edges.

  6. The Complex Physical-Chemical Interaction of Fracking Fluids with Gas Shale

    NASA Astrophysics Data System (ADS)

    Cathles, L. M.; Engelder, T.; Bryndzia, T.

    2014-12-01

    The chemical aspects of hydrofracturing might seem straight forward: Inject a fluid with sand and some chemicals, recover the injected water now contaminated with chemicals from the shale, and produce gas. But there are some complications that turn out to be very interesting. First of all, it is possible to recover only about 20% of the injected water. Secondly, the fresh injected water (1-5 kppm) has been turned into a very saline bine (~200 kppm). It's easy to say the water has just been imbibed into the gas-filled dry shale, like water into a dry sponge, except the organic parts of the shale which host nearly all the porosity are hydrophobic. The shale is strongly oil wet; nevertheless it imbibes water. It's easy to say the water just mixed with water in the shale and became salty, but there is almost no water in the shale, and no salt either. How the water becomes salty begs easy explanation. The talk will quantitatively discuss these issues in light of experiments we have carried out, concluding that powerful capillary and osmotic forces draw fracking water into the shale while making the return waters salty. How this is achieved will certainly tell us something about the fracture network and its connections. The practical implication is that hydrofracture fluids will be locked into the same "permeability jail" that sequestered overpressured gas for over 200 million years. If one wants to dispose of fracking waters, one could probably not choose a safer way to do so that to inject them into a gas shale.

  7. Flow-based ammonia gas analyzer with an open channel scrubber for indoor environments.

    PubMed

    Ohira, Shin-Ichi; Heima, Minako; Yamasaki, Takayuki; Tanaka, Toshinori; Koga, Tomoko; Toda, Kei

    2013-11-15

    A robust and fully automated indoor ammonia gas monitoring system with an open channel scrubber (OCS) was developed. The sample gas channel dimensions, hydrophilic surface treatment to produce a thin absorbing solution layer, and solution flow rate of the OCS were optimized to connect the OCS as in-line gas collector and avoid sample humidity effects. The OCS effluent containing absorbed ammonia in sample gas was injected into a derivatization solution flow. Derivatization was achieved with o-phthalaldehyde and sulfite in pH 11 buffer solution. The product, 1-sulfonateisoindole, is detected with a home-made fluorescence detector. The limit of detection of the analyzer based on three times the standard deviation of baseline noise was 0.9 ppbv. Sample gas could be analyzed 40 times per hour. Furthermore, relative humidity of up to 90% did not interfere considerably with the analyzer. Interference from amines was not observed. The developed gas analysis system was calibrated using a solution-based method. The system was used to analyze ammonia in an indoor environment along with an off-site method, traditional impinger gas collection followed by ion chromatographic analysis, for comparison. The results obtained using both methods agreed well. Therefore, the developed system can perform on-site monitoring of ammonia in indoor environments with improved time resolution compared with that of other methods. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  8. Rich catalytic injection

    DOEpatents

    Veninger, Albert [Coventry, CT

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  9. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  10. Apparatus and method for preparing oxygen-15 labeled water H{sub 2}[{sup 15}O] in an injectable form for use in positron emission tomography

    DOEpatents

    Ferrieri, R.A.; Schlyer, D.J.; Alexoff, D.

    1996-01-09

    A handling and processing apparatus is revealed for preparing Oxygen-15 labeled water (H{sub 2}[{sup 15}O]) in injectable form for use in Positron Emission Tomography from preferably H{sub 2}[{sup 15}O] produced by irradiating a flowing gas target of nitrogen and hydrogen. The apparatus includes a collector for receiving and directing a gas containing H{sub 2}[{sup 15}O] gas and impurities, mainly ammonia (NH{sub 3}) gas into sterile water to trap the H{sub 2}[{sup 15}O] and form ammonium (NH{sub 4}{sup +}) in the sterile water. A device for displacing the sterile water containing H{sub 2}[{sup 15}O] and NH{sub 4}{sup +} through a cation resin removes NH{sub 4}{sup +} from the sterile water. A device for combining the sterile water containing H{sub 2}[{sup 15}O] with a saline solution produces an injectable solution. Preferably, the apparatus includes a device for delivering the solution to a syringe for injection into a patient. Also, disclosed is a method for preparing H{sub 2}[{sup 15}O] in injectable form for use in Positron Emission Tomography in which the method neither requires isotopic exchange reaction nor application of high temperature. 7 figs.

  11. Effects of Regulation on Induced Seismicity in Southern Kansas

    NASA Astrophysics Data System (ADS)

    Rubinstein, J. L.; Ellsworth, W. L.; Dougherty, S. L.

    2016-12-01

    The appearance of seismicity concurrent with the expansion of oil and gas activities in southern Kansas since September 2012 suggests that industrial operations are inducing earthquakes there. Much of the seismicity can be related to high-rate injection wells within 5 km of the earthquakes. There is significant complexity to the situation, though. Some of the seismicity, including the 2014 M4.8 Milan earthquake, the largest earthquake to occur in the area, lies at least 10km from high-rate injection wells. Additionally, the presence of high-rate wells does not guarantee that there will be nearby seismicity. Many of the highest-rate injection wells are located to the southwest of our study area, where there is minimal seismicity. We have also seen changes in earthquake rates shortly following the March 2015 enactment of new limits on the rate of wastewater disposal in five areas in southern Kansas. Overall, the earthquake rate has decreased significantly since these rules went into place. In more detail, however, earthquake rates within the five areas decreased, but the rate outside the five zones increased. It is likely that fluid-pressure diffusion is responsible for the migration of seismicity outside the areas of reduced injection because there is little injection in the areas unaffected by the new injection rules. This increase is also a reminder that seismicity can persist long after the reduction or cessation of injection. In addition to the effect of the new injection rules, it is possible that the reduction in injection may be partially caused by economic factors that have resulted in a decrease in the production of oil and gas. We have yet to disentangle the effects of the new injection rules and the low prices of oil and gas on the induced seismicity in southern Kansas.

  12. Performance comparison of supersonic ejectors with different motive gas injection schemes applicable for flowing medium gas laser

    NASA Astrophysics Data System (ADS)

    Singhal, G.; Subbarao, P. M. V.; Mainuddin; Tyagi, R. K.; Dawar, A. L.

    2017-05-01

    A class of flowing medium gas lasers with low generator pressures employ supersonic flows with low cavity pressure and are primarily categorized as high throughput systems capable of being scaled up to MW class. These include; Chemical Oxygen Iodine Laser (COIL) and Hydrogen (Deuterium) Fluoride (HF/DF). The practicability of such laser systems for various applications is enhanced by exhausting the effluents directly to ambient atmosphere. Consequently, ejector based pressure recovery forms a potent configuration for open cycle operation. Conventionally these gas laser systems require at least two ejector stages with low pressure stage being more critical, since it directly entrains the laser media, and the ensuing perturbation of cavity flow, if any, may affect laser operation. Hence, the choice of plausible motive gas injection schemes viz., peripheral or central is a fluid dynamic issue of interest, and a parametric experimental performance comparison would be beneficial. Thus, the focus is to experimentally characterize the effect of variation in motive gas supply pressure, entrainment ratio, back pressure conditions, nozzle injection position operated together with a COIL device and discern the reasons for the behavior.

  13. Mass spectrometric gas composition measurements associated with jet interaction tests in a high-enthalpy wind tunnel

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Brown, K. G.; Wood, G. M., Jr.; Puster, R. L.; Paulin, P. A.; Fishel, C. E.; Ellerbe, D. A.

    1986-01-01

    Knowledge of test gas composition is important in wind-tunnel experiments measuring aerothermodynamic interactions. This paper describes measurements made by sampling the top of the test section during runs of the Langley 7-Inch High-Temperature Tunnel. The tests were conducted to determine the mixing of gas injected from a flat-plate model into a combustion-heated hypervelocity test stream and to monitor the CO2 produced in the combustion. The Mass Spectrometric (MS) measurements yield the mole fraction of N2 or He and CO2 reaching the sample inlets. The data obtained for several tunnel run conditions are related to the pressures measured in the tunnel test section and at the MS ionizer inlet. The apparent distributions of injected gas species and tunnel gas (CO2) are discussed relative to the sampling techniques. The measurements provided significant real-time data for the distribution of injected gases in the test section. The jet N2 diffused readily from the test stream, but the jet He was mostly entrained. The amounts of CO2 and Ar diffusing upward in the test section for several run conditions indicated the variability of the combustion-gas test-stream composition.

  14. The role of MHD in 3D aspects of massive gas injection

    DOE PAGES

    Izzo, Valerie A.; Parks, P. B.; Eidietis, Nicholas W.; ...

    2015-06-26

    Simulations of massive gas injection (MGI) for disruption mitigation in DIII-D are carried out to compare the toroidal peaking of radiated power for the cases of one and two gas jets. The radiation toroidal peaking factor (TPF) results from a combination of the distribution of impurities and the distribution of heat flux associated with then =1 mode. The injected impurities are found to spread helically along field lines preferentially toward the high-field-side, which is explained in terms of a nozzle equation. In light of this mechanism, reversing the current direction also reverses the toroidal direction of impurity spreading. During themore » pre-thermal quench phase of the disruption, the toroidal peaking of radiated power is reduced in the straightforward manner by increasing from one to two gas jets. However, during the thermal quench phase, reduction in the TPF is achieved only for a particular arrangement of the two gas valves with respect to the field line pitch. In particular, the relationship between the two valve locations and the 1/1 mode phase is critical, where gas valve spacing that is coherent with 1/1 symmetry effectively reduces TPF.« less

  15. Pilot scale-SO{sub 2} control by dry sodium bicarbonate injection and an electrostatic precipitator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pliat, M.J.; Wilder, J.M.

    2007-10-15

    A 500 actual cubic feet gas per minute (acfm) pilot-scale SO{sub 2} control study was undertaken to investigate flue gas desulfurization (FGD) by dry sodium sorbents in 400{sup o}F (204.5{sup o}C) flue gases emitted from a coal fired boiler with flue gas concentrations between 350 and 2500 ppm SO{sub 2}. Powdered sodium alkaline reagents were injected into the hot flue gas downstream of the air preheater and the spent reagents were collected using an electrostatic precipitator. Three different sorbents were used: processed sodium bicarbonate of two particle sizes; solution mined sodium bicarbonate, and processed sodium sesquicarbonate. SO{sub 2} concentrations weremore » measured upstream of the reagent injection, 25-ft (7.62 m) downstream of the injection point, and downstream of the electrostatic precipitator. SO{sub 2} collection efficiencies ranged from 40 to 80% using sodium bicarbonate stoichiometric ratios from 0.5 to 3.0. Much of the in-duct SO{sub 2} removal occurred during the first second of reagent reaction time, indicating that the sulfur dioxide-sodium reaction rates may be faster than have been measured for fixed bed measurements reported in the literature.« less

  16. SiO(x) nanoparticles synthesized by an evaporation and condensation process using induction melting of silicon and gas injection.

    PubMed

    Jang, Bo Yun; Lee, Jin Seok; Kim, Joon Soo

    2013-05-01

    SiO(x) nanoparticles were synthesized using a specially designed induction melting system equipped with a segmented graphite crucible. The graphite crucible with the segmented wall was the key to enhancing the evaporation rate due to the increase of the evaporation area and convection of the silicon melt. Injection of the gas mixture of oxygen (O2) and argon (Ar) on silicon (Si) melt caused the formation of SiO(x) nanoparticles. The evaporated SiO(x) nanoparticles were then cooled and condensed in a process chamber. The effects of the O2/Ar ratio in the injection gas on the microstructures of the SiO(x) nanoparticles were then investigated. Synthesized SiO(x) nanoparticles were proven to be of a homogeneous amorphous phase with average diameters of 30-35 nm. The microstructures were independent from the O2/Ar ratio of the injected gas. However, x increased from 1.36 to 1.84 as the O2/Ar ratio increased. The purity of the synthesized nanoparticles was about 99.9%. SiO(x) nanoparticles could be applied as the active anode material in a lithium (Li) ion secondary battery.

  17. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagul, Sagar B., E-mail: nano.sbbagul@gmail.com; Upadhye, Deepak S.; Sharma, Ramphal, E-mail: rps.phy@gmail.com

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology ofmore » Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.« less

  18. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    NASA Astrophysics Data System (ADS)

    Bagul, Sagar B.; Upadhye, Deepak S.; Sharma, Ramphal

    2016-05-01

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  19. Formation and dissipation of runaway current by MGI on J-TEXT

    NASA Astrophysics Data System (ADS)

    Wei, Yunong; Chen, Zhongyong; Huang, Duwei; Tong, Ruihai; Zhang, Xiaolong

    2017-10-01

    Plasma disruptions are one of the major concern for ITER. A large fraction of runaway current may be formed due to the avalanche generation of runaway electrons (REs) during disruptions and ruin the device structure. Experiments of runaway current formation and dissipation have been done on J-TEXT. Two massive gas injection (MGI) valves are used to form and dissipate the runaway current. Hot tail RE generation caused by the fast thermal quench leads to an abnormal formation of runaway current when the pre-TQ electron density increases in a range of 0.5-2-10 19m-3. 1020-22 quantities of He, Ne, Ar or Kr impurities are injected by MGI2 to dissipate the runaway current. He injection shows no obvious effect on runaway current dissipation in the experiments and Kr injection shows the best. The kinetic energy of REs and the magnetic energy of RE beam will affect the dissipation efficiency to a certain extent. Runaway current decay rate is found increasing quickly with the increase of the gas injection when the quantity is moderate, and then reaches to a saturation value with large quantity injection. A possible reason to explain the saturation of dissipation effect is the saturation of gas assimilation efficiency.

  20. Experimental study of elliptical jet from sub to supercritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in

    2014-04-15

    The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations weremore » carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N{sub 2} gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.« less

  1. The importance of perivitelline fluid convection to oxygen uptake of Pseudophryne bibronii eggs.

    PubMed

    Mueller, Casey A; Seymour, Roger S

    2011-01-01

    The ciliated epithelium of amphibian embryos produces a current within the perivitelline fluid of the egg that is important in the convective transfer of oxygen to the embryo's surface. The effects of convection on oxygen uptake and the immediate oxygen environment of the embryo were investigated in Pseudophryne bibronii. Gelatin was injected into the eggs, setting the perivitelline fluid and preventing convective flow. Oxygen consumption rate (M(.)o₂) and the oxygen partial pressure (Po₂) of the perivitelline fluid were measured in eggs with and without this treatment. M(.)o₂ decreased in eggs without convection at Gosner stages 17-19 under normoxia. The lack of convection also shifted embryos from regulators to conformers as environmental Po₂ decreased. A strong Po₂ gradient formed within the eggs when convection was absent, demonstrating that the loss of convection is equivalent to decreasing the inner radius of the capsule, an important factor in gas exchange, by 25%. M(.)o₂ also declined in stage 26-27 embryos without cilia-driven convection, although not to the extent of younger stages, because of muscular movements and a greater skin surface area in direct contact with the inner capsule wall. This study demonstrates the importance of convective flow within the perivitelline fluid to gas exchange. Convection is especially important in the middle of embryonic development, when the perivitelline space has formed, creating a barrier to gas exchange, but the embryos have yet to develop muscular movements or have a large surface area exposed directly to the jelly capsule.

  2. Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-05-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.

  3. Gas driven displacement in a Hele-Shaw cell with chemical reaction

    NASA Astrophysics Data System (ADS)

    White, Andrew; Ward, Thomas

    2011-11-01

    Injecting a less viscous fluid into a more viscous fluid produces instabilities in the form of fingering which grow radially from the less viscous injection point (Saffman & Taylor, Proc. R. Soc. Lon. A, 1958). For two non-reacting fluids in a radial Hele-Shaw cell the ability of the gas phase to penetrate the liquid phase is largely dependent on the gap height, liquid viscosity and gas pressure. In contrast combining two reactive fluids such as aqueous calcium hydroxide and carbon dioxide, which form a precipitate, presents a more complex but technically relevant system. As the two species react calcium carbonate precipitates and increases the aqueous phase visocosity. This change in viscosity may have a significant impact on how the gas phase penetrates the liquid phase. Experimental are performed in a radial Hele-Shaw cell with gap heights O(10-100) microns by loading a single drop of aqueous calcium hydroxide and injecting carbon dioxide into the drop. The calcium hydroxide concentration, carbon dioxide pressure and gap height are varied and images of the gas penetration are analyzed to determine residual film thickness and bursting times.

  4. Radial pressure profiles in a cold‐flow gas‐solid vortex reactor

    PubMed Central

    Pantzali, Maria N.; Kovacevic, Jelena Z.; Marin, Guy B.; Shtern, Vladimir N.

    2015-01-01

    A unique normalized radial pressure profile characterizes the bed of a gas‐solid vortex reactor over a range of particle densities and sizes, solid capacities, and gas flow rates: 950–1240 kg/m3, 1–2 mm, 2 kg to maximum solids capacity, and 0.4–0.8 Nm3/s (corresponding to gas injection velocities of 55–110 m/s), respectively. The combined momentum conservation equations of both gas and solid phases predict this pressure profile when accounting for the corresponding measured particle velocities. The pressure profiles for a given type of particles and a given solids loading but for different gas injection velocities merge into a single curve when normalizing the pressures with the pressure value downstream of the bed. The normalized—with respect to the overall pressure drop—pressure profiles for different gas injection velocities in particle‐free flow merge in a unique profile. © 2015 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 61: 4114–4125, 2015 PMID:27667827

  5. Extraction of contaminants from a gas

    DOEpatents

    Babko-Malyi, Sergei

    2000-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  6. Apparatus for extraction of contaminants from a gas

    DOEpatents

    Babko-Malyi, Sergei

    2001-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  7. Corrosion of Pipeline and Wellbore Steel by Liquid CO2 Containing Trace Amounts of Water and SO2

    NASA Astrophysics Data System (ADS)

    McGrail, P.; Schaef, H. T.; Owen, A. T.

    2009-12-01

    Carbon dioxide capture and storage in deep saline formations is currently considered the most attractive option to reduce greenhouse gas emissions with continued use of fossil fuels for energy production. Transporting captured CO2 and injection into suitable formations for storage will necessarily involve pipeline systems and wellbores constructed of carbon steels. Industry standards currently require nearly complete dehydration of liquid CO2 to reduce corrosion in the pipeline transport system. However, it may be possible to establish a corrosion threshold based on H2O content in the CO2 that could allow for minor amounts of H2O to remain in the liquid CO2 and thereby eliminate a costly dehydration step. Similarly, trace amounts of sulfur and nitrogen compounds common in flue gas streams are currently removed through expensive desulfurization and catalytic reduction processes. Provided these contaminants could be safely and permanently transported and stored in the geologic reservoir, retrofits of existing fossil-fuel plants could address comprehensive emissions reductions, including CO2 at perhaps nearly the same capital and operating cost. Because CO2-SO2 mixtures have never been commercially transported or injected, both experimental and theoretical work is needed to understand corrosion mechanisms of various steels in these gas mixtures containing varying amounts of water. Experiments were conducted with common tool steel (AISI-01) and pipeline steel (X65) immersed in liquid CO2 at room temperature containing ~1% SO2 and varying amounts of H2O (0 to 2500 ppmw). A threshold concentration of H2O in the liquid CO2-SO2 mixture was established based on the absence of visible surface corrosion. For example, experiments exposing steel to liquid CO2-SO2 containing ~300 ppmw H2O showed a delay in onset of visible corrosion products and minimal surface corrosion was visible after five days of testing. However increasing the water content to 760 ppmw produced extensive surface corrosion after 48 hours at room temperature. Surface characterization by SEM showed one type of morphology that included large circular features radiating outward from a central structure. Chemical analyses obtained by SEM-EDX indicate the phases contained mostly Fe and S with minor amounts of Mn. Corrosion products completely covering the metal coupon surface were identified by XRD as iron sulfite hydrate (FeSO3●3H2O), with lesser amounts of gravegliaite (MnSO3●3H2O), and rozenite (Fe(SO4)●(H2O)4).

  8. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, Franklin A.

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  9. Regeneration and tritium recovery from the large JET neutral injection cryopump system after the FTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obert, W.; Bell, A.; Davies, J.

    1992-12-01

    Neutral Beam Injection (NBI) was used to introduce tritium into the plasma for the First Tritium Experiment In addition to the decisive advantage of depositing the tritium into the centre of the plasma, the use of NBI also minimized the total quantity of tritium introduced into the Torus and the contamination of the vacuum vessel. However, because of the relatively low gas efficiency of the positive ion injection system approximately 95% of the total quantity of tritium introduced was pumped by the large condensation cryopumps which form an integral part of the injector. Several hardware and associated software changes weremore » implemented in order to making provision for possible fault scenarios during operation with tritium and to ensure complete regeneration of the tritium from the cryopumps. The tritium released after all subsequent regeneration`s has been monitored carefully in order to determine the amount of tritium retained by the black anodized liquid nitrogen panel surfaces of the cryopump and to compare it with experiments at TSTA on JET samples before the FTE.« less

  10. Regeneration and tritium recovery from the large JET neutral injection cryopump system after the FTE. [First Tritium Experiment (FTE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obert, W.; Bell, A.; Davies, J.

    1992-01-01

    Neutral Beam Injection (NBI) was used to introduce tritium into the plasma for the First Tritium Experiment In addition to the decisive advantage of depositing the tritium into the centre of the plasma, the use of NBI also minimized the total quantity of tritium introduced into the Torus and the contamination of the vacuum vessel. However, because of the relatively low gas efficiency of the positive ion injection system approximately 95% of the total quantity of tritium introduced was pumped by the large condensation cryopumps which form an integral part of the injector. Several hardware and associated software changes weremore » implemented in order to making provision for possible fault scenarios during operation with tritium and to ensure complete regeneration of the tritium from the cryopumps. The tritium released after all subsequent regeneration's has been monitored carefully in order to determine the amount of tritium retained by the black anodized liquid nitrogen panel surfaces of the cryopump and to compare it with experiments at TSTA on JET samples before the FTE.« less

  11. Understanding and modeling volcanotectonic processes that generate surface deformation on active stratovolcanoes

    NASA Astrophysics Data System (ADS)

    Gudmundsson, A.

    2005-05-01

    Surface deformation on stratovolcanoes is the result of local stresses generated by various volcanotectonic processes. These processes include changes in fluid pressure in the associated geothermal fields and magma chambers, regional seismic or tectonic events, fault development, and dike injections. Here the focus is on magma-chamber pressure changes and dike injections. Surface deformation associated with magma-chamber pressure changes is normally referred to as inflation when the pressure increases, and as deflation when the pressure decreases. The processes that lead to inflation are primarily addition of new magma to the chamber and rapid exsolution of gas from the magma in the chamber. The processes that lead to deflation are primarily cooling (and contraction) of magma in the chamber, regional tectonic extension of the crust holding the chamber, and eruption and/or dike injection. Injection of dikes (including inclined sheets) is common in most active stratovolcanoes. However, no dike-fed eruptions can take place unless the local stress field within the volcano is favorable to feeder-dike formation. By contrast, if at any location - in any layer - in the stratovolcano the stress field is unfavorable to dike propagation, the dike becomes arrested and no eruption occurs. Detailed studies of dikes in stratovolcanoes worldwide indicate that most dikes become arrested and never reach the surface. However, arrested dikes may give rise to surface deformation, such as is commonly monitored during volcanic unrest periods. By definition, stratovolcanoes are composed of numerous alternating strata (layers) of pyroclastic material and lava flows. Commonly, these layers have widely different mechanical properties. In particular, some layers such as lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas other layers, such as non-welded pyroclastic units, may be soft (with a low Young's modulus). Here I present new numerical models on the surface deformation on typical stratovolcanoes. The models show, first, that the surface deformation during magma-chamber inflation and deflation depends much on the chamber geometry, the loading conditions, and the mechanical properties of the rock units that constitute the volcano. Second, the models show that dike-induced stresses and surface deformation depend much on the mechanical properties of the layers between the dike tip and the surface. In particular, the models indicate that soft layers and weak contacts between layers may suppress the dike-induced tensile stresses and the associated surface deformation. Thus, many dikes may become injected and arrested with little or no surface deformation. Generally, the numerical models suggest that standard analytical surface-deformation models such as point sources (nuclei of strain) for magma-chamber pressure changes and dislocations for dikes should be used with great caution. These models normally assume the volcanoes and rift zones to behave as homogeneous, isotropic half spaces or semi-infinite plates. When applied to stratovolcanoes composed of layers of contrasting mechanical properties and, particularly at shallow depths, weak or open contacts, inversions using these analytical models may yield results that, at best, are unreliable.

  12. Develop to Term Rat Oocytes Injected with Heat-Dried Sperm Heads

    PubMed Central

    Lee, Kyung-Bon; Park, Ki-Eun; Kwon, In-Kiu; Tripurani, Swamy K.; Kim, Keun Jung; Lee, Ji Hye; Niwa, Koji; Kim, Min Kyu

    2013-01-01

    This study investigated the development of rat oocytes in vitro and in vivo following intracytoplasmic injection of heads from spermatozoa heat-dried at 50°C for 8 h and stored at 4°C in different gas phases. Sperm membrane and chromosome are damaged by the process of heat-drying. Oocyte activation and cleavage of oocytes were worse in oocytes injected with spermatozoa heat-dried and stored for 1 week than unheated, fresh spermatozoa, but in heat-dried spermatozoa, there were no differences in these abilities of oocytes between the samples stored in nitrogen gas and in air. The oocytes injected with heat-dried spermatozoa stored for 1 week could develop to the morula and blastocyst stages without difference between the samples stored in nitrogen gas and in air after artificial stimulation. Cleavage of oocytes and development of cleaved embryos were higher when heat-dried spermatozoa were stored for 3 and 6 months in nitrogen gas than in air. However, the ability of injected oocytes to develop to the morula and blastocyst stages was not inhibited even when heat-dried spermatozoa stored in both atmosphere conditions for as long as 6 months were used. When 2-cell embryos derived from oocytes injected with heads from spermatozoa heat-dried and stored for 1 week and 1 month were transferred, each 1 of 4 recipients was conceived, and the conceived recipients delivered 1 live young each. These results demonstrate that rat oocytes can be fertilized with heat-dried spermatozoa and that the fertilized oocytes can develop to term. PMID:24223784

  13. Effect of Propellant Flowrate and Purity on Carbon Deposition in LO2/Methane Gas Generators

    NASA Technical Reports Server (NTRS)

    Bossard, J. A.; Burkhardt, W. M.; Niiya, K. Y.; Braam, F.

    1989-01-01

    The generation and deposition of carbon was studied in the Carbon Deposition Program using subscale hardware with LO2/Liquid Natural Gas (LNG) and LO2/Methane propellants at low mixture ratios. The purpose of the testing was to evaluate the effect of methane purity and full scale injection density on carbon deposition. The LO2/LNG gas generator/preburner testing was performed at mixture ratios between 0.24 and 0.58 and chamber pressures from 5.8 to 9.4 MPa (840 to 1370 psia). A total of seven 200 second duration tests were performed. The LNG testing occurred at low injection densities, similar to the previous LO2/RP-1, LO2/propane, and LO2/methane testing performed on the carbon deposition program. The current LO2/methane test series occurred at an injection density factor of approximately 10 times higher than the previous testing. The high injection density LO2/methane testing was performed at mixture ratios between from 0.23 to 0.81 and chamber pressures from 6.4 to 15.2 MPa (925 to 2210 psia). A total of nine high injection density tests were performed. The testing performed demonstrated that low purity methane (LNG) did not produce any detectable change in carbon deposition when compared to pure methane. In addition, the C* performance and the combustion gas temperatures measured were similar to those obtained for pure methane. Similar results were obtained testing pure methane at higher propellant injection densities with coarse injector elements.

  14. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Centrifugal bubble O2 (1Δ) gas generator with a total pressure of 100 Torr

    NASA Astrophysics Data System (ADS)

    Zagidulin, M. V.; Nikolaev, V. D.; Svistun, M. I.; Khvatov, N. A.

    2008-08-01

    A centrifugal bubbling singlet-oxygen gas generator is developed in which chlorine with helium are injected into the rotating layer of the alkali solution of hydrogen peroxide through cylindrical nozzles directed at an angle of 30° to the bubbler surface. The concentrations of water vapour and O2 (1Δ) and the gas temperature were determined by using the multichannel recording of the emission bands of oxygen at 634, 703, 762 and 1268 nm. For the chlorine and helium flow rates of 60 and 90 mmol s-1, respectively, the specific chlorine load of 3.2 mmol cm-2, a total pressure of 100 Torr in the working region of the gas generator and the oxygen partial pressure of 36 Torr, the chlorine utilisation was 90% and the content of O2 (1Δ) was ≈60%. For the ratio of the flow rates of chlorine and the alkali solution of hydrogen peroxide equal to 1 mol L-1, the water vapour content was ≈25%. The chemical efficiency of the oxygen—iodine laser with this gas generator achieved 23% for the specific power of 12.7 W cm per 1 cm3 s-1 per pass of the solution through the gas generator.

  15. Enhancing the performance of the domestic refrigerator with hot gas injection to suction line

    NASA Astrophysics Data System (ADS)

    Berman, E. T.; Hasan, S.; Mutaufiq

    2016-04-01

    The purpose of this study was to determine the increase in performance of a domestic refrigerator that uses hot gas injection (IHG) to the suction line. The experiment was conducted by flowing refrigerant from the discharge line to the suction line. To get performance data, measurements performed on the liquid brine as cooling load with various temperatures (range from 3°C to - 3°C). The working fluid is used as a cooling medium is R-134a. The experimental results showed that the injection of hot gas to the suction line generates an increase in the coefficient of performance systems (COPs) of 7% and is able to lower the discharge temperature, causing the compressor to work lighter/easier, saving electric power needed by the refrigerator.

  16. Orbital fabrication of aluminum foam and apparatus therefore

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S. (Inventor)

    2010-01-01

    A process for producing foamed aluminum in space comprising the steps of: heating aluminum until it is molten; applying the force of gravity to the molten aluminum; injecting gas into the molten aluminum to produce molten foamed aluminum; and allowing the molten foamed aluminum to cool to below melting temperature. The apparatus for carrying out this invention comprises: a furnace which rotates to simulate the force of gravity and heats the aluminum until it is molten; a door on the furnace, which is opened for charging the aluminum into the furnace, closed for processing and opened again for removal of the foamed aluminum; a gas injection apparatus for injecting gas into the molten aluminum within the furnace; and an extraction apparatus adjacent the door for removing the foamed aluminum from the furnace.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, R.; Kelley, D.E.

    In 1998, when Sunlaw Energy Corporation needed to retrofit their two natural gas fired power plants to meet new emissions requirements that were soon to come into place, they looked at existing technologies and found them either economically or environmentally undesirable. With the help of General Electric they developed a program of water injection that was capable of reducing the NO{sub x} emissions to 25 ppm. This, however, was not low enough to meet coming regulations. Sunlaw concluded that the best option for pollution control was to invert their own system. A partnership was formed between Sunlaw and Advanced Catalystmore » Systems, a catalyst development and manufacturing firm. The result of their efforts was Goal Line Environmental Technologies and the SCONOx catalytic absorption system. The newest SCONOx system, commissioned at Sunlaw's Federal cogeneration plant in December 1996, treats the exhaust of a GELM2500 gas turbine. Combined with water injection, it has reduced NO{sub x} emission from 160 ppm down to 1--2 ppm. Carbon monoxide emissions are virtually eliminated, with stack readings less than ambient levels. The SCONOx system uses single catalyst for both CO and NO{sub x} control. It oxidizes CO to CO{sub 2} and NO to NO{sub 2}, and the NO{sub 2} is then absorbed onto the surface of the catalyst. Just as a sponge absorbs water and must be periodically regenerated, the catalyst must be regenerated. This is accomplished by passing a dilute hydrogen gas across the surface of the catalyst in the absence of oxygen. Nitrogen oxygen are broken down into nitrogen and water, and this is exhausted up the stack instead of NO{sub x}. The SCONOx system is a breakthrough in CO and NO{sub x} control technology that makes it possible to have clean air without the use of ammonia or other hazardous materials. It is truly an environmentally friendly NO{sub x} system.« less

  18. Temperature dependence of DC transport characteristics for a two-dimensional electron gas in an undoped Si/SiGe heterostructure

    NASA Astrophysics Data System (ADS)

    Chou, Kuan-Yu; Hsu, Nai-Wen; Su, Yi-Hsin; Chou, Chung-Tao; Chiu, Po-Yuan; Chuang, Yen; Li, Jiun-Yun

    2018-02-01

    We investigate DC characteristics of a two-dimensional electron gas (2DEG) in an undoped Si/SiGe heterostructure and its temperature dependence. An insulated-gate field-effect transistor was fabricated, and transfer characteristics were measured at 4 K-300 K. At low temperatures (T < 45 K), source electrons are injected into the buried 2DEG channel first and drain current increases with the gate voltage. By increasing the gate voltage further, the current saturates followed by a negative transconductance observed, which can be attributed to electron tunneling from the buried channel to the surface channel. Finally, the drain current is saturated again at large gate biases due to parallel conduction of buried and surface channels. By increasing the temperature, an abrupt increase in threshold voltage is observed at T ˜ 45 K and it is speculated that negatively charged impurities at the Al2O3/Si interface are responsible for the threshold voltage shift. At T > 45 K, the current saturation and negative transconductance disappear and the device acts as a normal transistor.

  19. Method for producing pellets for use in a cryoblasting process

    DOEpatents

    Foster, Christopher A.; Fisher, Paul W.

    1997-01-01

    A cryoblasting process having a centrifugal accelerator for accelerating frozen pellets of argon or carbon dioxide toward a target area utilizes an accelerator throw wheel designed to induce, during operation, the creation of a low-friction gas bearing within internal passages of the wheel which would otherwise retard acceleration of the pellets as they move through the passages. An associated system and method for removing paint from a surface with cryoblasting techniques involves the treating, such as a preheating, of the painted surface to soften the paint prior to the impacting of frozen pellets thereagainst to increase the rate of paint removal. A system and method for producing large quantities of frozen pellets from a liquid material, such as liquid argon or carbon dioxide, for use in a cryoblasting process utilizes a chamber into which the liquid material is introduced in the form of a jet which disintegrates into droplets. A non-condensible gas, such as inert helium or air, is injected into the chamber at a controlled rate so that the droplets freeze into bodies of relatively high density.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, G.J.; Schuett, K.J.; White, D.G.

    Number 13 Blast Furnace at Gary began injecting Pulverized Coal in March 1993. The injection level was increased over the next nine months until a level off 409 lbs/THM was achieved for the month of December 1993. Several major areas were critical in achieving this high level of Pulverized coal injection (PCI) including furnace conditions, lance position, tuyere blockage, operating philosophy, and outages. The paper discusses the modifications made to achieve this level of injection. This injection level decreased charged dry coke rate from 750 lbs/THM to about 625 lbs/THM, while eliminating 150 lbs/THM of oil and 20 lbs/THM ofmore » natural gas. Assuming a 1.3 replacement ratio for an oil/natural gas mixture, overall coke replacement for the coal is about 0.87 lbs coke/lbs coal. Gary Works anticipates levels of 500 lbs/THM are conceivable.« less

  1. Models, data available, and data requirements for estimating the effects of injecting saltwater into disposal wells in the greater Altamont-Bluebell oil and gas field, northern Uinta Basin, Utah

    USGS Publications Warehouse

    Freethey, Geoffrey W.

    1988-01-01

    Permits for disposing of salty oil-production water have been issued for 19 wells in the Greater Altamont-Bluebell field. During 1986 more than 500 million gallons of production water were injected into the Duchesne River, Uinta, and Green River Formations through 18 of these wells. The physical and chemical effects of injecting this water into aquifers containing potable water are poorly understood. Interfingering and the structural configuration of these formations add complexity to the description of the geometry and hydrogeology of the ground-water system.A preliminary assessment of the problem indicates that numerical modeling may offer a method of determining the effects of injection. Modeling possibilities include variable-density, three-dimensional flow, sectionaltransport, and areal-transport models. Data needed to develop these models can be derived from a synthesis of geologic, hydrologic, and hydrochemical data already available in the files of State and Federal agencies, oil companies, and private companies. Results from each modeling phase would contribute information for implementing the following phase. The result will be a better understanding of how water moves naturally through the groundwater system, the extent of alterations of both vertical and horizontal flow near the disposal wells, and an overall concept of the effects of deep injection on near-surface aquifers.

  2. Estimating decades-long trends in petroleum field energy return on investment (EROI) with an engineering-based model.

    PubMed

    Tripathi, Vinay S; Brandt, Adam R

    2017-01-01

    This paper estimates changes in the energy return on investment (EROI) for five large petroleum fields over time using the Oil Production Greenhouse Gas Emissions Estimator (OPGEE). The modeled fields include Cantarell (Mexico), Forties (U.K.), Midway-Sunset (U.S.), Prudhoe Bay (U.S.), and Wilmington (U.S.). Data on field properties and production/processing parameters were obtained from a combination of government and technical literature sources. Key areas of uncertainty include details of the oil and gas surface processing schemes. We aim to explore how long-term trends in depletion at major petroleum fields change the effective energetic productivity of petroleum extraction. Four EROI ratios are estimated for each field as follows: The net energy ratio (NER) and external energy ratio (EER) are calculated, each using two measures of energy outputs, (1) oil-only and (2) all energy outputs. In all cases, engineering estimates of inputs are used rather than expenditure-based estimates (including off-site indirect energy use and embodied energy). All fields display significant declines in NER over the modeling period driven by a combination of (1) reduced petroleum production and (2) increased energy expenditures on recovery methods such as the injection of water, steam, or gas. The fields studied had NER reductions ranging from 46% to 88% over the modeling periods (accounting for all energy outputs). The reasons for declines in EROI differ by field. Midway-Sunset experienced a 5-fold increase in steam injected per barrel of oil produced. In contrast, Prudhoe Bay has experienced nearly a 30-fold increase in amount of gas processed and reinjected per unit of oil produced. In contrast, EER estimates are subject to greater variability and uncertainty due to the relatively small magnitude of external energy investments in most cases.

  3. Estimating decades-long trends in petroleum field energy return on investment (EROI) with an engineering-based model

    PubMed Central

    Tripathi, Vinay S.

    2017-01-01

    This paper estimates changes in the energy return on investment (EROI) for five large petroleum fields over time using the Oil Production Greenhouse Gas Emissions Estimator (OPGEE). The modeled fields include Cantarell (Mexico), Forties (U.K.), Midway-Sunset (U.S.), Prudhoe Bay (U.S.), and Wilmington (U.S.). Data on field properties and production/processing parameters were obtained from a combination of government and technical literature sources. Key areas of uncertainty include details of the oil and gas surface processing schemes. We aim to explore how long-term trends in depletion at major petroleum fields change the effective energetic productivity of petroleum extraction. Four EROI ratios are estimated for each field as follows: The net energy ratio (NER) and external energy ratio (EER) are calculated, each using two measures of energy outputs, (1) oil-only and (2) all energy outputs. In all cases, engineering estimates of inputs are used rather than expenditure-based estimates (including off-site indirect energy use and embodied energy). All fields display significant declines in NER over the modeling period driven by a combination of (1) reduced petroleum production and (2) increased energy expenditures on recovery methods such as the injection of water, steam, or gas. The fields studied had NER reductions ranging from 46% to 88% over the modeling periods (accounting for all energy outputs). The reasons for declines in EROI differ by field. Midway-Sunset experienced a 5-fold increase in steam injected per barrel of oil produced. In contrast, Prudhoe Bay has experienced nearly a 30-fold increase in amount of gas processed and reinjected per unit of oil produced. In contrast, EER estimates are subject to greater variability and uncertainty due to the relatively small magnitude of external energy investments in most cases. PMID:28178318

  4. Air Sparging Versus Gas Saturated Water Injection for Remediation of Volatile LNAPL in the Borden Aquifer

    NASA Astrophysics Data System (ADS)

    Barker, J.; Nelson, L.; Doughty, C.; Thomson, N.; Lambert, J.

    2009-05-01

    In the shallow, rather homogeneous, unconfined Borden sand aquifer, field trials of air sparging (Tomlinson et al., 2003) and pulsed air sparging (Lambert et al., 2009) have been conducted, the latter to remediate a residual gasoline source emplaced below the water table. As well, a supersaturated (with CO2) water injection (SWI) technology, using the inVentures inFusion system, has been trialed in two phases: 1. in the uncontaminated sand aquifer to evaluate the radius of influence, extent of lateral gas movement and gas saturation below the water table, and 2. in a sheet pile cell in the Borden aquifer to evaluate the recovery of volatile hydrocarbon components (pentane and hexane) of an LNAPL emplaced below the water table (Nelson et al., 2008). The SWI injects water supersaturated with CO2. The supersaturated injected water moves laterally away from the sparge point, releasing CO2 over a wider area than does gas sparging from a single well screen. This presentation compares these two techniques in terms of their potential for remediating volatile NAPL components occurring below the water table in a rather homogeneous sand aquifer. Air sparging created a significantly greater air saturation in the vicinity of the sparge well than did the CO2 system (60 percent versus 16 percent) in the uncontaminated Borden aquifer. However, SWI pushed water, still supersaturated with CO2, up to about 2.5 m from the injection well. This would seem to provide a considerable advantage over air sparging from a point, in that gas bubbles are generated at a much larger radius from the point of injection with SWI and so should involve additional gas pathways through a residual NAPL. Overall, air sparging created a greater area of influence, defined by measurable air saturation in the aquifer, but air sparging also injected about 12 times more gas than was injected in the SWI trials. The pulsed air sparging at Borden (Lambert et al.) removed about 20 percent (4.6 kg) of gasoline hydrocarbons, mainly pentane and hexane, from the residual gasoline via sparging. A similar mass was estimated to have been removed by aerobic biodegradation. The extent of volatile recovery needs to be better defined and so post-sparging coring and analysis of residual LNAPL is underway. Impressively, the second SWI trial recovered more than 60 percent of the pentane-hexane from the NAPL. In both field experiments there was potential for minor additional recovery if the system had been operated longer. Comparison of efficiency of the pulsed air sparging and SWI systems is difficult in that the initial LNAPL residuals have different chemistry, but similar distribution, different volumes of gas were used, and biodegradation accounted for a significant removal of hydrocarbons only in the air sparging system. The SWI trial recovered an impressive portion of the volatile LNAPL, while using considerably less gas than the air sparging system, but the SWI delivery system was both more complex and more expensive than the air sparging system. Additional trials are underway in more complex aquifers to further assess the performance of the SWI technology, including costs and practical limitations.

  5. Influence of obstacles on bubbles rising in water-saturated sand

    NASA Astrophysics Data System (ADS)

    Poryles, Raphaël; Varas, Germán; Vidal, Valérie

    2017-06-01

    This work investigates the dynamics of air rising through a water-saturated sand confined in a Hele- Shaw cell in which a circular obstacle is trapped. The air is injected at constant flow rate through a single nozzle at the bottom center of the cell. Without obstacle, in a similar configuration, previous studies pointed out the existence of a fluidized zone generated by the central upward gas motion which entrains two granular convection rolls on its sides. Here, a circular obstacle which diameter is of the order of the central air channel width is trapped at the vertical of the injection nozzle. We analyze the influence of the obstacle location on the size of the fluidized zone and its impact on the morphology of the central air channel. Finally, we quantify the variations of the granular free surface. Two configurations with multiple obstacles are also considered.

  6. USGS investigations of water produced during hydrocarbon reservoir development

    USGS Publications Warehouse

    Engle, Mark A.; Cozzarelli, Isabelle M.; Smith, Bruce D.

    2014-01-01

    Significant quantities of water are present in hydrocarbon reservoirs. When brought to the land surface during oil, gas, and coalbed methane production, the water—either naturally occurring or injected as a method to enhance production—is termed produced water. Produced water is currently managed through processes such as recycling, treatment and discharge, spreading on roads, evaporation or infiltration, and deep well injection. U.S. Geological Survey (USGS) scientists conduct research and publish data related to produced water, thus providing information and insight to scientists, decisionmakers, the energy industry, and the public. The information advances scientific knowledge, informs resource management decisions, and facilitates environmental protection. This fact sheet discusses integrated research being conducted by USGS scientists supported by programs in the Energy and Minerals and Environmental Health Mission Areas. The research products help inform decisions pertaining to understanding the nature and management of produced water in the United States.

  7. Shock Interaction Control for Scramjet Cowl Leading Edges

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Venkat, Venki, S.

    2005-01-01

    An experimental study was conducted to qualitatively determine the effectiveness of stagnation-region gas injection in protecting a scramjet cowl leading edge from the intense heating produced by Type III and Type IV shock interactions. The model consisted of a two-dimensional leading edge, representative of that of a scramjet cowl. Tests were conducted at a nominal freestream Mach number of 6. Gaseous nitrogen was supersonically injected through the leading-edge nozzles at various mass flux ratios and with the model pitched at angles of 0deg and -20deg relative to the freestream flow. Qualitative data, in the form of focusing and conventional schlieren images, were obtained of the shock interaction patterns. Results indicate that large shock displacements can be achieved and both the Type III and IV interactions can be altered such that the interaction does not impinge on the leading edge surface.

  8. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine

    PubMed Central

    Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie

    2015-01-01

    To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions of coal seams. PMID:26161959

  9. Reaction-space analysis of homogeneous charge compression ignition combustion with varying levels of fuel stratification under positive and negative valve overlap conditions

    DOE PAGES

    Kodavasal, Janardhan; Lavoie, George A.; Assanis, Dennis N.; ...

    2015-10-26

    Full-cycle computational fluid dynamics simulations with gasoline chemical kinetics were performed to determine the impact of breathing and fuel injection strategies on thermal and compositional stratification, combustion and emissions during homogeneous charge compression ignition combustion. The simulations examined positive valve overlap and negative valve overlap strategies, along with fueling by port fuel injection and direct injection. The resulting charge mass distributions were analyzed prior to ignition using ignition delay as a reactivity metric. The reactivity stratification arising from differences in the distributions of fuel–oxygen equivalence ratio (Φ FO), oxygen molar fraction (χ O2) and temperature (T) was determined for threemore » parametric studies. In the first study, the reactivity stratification and burn duration for positive valve overlap valve events with port fuel injection and early direct injection were nearly identical and were dominated by wall-driven thermal stratification. nitrogen oxide (NO) and carbon monoxide (CO) emissions were negligible for both injection strategies. In the second study, which examined negative valve overlap valve events with direct injection and port fuel injection, reactivity stratification increased for direct injection as the Φ FO and T distributions associated with direct fuel injection into the hot residual gas were positively correlated; however, the latent heat absorbed from the hot residual gas by the evaporating direct injection fuel jet reduced the overall thermal and reactivity stratification. These stratification effects were offsetting, resulting in similar reactivity stratification and burn durations for the two injection strategies. The higher local burned gas temperatures with direct injection resulted in an order of magnitude increase in NO, while incomplete combustion of locally over-lean regions led to a sevenfold increase in CO emissions compared to port fuel injection. The final study evaluated positive valve overlap and negative valve overlap valve events with direct injection. Furthermore, relative to positive valve overlap, the negative valve overlap condition had a wider reactivity stratification, a longer burn duration and higher NO and CO emissions associated with reduced fuel–air mixing.« less

  10. Dissolution of Si in Molten Al with Gas Injection

    NASA Astrophysics Data System (ADS)

    Seyed Ahmadi, Mehran

    Silicon is an essential component of many aluminum alloys, as it imparts a range of desirable characteristics. However, there are considerable practical difficulties in dissolving solid Si in molten Al, because the dissolution process is slow, resulting in material and energy losses. It is thus essential to examine Si dissolution in molten Al, to identify means of accelerating the process. This thesis presents an experimental study of the effect of Si purity, bath temperature, fluid flow conditions, and gas stirring on the dissolution of Si in molten Al, plus the results of physical and numerical modeling of the flow to corroborate the experimental results. The dissolution experiments were conducted in a revolving liquid metal tank to generate a bulk velocity, and gas was introduced into the melt using top lance injection. Cylindrical Si specimens were immersed into molten Al for fixed durations, and upon removal the dissolved Si was measured. The shape and trajectory of injected bubbles were examined by means of auxiliary water experiments and video recordings of the molten Al free surface. The gas-agitated liquid was simulated using the commercial software FLOW-3D. The simulation results provide insights into bubble dynamics and offer estimates of the fluctuating velocities within the Al bath. The experimental results indicate that the dissolution rate of Si increases in tandem with the melt temperature and bulk velocity. A higher bath temperature increases the solubility of Si at the solid/liquid interface, resulting in a greater driving force for mass transfer, and a higher liquid velocity decreases the resistance to mass transfer via a thinner mass boundary layer. Impurities (with lower diffusion coefficients) in the form of inclusions obstruct the dissolution of the Si main matrix. Finally, dissolution rate enhancement was observed by gas agitation. It is postulated that the bubble-induced fluctuating velocities disturb the mass boundary layer, which increases the mass transfer rate. Correlations derived for mass transfer from solids in liquids under various operating conditions were applied to the Al--Si system. A new correlation for combined natural and forced convection mass transfer from vertical cylinders in cross flow is presented, and a modification is proposed to take into account free stream turbulence in a correlation for forced convection mass transfer from vertical cylinders in cross flow.

  11. Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony Layiwola

    2001-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas were performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. It was found that the presence of variable density within the shear layer resulted in an increase in the temporal amplification rate of the disturbances and an increase in the range of unstable frequencies, accompanied by a reduction in the phase velocities of the disturbances. Also, the temporal growth rates of the disturbances were increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity. The spatio-temporal stability analysis was performed to determine the nature of the absolute instability of the jet. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the jet s absolute instability were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be. Experiments were carried out to observe the qualitative differences between a round low-density gas jet injected into a high-density gas (helium jet injected into air) and a round constant density jet (air jet injected into air). Flow visualizations and velocity measurements in the near-injector region of the helium jet show more mixing and spreading of the helium jet than the air jet. The vortex structures develop and contribute to the jet spreading causing the helium jet to oscillate.

  12. Influence of blade leading edge geometry and upstream blowing on the heat/mass transfer in a turbine cascade

    NASA Astrophysics Data System (ADS)

    Papa, Marco

    The effect of secondary flows on mass transfer from a simulated gas turbine blade and hubwall is investigated. Measurements performed using naphthalene sublimation provide non-dimensional mass transfer coefficients, in the form of Sherwood numbers, that can be converted to heat transfer coefficients through the use of an analogy. Tests are conducted in a linear cascade composed of five blades having the profile of a first stage rotor blade of a high-pressure turbine aircraft engine. Detailed mass transfer maps on the airfoil and endwall surfaces allow the identification of significant flow features that are in good agreement with existing secondary flow models. These results are well-suited for validation of numerical codes, as they are obtained with an accurate technique that does not suffer from conduction or radiation errors and allows the imposition of precise boundary conditions. The performance of a RANS (Reynolds Averaged Navier-Stokes) numerical code that simulates the flow and heat/mass transfer in the cascade using the SST (Shear Stress Transport) k-o model is evaluated through a comparison with the experimental results. Tests performed with a modified blade leading edge show that the introduction of a fillet at the junction with the endwall reduces the effects of the horseshoe vortex in the first part of the passage, while no measurable changes in mass transfer are observed further downstream. Air injected through a slot located upstream of the cascade simulates the engine wheelspace coolant injection between the stator and the rotor. Local mass transfer data obtained injecting naphthalene-free and naphthalene-saturated air are reduced to derive maps of cooling effectiveness on the blade and endwall. Oil dot tests show the surface flow on the endwall. The surface downstream of the gap is coplanar to the upstream surface in the baseline configuration and is shifted to form a forward and backward facing step to investigate the effects of component misalignments. Sufficiently high injection rates alter the structure of the secondary flows and significantly improve the cooling performance.

  13. Reducing fertilizer-derived N2O emission: Point injection vs. surface application of ammonium-N fertilizer at a loamy sand site

    NASA Astrophysics Data System (ADS)

    Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Kücke, Martin; Flessa, Heinz

    2013-04-01

    N2O emitted from soil originates either from denitrification of nitrate and/or nitrification of ammonium. N fertilization can have an important impact on N2O emission rates. Injection of nitrate-free ammonium-N fertilizer, in Germany also known as CULTAN (Controlled Uptake Long-Term Ammonium Nutrition), results in fertilizer depots with ammonium concentrations of up to 10 mg N g-1 soil-1. High concentrations of ammonium are known to inhibit nitrification. However, it has not yet been clarified how N2O fluxes are affected by CULTAN. In a field experiment, two application methods of nitrogen fertilizer were used at a loamy sand site: Ammonium sulphate was applied either by point injection or by surface application. 15N-ammonium sulphate was used to distinguish between N2O originating from either fertilizer-N or soil-N. Unfertilized plots and plots fertilized with unlabeled ammonium sulphate served as control. N2O emissions were measured using static chambers, nitrate and ammonium concentrations were determined in soil extracts. Stable isotope analysis of 15N in N2O, nitrate and ammonium was used to calculate the contribution of fertilizer N to N2O emissions and the fertilizer turnover in soil. 15N analysis clearly indicated that fertilizer derived N2O fluxes were higher from surface application plots. For the period of the growing season, about 24% of the flux measured in surface application treatment and less than 10% from injection treatment plots originated from the fertilizer. In addition, a lab experiment was conducted to gain insight into processes leading to N2O emission from fertilizer depots. One aim was to examine whether the ratio of N2O to nitrate formation differs depending on the ammonium concentration. Loamy sand soil was incubated in microcosms continuously flushed with air under conditions favouring nitrification. 15N-labeled nitrate was used to differentiate between nitrification and denitrification. Stable isotope analyses of 15N were performed on N2O in the gas phase and on ammonium and nitrate extracted from soil samples.

  14. Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models

    NASA Astrophysics Data System (ADS)

    McCusker, Kelly E.

    Global warming due to anthropogenic emissions of greenhouse gases is causing negative impacts on diverse ecological and human systems around the globe, and these impacts are projected to worsen as climate continues to warm. In the absence of meaningful greenhouse gas emissions reductions, new strategies have been proposed to engineer the climate, with the aim of preventing further warming and avoiding associated climate impacts. We investigate one such strategy here, falling under the umbrella of `solar radiation management', in which sulfate aerosols are injected into the stratosphere. We use a global climate model with a coupled mixed-layer depth ocean and with a fully-coupled ocean general circulation model to simulate the stabilization of climate by balancing increasing carbon dioxide with increasing stratospheric sulfate concentrations. We evaluate whether or not severe climate impacts, such as melting Arctic sea ice, tropical crop failure, or destabilization of the West Antarctic ice sheet, could be avoided. We find that while tropical climate emergencies might be avoided by use of stratospheric aerosol injections, avoiding polar emergencies cannot be guaranteed due to large residual climate changes in those regions, which are in part due to residual atmospheric circulation anomalies. We also find that the inclusion of a fully-coupled ocean is important for determining the regional climate response because of its dynamical feedbacks. The efficacy of stratospheric sulfate aerosol injections, and solar radiation management more generally, depends on its ability to be maintained indefinitely, without interruption from a variety of possible sources, such as technological failure, a breakdown in global cooperation, lack of funding, or negative unintended consequences. We next consider the scenario in which stratospheric sulfate injections are abruptly terminated after a multi- decadal period of implementation while greenhouse gas emissions have continued unabated. We show that upon cessation, an abrupt, spatially broad, and sustained warming over land occurs that is well outside the bounds of 20th century climate variability. We then use an upwelling-diffusion energy balance climate model to further show the sensitivity of these trends to background greenhouse gas emissions, termination year, and climate sensitivity. We find that the rate of warming from cessation of solar radiation management -- of critical importance for ecological and human systems -- is principally controlled by the background greenhouse gas concentrations. It follows that the only way to avoid the risk of an abrupt and dangerous warming that is inherent to the large-scale implementation of solar radiation management is to also strongly reduce greenhouse gas emissions. The climate system responds to radiative forcing on a diverse spectrum of timescales, which will affect what goals can be achieved for a given stratospheric aerosol implementation. We next investigate how different rates of stratospheric sulfate aerosol deployment affect what climate impacts can be avoided by simulating two rates of increasing stratospheric sulfate concentrations in a fully-coupled global climate model. We find that disparate goals are achieved for different rates of deployment; for a slow ramping of sulfate, land surface temperature trends remain small but sea levels continue to rise for decades, whereas a quick ramp-up of sulfate yields large land surface cooling trends and immediately reduces sea level. However, atmospheric circulation changes also act to create a large-scale subsurface ocean environment around Antarctica that is favorable for increased basal melting of ice sheet outlets, thereby leaving the potential open for increased sea level rise even in the absence of large atmospheric surface warming. We show that instead, when greenhouse gases are abruptly returned to preindustrial levels, circulation anomalies are reversed, and the subsurface ocean environment does not pose the same threat to Antarctic ice sheets. We conclude that again, reduction of greenhouse gases is the preferred strategy for avoiding climate impacts of global warming.

  15. Operating manual for coaxial injection combustion model. [for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. D.; Schuman, M. D.; Chadwick, W. D.

    1974-01-01

    An operating manual for the coaxial injection combustion model (CICM) is presented as the final report for an eleven month effort designed to provide improvement, to verify, and to document the comprehensive computer program for analyzing the performance of thrust chamber operation with gas/liquid coaxial jet injection. The effort culminated in delivery of an operation FORTRAN IV computer program and associated documentation pertaining to the combustion conditions in the space shuttle main engine. The computer program is structured for compatibility with the standardized Joint Army-Navy-NASA-Air Force (JANNAF) performance evaluation procedure. Use of the CICM in conjunction with the JANNAF procedure allows the analysis of engine systems using coaxial gas/liquid injection.

  16. The planning of a passive seismic experiment: the Ketzin case

    NASA Astrophysics Data System (ADS)

    Rossi, G.; Petronio, L.

    2009-04-01

    In the last years, it has been recognized the importance of using microseismic activity data to gain information on the state and dynamics of a reservoir, notwithstanding the difficulties of recording, localizing the events, interpret them correctly, in terms of developing fractures, or thermal effects. The increasing number of CO2 storage experiments, with the necessity of providing efficient, economic, and long-term monitoring methods, both in the injection and post-injection phases, further encourage the development and improvement of recording and processing techniques. Microseismic signals are typically recorded with downhole sensors. Monitoring with surface sensors is problematic due to increased noise levels and signal attenuation particularly in the near surface. The actual detection distance depends on background noise conditions, seismic attenuation and the microseismic source strength. In the frame of the European project Co2ReMoVe and of the European Network of Excellence Co2GeoNet, a passive seismic experiment was planned in the Ketzin site for geological storage of CO2, a former gas store near Potsdam, object of the CO2SINK European project and inserted also in the European project Co2ReMoVe. Aim of the survey is to complement the CO2-SINK active seismic downhole experiments, adding precious information on the microseismicity induced by stress field changes at the reservoir level and in the overburden, due to the CO2 injection. The baseline survey was done in May 2008 by the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGS (Italy), with the support of the Deutsches GeoForschungsZentrum-GFZ (Germany) and the collaboration of the Institut für Geowissenschaftliche Gemeinschaftsaufgaben-GGA (Germany), shortly before the starting of the CO2 injection (June 30th 2008). A continuous monitoring (about 5 days) was performed by 2 downhole 3C geophones, and 3 surface 3C geophones located around the wells. This paper, based on the analysis of the baseline data, is focused on the design and planning of the next seismic passive surveys, optimizing the recording geometry and instrumentation, to record the microseismic events that could be induced by the redistribution of the stresses following the injection, and help the understanding of the injected CO2 behaviour.

  17. Pulverized solid injection system. Application to laboratory burners and pyrometric temperature measurements

    NASA Astrophysics Data System (ADS)

    Therssen, E.; Delfosse, L.

    1995-08-01

    The design and setting up of a pulverized solid injection system for use in laboratory burners is presented. The original dual system consists of a screw feeder coupled to an acoustic sower. This laboratory device allows a good regularity and stability of the particle-gas mixture transported to the burner in a large scale of mass powder and gas vector rate flow. The thermal history of the particles has been followed by optical measurements. The quality of the particle cloud injected in the burner has been validated by the good agreement between experimental and modeling particle temperature.

  18. Viability of modelling gas transport in shallow injection-monitoring experiment field at Maguelone, France

    NASA Astrophysics Data System (ADS)

    Basirat, Farzad; Perroud, Hervé; Lofi, Johanna; Denchik, Nataliya; Lods, Gérard; Fagerlund, Fritjof; Sharma, Prabhakar; Pezard, Philippe; Niemi, Auli

    2015-04-01

    In this study, TOUGH2/EOS7CA model is used to simulate the shallow injection-monitoring experiment carried out at Maguelone, France, during 2012 and 2013. The possibility of CO2 leakage from storage reservoir to upper layers is one of the issues that need to be addressed in CCS projects. Developing reliable monitoring techniques to detect and characterize CO2 leakage is necessary for the safety of CO2 storage in reservoir formations. To test and cross-validate different monitoring techniques, a series of shallow gas injection-monitoring experiments (SIMEx) has been carried out at the Maguelone. The experimental site is documented in Lofi et al [2013]. At the site, a series of nitrogen and one CO2 injection experiment have been carried out during 2012-2013 and different monitoring techniques have been applied. The purpose of modelling is to acquire understanding of the system performance as well as to further develop and validate modelling approaches for gas transport in the shallow subsurface, against the well-controlled data sets. The preliminary simulation of the experiment including the simulation for the Nitrogen injection test in 2012 was presented in Basirat et al [2013]. In this work, the simulations represent the gaseous CO2 distribution and dissolved CO2 within range obtained by monitoring approaches. The Multiphase modelling in combination with geophysical monitoring can be used for process understanding of gas phase migration- and mass transfer processes resulting from gaseous CO2 injection. Basirat, F., A. Niemi, H. Perroud, J. Lofi, N. Denchik, G. Lods, P. Pezard, P. Sharma, and F. Fagerlund (2013), Modeling Gas Transport in the Shallow Subsurface in Maguelone Field Experiment, Energy Procedia, 40, 337-345. Lofi, J., P. Pezard, F. Bouchette, O. Raynal, P. Sabatier, N. Denchik, A. Levannier, L. Dezileau, and R. Certain (2013), Integrated Onshore-Offshore Investigation of a Mediterranean Layered Coastal Aquifer, Groundwater, 51(4), 550-561.

  19. Final case for a stainless steel diagnostic first wall on ITER

    NASA Astrophysics Data System (ADS)

    Pitts, R. A.; Bazylev, B.; Linke, J.; Landman, I.; Lehnen, M.; Loesser, D.; Loewenhoff, Th.; Merola, M.; Roccella, R.; Saibene, G.; Smith, M.; Udintsev, V. S.

    2015-08-01

    In 2010 the ITER Organization (IO) proposed to eliminate the beryllium armour on the plasma-facing surface of the diagnostic port plugs and instead to use bare stainless steel (SS), simplifying the design and providing significant cost reduction. Transport simulations at the IO confirmed that charge-exchange sputtering of the SS surfaces would not affect burning plasma operation through core impurity contamination, but a second key issue is the potential melt damage/material loss inflicted by the intense photon radiation flashes expected at the thermal quench of disruptions mitigated by massive gas injection. This paper addresses this second issue through a combination of ITER relevant experimental heat load tests and qualitative theoretical arguments of melt layer stability. It demonstrates that SS can be employed as material for the port plug plasma-facing surface and this has now been adopted into the ITER baseline.

  20. Boundary Layer Transition over Blunt Hypersonic Vehicles Including Effects of Ablation-Induced Out-Gassing

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; White, Jeffery

    2011-01-01

    Computations are performed to study the boundary layer instability mechanisms pertaining to hypersonic flow over blunt capsules. For capsules with ablative heat shields, transition may be influenced both by out-gassing associated with surface pyrolysis and the resulting modification of surface geometry including the formation of micro-roughness. To isolate the effects of out-gassing, this paper examines the stability of canonical boundary layer flows over a smooth surface in the presence of gas injection into the boundary layer. For a slender cone, the effects of out-gassing on the predominantly second mode instability are found to be stabilizing. In contrast, for a blunt capsule flow dominated by first mode instability, out-gassing is shown to be destabilizing. Analogous destabilizing effects of outgassing are also noted for both stationary and traveling modes of crossflow instability over a blunt sphere-cone configuration at angle of attack.

Top