Software Surface Modeling and Grid Generation Steering Committee
NASA Technical Reports Server (NTRS)
Smith, Robert E. (Editor)
1992-01-01
It is a NASA objective to promote improvements in the capability and efficiency of computational fluid dynamics. Grid generation, the creation of a discrete representation of the solution domain, is an essential part of computational fluid dynamics. However, grid generation about complex boundaries requires sophisticated surface-model descriptions of the boundaries. The surface modeling and the associated computation of surface grids consume an extremely large percentage of the total time required for volume grid generation. Efficient and user friendly software systems for surface modeling and grid generation are critical for computational fluid dynamics to reach its potential. The papers presented here represent the state-of-the-art in software systems for surface modeling and grid generation. Several papers describe improved techniques for grid generation.
Generating Three-Dimensional Surface Models of Solid Objects from Multiple Projections.
1982-10-01
volume descriptions. The surface models are composed of curved, topologically rectangular, parametric patches. The data required to define these patches...geometry directly from image data .__ This method generates 3D surface descriptions of only those parts of the object that are illuminated by the pro- jected...objects. Generation of such models inherently requires the acquisition and analysis of 3D surface data . In this context, acquisition refers to the
Mechanism of the free charge carrier generation in the dielectric breakdown
NASA Astrophysics Data System (ADS)
Rahim, N. A. A.; Ranom, R.; Zainuddin, H.
2017-12-01
Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.
The influence of initial and surface boundary conditions on a model-generated January climatology
NASA Technical Reports Server (NTRS)
Wu, K. F.; Spar, J.
1981-01-01
The influence on a model-generated January climate of various surface boundary conditions, as well as initial conditions, was studied by using the GISS coarse-mesh climate model. Four experiments - two with water planets, one with flat continents, and one with mountains - were used to investigate the effects of initial conditions, and the thermal and dynamical effects of the surface on the model generated-climate. However, climatological mean zonal-symmetric sea surface temperature is used in all four runs over the model oceans. Moreover, zero ground wetness and uniform ground albedo except for snow are used in the last experiments.
Surface Modeling and Grid Generation of Orbital Sciences X34 Vehicle. Phase 1
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
The surface modeling and grid generation requirements, motivations, and methods used to develop Computational Fluid Dynamic volume grids for the X34-Phase 1 are presented. The requirements set forth by the Aerothermodynamics Branch at the NASA Langley Research Center serve as the basis for the final techniques used in the construction of all volume grids, including grids for parametric studies of the X34. The Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics (ICEM/CFD), the Grid Generation code (GRIDGEN), the Three-Dimensional Multi-block Advanced Grid Generation System (3DMAGGS) code, and Volume Grid Manipulator (VGM) code are used to enable the necessary surface modeling, surface grid generation, volume grid generation, and grid alterations, respectively. All volume grids generated for the X34, as outlined in this paper, were used for CFD simulations within the Aerothermodynamics Branch.
NASA Astrophysics Data System (ADS)
Gong, K.; Fritsch, D.
2018-05-01
Nowadays, multiple-view stereo satellite imagery has become a valuable data source for digital surface model generation and 3D reconstruction. In 2016, a well-organized multiple view stereo publicly benchmark for commercial satellite imagery has been released by the John Hopkins University Applied Physics Laboratory, USA. This benchmark motivates us to explore the method that can generate accurate digital surface models from a large number of high resolution satellite images. In this paper, we propose a pipeline for processing the benchmark data to digital surface models. As a pre-procedure, we filter all the possible image pairs according to the incidence angle and capture date. With the selected image pairs, the relative bias-compensated model is applied for relative orientation. After the epipolar image pairs' generation, dense image matching and triangulation, the 3D point clouds and DSMs are acquired. The DSMs are aligned to a quasi-ground plane by the relative bias-compensated model. We apply the median filter to generate the fused point cloud and DSM. By comparing with the reference LiDAR DSM, the accuracy, the completeness and the robustness are evaluated. The results show, that the point cloud reconstructs the surface with small structures and the fused DSM generated by our pipeline is accurate and robust.
Elliptic surface grid generation on minimal and parmetrized surfaces
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.
1995-01-01
An elliptic grid generation method is presented which generates excellent boundary conforming grids in domains in 2D physical space. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system with control functions specified by the algebraic transformation. New expressions are given for the control functions. Grid orthogonality at the boundary is achieved by modification of the algebraic transformation. It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation in a domain in 2D physical space. A second elliptic grid generation method is presented which generates excellent boundary conforming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the grid only depends on the shape of the surface and is independent of the parametrization. Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method to generate a smooth surface which is passing through a given discrete set of control points. In contrast to bicubic spline interpolation, there is extra freedom to model the tangent and twist vectors such that spurious oscillations are prevented.
Generation of topographic terrain models utilizing synthetic aperture radar and surface level data
NASA Technical Reports Server (NTRS)
Imhoff, Marc L. (Inventor)
1991-01-01
Topographical terrain models are generated by digitally delineating the boundary of the region under investigation from the data obtained from an airborne synthetic aperture radar image and surface elevation data concurrently acquired either from an airborne instrument or at ground level. A set of coregistered boundary maps thus generated are then digitally combined in three dimensional space with the acquired surface elevation data by means of image processing software stored in a digital computer. The method is particularly applicable for generating terrain models of flooded regions covered entirely or in part by foliage.
Experience With Bayesian Image Based Surface Modeling
NASA Technical Reports Server (NTRS)
Stutz, John C.
2005-01-01
Bayesian surface modeling from images requires modeling both the surface and the image generation process, in order to optimize the models by comparing actual and generated images. Thus it differs greatly, both conceptually and in computational difficulty, from conventional stereo surface recovery techniques. But it offers the possibility of using any number of images, taken under quite different conditions, and by different instruments that provide independent and often complementary information, to generate a single surface model that fuses all available information. I describe an implemented system, with a brief introduction to the underlying mathematical models and the compromises made for computational efficiency. I describe successes and failures achieved on actual imagery, where we went wrong and what we did right, and how our approach could be improved. Lastly I discuss how the same approach can be extended to distinct types of instruments, to achieve true sensor fusion.
NASA Workshop on future directions in surface modeling and grid generation
NASA Technical Reports Server (NTRS)
Vandalsem, W. R.; Smith, R. E.; Choo, Y. K.; Birckelbaw, L. D.; Vogel, A. A.
1992-01-01
Given here is a summary of the paper sessions and panel discussions of the NASA Workshop on Future Directions in Surface Modeling and Grid Generation held a NASA Ames Research Center, Moffett Field, California, December 5-7, 1989. The purpose was to assess U.S. capabilities in surface modeling and grid generation and take steps to improve the focus and pace of these disciplines within NASA. The organization of the workshop centered around overviews from NASA centers and expert presentations from U.S. corporations and universities. Small discussion groups were held and summarized by group leaders. Brief overviews and a panel discussion by representatives from the DoD were held, and a NASA-only session concluded the meeting. In the NASA Program Planning Session summary there are five recommended steps for NASA to take to improve the development and application of surface modeling and grid generation.
NASA Technical Reports Server (NTRS)
Cheng, Zheming; Eiseman, Peter R.
1995-01-01
With examples, we illustrate how implicitly specified surfaces can be used for grid generation with GridPro/az3000. The particular examples address two questions: (1) How do you model intersecting tubes with fillets? and (2) How do you generate grids inside the intersected tubes? The implication is much more general. With the results in a forthcoming paper which develops an easy-to-follow procedure for implicit surface modeling, we provide a powerful means for rapid prototyping in grid generation.
Generation of High Resolution Land Surface Parameters in the Community Land Model
NASA Astrophysics Data System (ADS)
Ke, Y.; Coleman, A. M.; Wigmosta, M. S.; Leung, L.; Huang, M.; Li, H.
2010-12-01
The Community Land Model (CLM) is the land surface model used for the Community Atmosphere Model (CAM) and the Community Climate System Model (CCSM). It examines the physical, chemical, and biological processes across a variety of spatial and temporal scales. Currently, efforts are being made to improve the spatial resolution of the CLM, in part, to represent finer scale hydrologic characteristics. Current land surface parameters of CLM4.0, in particular plant functional types (PFT) and leaf area index (LAI), are generated from MODIS and calculated at a 0.05 degree resolution. These MODIS-derived land surface parameters have also been aggregated to coarser resolutions (e.g., 0.5, 1.0 degrees). To evaluate the response of CLM across various spatial scales, higher spatial resolution land surface parameters need to be generated. In this study we examine the use of Landsat TM/ETM+ imagery and data fusion techniques for generating land surface parameters at a 1km resolution within the Pacific Northwest United States. . Land cover types and PFTs are classified based on Landsat multi-season spectral information, DEM, National Land Cover Database (NLCD) and the USDA-NASS Crop Data Layer (CDL). For each PFT, relationships between MOD15A2 high quality LAI values, Landsat-based vegetation indices, climate variables, terrain, and laser-altimeter derived vegetation height are used to generate monthly LAI values at a 30m resolution. The high-resolution PFT and LAI data are aggregated to create a 1km model grid resolution. An evaluation and comparison of CLM land surface response at both fine and moderate scale is presented.
Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency
NASA Technical Reports Server (NTRS)
Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey
2011-01-01
The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours
NASA Astrophysics Data System (ADS)
Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe
2017-04-01
Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown potential in increasing process understanding for runoff generation, but high data requirements and difficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related process understanding in a headwater catchment with a rich background in empirical data. To set up the model we used minimal data that could be reasonably expected to exist for any experimental catchment. A novel aspect of our approach was in using simplified model parameterisation and including parameters from all model domains (surface, subsurface, evapotranspiration) in automated model calibration. Calibration aimed not only to improve model fit, but also to test the information content of the observations (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evapotranspiration), demonstrating that model calibration should be inclusive of parameters from these different model domains. Incorporating groundwater data in calibration objectives improved the model fit for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration time series even after calibration. Spatially explicit model output improved our understanding of how groundwater functions in maintaining streamflow generation primarily via saturation excess overland flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands, leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in its response to rainfall, acting to expand the saturated area extent and thereby promoting saturation excess overland flow during rainstorms. Our work shows the potential of using integrated surface-subsurface modelling alongside with rigorous model calibration to better understand and visualise the role of groundwater in runoff generation even with limited datasets.
Empirical measurement and model validation of infrared spectra of contaminated surfaces
NASA Astrophysics Data System (ADS)
Archer, Sean; Gartley, Michael; Kerekes, John; Cosofret, Bogdon; Giblin, Jay
2015-05-01
Liquid-contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) Model utilizes radiative transfer modeling to generate synthetic imagery. Within DIRSIG, a micro-scale surface property model (microDIRSIG) was used to calculate numerical bidirectional reflectance distribution functions (BRDF) of geometric surfaces with applied concentrations of liquid contamination. Simple cases where the liquid contamination was well described by optical constants on optically at surfaces were first analytically evaluated by ray tracing and modeled within microDIRSIG. More complex combinations of surface geometry and contaminant application were then incorporated into the micro-scale model. The computed microDIRSIG BRDF outputs were used to describe surface material properties in the encompassing DIRSIG simulation. These DIRSIG generated outputs were validated with empirical measurements obtained from a Design and Prototypes (D&P) Model 102 FTIR spectrometer. Infrared spectra from the synthetic imagery and the empirical measurements were iteratively compared to identify quantitative spectral similarity between the measured data and modeled outputs. Several spectral angles between the predicted and measured emissivities differed by less than 1 degree. Synthetic radiance spectra produced from the microDIRSIG/DIRSIG combination had a RMS error of 0.21-0.81 watts/(m2-sr-μm) when compared to the D&P measurements. Results from this comparison will facilitate improved methods for identifying spectral features and detecting liquid contamination on a variety of natural surfaces.
Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings
NASA Astrophysics Data System (ADS)
Tsai, F.; Chang, H.; Lin, Y.-W.
2017-08-01
This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.
Booth, James F; Naud, Catherine M; Willison, Jeff
2018-03-01
The representation of extratropical cyclones (ETCs) precipitation in general circulation models (GCMs) and a weather research and forecasting (WRF) model is analyzed. This work considers the link between ETC precipitation and dynamical strength and tests if parameterized convection affects this link for ETCs in the North Atlantic Basin. Lagrangian cyclone tracks of ETCs in ERA-Interim reanalysis (ERAI), the GISS and GFDL CMIP5 models, and WRF with two horizontal resolutions are utilized in a compositing analysis. The 20-km resolution WRF model generates stronger ETCs based on surface wind speed and cyclone precipitation. The GCMs and ERAI generate similar composite means and distributions for cyclone precipitation rates, but GCMs generate weaker cyclone surface winds than ERAI. The amount of cyclone precipitation generated by the convection scheme differs significantly across the datasets, with GISS generating the most, followed by ERAI and then GFDL. The models and reanalysis generate relatively more parameterized convective precipitation when the total cyclone-averaged precipitation is smaller. This is partially due to the contribution of parameterized convective precipitation occurring more often late in the ETC life cycle. For reanalysis and models, precipitation increases with both cyclone moisture and surface wind speed, and this is true if the contribution from the parameterized convection scheme is larger or not. This work shows that these different models generate similar total ETC precipitation despite large differences in the parameterized convection, and these differences do not cause unexpected behavior in ETC precipitation sensitivity to cyclone moisture or surface wind speed.
High Resolution Land Surface Modeling with the next generation Land Data Assimilation Systems
NASA Astrophysics Data System (ADS)
Kumar, S. V.; Eylander, J.; Peters-Lidard, C.
2005-12-01
Knowledge of land surface processes is important to many real-world applications such as agricultural production, water resources management, and flood predication. The Air Force Weather Agency (AFWA) has provided the USDA and other customers global soil moisture and temperature data for the past 30 years using the agrometeorological data assimilation model (now called AGRMET), merging atmospheric data. Further, accurate initialization of land surface conditions has been shown to greatly influence and improve weather forecast model and seasonal-to-interannual climate predictions. The AFWA AGRMET model exploits real time precipitation observations and analyses, global forecast model and satellite data to generate global estimates of soil moisture, soil temperature and other land surface states at 48km spatial resolution. However, to truly address the land surface initialization and climate prediction problem, and to mitigate the errors introduced by the differences in spatial scales of models, representations of land surface conditions need to be developed at the same fine scales such as that of cloud resolving models. NASA's Goddard Space Flight Center has developed an offline land data assimilation system known as the Land Information System (LIS) capable of modeling land atmosphere interactions at spatial resolutions as fine as 1km. LIS provides a software architecture that integrates the use of the state of the art land surface models, data assimilation techniques, and high performance computing and data management tools. LIS also employs many high resolution surface parameters such as the NASA Earth Observing System (EOS)-era products. In this study we describe the development of a next generation high resolution land surface modeling and data assimilation system, combining the capabilities of LIS and AGRMET. We investigate the influence of high resolution land surface data and observations on the land surface conditions by comparing with the operational AGRMET outputs.
Yang, Ming; Wu, Qiang; Chen, Zhandong; Zhang, Bin; Tang, Baiquan; Yao, Jianghong; Drevensek-Olenik, Irena; Xu, Jingjun
2014-01-15
We experimentally show that the generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon inducted by irradiation with a single laser pulse (800 nm, 120 fs, linear polarization) depend on the pulse fluence. We propose that this is due to competition between periodic surface structuring originating from the interference of incident light with surface plasmon polaritons and surface smoothing associated with surface melting. Experimental results are supported by theoretical analysis of transient surface modifications based on combining the two-temperature model and the Drude model.
Improvement of the model for surface process of tritium release from lithium oxide
NASA Astrophysics Data System (ADS)
Yamaki, Daiju; Iwamoto, Akira; Jitsukawa, Shiro
2000-12-01
Among the various tritium transport processes in lithium ceramics, the importance and the detailed mechanism of surface reactions remain to be elucidated. The dynamic adsorption and desorption model for tritium desorption from lithium ceramics, especially Li 2O was constructed. From the experimental results, it was considered that both H 2 and H 2O are dissociatively adsorbed on Li 2O and generate OH - on the surface. In the first model developed in 1994, it was assumed that either the dissociative adsorption of H 2 or H 2O on Li 2O generates two OH - on the surface. However, recent calculation results show that the generation of one OH - and one H - is more stable than that of two OH -s by the dissociative adsorption of H 2. Therefore, assumption of H 2 adsorption and desorption in the first model is improved and the tritium release behavior from Li 2O surface is evaluated again by using the improved model. The tritium residence time on the Li 2O surface is calculated using the improved model, and the results are compared with the experimental results. The calculation results using the improved model agree well with the experimental results than those using the first model.
Kaminsky, Jan; Rodt, Thomas; Gharabaghi, Alireza; Forster, Jan; Brand, Gerd; Samii, Madjid
2005-06-01
The FE-modeling of complex anatomical structures is not solved satisfyingly so far. Voxel-based as opposed to contour-based algorithms allow an automated mesh generation based on the image data. Nonetheless their geometric precision is limited. We developed an automated mesh-generator that combines the advantages of voxel-based generation with improved representation of the geometry by displacement of nodes on the object-surface. Models of an artificial 3D-pipe-section and a skullbase were generated with different mesh-densities using the newly developed geometric, unsmoothed and smoothed voxel generators. Compared to the analytic calculation of the 3D-pipe-section model the normalized RMS error of the surface stress was 0.173-0.647 for the unsmoothed voxel models, 0.111-0.616 for the smoothed voxel models with small volume error and 0.126-0.273 for the geometric models. The highest element-energy error as a criterion for the mesh quality was 2.61x10(-2) N mm, 2.46x10(-2) N mm and 1.81x10(-2) N mm for unsmoothed, smoothed and geometric voxel models, respectively. The geometric model of the 3D-skullbase resulted in the lowest element-energy error and volume error. This algorithm also allowed the best representation of anatomical details. The presented geometric mesh-generator is universally applicable and allows an automated and accurate modeling by combining the advantages of the voxel-technique and of improved surface-modeling.
Future requirements in surface modeling and grid generation
NASA Technical Reports Server (NTRS)
Cosner, Raymond R.
1995-01-01
The past ten years have seen steady progress in surface modeling procedures, and wholesale changes in grid generation technology. Today, it seems fair to state that a satisfactory grid can be developed to model nearly any configuration of interest. The issues at present focus on operational concerns such as cost and quality. Continuing evolution of the engineering process is placing new demands on the technologies of surface modeling and grid generation. In the evolution toward a multidisciplinary analysis-bascd design environment, methods developed for Computational Fluid Dynamics are finding acceptance in many additional applications. These two trends, the normal evolution of the process and a watershed shift toward concurrent and multidisciplinary analysis, will be considered in assessing current capabilities and needed technological improvements.
Geometry Laboratory (GEOLAB) surface modeling and grid generation technology and services
NASA Technical Reports Server (NTRS)
Kerr, Patricia A.; Smith, Robert E.; Posenau, Mary-Anne K.
1995-01-01
The facilities and services of the GEOmetry LABoratory (GEOLAB) at the NASA Langley Research Center are described. Included in this description are the laboratory functions, the surface modeling and grid generation technologies used in the laboratory, and examples of the tasks performed in the laboratory.
Heating of solid targets with laser pulses
NASA Technical Reports Server (NTRS)
Bechtel, J. H.
1975-01-01
Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.
Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S
2017-11-01
Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.
Triangle Geometry Processing for Surface Modeling and Cartesian Grid Generation
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J. (Inventor); Melton, John E. (Inventor); Berger, Marsha J. (Inventor)
2002-01-01
Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.
Triangle geometry processing for surface modeling and cartesian grid generation
Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY
2002-09-03
Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.
Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.
Zachariah, S G; Sanders, J E; Turkiyyah, G M
1996-06-01
A general method to generate hexahedral meshes for finite element analysis of residual limbs and similar biomedical geometries is presented. The method utilizes skeleton-based subdivision of cross-sectional domains to produce simple subdomains in which structured meshes are easily generated. Application to a below-knee residual limb and external prosthetic socket is described. The residual limb was modeled as consisting of bones, soft tissue, and skin. The prosthetic socket model comprised a socket wall with an inner liner. The geometries of these structures were defined using axial cross-sectional contour data from X-ray computed tomography, optical scanning, and mechanical surface digitization. A tubular surface representation, using B-splines to define the directrix and generator, is shown to be convenient for definition of the structure geometries. Conversion of cross-sectional data to the compact tubular surface representation is direct, and the analytical representation simplifies geometric querying and numerical optimization within the mesh generation algorithms. The element meshes remain geometrically accurate since boundary nodes are constrained to lie on the tubular surfaces. Several element meshes of increasing mesh density were generated for two residual limbs and prosthetic sockets. Convergence testing demonstrated that approximately 19 elements are required along a circumference of the residual limb surface for a simple linear elastic model. A model with the fibula absent compared with the same geometry with the fibula present showed differences suggesting higher distal stresses in the absence of the fibula. Automated hexahedral mesh generation algorithms for sliced data represent an advancement in prosthetic stress analysis since they allow rapid modeling of any given residual limb and optimization of mesh parameters.
Geometry modeling and grid generation using 3D NURBS control volume
NASA Technical Reports Server (NTRS)
Yu, Tzu-Yi; Soni, Bharat K.; Shih, Ming-Hsin
1995-01-01
The algorithms for volume grid generation using NURBS geometric representation are presented. The parameterization algorithm is enhanced to yield a desired physical distribution on the curve, surface and volume. This approach bridges the gap between CAD surface/volume definition and surface/volume grid generation. Computational examples associated with practical configurations have shown the utilization of these algorithms.
NASA Astrophysics Data System (ADS)
Fitts, Jeffrey P.; Machesky, Michael L.; Wesolowski, David J.; Shang, Xiaoming; Kubicki, James D.; Flynn, George W.; Heinz, Tony F.; Eisenthal, Kenneth B.
2005-08-01
The pH of zero net surface charge (pH pzc) of the α-TiO 2 (1 1 0) surface was characterized using second-harmonic generation (SHG) spectroscopy. The SHG response was monitored during a series of pH titrations conducted at three NaNO 3 concentrations. The measured pH pzc is compared with a pH pzc value calculated using the revised MUltiSIte Complexation (MUSIC) model of surface oxygen protonation. MUSIC model input parameters were independently derived from ab initio calculations of relaxed surface bond lengths for a hydrated surface. Model (pH pzc 4.76) and experiment (pH pzc 4.8 ± 0.3) agreement establishes the incorporation of independently derived structural parameters into predictive models of oxide surface reactivity.
Summary on several key techniques in 3D geological modeling.
Mei, Gang
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.
NASA Astrophysics Data System (ADS)
Zhang, J.; Chen, Z.; Cheng, C.; Wang, Y. X.
2017-10-01
A phase field crystal (PFC) model is employed to study morphology evolution of nanoheteroepitaxy and misfit dislocation generation when applied with enhanced supercooling, lattice mismatch and substrate vicinal angle conditions. Misfit strain that rises due to lattice mismatch causes rough surfaces or misfit dislocations, deteriorates film properties, hence, efforts taken to reveal their microscopic mechanism are significant for film quality improvement. Uniform islands, instead of misfit dislocations, are developed in subcritical thickness film, serving as a way of strain relief by surface mechanism. Misfit dislocations generate when strain relief by surface mechanism is deficient in higher supercooling, multilayers of misfit dislocations dominate, but the number of layers reduces gradually when the supercooling is further enhanced. Rough surfaces like islands or cuspate pits are developed which is ascribed to lattice mismatch, multilayers of misfit dislocations generate to further enhance lattice mismatch. Layers of misfit dislocations generate at a thickening position at enhanced substrate vicinal angle, this further enhancing the angle leading to sporadic generation of misfit dislocations.
Assessment of MERRA-2 Land Surface Energy Flux Estimates
NASA Technical Reports Server (NTRS)
Draper, Clara; Reichle, Rolf; Koster, Randal
2017-01-01
In MERRA-2, observed precipitation is inserted in place of model-generated precipitation at the land surface. The use of observed precipitation was originally developed for MERRA-Land(a land-only replay of MERRA with model-generated precipitation replaced with observations).Previously shown that the land hydrology in MERRA-2 and MERRA-Land is better than MERRA. We test whether the improved land surface hydrology in MERRA-2 leads to the expected improvements in the land surface energy fluxes and 2 m air temperatures (T2m).
Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions
NASA Technical Reports Server (NTRS)
Choo, Yung K. (Compiler)
1995-01-01
The NASA Steering Committee for Surface Modeling and Grid Generation (SMAGG) sponsored a workshop on surface modeling, grid generation, and related issues in Computational Fluid Dynamics (CFD) solutions at Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. The workshop provided a forum to identify industry needs, strengths, and weaknesses of the five grid technologies (patched structured, overset structured, Cartesian, unstructured, and hybrid), and to exchange thoughts about where each technology will be in 2 to 5 years. The workshop also provided opportunities for engineers and scientists to present new methods, approaches, and applications in SMAGG for CFD. This Conference Publication (CP) consists of papers on industry overview, NASA overview, five grid technologies, new methods/ approaches/applications, and software systems.
NASA Astrophysics Data System (ADS)
Andreadis, K.; Margulis, S. A.; Li, D.; Lettenmaier, D. P.
2017-12-01
The Surface Water and Ocean Topography (SWOT) satellite will provide critical surface water observations for the hydrologic community. However, production of key SWOT variables, such as river discharge and surface inundation, as well as lake, reservoir, and wetland storage change will be complicated by the discontinuity of the observations in space and time. A methodology that generates products with spatially and temporally continuous fields based on SWOT observables would be highly desirable. Data assimilation provides a mechanism for merging observations from SWOT with model predictions in order to produce estimates of quantities such as river discharge, storage change, and water heights for locations and times when there is no satellite overpass or other constraints (such as layover) render the measurement unusable. We describe here a prototype assimilation system with application to the Upper Mississippi basin, implemented using synthetic SWOT observations. We use a hydrologic model (VIC) coupled with a hydrodynamic model (LISFLOOD-FP) which generates "true" fields of surface water variables. The true fields are then used to generate synthetic SWOT observations using the SWOT Instrument Simulator. We also perform a "first-guess" (or open-loop) simulation with the coupled model using a configuration that contains errors representative of the imperfect knowledge of parameters and input data, including channel topography, bankfull widths and depths, and inflows, to create an ensemble of 20 model trajectories. Subsequently we assimilate the synthetic SWOT observations into the open-loop model results to estimate water surface elevation, discharge, and storage change. Our preliminary results using three data assimilation strategies show that all improve the water surface elevation estimate accuracy by 25% - 35% for a river reach of the upper Mississippi River. Ongoing work is examining whether the improved water surface elevation estimates propagate to improvements in river discharge.
Summary on Several Key Techniques in 3D Geological Modeling
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029
Advanced surface design for logistics analysis
NASA Astrophysics Data System (ADS)
Brown, Tim R.; Hansen, Scott D.
The development of anthropometric arm/hand and tool models and their manipulation in a large system model for maintenance simulation are discussed. The use of Advanced Surface Design and s-fig technology in anthropometrics, and three-dimensional graphics simulation tools, are found to achieve a good balance between model manipulation speed and model accuracy. The present second generation models are shown to be twice as fast to manipulate as the first generation b-surf models, to be easier to manipulate into various configurations, and to more closely approximate human contours.
Auto-recognition of surfaces and auto-generation of material removal volume for finishing process
NASA Astrophysics Data System (ADS)
Kataraki, Pramod S.; Salman Abu Mansor, Mohd
2018-03-01
Auto-recognition of a surface and auto-generation of material removal volumes for the so recognised surfaces has become a need to achieve successful downstream manufacturing activities like automated process planning and scheduling. Few researchers have contributed to generation of material removal volume for a product but resulted in material removal volume discontinuity between two adjacent material removal volumes generated from two adjacent faces that form convex geometry. The need for limitation free material removal volume generation was attempted and an algorithm that automatically recognises computer aided design (CAD) model’s surface and also auto-generate material removal volume for finishing process of the recognised surfaces was developed. The surfaces of CAD model are successfully recognised by the developed algorithm and required material removal volume is obtained. The material removal volume discontinuity limitation that occurred in fewer studies is eliminated.
Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency
NASA Technical Reports Server (NTRS)
Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey
2012-01-01
The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.
Workshop on Grid Generation and Related Areas
NASA Technical Reports Server (NTRS)
1992-01-01
A collection of papers given at the Workshop on Grid Generation and Related Areas is presented. The purpose of this workshop was to assemble engineers and scientists who are currently working on grid generation for computational fluid dynamics (CFD), surface modeling, and related areas. The objectives were to provide an informal forum on grid generation and related topics, to assess user experience, to identify needs, and to help promote synergy among engineers and scientists working in this area. The workshop consisted of four sessions representative of grid generation and surface modeling research and application within NASA LeRC. Each session contained presentations and an open discussion period.
NASA Technical Reports Server (NTRS)
Downward, James G.
1992-01-01
This document represents the final report for the View Generated Database (VGD) project, NAS7-1066. It documents the work done on the project up to the point at which all project work was terminated due to lack of project funds. The VGD was to provide the capability to accurately represent any real-world object or scene as a computer model. Such models include both an accurate spatial/geometric representation of surfaces of the object or scene, as well as any surface detail present on the object. Applications of such models are numerous, including acquisition and maintenance of work models for tele-autonomous systems, generation of accurate 3-D geometric/photometric models for various 3-D vision systems, and graphical models for realistic rendering of 3-D scenes via computer graphics.
Photopolarimetry of scattering surfaces and their interpretation by computer model
NASA Technical Reports Server (NTRS)
Wolff, M.
1979-01-01
Wolff's computer model of a rough planetary surface was simplified and revised. Close adherence to the actual geometry of a pitted surface and the inclusion of a function for diffuse light resulted in a quantitative model comparable to observations by planetary satellites and asteroids. A function is also derived to describe diffuse light emitted from a particulate surface. The function is in terms of the indices of refraction of the surface material, particle size, and viewing angles. Computer-generated plots describe the observable and theoretical light components for the Moon, Mercury, Mars and a spectrum of asteroids. Other plots describe the effects of changing surface material properties. Mathematical results are generated to relate the parameters of the negative polarization branch to the properties of surface pitting. An explanation is offered for the polarization of the rings of Saturn, and the average diameter of ring objects is found to be 30 to 40 centimeters.
Spontaneous Wave Generation from Submesoscale Fronts and Filaments
NASA Astrophysics Data System (ADS)
Shakespeare, C. J.; Hogg, A.
2016-02-01
Submesoscale features such as eddies, fronts, jets and filaments can be significant sources of spontaneous wave generation at the ocean surface. Unlike near-inertial waves forced by winds, these spontaneous waves are typically of higher frequency and can propagate through the thermocline, whereupon they break and drive mixing in the ocean interior. Here we investigate the spontaneous generation, propagation and subsequent breaking of these waves using a combination of theory and submesoscale resolving numerical models. The mechanism of generation is nearly identical to that of lee waves where flow is deflected over a rigid obstacle on the sea floor. Here, very sharp fronts and filaments of order 100m width moving in the submesoscale surface flow generate "surface lee waves" by presenting an obstacle to the surrounding stratified fluid. Using our numerical model we quantify the net downward wave energy flux from the surface, and where it is dissipated in the water column. Our results suggest an alternative to the classical paradigm where the energy associated with mixing in the ocean interior is sourced from bottom-generated lee waves.
Scale/Analytical Analyses of Freezing and Convective Melting with Internal Heat Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali S. Siahpush; John Crepeau; Piyush Sabharwall
2013-07-01
Using a scale/analytical analysis approach, we model phase change (melting) for pure materials which generate constant internal heat generation for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. The analysis also consider constant heat flux (in a cylindrical geometry).We show the time scales in which conduction and convection heat transfer dominate.
Geologic and climatic controls on streamflow generation processes in a complex eogenetic karst basin
NASA Astrophysics Data System (ADS)
Vibhava, F.; Graham, W. D.; Maxwell, R. M.
2012-12-01
Streamflow at any given location and time is representative of surface and subsurface contributions from various sources. The ability to fully identify the factors controlling these contributions is key to successfully understanding the transport of contaminants through the system. In this study we developed a fully integrated 3D surface water-groundwater-land surface model, PARFLOW, to evaluate geologic and climatic controls on streamflow generation processes in a complex eogenetic karst basin in North Central Florida. In addition to traditional model evaluation criterion, such as comparing field observations to model simulated streamflow and groundwater elevations, we quantitatively evaluated the model's predictions of surface-groundwater interactions over space and time using a suite of binary end-member mixing models that were developed using observed specific conductivity differences among surface and groundwater sources throughout the domain. Analysis of model predictions showed that geologic heterogeneity exerts a strong control on both streamflow generation processes and land atmospheric fluxes in this watershed. In the upper basin, where the karst aquifer is overlain by a thick confining layer, approximately 92% of streamflow is "young" event flow, produced by near stream rainfall. Throughout the upper basin the confining layer produces a persistent high surficial water table which results in high evapotranspiration, low groundwater recharge and thus negligible "inter-event" streamflow. In the lower basin, where the karst aquifer is unconfined, deeper water tables result in less evapotranspiration. Thus, over 80% of the streamflow is "old" subsurface flow produced by diffuse infiltration through the epikarst throughout the lower basin, and all surface contributions to streamflow originate in the upper confined basin. Climatic variability provides a secondary control on surface-subsurface and land-atmosphere fluxes, producing significant seasonal and interannual variability in these processes. Spatial and temporal patterns of evapotranspiration, groundwater recharge and streamflow generation processes reveal potential hot spots and hot moments for surface and groundwater contamination in this basin.
Box truss analysis and technology development. Task 1: Mesh analysis and control
NASA Technical Reports Server (NTRS)
Bachtell, E. E.; Bettadapur, S. S.; Coyner, J. V.
1985-01-01
An analytical tool was developed to model, analyze and predict RF performance of box truss antennas with reflective mesh surfaces. The analysis system is unique in that it integrates custom written programs for cord tied mesh surfaces, thereby drastically reducing the cost of analysis. The analysis system is capable of determining the RF performance of antennas under any type of manufacturing or operating environment by integrating together the various disciplines of design, finite element analysis, surface best fit analysis and RF analysis. The Integrated Mesh Analysis System consists of six separate programs: The Mesh Tie System Model Generator, The Loadcase Generator, The Model Optimizer, The Model Solver, The Surface Topography Solver and The RF Performance Solver. Additionally, a study using the mesh analysis system was performed to determine the effect of on orbit calibration, i.e., surface adjustment, on a typical box truss antenna.
Geometric Model for a Parametric Study of the Blended-Wing-Body Airplane
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne; Smith, Robert E.; Sadrehaghighi, Ideen; Wiese, Micharl R.
1996-01-01
A parametric model is presented for the blended-wing-body airplane, one concept being proposed for the next generation of large subsonic transports. The model is defined in terms of a small set of parameters which facilitates analysis and optimization during the conceptual design process. The model is generated from a preliminary CAD geometry. From this geometry, airfoil cross sections are cut at selected locations and fitted with analytic curves. The airfoils are then used as boundaries for surfaces defined as the solution of partial differential equations. Both the airfoil curves and the surfaces are generated with free parameters selected to give a good representation of the original geometry. The original surface is compared with the parametric model, and solutions of the Euler equations for compressible flow are computed for both geometries. The parametric model is a good approximation of the CAD model and the computed solutions are qualitatively similar. An optimal NURBS approximation is constructed and can be used by a CAD model for further refinement or modification of the original geometry.
Brain segmentation and the generation of cortical surfaces
NASA Technical Reports Server (NTRS)
Joshi, M.; Cui, J.; Doolittle, K.; Joshi, S.; Van Essen, D.; Wang, L.; Miller, M. I.
1999-01-01
This paper describes methods for white matter segmentation in brain images and the generation of cortical surfaces from the segmentations. We have developed a system that allows a user to start with a brain volume, obtained by modalities such as MRI or cryosection, and constructs a complete digital representation of the cortical surface. The methodology consists of three basic components: local parametric modeling and Bayesian segmentation; surface generation and local quadratic coordinate fitting; and surface editing. Segmentations are computed by parametrically fitting known density functions to the histogram of the image using the expectation maximization algorithm [DLR77]. The parametric fits are obtained locally rather than globally over the whole volume to overcome local variations in gray levels. To represent the boundary of the gray and white matter we use triangulated meshes generated using isosurface generation algorithms [GH95]. A complete system of local parametric quadratic charts [JWM+95] is superimposed on the triangulated graph to facilitate smoothing and geodesic curve tracking. Algorithms for surface editing include extraction of the largest closed surface. Results for several macaque brains are presented comparing automated and hand surface generation. Copyright 1999 Academic Press.
Probabilistic #D data fusion for multiresolution surface generation
NASA Technical Reports Server (NTRS)
Manduchi, R.; Johnson, A. E.
2002-01-01
In this paper we present an algorithm for adaptive resolution integration of 3D data collected from multiple distributed sensors. The input to the algorithm is a set of 3D surface points and associated sensor models. Using a probabilistic rule, a surface probability function is generated that represents the probability that a particular volume of space contains the surface. The surface probability function is represented using an octree data structure; regions of space with samples of large conariance are stored at a coarser level than regions of space containing samples with smaller covariance. The algorithm outputs an adaptive resolution surface generated by connecting points that lie on the ridge of surface probability with triangles scaled to match the local discretization of space given by the algorithm, we present results from 3D data generated by scanning lidar and structure from motion.
Generation of wavy structure on lipid membrane by peripheral proteins: a linear elastic analysis.
Mahata, Paritosh; Das, Sovan Lal
2017-05-01
We carry out a linear elastic analysis to study wavy structure generation on lipid membrane by peripheral membrane proteins. We model the lipid membrane as linearly elastic and anisotropic material. The hydrophobic insertion by proteins into the lipid membrane has been idealized as penetration of rigid rod-like inclusions into the membrane and the electrostatic interaction between protein and membrane has been modeled by a distributed surface traction acting on the membrane surface. With the proposed model we study curvature generation by several binding domains of peripheral membrane proteins containing BAR domains and amphipathic alpha-helices. It is observed that electrostatic interaction is essential for curvature generation by the BAR domains. © 2017 Federation of European Biochemical Societies.
NASA Astrophysics Data System (ADS)
Appels, Willemijn M.; Bogaart, Patrick W.; van der Zee, Sjoerd E. A. T. M.
2017-12-01
In winter, saturation excess (SE) ponding is observed regularly in temperate lowland regions. Surface runoff dynamics are controlled by small topographical features that are unaccounted for in hydrological models. To better understand storage and routing effects of small-scale topography and their interaction with shallow groundwater under SE conditions, we developed a model of reduced complexity to investigate SE runoff generation, emphasizing feedbacks between shallow groundwater dynamics and mesotopography. The dynamic specific yield affected unsaturated zone water storage, causing rapid switches between negative and positive head and a flatter groundwater mound than predicted by analytical agrohydrological models. Accordingly, saturated areas were larger and local groundwater fluxes smaller than predicted, leading to surface runoff generation. Mesotopographic features routed water over larger distances, providing a feedback mechanism that amplified changes to the shape of the groundwater mound. This in turn enhanced runoff generation, but whether it also resulted in runoff events depended on the geometry and location of the depressions. Whereas conditions favorable to runoff generation may abound during winter, these feedbacks profoundly reduce the predictability of SE runoff: statistically identical rainfall series may result in completely different runoff generation. The model results indicate that waterlogged areas in any given rainfall event are larger than those predicted by current analytical groundwater models used for drainage design. This change in the groundwater mound extent has implications for crop growth and damage assessments.
Modeling Images of Natural 3D Surfaces: Overview and Potential Applications
NASA Technical Reports Server (NTRS)
Jalobeanu, Andre; Kuehnel, Frank; Stutz, John
2004-01-01
Generative models of natural images have long been used in computer vision. However, since they only describe the of 2D scenes, they fail to capture all the properties of the underlying 3D world. Even though such models are sufficient for many vision tasks a 3D scene model is when it comes to inferring a 3D object or its characteristics. In this paper, we present such a generative model, incorporating both a multiscale surface prior model for surface geometry and reflectance, and an image formation process model based on realistic rendering, the computation of the posterior model parameter densities, and on the critical aspects of the rendering. We also how to efficiently invert the model within a Bayesian framework. We present a few potential applications, such as asteroid modeling and Planetary topography recovery, illustrated by promising results on real images.
NASA Astrophysics Data System (ADS)
Belkin, Maxim; Snezhko, Alexey; Aranson, Igor
2007-03-01
Nontrivially ordered dynamic self-assembled snake-like structures are formed in an ensemble of magnetic microparticles suspended over a fluid surface and energized by an external alternating magnetic field. Formation and existence of such structures is always accompanied by flows which form vortices. These large-scale vortices can be very fast and are crucial for snake formation/destruction. We introduce theoretical model based on Ginzburg-Landau equation for parametrically excited surface waves coupled to conservation law for particle density and Navier-Stokes equation for water flows. The developed model successfully describes snake generation, accounts for flows and reproduces most experimental results observed.
Modelling of upper ocean mixing by wave-induced turbulence
NASA Astrophysics Data System (ADS)
Ghantous, Malek; Babanin, Alexander
2013-04-01
Mixing of the upper ocean affects the sea surface temperature by bringing deeper, colder water to the surface. Because even small changes in the surface temperature can have a large impact on weather and climate, accurately determining the rate of mixing is of central importance for forecasting. Although there are several mixing mechanisms, one that has until recently been overlooked is the effect of turbulence generated by non-breaking, wind-generated surface waves. Lately there has been a lot of interest in introducing this mechanism into models, and real gains have been made in terms of increased fidelity to observational data. However our knowledge of the mechanism is still incomplete. We indicate areas where we believe the existing models need refinement and propose an alternative model. We use two of the models to demonstrate the effect on the mixed layer of wave-induced turbulence by applying them to a one-dimensional mixing model and a stable temperature profile. Our modelling experiment suggests a strong effect on sea surface temperature due to non-breaking wave-induced turbulent mixing.
Extension of Murray's law using a non-Newtonian model of blood flow.
Revellin, Rémi; Rousset, François; Baud, David; Bonjour, Jocelyn
2009-05-15
So far, none of the existing methods on Murray's law deal with the non-Newtonian behavior of blood flow although the non-Newtonian approach for blood flow modelling looks more accurate. MODELING: In the present paper, Murray's law which is applicable to an arterial bifurcation, is generalized to a non-Newtonian blood flow model (power-law model). When the vessel size reaches the capillary limitation, blood can be modeled using a non-Newtonian constitutive equation. It is assumed two different constraints in addition to the pumping power: the volume constraint or the surface constraint (related to the internal surface of the vessel). For a seek of generality, the relationships are given for an arbitrary number of daughter vessels. It is shown that for a cost function including the volume constraint, classical Murray's law remains valid (i.e. SigmaR(c) = cste with c = 3 is verified and is independent of n, the dimensionless index in the viscosity equation; R being the radius of the vessel). On the contrary, for a cost function including the surface constraint, different values of c may be calculated depending on the value of n. We find that c varies for blood from 2.42 to 3 depending on the constraint and the fluid properties. For the Newtonian model, the surface constraint leads to c = 2.5. The cost function (based on the surface constraint) can be related to entropy generation, by dividing it by the temperature. It is demonstrated that the entropy generated in all the daughter vessels is greater than the entropy generated in the parent vessel. Furthermore, it is shown that the difference of entropy generation between the parent and daughter vessels is smaller for a non-Newtonian fluid than for a Newtonian fluid.
A kinetic model for stress generation in thin films grown from energetic vapor fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chason, E.; Karlson, M.; Colin, J. J.
We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on themore » grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.« less
NASA Astrophysics Data System (ADS)
Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.
2017-12-01
Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.
FacetModeller: Software for manual creation, manipulation and analysis of 3D surface-based models
NASA Astrophysics Data System (ADS)
Lelièvre, Peter G.; Carter-McAuslan, Angela E.; Dunham, Michael W.; Jones, Drew J.; Nalepa, Mariella; Squires, Chelsea L.; Tycholiz, Cassandra J.; Vallée, Marc A.; Farquharson, Colin G.
2018-01-01
The creation of 3D models is commonplace in many disciplines. Models are often built from a collection of tessellated surfaces. To apply numerical methods to such models it is often necessary to generate a mesh of space-filling elements that conforms to the model surfaces. While there are meshing algorithms that can do so, they place restrictive requirements on the surface-based models that are rarely met by existing 3D model building software. Hence, we have developed a Java application named FacetModeller, designed for efficient manual creation, modification and analysis of 3D surface-based models destined for use in numerical modelling.
A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miesch, Mark S.; Dikpati, Mausumi, E-mail: miesch@ucar.edu
We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude)more » and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans.« less
NASA Astrophysics Data System (ADS)
Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa
2016-10-01
The highly dynamic processes within a hillslope-riparian-stream (HRS) continuum are known to affect streamflow generation, but are yet not fully understood. Within this study, we simulated a headwater HRS continuum in western Luxembourg with an integrated hydrologic surface subsurface model (HydroGeoSphere). The model was setup with thorough consideration of catchment-specific attributes and we performed a multicriteria model evaluation (4 years) with special focus on the temporally varying spatial patterns of surface saturation. We used a portable thermal infrared (TIR) camera to map surface saturation with a high spatial resolution and collected 20 panoramic snapshots of the riparian zone (approx. 10 m × 20 m) under different hydrologic conditions. Qualitative and quantitative comparison of the processed TIR panoramas and the corresponding model output panoramas revealed a good agreement between spatiotemporal dynamic model and field surface saturation patterns. A double logarithmic linear relationship between surface saturation extent and discharge was similar for modeled and observed data. This provided confidence in the capability of an integrated hydrologic surface subsurface model to represent temporal and spatial water flux dynamics at small (HRS continuum) scales. However, model scenarios with different parameterizations of the riparian zone showed that discharge and surface saturation were controlled by different parameters and hardly influenced each other. Surface saturation only affected very fast runoff responses with a small volumetric contribution to stream discharge, indicating that the dynamic surface saturation in the riparian zone does not necessarily imply a major control on runoff generation.
Workshop on Aircraft Surface Representation for Aerodynamic Computation
NASA Technical Reports Server (NTRS)
Gregory, T. J. (Editor); Ashbaugh, J. (Editor)
1980-01-01
Papers and discussions on surface representation and its integration with aerodynamics, computers, graphics, wind tunnel model fabrication, and flow field grid generation are presented. Surface definition is emphasized.
Numerical Simulation of Bow Waves and Transom-Stern Flows
NASA Astrophysics Data System (ADS)
Dommermuth, Douglas G.; Schlageter, Eric A.; Talcott, John C.; Wyatt, Donald C.; Novikov, Evgeny A.
1997-11-01
A stratified-flow formulation is used to model the breaking bow wave and the separated transom-stern flow that are generated by a ship moving with forward speed. The interface of the air with the water is identified as the zero level-set of a three-dimensional function. The ship is modeled using a body-force technique on a cartesian grid. The three-dimensional body-force is generated using a surface panelization of the entire ship, including the above-water geometry up to and including the deck. The effects of surface tension are modeled as a source term that is concentrated at the air-water interface. The effects of gravity are modeled as a volumetric force. The three-dimensional, unsteady, Navier-Stokes equations are expressed in primitive-variable form. A LES formulation with a Smagorinsky sub-grid-scale model is used to model turbulence. Numerical convergence is demonstrated using 128x64x65, 256x128x129, and 512x256x257 grid points. The numerical results compare well to whisker-probe measurements of the free-surface elevation generated by a naval combatant.
A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect
NASA Astrophysics Data System (ADS)
Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai
2016-06-01
In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.
GIS data models for coal geology
DOE Office of Scientific and Technical Information (OSTI.GOV)
McColloch, G.H. Jr.; Timberlake, K.J.; Oldham, A.V.
A variety of spatial data models can be applied to different aspects of coal geology. The simple vector data models found in various Computer Aided Drafting (CAD) programs are sometimes used for routine mapping and some simple analyses. However, more sophisticated applications that maintain the topological relationships between cartographic elements enhance analytical potential. Also, vector data models are best for producing various types of high quality, conventional maps. The raster data model is generally considered best for representing data that varies continuously over a geographic area, such as the thickness of a coal bed. Information is lost when contour linesmore » are threaded through raster grids for display, so volumes and tonnages are more accurately determined by working directly with raster data. Raster models are especially well suited to computationally simple surface-to-surface analysis, or overlay functions. Another data model, triangulated irregular networks (TINs) are superior at portraying visible surfaces because many TIN programs support break fines. Break lines locate sharp breaks in slope such as those generated by bodies of water or ridge crests. TINs also {open_quotes}honor{close_quotes} data points so that a surface generated from a set of points will be forced to pass through those points. TINs or grids generated from TINs, are particularly good at determining the intersections of surfaces such as coal seam outcrops and geologic unit boundaries. No single technique works best for all coal-related applications. The ability to use a variety of data models, and transform from one model to another is essential for obtaining optimum results in a timely manner.« less
NASA Astrophysics Data System (ADS)
Zhiying, Chen; Ping, Zhou
2017-11-01
Considering the robust optimization computational precision and efficiency for complex mechanical assembly relationship like turbine blade-tip radial running clearance, a hierarchically response surface robust optimization algorithm is proposed. The distribute collaborative response surface method is used to generate assembly system level approximation model of overall parameters and blade-tip clearance, and then a set samples of design parameters and objective response mean and/or standard deviation is generated by using system approximation model and design of experiment method. Finally, a new response surface approximation model is constructed by using those samples, and this approximation model is used for robust optimization process. The analyses results demonstrate the proposed method can dramatic reduce the computational cost and ensure the computational precision. The presented research offers an effective way for the robust optimization design of turbine blade-tip radial running clearance.
Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter
NASA Technical Reports Server (NTRS)
Belknap, Shannon; Zhang, Michael
2013-01-01
The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.
NASA Astrophysics Data System (ADS)
He, Xiao Dong
This thesis studies light scattering processes off rough surfaces. Analytic models for reflection, transmission and subsurface scattering of light are developed. The results are applicable to realistic image generation in computer graphics. The investigation focuses on the basic issue of how light is scattered locally by general surfaces which are neither diffuse nor specular; Physical optics is employed to account for diffraction and interference which play a crucial role in the scattering of light for most surfaces. The thesis presents: (1) A new reflectance model; (2) A new transmittance model; (3) A new subsurface scattering model. All of these models are physically-based, depend on only physical parameters, apply to a wide range of materials and surface finishes and more importantly, provide a smooth transition from diffuse-like to specular reflection as the wavelength and incidence angle are increased or the surface roughness is decreased. The reflectance and transmittance models are based on the Kirchhoff Theory and the subsurface scattering model is based on Energy Transport Theory. They are valid only for surfaces with shallow slopes. The thesis shows that predicted reflectance distributions given by the reflectance model compare favorably with experiment. The thesis also investigates and implements fast ways of computing the reflectance and transmittance models. Furthermore, the thesis demonstrates that a high level of realistic image generation can be achieved due to the physically -correct treatment of the scattering processes by the reflectance model.
Docherty, Paul D; Schranz, Christoph; Chase, J Geoffrey; Chiew, Yeong Shiong; Möller, Knut
2014-05-01
Accurate model parameter identification relies on accurate forward model simulations to guide convergence. However, some forward simulation methodologies lack the precision required to properly define the local objective surface and can cause failed parameter identification. The role of objective surface smoothness in identification of a pulmonary mechanics model was assessed using forward simulation from a novel error-stepping method and a proprietary Runge-Kutta method. The objective surfaces were compared via the identified parameter discrepancy generated in a Monte Carlo simulation and the local smoothness of the objective surfaces they generate. The error-stepping method generated significantly smoother error surfaces in each of the cases tested (p<0.0001) and more accurate model parameter estimates than the Runge-Kutta method in three of the four cases tested (p<0.0001) despite a 75% reduction in computational cost. Of note, parameter discrepancy in most cases was limited to a particular oblique plane, indicating a non-intuitive multi-parameter trade-off was occurring. The error-stepping method consistently improved or equalled the outcomes of the Runge-Kutta time-integration method for forward simulations of the pulmonary mechanics model. This study indicates that accurate parameter identification relies on accurate definition of the local objective function, and that parameter trade-off can occur on oblique planes resulting prematurely halted parameter convergence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Verhoeven, G. J.
2017-08-01
Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.
Development of the Navy’s Next-Generation Nonhydrostatic Modeling System
2013-09-30
e.g. surface roughness, land- sea mask, surface albedo ) are needed by physical parameterizations. The surface values will be read and interpolated...characteristics (e.g. albedo , surface roughness) is now available to the model during the initialization stage. We have added infrastructure to the...six faces (Fig 3). 4 Figure 3: Topography (top left, in meters), surface roughness (top right, in meters), albedo (bottom left, no units
NASA Astrophysics Data System (ADS)
Kenda, Balthasar; Lognonné, Philippe; Spiga, Aymeric; Kawamura, Taichi; Kedar, Sharon; Banerdt, William Bruce; Lorenz, Ralph; Banfield, Don; Golombek, Matthew
2017-10-01
We investigated the possible seismic signatures of dust devils on Mars, both at long and short period, based on the analysis of Earth data and on forward modeling for Mars. Seismic and meteorological data collected in the Mojave Desert, California, recorded the signals generated by dust devils. In the 10-100 s band, the quasi-static surface deformation triggered by pressure fluctuations resulted in detectable ground-tilt effects: these are in good agreement with our modeling based on Sorrells' theory. In addition, high-frequency records also exhibit a significant excitation in correspondence to dust devil episodes. Besides wind noise, this signal includes shallow surface waves due to the atmosphere-surface coupling and is used for a preliminary inversion of the near-surface S-wave profile down to 50 m depth. In the case of Mars, we modeled the long-period signals generated by the pressure field resulting from turbulence-resolving Large-Eddy Simulations. For typical dust-devil-like vortices with pressure drops of a couple Pascals, the corresponding horizontal acceleration is of a few nm/s2 for rocky subsurface models and reaches 10-20 nm/s2 for weak regolith models. In both cases, this signal can be detected by the Very-Broad Band seismometers of the InSight/SEIS experiment up to a distance of a few hundred meters from the vortex, the amplitude of the signal decreasing as the inverse of the distance. Atmospheric vortices are thus expected to be detected at the InSight landing site; the analysis of their seismic and atmospheric signals could lead to additional constraints on the near-surface structure, more precisely on the ground compliance and possibly on the seismic velocities.
Dean, J A; Welsh, L C; Wong, K H; Aleksic, A; Dunne, E; Islam, M R; Patel, A; Patel, P; Petkar, I; Phillips, I; Sham, J; Schick, U; Newbold, K L; Bhide, S A; Harrington, K J; Nutting, C M; Gulliford, S L
2017-04-01
A normal tissue complication probability (NTCP) model of severe acute mucositis would be highly useful to guide clinical decision making and inform radiotherapy planning. We aimed to improve upon our previous model by using a novel oral mucosal surface organ at risk (OAR) in place of an oral cavity OAR. Predictive models of severe acute mucositis were generated using radiotherapy dose to the oral cavity OAR or mucosal surface OAR and clinical data. Penalised logistic regression and random forest classification (RFC) models were generated for both OARs and compared. Internal validation was carried out with 100-iteration stratified shuffle split cross-validation, using multiple metrics to assess different aspects of model performance. Associations between treatment covariates and severe mucositis were explored using RFC feature importance. Penalised logistic regression and RFC models using the oral cavity OAR performed at least as well as the models using mucosal surface OAR. Associations between dose metrics and severe mucositis were similar between the mucosal surface and oral cavity models. The volumes of oral cavity or mucosal surface receiving intermediate and high doses were most strongly associated with severe mucositis. The simpler oral cavity OAR should be preferred over the mucosal surface OAR for NTCP modelling of severe mucositis. We recommend minimising the volume of mucosa receiving intermediate and high doses, where possible. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces
Wang, Chenglong; Xu, Fei; Hsu, Ming-Chen; Krishnamurthy, Adarsh
2017-01-01
Computational fluid dynamics (CFD) simulations of flow over complex objects have been performed traditionally using fluid-domain meshes that conform to the shape of the object. However, creating shape conforming meshes for complicated geometries like automobiles require extensive geometry preprocessing. This process is usually tedious and requires modifying the geometry, including specialized operations such as defeaturing and filling of small gaps. Hsu et al. (2016) developed a novel immersogeometric fluid-flow method that does not require the generation of a boundary-fitted mesh for the fluid domain. However, their method used the NURBS parameterization of the surfaces for generating the surface quadrature points to enforce the boundary conditions, which required the B-rep model to be converted completely to NURBS before analysis can be performed. This conversion usually leads to poorly parameterized NURBS surfaces and can lead to poorly trimmed or missing surface features. In addition, converting simple geometries such as cylinders to NURBS imposes a performance penalty since these geometries have to be dealt with as rational splines. As a result, the geometry has to be inspected again after conversion to ensure analysis compatibility and can increase the computational cost. In this work, we have extended the immersogeometric method to generate surface quadrature points directly using analytic surfaces. We have developed quadrature rules for all four kinds of analytic surfaces: planes, cones, spheres, and toroids. We have also developed methods for performing adaptive quadrature on trimmed analytic surfaces. Since analytic surfaces have frequently been used for constructing solid models, this method is also faster to generate quadrature points on real-world geometries than using only NURBS surfaces. To assess the accuracy of the proposed method, we perform simulations of a benchmark problem of flow over a torpedo shape made of analytic surfaces and compare those to immersogeometric simulations of the same model with NURBS surfaces. We also compare the results of our immersogeometric method with those obtained using boundary-fitted CFD of a tessellated torpedo shape, and quantities of interest such as drag coefficient are in good agreement. Finally, we demonstrate the effectiveness of our immersogeometric method for high-fidelity industrial scale simulations by performing an aerodynamic analysis of a truck that has a large percentage of analytic surfaces. Using analytic surfaces over NURBS avoids unnecessary surface type conversion and significantly reduces model-preprocessing time, while providing the same accuracy for the aerodynamic quantities of interest. PMID:29051678
Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data
NASA Astrophysics Data System (ADS)
Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.
2016-08-01
Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.
Laser-induced generation of surface periodic structures in media with nonlinear diffusion
NASA Astrophysics Data System (ADS)
Zhuravlev, V. M.; Zolotovskii, I. O.; Korobko, D. A.; Morozov, V. M.; Svetukhin, V. V.; Yavtushenko, I. O.; Yavtushenko, M. S.
2017-12-01
A model of fast formation of high-contrast periodic structure appearing on a semiconductor surface under action of laser radiation is proposed. The process of growing a surface structure due to the interaction surface plasmon- polaritons excited on nonequilibrium electrons with incident laser radiation are considered in the framework of a medium with nonlinear diffusion of nonequilibrium carriers (defects). A resonance effect of superfast pico- and subpicosecond amplification of the plasmon-polariton structure generated on the surface, the realization of which can result in a high-contrast defect lattice.
Jet Surface Interaction-Scrubbing Noise
NASA Technical Reports Server (NTRS)
Khavaran, Abbas
2013-01-01
Generation of sound due to scrubbing of a jet flow past a nearby solid surface is investigated within the framework of the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far-field sound as governed by the variable density Pridmore- Brown equation. The propagation Green's function should be solved numerically starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. The equivalent sources of aerodynamic sound are associated with non-linear momentum flux and enthalpy flux terms that appear in the linearized Navier-Stokes equations. These multi-pole sources should be modeled and evaluated with input from a Reynolds-Averaged Navier-Stokes (RANS) solver with an appropriate turbulence model.
DIFMOD2: A NEXT GENERATION DIFFUSE LAYER MODEL
Jenne (1998) suggested that the majority of uncertainty in our current ability to model the environmental partitioning behavior of ionic species on natural surfaces resulted from uncertainties in our understanding of surface acidity behavior. Traditional 2-pK Grahame-Gouy-Chapma...
The Generation of Three-Dimensional Body-Fitted Coordinate Systems for Viscous Flow Problems.
1982-07-01
Geometries," NASA TM X-3206, 1975. iq p] Papers Written Under The Contract 1. "Basic Differential Models For Coordinate Generation ", Z . U. A. Warsi...8217 Ii (C) (4’) p Figure 1. Coordinate Surfaces fr. I • BASIC DIFFERENTIAL MODELS FOR COORDINATE GENERATION Z . U. A. WARSI* Department of Aerospace
NASA Astrophysics Data System (ADS)
Plainaki, Christina; Mura, Alessandro; Milillo, Anna; Orsini, Stefano; Livi, Stefano; Mangano, Valeria; Massetti, Stefano; Rispoli, Rosanna; De Angelis, Elisabetta
2017-06-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) observations of the seasonal variability of Mercury's Ca exosphere are consistent with the general idea that the Ca atoms originate from the bombardment of the surface by particles from comet 2P/Encke. The generating mechanism is believed to be a combination of different processes including the release of atomic and molecular surface particles and the photodissociation of exospheric molecules. Considering different generation and loss mechanisms, we perform simulations with a 3-D Monte Carlo model based on the exosphere generation model by Mura et al. (2009). We present for the first time the 3-D spatial distribution of the CaO and Ca exospheres generated through the process of micrometeoroid impact vaporization, and we show that the morphology of the latter is consistent with the available MESSENGER/Mercury Atmospheric and Surface Composition Spectrometer observations. The results presented in this paper can be useful in the exosphere observations planning for BepiColombo, the upcoming European Space Agency-Japanese Aerospace Exploration Agency mission to Mercury.
NASA Astrophysics Data System (ADS)
Lino, A. C. L.; Dal Fabbro, I. M.
2008-04-01
The conception of a tridimensional digital model of solid figures and plant organs started from topographic survey of virtual surfaces [1], followed by topographic survey of solid figures [2], fruit surface survey [3] and finally the generation of a 3D digital model [4] as presented by [1]. In this research work, i.e. step number [4] tested objects included cylinders, cubes, spheres and fruits. A Ronchi grid named G1 was generated in a PC, from which other grids referred as G2, G3, and G4 were set out of phase by 1/4, 1/2 and 3/4 of period from G1. Grid G1 was then projected onto the samples surface. Projected grid was named Gd. The difference between Gd and G1 followed by filtration generated de moiré fringes M1 and so on, obtaining the fringes M2, M3 and M4 from Gd. Fringes are out of phase one from each other by 1/4 of period, which were processed by the Rising Sun Moiré software to produce packed phase and further on, the unpacked fringes. Tested object was placed on a goniometer and rotate to generate four surfaces topography. These four surveyed surfaces were assembled by means of a SCILAB software, obtaining a three column matrix, corresponding to the object coordinates xi, also having elevation values and coordinates corrected as well. The work includes conclusions on the reliability of the proposed method as well as the setup simplicity and of low cost.
Distributed feedback acoustic surface wave oscillator
NASA Technical Reports Server (NTRS)
Elachi, C.
1974-01-01
Using a simple model, the feasibility of applying the distributed feedback concept to the generation of acoustic surface waves is evaluated. It is shown that surface corrugation of the piezoelectric boundary in a semiconductor-piezoelectric surface acoustic wave amplifier could lead to self-sustained oscillations.
NASA Astrophysics Data System (ADS)
Kroeger, K. F.; Funnell, R. H.
2012-04-01
Surface and deep sea temperatures from late Paleocene to early Eocene until the Early Eocene climatic Optimum increased by 5 - 10° C. This change was associated with a negative δ13C trend which implies major changes in global carbon cycling and enrichment of surface systems in isotopically light carbon. The degree of change in sedimentary δ13C requires emission of >10,000 gigatonnes of isotopically light carbon into the ocean. We reveal a relationship between global warming and increased petroleum generation in sedimentary basins operating on 100 kyr to Myr time scales that may explain the observed isotope shift. We use TEX86-based surface temperature data1 to predict how change in surface temperature influences the temperature evolution and resultant petroleum generation in four southwest Pacific sedimentary basins. Models predict an up to 50% increase in oil and gas expulsion rates in response to the increase in temperatures from late Paleocene to early Eocene in the region. Such an increase in petroleum generation would have significantly increased leakage of light hydrocarbons and oil degeneration products into surface systems. We propose that our modelling results are representative of a large number of sedimentary basins world-wide and that early Eocene warming has led to a synchronization of periods of maximum petroleum generation and enhanced generation in otherwise unproductive basins through extension of the volume of source rock within the oil and gas window. Extrapolating our modelling results to hundreds of sedimentary basins worldwide suggests that globally increased leakage could have led to the release of an amount of CH4, CO2 and light petroleum components into surface systems compatible with the observed changes in δ13C. We further suggest that this is a significant feedback effect, enhancing early Eocene climate warming. 1Bijl, P. K., S. Schouten, A. Sluijs, G.-J. Reichart, J. C. Zachos, and H. Brinkhuis (2009), Early Palaeogene temperature evolution of the southwest Pacific Ocean, Nature, 461, 776-779.
New and Improved GLDAS and NLDAS Data Sets and Data Services at HDISC/NASA
NASA Technical Reports Server (NTRS)
Rui, Hualan; Beaudoing, Hiroko Kato; Mocko, David M.; Rodell, Matthew; Teng, William L.; Vollmer. Bruce
2010-01-01
Terrestrial hydrological variables are important in global hydrology, climate, and carbon cycle studies. Generating global fields of these variables, however, is still a challenge. The goal of a land data assimilation system (LDAS)is to ingest satellite-and ground-based observational data products, using advanced land surface modeling and data assimilation techniques, in order to generate optimal fields of land surface states and fluxes data and, thereby, facilitate hydrology and climate modeling, research, and forecast.
Deng, Jian-Liao; Wei, Qing; Wang, Yu-Zhu; Li, Yong-Qing
2005-05-16
We present the theoretical analysis and the numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers. In our model, a pulsed laser was used to generate a large gradient force within a short duration that overcame the adhesive interaction between the stuck particles and the surface; and then a low power continuous-wave(cw) laser was used to capture the levitated particle. We describe the gradient force generated by the pulsed optical tweezers and model the binding interaction between the stuck beads and glass surface by the dominative van der Waals force with a randomly distributed binding strength. We numerically calculate the single pulse levitation efficiency for polystyrene beads as the function of the pulse energy, the axial displacement from the surface to the pulsed laser focus and the pulse duration. The result of our numerical modeling is qualitatively consistent with the experimental result.
Active control of turbomachine discrete tones
NASA Technical Reports Server (NTRS)
Fleeter, Sanford
1994-01-01
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
Active control of turbomachine discrete tones
NASA Astrophysics Data System (ADS)
Fleeter, Sanford
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
NASA Astrophysics Data System (ADS)
Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante J.; Chen, Kun; Li, Yanning; Wu, Sen
2015-10-01
Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson's ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.
The contact sport of rough surfaces
NASA Astrophysics Data System (ADS)
Carpick, Robert W.
2018-01-01
Describing the way two surfaces touch and make contact may seem simple, but it is not. Fully describing the elastic deformation of ideally smooth contacting bodies, under even low applied pressure, involves second-order partial differential equations and fourth-rank elastic constant tensors. For more realistic rough surfaces, the problem becomes a multiscale exercise in surface-height statistics, even before including complex phenomena such as adhesion, plasticity, and fracture. A recent research competition, the “Contact Mechanics Challenge” (1), was designed to test various approximate methods for solving this problem. A hypothetical rough surface was generated, and the community was invited to model contact with this surface with competing theories for the calculation of properties, including contact area and pressure. A supercomputer-generated numerical solution was kept secret until competition entries were received. The comparison of results (2) provides insights into the relative merits of competing models and even experimental approaches to the problem.
NASA Astrophysics Data System (ADS)
Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.
2018-05-01
Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.
One-dimensional modelling of upper ocean mixing by turbulence due to wave orbital motion
NASA Astrophysics Data System (ADS)
Ghantous, M.; Babanin, A. V.
2014-02-01
Mixing of the upper ocean affects the sea surface temperature by bringing deeper, colder water to the surface. Because even small changes in the surface temperature can have a large impact on weather and climate, accurately determining the rate of mixing is of central importance for forecasting. Although there are several mixing mechanisms, one that has until recently been overlooked is the effect of turbulence generated by non-breaking, wind-generated surface waves. Lately there has been a lot of interest in introducing this mechanism into ocean mixing models, and real gains have been made in terms of increased fidelity to observational data. However, our knowledge of the mechanism is still incomplete. We indicate areas where we believe the existing parameterisations need refinement and propose an alternative one. We use two of the parameterisations to demonstrate the effect on the mixed layer of wave-induced turbulence by applying them to a one-dimensional mixing model and a stable temperature profile. Our modelling experiment suggests a strong effect on sea surface temperature due to non-breaking wave-induced turbulent mixing.
Wisely, Beth A.; Schmidt, David A.; Weldon, Ray J.
2008-01-01
This Appendix contains 3 sections that 1) documents published observations of surface creep on California faults, 2) constructs line integrals across the WG-07 deformation model to compare to the Pacific ? North America plate motion, and 3) constructs strain tensors of volumes across the WG-07 deformation model to compare to the Pacific ? North America plate motion. Observation of creep on faults is a critical part of our earthquake rupture model because if a fault is observed to creep the moment released as earthquakes is reduced from what would be inferred directly from the fault?s slip rate. There is considerable debate about how representative creep measured at the surface during a short time period is of the whole fault surface through the entire seismic cycle (e.g. Hudnut and Clark, 1989). Observationally, it is clear that the amount of creep varies spatially and temporally on a fault. However, from a practical point of view a single creep rate is associated with a fault section and the reduction in seismic moment generated by the fault is accommodated in seismic hazard models by reducing the surface area that generates earthquakes or by reducing the slip rate that is converted into seismic energy. WG-07 decided to follow the practice of past Working Groups and the National Seismic Hazard Map and used creep rate (where it was judged to be interseismic, see Table P1) to reduce the area of the fault surface that generates seismic events. In addition to following past practice, this decision allowed the Working Group to use a reduction of slip rate as a separate factor to accommodate aftershocks, post seismic slip, possible aseismic permanent deformation along fault zones and other processes that are inferred to affect the entire surface area of a fault, and thus are better modeled as a reduction in slip rate. C-zones are also handled by a reduction in slip rate, because they are inferred to include regions of widely distributed shear that is not completely expressed as earthquakes large enough to model. Because the ratio of the rate of creep relative to the total slip rate is often used to infer the average depth of creep, the ?depth? of creep can be calculated and used to reduce the surface area of a fault that generates earthquakes in our model. This reduction of surface area of rupture is described by an ?aseismicity factor,? assigned to each creeping fault in Appendix A. An aseismicity factor of less than 1 is only assigned to faults that are inferred to creep during the entire interseismic period. A single aseismicity factor was chosen for each section of the fault that creeps by expert opinion from the observations documented here. Uncertainties were not determined for the aseismicity factor, and thus it represents an unmodeled (and difficult to model) source of error. This Appendix simply provides the documentation of known creep, the type and precision of its measurement, and attempts to characterize the creep as interseismic, afterslip, transient or triggered. Parts 2 and 3 of this Appendix compare the WG-07 deformation model and the seismic source model it generates to the strain generated by the Pacific - North American plate motion. The concept is that plate motion generates essentially all of the elastic strain in the vicinity of the plate boundary that can be released as earthquakes. Adding up the slip rates on faults and all others sources of deformation (such as C-zones and distributed ?background? seismicity) should approximately yield the plate motion. This addition is usually accomplished by one of four approaches: 1) line integrals that sum deformation along discrete paths through the deforming zone between the two plates, 2) seismic moment tensors that add up seismic moment of a representative set of earthquakes generated by a crustal volume spanning the plate boundary, 3) strain tensors generated by adding up the strain associated with all of the faults in a crustal volume spanning the plate
Edge plasma boundary layer generated by kink modes in tokamaks
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.
2011-06-01
This paper describes the structure of the electric current generated by external wall touching and free boundary kink modes at the plasma edge using the ideally conducting plasma model. Both kinds of modes generate δ-functional surface current at the plasma edge. Free boundary kink modes also perturb the core plasma current, which in the plasma edge compensates the difference between the δ-functional surface currents of free boundary and wall touching kink modes. In addition, the resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.
James, A.L.; McDonnell, Jeffery J.; Tromp-Van Meerveld, I.; Peters, N.E.
2010-01-01
As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near-surface processes is relevant to issues of runoff generation, groundwater-surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3-D physics-based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub-surface flow and transport simulator. A recent investigation of sub-surface flow within this experimental hillslope has generated important knowledge of threshold rainfall-runoff response and its relation to patterns of transient water table development. This work has identified components of the 3-D sub-surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub-surface stormflow. Here, we test the ability of a 3-D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall-runoff response and internal transient sub-surface stormflow dynamics. We also provide a transparent illustration of physics-based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field-based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and drainable porosity on the development of patterns of transient groundwater and sub-surface flow. Internal dynamics of transient water table development prove to be essential in determining appropriate model parameterization. ?? 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Han, D.; Wang, J.
2015-12-01
The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.
The generation and use of numerical shape models for irregular Solar System objects
NASA Technical Reports Server (NTRS)
Simonelli, Damon P.; Thomas, Peter C.; Carcich, Brian T.; Veverka, Joseph
1993-01-01
We describe a procedure that allows the efficient generation of numerical shape models for irregular Solar System objects, where a numerical model is simply a table of evenly spaced body-centered latitudes and longitudes and their associated radii. This modeling technique uses a combination of data from limbs, terminators, and control points, and produces shape models that have some important advantages over analytical shape models. Accurate numerical shape models make it feasible to study irregular objects with a wide range of standard scientific analysis techniques. These applications include the determination of moments of inertia and surface gravity, the mapping of surface locations and structural orientations, photometric measurement and analysis, the reprojection and mosaicking of digital images, and the generation of albedo maps. The capabilities of our modeling procedure are illustrated through the development of an accurate numerical shape model for Phobos and the production of a global, high-resolution, high-pass-filtered digital image mosaic of this Martian moon. Other irregular objects that have been modeled, or are being modeled, include the asteroid Gaspra and the satellites Deimos, Amalthea, Epimetheus, Janus, Hyperion, and Proteus.
The impact of land-surface wetness heterogeneity on mesoscale heat fluxes
NASA Technical Reports Server (NTRS)
Chen, Fei; Avissar, Roni
1994-01-01
Vertical heat fluxes associated with mesoscale circulations generated by land-surface wetness discontinuities are often stronger than turbulent fluxes, especially in the upper part of the atmospheric planetary boundary layer. As a result, they contribute significantly to the subgrid-scale fluxes in large-scale atmospheric models. Yet they are not considered in these models. To provide some insights into the possible parameterization of these fluxes in large-scale models, a state-of-the-art mesoscale numerical model was used to investigate the relationships between mesoscale heat fluxes and atmospheric and land-surface characteristics that play a key role in the generation of mesoscale circulations. The distribution of land-surface wetness, the wavenumber and the wavelength of the land-surface discontinuities, and the large-scale wind speed have a significant impact on the mesoscale heat fluxes. Empirical functions were derived to characterize the relationships between mesoscale heat fluxes and the spatial distribution of land-surface wetness. The strongest mesoscale heat fluxes were obtained for a wavelength of forcing corresponding approximately to the local Rossby deformation radius. The mesoscale heat fluxes are weakened by large-scale background winds but remain significant even with moderate winds.
Primordial anisotropies in gauged hybrid inflation
NASA Astrophysics Data System (ADS)
Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan
2014-05-01
We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, J.; Du, Y.; Wen, J.; Zhong, B.; Wang, K.
2011-12-01
As the remote sensing data accumulating, it is a challenge and significant issue how to generate high accurate and consistent land surface parameter product from the multi source remote observation and the radiation transfer modeling and inversion methodology are the theoretical bases. In this paper, recent research advances and unresolved issues are presented. At first, after a general overview, recent research advances on multi-scale remote sensing radiation transfer modeling are presented, including leaf spectrum model, vegetation canopy BRDF models, directional thermal infrared emission models, rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed, taking the land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is suggested and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China are introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
Enhancing the Arctic Mean Sea Surface and Mean Dynamic Topography with CryoSat-2 Data
NASA Astrophysics Data System (ADS)
Stenseng, Lars; Andersen, Ole B.; Knudsen, Per
2014-05-01
A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models that includes CryoSat-2 data to improve the reliability in the Arctic Ocean. In an attempt to extrapolate across the gap above 82 degrees latitude the previously models included ICESat data, gravimetrical geoids, ocean circulation models and various combinations hereof. Unfortunately cloud cover and the short periods of operation has a negative effect on the number of ICESat sea surface observations. DTU13MSS and DTU13MDT are the new generation of state of the art global high-resolution models that includes CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.
Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans
NASA Astrophysics Data System (ADS)
Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj
2016-06-01
This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.
New and Improved GLDAS Data Sets and Data Services at NASA GES DISC
NASA Technical Reports Server (NTRS)
Rui, Hualan; Beaudoing, Hiroko; Teng, William; Vollmer, Bruce; Rodell, Matthew; Lei, Guang-Dih
2012-01-01
The goal of a Land Data Assimilation System (LDAS) is to ingest satellite- and ground-based observational data products, using advanced land surface modeling and data assimilation techniques, in order to generate optimal fields of land surface states and fluxes data and, thereby, facilitate hydrology and climate modeling, research, and forecast. With the motivation of creating more climatologically consistent data sets, NASA GSFC's Hydrological Sciences Laboratory has generated more than 60 years (Jan. 1948-- Dec. 2008) of Global LDAS Version 2 (GLDAS-2) data, by using the Princeton Forcing Data Set and upgraded versions of Land Surface Models (LSMs). GLDAS data and data services are provided at NASA GES DISC Hydrology Data and Information Services Center (HDISC), in collaboration with HSL and LDAS.
A novel method for automated grid generation of ice shapes for local-flow analysis
NASA Astrophysics Data System (ADS)
Ogretim, Egemen; Huebsch, Wade W.
2004-02-01
Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading-edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine-cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness.
1990-06-01
interaction and wave breaking. The ocean surface can be modelled as a two-scale or composite surface - 21 - made up of short wind-generated ripples... composite or two-scale rough surface (Barrick and Peake, 1968). For radar wavelengths on the order of a few centimeters, the resonant scatterers are...short wind ripples which ride on top of long gravity waves, and a - 46 - composite model is used to describe the two-scale nature of the sea surface
Brakebill, J.W.; Preston, S.D.
2003-01-01
The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.
Erin K. Noonan-Wright; Nicole M. Vaillant; Alicia L. Reiner
2014-01-01
Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned, either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data before and 1, 2, 5, and 8 years after...
Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces
NASA Astrophysics Data System (ADS)
Archer, Sean
The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted emissivity spectra was also forward modeled through a DIRSIG simulation for comparisons to the radiance measurements. The results showed a promising agreement for homogeneous surfaces with liquid contamination that could be well characterized geometrically. Limitations arose in substrates that were modeled as homogeneous surfaces, but had spatially varying artifacts due to uncertainties with contaminant and surface interactions. There is high desire for accurate physics based modeling of liquid contaminated surfaces and this validation framework may be extended to include a wider array of samples for more realistic natural surfaces that are often found in real world scenarios.
An advanced stochastic weather generator for simulating 2-D high-resolution climate variables
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo
2017-07-01
A new stochastic weather generator, Advanced WEather GENerator for a two-dimensional grid (AWE-GEN-2d) is presented. The model combines physical and stochastic approaches to simulate key meteorological variables at high spatial and temporal resolution: 2 km × 2 km and 5 min for precipitation and cloud cover and 100 m × 100 m and 1 h for near-surface air temperature, solar radiation, vapor pressure, atmospheric pressure, and near-surface wind. The model requires spatially distributed data for the calibration process, which can nowadays be obtained by remote sensing devices (weather radar and satellites), reanalysis data sets and ground stations. AWE-GEN-2d is parsimonious in terms of computational demand and therefore is particularly suitable for studies where exploring internal climatic variability at multiple spatial and temporal scales is fundamental. Applications of the model include models of environmental systems, such as hydrological and geomorphological models, where high-resolution spatial and temporal meteorological forcing is crucial. The weather generator was calibrated and validated for the Engelberg region, an area with complex topography in the Swiss Alps. Model test shows that the climate variables are generated by AWE-GEN-2d with a level of accuracy that is sufficient for many practical applications.
Study on cavitation effect of mechanical seals with laser-textured porous surface
NASA Astrophysics Data System (ADS)
Liu, T.; Chen, H. l.; Liu, Y. H.; Wang, Q.; Liu, Z. B.; Hou, D. H.
2012-11-01
Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.
Modelling Aerodynamically Generated Sound: Recent Advances in Rotor Noise Prediction
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
2000-01-01
A great deal of progress has been made in the modeling of aerodynamically generated sound for rotors over the past decade. The Ffowcs Williams-Hawkings (FW-H ) equation has been the foundation for much of the development. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H has also been utilized on permeable surfaces surrounding all physical noise sources. Comparison of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems.
Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals
Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.
2015-01-01
Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron–phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron–phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals. PMID:26033445
Parametric vs. non-parametric daily weather generator: validation and comparison
NASA Astrophysics Data System (ADS)
Dubrovsky, Martin
2016-04-01
As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30 years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series from several European stations available from the ECA&D database.
A combined surface/volume scattering retracking algorithm for ice sheet satellite altimetry
NASA Technical Reports Server (NTRS)
Davis, Curt H.
1992-01-01
An algorithm that is based upon a combined surface-volume scattering model is developed. It can be used to retrack individual altimeter waveforms over ice sheets. An iterative least-squares procedure is used to fit the combined model to the return waveforms. The retracking algorithm comprises two distinct sections. The first generates initial model parameter estimates from a filtered altimeter waveform. The second uses the initial estimates, the theoretical model, and the waveform data to generate corrected parameter estimates. This retracking algorithm can be used to assess the accuracy of elevations produced from current retracking algorithms when subsurface volume scattering is present. This is extremely important so that repeated altimeter elevation measurements can be used to accurately detect changes in the mass balance of the ice sheets. By analyzing the distribution of the model parameters over large portions of the ice sheet, regional and seasonal variations in the near-surface properties of the snowpack can be quantified.
Incorporation of ice sheet models into an Earth system model: Focus on methodology of coupling
NASA Astrophysics Data System (ADS)
Rybak, Oleg; Volodin, Evgeny; Morozova, Polina; Nevecherja, Artiom
2018-03-01
Elaboration of a modern Earth system model (ESM) requires incorporation of ice sheet dynamics. Coupling of an ice sheet model (ICM) to an AOGCM is complicated by essential differences in spatial and temporal scales of cryospheric, atmospheric and oceanic components. To overcome this difficulty, we apply two different approaches for the incorporation of ice sheets into an ESM. Coupling of the Antarctic ice sheet model (AISM) to the AOGCM is accomplished via using procedures of resampling, interpolation and assigning to the AISM grid points annually averaged meanings of air surface temperature and precipitation fields generated by the AOGCM. Surface melting, which takes place mainly on the margins of the Antarctic peninsula and on ice shelves fringing the continent, is currently ignored. AISM returns anomalies of surface topography back to the AOGCM. To couple the Greenland ice sheet model (GrISM) to the AOGCM, we use a simple buffer energy- and water-balance model (EWBM-G) to account for orographically-driven precipitation and other sub-grid AOGCM-generated quantities. The output of the EWBM-G consists of surface mass balance and air surface temperature to force the GrISM, and freshwater run-off to force thermohaline circulation in the oceanic block of the AOGCM. Because of a rather complex coupling procedure of GrIS compared to AIS, the paper mostly focuses on Greenland.
Generating strain signals under consideration of road surface profiles
NASA Astrophysics Data System (ADS)
Putra, T. E.; Abdullah, S.; Schramm, D.; Nuawi, M. Z.; Bruckmann, T.
2015-08-01
The current study aimed to develop the mechanism for generating strain signal utilising computer-based simulation. The strain data, caused by the acceleration, were undertaken from a fatigue data acquisition involving car movements. Using a mathematical model, the measured strain signals yielded to acceleration data used to describe the bumpiness of road surfaces. The acceleration signals were considered as an external disturbance on generating strain signals. Based on this comparison, both the actual and simulated strain data have similar pattern. The results are expected to provide new knowledge to generate a strain signal via a simulation.
Computing Surface Coordinates Of Face-Milled Spiral-Bevel Gear Teeth
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Litvin, Faydor L.
1995-01-01
Surface coordinates of face-milled spiral-bevel gear teeth computed by method involving numerical solution of governing equations. Needed to generate mathematical models of tooth surfaces for use in finite-element analyses of stresses, strains, and vibrations in meshing spiral-bevel gears.
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Murchie, S.; Pieters, C.; Zent, A.
1999-01-01
This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results. Physical processes distribute dust particles on rocks, forming physical rock coatings, and on the surface between rocks forming soil units; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces or duricrust surface units, both of which are relatively permanent materials. According to this model the mineral components of the dust/soil particles are derived from a combination of "typical" palagonitic weathering of volcanic ash and hydrothermally altered components, primarily from steam vents or fumeroles. Both of these altered materials are composed of tiny particles, about 1 micron or smaller, that are aggregates of silicates and iron oxide/oxyhydroxide/sulfate phases. Additional information is contained in the original extended abstract.
Thermal Analysis of the PediaFlow pediatric ventricular assist device.
Gardiner, Jeffrey M; Wu, Jingchun; Noh, Myounggyu D; Antaki, James F; Snyder, Trevor A; Paden, David B; Paden, Brad E
2007-01-01
Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generation: copper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2 degrees C during normal operation.
Dynamic model of the force driving kinesin to move along microtubule-Simulation with a model system
NASA Astrophysics Data System (ADS)
Chou, Y. C.; Hsiao, Yi-Feng; To, Kiwing
2015-09-01
A dynamic model for the motility of kinesin, including stochastic-force generation and step formation is proposed. The force driving the motion of kinesin motor is generated by the impulse from the collision between the randomly moving long-chain stalk and the ratchet-shaped outer surface of microtubule. Most of the dynamical and statistical features of the motility of kinesin are reproduced in a simulation system, with (a) ratchet structures similar to the outer surface of microtubule, (b) a bead chain connected to two heads, similarly to the stalk of the real kinesin motor, and (c) the interaction between the heads of the simulated kinesin and microtubule. We also propose an experiment to discriminate between the conventional hand-over-hand model and the dynamic model.
Constraining a Coastal Ocean Model by Surface Observations Using an Ensemble Kalman Filter
NASA Astrophysics Data System (ADS)
De Mey, P. J.; Ayoub, N. K.
2016-02-01
We explore the impact of assimilating sea surface temperature (SST) and sea surface height (SSH) observations in the Bay of Biscay (North-East Atlantic). The study is conducted in the SYMPHONIE coastal circulation model (Marsaleix et al., 2009) on a 3kmx3km grid, with 43 sigma levels. Ensembles are generated by perturbing the wind forcing to analyze the model error subspace spanned by its response to wind forcing uncertainties. The assimilation method is a 4D Ensemble Kalman Filter algorithm with localization. We use the SDAP code developed in the team (https://sourceforge.net/projects/sequoia-dap/). In a first step before the assimilation of real observations, we set up an Ensemble twin experiment protocol where a nature run as well as noisy pseudo-observations of SST and SSH are generated from an Ensemble member (later discarded from the assimilative Ensemble). Our objectives are to assess (1) the adequacy of the choice of error source and perturbation strategy and (2) how effective the surface observational constraint is at constraining the surface and subsurface fields. We first illustrate characteristics of the error subspace generated by the perturbation strategy. We then show that, while the EnKF solves a single seamless problem regardless of the region within our domain, the nature and effectiveness of the data constraint over the shelf differ from those over the abyssal plain.
Scalability of grid- and subbasin-based land surface modeling approaches for hydrologic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesfa, Teklu K.; Ruby Leung, L.; Huang, Maoyi
2014-03-27
This paper investigates the relative merits of grid- and subbasin-based land surface modeling approaches for hydrologic simulations, with a focus on their scalability (i.e., abilities to perform consistently across a range of spatial resolutions) in simulating runoff generation. Simulations produced by the grid- and subbasin-based configurations of the Community Land Model (CLM) are compared at four spatial resolutions (0.125o, 0.25o, 0.5o and 1o) over the topographically diverse region of the U.S. Pacific Northwest. Using the 0.125o resolution simulation as the “reference”, statistical skill metrics are calculated and compared across simulations at 0.25o, 0.5o and 1o spatial resolutions of each modelingmore » approach at basin and topographic region levels. Results suggest significant scalability advantage for the subbasin-based approach compared to the grid-based approach for runoff generation. Basin level annual average relative errors of surface runoff at 0.25o, 0.5o, and 1o compared to 0.125o are 3%, 4%, and 6% for the subbasin-based configuration and 4%, 7%, and 11% for the grid-based configuration, respectively. The scalability advantages of the subbasin-based approach are more pronounced during winter/spring and over mountainous regions. The source of runoff scalability is found to be related to the scalability of major meteorological and land surface parameters of runoff generation. More specifically, the subbasin-based approach is more consistent across spatial scales than the grid-based approach in snowfall/rainfall partitioning, which is related to air temperature and surface elevation. Scalability of a topographic parameter used in the runoff parameterization also contributes to improved scalability of the rain driven saturated surface runoff component, particularly during winter. Hence this study demonstrates the importance of spatial structure for multi-scale modeling of hydrological processes, with implications to surface heat fluxes in coupled land-atmosphere modeling.« less
Investigation of the sound generation mechanisms for in-duct orifice plates.
Tao, Fuyang; Joseph, Phillip; Zhang, Xin; Stalnov, Oksana; Siercke, Matthias; Scheel, Henning
2017-08-01
Sound generation due to an orifice plate in a hard-walled flow duct which is commonly used in air distribution systems (ADS) and flow meters is investigated. The aim is to provide an understanding of this noise generation mechanism based on measurements of the source pressure distribution over the orifice plate. A simple model based on Curle's acoustic analogy is described that relates the broadband in-duct sound field to the surface pressure cross spectrum on both sides of the orifice plate. This work describes careful measurements of the surface pressure cross spectrum over the orifice plate from which the surface pressure distribution and correlation length is deduced. This information is then used to predict the radiated in-duct sound field. Agreement within 3 dB between the predicted and directly measured sound fields is obtained, providing direct confirmation that the surface pressure fluctuations acting over the orifice plates are the main noise sources. Based on the developed model, the contributions to the sound field from different radial locations of the orifice plate are calculated. The surface pressure is shown to follow a U 3.9 velocity scaling law and the area over which the surface sources are correlated follows a U 1.8 velocity scaling law.
Topology of modified helical gears and Tooth Contact Analysis (TCA) program
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Zhang, Jiao
1989-01-01
The contents of this report covers: (1) development of optimal geometries for crowned helical gears; (2) a method for their generation; (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact of the crowned helical gears; and (4) modelling and simulation of gear shaft deflection. The developed method for synthesis was used to determine the optimal geometry for a crowned helical pinion surface and was directed to localize the bearing contact and guarantee favorable shape and a low level of transmission errors. Two new methods for generation of the crowned helical pinion surface are proposed. One is based on the application of a tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The other is based on a crowning pinion tooth surface with predesigned transmission errors. The pinion tooth surface can be generated by a computer-controlled automatic grinding machine. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined. The gear shaft deformation was modelled and investigated. It was found that the deflection of gear shafts has the same effect as gear misalignment.
Charters, F J; Cochrane, T A; O'Sullivan, A D
2017-09-01
Characterising stormwater runoff quality provides useful insights into the dynamics of pollutant generation and wash off rates. These can be used to prioritise stormwater management strategies. This study examined the effects of a low intensity rainfall climate on zinc contributions from different impermeable urban surface types. First flush (FF) and steady state samples were collected from seven different surfaces for characterisation, and the data were also used to calibrate an event-based pollutant load model to predict individual 'hotspot' surfaces across the catchment. Unpainted galvanised roofs generated very high concentrations of zinc, primarily in the more biologically available dissolved form. An older, unpainted galvanised roof had FF concentrations averaging 32,338 μg/L, while the new unpainted roof averaged 4,782 μg/L. Roads and carparks also had elevated zinc, but FF concentrations averaged only 822-1,584 μg/L. Modelling and mapping expected zinc loads from individual impermeable surfaces across the catchment identified specific commercial roof surfaces to be targeted for zinc management. The results validate a policy strategy to replace old galvanised roof materials and avoid unpainted galvanised roofing in future urban development for better urban water quality outcomes. In the interim, readily-implemented treatment options are required to help mitigate chronic zinc impacts on receiving waterways.
NASA Astrophysics Data System (ADS)
Han, Xuesong; Li, Haiyan; Zhao, Fu
2017-07-01
Particle-fluid based surface generation process has already become one of the most important materials processing technology for many advanced materials such as optical crystal, ceramics and so on. Most of the particle-fluid based surface generation technology involves two key process: chemical reaction which is responsible for surface softening; physical behavior which is responsible for materials removal/deformation. Presently, researchers cannot give a reasonable explanation about the complex process in the particle-fluid based surface generation technology because of the small temporal-spatial scale and the concurrent influence of physical-chemical process. Molecular dynamics (MD) method has already been proved to be a promising approach for constructing effective model of atomic scale phenomenon and can serve as a predicting simulation tool in analyzing the complex surface generation mechanism and is employed in this research to study the essence of surface generation. The deformation and piles of water molecule is induced with the feeding of abrasive particle which justifies the property mutation of water at nanometer scale. There are little silica molecule aggregation or materials removal because the water-layer greatly reduce the strength of mechanical interaction between particle and materials surface and minimize the stress concentration. Furthermore, chemical effect is also observed at the interface: stable chemical bond is generated between water and silica which lead to the formation of silconl and the reaction rate changes with the amount of water molecules in the local environment. Novel ring structure is observed in the silica surface and it is justified to be favored of chemical reaction with water molecule. The siloxane bond formation process quickly strengthened across the interface with the feeding of abrasive particle because of the compressive stress resulted by the impacting behavior.
DaNa L. Carlis; Yi-Leng Chen; Vernon R. Morris
2010-01-01
The fifth-generation Pennsylvania State UniversityâNCAR Mesoscale Model (MM5) coupled with the Noah land surface model (LSM) is employed to simulate island-scale airflow and circulations over Maui County, Hawaii, under summer trade wind conditions, during JulyâAugust 2005. The model forecasts are validated by surface observations with good agreement.
A diffuse radar scattering model from Martian surface rocks
NASA Technical Reports Server (NTRS)
Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.
1987-01-01
Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Price, Steve; Clark, Ben; Cantrell, Jim; Bourke, Roger
1993-01-01
A Mars Aerial Platform (MAP) mission capable of generating thousands of very-high-resolution (20 cm/pixel) pictures of the Martian surface is considered. The MAP entry vehicle will map the global circulation of the planet's atmosphere and examine the surface and subsurface. Data acquisition will use instruments carried aboard balloons flying at nominal altitude of about 7 km over the Martian surface. The MAP balloons will take high- and medium-resolution photographs of Mars, sound its surface with radar, and provide tracking data to chart its winds. Mars vehicle design is based on the fourth-generation NTP, NEP, SEP vehicle set that provides a solid database for determining transportation system costs. Interference analysis and 3D image generation are performed using manual system sizing and sketching in conjunction with precise CAD modeling.
NASA Astrophysics Data System (ADS)
Kubalska, J. L.; Preuss, R.
2013-12-01
Digital Surface Models (DSM) are used in GIS data bases as single product more often. They are also necessary to create other products such as3D city models, true-ortho and object-oriented classification. This article presents results of DSM generation for classification of vegetation in urban areas. Source data allowed producing DSM with using of image matching method and ALS data. The creation of DSM from digital images, obtained by Ultra Cam-D digital Vexcel camera, was carried out in Match-T by INPHO. This program optimizes the configuration of images matching process, which ensures high accuracy and minimize gap areas. The analysis of the accuracy of this process was made by comparison of DSM generated in Match-T with DSM generated from ALS data. Because of further purpose of generated DSM it was decided to create model in GRID structure with cell size of 1 m. With this parameter differential model from both DSMs was also built that allowed determining the relative accuracy of the compared models. The analysis indicates that the generation of DSM with multi-image matching method is competitive for the same surface model creation from ALS data. Thus, when digital images with high overlap are available, the additional registration of ALS data seems to be unnecessary.
Comparative Analysis of InSAR Digital Surface Models for Test Area Bucharest
NASA Astrophysics Data System (ADS)
Dana, Iulia; Poncos, Valentin; Teleaga, Delia
2010-03-01
This paper presents the results of the interferometric processing of ERS Tandem, ENVISAT and TerraSAR- X for digital surface model (DSM) generation. The selected test site is Bucharest (Romania), a built-up area characterized by the usual urban complex pattern: mixture of buildings with different height levels, paved roads, vegetation, and water bodies. First, the DSMs were generated following the standard interferometric processing chain. Then, the accuracy of the DSMs was analyzed against the SPOT HRS model (30 m resolution at the equator). A DSM derived by optical stereoscopic processing of SPOT 5 HRG data and also the SRTM (3 arc seconds resolution at the equator) DSM have been included in the comparative analysis.
A Study of Water Wave Wakes of Washington State Ferries
NASA Astrophysics Data System (ADS)
Perfect, Bradley; Riley, James; Thomson, Jim; Fay, Endicott
2015-11-01
Washington State Ferries (WSF) operates a ferry route that travels through a 600m-wide channel called Rich Passage. Concerns of shoreline erosion in Rich Passage have prompted this study of the generation and propagation of surface wave wakes caused by WSF vessels. The problem was addressed in three ways: analytically, using an extension of the Kelvin wake model by Darmon et al. (J. Fluid Mech., 738, 2014); computationally, employing a RANS Navier-Stokes model in the CFD code OpenFOAM which uses the Volume of Fluid method to treat the free surface; and with field data taken in Sept-Nov, 2014, using a suite of surface wave measuring buoys. This study represents one of the first times that model predictions of ferry boat-generated wakes can be tested against measurements in open waters. The results of the models and the field data are evaluated using direct comparison of predicted and measured surface wave height as well as other metrics. Furthermore, the model predictions and field measurements suggest differences in wake amplitudes for different class vessels. Finally, the relative strengths and weaknesses of each prediction method as well as of the field measurements will be discussed. Washington State Department of Transportation.
Application of the Quadrupole Method for Simulation of Passive Thermography
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Gregory, Elizabeth D.
2017-01-01
Passive thermography has been shown to be an effective method for in-situ and real time nondestructive evaluation (NDE) to measure damage growth in a composite structure during cyclic loading. The heat generation by subsurface flaw results in a measurable thermal profile at the surface. This paper models the heat generation as a planar subsurface source and calculates the resultant temperature profile at the surface using a three dimensional quadrupole. The results of the model are compared to finite element simulations of the same planar sources and experimental data acquired during cyclic loading of composite specimens.
Surface- and Contour-Preserving Origamic Architecture Paper Pop-Ups.
Le, Sang N; Leow, Su-Jun; Le-Nguyen, Tuong-Vu; Ruiz, Conrado; Low, Kok-Lim
2013-08-02
Origamic architecture (OA) is a form of papercraft that involves cutting and folding a single sheet of paper to produce a 3D pop-up, and is commonly used to depict architectural structures. Because of the strict geometric and physical constraints, OA design requires considerable skill and effort. In this paper, we present a method to automatically generate an OA design that closely depicts an input 3D model. Our algorithm is guided by a novel set of geometric conditions to guarantee the foldability and stability of the generated pop-ups. The generality of the conditions allows our algorithm to generate valid pop-up structures that are previously not accounted for by other algorithms. Our method takes a novel image-domain approach to convert the input model to an OA design. It performs surface segmentation of the input model in the image domain, and carefully represents each surface with a set of parallel patches. Patches are then modified to make the entire structure foldable and stable. Visual and quantitative comparisons of results have shown our algorithm to be significantly better than the existing methods in the preservation of contours, surfaces and volume. The designs have also been shown to more closely resemble those created by real artists.
Surface and contour-preserving origamic architecture paper pop-ups.
Le, Sang N; Leow, Su-Jun; Le-Nguyen, Tuong-Vu; Ruiz, Conrado; Low, Kok-Lim
2014-02-01
Origamic architecture (OA) is a form of papercraft that involves cutting and folding a single sheet of paper to produce a 3D pop-up, and is commonly used to depict architectural structures. Because of the strict geometric and physical constraints, OA design requires considerable skill and effort. In this paper, we present a method to automatically generate an OA design that closely depicts an input 3D model. Our algorithm is guided by a novel set of geometric conditions to guarantee the foldability and stability of the generated pop-ups. The generality of the conditions allows our algorithm to generate valid pop-up structures that are previously not accounted for by other algorithms. Our method takes a novel image-domain approach to convert the input model to an OA design. It performs surface segmentation of the input model in the image domain, and carefully represents each surface with a set of parallel patches. Patches are then modified to make the entire structure foldable and stable. Visual and quantitative comparisons of results have shown our algorithm to be significantly better than the existing methods in the preservation of contours, surfaces, and volume. The designs have also been shown to more closely resemble those created by real artists.
Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow
Fantoni, Carlo; Caudek, Corrado; Domini, Fulvio
2012-01-01
Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant. PMID:22479473
Biomolecular surface construction by PDE transform
Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei
2011-01-01
This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high order PDEs. As a consequence, the time integration of high order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and the MSMS approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, i.e., surface area, surface enclosed volume, solvation free energy and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform based surface method, we solve the Poisson-Nernst-Planck (PNP) equations with a PDE transform surface of a protein. Second order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable and efficient approach for biomolecular surface generation in Cartesian meshes. PMID:22582140
A finite element head and neck model as a supportive tool for deformable image registration.
Kim, Jihun; Saitou, Kazuhiro; Matuszak, Martha M; Balter, James M
2016-07-01
A finite element (FE) head and neck model was developed as a tool to aid investigations and development of deformable image registration and patient modeling in radiation oncology. Useful aspects of a FE model for these purposes include ability to produce realistic deformations (similar to those seen in patients over the course of treatment) and a rational means of generating new configurations, e.g., via the application of force and/or displacement boundary conditions. The model was constructed based on a cone-beam computed tomography image of a head and neck cancer patient. The three-node triangular surface meshes created for the bony elements (skull, mandible, and cervical spine) and joint elements were integrated into a skeletal system and combined with the exterior surface. Nodes were additionally created inside the surface structures which were composed of the three-node triangular surface meshes, so that four-node tetrahedral FE elements were created over the whole region of the model. The bony elements were modeled as a homogeneous linear elastic material connected by intervertebral disks. The surrounding tissues were modeled as a homogeneous linear elastic material. Under force or displacement boundary conditions, FE analysis on the model calculates approximate solutions of the displacement vector field. A FE head and neck model was constructed that skull, mandible, and cervical vertebrae were mechanically connected by disks. The developed FE model is capable of generating realistic deformations that are strain-free for the bony elements and of creating new configurations of the skeletal system with the surrounding tissues reasonably deformed. The FE model can generate realistic deformations for skeletal elements. In addition, the model provides a way of evaluating the accuracy of image alignment methods by producing a ground truth deformation and correspondingly simulated images. The ability to combine force and displacement conditions provides flexibility for simulating realistic anatomic configurations.
NASA Technical Reports Server (NTRS)
Spar, J.; Cohen, C.; Wu, P.
1981-01-01
A coarse mesh (8 by 10) 7 layer global climate model was used to compute 15 months of meteorological history in two perpetual January experiments on a water planet (without continents) with a zonally symmetric climatological January sea surface temperature field. In the first of the two water planet experiments the initial atmospheric state was a set of zonal mean values of specific humidity, temperature, and wind at each latitude. In the second experiment the model was initialized with globally uniform mean values of specific humidity and temperature on each sigma level surface, constant surface pressure (1010 mb), and zero wind everywhere. A comparison was made of the mean January climatic states generated by the two water planet experiments. The first two months of each 15 January run were discarded, and 13 month averages were computed from months 3 through 15.
Generation of THz Wave with Orbital Angular Momentum by Graphene Patch Reflectarray
2015-07-01
potential to significantly increase spectral efficiency and channel capacity for wireless communication [1]. A few techniques have been reported to...plane wave. The graphene-based OAM generation is very promising for future applications in THz wireless communication . ACKNOWLEDGEMENT This work is... Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” Journal of Applied Physics, vol. 103, no. 6, pp
Generation of attosecond electron packets via conical surface plasmon electron acceleration
Greig, S. R.; Elezzabi, A. Y.
2016-01-01
We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129
Laser Induced Aluminum Surface Breakdown Model
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Liu, Jiwen; Zhang, Sijun; Wang, Ten-See (Technical Monitor)
2002-01-01
Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Based on an unstructured grid, pressure-based computational aerothermodynamics; platform, several sub-models describing such underlying physics as laser ray tracing and focusing, thermal non-equilibrium, plasma radiation and air spark ignition have been developed. This proposed work shall extend the numerical platform and existing sub-models to include the aluminum wall surface Inverse Bremsstrahlung (IB) effect from which surface ablation and free-electron generation can be initiated without relying on the air spark ignition sub-model. The following tasks will be performed to accomplish the research objectives.
NASA Technical Reports Server (NTRS)
Cohen, C.
1981-01-01
A hierarchy of experiments was run, starting with an all water planet with zonally symmetric sea surface temperatures, then adding, one at a time, flat continents, mountains, surface physics, and realistic sea surface temperatures. The model was run with the sun fixed at a perpetual January. Ensemble means and standard deviations were computed and the t-test was used to determine the statistical significance of the results. The addition of realistic surface physics does not affect the model climatology to as large as extent as does the addition of mountains. Departures from zonal symmetry of the SST field result in a better simulation of the real atmosphere.
A Method for Thermal Analysis of Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Kicher, Thomas P.
1994-01-01
A modeling method for analyzing the three-dimensional thermal behavior of spiral bevel gears has been developed. The model surfaces are generated through application of differential geometry to the manufacturing process for face-milled spiral bevel gears. Contact on the gear surface is found by combining tooth contact analysis with three-dimensional Hertzian theory. The tooth contact analysis provides the principle curvatures and orientations of the two surfaces. This information is then used directly in the Hertzian analysis to find the contact size and maximum pressure. Heat generation during meshing is determined as a function of the applied load, sliding velocity, and coefficient of friction. Each of these factors change as the point of contact changes during meshing. A nonlinear finite element program was used to conduct the heat transfer analysis. This program permitted the time- and position-varying boundary conditions, found in operation, to be applied to a one-tooth model. An example model and analytical results are presented.
NASA Astrophysics Data System (ADS)
Doten, C. O.; Lanini, J. S.; Bowling, L. C.; Lettenmaier, D. P.
2004-12-01
Erosion and sediment transport in a temperate forested watershed are predicted with a new sediment module linked to the Distributed Hydrology-Soil-Vegetation Model (DHSVM). The DHSVM sediment module represents the main sources of sediment generation in forested environments: mass wasting, hillslope erosion and road surface erosion. It produces failures based on a factor-of-safety analysis with the infinite slope model through use of stochastically generated soil and vegetation parameters. Failed material is routed downslope with a rule-based scheme that determines sediment delivery to streams. Sediment from hillslopes and road surfaces is also transported to the channel network. Basin sediment yield is predicted with a simple channel sediment routing scheme. The model was applied to the Rainy Creek catchment, a tributary of the Wenatchee River which drains the east slopes of the Cascade Mountains, and Hard and Ware Creeks on the west slopes of the Cascades. In these initial applications, the model produced plausible sediment yield and ratios of landsliding and surface erosion , when compared to published rates for similar catchments in the Pacific Northwest. We have also used the model to examine the implications of fires and logging road removal on sediment generation in the Rainy Creek catchment. Generally, in absolute value, the predicted changes (increased sediment generation) following fires, which are primarily associated with increased slope failures, are much larger than the modest changes (reductions in sediment yield) associated with road obliteration, although the small sensitivity to forest road obliteration may be due in part to the relatively low road density in the Rainy Creek catchment, and to mechanisms, such as culvert failure, that are not represented in the model.
NASA Astrophysics Data System (ADS)
Teodor, V. G.; Baroiu, N.; Susac, F.; Oancea, N.
2016-11-01
The modelling of a curl of surfaces associated with a pair of rolling centrodes, when it is known the profile of the rack-gear's teeth profile, by direct measuring, as a coordinate matrix, has as goal the determining of the generating quality for an imposed kinematics of the relative motion of tool regarding the blank. In this way, it is possible to determine the generating geometrical error, as a base of the total error. The generation modelling allows highlighting the potential errors of the generating tool, in order to correct its profile, previously to use the tool in machining process. A method developed in CATIA is proposed, based on a new method, namely the method of “relative generating trajectories”. They are presented the analytical foundation, as so as some application for knows models of rack-gear type tools used on Maag teething machines.
NASA Astrophysics Data System (ADS)
Verdebout, Jean
2000-02-01
This paper presents a method for generating surface ultraviolet (UV) radiation maps over Europe, with a spatial resolution of 0.05°, and potentially on a half-hour basis. The UV irradiance is obtained by interpolation in a look-up table (LUT), the entries of which are solar zenith angle, total column ozone amount, cloud liquid water thickness, near-surface horizontal visibility, surface elevation, and UV albedo. Both satellite (Meteosat, GOME) and nonsatellite (synoptic observations, meteorological model results, digital elevation model) data are exploited to assign values to the influencing factors. With the help of another LUT simulating the visible signal, Meteosat data are processed to retrieve the cloud liquid water thickness. The radiative transfer calculations are performed with the UVspec code. A preliminary step consists in generating an effective surface Meteosat albedo map from a series of 10 consecutive days. In this process the well-known difficulty of distinguishing clouds from snow-covered surfaces is encountered. An attempt is made to partially resolve the ambiguity by using the Meteosat infrared channel and modeled snow cover data. After additional empirical cloud filtering, the effective albedo map is used as a baseline to estimate the cloud liquid water thickness. The UV surface albedo is assigned uniform values for land and sea/ocean, except in the presence of snow. In this case it is given a value proportional to the Meteosat effective albedo. The total column ozone is extracted from the level 3 GOME products. The aerosol optical thickness is mapped by gridding the daily measurements performed by ˜1000 ground stations. The digital elevation model is the GTOPO30 data set from the U.S. Geological Survey. European wide UV dose rate maps are presented for one day in April 1997, and the influence of the various factors is illustrated. A daily integrated dose map was also generated using 27 Meteosat acquisitions at half-hour intervals on the same day. The dose map produced in this way takes into account the evolution of the cloud field and is thought to be more accurate than if it were estimated from one data take, in particular at the relatively high spatial resolution of the product. Finally, a preliminary comparison of modeled dose rate and daily dose with measurements performed with a ground instrument is discussed.
van Pelt, Roy; Nguyen, Huy; ter Haar Romeny, Bart; Vilanova, Anna
2012-03-01
Quantitative analysis of vascular blood flow, acquired by phase-contrast MRI, requires accurate segmentation of the vessel lumen. In clinical practice, 2D-cine velocity-encoded slices are inspected, and the lumen is segmented manually. However, segmentation of time-resolved volumetric blood-flow measurements is a tedious and time-consuming task requiring automation. Automated segmentation of large thoracic arteries, based solely on the 3D-cine phase-contrast MRI (PC-MRI) blood-flow data, was done. An active surface model, which is fast and topologically stable, was used. The active surface model requires an initial surface, approximating the desired segmentation. A method to generate this surface was developed based on a voxel-wise temporal maximum of blood-flow velocities. The active surface model balances forces, based on the surface structure and image features derived from the blood-flow data. The segmentation results were validated using volunteer studies, including time-resolved 3D and 2D blood-flow data. The segmented surface was intersected with a velocity-encoded PC-MRI slice, resulting in a cross-sectional contour of the lumen. These cross-sections were compared to reference contours that were manually delineated on high-resolution 2D-cine slices. The automated approach closely approximates the manual blood-flow segmentations, with error distances on the order of the voxel size. The initial surface provides a close approximation of the desired luminal geometry. This improves the convergence time of the active surface and facilitates parametrization. An active surface approach for vessel lumen segmentation was developed, suitable for quantitative analysis of 3D-cine PC-MRI blood-flow data. As opposed to prior thresholding and level-set approaches, the active surface model is topologically stable. A method to generate an initial approximate surface was developed, and various features that influence the segmentation model were evaluated. The active surface segmentation results were shown to closely approximate manual segmentations.
Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.
A Crack Closure Model and Its Application to Vibrothermography Nondestructive Evaluation
NASA Astrophysics Data System (ADS)
Schiefelbein, Bryan Edward
Vibrothermography nondestructive evaluation (NDE) is in the early stages of research and development, and there exists uncertainty in the fundamental mechanisms and processes by which heat generation occurs. Holland et al. have developed a set of tools which simulate and predict the outcome of a vibrothermography inspection by breaking the inspection into three distinct processes: vibrational excitation, heat generation, and thermal imaging. The stage of vibrothermography which is not well understood is the process by which vibrations are converted to heat at the crack surface. It has been shown that crack closure and closure state impact the resulting heat generation. Despite this, research into the link between partial crack closure and vibrothermography is limited. This work seeks to rectify this gap in knowledge by modeling the behavior of a partially closed crack in response to static external loading and a dynamic vibration. The residual strains left by the plastic wake during fatigue crack growth manifest themselves as contact stresses acting at the crack surface interface. In response to an applied load below the crack opening stress, the crack closure state will evolve, but the crack will remain partially closed. The crack closure model developed in this work is based in linear elastic fracture mechanics (LEFM) and describes the behavior of a partially closed crack in response to a tensile external load and non-uniform closure stress distribution. The model builds on work by Fleck to describe the effective length, crack opening displacement, and crack tip stress field for a partially closed crack. These quantities are solved for by first establishing an equilibrium condition which governs the effective or apparent length of the partially closed crack. The equilibrium condition states that, under any external or crack surface loading, the effective crack tip will be located where the effective stress intensity factor is zero. In LEFM, this is equivalent to saying that the effective crack tip is located where the stress singularity vanishes. If the closure stresses are unknown, the model provides an algorithm with which to solve for the distribution, given measurements of the effective crack length as a function of external load. Within literature, a number of heating mechanisms have been proposed as being dominant in vibrothermography. These include strain hysteresis, adhesion hysteresis, plastic flow, thermoelasticity, and sliding friction. Based on experimental observation and theory, this work eliminates strain hysteresis, thermoelasticity, and plastic flow as plausible heating mechanisms. This leaves friction and adhesion hysteresis as the only plausible mechanisms. Frictional heating is based on the classical Coulomb friction model, while adhesion hysteresis heating comes from irreversibility in surface adhesion. Adhesion hysteresis only satisfies the experimental observation that heating vanishes for high compressive loading if surface roughness and the instability of surface adhesion is considered. By understanding the fundamental behavior of a partially closed crack in response to non-uniform loading, and the link between crack surface motion and heat generation, we are one step closer to a fully predictive vibrothermography heat generation model. Future work is needed to extend the crack closure model to a two-dimensional semi-elliptical surface crack and better understand the distinction between frictional and adhesion heating.
NASA Astrophysics Data System (ADS)
Doten, Colleen O.; Bowling, Laura C.; Lanini, Jordan S.; Maurer, Edwin P.; Lettenmaier, Dennis P.
2006-04-01
Erosion and sediment transport in a temperate forested watershed are predicted with a new sediment model that represents the main sources of sediment generation in forested environments (mass wasting, hillslope erosion, and road surface erosion) within the distributed hydrology-soil-vegetation model (DHSVM) environment. The model produces slope failures on the basis of a factor-of-safety analysis with the infinite slope model through use of stochastically generated soil and vegetation parameters. Failed material is routed downslope with a rule-based scheme that determines sediment delivery to streams. Sediment from hillslopes and road surfaces is also transported to the channel network. A simple channel routing scheme is implemented to predict basin sediment yield. We demonstrate through an initial application of this model to the Rainy Creek catchment, a tributary of the Wenatchee River, which drains the east slopes of the Cascade Mountains, that the model produces plausible sediment yield and ratios of landsliding and surface erosion when compared to published rates for similar catchments in the Pacific Northwest. A road removal scenario and a basin-wide fire scenario are both evaluated with the model.
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime
2017-01-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J
2018-04-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.
NASA Astrophysics Data System (ADS)
Mao, Y.; Crow, W. T.; Nijssen, B.
2017-12-01
Soil moisture (SM) plays an important role in runoff generation both by partitioning infiltration and surface runoff during rainfall events and by controlling the rate of subsurface flow during inter-storm periods. Therefore, more accurate SM state estimation in hydrologic models is potentially beneficial for streamflow prediction. Various previous studies have explored the potential of assimilating SM data into hydrologic models for streamflow improvement. These studies have drawn inconsistent conclusions, ranging from significantly improved runoff via SM data assimilation (DA) to limited or degraded runoff. These studies commonly treat the whole assimilation procedure as a black box without separating the contribution of each step in the procedure, making it difficult to attribute the underlying causes of runoff improvement (or the lack thereof). In this study, we decompose the overall DA process into three steps by answering the following questions (3-step framework): 1) how much can assimilation of surface SM measurements improve surface SM state in a hydrologic model? 2) how much does surface SM improvement propagate to deeper layers? 3) How much does (surface and deeper-layer) SM improvement propagate into runoff improvement? A synthetic twin experiment is carried out in the Arkansas-Red River basin ( 600,000 km2) where a synthetic "truth" run, an open-loop run (without DA) and a DA run (where synthetic surface SM measurements are assimilated) are generated. All model runs are performed at 1/8 degree resolution and over a 10-year period using the Variable Infiltration Capacity (VIC) hydrologic model at a 3-hourly time step. For the DA run, the ensemble Kalman filter (EnKF) method is applied. The updated surface and deeper-layer SM states with DA are compared to the open-loop SM to quantitatively evaluate the first two steps in the framework. To quantify the third step, a set of perfect-state runs are generated where the "true" SM states are directly inserted in the model to assess the maximum possible runoff improvement that can be achieved by improving SM states alone. Our results show that the 3-step framework is able to effectively identify the potential as well as bottleneck of runoff improvement and point out the cases where runoff improvement via assimilation of surface SM is prone to failure.
High-order fractional partial differential equation transform for molecular surface construction.
Hu, Langhua; Chen, Duan; Wei, Guo-Wei
2013-01-01
Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation.
Mathematical model of the metal mould surface temperature optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz; Srb, Radek, E-mail: radek.srb@tul.cz
2015-11-30
The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensitymore » is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.« less
The Development and Validation of a New Land Surface Model for Regional and Global Climate Modeling
NASA Astrophysics Data System (ADS)
Lynch-Stieglitz, Marc
1995-11-01
A new land-surface scheme intended for use in mesoscale and global climate models has been developed and validated. The ground scheme consists of 6 soil layers. Diffusion and a modified tipping bucket model govern heat and water flow respectively. A 3 layer snow model has been incorporated into a modified BEST vegetation scheme. TOPMODEL equations and Digital Elevation Model data are used to generate baseflow which supports lowland saturated zones. Soil moisture heterogeneity represented by saturated lowlands subsequently impacts watershed evapotranspiration, the partitioning of surface fluxes, and the development of the storm hydrograph. Five years of meteorological and hydrological data from the Sleepers river watershed located in the eastern highlands of Vermont where winter snow cover is significant were then used to drive and validate the new scheme. Site validation data were sufficient to evaluate model performance with regard to various aspects of the watershed water balance, including snowpack growth/ablation, the spring snowmelt hydrograph, storm hydrographs, and the seasonal development of watershed evapotranspiration and soil moisture. By including topographic effects, not only are the main spring hydrographs and individual storm hydrographs adequately resolved, but the mechanisms generating runoff are consistent with current views of hydrologic processes. The seasonal movement of the mean water table depth and the saturated area of the watershed are consistent with site data and the overall model hydroclimatology, including the surface fluxes, seems reasonable.
Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes
NASA Astrophysics Data System (ADS)
Zhang, Ting; Song, Jinbao
2018-04-01
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.
NASA Technical Reports Server (NTRS)
Spar, J.; Cohen, C.
1981-01-01
The effects of terrain elevation, soil moisture, and zonal variations in sea/surface temperature on the mean daily precipitation rates over Australia, Africa, and South America in January were evaluated. It is suggested that evaporation of soil moisture may either increase or decrease the model generated precipitation, depending on the surface albedo. It was found that a flat, dry continent model best simulates the January rainfall over Australia and South America, while over Africa the simulation is improved by the inclusion of surface physics, specifically soil moisture and albedo variations.
Validation of two (parametric vs non-parametric) daily weather generators
NASA Astrophysics Data System (ADS)
Dubrovsky, M.; Skalak, P.
2015-12-01
As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed-like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30-years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series from several European stations available from the ECA&D database. Acknowledgements: The weather generator is developed and validated within the frame of projects WG4VALUE (sponsored by the Ministry of Education, Youth and Sports of CR), and VALUE (COST ES 1102 action).
Mathematical modelling of contact of ruled surfaces: theory and practical application
NASA Astrophysics Data System (ADS)
Panchuk, K. L.; Niteyskiy, A. S.
2016-04-01
In the theory of ruled surfaces there are well known researches of contact of ruled surfaces along their common generator line (Klein image is often used [1]). In this paper we propose a study of contact of non developable ruled surfaces via the dual vector calculus. The advantages of this method have been demonstrated by E. Study, W. Blaschke and D. N. Zeiliger in differential geometry studies of ruled surfaces in space R3 over the algebra of dual numbers. A practical use of contact is demonstrated by the example modeling of the working surface of the progressive tool for tillage.
Yang, Hao; Xu, Xiangyang; Neumann, Ingo
2014-11-19
Terrestrial laser scanning technology (TLS) is a new technique for quickly getting three-dimensional information. In this paper we research the health assessment of concrete structures with a Finite Element Method (FEM) model based on TLS. The goal focuses on the benefits of 3D TLS in the generation and calibration of FEM models, in order to build a convenient, efficient and intelligent model which can be widely used for the detection and assessment of bridges, buildings, subways and other objects. After comparing the finite element simulation with surface-based measurement data from TLS, the FEM model is determined to be acceptable with an error of less than 5%. The benefit of TLS lies mainly in the possibility of a surface-based validation of results predicted by the FEM model.
Incorrect Match Detection Method for Arctic Sea-Ice Reconstruction Using Uav Images
NASA Astrophysics Data System (ADS)
Kim, J.-I.; Kim, H.-C.
2018-05-01
Shapes and surface roughness, which are considered as key indicators in understanding Arctic sea-ice, can be measured from the digital surface model (DSM) of the target area. Unmanned aerial vehicle (UAV) flying at low altitudes enables theoretically accurate DSM generation. However, the characteristics of sea-ice with textureless surface and incessant motion make image matching difficult for DSM generation. In this paper, we propose a method for effectively detecting incorrect matches before correcting a sea-ice DSM derived from UAV images. The proposed method variably adjusts the size of search window to analyze the matching results of DSM generated and distinguishes incorrect matches. Experimental results showed that the sea-ice DSM produced large errors along the textureless surfaces, and that the incorrect matches could be effectively detected by the proposed method.
Trajectory fitting in function space with application to analytic modeling of surfaces
NASA Technical Reports Server (NTRS)
Barger, Raymond L.
1992-01-01
A theory for representing a parameter-dependent function as a function trajectory is described. Additionally, a theory for determining a piecewise analytic fit to the trajectory is described. An example is given that illustrates the application of the theory to generating a smooth surface through a discrete set of input cross-section shapes. A simple procedure for smoothing in the parameter direction is discussed, and a computed example is given. Application of the theory to aerodynamic surface modeling is demonstrated by applying it to a blended wing-fuselage surface.
NASA Astrophysics Data System (ADS)
Lee, Min Jin; Hong, Helen; Shim, Kyu Won; Kim, Yong Oock
2017-03-01
This paper proposes morphological descriptors representing the degree of skull deformity for craniosynostosis in head CT images and a hierarchical classifier model distinguishing among normal and different types of craniosynostosis. First, to compare deformity surface model with mean normal surface model, mean normal surface models are generated for each age range and the mean normal surface model is deformed to the deformity surface model via multi-level threestage registration. Second, four shape features including local distance and area ratio indices are extracted in each five cranial bone. Finally, hierarchical SVM classifier is proposed to distinguish between the normal and deformity. As a result, the proposed method showed improved classification results compared to traditional cranial index. Our method can be used for the early diagnosis, surgical planning and postsurgical assessment of craniosynostosis as well as quantitative analysis of skull deformity.
Integration of coastal inundation modeling from storm tides to individual waves
NASA Astrophysics Data System (ADS)
Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai
2014-11-01
Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-tide model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-tide models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm tide for modeling of phase-resolving surf and swash-zone processes as well as combined tide, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.
Compensating for estimation smoothing in kriging
Olea, R.A.; Pawlowsky, Vera
1996-01-01
Smoothing is a characteristic inherent to all minimum mean-square-error spatial estimators such as kriging. Cross-validation can be used to detect and model such smoothing. Inversion of the model produces a new estimator-compensated kriging. A numerical comparison based on an exhaustive permeability sampling of a 4-fr2 slab of Berea Sandstone shows that the estimation surface generated by compensated kriging has properties intermediate between those generated by ordinary kriging and stochastic realizations resulting from simulated annealing and sequential Gaussian simulation. The frequency distribution is well reproduced by the compensated kriging surface, which also approximates the experimental semivariogram well - better than ordinary kriging, but not as well as stochastic realizations. Compensated kriging produces surfaces that are more accurate than stochastic realizations, but not as accurate as ordinary kriging. ?? 1996 International Association for Mathematical Geology.
Field testing model predictions of foam coverage and bubble content in the surf zone
NASA Astrophysics Data System (ADS)
Shi, F.; Kirby, J. T.; Ma, G.; Holman, R. A.; Chickadel, C. C.
2012-12-01
Field-scale modeling of surfzone bubbles and foam coverage is challenging in terms of the computational intensity of multi-phase bubble models based on Navier-Stokes/VOF formulation. In this study, we developed the NHWAVE-bubble package, which includes a 3D non-hydrostatic wave model NHWAVE (Ma et al., 2012), a multi-phase bubble model and a foam model. NHWAVE uses a surface and bottom following sigma coordinate system, making it more applicable to 3D modeling of nearshore waves and circulation in a large-scale field domain. It has been extended to include a multiphase description of polydisperse bubble populations following the approach applied in a 3D VOF model by Ma et al. (2012). A model of a foam layer on the water surface is specified in the model package using a shallow water formulation based on a balance of drag forces due to wind and water column motion. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The model is applied in a field scale domain at FRF, Duck, NC where optical data in either visible band (ARGUS) or infrared band were collected during 2010 Surf Zone Optics experiments. The decay of image brightness or intensity following the passage of wave crests is presumably tied to both decay of bubble populations and foam coverage after passage of a broken wave crest. Infrared imagery is likely to provide more detailed information which could separate active breaking from passive foam decay on the surface. Model results will be compared with the measurements with an attention to distinguishing between active generation and passive decay of the foam signature on the water surface.
A Method for Automatic Surface Inspection Using a Model-Based 3D Descriptor.
Madrigal, Carlos A; Branch, John W; Restrepo, Alejandro; Mery, Domingo
2017-10-02
Automatic visual inspection allows for the identification of surface defects in manufactured parts. Nevertheless, when defects are on a sub-millimeter scale, detection and recognition are a challenge. This is particularly true when the defect generates topological deformations that are not shown with strong contrast in the 2D image. In this paper, we present a method for recognizing surface defects in 3D point clouds. Firstly, we propose a novel 3D local descriptor called the Model Point Feature Histogram (MPFH) for defect detection. Our descriptor is inspired from earlier descriptors such as the Point Feature Histogram (PFH). To construct the MPFH descriptor, the models that best fit the local surface and their normal vectors are estimated. For each surface model, its contribution weight to the formation of the surface region is calculated and from the relative difference between models of the same region a histogram is generated representing the underlying surface changes. Secondly, through a classification stage, the points on the surface are labeled according to five types of primitives and the defect is detected. Thirdly, the connected components of primitives are projected to a plane, forming a 2D image. Finally, 2D geometrical features are extracted and by a support vector machine, the defects are recognized. The database used is composed of 3D simulated surfaces and 3D reconstructions of defects in welding, artificial teeth, indentations in materials, ceramics and 3D models of defects. The quantitative and qualitative results showed that the proposed method of description is robust to noise and the scale factor, and it is sufficiently discriminative for detecting some surface defects. The performance evaluation of the proposed method was performed for a classification task of the 3D point cloud in primitives, reporting an accuracy of 95%, which is higher than for other state-of-art descriptors. The rate of recognition of defects was close to 94%.
A Method for Automatic Surface Inspection Using a Model-Based 3D Descriptor
Branch, John W.
2017-01-01
Automatic visual inspection allows for the identification of surface defects in manufactured parts. Nevertheless, when defects are on a sub-millimeter scale, detection and recognition are a challenge. This is particularly true when the defect generates topological deformations that are not shown with strong contrast in the 2D image. In this paper, we present a method for recognizing surface defects in 3D point clouds. Firstly, we propose a novel 3D local descriptor called the Model Point Feature Histogram (MPFH) for defect detection. Our descriptor is inspired from earlier descriptors such as the Point Feature Histogram (PFH). To construct the MPFH descriptor, the models that best fit the local surface and their normal vectors are estimated. For each surface model, its contribution weight to the formation of the surface region is calculated and from the relative difference between models of the same region a histogram is generated representing the underlying surface changes. Secondly, through a classification stage, the points on the surface are labeled according to five types of primitives and the defect is detected. Thirdly, the connected components of primitives are projected to a plane, forming a 2D image. Finally, 2D geometrical features are extracted and by a support vector machine, the defects are recognized. The database used is composed of 3D simulated surfaces and 3D reconstructions of defects in welding, artificial teeth, indentations in materials, ceramics and 3D models of defects. The quantitative and qualitative results showed that the proposed method of description is robust to noise and the scale factor, and it is sufficiently discriminative for detecting some surface defects. The performance evaluation of the proposed method was performed for a classification task of the 3D point cloud in primitives, reporting an accuracy of 95%, which is higher than for other state-of-art descriptors. The rate of recognition of defects was close to 94%. PMID:28974037
NASA Astrophysics Data System (ADS)
Rodríguez-Ruiz, Alejandro; Agasthya, Greeshma A.; Sechopoulos, Ioannis
2017-09-01
To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along with simultaneous acquisition of a tomosynthesis image. A pair of SL systems were used to acquire 3D surface images by projecting 24 different patterns onto the compressed breast and capturing their reflection off the breast surface in approximately 12-16 s. The 3D surface was characterized and modeled via principal component analysis. The resulting surface model was combined with a previously developed 2D model of projected compressed breast shapes to generate a full 3D model. Data from ten patients were discarded due to technical problems during image acquisition. The maximum breast thickness (found at the chest-wall) had an average value of 56 mm, and decreased 13% towards the nipple (breast tilt angle of 5.2°). The portion of the breast not in contact with the compression paddle or the support table extended on average 17 mm, 18% of the chest-wall to nipple distance. The outermost point along the breast surface lies below the midline of the total thickness. A complete 3D model of compressed breast shapes was created and implemented as a software application available for download, capable of generating new random realistic 3D shapes of breasts undergoing compression. Accurate characterization and modeling of the breast curvature and shape was achieved and will be used for various image processing and clinical tasks.
NASA Astrophysics Data System (ADS)
Donne, Sarah; Bean, Christopher; Craig, David; Dias, Frederic; Christodoulides, Paul
2016-04-01
Microseisms are continuous seismic vibrations which propagate mainly as surface Rayleigh and Love waves. They are generated by the Earth's oceans and there are two main types; primary and secondary microseisms. Primary microseisms are generated through the interaction of travelling surface gravity ocean waves with the seafloor in shallow waters relative to the wavelength of the ocean wave. Secondary microseisms, on the other hand are generated when two opposing wave trains interact and a non-linear second order effect produces a pressure fluctuation which is depth independent. The conditions necessary to produce secondary microseisms are presented in Longuet-Higgins (1950) through the interaction of two travelling waves with the same wave period and which interact at an angle of 180 degrees. Equivalent surface pressure density (p2l) is modelled using the numerical ocean wave model Wavewatch III and this term is considered as the microseism source term. This work presents an investigation of the theoretical second order pressures generated through the interaction of travelling waves with varying wave amplitude, period and angle of incidence. Predicted seafloor pressures calculated off the Southwest coast of Ireland are compared with terrestrially recorded microseism records, measured seafloor pressures and oceanographic parameters. The work presented in this study suggests that a broad set of sea states can generate second order seafloor pressures that are consistent with seafloor pressure measurements. Local seismic arrays throughout Ireland allow us to investigate the temporal covariance of these seafloor pressures with microseism source locations.
2014-10-26
From the parameterization results, we extract adaptive and anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow...field-based method [7, 12] to generate adaptive and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline ...parameterization results, we extract adaptive and anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based
The Continuing Evolution of Land Surface Parameterizations
NASA Technical Reports Server (NTRS)
Koster, Randal; Houser, Paul (Technical Monitor)
2001-01-01
Land surface models (LSMs) play a critical role in the simulation of climate, for they determine the character of a large fraction of the atmosphere's lower boundary. The LSM partitions the net radiative energy at the land surface into sensible heat, latent heat, and energy storage, and it partitions incident precipitation water into evaporation, runoff, and water storage. Numerous modeling experiments and the existing (though very scant) observational evidence suggest that variations in these partitionings can feed back on the atmospheric processes that induce them. This land-atmosphere feedback can in turn have a significant impact on the generation of continental precipitation. For this and other reasons (including the role of the land surface in converting various atmospheric quantities, such as precipitation, into quantities of perhaps higher societal relevance, such as runoff), many modeling groups are placing a high emphasis on improving the treatment of land surface processes in their models. LSMs have evolved substantially from the original bucket model of Manabe et al. This evolution, which is still ongoing, has been documented considerably. The present paper also takes a look at the evolution of LSMs. The perspective here, though, is different - the evolution is considered strictly in terms of the 'balance' between the formulations of evaporation and runoff processes. The paper will argue that a proper balance is currently missing, largely due to difficulties in treating subgrid variability in soil moisture and its impact on the generation of runoff.
Generation of Hot Water from Hot-Dry for Heavy-Oil Recovery in Northern Alberta, Canada
NASA Astrophysics Data System (ADS)
Pathak, V.; Babadagli, T.; Majorowicz, J. A.; Unsworth, M. J.
2011-12-01
The focus of prior applications of hot-dry-rock (HDR) technology was mostly aimed at generating electricity. In northern Alberta, the thermal gradient is low and, therefore, this technology is not suitable for electricity generation. On the other hand, the cost of steam and hot water, and environmental impacts, are becoming critical issues in heavy-oil and bitumen recovery in Alberta. Surface generation of steam or hot-water accounts for six percent of Canada's natural gas consumption and about 50 million tons of CO2 emission. Lowered cost and environmental impacts are critical in the widespread use of steam (for in-situ recovery) and hot-water (for surface extraction of bitumen) in this region. This paper provides an extensive analysis of hot-water generation to be used in heavy-oil/bitumen recovery. We tested different modeling approaches used to determine the amount of energy produced during HDR by history matching to example field data. The most suitable numerical and analytical models were used to apply the data obtained from different regions containing heavy-oil/bitumen deposits in northern Alberta. The heat generation capacity of different regions was determined and the use of this energy (in the form of hot-water) for surface extraction processes was evaluated. Original temperature gradients were applied as well as realistic basement formation characteristics through an extensive hydro thermal analysis in the region including an experimental well drilled to the depth of 2,500m. Existing natural fractures and possible hydraulic fracturing scenarios were evaluated from the heat generation capacity and the economics points of view. The main problem was modeling difficulties, especially determination and representation of fracture network characteristics. A sensitivity analysis was performed for the selected high temperature gradient regions in Alberta. In this practice, the characteristics of hydraulic fractures, injection rate, depth, the distance between injection and production wells and formation thickness were used as variables and an optimization study was carried out based on these variables. The results showed that the hot water (50 C at surface) needed in Fort McMurray for extraction could be obtained at lower costs than the generation of it using natural gas.
Surface-Roughness-Based Virtual Textiles: Evaluation Using a Multi-Contactor Display.
Philpott, Matthew; Summers, Ian R
2015-01-01
Virtual textiles, generated in response to exploratory movements, are presented to the fingertip via a 24-contactor vibrotactile array. Software models are based on surface-roughness profiles from real textiles. Results suggest that distinguishable "textile-like" surfaces are produced, but these lack the necessary accuracy for reliable matching to real textiles.
Influence of scanning parameters on the estimation accuracy of control points of B-spline surfaces
NASA Astrophysics Data System (ADS)
Aichinger, Julia; Schwieger, Volker
2018-04-01
This contribution deals with the influence of scanning parameters like scanning distance, incidence angle, surface quality and sampling width on the average estimated standard deviations of the position of control points from B-spline surfaces which are used to model surfaces from terrestrial laser scanning data. The influence of the scanning parameters is analyzed by the Monte Carlo based variance analysis. The samples were generated for non-correlated and correlated data, leading to the samples generated by Latin hypercube and replicated Latin hypercube sampling algorithms. Finally, the investigations show that the most influential scanning parameter is the distance from the laser scanner to the object. The angle of incidence shows a significant effect for distances of 50 m and longer, while the surface quality contributes only negligible effects. The sampling width has no influence. Optimal scanning parameters can be found in the smallest possible object distance at an angle of incidence close to 0° in the highest surface quality. The consideration of correlations improves the estimation accuracy and underlines the importance of complete stochastic models for TLS measurements.
Formulating a subgrid-scale breakup model for microbubble generation from interfacial collisions
NASA Astrophysics Data System (ADS)
Chan, Wai Hong Ronald; Mirjalili, Shahab; Urzay, Javier; Mani, Ali; Moin, Parviz
2017-11-01
Multiphase flows often involve impact events that engender important effects like the generation of a myriad of tiny bubbles that are subsequently transported in large liquid bodies. These impact events are created by large-scale phenomena like breaking waves on ocean surfaces, and often involve the relative approach of liquid surfaces. This relative motion generates continuously shrinking length scales as the entrapped gas layer thins and eventually breaks up into microbubbles. The treatment of this disparity in length scales is computationally challenging. In this presentation, a framework is presented that addresses a subgrid-scale (SGS) model aimed at capturing the process of microbubble generation. This work sets up the components in an overarching volume-of-fluid (VoF) toolset and investigates the analytical foundations of an SGS model for describing the breakup of a thin air film trapped between two approaching water bodies in a physical regime corresponding to Mesler entrainment. Constituents of the SGS model, such as the identification of impact events and the accurate computation of the local characteristic curvature in a VoF-based architecture, and the treatment of the air layer breakup, are discussed and illustrated in simplified scenarios. Supported by Office of Naval Research (ONR)/A*STAR (Singapore).
Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.
2011-01-01
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.
Demonstrating the Importance of `` Good" Models of Land Surface Hydrological Processes
NASA Astrophysics Data System (ADS)
Pitman, A.; Irannejad, P.; McGuffie, K.; Henderson-Sellers, A.
2003-12-01
To reduce the uncertainty in the prediction of land surface climates,, the Atmospheric Model Intercomparison Project (AMIP) Diagnostic Subproject 12 (DSP 12) and the Project for Intercomparison of Land-surface Parameterisation Schemes (PILPS) have analysed dependence of climate simulations on the land-surface schemes (LSSs). This analysis has comprised three efforts: (i) proving that LSSs matter in coupled simulations; (ii) investigating whether improvements in LSSs have occurred over time; and (iii) searching for novel means of validating LSS predictions. In the first, Irannejad et al. (2003) introduce a novel method for evaluating the dependence of 19 AMIP AGCMs' LH on the LSS by excluding the impact of the atmosphere. Pseudo LSSs (PLSSs) for LH in the form of multi-variable linear models expressing mean monthly LH as a function of atmospheric forcing are developed. Analysis over three large and climatically diverse river basins shows estimates of mean annual LH from the PLSSs agreeing well with the AGCMs' simulations. RMS errors range from 0.4 to 2.2 W m-2 depending on the region and the AGCM. When the PLSSs are driven by single atmospheric forcings, different LSSs behave differently, and the variability of mean annual LH among AGCMs increases. The second strand of our investigation uncovered a clear generational sequence of land-surface schemes: first generation 'no canopy'; second generation ` SiBlings'; and ` recent schemes'. We conclude that although continental surface modelling has improved over the last 30 years, full confidence remains elusive, in part due to tuning to available observations. Finally, we show that stable water isotopes challenge predictions of evaporation and condensation processes. These three-pronged findings prove that LSSs are important to AGCM and coupled climate predictions; demonstrate that new, or changed, land-surface components increase diversity among simulations; underline the need for validation data and also challenge current parameterisations with novel observations.
Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer
NASA Technical Reports Server (NTRS)
Broderick, Daniel
2012-01-01
This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.
An optimal design of wind turbine and ship structure based on neuro-response surface method
NASA Astrophysics Data System (ADS)
Lee, Jae-Chul; Shin, Sung-Chul; Kim, Soo-Young
2015-07-01
The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad
Existing methodologies for estimating the electricity generation potential of Enhanced Geothermal Systems (EGS) assume thermal recovery factors of 5% or less, resulting in relatively low volumetric electricity generation potentials for EGS reservoirs. This study proposes and develops a methodology for calculating EGS electricity generation potential based on the Gringarten conceptual model and analytical solution for heat extraction from fractured rock. The electricity generation potential of a cubic kilometer of rock as a function of temperature is calculated assuming limits on the allowed produced water temperature decline and reservoir lifetime based on surface power plant constraints. The resulting estimates of EGSmore » electricity generation potential can be one to nearly two-orders of magnitude larger than those from existing methodologies. The flow per unit fracture surface area from the Gringarten solution is found to be a key term in describing the conceptual reservoir behavior. The methodology can be applied to aid in the design of EGS reservoirs by giving minimum reservoir volume, fracture spacing, number of fractures, and flow requirements for a target reservoir power output. Limitations of the idealized model compared to actual reservoir performance and the implications on reservoir design are discussed.« less
Ainalem, Marie-Louise; Campbell, Richard A; Khalid, Syma; Gillams, Richard J; Rennie, Adrian R; Nylander, Tommy
2010-06-03
Poly(amido amine) (PAMAM) dendrimers have previously been shown, as cationic condensing agents of DNA, to have high potential for nonviral gene delivery. This study addresses two key issues for gene delivery: the interaction of the biomembrane with (i) the condensing agent (the cationic PAMAM dendrimer) and (ii) the corresponding dendrimer/DNA aggregate. Using in situ null ellipsometry and neutron reflection, parallel experiments were carried out involving dendrimers of generations 2 (G2), 4 (G4), and 6 (G6). The study demonstrates that free dendrimers of all three generations were able to traverse supported palmitoyloleoylphosphatidylcholine (POPC) bilayers deposited on silica surfaces. The model biomembranes were elevated from the solid surfaces upon dendrimer penetration, which offers a promising new way to generate more realistic model biomembranes where the contact with the supporting surface is reduced and where aqueous cavities are present beneath the bilayer. The largest dendrimer (G6) induced partial bilayer destruction directly upon penetration, whereas the smaller dendrimers (G2 and G4) leave the bilayer intact, so we propose that lower generation dendrimers have greater potential as transfection mediators. In addition to the experimental observations, coarse-grained simulations on the interaction between generation 3 (G3) dendrimers and POPC bilayers were performed in the absence and presence of a bilayer-supporting negatively charged surface that emulates the support. The simulations demonstrate that G3 is transported across free-standing POPC bilayers by direct penetration and not by endocytosis. The penetrability was, however, reduced in the presence of a surface, indicating that the membrane transport observed experimentally was not driven solely by the surface. The experimental reflection techniques were also applied to dendrimer/DNA aggregates of charge ratio = 0.5, and while G2/DNA and G4/DNA aggregates interact with POPC bilayers, G6/DNA displays no such interaction. These results indicate that, in contrast to free dendrimer molecules, dendrimer/DNA aggregates of low charge ratios are not able to traverse a membrane by direct penetration.
Materials Database Development for Ballistic Impact Modeling
NASA Technical Reports Server (NTRS)
Pereira, J. Michael
2007-01-01
A set of experimental data is being generated under the Fundamental Aeronautics Program Supersonics project to help create and validate accurate computational impact models of jet engine impact events. The data generated will include material property data generated at a range of different strain rates, from 1x10(exp -4)/sec to 5x10(exp 4)/sec, over a range of temperatures. In addition, carefully instrumented ballistic impact tests will be conducted on flat plates and curved structures to provide material and structural response information to help validate the computational models. The material property data and the ballistic impact data will be generated using materials from the same lot, as far as possible. It was found in preliminary testing that the surface finish of test specimens has an effect on measured high strain rate tension response of AL2024. Both the maximum stress and maximum elongation are greater on specimens with a smoother finish. This report gives an overview of the testing that is being conducted and presents results of preliminary testing of the surface finish study.
Surface relief model for photopolymers without cover plating.
Gallego, S; Márquez, A; Ortuño, M; Francés, J; Marini, S; Beléndez, A; Pascual, I
2011-05-23
Relief surface changes provide interesting possibilities for storing diffractive optical elements on photopolymers and are an important source of information to characterize and understand the material behaviour. In this paper we present a 3-dimensional model based on direct measurements of parameters to predict the relief structures generated on the material. This model is successfully applied to different photopolymers with different values of monomer diffusion. The importance of monomer diffusion in depth is also discussed.
NASA Technical Reports Server (NTRS)
Holms, A. G.
1974-01-01
Monte Carlo studies using population models intended to represent response surface applications are reported. Simulated experiments were generated by adding pseudo random normally distributed errors to population values to generate observations. Model equations were fitted to the observations and the decision procedure was used to delete terms. Comparison of values predicted by the reduced models with the true population values enabled the identification of deletion strategies that are approximately optimal for minimizing prediction errors.
Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir
2018-04-10
We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .
Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco; ...
2018-03-15
Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco
Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less
NASA Astrophysics Data System (ADS)
Stieglitz, Marc; Rind, David; Famiglietti, James; Rosenzweig, Cynthia
1997-01-01
The current generation of land-surface models used in GCMs view the soil column as the fundamental hydrologic unit. While this may be effective in simulating such processes as the evolution of ground temperatures and the growth/ablation of a snowpack at the soil plot scale, it effectively ignores the role topography plays in the development of soil moisture heterogeneity and the subsequent impacts of this soil moisture heterogeneity on watershed evapotranspiration and the partitioning of surface fluxes. This view also ignores the role topography plays in the timing of discharge and the partitioning of discharge into surface runoff and baseflow. In this paper an approach to land-surface modeling is presented that allows us to view the watershed as the fundamental hydrologic unit. The analytic form of TOPMODEL equations are incorporated into the soil column framework and the resulting model is used to predict the saturated fraction of the watershed and baseflow in a consistent fashion. Soil moisture heterogeneity represented by saturated lowlands subsequently impacts the partitioning of surface fluxes, including evapotranspiration and runoff. The approach is computationally efficient, allows for a greatly improved simulation of the hydrologic cycle, and is easily coupled into the existing framework of the current generation of single column land-surface models. Because this approach uses the statistics of the topography rather than the details of the topography, it is compatible with the large spatial scales of today's regional and global climate models. Five years of meteorological and hydrological data from the Sleepers River watershed located in the northeastern United States where winter snow cover is significant were used to drive the new model. Site validation data were sufficient to evaluate model performance with regard to various aspects of the watershed water balance, including snowpack growth/ablation, the spring snowmelt hydrograph, storm hydrographs, and the seasonal development of watershed evapotranspiration and soil moisture.
NASA Astrophysics Data System (ADS)
Colangelo, Antonio C.
2010-05-01
The central purpose of this work is to perform a reverse procedure in the mass movement conventional parameterization approach. The idea is to generate a number of synthetic mass movements by means of the "slope stability simulator" (Colangelo, 2007), and compeer their morphological and physical properties with "real" conditions of effective mass movements. This device is an integrated part of "relief unity emulator" (rue), that permits generate synthetic mass movements in a synthetic slope environment. The "rue" was build upon fundamental geomorphological concepts. These devices operate with an integrated set of mechanical, geomorphic and hydrological models. The "slope stability simulator" device (sss) permits to perform a detailed slope stability analysis in a theoretical three dimensional space, by means of evaluation the spatial behavior of critical depths, gradients and saturation levels in the "potential rupture surfaces" inferred along a set of slope profiles, that compounds a synthetic slope unity. It's a meta-stable 4-dimensional object generated by means of "rue", that represents a sequence evolution of a generator profile applied here, was adapted the infinite slope model for slope. Any slope profiles were sliced by means of finite element solution like in Bishop method. For the synthetic slope systems generated, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. Sixteen variables were included in the "rue-sss" device that operates in an integrated manner. For each cell, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, potential rupture surface gradient, slope surface gradient, top of subsurface flow gradient, apparent soil bulk density and vegetation surcharge. The slope soil was considered as cohesive material. The 16 variables incorporated in the models were analyzed for each cell in synthetic slope systems performed by relief unity emulator. The central methodological strategy is to locate the potential rupture surfaces (prs), main material discontinuities, like soil-regolith or regolith-rock transitions. Inner these "prs", we would to outline the effective potential rupture surfaces (eprs). This surface is a sub-set of the "prs" that presents safety factor less than unity (f<1), the sub-region in the "prs" equal or deeper than critical depths. When the effective potential rupture surface acquires significant extension with respect the thickness of critical depth and retaining walls, the "slope stability simulator" generates a synthetic mass movement. The overlay material will slide until that a new equilibrium be attained at residual shear strength. These devices generate graphic 3D cinematic sequences of experiments in synthetic slope systems and numerical results about physical and morphological data about scars and deposits. Thus, we have a detailed geotechnical, morphological, topographic and morphometric description of these mass movements prototypes, for deal with effective mass movements found in the real environments.
Kinetic analysis of the interaction between poly(amidoamine) dendrimers and model lipid membranes.
Tiriveedhi, Venkataswarup; Kitchens, Kelly M; Nevels, Kerrick J; Ghandehari, Hamidreza; Butko, Peter
2011-01-01
We used fluorescence spectroscopy and surface tensiometry to study the interaction between low-generation (G1 and G4) poly(amidoamine) (PAMAM) dendrimers, potential vehicles for intracellular drug delivery, and model lipid bilayers. Membrane association of fluorescently labeled dendrimers, measured by fluorescence anisotropy, increased with increasing size of the dendrimer and with increasing negative charge density in the membrane, indicating the electrostatic nature of the interaction. When the membrane was doped with pyrene-labeled phosphatidyl glycerol (pyrene-PG), pyrene excimer fluorescence demonstrated a dendrimer-induced selective aggregation of negatively charged lipids when the membrane was in the liquid crystalline state. A nonlinear Stern-Volmer quenching of dendrimer fluorescence with cobalt bromide suggested a dendrimer-induced aggregation of lipid vesicles, which increased with the dendrimer's generation number. Surface tensiometry measurements showed that dendrimers penetrated into the lipid monolayer only at subphysiologic surface pressures (<30mN/m). We conclude that the low-generation PAMAM dendrimers associate with lipid membranes predominantly electrostatically, without significantly compromising the bilayer integrity. They bind stronger to membranes with higher fluidity and lower surface pressure, which are characteristic of rapidly dividing cells. Copyright © 2010 Elsevier B.V. All rights reserved.
Equipotential doming in flooded circular basins on the moon
NASA Technical Reports Server (NTRS)
Roth, L. E.; Elachi, C.; Phillips, R. J.
1977-01-01
A procedure is presented that permits determination of the shape of the gravity field due to an arbitrary mass configuration with circular symmetry. The procedure is used to model the shape of the field associated with the lunar circular basins. The mean slopes of the equipotential surfaces generated by a superisostatic deposit corresponding to a near-surface Crisium-size mascon are calculated to fall within the range from 1:700 to 1:1000; those generated by a mantle rebound of the same excess mass, at 60 km below the lunar surface, cluster around the value of 1:1500.
Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces.
Sprangle, P; Peñano, J R; Hafizi, B; Kapetanakos, C A
2004-06-01
Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, < 10(-8). Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated.
Simulation of an Ice Giant-style Dynamo
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Aurnou, J. M.
2010-12-01
The Ice Giants, Uranus and Neptune, are unique in the solar system. These planets are the only known bodies to have multipolar magnetic fields where the quadrupole and octopole components have strengths comparable to or greater than that of the dipole. Cloud layer observations show that the planets also have zonal (east-west) flows that are fundamentally different from the banded winds of Jupiter and Saturn. The surface winds are characterized by strong retrograde equatorial jets that are flanked on either side by prograde jets at high latitudes. Thermal emission measurements of Neptune show that the surface energy flux pattern peaks in the equatorial and polar regions with minima at mid-latitudes. (The measurements for Uranus cannot adequately resolve the emission pattern.) The winds and magnetic fields are thought to be the result of convection in the planetary interior, which will also affect the heat flux pattern. Typically, it is implicitly assumed that the zonal winds are generated in a shallow layer, separate from the dynamo generation region. However, if the magnetic fields are driven near the surface, a single region can simultaneously generate both the zonal flows and the magnetic fields. Here, we present a novel numerical model of an Ice Giant-style dynamo to investigate this possibility. An order unity convective Rossby number (ratio of buoyancy to Coriolis forces) has been chosen because retrograde equatorial jets tend to occur in spherical shells when the effects of rotation are relatively weak. Our modeling results qualitatively reproduce all of the structural features of the global dynamical observations. Thus, a self-consistent model can generate magnetic field, zonal flow, and thermal emission patterns that agree with those of Uranus and Neptune. This model, then, leads us to hypothesize that the Ice Giants' zonal flows and magnetic fields are generated via dynamically coupled deep convection processes.
The importance of topographically corrected null models for analyzing ecological point processes.
McDowall, Philip; Lynch, Heather J
2017-07-01
Analyses of point process patterns and related techniques (e.g., MaxEnt) make use of the expected number of occurrences per unit area and second-order statistics based on the distance between occurrences. Ecologists working with point process data often assume that points exist on a two-dimensional x-y plane or within a three-dimensional volume, when in fact many observed point patterns are generated on a two-dimensional surface existing within three-dimensional space. For many surfaces, however, such as the topography of landscapes, the projection from the surface to the x-y plane preserves neither area nor distance. As such, when these point patterns are implicitly projected to and analyzed in the x-y plane, our expectations of the point pattern's statistical properties may not be met. When used in hypothesis testing, we find that the failure to account for the topography of the generating surface may bias statistical tests that incorrectly identify clustering and, furthermore, may bias coefficients in inhomogeneous point process models that incorporate slope as a covariate. We demonstrate the circumstances under which this bias is significant, and present simple methods that allow point processes to be simulated with corrections for topography. These point patterns can then be used to generate "topographically corrected" null models against which observed point processes can be compared. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Wilson, John P.
2012-01-01
This article examines how the methods and data sources used to generate DEMs and calculate land surface parameters have changed over the past 25 years. The primary goal is to describe the state-of-the-art for a typical digital terrain modeling workflow that starts with data capture, continues with data preprocessing and DEM generation, and concludes with the calculation of one or more primary and secondary land surface parameters. The article first describes some of ways in which LiDAR and RADAR remote sensing technologies have transformed the sources and methods for capturing elevation data. It next discusses the need for and various methods that are currently used to preprocess DEMs along with some of the challenges that confront those who tackle these tasks. The bulk of the article describes some of the subtleties involved in calculating the primary land surface parameters that are derived directly from DEMs without additional inputs and the two sets of secondary land surface parameters that are commonly used to model solar radiation and the accompanying interactions between the land surface and the atmosphere on the one hand and water flow and related surface processes on the other. It concludes with a discussion of the various kinds of errors that are embedded in DEMs, how these may be propagated and carried forward in calculating various land surface parameters, and the consequences of this state-of-affairs for the modern terrain analyst.
NASA Astrophysics Data System (ADS)
Blyth, E.; Martinez-de la Torre, A.; Ellis, R.; Robinson, E.
2017-12-01
The fresh-water budget of the Artic region has a diverse range of impacts: the ecosystems of the region, ocean circulation response to Arctic freshwater, methane emissions through changing wetland extent as well as the available fresh water for human consumption. But there are many processes that control the budget including a seasonal snow packs building and thawing, freezing soils and permafrost, extensive organic soils and large wetland systems. All these processes interact to create a complex hydrological system. In this study we examine a suite of 10 models that bring all those processes together in a 25 year reanalysis of the global water budget. We assess their performance in the Arctic region. There are two approaches to modelling fresh-water flows at large scales, referred to here as `Hydrological' and `Land Surface' models. While both approaches include a physically based model of the water stores and fluxes, the Land Surface models links the water flows to an energy-based model for processes such as snow melt and soil freezing. This study will analyse the impact of that basic difference on the regional patterns of evapotranspiration, runoff generation and terrestrial water storage. For the evapotranspiration, the Hydrological models tend to have a bigger spatial range in the model bias (difference to observations), implying greater errors compared to the Land-Surface models. For instance, some regions such as Eastern Siberia have consistently lower Evaporation in the Hydrological models than the Land Surface models. For the Runoff however, the results are the other way round with a slightly higher spatial range in bias for the Land Surface models implying greater errors than the Hydrological models. A simple analysis would suggest that Hydrological models are designed to get the runoff right, while Land Surface models designed to get the evapotranspiration right. Tracing the source of the difference suggests that the difference comes from the treatment of snow and evapotranspiration. The study reveals that expertise in the role of snow on runoff generation and evapotranspiration in Hydrological and Land Surface could be combined to improve the representation of the fresh water flows in the Arctic in both approaches. Improved observations are essential to make these modelling advances possible.
Mesin, Luca
2015-02-01
Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.
Integration of Heterogenous Digital Surface Models
NASA Astrophysics Data System (ADS)
Boesch, R.; Ginzler, C.
2011-08-01
The application of extended digital surface models often reveals, that despite an acceptable global accuracy for a given dataset, the local accuracy of the model can vary in a wide range. For high resolution applications which cover the spatial extent of a whole country, this can be a major drawback. Within the Swiss National Forest Inventory (NFI), two digital surface models are available, one derived from LiDAR point data and the other from aerial images. Automatic photogrammetric image matching with ADS80 aerial infrared images with 25cm and 50cm resolution is used to generate a surface model (ADS-DSM) with 1m resolution covering whole switzerland (approx. 41000 km2). The spatially corresponding LiDAR dataset has a global point density of 0.5 points per m2 and is mainly used in applications as interpolated grid with 2m resolution (LiDAR-DSM). Although both surface models seem to offer a comparable accuracy from a global view, local analysis shows significant differences. Both datasets have been acquired over several years. Concerning LiDAR-DSM, different flight patterns and inconsistent quality control result in a significantly varying point density. The image acquisition of the ADS-DSM is also stretched over several years and the model generation is hampered by clouds, varying illumination and shadow effects. Nevertheless many classification and feature extraction applications requiring high resolution data depend on the local accuracy of the used surface model, therefore precise knowledge of the local data quality is essential. The commercial photogrammetric software NGATE (part of SOCET SET) generates the image based surface model (ADS-DSM) and delivers also a map with figures of merit (FOM) of the matching process for each calculated height pixel. The FOM-map contains matching codes like high slope, excessive shift or low correlation. For the generation of the LiDAR-DSM only first- and last-pulse data was available. Therefore only the point distribution can be used to derive a local accuracy measure. For the calculation of a robust point distribution measure, a constrained triangulation of local points (within an area of 100m2) has been implemented using the Open Source project CGAL. The area of each triangle is a measure for the spatial distribution of raw points in this local area. Combining the FOM-map with the local evaluation of LiDAR points allows an appropriate local accuracy evaluation of both surface models. The currently implemented strategy ("partial replacement") uses the hypothesis, that the ADS-DSM is superior due to its better global accuracy of 1m. If the local analysis of the FOM-map within the 100m2 area shows significant matching errors, the corresponding area of the triangulated LiDAR points is analyzed. If the point density and distribution is sufficient, the LiDAR-DSM will be used in favor of the ADS-DSM at this location. If the local triangulation reflects low point density or the variance of triangle areas exceeds a threshold, the investigated location will be marked as NODATA area. In a future implementation ("anisotropic fusion") an anisotropic inverse distance weighting (IDW) will be used, which merges both surface models in the point data space by using FOM-map and local triangulation to derive a quality weight for each of the interpolation points. The "partial replacement" implementation and the "fusion" prototype for the anisotropic IDW make use of the Open Source projects CGAL (Computational Geometry Algorithms Library), GDAL (Geospatial Data Abstraction Library) and OpenCV (Open Source Computer Vision).
Simulation of Earthquake-Generated Sea-Surface Deformation
NASA Astrophysics Data System (ADS)
Vogl, Chris; Leveque, Randy
2016-11-01
Earthquake-generated tsunamis can carry with them a powerful, destructive force. One of the most well-known, recent examples is the tsunami generated by the Tohoku earthquake, which was responsible for the nuclear disaster in Fukushima. Tsunami simulation and forecasting, a necessary element of emergency procedure planning and execution, is typically done using the shallow-water equations. A typical initial condition is that using the Okada solution for a homogeneous, elastic half-space. This work focuses on simulating earthquake-generated sea-surface deformations that are more true to the physics of the materials involved. In particular, a water layer is added on top of the half-space that models the seabed. Sea-surface deformations are then simulated using the Clawpack hyperbolic PDE package. Results from considering the water layer both as linearly elastic and as "nearly incompressible" are compared to that of the Okada solution.
Hexadecylamine Adsorption at the Iron Oxide–Oil Interface
2013-01-01
The adsorption behavior of a model additive, hexadecylamine, onto an iron surface from hexadecane oil has been characterized using polarized neutron reflectometry, sum-frequency generation spectroscopy, solution depletion isotherm, and X-ray photoelectron spectroscopy (XPS). The amine showed a strong affinity for the metal surface, forming a dense monolayer at relatively low concentrations; a layer thickness of 16 (±3) Å at low concentrations, increasing to 20 (±3) Å at greater amine concentrations, was determined from the neutron data. These thicknesses suggest that the molecules in the layer are tilted. Adsorption was also indicated by sum-frequency generation spectroscopy and XPS, the latter indicating that the most dominant amine–surface interaction was via electron donation from the nitrogen lone pair to the positively charged iron ions. Sum-frequency generation spectroscopy was used to determine the alkyl chain conformation order and orientation on the surface. PMID:24106786
Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.
2014-01-01
The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.
Pdf modeling for premixed turbulent combustion based on the properties of iso-concentration surfaces
NASA Technical Reports Server (NTRS)
Vervisch, L.; Kollmann, W.; Bray, K. N. C.; Mantel, T.
1994-01-01
In premixed turbulent flames the presence of intense mixing zones located in front of and behind the flame surface leads to a requirement to study the behavior of iso-concentration surfaces defined for all values of the progress variable (equal to unity in burnt gases and to zero in fresh mixtures). To support this study, some theoretical and mathematical tools devoted to level surfaces are first developed. Then a database of direct numerical simulations of turbulent premixed flames is generated and used to investigate the internal structure of the flame brush, and a new pdf model based on the properties of iso-surfaces is proposed.
Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator
NASA Astrophysics Data System (ADS)
Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.
2012-12-01
Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)
NASA Astrophysics Data System (ADS)
Anzenhofer, M.; Gruber, T.
1998-04-01
Global mean sea level observations are necessary to answer the urgent questions about climate changes and their impact on socio-economy. At GeoForschungsZentrum/Geman Processing and Archiving Facility ERS altimeter data is used to systematically generate geophysical products such as sea surface topography, high-resolution geoid and short- and long-period sea surface height models. On the basis of this experience, fully reprocessed ERS-1 altimeter data is used to generated a time series of monthly sea surface height models from April 1992 to April 1995. The reprocessing consists of improved satellite ephemerides, merging of Grenoble tidal model, and application of range corrections due to timing errors. With the new data set the TOPEX/POSEIDON prelaunch accuracy requirements are fulfilled. The 3-year time series is taken to estimate the rate of change of global mean sea level. A careful treatment of seasonal effects is considered. A masking of continents, sea ice, and suspect sea surface heights is chosen that is common for all sea surface height models. The obtained rate of change is compared to external results from tide gauge records and TOPEX/POSEIDON data. The relation of sea level changes and sea surface temperature variations is examined by means of global monthly sea surface temperature maps. Both global wind speed and wave height maps are investigated and correlated with sea surface heights and sea surface temperatures in order to find other indicators of climate variations. The obtained rate of changes of the various global maps is compared to an atmospheric CO2 anomaly record, which is highly correlated to El Niño events. The relatively short period of 3 years, however, does not allow definite conclusions with respect to possible long-term climate changes.
NASA Astrophysics Data System (ADS)
Liu, Huiqing; Xie, Lian
2009-06-01
The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.
Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin
2016-10-26
The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.
Colour computer-generated holography for point clouds utilizing the Phong illumination model.
Symeonidou, Athanasia; Blinder, David; Schelkens, Peter
2018-04-16
A technique integrating the bidirectional reflectance distribution function (BRDF) is proposed to generate realistic high-quality colour computer-generated holograms (CGHs). We build on prior work, namely a fast computer-generated holography method for point clouds that handles occlusions. We extend the method by integrating the Phong illumination model so that the properties of the objects' surfaces are taken into account to achieve natural light phenomena such as reflections and shadows. Our experiments show that rendering holograms with the proposed algorithm provides realistic looking objects without any noteworthy increase to the computational cost.
Rapid SAW Sensor Development Tools
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2007-01-01
The lack of integrated design tools for Surface Acoustic Wave (SAW) devices has led us to develop tools for the design, modeling, analysis, and automatic layout generation of SAW devices. These tools enable rapid development of wireless SAW sensors. The tools developed have been designed to integrate into existing Electronic Design Automation (EDA) tools to take advantage of existing 3D modeling, and Finite Element Analysis (FEA). This paper presents the SAW design, modeling, analysis, and automated layout generation tools.
Biomolecular surface construction by PDE transform.
Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei
2012-03-01
This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high-order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high-order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high-order PDEs. As a consequence, the time integration of high-order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two-dimensional and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and a standard approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, that is, surface area, surface-enclosed volume, solvation free energy, and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform-based surface method, we solve the Poisson-Nernst-Planck equations with a PDE transform surface of a protein. Second-order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform-based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable, and efficient approach for biomolecular surface generation in Cartesian meshes. Copyright © 2012 John Wiley & Sons, Ltd.
GridTool: A surface modeling and grid generation tool
NASA Technical Reports Server (NTRS)
Samareh-Abolhassani, Jamshid
1995-01-01
GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.
Modeling polyvinyl chloride Plasma Modification by Neural Networks
NASA Astrophysics Data System (ADS)
Wang, Changquan
2018-03-01
Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.
Forward Scattering from Fetch-Limited and Swell-Contaminated Sea Surfaces
1992-10-01
limited wind fields, and the global/re- Hasselman 5 et al. have proposed that a constant value for y gional deep water wave model7 ( DWAVE ) for surfaces gen...where it is difficult to define the Pierson-Moskowitz or JONSWAP descriptions, DWAVE fetch, the peak frequency of the observed spectrum can be...generating winds, the DWAVE model dependence of the spectrum on azimuthal variation, it is ex- has been employed. This model numerically calculates the
Simulation and Observation of Acoustic-Gravity Waves in the Ionosphere
NASA Astrophysics Data System (ADS)
Kunitsyn, Viacheslav; Andreeva, Elena; Krysanov, Boris; Nesterov, Ivan
Atmospheric and ionospheric perturbations associated with the acoustic-gravity waves (AGW) with typical frequencies of a few hertz -millihertz are considered. These events may be caused by the influence from space and atmosphere as well as by oscillations of the Earth surface and other near-surface phenomena. The surface sources include long-period oscillations of the Earth's surface, earthquakes, explosions, thermal heating, seisches and tsunami waves. The wavelike phenomena manifest themself as travelling disturbances of air (in the atmosphere) and of electron density (in the ionosphere). Travelling ionospheric disturbances (TIDs) are well detected by radio physical methods. AGW generation by near-surface sources is modeled by the numerical solution of the equation of geophysical fluid dynamics for different sources in two-dimensional non-linear dissipative compressible atmosphere. The numerical calculations are based on the FCT (Flux Corrected Transport) technique of the second order accuracy in time and space. Different scenarios of AGW generation are analyzed. The AGW caused by the surface sources within a few hertz-millihertz frequency band appear at the altitudes of middle atmosphere and ionosphere as the disturbances with typical scales from a few kilometers to several hundreds kilometers. Such structures can be successfully monitored by the methods of satellite radio tomography (RT). For the purposes of RT diagnostics of such disturbances, low-orbiting navigational satellites like Transit and Tsikada and high-orbiting navigation systems GPS/GLONASS are used. The results of numerical modeling of AGW generation by the surface sources are compared with the data of RT sounding. Also, generation of AGW by volumetric sources such as particle precipitation, rocket launching, heating by high-frequency radiation and other are considered. The obtained results proved the capability of RT methods of detecting and distinguishing between TIDs caused by AGW generated by surface sources, on one hand, and the ionospheric disturbances caused by AGW from volumetric sources in the atmosphere and space, on the other hand. The work was supported by the Russian Foundation for Basic Research (grants 08-05-00676 and 10-05-01126).
NASA Astrophysics Data System (ADS)
Ashfaqur Rahman, M.; Almazroui, Mansour; Nazrul Islam, M.; O'Brien, Enda; Yousef, Ahmed Elsayed
2018-02-01
A new version of the Community Land Model (CLM) was introduced to the Saudi King Abdulaziz University Atmospheric Global Climate Model (Saudi-KAU AGCM) for better land surface component representation, and so to enhance climate simulation. CLM replaced the original land surface model (LSM) in Saudi-KAU AGCM, with the aim of simulating more accurate land surface fluxes globally, but especially over the Arabian Peninsula. To evaluate the performance of Saudi-KAU AGCM, simulations were completed with CLM and LSM for the period 1981-2010. In comparison with LSM, CLM generates surface air temperature values that are closer to National Centre for Environmental Prediction (NCEP) observations. The global annual averages of land surface air temperature are 9.51, 9.52, and 9.57 °C for NCEP, CLM, and LSM respectively, although the same atmospheric radiative and surface forcing from Saudi-KAU AGCM are provided to both LSM and CLM at every time step. The better temperature simulations when using CLM can be attributed to the more comprehensive plant functional type and hierarchical tile approach to the land cover type in CLM, along with better parameterization of upward land surface fluxes compared to LSM. At global scale, CLM exhibits smaller annual and seasonal mean biases of temperature with respect to NCEP data. Moreover, at regional scale, CLM demonstrates reasonable seasonal and annual mean temperature over the Arabian Peninsula as compared to the Climatic Research Unit (CRU) data. Finally, CLM generated better matches to single point-wise observations of surface air temperature and surface fluxes for some case studies.
Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces
NASA Astrophysics Data System (ADS)
Rinker, Jennifer M.
2016-09-01
This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity.
Regional climates in the GISS general circulation model: Surface air temperature
NASA Technical Reports Server (NTRS)
Hewitson, Bruce
1994-01-01
One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.
NASA Astrophysics Data System (ADS)
Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David
2013-01-01
Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.
Modelling the degree of porosity of the ceramic surface intended for implants.
Stach, Sebastian; Kędzia, Olga; Garczyk, Żaneta; Wróbel, Zygmunt
2018-05-18
The main goal of the study was to develop a model of the degree of surface porosity of a biomaterial intended for implants. The model was implemented using MATLAB. A computer simulation was carried out based on the developed model, which resulted in a two-dimensional image of the modelled surface. Then, an algorithm for computerised image analysis of the surface of the actual oxide bioceramic layer was developed, which enabled determining its degree of porosity. In order to obtain the confocal micrographs of a few areas of the biomaterial, measurements were performed using the LEXT OLS4000 confocal laser microscope. The image analysis was carried out using MountainsMap Premium and SPIP. The obtained results allowed determining the input parameters of the program, on the basis of which porous biomaterial surface images were generated. The last part of the study involved verification of the developed model. The modelling method was tested by comparing the obtained results with the experimental data obtained from the analysis of surface images of the test material.
Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations
Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael
2014-01-01
Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.
NASA Astrophysics Data System (ADS)
Hayat, T.; Khan, M. Ijaz; Qayyum, Sumaira; Alsaedi, A.; Khan, M. Imran
2018-03-01
This research addressed entropy generation for MHD stagnation point flow of viscous nanofluid over a stretching surface. Characteristics of heat transport are analyzed through nonlinear radiation and heat generation/absorption. Nanoliquid features for Brownian moment and thermophoresis have been considered. Fluid in the presence of constant applied inclined magnetic field is considered. Flow problem is mathematically modeled and governing expressions are changed into nonlinear ordinary ones by utilizing appropriate transformations. The effects of pertinent variables on velocity, nanoparticle concentration and temperature are discussed graphically. Furthermore Brownian motion and thermophoresis effects on entropy generation and Bejan number have been examined. Total entropy generation is inspected through various flow variables. Consideration is mainly given to the convergence process. Velocity, temperature and mass gradients at the surface of sheet are calculated numerically.
High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models
NASA Astrophysics Data System (ADS)
Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David
2014-12-01
High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.
A nested observation and model approach to non linear groundwater surface water interactions.
NASA Astrophysics Data System (ADS)
van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.
2009-04-01
Surface water quality measurements in The Netherlands are scattered in time and space. Therefore, water quality status and its variations and trends are difficult to determine. In order to reach the water quality goals according to the European Water Framework Directive, we need to improve our understanding of the dynamics of surface water quality and the processes that affect it. In heavily drained lowland catchment groundwater influences the discharge towards the surface water network in many complex ways. Especially a strong seasonal contracting and expanding system of discharging ditches and streams affects discharge and solute transport. At a tube drained field site the tube drain flux and the combined flux of all other flow routes toward a stretch of 45 m of surface water have been measured for a year. Also the groundwater levels at various locations in the field and the discharge at two nested catchment scales have been monitored. The unique reaction of individual flow routes on rainfall events at the field site allowed us to separate the discharge at a 4 ha catchment and at a 6 km2 into flow route contributions. The results of this nested experimental setup combined with the results of a distributed hydrological model has lead to the formulation of a process model approach that focuses on the spatial variability of discharge generation driven by temporal and spatial variations in groundwater levels. The main idea of this approach is that discharge is not generated by catchment average storages or groundwater heads, but is mainly generated by points scale extremes i.e. extreme low permeability, extreme high groundwater heads or extreme low surface elevations, all leading to catchment discharge. We focused on describing the spatial extremes in point scale storages and this led to a simple and measurable expression that governs the non-linear groundwater surface water interaction. We will present the analysis of the field site data to demonstrate the potential of nested-scale, high frequency observations. The distributed hydrological model results will be used to show transient catchment scale relations between groundwater levels and discharges. These analyses lead to a simple expression that can describe catchment scale groundwater surface water interactions.
Software for Simulation of Hyperspectral Images
NASA Technical Reports Server (NTRS)
Richtsmeier, Steven C.; Singer-Berk, Alexander; Bernstein, Lawrence S.
2002-01-01
A package of software generates simulated hyperspectral images for use in validating algorithms that generate estimates of Earth-surface spectral reflectance from hyperspectral images acquired by airborne and spaceborne instruments. This software is based on a direct simulation Monte Carlo approach for modeling three-dimensional atmospheric radiative transport as well as surfaces characterized by spatially inhomogeneous bidirectional reflectance distribution functions. In this approach, 'ground truth' is accurately known through input specification of surface and atmospheric properties, and it is practical to consider wide variations of these properties. The software can treat both land and ocean surfaces and the effects of finite clouds with surface shadowing. The spectral/spatial data cubes computed by use of this software can serve both as a substitute for and a supplement to field validation data.
Simulation of Hyperspectral Images
NASA Technical Reports Server (NTRS)
Richsmeier, Steven C.; Singer-Berk, Alexander; Bernstein, Lawrence S.
2004-01-01
A software package generates simulated hyperspectral imagery for use in validating algorithms that generate estimates of Earth-surface spectral reflectance from hyperspectral images acquired by airborne and spaceborne instruments. This software is based on a direct simulation Monte Carlo approach for modeling three-dimensional atmospheric radiative transport, as well as reflections from surfaces characterized by spatially inhomogeneous bidirectional reflectance distribution functions. In this approach, "ground truth" is accurately known through input specification of surface and atmospheric properties, and it is practical to consider wide variations of these properties. The software can treat both land and ocean surfaces, as well as the effects of finite clouds with surface shadowing. The spectral/spatial data cubes computed by use of this software can serve both as a substitute for, and a supplement to, field validation data.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
Mesh generation has long been recognized as a bottleneck in the CFD process. While much research on automating the volume mesh generation process have been relatively successful,these methods rely on appropriate initial surface triangulation to work properly. Surface discretization has been one of the least automated steps in computational simulation due to its dependence on implicitly defined CAD surfaces and curves. Differences in CAD peometry engines manifest themselves in discrepancies in their interpretation of the same entities. This lack of "good" geometry causes significant problems for mesh generators, requiring users to "repair" the CAD geometry before mesh generation. The problem is exacerbated when CAD geometry is translated to other forms (e.g., IGES )which do not include important topological and construction information in addition to entity geometry. One technique to avoid these problems is to access the CAD geometry directly from the mesh generating software, rather than through files. By accessing the geometry model (not a discretized version) in its native environment, t h s a proach avoids translation to a format which can deplete the model of topological information. Our approach to enable models developed in the Denali software environment to directly access CAD geometry and functions is through an Application Programming Interface (API) known as CAPRI. CAPRI provides a layer of indirection through which CAD-specific data may be accessed by an application program using CAD-system neutral C and FORTRAN language function calls. CAPRI supports a general set of CAD operations such as truth testing, geometry construction and entity queries.
Method and apparatus for sensor fusion
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Inventor); Shaw, Scott (Inventor); Defigueiredo, Rui J. P. (Inventor)
1991-01-01
Method and apparatus for fusion of data from optical and radar sensors by error minimization procedure is presented. The method was applied to the problem of shape reconstruction of an unknown surface at a distance. The method involves deriving an incomplete surface model from an optical sensor. The unknown characteristics of the surface are represented by some parameter. The correct value of the parameter is computed by iteratively generating theoretical predictions of the radar cross sections (RCS) of the surface, comparing the predicted and the observed values for the RCS, and improving the surface model from results of the comparison. Theoretical RCS may be computed from the surface model in several ways. One RCS prediction technique is the method of moments. The method of moments can be applied to an unknown surface only if some shape information is available from an independent source. The optical image provides the independent information.
An experimental study of factors affecting the selective inhibition of sintering process
NASA Astrophysics Data System (ADS)
Asiabanpour, Bahram
Selective Inhibition of Sintering (SIS) is a new rapid prototyping method that builds parts in a layer-by-layer fabrication basis. SIS works by joining powder particles through sintering in the part's body, and by sintering inhibition of some selected powder areas. The objective of this research has been to improve the new SIS process, which has been invented at USC. The process improvement is based on statistical design of experiments. To conduct the needed experiments a working machine and related path generator software were needed. The machine and its control software were made available prior to this research. The path generator algorithms and software had to be created. This program should obtain model geometry data from a CAD file and generate an appropriate path file for the printer nozzle. Also, the program should generate a simulation file for path file inspection using virtual prototyping. The activities related to path generator constitute the first part of this research, which has resulted in an efficient path generator. In addition, to reach an acceptable level of accuracy, strength, and surface quality in the fabricated parts, all effective factors in the SIS process should be identified and controlled. Simultaneous analytical and experimental studies were conducted to recognize effective factors and to control the SIS process. Also, it was known that polystyrene was the most appropriate polymer powder and saturated potassium iodide was the most effective inhibitor among the available candidate materials. In addition, statistical tools were applied to improve the desirable properties of the parts fabricated by the SIS process. An investigation of part strength was conducted using the Response Surface Methodology (RSM) and a region of acceptable operating conditions for the part strength was found. Then, through analysis of the experimental results, the impact of the factors on the final part surface quality and dimensional accuracy was modeled. After developing a desirability function model, process operating conditions for maximum desirability were identified. Finally, the desirability model was validated.
Campana, Lorenzo; Breitbeck, Robert; Bauer-Kreuz, Regula; Buck, Ursula
2016-05-01
This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool.
Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L
2017-05-07
In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC = 0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.
NASA Astrophysics Data System (ADS)
Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.
2017-05-01
In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC = 0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.
NASA Technical Reports Server (NTRS)
Baez, Marivell; Vickerman, Mary; Choo, Yung
2000-01-01
SmaggIce (Surface Modeling And Grid Generation for Iced Airfoils) is one of NASNs aircraft icing research codes developed at the Glenn Research Center. It is a software toolkit used in the process of aerodynamic performance prediction of iced airfoils. It includes tools which complement the 2D grid-based Computational Fluid Dynamics (CFD) process: geometry probing; surface preparation for gridding: smoothing and re-discretization of geometry. Future releases will also include support for all aspects of gridding: domain decomposition; perimeter discretization; grid generation and modification.
2011-09-01
No. BAA09-69 ABSTRACT Using multiple deployments of an 80-element, three-component borehole seismic array stretching from the surface to 2.3 km...NNSA). 14. ABSTRACT Using multiple deployments of an 80-element, three-component borehole seismic array stretching from the surface to 2.3 km depth...generated using the direct Green’s function (DGF) method of Friederich and Dalkolmo (1995). This method synthesizes the seismic wavefield for a spherically
NASA Astrophysics Data System (ADS)
Bani Shahabadi, Maziar; Huang, Yi; Garand, Louis; Heilliette, Sylvain; Yang, Ping
2016-09-01
An established radiative transfer model (RTM) is adapted for simulating all-sky infrared radiance spectra from the Canadian Global Environmental Multiscale (GEM) model in order to validate its forecasts at the radiance level against Atmospheric InfraRed Sounder (AIRS) observations. Synthetic spectra are generated for 2 months from short-term (3-9 h) GEM forecasts. The RTM uses a monthly climatological land surface emissivity/reflectivity atlas. An updated ice particle optical property library was introduced for cloudy radiance calculations. Forward model brightness temperature (BT) biases are assessed to be of the order of ˜1 K for both clear-sky and overcast conditions. To quantify GEM forecast meteorological variables biases, spectral sensitivity kernels are generated and used to attribute radiance biases to surface and atmospheric temperatures, atmospheric humidity, and clouds biases. The kernel method, supplemented with retrieved profiles based on AIRS observations in collocation with a microwave sounder, achieves good closure in explaining clear-sky radiance biases, which are attributed mostly to surface temperature and upper tropospheric water vapor biases. Cloudy-sky radiance biases are dominated by cloud-induced radiance biases. Prominent GEM biases are identified as: (1) too low surface temperature over land, causing about -5 K bias in the atmospheric window region; (2) too high upper tropospheric water vapor, inducing about -3 K bias in the water vapor absorption band; (3) too few high clouds in the convective regions, generating about +10 K bias in window band and about +6 K bias in the water vapor band.
Surfing with capillary waves: a survival strategy for trapped bees
NASA Astrophysics Data System (ADS)
Roh, Chris; Gharib, Morteza
2017-11-01
Honeybees are able to propel themselves at the water surface. A rapid vibration (30-220 Hz) of wings at the air-water interface results in a locomotion speed of 3-4 cm/s. A mechanism for generating thrust required for achieving and maintaining such speed must be different from their mechanism of flight inasmuch as they are in a different fluid environment. In this study, we present the thrust generating mechanism of the honeybee at the air-water interface. A close observation of the wing's interaction with the water surface showed that the wing does not penetrate nor detach from the water surface. Moreover, the stroke speed of the wing exceeds the minimum capillary wave speed, which signifies that the wing constantly generates the capillary wave by pulling on the surface with its wetted underside. Observation of such interaction suggests that honeybee's locomotion at the water surface resembles surfing on the self-generated capillary wave. A further evidence of described mechanism is explored by constructing a similarly sized mechanical model. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.
Directional mass transport in an atmospheric pressure surface barrier discharge.
Dickenson, A; Morabit, Y; Hasan, M I; Walsh, J L
2017-10-25
In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow.
Unifying models of dialect spread and extinction using surface tension dynamics
2018-01-01
We provide a unified mathematical explanation of two classical forms of spatial linguistic spread. The wave model describes the radiation of linguistic change outwards from a central focus. Changes can also jump between population centres in a process known as hierarchical diffusion. It has recently been proposed that the spatial evolution of dialects can be understood using surface tension at linguistic boundaries. Here we show that the inclusion of long-range interactions in the surface tension model generates both wave-like spread, and hierarchical diffusion, and that it is surface tension that is the dominant effect in deciding the stable distribution of dialect patterns. We generalize the model to allow population mixing which can induce shrinkage of linguistic domains, or destroy dialect regions from within. PMID:29410847
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Lin, Grier C. I.
1997-12-01
A vision-drive automatic digitization process for free-form surface reconstruction has been developed, with a coordinate measurement machine (CMM) equipped with a touch-triggered probe and a CCD camera, in reverse engineering physical models. The process integrates 3D stereo detection, data filtering, Delaunay triangulation, adaptive surface digitization into a single process of surface reconstruction. By using this innovative approach, surface reconstruction can be implemented automatically and accurately. Least-squares B- spline surface models with the controlled accuracy of digitization can be generated for further application in product design and manufacturing processes. One industrial application indicates that this approach is feasible, and the processing time required in reverse engineering process can be significantly reduced up to more than 85%.
NASA Astrophysics Data System (ADS)
Kozak, J.; Gulbinowicz, D.; Gulbinowicz, Z.
2009-05-01
The need for complex and accurate three dimensional (3-D) microcomponents is increasing rapidly for many industrial and consumer products. Electrochemical machining process (ECM) has the potential of generating desired crack-free and stress-free surfaces of microcomponents. This paper reports a study of pulse electrochemical micromachining (PECMM) using ultrashort (nanoseconds) pulses for generating complex 3-D microstructures of high accuracy. A mathematical model of the microshaping process with taking into consideration unsteady phenomena in electrical double layer has been developed. The software for computer simulation of PECM has been developed and the effects of machining parameters on anodic localization and final shape of machined surface are presented.
Rouge, Clémence; Lhémery, Alain; Ségur, Damien
2013-10-01
An electromagnetic acoustic transducer (EMAT) or a laser used to generate elastic waves in a component is often described as a source of body force confined in a layer close to the surface. On the other hand, models for elastic wave radiation more efficiently handle sources described as distributions of surface stresses. Equivalent surface stresses can be obtained by integrating the body force with respect to depth. They are assumed to generate the same field as the one that would be generated by the body force. Such an integration scheme can be applied to Lorentz force for conventional EMAT configuration. When applied to magnetostrictive force generated by an EMAT in a ferromagnetic material, the same scheme fails, predicting a null stress. Transforming body force into equivalent surface stresses therefore, requires taking into account higher order terms of the force moments, the zeroth order being the simple force integration over the depth. In this paper, such a transformation is derived up to the second order, assuming that body forces are localized at depths shorter than the ultrasonic wavelength. Two formulations are obtained, each having some advantages depending on the application sought. They apply regardless of the nature of the force considered.
Numerical modelling of needle-grid electrodes for negative surface corona charging system
NASA Astrophysics Data System (ADS)
Zhuang, Y.; Chen, G.; Rotaru, M.
2011-08-01
Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.
Modeling of forest canopy BRDF using DIRSIG
NASA Astrophysics Data System (ADS)
Rengarajan, Rajagopalan; Schott, John R.
2016-05-01
The characterization and temporal analysis of multispectral and hyperspectral data to extract the biophysical information of the Earth's surface can be significantly improved by understanding its aniosotropic reflectance properties, which are best described by a Bi-directional Reflectance Distribution Function (BRDF). The advancements in the field of remote sensing techniques and instrumentation have made hyperspectral BRDF measurements in the field possible using sophisticated goniometers. However, natural surfaces such as forest canopies impose limitations on both the data collection techniques, as well as, the range of illumination angles that can be collected from the field. These limitations can be mitigated by measuring BRDF in a virtual environment. This paper presents an approach to model the spectral BRDF of a forest canopy using the Digital Image and Remote Sensing Image Generation (DIRSIG) model. A synthetic forest canopy scene is constructed by modeling the 3D geometries of different tree species using OnyxTree software. The field collected spectra from the Harvard forest is used to represent the optical properties of the tree elements. The canopy radiative transfer is estimated using the DIRSIG model for specific view and illumination angles to generate BRDF measurements. A full hemispherical BRDF is generated by fitting the measured BRDF to a semi-empirical BRDF model. The results from fitting the model to the measurement indicates a root mean square error of less than 5% (2 reflectance units) relative to the forest's reflectance in the VIS-NIR-SWIR region. The process can be easily extended to generate a spectral BRDF library for various biomes.
Inversion of Surface-wave Dispersion Curves due to Low-velocity-layer Models
NASA Astrophysics Data System (ADS)
Shen, C.; Xia, J.; Mi, B.
2016-12-01
A successful inversion relies on exact forward modeling methods. It is a key step to accurately calculate multi-mode dispersion curves of a given model in high-frequency surface-wave (Rayleigh wave and Love wave) methods. For normal models (shear (S)-wave velocity increasing with depth), their theoretical dispersion curves completely match the dispersion spectrum that is generated based on wave equation. For models containing a low-velocity-layer, however, phase velocities calculated by existing forward-modeling algorithms (e.g. Thomson-Haskell algorithm, Knopoff algorithm, fast vector-transfer algorithm and so on) fail to be consistent with the dispersion spectrum at a high frequency range. They will approach a value that close to the surface-wave velocity of the low-velocity-layer under the surface layer, rather than that of the surface layer when their corresponding wavelengths are short enough. This phenomenon conflicts with the characteristics of surface waves, which results in an erroneous inverted model. By comparing the theoretical dispersion curves with simulated dispersion energy, we proposed a direct and essential solution to accurately compute surface-wave phase velocities due to low-velocity-layer models. Based on the proposed forward modeling technique, we can achieve correct inversion for these types of models. Several synthetic data proved the effectiveness of our method.
A Catchment-Based Approach to Modeling Land Surface Processes in a GCM. Part 1; Model Structure
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Suarez, Max J.; Ducharne, Agnes; Stieglitz, Marc; Kumar, Praveen
2000-01-01
A new strategy for modeling the land surface component of the climate system is described. The strategy is motivated by an arguable deficiency in most state-of-the-art land surface models (LSMs), namely the disproportionately higher emphasis given to the formulation of one-dimensional, vertical physics relative to the treatment of horizontal heterogeneity in surface properties -- particularly subgrid soil moisture variability and its effects on runoff generation. The new strategy calls for the partitioning of the continental surface into a mosaic of hydrologic catchments, delineated through analysis of high-resolution surface elevation data. The effective "grid" used for the land surface is therefore not specified by the overlying atmospheric grid. Within each catchment, the variability of soil moisture is related to characteristics of the topography and to three bulk soil moisture variables through a well-established model of catchment processes. This modeled variability allows the partitioning of the catchment into several areas representing distinct hydrological regimes, wherein distinct (regime-specific) evaporation and runoff parameterizations are applied. Care is taken to ensure that the deficiencies of the catchment model in regions of little to moderate topography are minimized.
Mechanical Aspects of Interfaces and Surfaces in Ceramic Containing Systems.
1984-12-14
of a computer model to simulate the crack damage. The model is based on the fracture mechanics of cracks engulfed by the short stress pulse generated...by drop impact. Inertial effects of the crack faces are a particularly important aspect of the model. The computer scheme thereby allows the stress...W. R. Beaumont, "On the Toughness of Particulate Filled Polymers." Water Drop Impact X. E. D. Case and A. G. Evans, "A Computer -Generated Simulation
NASA Astrophysics Data System (ADS)
Hartkorn, O. A.; Saur, J.; Strobel, D. F.
2016-12-01
Callisto's atmosphere has been probed by the Galileo spacecraft and the Hubble Space Telescope (HST) and is expected to be composed of O2 and minor components CO2 and H2O. We use an ionosphere model coupled with a parametrized atmosphere model to calculate ionospheric electron densities and airglow. By varying a prescribed neutral atmosphere and comparing the model results to Galileo radio occultation and HST-Cosmic Origin Spectrograph observations we find that Callisto's atmosphere likely possesses a day/night asymmetry driven by solar illumination. We see two possible explanation for this asymmetry: 1) If sublimation dominates the atmosphere formation, a day/night asymmetry will be generated since the sublimation production rate is naturally much stronger at the day side than at the night side. 2) If surface sputtering dominates the atmosphere formation, a day/night asymmetry is likely generated as well since the sputtering yield increases with increasing surface temperature and, therefore, with decreasing solar zenith angle. The main difference between both processes is given by the fact that surface sputtering, in contrast to sublimation, is also a function of Callisto's orbital position since sputtering projectiles predominately co-rotate with the Jovian magnetosphere. On this basis, we develop a method that can discriminate between both explanations by comparing airglow observations at different orbital positions with airglow predictions. Our predictions are based on our ionosphere model and an orbital position dependent atmosphere model originally developed for the O2 atmosphere of Europa by Plainaki et al. (2013).
Surface folding in metals: a mechanism for delamination wear in sliding
Mahato, Anirban; Guo, Yang; Sundaram, Narayan K.; Chandrasekar, Srinivasan
2014-01-01
Using high-resolution, in situ imaging of a hard, wedge-shaped model asperity sliding against a metal surface, we demonstrate a new mechanism for particle formation and delamination wear. Damage to the residual surface is caused by the occurrence of folds on the free surface of the prow-shaped region ahead of the wedge. This damage manifests itself as shallow crack-like features and surface tears, which are inclined at very acute angles to the surface. The transformation of folds into cracks, tears and particles is directly captured. Notably, a single sliding pass is sufficient to damage the surface, and subsequent passes result in the generation of platelet-like wear particles. Tracking the folding process at every stage from surface bumps to folds to cracks/tears/particles ensures that there is no ambiguity in capturing the mechanism of wear. Because fold formation and consequent delamination are quite general, our findings have broad applicability beyond wear itself, including implications for design of surface generation and conditioning processes. PMID:25197251
COI Structural Analysis Presentation
NASA Technical Reports Server (NTRS)
Cline, Todd; Stahl, H. Philip (Technical Monitor)
2001-01-01
This report discusses the structural analysis of the Next Generation Space Telescope Mirror System Demonstrator (NMSD) developed by Composite Optics Incorporated (COI) in support of the Next Generation Space Telescope (NGST) project. The mirror was submitted to Marshall Space Flight Center (MSFC) for cryogenic testing and evaluation. Once at MSFC, the mirror was lowered to approximately 40 K and the optical surface distortions were measured. Alongside this experiment, an analytical model was developed and used to compare to the test results. A NASTRAN finite element model was provided by COI and a thermal model was developed from it. Using the thermal model, steady state nodal temperatures were calculated based on the predicted environment of the large cryogenic test chamber at MSFC. This temperature distribution was applied in the structural analysis to solve for the deflections of the optical surface. Finally, these deflections were submitted for optical analysis and comparison to the interferometer test data.
Analysis of Dust Devils on Mars using CFD
NASA Astrophysics Data System (ADS)
Lange, C. F.; Chen, K.; Davis, J. A.; Gheynani, B. T.
2009-05-01
Recent Mars missions have reported evidence of the existence of dust devils. A detailed study of vortex dynamics will provide a better understanding of this swirling flow of the Martian atmosphere. Further, it is believed that there is a relationship between dust devils and water transport. Recently, the Phoenix Mars mission, designed to investigate ice water and natural events on Mars, has successfully finished. The Phoenix Surface Stereo Imager (SSI) camera captured images of the passage of dust devils over or close to the lander. Additionally, dustless devils, which have similar vortex characteristics but insufficient strength to raise dust from the surface, have been detected in the lander's pressure measurements. It was found that dust devils occur mainly in the early afternoon. Because of this, numerical models of a vortex generator are used to study the physics of this complex swirling flow and the effect of dust devils on the transport of water vapour from the regolith. Characteristic parameters such as core radius and swirl ratio are being explored for scaling factors. Scaling factors will be studied and tested, comparing the small and large scales of numerically generated vortices and laboratory generated vortices. Small scale of numerical models of atmospheric vortices are studied using a commercial software package, ANSYS/CFX11.0 with finite volume method (FVM). Large eddy simulations (LES) of planetary boundary layers are based on NCAR LES code to simulate convective vertical vortices that naturally form in quiescent convective boundary layers (CBL) over homogeneous flat surfaces. This will help to find the approximate location and physical characteristics of the vortices on the surface. The numerical models of atmospheric vortices and the experimental vortex generator validations will help to define the water vapour cycle on Mars.
Modeling Aerodynamically Generated Sound of Helicopter Rotors
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Farassat, F.
2002-01-01
A great deal of progress has been made in the modeling of aerodynamically generated sound of rotors over the past decade. Although the modeling effort has focused on helicopter main rotors, the theory is generally valid for a wide range of rotor configurations. The Ffowcs Williams Hawkings (FW-H) equation has been the foundation for much of the development. The monopole and dipole source terms of the FW-H equation account for the thickness and loading noise, respectively. Bladevortex-interaction noise and broadband noise are important types of loading noise, hence much research has been directed toward the accurate modeling of these noise mechanisms. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H equation has also been utilized on permeable surfaces surrounding all physical noise sources. Comparisons of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems. Finally, significant progress has been made incorporating the rotor noise models into full vehicle noise prediction tools.
Global environmental effects of impact-generated aerosols: Results from a general circulation model
NASA Technical Reports Server (NTRS)
Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.
1989-01-01
Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to the three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans, not included in the one-dimensional model, substantially mitigates land surface cooling. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stages of cooling than in the one-dimensional model study. GCM-simulated climatic changes in the scenario of asteroid/comet winter are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though of course less severe, climatic changes, according to the GCM. An asteroid or comet impact would not lead to anything approaching complete global freezing, but quite reasonable to assume that impacts would dramatically alter the climate in at least a patchy sense.
Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-08-01
There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models.
Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment
NASA Technical Reports Server (NTRS)
Page, Arthur T.
2001-01-01
This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.
Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment
NASA Technical Reports Server (NTRS)
Page, Arhur T.
1999-01-01
This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(Tm), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(Tm) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(Tm) generates the SINDA/Fluint input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.
NASA Astrophysics Data System (ADS)
Liu, Z.; Rajib, M. A.; Jafarzadegan, K.; Merwade, V.
2015-12-01
Application of land surface/hydrologic models within an operational flood forecasting system can provide probable time of occurrence and magnitude of streamflow at specific locations along a stream. Creating time-varying spatial extent of flood inundation and depth requires the use of a hydraulic or hydrodynamic model. Models differ in representing river geometry and surface roughness which can lead to different output depending on the particular model being used. The result from a single hydraulic model provides just one possible realization of the flood extent without capturing the uncertainty associated with the input or the model parameters. The objective of this study is to compare multiple hydraulic models toward generating ensemble flood inundation extents. Specifically, relative performances of four hydraulic models, including AutoRoute, HEC-RAS, HEC-RAS 2D, and LISFLOOD are evaluated under different geophysical conditions in several locations across the United States. By using streamflow output from the same hydrologic model (SWAT in this case), hydraulic simulations are conducted for three configurations: (i) hindcasting mode by using past observed weather data at daily time scale in which models are being calibrated against USGS streamflow observations, (ii) validation mode using near real-time weather data at sub-daily time scale, and (iii) design mode with extreme streamflow data having specific return periods. Model generated inundation maps for observed flood events both from hindcasting and validation modes are compared with remotely sensed images, whereas the design mode outcomes are compared with corresponding FEMA generated flood hazard maps. The comparisons presented here will give insights on probable model-specific nature of biases and their relative advantages/disadvantages as components of an operational flood forecasting system.
NASA Astrophysics Data System (ADS)
Bittner, K.; d'Angelo, P.; Körner, M.; Reinartz, P.
2018-05-01
Three-dimensional building reconstruction from remote sensing imagery is one of the most difficult and important 3D modeling problems for complex urban environments. The main data sources provided the digital representation of the Earths surface and related natural, cultural, and man-made objects of the urban areas in remote sensing are the digital surface models (DSMs). The DSMs can be obtained either by light detection and ranging (LIDAR), SAR interferometry or from stereo images. Our approach relies on automatic global 3D building shape refinement from stereo DSMs using deep learning techniques. This refinement is necessary as the DSMs, which are extracted from image matching point clouds, suffer from occlusions, outliers, and noise. Though most previous works have shown promising results for building modeling, this topic remains an open research area. We present a new methodology which not only generates images with continuous values representing the elevation models but, at the same time, enhances the 3D object shapes, buildings in our case. Mainly, we train a conditional generative adversarial network (cGAN) to generate accurate LIDAR-like DSM height images from the noisy stereo DSM input. The obtained results demonstrate the strong potential of creating large areas remote sensing depth images where the buildings exhibit better-quality shapes and roof forms.
To generate a finite element model of human thorax using the VCH dataset
NASA Astrophysics Data System (ADS)
Shi, Hui; Liu, Qian
2009-10-01
Purpose: To generate a three-dimensional (3D) finite element (FE) model of human thorax which may provide the basis of biomechanics simulation for the study of design effect and mechanism of safety belt when vehicle collision. Methods: Using manually or semi-manually segmented method, the interested area can be segmented from the VCH (Visible Chinese Human) dataset. The 3D surface model of thorax is visualized by using VTK (Visualization Toolkit) and further translated into (Stereo Lithography) STL format, which approximates the geometry of solid model by representing the boundaries with triangular facets. The data in STL format need to be normalized into NURBS surfaces and IGES format using software such as Geomagic Studio to provide archetype for reverse engineering. The 3D FE model was established using Ansys software. Results: The generated 3D FE model was an integrated thorax model which could reproduce human's complicated structure morphology including clavicle, ribs, spine and sternum. It was consisted of 1 044 179 elements in total. Conclusions: Compared with the previous thorax model, this FE model enhanced the authenticity and precision of results analysis obviously, which can provide a sound basis for analysis of human thorax biomechanical research. Furthermore, using the method above, we can also establish 3D FE models of some other organizes and tissues utilizing the VCH dataset.
New Software Developments for Quality Mesh Generation and Optimization from Biomedical Imaging Data
Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko
2013-01-01
In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. PMID:24252469
Investigation of models for large-scale meteorological prediction experiments
NASA Technical Reports Server (NTRS)
Spar, J.
1981-01-01
An attempt is made to compute the contributions of various surface boundary conditions to the monthly mean states generated by the 7 layer, 8 x 10 GISS climate model (Hansen et al., 1980), and also to examine the influence of initial conditions on the model climate simulations. Obvious climatic controls as the shape and rotation of the Earth, the solar radiation, and the dry composition of the atmosphere are fixed, and only the surface boundary conditions are altered in the various climate simulations.
Investigation of the flow-field of two parallel round jets impinging normal to a flat surface
NASA Astrophysics Data System (ADS)
Myers, Leighton M.
The flow-field features of dual jet impingement were investigated through sub-scale model experiments. The experiments were designed to simulate the environment of a Short Takeoff, and Vertical Landing, STOVL, aircraft performing a hover over the ground, at different heights. Two different dual impinging jet models were designed, fabricated, and tested. The Generation 1 Model consisted of two stainless-steel nozzles, in a tandem configuration, each with an exit diameter of approximately 12.7 mm. The front convergent nozzle was operated at the sonic Mach number of 1.0, while the rear C-D nozzle was generally operated supersonically. The nozzles were embedded in a rectangular flat plate, referred to as the lift plate, which represents a generic lifting surface. The lift plate was instrumented with 36 surface pressure taps, which were used to examine the flow entrainment and recirculation patterns caused by varying the stand-off distance from the nozzle exits to a flat ground surface. The stand-off distance was adjusted with a sliding rail frame that the ground plane was mounted to. Typical dimensionless stand-off distances (ground plane separation) were H/DR = 2 to 24. A series of measurements were performed with the Generation 1 model, in the Penn State High Speed Jet Aeroacoustics Laboratory, to characterize the basic flow phenomena associated with dual jet impingement. The regions of interest in the flow-field included the vertical jet plume(s), near impingement/turning region, and wall jet outwash. Other aspects of interest included the loss of lift (suckdown) that occurs as the ground plane separation distance becomes small, and azimuthal variation of the acoustic noise radiation. Various experimental methods and techniques were used to characterize the flow-field, including flow-visualization, pressure rake surveys, surface mounted pressure taps, laser Doppler velocimetry, and acoustic microphone arrays. A second dual impinging jet scale model, Generation 2, was designed and fabricated with a 50% increase in nozzle exit diameter. The primary design improvement is the ability to quickly and easily exchange the nozzles of the model. This allowed experiments to be performed with rapid-prototyped nozzles that feature more realistic geometry to that of tactical military aircraft engines. One such nozzle, which was designed and demonstrated by previous researchers to reduce jet noise in a free-jet, was incorporated into the model. The nozzle, featuring deflected seals, was installed in the Generation 2 model and its effect on suckdown was evaluated.
USDA-ARS?s Scientific Manuscript database
The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (with...
Radiative Effects of Atmospheric Aerosols and Impacts on Solar Photovoltaic Electricity Generation
NASA Astrophysics Data System (ADS)
Lund, Cory Christopher
Atmospheric aerosols, by scattering and absorbing radiation, perturbs the Earth's energy balance and reduces the amount of insolation reaching the surface. This dissertation first studies the radiative effects of aerosols by analyzing the internal mixing of various aerosol species. It then examines the aerosol impact on solar PV efficiency and the resulting influence on power systems, including both atmospheric aerosols and deposition of particulate matter (PM) on PV surfaces,. Chapter 2 studies the radiative effects of black carbon (BC), sulfate and organic carbon (OC) internal mixing using a simple radiative transfer model. I find that internal mixing may not result in a positive radiative forcing compared to external mixing, but blocks additional shortwave radiation from the surface, enhancing the surface dimming effect. Chapter 3 estimates the impact of atmospheric aerosol attenuation on solar PV resources in China using a PV performance model with satellite-derived long-term surface irradiance data. I find that, in Eastern China, annual average reductions of solar resources due to aerosols are more than 20%, with comparable impacts to clouds in winter. Improving air quality in China would increase efficiency of solar PV generation. As a positive feedback, increased PV efficiency and deployment would further reduce air pollutant emissions too. Chapter 4 further quantifies the total aerosol impact on PV efficiency globally, including both atmospheric aerosols and the deposition of PM on PV surfaces. I find that, if panels are uncleaned and soiling is only removed by precipitation, deposition of PM accounts for more than two-thirds of the total aerosol impact in most regions. Cleaning the panels, even every few months, would largely increase PV efficiency in resource-abundant regions. Chapter 5 takes a further step to evaluate the impact of PV generation reduction due to aerosols on a projected 2030 power system in China with 400GW of PV. I find that aerosols reduce PV generation by 22% and increase baseload power generation, with almost no additional capacity needed. Due to intermittency of solar generation, 160 GW of backup power is needed to maintain grid stability. However, storage provides an opportunity to reduce the backup power capacity by 66%.
NASA Giovanni Portals for NLDAS/GLDAS Online Visualization, Analysis, and Intercomparison
NASA Technical Reports Server (NTRS)
Rui, Hualan; Teng, William L.; Vollmer, Bruce; Mocko, David M.; Beaudoing, Hiroko Kato; Rodell, Matthew
2011-01-01
The North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS) are generating a series of land surface forcing (e.g., precipitation, surface meteorology, and radiation), state (e.g., soil moisture and temperature, and snow), and flux (e.g., evaporation and sensible heat flux) products, simulated by several land surface models. To date, NLDAS and GLDAS have generated more than 30 (1979 - present) and 60 (1948 - present) years of data, respectively. To further facilitate data accessibility and utilization, three new portals in the NASA Giovanni system have been made available for NLDAS and GLDAS online visualization, analysis, and intercomparison.
Capability evaluation of ultrasonic cavitation peening at different standoff distances.
Bai, Fushi; Saalbach, Kai-Alexander; Long, Yangyang; Twiefel, Jens; Wallaschek, Jörg
2018-03-01
Ultrasonic cavitation peening is a novel surface treatment technology which utilizes the effect of cavitation bubble collapses to improve the properties of metal surfaces. In order to obtain high impact during ultrasonic cavitation peening, a small standoff distance between a sound radiator and a rigid reflector (the surface of treated specimen) is necessary. However, the effects of different standoff distances on the capability of ultrasonic cavitation peening are not yet clear. In this paper, a simplified model was developed to evaluate the cavitation capability at different standoff distances. Meanwhile, to validate the theoretical model, the plastic deformation or erosion on the peening surface before and after treatment were compared. It was found that at a very small standoff distance the impact pressure generated by cavitation bubbles did not cause much deformation or erosion, as the dynamics of cavitation bubbles was limited. At a large standoff distance, due to much attenuation of sound propagation in the bubbly liquid, little impact pressure was generated by the collapse of cavitation bubbles and reached the treated surface. A fixed vibration amplitude, however, corresponded to a standoff distance which caused the largest deformation or erosion on the treated surface. Copyright © 2017 Elsevier B.V. All rights reserved.
A time-efficient algorithm for implementing the Catmull-Clark subdivision method
NASA Astrophysics Data System (ADS)
Ioannou, G.; Savva, A.; Stylianou, V.
2015-10-01
Splines are the most popular methods in Figure Modeling and CAGD (Computer Aided Geometric Design) in generating smooth surfaces from a number of control points. The control points define the shape of a figure and splines calculate the required number of points which when displayed on a computer screen the result is a smooth surface. However, spline methods are based on a rectangular topological structure of points, i.e., a two-dimensional table of vertices, and thus cannot generate complex figures, such as the human and animal bodies that their complex structure does not allow them to be defined by a regular rectangular grid. On the other hand surface subdivision methods, which are derived by splines, generate surfaces which are defined by an arbitrary topology of control points. This is the reason that during the last fifteen years subdivision methods have taken the lead over regular spline methods in all areas of modeling in both industry and research. The cost of executing computer software developed to read control points and calculate the surface is run-time, due to the fact that the surface-structure required for handling arbitrary topological grids is very complicate. There are many software programs that have been developed related to the implementation of subdivision surfaces however, not many algorithms are documented in the literature, to support developers for writing efficient code. This paper aims to assist programmers by presenting a time-efficient algorithm for implementing subdivision splines. The Catmull-Clark which is the most popular of the subdivision methods has been employed to illustrate the algorithm.
Response Surface Modeling Using Multivariate Orthogonal Functions
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; DeLoach, Richard
2001-01-01
A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winnerl, Andrea, E-mail: andrea.winnerl@wsi.tum.de; Pereira, Rui N.; Stutzmann, Martin
2015-10-21
In this work, we use GaN with different deposited Pt nanostructures as a controllable model system to investigate the kinetics of photo-generated charge carriers in hybrid photocatalysts. We combine conductance and contact potential difference measurements to investigate the influence of Pt on the processes involved in the capture and decay of photo-generated charge carriers at and close to the GaN surface. We found that in the presence of Pt nanostructures the photo-excitation processes are similar to those found in Pt free GaN. However, in GaN with Pt nanostructures, photo-generated holes are preferentially trapped in surface states of the GaN coveredmore » with Pt and/or in electronic states of the Pt and lead to an accumulation of positive charge there, whereas negative charge is accumulated in localized states in a shallow defect band of the GaN covered with Pt. This preferential accumulation of photo-generated electrons close to the surface is responsible for a dramatic acceleration of the turn-off charge transfer kinetics and a stronger dependence of the surface photovoltage on light intensity when compared to a Pt free GaN surface. Our study shows that in hybrid photocatalysts, the metal nanostructures induce a spatially inhomogeneous surface band bending of the semiconductor that promotes a lateral drift of photogenerated charges towards the catalytic nanostructures.« less
Fan, Yonghong; Pan, Xiaxin; Wang, Ke; Wu, Sisi; Han, Honghong; Yang, Ping; Luo, Rifang; Wang, Hong; Huang, Nan; Tan, Wei; Weng, Yajun
2016-09-01
As nitric oxide (NO) plays vital roles in the cardiovascular system, incorporating this molecule into cardiovascular stents is considered as an effective method. In the present study, selenocystine with different chirality (i.e., l- and d-selenocystine) was used as the catalytic molecule immobilized on TiO2 films for decomposing endogenous NO donor. The influences of surface chirality on NO release and platelet behavior were evaluated. Results show that although the amount of immobilized l-selenocystine on the surface was nearly the same as that of immobilized d-selenocystine, in vitro catalytic NO release tests showed that l-selenocystine immobilized surfaces were more capable of catalyzing the decomposition of S-nitrosoglutathione and thus generating more NO. Accordingly, l-selenocystine immobilized surfaces demonstrated significantly increased inhibiting effects on the platelet adhesion and activation, when compared to d-selenocystine immobilized ones. Measurement of the cGMP concentration of platelets further confirmed that surface chirality played an important role in regulating NO generation and platelet behaviors. Additionally, using bovine serum albumin and fibrinogen as model proteins, the protein adsorption determined with quartz crystal microbalance showed that the l-selenocystine immobilized surface enhanced protein adsorption. In conclusion, surface chirality significantly influences protein adsorption and NO release, which may have significant implications in the design of NO-generating cardiovascular stents. Copyright © 2016 Elsevier B.V. All rights reserved.
High-order fractional partial differential equation transform for molecular surface construction
Hu, Langhua; Chen, Duan; Wei, Guo-Wei
2013-01-01
Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation. PMID:24364020
Generation of Accurate Lateral Boundary Conditions for a Surface-Water Groundwater Interaction Model
NASA Astrophysics Data System (ADS)
Khambhammettu, P.; Tsou, M.; Panday, S. M.; Kool, J.; Wei, X.
2010-12-01
The 106 mile long Peace River in Florida flows south from Lakeland to Charlotte Harbor and has a drainage basin of approximately 2,350 square miles. A long-term decline in stream flows and groundwater potentiometric levels has been observed in the region. Long-term trends in rainfall, along with effects of land use changes on runoff, surface-water storage, recharge and evapotranspiration patterns, and increased groundwater and surface-water withdrawals have contributed to this decline. The South West Florida Water Management District (SWFWMD) has funded the development of the Peace River Integrated Model (PRIM) to assess the effects of land use, water use, and climatic changes on stream flows and to evaluate the effectiveness of various management alternatives for restoring stream flows. The PRIM was developed using MODHMS, a fully integrated surface-water groundwater flow and transport simulator developed by HydroGeoLogic, Inc. The development of the lateral boundary conditions (groundwater inflow and outflow) for the PRIM in both historical and predictive contexts is discussed in this presentation. Monthly-varying specified heads were used to define the lateral boundary conditions for the PRIM. These head values were derived from the coarser Southern District Groundwater Model (SDM). However, there were discrepancies between the simulated SDM heads and measured heads: the likely causes being spatial (use of a coarser grid) and temporal (monthly average pumping rates and recharge rates) approximations in the regional SDM. Finer re-calibration of the SDM was not feasible, therefore, an innovative approach was adopted to remove the discrepancies. In this approach, point discrepancies/residuals between the observed and simulated heads were kriged with an appropriate variogram to generate a residual surface. This surface was then added to the simulated head surface of the SDM to generate a corrected head surface. This approach preserves the trends associated with groundwater pumping / recharge in the SDM and adds the kriged residual surface as variations back to the trend. The variations could be from the scale effects of grid resolution and from the temporal averaging of stresses (pumping, recharge, etc.,). The validity of the approach is demonstrated by visual and statistical comparison of the observed and simulated heads before and after correction. For predictive simulations, an Artificial Neural Network was trained to predict heads at monitoring wells based on precipitation and pumping. These predicted head values could then be used as surrogate observations for correcting the results of the regional SDM. In summary, an appropriate approach to link a regional groundwater model to a detailed surface-water groundwater interaction model is demonstrated with an example.
Computer-aided implant design for the restoration of cranial defects.
Chen, Xiaojun; Xu, Lu; Li, Xing; Egger, Jan
2017-06-23
Patient-specific cranial implants are important and necessary in the surgery of cranial defect restoration. However, traditional methods of manual design of cranial implants are complicated and time-consuming. Our purpose is to develop a novel software named EasyCrania to design the cranial implants conveniently and efficiently. The process can be divided into five steps, which are mirroring model, clipping surface, surface fitting, the generation of the initial implant and the generation of the final implant. The main concept of our method is to use the geometry information of the mirrored model as the base to generate the final implant. The comparative studies demonstrated that the EasyCrania can improve the efficiency of cranial implant design significantly. And, the intra- and inter-rater reliability of the software were stable, which were 87.07 ± 1.6% and 87.73 ± 1.4% respectively.
A 4D global respiratory motion model of the thorax based on CT images: A proof of concept.
Fayad, Hadi; Gilles, Marlene; Pan, Tinsu; Visvikis, Dimitris
2018-05-17
Respiratory motion reduces the sensitivity and specificity of medical images especially in the thoracic and abdominal areas. It may affect applications such as cancer diagnostic imaging and/or radiation therapy (RT). Solutions to this issue include modeling of the respiratory motion in order to optimize both diagnostic and therapeutic protocols. Personalized motion modeling required patient-specific four-dimensional (4D) imaging which in the case of 4D computed tomography (4D CT) acquisition is associated with an increased dose. The goal of this work was to develop a global respiratory motion model capable of relating external patient surface motion to internal structure motion without the need for a patient-specific 4D CT acquisition. The proposed global model is based on principal component analysis and can be adjusted to a given patient anatomy using only one or two static CT images in conjunction with a respiratory synchronized patient external surface motion. It is based on the relation between the internal motion described using deformation fields obtained by registering 4D CT images and patient surface maps obtained either from optical imaging devices or extracted from CT image-based patient skin segmentation. 4D CT images of six patients were used to generate the global motion model which was validated by adapting it on four different patients having skin segmented surfaces and two other patients having time of flight camera acquired surfaces. The reproducibility of the proposed model was also assessed on two patients with two 4D CT series acquired within 2 weeks of each other. Profile comparison shows the efficacy of the global respiratory motion model and an improvement while using two CT images in order to adapt the model. This was confirmed by the correlation coefficient with a mean correlation of 0.9 and 0.95 while using one or two CT images respectively and when comparing acquired to model generated 4D CT images. For the four patients with segmented surfaces, expert validation indicates an error of 2.35 ± 0.26 mm compared to 6.07 ± 0.76 mm when using a simple interpolation between full inspiration (FI) and full expiration (FE) CT only; i.e., without specific modeling of the respiratory motion. For the two patients with acquired surfaces, this error was of 2.48 ± 0.18 mm. In terms of reproducibility, model error changes of 0.12 and 0.17 mm were measured for the two patients concerned. The framework for the derivation of a global respiratory motion model was developed. A single or two static CT images and associated patient surface motion, as a surrogate measure, are only needed to personalize the model. This model accuracy and reproducibility were assessed by comparing acquired vs model generated 4D CT images. Future work will consist of assessing extensively the proposed model for radiotherapy applications. © 2018 American Association of Physicists in Medicine.
Clement, R; Schneider, J; Brambs, H-J; Wunderlich, A; Geiger, M; Sander, F G
2004-02-01
The paper demonstrates how to generate an individual 3D volume model of a human single-rooted tooth using an automatic workflow. It can be implemented into finite element simulation. In several computational steps, computed tomography data of patients are used to obtain the global coordinates of the tooth's surface. First, the large number of geometric data is processed with several self-developed algorithms for a significant reduction. The most important task is to keep geometrical information of the real tooth. The second main part includes the creation of the volume model for tooth and periodontal ligament (PDL). This is realized with a continuous free form surface of the tooth based on the remaining points. Generating such irregular objects for numerical use in biomechanical research normally requires enormous manual effort and time. The finite element mesh of the tooth, consisting of hexahedral elements, is composed of different materials: dentin, PDL and surrounding alveolar bone. It is capable of simulating tooth movement in a finite element analysis and may give valuable information for a clinical approach without the restrictions of tetrahedral elements. The mesh generator of FE software ANSYS executed the mesh process for hexahedral elements successfully.
Topographic View of Ceres Mountain
2015-09-30
This view, made using images taken by NASA's Dawn spacecraft, features a tall conical mountain on Ceres. Elevations span a range of about 5 miles (8 kilometers) from the lowest places in this region to the highest terrains. Blue represents the lowest elevation, and brown is the highest. The white streaks seen running down the side of the mountain are especially bright parts of the surface. The image was generated using two components: images of the surface taken during Dawn's High Altitude Mapping Orbit (HAMO) phase, where it viewed the surface at a resolution of about 450 feet (140 meters) per pixel, and a shape model generated using images taken at varying sun and viewing angles during Dawn's lower-resolution Survey phase. The image of the region is color-coded according to elevation, and then draped over the shape model to give this view. http://photojournal.jpl.nasa.gov/catalog/PIA19976
NASA Technical Reports Server (NTRS)
Hathaway, David
2011-01-01
Models of the photospheric flows due to supergranulation are generated using an evolving spectrum of vector spherical harmonics up to spherical harmonic wavenumber l1500. Doppler velocity data generated from these models are compared to direct Doppler observations from SOHO/MDI and SDO/HMI. The models are adjusted to match the observed spatial power spectrum as well as the wavenumber dependence of the cell lifetimes, differential rotation velocities, meridional flow velocities, and relative strength of radial vs. horizontal flows. The equatorial rotation rate as a function of wavelength matches the rotation rate as a function of depth as determined by global helioseismology. This leads to the conclusions that the cellular structures are anchored at depths equal to their widths, that the surface shear layer extends to at least 70 degrees latitude, and that the poleward meridional flow decreases in amplitude and reverses direction at the base of the surface shear layer (approx.35 Mm below the surface). Using the modeled flows to passively transport magnetic flux indicates that the observed differential rotation and meridional flow of the magnetic elements are directly related to the differential rotation and meridional flow of the convective pattern itself. The magnetic elements are transported by the evolving boundaries of the supergranule pattern (where the convective flows converge) and are unaffected by the weaker flows associated with the differential rotation or meridional flow of the photospheric plasma.
Finite-element 3D simulation tools for high-current relativistic electron beams
NASA Astrophysics Data System (ADS)
Humphries, Stanley; Ekdahl, Carl
2002-08-01
The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther
2017-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.
3D reconstruction of SEM images by use of optical photogrammetry software.
Eulitz, Mona; Reiss, Gebhard
2015-08-01
Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. Copyright © 2015 Elsevier Inc. All rights reserved.
Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones.
Sohn, Bong-Soo
2017-03-11
This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing.
Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones
Sohn, Bong-Soo
2017-01-01
This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing. PMID:28287487
Geometrical force constraint method for vessel and x-ray angiogram simulation.
Song, Shuang; Yang, Jian; Fan, Jingfan; Cong, Weijian; Ai, Danni; Zhao, Yitian; Wang, Yongtian
2016-01-01
This study proposes a novel geometrical force constraint method for 3-D vasculature modeling and angiographic image simulation. For this method, space filling force, gravitational force, and topological preserving force are proposed and combined for the optimization of the topology of the vascular structure. The surface covering force and surface adhesion force are constructed to drive the growth of the vasculature on any surface. According to the combination effects of the topological and surface adhering forces, a realistic vasculature can be effectively simulated on any surface. The image projection of the generated 3-D vascular structures is simulated according to the perspective projection and energy attenuation principles of X-rays. Finally, the simulated projection vasculature is fused with a predefined angiographic mask image to generate a realistic angiogram. The proposed method is evaluated on a CT image and three generally utilized surfaces. The results fully demonstrate the effectiveness and robustness of the proposed method.
NASA Astrophysics Data System (ADS)
Anderson, William; Meneveau, Charles
2010-05-01
A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).
NASA Astrophysics Data System (ADS)
Rizza, Umberto; Miglietta, Mario Marcello; Mangia, Cristina; Ielpo, Pierina; Morichetti, Mauro; Iachini, Chiara; Virgili, Simone; Passerini, Giorgio
2018-03-01
The Weather Research and Forecasting model with online coupled chemistry (WRF-Chem) is applied to simulate a severe Saharan dust outbreak event that took place over Southern Italy in March 2016. Numerical experiments have been performed applying a physics-based dust emission model, with soil properties generated from three different Land Surface Models, namely Noah, RUC and Noah-MP. The model performance in reproducing the severe desert dust outbreak is analysed using an observational dataset of aerosol and desert dust features that includes optical properties from satellite and ground-based sun-photometers, and in-situ particulate matter mass concentration (PM) data. The results reveal that the combination of the dust emission model with the RUC Land Surface Model significantly over-predicts the emitted mineral dust; on the other side, the combination with Noah or Noah-MP Land Surface Model (LSM) gives better results, especially for the daily averaged PM10.
Xue, Hongyan; Deng, Guoliang; Feng, Guoying; Chen, Lin; Li, Jiaqi; Yang, Chao; Zhou, Shouhuan
2017-09-01
An initial roughness is assumed in the most accepted Sipe-Drude model to analyze laser-induced periodic surface structures (LIPSS). However, the direct experimental observation for the crucial parameters is still lacking. The generation of nanoparticles and low-spatial frequency LIPSS (LSFL) (LIPSS with a periodicity close to laser wavelength) on a silicon surface upon a single pulse and subsequent pulses irradiation, respectively, is observed experimentally. Finite-difference time-domain (FDTD) simulation indicates that the nanoparticles generated with the first pulse enhance the local electric field greatly. Based on the experimental extrapolated parameters, FDTD-η maps have been calculated. The results show that the inhomogeneous energy deposition, which leads to the formation of LSFL, is mainly from the modulation of the nanoparticles with a radius of around 100 nm.
NASA Astrophysics Data System (ADS)
Geža, V.; Venčels, J.; Zāģeris, Ģ.; Pavlovs, S.
2018-05-01
One of the most perspective methods to produce SoG-Si is refinement via metallurgical route. The most critical part of this route is refinement from boron and phosphorus, therefore, approach under development will address this problem. An approach of creating surface waves on silicon melt’s surface is proposed in order to enlarge its area and accelerate removal of boron via chemical reactions and evaporation of phosphorus. A two dimensional numerical model is created which include coupling of electromagnetic and fluid dynamic simulations with free surface dynamics. First results show behaviour similar to experimental results from literature.
NASA Astrophysics Data System (ADS)
Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien
2006-03-01
Subdivision surfaces and parameterization are desirable for many algorithms that are commonly used in Medical Image Analysis. However, extracting an accurate surface and parameterization can be difficult for many anatomical objects of interest, due to noisy segmentations and the inherent variability of the object. The thin cartilages of the knee are an example of this, especially after damage is incurred from injuries or conditions like osteoarthritis. As a result, the cartilages can have different topologies or exist in multiple pieces. In this paper we present a topology preserving (genus 0) subdivision-based parametric deformable model that is used to extract the surfaces of the patella and tibial cartilages in the knee. These surfaces have minimal thickness in areas without cartilage. The algorithm inherently incorporates several desirable properties, including: shape based interpolation, sub-division remeshing and parameterization. To illustrate the usefulness of this approach, the surfaces and parameterizations of the patella cartilage are used to generate a 3D statistical shape model.
A Method for a Multi-Platform Approach to Generate Gridded Surface Evaporation
NASA Astrophysics Data System (ADS)
Badger, A.; Livneh, B.; Small, E. E.; Abolafia-Rosenzweig, R.
2017-12-01
Evapotranspiration is an integral component of the surface water balance. While there are many estimates of evapotranspiration, there are fewer estimates that partition evapotranspiration into evaporation and transpiration components. This study aims to generate a CONUS-scale, observationally-based soil evaporation dataset by using the time difference of surface soil moisture by Soil Moisture Active Passive (SMAP) satellite with adjustments for transpiration and a bottom flux out of the surface layer. In concert with SMAP, the Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite, North American Land Data Assimilation Systems (NLDAS) and the Hydrus-1D model are used to fully analyze the surface water balance. A biome specific estimate of the total terrestrial ET is calculated through a variation of the Penman-Monteith equation with NLDAS forcing and NLDAS Noah Model output for meteorological variables. A root density restriction and SMAP-based soil moisture restriction are applied to obtain terrestrial transpiration estimates. By forcing Hydrus-1D with NLDAS meteorology and our terrestrial transpiration estimates, an estimate of the flux between the soil surface and root zone layers (qbot) will dictate the proportion of water that is available for soil evaporation. After constraining transpiration and the bottom flux from the surface layer, we estimate soil evaporation as the residual of the surface water balance. Application of this method at Fluxnet sites shows soil evaporation estimates of approximately 03 mm/day and less than ET estimates. Expanding this methodology to produce a gridded product for CONUS, and eventually a global-scale product, will enable a better understanding of water balance processes and contribute a dataset to validate land-surface model's surface flux processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu.
2014-12-28
We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, whichmore » depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.« less
Dielectric and thermal modeling of Vesta's surface
NASA Astrophysics Data System (ADS)
Palmer, E. M.; Heggy, E.; Capria, M. T.; Tosi, F.; Russell, C. T.
2013-09-01
We generate a dielectric model for the surface of Vesta from thermal observations by Dawn's Visible and Infrared (VIR) mapping spectrometer. After retrieving surface temperatures from VIR data, we model thermal inertia, and derive a theoretical temperature map of Vesta's surface at a given UTC. To calculate the real part of the dielectric constant (ɛ') and the loss tangent (tg δ) we use the dielectric properties of basaltic lunar regolith as a first-order analog, assuming surface density and composition consistent with fine basaltic lunar dust. First results indicate that for the majority of the surface, ɛ' ranges from 2.0 to 2.1 from the night to day side respectively, and tg δ ranges from 1.05E-2 to 1.40E-2. While these regions are consistent with a basaltic, desiccated ~55% porous surface, we also find anomalies in the thermal inertia that may correspond to a variation in local surface density relative to the global average, and a consequent variation in the local dielectric properties.
Faghih Shojaei, M; Mohammadi, V; Rajabi, H; Darvizeh, A
2012-12-01
In this paper, a new numerical technique is presented to accurately model the geometrical and mechanical features of mollusk shells as a three dimensional (3D) integrated volume. For this purpose, the Newton method is used to solve the nonlinear equations of shell surfaces. The points of intersection on the shell surface are identified and the extra interior parts are removed. Meshing process is accomplished with respect to the coordinate of each point of intersection. The final 3D generated mesh models perfectly describe the spatial configuration of the mollusk shells. Moreover, the computational model perfectly matches with the actual interior geometry of the shells as well as their exterior architecture. The direct generation technique is employed to generate a 3D finite element (FE) model in ANSYS 11. X-ray images are taken to show the close similarity of the interior geometry of the models and the actual samples. A scanning electron microscope (SEM) is used to provide information on the microstructure of the shells. In addition, a set of compression tests were performed on gastropod shell specimens to obtain their ultimate compressive strength. A close agreement between experimental data and the relevant numerical results is demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Widodo, Edy; Kariyam
2017-03-01
To determine the input variable settings that create the optimal compromise in response variable used Response Surface Methodology (RSM). There are three primary steps in the RSM problem, namely data collection, modelling, and optimization. In this study focused on the establishment of response surface models, using the assumption that the data produced is correct. Usually the response surface model parameters are estimated by OLS. However, this method is highly sensitive to outliers. Outliers can generate substantial residual and often affect the estimator models. Estimator models produced can be biased and could lead to errors in the determination of the optimal point of fact, that the main purpose of RSM is not reached. Meanwhile, in real life, the collected data often contain some response variable and a set of independent variables. Treat each response separately and apply a single response procedures can result in the wrong interpretation. So we need a development model for the multi-response case. Therefore, it takes a multivariate model of the response surface that is resistant to outliers. As an alternative, in this study discussed on M-estimation as a parameter estimator in multivariate response surface models containing outliers. As an illustration presented a case study on the experimental results to the enhancement of the surface layer of aluminium alloy air by shot peening.
NASA Astrophysics Data System (ADS)
Danáčová, Michaela; Valent, Peter; Výleta, Roman
2017-12-01
Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity of 5 mm/min was used to irrigate a corrupted soil sample. The experiment was undertaken for several different slopes, under the condition of no vegetation cover. The results of the rainfall simulation experiment complied with the expectations of a strong relationship between the slope gradient, and the amount of surface runoff generated. The experiments with higher slope gradients were characterised by larger volumes of surface runoff generated, and by shorter times after which it occurred. The experiments with rainfall simulators in both laboratory and field conditions play an important role in better understanding of runoff generation processes. The results of such small scale experiments could be used to estimate some of the parameters of complex hydrological models, which are used to model rainfall-runoff and erosion processes at catchment scale.
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Rahman, P.; Goldrich, R. N.
1982-01-01
The geometry of spiral bevel gears and to their rational design are studied. The nonconjugate tooth surfaces of spiral bevel gears are, in theory, replaced (or approximated) by conjugated tooth surfaces. These surfaces can be generated by two conical surfaces, and by a conical surface and a revolution. Although these conjugated tooth surfaces are simpler than the actual ones, the determination of their principal curvatures and directions is still a complicated problem. Therefore, a new approach, to the solution of these is proposed. Direct relationships between the principal curvatures and directions of the tool surface and those of the generated gear surface are obtained. With the aid of these analytical tools, the Hertzian contact problem for conjugate tooth surfaces can be solved. These results are useful in determining compressive load capacity and surface fatigue life of spiral bevel gears. A general theory of kinematical errors exerted by manufacturing and assembly errors is developed. This theory is used to determine the analytical relationship between gear misalignments and kinematical errors. This is important to the study of noise and vibration in geared systems.
NASA Technical Reports Server (NTRS)
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
River Devices to Recover Energy with Advanced Materials (River DREAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Daniel P.
2013-07-03
The purpose of this project is to develop a generator called a Galloping Hydroelectric Energy Extraction Device (GHEED). It uses a galloping prism to convert water flow into linear motion. This motion is converted into electricity via a dielectric elastomer generator (DEG). The galloping mechanism and the DEG are combined to create a system to effectively generate electricity. This project has three research objectives: 1. Oscillator development and design a. Characterize galloping behavior, evaluate control surface shape change on oscillator performance and demonstrate shape change with water flow change. 2. Dielectric Energy Generator (DEG) characterization and modeling a. Characterize andmore » model the performance of the DEG based on oscillator design 3. Galloping Hydroelectric Energy Extraction Device (GHEED) system modeling and integration a. Create numerical models for construction of a system performance model and define operating capabilities for this approach Accomplishing these three objectives will result in the creation of a model that can be used to fully define the operating parameters and performance capabilities of a generator based on the GHEED design. This information will be used in the next phase of product development, the creation of an integrated laboratory scale generator to confirm model predictions.« less
Spatiotemporal mapping of scalp potentials.
Fender, D H; Santoro, T P
1977-11-01
Computerized analysis and display techniques are applied to the problem of identifying the origins of visually evoked scalped potentials (VESP's). A new stimulus for VESP work, white noise, is being incorporated in the solution of this problem. VESP's for white-noise stimulation exhibit time domain behavior similar to the classical response for flash stimuli but with certain significant differences. Contour mapping algorithms are used to display the time behavior of equipotential surfaces on the scalp during the VESP. The electrical and geometrical parameters of the head are modeled. Electrical fields closely matching those obtained experimentally are generated on the surface of the model head by optimally selecting the location and strength parameters of one or two dipole current sources contained within the model. Computer graphics are used to display as a movie the actual and model scalp potential field and the parameters of the dipole generators whithin the model head during the time course of the VESP. These techniques are currently used to study retinotopic mapping, fusion, and texture perception in the human.
Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model
2012-06-01
atmosphere and ocean (Yu and Weller, 2007 ). Salinities in the upper ocean are set by the difference between evaporation and precipitation at the ocean...surface (Yu, 2007 ; Schmitt, 2008). Because the buoyancy (density) of seawater at the ocean surface is con- trolled by temperature and salinity, the...days, these currents mean- der and generate highly energetic meso- scale eddies (Schmitz, 1996a,b; Stammer , 1997), the spinning oceanic dynamical
2015-01-07
and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline surface modeling. Archival publications (published...anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based method is developed to improve the T-mesh quality...shade-off. Halos are bright or dark thin regions around the boundary of the sample. These false edges around the object make many segmentation
Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D
NASA Astrophysics Data System (ADS)
Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels
2016-04-01
Describing interactions between surface and subsurface flow processes is important to adequately define water flow in natural systems. Since overland flow generation is highly influenced by rainfall and infiltration, both highly spatially heterogeneous processes, overland flow is unsteady and varies spatially. The prediction of overland flow needs to include an appropriate description of the interactions between the surface and subsurface flow. Coupling surface and subsurface water flow is a challenging task. Different approaches have been developed during the last few years, each having its own advantages and disadvantages. A new approach by Weill et al. (2009) to couple overland flow and subsurface flow based on a generalized Richards equation was implemented into the well-known subsurface flow model HYDRUS-2D (Šimůnek et al., 2011). This approach utilizes the one-dimensional diffusion wave equation to model overland flow. The diffusion wave model is integrated in HYDRUS-2D by replacing the terms of the Richards equation in a pre-defined runoff layer by terms defining the diffusion wave equation. Using this approach, pressure and flux continuity along the interface between both flow domains is provided. This direct coupling approach provides a strong coupling of both systems based on the definition of a single global system matrix to numerically solve the coupled flow problem. The advantage of the direct coupling approach, compared to the loosely coupled approach, is supposed to be a higher robustness, when many convergence problems can be avoided (Takizawa et al., 2014). The HYDRUS-2D implementation was verified using a) different test cases, including a direct comparison with the results of Weill et al. (2009), b) an analytical solution of the kinematic wave equation, and c) the results of a benchmark test of Maxwell et al. (2014), that included several known coupled surface subsurface flow models. Additionally, a sensitivity analysis evaluating the effects of various model parameters on simulated overland flow (while considering or neglecting the effects of subsurface flow) was carried out to verify the applicability of the model to different problems. The model produced reasonable results in describing the diffusion wave approximation and its interactions with subsurface flow processes. The model could handle coupled surface-subsurface processes for conditions involving runoff generated by infiltration excess, saturation excess, or run-on, as well as a combination of these runoff generating processes. Several standard features of the HYDRUS 2D model, such as root water uptake and evaporation from the soil surface, as well as evaporation from runoff layer, can still be considered by the new model. The code required relatively small time steps when overland flow was active, resulting in long simulation times, and sometimes produced poor mass balance. The model nevertheless showed potential to be a useful tool for addressing various issues related to irrigation research and to natural generation of overland flow at the hillslope scale. Maxwell, R., Putti, M., Meyerhoff, S., Delf, J., Ferguson, I., Ivanov, V., Kim, J., Kolditz, O., Kollet, S., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M., Shen, C., Sudicky, E., and Sulis, M. (2014). Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resourc. Res., 50:1531-1549. Šimůnek, J., van Genuchten, M. T., and Šejna, M. (2011). The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Technical Manual, Version 2.0, PC Progress, Prague, Czech Republic. Takizawa, K., Bazilevs Y., Tezduyar, T. E., Long, C.C., Marsden, A. L. and Schjodt.K., Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Method in Idelsohn, S. R. (2014). Numerical Simulations of Coupled Problems in Engineering. Springer. Weill, S., Mouche, E., and Patin, J. (2009). A generalized Richards equation for surface/subsurface flow modelling. Journal of Hydrology, 366:9-20.
Li, C. H.; van ‘t Erve, O. M. J.; Rajput, S.; ...
2016-11-17
Three-dimensional topological insulators (TIs) exhibit time-reversal symmetry protected, linearly dispersing Dirac surface states with spin–momentum locking. Band bending at the TI surface may also lead to coexisting trivial two-dimensional electron gas (2DEG) states with parabolic energy dispersion. A bias current is expected to generate spin polarization in both systems, although with different magnitude and sign. Here we compare spin potentiometric measurements of bias current-generated spin polarization in Bi2Se3(111) where Dirac surface states coexist with trivial 2DEG states, and in InAs(001) where only trivial 2DEG states are present. We observe spin polarization arising from spin–momentum locking in both cases, with oppositemore » signs of the measured spin voltage. We present a model based on spin dependent electrochemical potentials to directly derive the sign expected for the Dirac surface states, and show that the dominant contribution to the current-generated spin polarization in the TI is from the Dirac surface states.« less
Coherent reflection from surface gravity water waves during reciprocal acoustic transmissions.
Badiey, Mohsen; Song, Aijun; Smith, Kevin B
2012-10-01
During a recent experiment in Kauai, Hawaii, reciprocal transmissions were conducted between two acoustic transceivers mounted on the seafloor at a depth of 100 m. The passage of moving surface wave crests was shown to generate focused and intense coherent acoustic returns, which had increasing or decreasing delay depending on the direction of propagation relative to the direction of surface wave crests. It is shown that a rough surface two-dimensional parabolic equation model with an evolving sea surface can produce qualitative agreement with data for the dynamic surface returns.
Bayramoglu, Gulay; Arica, M Yakup; Genc, Aysenur; Ozalp, V Cengiz; Ince, Ahmet; Bicak, Niyazi
2016-06-01
A novel method was developed for facile immobilization of enzymes on silica surfaces. Herein, we describe a single-step strategy for generating of reactive double bonds capable of Michael addition on the surfaces of silica particles. This method was based on reactive thin film generation on the surfaces by heating of impregnated self-curable polymer, alpha-morpholine substituted poly(vinyl methyl ketone) p(VMK). The generated double bonds were demonstrated to be an efficient way for rapid incorporation of enzymes via Michael addition. Catalase was used as model enzyme in order to test the effect of immobilization methodology by the reactive film surface through Michael addition reaction. Finally, a plug flow type immobilized enzyme reactor was employed to estimate decomposition rate of hydrogen peroxide. The highly stable enzyme reactor could operate continuously for 120 h at 30 °C with only a loss of about 36 % of its initial activity.
NASA Technical Reports Server (NTRS)
Chen, Fei; Yates, David; LeMone, Margaret
2001-01-01
To understand the effects of land-surface heterogeneity and the interactions between the land-surface and the planetary boundary layer at different scales, we develop a multiscale data set. This data set, based on the Cooperative Atmosphere-Surface Exchange Study (CASES97) observations, includes atmospheric, surface, and sub-surface observations obtained from a dense observation network covering a large region on the order of 100 km. We use this data set to drive three land-surface models (LSMs) to generate multi-scale (with three resolutions of 1, 5, and 10 kilometers) gridded surface heat flux maps for the CASES area. Upon validating these flux maps with measurements from surface station and aircraft, we utilize them to investigate several approaches for estimating the area-integrated surface heat flux for the CASES97 domain of 71x74 square kilometers, which is crucial for land surface model development/validation and area water and energy budget studies. This research is aimed at understanding the relative contribution of random turbulence versus organized mesoscale circulations to the area-integrated surface flux at the scale of 100 kilometers, and identifying the most important effective parameters for characterizing the subgrid-scale variability for large-scale atmosphere-hydrology models.
Thin Film Delamination Using a High Power Pulsed Laser Materials Interaction
NASA Astrophysics Data System (ADS)
Sherman, Bradley
Thin films attached to substrates are only effective while the film is adhered to the substrate. When the film begins to spall the whole system can fail, thus knowing the working strength of the film substrate system is important when designing structures. Surface acoustic waves (SAWs) are suitable for characterization of thin film mechanical properties due to the confinement of their energy within a shallow depth from a material surface. In this project, we study the feasibility of inducing dynamic interfacial failure in thin films using surface waves generated by a high power pulsed laser. Surface acoustic waves are modeled using a finite element numerical code, where the ablative interaction between the pulsed laser and the incident film is modeled using equivalent surface mechanical stresses. The numerical results are validated using experimental results from a laser ultrasonic setup. Once validated the normal film-substrate interfacial stress can be extracted from the numerical code and tends to be in the mega-Pascal range. This study uses pulsed laser generation to produce SAW in various metallic thin film/substrate systems. Each system varies in its response based on its dispersive relationship and as such requires individualized numerical modeling to match the experimental data. In addition to pulsed SAW excitation using an ablative source, a constrained thermo-mechanical load produced by the ablation of a metal film under a polymer layer is explored to generate larger dynamic mechanical stresses. These stresses are sufficient to delaminate the thin film in a manner similar to a peel test. However, since the loading is produced by a pulsed laser source, it occurs at a much faster rate, limiting the influence of slower damage modes that are present in quasi-static loading. This approach is explored to predict the interfacial fracture toughness of weak thin film interfaces.
NASA Astrophysics Data System (ADS)
Wu, S.; Yang, Y.; Wang, K.
2017-12-01
The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with body wave or surface wave tomography alone. The joint inversion model will be presented.
NASA Astrophysics Data System (ADS)
Dubrovsky, M.; Farda, A.; Huth, R.
2012-12-01
The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series and then modified (in case of simulations for the future climate) according to the GCM- or RCM-based climate change scenarios. The present contribution uses the parametric daily weather generator M&Rfi to follow two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate/CZ (v.2) Regional Climate Model at 25 km resolution. The WG parameters will be derived from the RCM-simulated surface weather series and compared to those derived from observational data in the Czech meteorological stations. The set of WG parameters will include selected statistics of the surface temperature and precipitation (characteristics of the mean, variability, interdiurnal variability and extremes). (2) Testing a potential of RCM output for calibration of the WG for the ungauged locations. The methodology being examined will consist in using the WG, whose parameters are interpolated from the surrounding stations and then corrected based on a RCM-simulated spatial variability. The quality of the weather series produced by the WG calibrated in this way will be assessed in terms of selected climatic characteristics focusing on extreme precipitation and temperature characteristics (including characteristics of dry/wet/hot/cold spells). Acknowledgements: The present experiment is made within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports) and VALUE (COST ES 1102 action).
NASA Astrophysics Data System (ADS)
Hain, C.; Anderson, M. C.; Otkin, J.; Semmens, K. A.; Zhan, X.; Fang, L.; Li, Z.
2014-12-01
As the world's water resources come under increasing tension due to the dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. However, direct validation of ET models is challenging due to lack of available observations that are sufficiently representative at the model grid scale (10-100 km). Prognostic land-surface models require accurate information about observed precipitation, soil moisture storage, groundwater, and artificial controls on water supply (e.g., irrigation, dams, etc.) to reliably link rainfall to evaporative fluxes. In contrast, diagnostic estimates of ET can be generated, with no prior knowledge of the surface moisture state, by energy balance models using thermal-infrared remote sensing of land-surface temperature (LST) as a boundary condition. One such method, the Atmosphere Land Exchange Inverse (ALEXI) model provides estimates of surface energy fluxes through the use of mid-morning change in LST and radiation inputs. The LST inputs carry valuable proxy information regarding soil moisture and its effect on soil evaporation and canopy transpiration. Additionally, the Evaporative Stress Index (ESI) representing anomalies in the ratio of actual-to-potential ET has shown to be a reliable indicator of drought. ESI maps over the continental US show good correspondence with standard drought metrics and with patterns of precipitation, but can be generated at significantly higher spatial resolution due to a limited reliance on ground observations. Furthermore, ESI is a measure of actual stress rather than potential for stress, and has physical relevance to projected crop development. Because precipitation is not used in construction of the ESI, it provides an independent assessment of drought conditions and has particular utility for real-time monitoring in regions with sparse rainfall data or significant delays in meteorological reporting. An initial analysis of a new prototype global ALEXI system using twice-daily observations of MODIS LST will be presented. The newly generated global ET and ESI datasets will be compared to other globally available ET and drought products during a multi-year evaluation period (2000-2013).
NASA Astrophysics Data System (ADS)
Moncoulon, D.; Labat, D.; Ardon, J.; Onfroy, T.; Leblois, E.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.
2013-07-01
The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible but not yet occurred flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2012 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90% of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of CCR claim database has shown that approximately 45% of the insured flood losses are located inside the floodplains and 45% outside. 10% other percent are due to seasurge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: generation of fictive river flows based on the historical records of the river gauge network and generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (MACIF) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).
Natural language generation of surgical procedures.
Wagner, J C; Rogers, J E; Baud, R H; Scherrer, J R
1998-01-01
The GALEN-IN-USE project has developed a compositional scheme for the conceptual representation of surgical operative procedure rubrics. The complex representations which result are translated back to surface language by a tool for multilingual natural language generation. This generator can be adapted to the specific characteristics of the scheme by introducing particular definitions of concepts and relationships. We discuss how the generator uses such definitions to bridge between the modelling 'style' of the GALEN scheme and natural language.
Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.
2014-01-01
The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.
NASA Astrophysics Data System (ADS)
Kunz, Robert; Haworth, Daniel; Dogan, Gulkiz; Kriete, Andres
2006-11-01
Three-dimensional, unsteady simulations of multiphase flow, gas exchange, and particle/aerosol deposition in the human lung are reported. Surface data for human tracheo-bronchial trees are derived from CT scans, and are used to generate three- dimensional CFD meshes for the first several generations of branching. One-dimensional meshes for the remaining generations down to the respiratory units are generated using branching algorithms based on those that have been proposed in the literature, and a zero-dimensional respiratory unit (pulmonary acinus) model is attached at the end of each terminal bronchiole. The process is automated to facilitate rapid model generation. The model is exercised through multiple breathing cycles to compute the spatial and temporal variations in flow, gas exchange, and particle/aerosol deposition. The depth of the 3D/1D transition (at branching generation n) is a key parameter, and can be varied. High-fidelity models (large n) are run on massively parallel distributed-memory clusters, and are used to generate physical insight and to calibrate/validate the 1D and 0D models. Suitably validated lower-order models (small n) can be run on single-processor PC’s with run times that allow model-based clinical intervention for individual patients.
NASA Astrophysics Data System (ADS)
Melchior van Wessem, Jan; van de Berg, Willem Jan; Noël, Brice P. Y.; van Meijgaard, Erik; Amory, Charles; Birnbaum, Gerit; Jakobs, Constantijn L.; Krüger, Konstantin; Lenaerts, Jan T. M.; Lhermitte, Stef; Ligtenberg, Stefan R. M.; Medley, Brooke; Reijmer, Carleen H.; van Tricht, Kristof; Trusel, Luke D.; van Ulft, Lambertus H.; Wouters, Bert; Wuite, Jan; van den Broeke, Michiel R.
2018-04-01
We evaluate modelled Antarctic ice sheet (AIS) near-surface climate, surface mass balance (SMB) and surface energy balance (SEB) from the updated polar version of the regional atmospheric climate model, RACMO2 (1979-2016). The updated model, referred to as RACMO2.3p2, incorporates upper-air relaxation, a revised topography, tuned parameters in the cloud scheme to generate more precipitation towards the AIS interior and modified snow properties reducing drifting snow sublimation and increasing surface snowmelt. Comparisons of RACMO2 model output with several independent observational data show that the existing biases in AIS temperature, radiative fluxes and SMB components are further reduced with respect to the previous model version. The model-integrated annual average SMB for the ice sheet including ice shelves (minus the Antarctic Peninsula, AP) now amounts to 2229 Gt y-1, with an interannual variability of 109 Gt y-1. The largest improvement is found in modelled surface snowmelt, which now compares well with satellite and weather station observations. For the high-resolution ( ˜ 5.5 km) AP simulation, results remain comparable to earlier studies. The updated model provides a new, high-resolution data set of the contemporary near-surface climate and SMB of the AIS; this model version will be used for future climate scenario projections in a forthcoming study.
Role of slope on infiltration: A review
NASA Astrophysics Data System (ADS)
Morbidelli, Renato; Saltalippi, Carla; Flammini, Alessia; Govindaraju, Rao S.
2018-02-01
Partitioning of rainfall at the soil-atmosphere interface is important for both surface and subsurface hydrology, and influences many events of major hydrologic interest such as runoff generation, aquifer recharge, and transport of pollutants in surface waters as well as the vadose zone. This partitioning is achieved through the process of infiltration that has been widely investigated at the local scale, and more recently also at the field scale, by models that were designed for horizontal surfaces. However, infiltration, overland flows, and deep flows in most real situations are generated by rainfall over sloping surfaces that bring in additional effects. Therefore, existing models for local infiltration into homogeneous and layered soils and those as for field-scale infiltration, have to be adapted to account for the effects of surface slope. Various studies have investigated the role of surface slope on infiltration based on a theoretical formulations for the dynamics of infiltration, extensions of the Green-Ampt approach, and from laboratory and field experiments. However, conflicting results have been reported in the scientific literature on the role of surface slope on infiltration. We summarize the salient points from previous studies and provide plausible reasons for discrepancies in conclusions of previous authors, thus leading to a critical assessment of the current state of our understanding on this subject. We offer suggestions for future efforts to advance our knowledge of infiltration over sloping surfaces.
NASA Astrophysics Data System (ADS)
Chavis, Christopher
Using commercial digital cameras in conjunction with Unmanned Aerial Systems (UAS) to generate 3-D Digital Surface Models (DSMs) and orthomosaics is emerging as a cost-effective alternative to Light Detection and Ranging (LiDAR). Powerful software applications such as Pix4D and APS can automate the generation of DSM and orthomosaic products from a handful of inputs. However, the accuracy of these models is relatively untested. The objectives of this study were to generate multiple DSM and orthomosaic pairs of the same area using Pix4D and APS from flights of imagery collected with a lightweight UAS. The accuracy of each individual DSM was assessed in addition to the consistency of the method to model one location over a period of time. Finally, this study determined if the DSMs automatically generated using lightweight UAS and commercial digital cameras could be used for detecting changes in elevation and at what scale. Accuracy was determined by comparing DSMs to a series of reference points collected with survey grade GPS. Other GPS points were also used as control points to georeference the products within Pix4D and APS. The effectiveness of the products for change detection was assessed through image differencing and observance of artificially induced, known elevation changes. The vertical accuracy with the optimal data and model is ≈ 25 cm and the highest consistency over repeat flights is a standard deviation of ≈ 5 cm. Elevation change detection based on such UAS imagery and DSM models should be viable for detecting infrastructure change in urban or suburban environments with little dense canopy vegetation.
New software developments for quality mesh generation and optimization from biomedical imaging data.
Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko
2014-01-01
In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
D Model of AL Zubarah Fortress in Qatar - Terrestrial Laser Scanning VS. Dense Image Matching
NASA Astrophysics Data System (ADS)
Kersten, T.; Mechelke, K.; Maziull, L.
2015-02-01
In September 2011 the fortress Al Zubarah, built in 1938 as a typical Arabic fortress and restored in 1987 as a museum, was recorded by the HafenCity University Hamburg using terrestrial laser scanning with the IMAGER 5006h and digital photogrammetry for the Qatar Museum Authority within the framework of the Qatar Islamic Archaeology and Heritage Project. One goal of the object recording was to provide detailed 2D/3D documentation of the fortress. This was used to complete specific detailed restoration work in the recent years. From the registered laser scanning point clouds several cuttings and 2D plans were generated as well as a 3D surface model by triangle meshing. Additionally, point clouds and surface models were automatically generated from digital imagery from a Nikon D70 using the open-source software Bundler/PMVS2, free software VisualSFM, Autodesk Web Service 123D Catch beta, and low-cost software Agisoft PhotoScan. These outputs were compared with the results from terrestrial laser scanning. The point clouds and surface models derived from imagery could not achieve the same quality of geometrical accuracy as laser scanning (i.e. 1-2 cm).
Unsteady Crystal Growth Due to Step-Bunch Cascading
NASA Technical Reports Server (NTRS)
Vekilov, Peter G.; Lin, Hong; Rosenberger, Franz
1997-01-01
Based on our experimental findings of growth rate fluctuations during the crystallization of the protein lysozym, we have developed a numerical model that combines diffusion in the bulk of a solution with diffusive transport to microscopic growth steps that propagate on a finite crystal facet. Nonlinearities in layer growth kinetics arising from step interaction by bulk and surface diffusion, and from step generation by surface nucleation, are taken into account. On evaluation of the model with properties characteristic for the solute transport, and the generation and propagation of steps in the lysozyme system, growth rate fluctuations of the same magnitude and characteristic time, as in the experiments, are obtained. The fluctuation time scale is large compared to that of step generation. Variations of the governing parameters of the model reveal that both the nonlinearity in step kinetics and mixed transport-kinetics control of the crystallization process are necessary conditions for the fluctuations. On a microscopic scale, the fluctuations are associated with a morphological instability of the vicinal face, in which a step bunch triggers a cascade of new step bunches through the microscopic interfacial supersaturation distribution.
D Surface Generation from Aerial Thermal Imagery
NASA Astrophysics Data System (ADS)
Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.
2015-12-01
Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2012-01-01
This paper reviews the derivation of an equation for scaling response surface modeling experiments. The equation represents the smallest number of data points required to fit a linear regression polynomial so as to achieve certain specified model adequacy criteria. Specific criteria are proposed which simplify an otherwise rather complex equation, generating a practical rule of thumb for the minimum volume of data required to adequately fit a polynomial with a specified number of terms in the model. This equation and the simplified rule of thumb it produces can be applied to minimize the cost of wind tunnel testing.
Ensemble Kalman filter for the reconstruction of the Earth's mantle circulation
NASA Astrophysics Data System (ADS)
Bocher, Marie; Fournier, Alexandre; Coltice, Nicolas
2018-02-01
Recent advances in mantle convection modeling led to the release of a new generation of convection codes, able to self-consistently generate plate-like tectonics at their surface. Those models physically link mantle dynamics to surface tectonics. Combined with plate tectonic reconstructions, they have the potential to produce a new generation of mantle circulation models that use data assimilation methods and where uncertainties in plate tectonic reconstructions are taken into account. We provided a proof of this concept by applying a suboptimal Kalman filter to the reconstruction of mantle circulation (Bocher et al., 2016). Here, we propose to go one step further and apply the ensemble Kalman filter (EnKF) to this problem. The EnKF is a sequential Monte Carlo method particularly adapted to solve high-dimensional data assimilation problems with nonlinear dynamics. We tested the EnKF using synthetic observations consisting of surface velocity and heat flow measurements on a 2-D-spherical annulus model and compared it with the method developed previously. The EnKF performs on average better and is more stable than the former method. Less than 300 ensemble members are sufficient to reconstruct an evolution. We use covariance adaptive inflation and localization to correct for sampling errors. We show that the EnKF results are robust over a wide range of covariance localization parameters. The reconstruction is associated with an estimation of the error, and provides valuable information on where the reconstruction is to be trusted or not.
2018-01-01
Profile Database E-17 Attachment 2: NRMM Data Input Requirements E-25 Attachment 3: General Physics -Based Model Data Input Requirements E-28...E-15 Figure E-11 Examples of Unique Surface Types E-20 Figure E-12 Correlating Physical Testing with Simulation E-21 Figure E-13 Simplified Tire...Table 10-8 Scoring Values 10-19 Table 10-9 Accuracy – Physics -Based 10-20 Table 10-10 Accuracy – Validation Through Measurement 10-22 Table 10-11
2016-10-04
model of 1.24 m with the PGAD and control surface 3 1.2. Design and manufacture of the gust generator (frame, blades , actuation and control system...Chapter 3, a gust generator with two rotating blades was designed and manufactured to induce a transverse turbulence for wind tunnel test. A CFD...velocity at 8C (eight times of blade chord length) achieved 1.3%. In Chapter 4, the wind tunnel test of the scaled wing model is presented, including the
NASA Astrophysics Data System (ADS)
Rasztovits, S.; Dorninger, P.
2013-07-01
Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.
NASA Astrophysics Data System (ADS)
Li, W.; Su, Y.; Harmon, T. C.; Guo, Q.
2013-12-01
Light Detection and Ranging (lidar) is an optical remote sensing technology that measures properties of scattered light to find range and/or other information of a distant object. Due to its ability to generate 3-dimensional data with high spatial resolution and accuracy, lidar technology is being increasingly used in ecology, geography, geology, geomorphology, seismology, remote sensing, and atmospheric physics. In this study we construct a 3-dimentional (3D) radiative transfer model (RTM) using lidar data to simulate the spatial distribution of solar radiation (direct and diffuse) on the surface of water and mountain forests. The model includes three sub-models: a light model simulating the light source, a sensor model simulating the camera, and a scene model simulating the landscape. We use ground-based and airborne lidar data to characterize the 3D structure of the study area, and generate a detailed 3D scene model. The interactions between light and object are simulated using the Monte Carlo Ray Tracing (MCRT) method. A large number of rays are generated from the light source. For each individual ray, the full traveling path is traced until it is absorbed or escapes from the scene boundary. By locating the sensor at different positions and directions, we can simulate the spatial distribution of solar energy at the ground, vegetation and water surfaces. These outputs can then be incorporated into meteorological drivers for hydrologic and energy balance models to improve our understanding of hydrologic processes and ecosystem functions.
Simulations of buoyancy-generated horizontal roll vortices over multiple heating lines
W.E. Heilman
1994-01-01
A two-dimensional nonhydrostatic atmospheric model is used to simulate the boundary-layer circulations that develop from multiple lines of extremely high surface temperatures. Numerical simulations are carried out to investigate the role of buoyancy and ambient crossflow effects in generating horizontal roll vortices in the vicinity of adjacent wildland fire perimeters...
On the computation of the turbulent flow near rough surface
NASA Astrophysics Data System (ADS)
Matveev, S. K.; Jaychibekov, N. Zh.; Shalabayeva, B. S.
2018-05-01
One of the problems in constructing mathematical models of turbulence is a description of the flows near a rough surface. An experimental study of such flows is also difficult because of the impossibility of measuring "inside" the roughness. The theoretical calculation is difficult because of the lack of equations describing the flow in this zone. In this paper, a new turbulence model based on the differential equation of turbulent viscosity balance was used to describe a turbulent flow near a rough surface. The difference between the new turbulence model and the previously known consists in the choice of constants and functions that determine the generation, dissipation and diffusion of viscosity.
Application and Analysis of Measurement Model for Calibrating Spatial Shear Surface in Triaxial Test
NASA Astrophysics Data System (ADS)
Zhang, Zhihua; Qiu, Hongsheng; Zhang, Xiedong; Zhang, Hang
2017-12-01
Discrete element method has great advantages in simulating the contacts, fractures, large displacement and deformation between particles. In order to analyze the spatial distribution of the shear surface in the three-dimensional triaxial test, a measurement model is inserted in the numerical triaxial model which is generated by weighted average assembling method. Due to the non-visibility of internal shear surface in laboratory, it is largely insufficient to judge the trend of internal shear surface only based on the superficial cracks of sheared sample, therefore, the measurement model is introduced. The trend of the internal shear zone is analyzed according to the variations of porosity, coordination number and volumetric strain in each layer. It shows that as a case study on confining stress of 0.8 MPa, the spatial shear surface is calibrated with the results of the rotated particle distribution and the theoretical value with the specific characteristics of the increase of porosity, the decrease of coordination number, and the increase of volumetric strain, which represents the measurement model used in three-dimensional model is applicable.
NASA Technical Reports Server (NTRS)
Dcruz, Jonathan
1993-01-01
In view of the strong need for a well-documented set of experimental data which is suitable for the validation and/or calibration of modern Computational Fluid Dynamics codes, the Benchmark Models Program was initiated by the Structural Dynamics Division of the NASA Langley Research Center. One of the models in the program, the Benchmark Active Controls Testing Model, consists of a rigid wing of rectangular planform with a NACA 0012 profile and three control surfaces (a trailing-edge control surface, a lower-surface spoiler, and an upper-surface spoiler). The model is affixed to a flexible mount system which allows only plunging and/or pitching motion. An approximate analytical determination of the forces required to move this model, with its control surfaces fixed, in pure plunge and pure pitch at a number of test conditions is included. This provides a good indication of the type of actuator system required to generate the aerodynamic data resulting from pure plunging and pure pitching motion, in which much interest was expressed. The analysis makes use of previously obtained numerical results.
NASA Astrophysics Data System (ADS)
Rey, David M.
Energy and water are connected through the water-use cycle (e.g. obtaining, transporting, and treating water) and thermoelectric energy generation, which converts heat to electricity via steam-driven turbines. As the United States implements more renewable energy technologies, quantifying the relationships between energy, water, and land-surface impacts of these implementations will provide policy makers the strengths and weaknesses of different renewable energy options. In this study, a MODFLOW model of the Indian Wells Valley (IWV), in California, was developed to capture the water, energy, and land-surface impacts of potential proposed 1) solar, 2) wind, and 3) biofuel implementations. The model was calibrated to pre-existing groundwater head data from 1985 to present to develop a baseline model before running two-year predictive scenarios for photovoltaic (PV), concentrating solar power (CSP), wind, and biofuel implementations. Additionally, the baseline model was perturbed by decreasing mountain front recharge values by 5%, 10%, and 15%, simulating potential future system perturbations under a changing climate. These potential future conditions were used to re-run each implementation scenario. Implementation scenarios were developed based on population, typical energy use per person, existing land-use and land-cover type within the IWV, and previously published values for water use, surface-area use, and energy-generation potential for each renewable fuel type. The results indicate that the quantity of water needed, localized drawdown from pumping water to meet implementation demands, and generation efficiency are strongly controlled by the fuel type, as well as the energy generating technology and thermoelectric technologies implemented. Specifically, PV and wind-turbine (WT) implementations required less than 1% of the estimated annual aquifer recharge, while technologies such as biofuels and CSP, which rely on thermoelectric generation, ranged from 3% to 20%. As modeled groundwater elevations declined in the IWV, the net generation (i.e. energy produced - energy used) of each renewable energy implementation decreased due a higher energy cost for pumping groundwater. The loss in efficiency was minimal for PV and wind solutions, with maximum changes in the drawdown being less than 10 m; however, for CSP and biofuel implementations drawdowns over 50 m were observed at the pumping well, resulting in electrical generation efficiency losses between 4% and 50% over a two-year period. It was concluded that PV would be the best balance between water and land-use for the IWV, or other groundwater dependent Basin and Range settings. In areas with limited water resources but abundant available land for implementation, WT solutions would have the smallest hydrologic impact. The impact of renewable scenarios was highly variable across and within differing fuel types, with the potential for larger negative impacts under a changing climate in areas with no perennial surface water.
Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry
NASA Astrophysics Data System (ADS)
Javernick, L.; Brasington, J.; Caruso, B.
2014-05-01
Recent advances in computer vision and image analysis have led to the development of a novel, fully automated photogrammetric method to generate dense 3d point cloud data. This approach, termed Structure-from-Motion or SfM, requires only limited ground-control and is ideally suited to imagery obtained from low-cost, non-metric cameras acquired either at close-range or using aerial platforms. Terrain models generated using SfM have begun to emerge recently and with a growing spectrum of software now available, there is an urgent need to provide a robust quality assessment of the data products generated using standard field and computational workflows. To address this demand, we present a detailed error analysis of sub-meter resolution terrain models of two contiguous reaches (1.6 and 1.7 km long) of the braided Ahuriri River, New Zealand, generated using SfM. A six stage methodology is described, involving: i) hand-held image acquisition from an aerial platform, ii) 3d point cloud extraction modeling using Agisoft PhotoScan, iii) georeferencing on a redundant network of GPS-surveyed ground-control points, iv) point cloud filtering to reduce computational demand as well as reduce vegetation noise, v) optical bathymetric modeling of inundated areas; and vi) data fusion and surface modeling to generate sub-meter raster terrain models. Bootstrapped geo-registration as well as extensive distributed GPS and sonar-based bathymetric check-data were used to quantify the quality of the models generated after each processing step. The results obtained provide the first quantified analysis of SfM applied to model the complex terrain of a braided river. Results indicate that geo-registration errors of 0.04 m (planar) and 0.10 m (elevation) and vertical surface errors of 0.10 m in non-vegetation areas can be achieved from a dataset of photographs taken at 600 m and 800 m above the ground level. These encouraging results suggest that this low-cost, logistically simple method can deliver high quality terrain datasets competitive with those obtained with significantly more expensive laser scanning, and suitable for geomorphic change detection and hydrodynamic modeling.
An enhanced Oct-tree data structure and operations for solid modeling
NASA Technical Reports Server (NTRS)
Fujimura, K.; Toriya, H.; Yamaguchi, K.; Kunii, T. L.
1984-01-01
Oct-trees are enhanced to increase the processing efficiency of geometric operations for interactive CAD use. Further enhancement is made to combine them with surface models for more precise boundary specification as needed by tool path generation in CAM applications.
2014-10-27
a phase-averaged spectral wind-wave generation and transformation model and its interface in the Surface-water Modeling System (SMS). Ambrose...applications of the Boussinesq (BOUSS-2D) wave model that provides more rigorous calculations for design and performance optimization of integrated...navigation systems . Together these wave models provide reliable predictions on regional and local spatial domains and cost-effective engineering solutions
Mechanism of total electron emission yield reduction using a micro-porous surface
NASA Astrophysics Data System (ADS)
Ye, Ming; Wang, Dan; He, Yongning
2017-03-01
Suppression of the total secondary electron yield (TEY) of metal surfaces is important in many areas such as accelerator, satellite, and Hall thruster. Among TEY suppression techniques, micro-porous surfaces have been demonstrated as an effective method. In this work, we developed an analytical model that is able to obtain the contributions of TEY from both the 1st and 2nd generation secondary electrons (SEs). Calculation results show that the TEY contributed by the bottom of the hole dominates the TEY of the micro-porous surface with the aspect ratio we have chosen. Thus, we developed the following design guidance for the improvement of the TEY suppression efficiency of the micro-porous surface: either lower the TEY of the bottom or guide its SEs to the lateral side of the hole. To verify this idea, we performed the following numerical simulations: a micro-hole with its inner surfaces coated with a low TEY material and a micro-hole with nano-triangular grooves or nano-truncated cone pillars embedded at its bottom. Compared with a usual micro-hole, the proposed hybrid micro/nano structures show improved TEY suppression efficiency as expected from the analytical model. The percentage ratios of the 1st and 2nd generation SEs obtained from the simulation agree well with the predictions of the analytical model. What is more, we also present the results of the emitting angle distribution of SEs which represent remarkable deviation from the usual cosine distribution.
Lump Solitons in Surface Tension Dominated Flows
NASA Astrophysics Data System (ADS)
Milewski, Paul; Berger, Kurt
1999-11-01
The Kadomtsev-Petviashvilli I equation (KPI) which models small-amplitude, weakly three-dimensional surface-tension dominated long waves is integrable and allows for algebraically decaying lump solitary waves. It is not known (theoretically or numerically) whether the full free-surface Euler equations support such solutions. We consider an intermediate model, the generalised Benney-Luke equation (gBL) which is isotropic (not weakly three-dimensional) and contains KPI as a limit. We show numerically that: 1. gBL supports lump solitary waves; 2. These waves collide elastically and are stable; 3. They are generated by resonant flow over an obstacle.
Generation of laser-induced periodic surface structures on transparent material-fused silica
NASA Astrophysics Data System (ADS)
Schwarz, Simon; Rung, Stefan; Hellmann, Ralf
2016-05-01
We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionization and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.
Generation of laser-induced periodic surface structures on transparent material-fused silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Simon; Rung, Stefan; Hellmann, Ralf
2016-05-02
We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionizationmore » and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.« less
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
A theoretical and computational framework for mechanics of the cortex
NASA Astrophysics Data System (ADS)
Torres-SáNchez, Alejandro; Arroyo, Marino
The cell cortex is a thin network of actin filaments lying beneath the cell surface of animal cells. Myosin motors exert contractile forces in this network leading to active stresses, which play a key role in processes such as cytokinesis or cell migration. Thus, understanding the mechanics of the cortex is fundamental to understand the mechanics of animal cells. Due to the dynamic remodeling of the actin network, the cortex behaves as a viscoelastic fluid. Furthermore, due to the difference between its thickness (tens of nanometers) and its dimensions (tens of microns), the cortex can be regarded a surface. Thus, we can model the cortex as a viscoelastic fluid, confined to a surface, that generates active stresses. Interestingly, geometric confinement results in the coupling between shape generation and material flows. In this work we present a theoretical framework to model the mechanics of the cortex that couples elasticity, hydrodynamics and force generation. We complement our theoretical description with a computational setting to simulate the resulting non-linear equations. We use this methodology to understand different processes such as asymmetric cell division or experimental probing of the rheology of the cortex We acknowledge the support of the Europen Research Council through Grant ERC CoG-681434.
Entropy generation analysis for film boiling: A simple model of quenching
NASA Astrophysics Data System (ADS)
Lotfi, Ali; Lakzian, Esmail
2016-04-01
In this paper, quenching in high-temperature materials processing is modeled as a superheated isothermal flat plate. In these phenomena, a liquid flows over the highly superheated surfaces for cooling. So the surface and the liquid are separated by the vapor layer that is formed because of the liquid which is in contact with the superheated surface. This is named forced film boiling. As an objective, the distribution of the entropy generation in the laminar forced film boiling is obtained by similarity solution for the first time in the quenching processes. The PDE governing differential equations of the laminar film boiling including continuity, momentum, and energy are reduced to ODE ones, and a dimensionless equation for entropy generation inside the liquid boundary and vapor layer is obtained. Then the ODEs are solved by applying the 4th-order Runge-Kutta method with a shooting procedure. Moreover, the Bejan number is used as a design criterion parameter for a qualitative study about the rate of cooling and the effects of plate speed are studied in the quenching processes. It is observed that for high speed of the plate the rate of cooling (heat transfer) is more.
Near grazing scattering from non-Gaussian ocean surfaces
NASA Technical Reports Server (NTRS)
Kim, Yunjin; Rodriguez, Ernesto
1993-01-01
We investigate the behavior of the scattered electromagnetic waves from non-Gaussian ocean surfaces at near grazing incidence. Even though the scattering mechanisms at moderate incidence angles are relatively well understood, the same is not true for near grazing rough surface scattering. However, from the experimental ocean scattering data, it has been observed that the backscattering cross section of a horizontally polarized wave can be as large as the vertical counterpart at near grazing incidence. In addition, these returns are highly intermittent in time. There have been some suggestions that these unexpected effects may come from shadowing or feature scattering. Using numerical scattering simulations, it can be shown that the horizontal backscattering cannot be larger than the vertical one for the Gaussian surfaces. Our main objective of this study is to gain a clear understanding of scattering mechanisms underlying the near grazing ocean scattering. In order to evaluate the backscattering cross section from ocean surfaces at near grazing incidence, both the hydrodynamic modeling of ocean surfaces and an accurate near grazing scattering theory are required. For the surface modeling, we generate Gaussian surfaces from the ocean surface power spectrum which is derived using several experimental data. Then, weakly nonlinear large scale ocean surfaces are generated following Longuet-Higgins. In addition, the modulation of small waves by large waves is included using the conservation of wave action. For surface scattering, we use MOM (Method of Moments) to calculate the backscattering from scattering patches with the two scale shadowing approximation. The differences between Gaussian and non-Gaussian surface scattering at near grazing incidence are presented.
NASA Technical Reports Server (NTRS)
Raju, I. S.
1992-01-01
A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.
Modeling aspects of the surface reconstruction problem
NASA Astrophysics Data System (ADS)
Toth, Charles K.; Melykuti, Gabor
1994-08-01
The ultimate goal of digital photogrammetry is to automatically produce digital maps which may in turn form the basis of GIS. Virtually all work in surface reconstruction deals with various kinds of approximations and constraints that are applied. In this paper we extend these concepts in various ways. For one, matching is performed in object space. Thus, matching and densification (modeling) is performed in the same reference system. Another extension concerns the solution of the second sub-problem. Rather than simply densifying (interpolating) the surface, we propose to model it. This combined top-down and bottom-up approach is performed in scale space, whereby the model is refined until compatibility between the data and expectations is reached. The paper focuses on the modeling aspects of the surface reconstruction problem. Obviously, the top-down and bottom-up model descriptions ought to be in a form which allows the generation and verification of hypotheses. Another crucial question is the degree of a priori scene knowledge necessary to constrain the solution space.
Substitute CT generation from a single ultra short time echo MRI sequence: preliminary study
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Dowling, Jason A.; Rai, Robba; Liney, Gary P.
2017-04-01
In MR guided radiation therapy planning both MR and CT images for a patient are acquired and co-registered to obtain a tissue specific HU map. Generation of the HU map directly from the MRI would eliminate the CT acquisition and may improve radiation therapy planning. In this preliminary study of substitute CT (sCT) generation, two porcine leg phantoms were scanned using a 3D ultrashort echo time (PETRA) sequence and co-registered to corresponding CT images to build tissue specific regression models. The model was created from one co-registered CT-PETRA pair to generate the sCT for the other PETRA image. An expectation maximization based clustering was performed on the co-registered PETRA image to identify the soft tissues, dense bone and air class membership probabilities. A tissue specific non linear regression model was built from one registered CT-PETRA pair dataset to predict the sCT of the second PETRA image in a two-fold cross validation schema. A complete substitute CT is generated in 3 min. The mean absolute HU error for air was 0.3 HU, bone was 95 HU, fat was 30 HU and for muscle it was 10 HU. The mean surface reconstruction error for the bone was 1.3 mm. The PETRA sequence enabled a low mean absolute surface distance for the bone and a low HU error for other classes. The sCT generated from a single PETRA sequence shows promise for the generation of fast sCT for MRI based radiation therapy planning.
Susong, D.; Marks, D.; Garen, D.
1999-01-01
Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.
NASA Astrophysics Data System (ADS)
Messié, Monique; Chavez, Francisco P.
2017-09-01
A simple combination of wind-driven nutrient upwelling, surface currents, and plankton growth/grazing equations generates zooplankton patchiness and hotspots in coastal upwelling regions. Starting with an initial input of nitrate from coastal upwelling, growth and grazing equations evolve phytoplankton and zooplankton over time and space following surface currents. The model simulates the transition from coastal (large phytoplankton, e.g., diatoms) to offshore (picophytoplankton and microzooplankton) communities, and in between generates a large zooplankton maximum. The method was applied to four major upwelling systems (California, Peru, Northwest Africa, and Benguela) using latitudinal estimates of wind-driven nitrate supply and satellite-based surface currents. The resulting zooplankton simulations are patchy in nature; areas of high concentrations coincide with previously documented copepod and krill hotspots. The exercise highlights the importance of the upwelling process and surface currents in shaping plankton communities.
Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model
2012-05-31
heat between the atmosphere and ocean (Yu and Weller, 2007 ). Salinities in the upper ocean are set by the difference between evaporation and...precipitation at the ocean surface (Yu, 2007 ; Schmitt, 2008). Because the buoyancy (density) of seawater at the ocean surface is con- trolled by...timescales of about 10–200 days, these currents mean- der and generate highly energetic meso- scale eddies (Schmitz, 1996a,b; Stammer , 1997), the spinning
Hankett, Jeanne M; Collin, William R; Yang, Pei; Chen, Zhan; Duhaime, Melissa
2016-02-02
Despite the ever-increasing prevalence of plastic debris and endocrine disrupting toxins in aquatic ecosystems, few studies describe their interactions in freshwater environments. We present a model system to investigate the deposition/desorption behaviors of low-volatility lake ecosystem toxins on microplastics in situ and in real time. Molecular interactions of gas-phase nonylphenols (NPs) with the surfaces of two common plastics, poly(styrene) and poly(ethylene terephthalate), were studied using quartz crystal microbalance and sum frequency generation vibrational spectroscopy. NP point sources were generated under two model environments: plastic on land and plastic on a freshwater surface. We found the headspace above calm water provides an excellent environment for NP deposition and demonstrate significant NP deposition on plastic within minutes at relevant concentrations. Further, NP deposits and orders differently on both plastics under humid versus dry environments. We attributed the unique deposition behaviors to surface energy changes from increased water content during the humid deposition. Lastly, nanograms of NP remained on microplastic surfaces hours after initial NP introduction and agitating conditions, illustrating feasibility for plastic-bound NPs to interact with biota and surrounding matter. Our model studies reveal important interactions between low-volatility environmental toxins and microplastics and hold potential to correlate the environmental fate of endocrine disrupting toxins in the Great Lakes with molecular behaviors.
Klebanoff (K-) modes in boundary layers (BLs) over compliant surfaces
NASA Astrophysics Data System (ADS)
Ali, Reza; Carpenter, Peter
2002-11-01
We investigate the effect of wall compliance on K-modes. These are associated with streaks observed in the transitional BL, generated by spanwise modulation of the streamwise velocity, and are thought to be the mechanism for bypass transition. They have been widely studied over flat-plate, rigid surfaces but not compliant surfaces. A novel velocity-vorticity formulation is adopted for the numerical simulations, and a freestream spanwise body force is used to generate the streaks. We find compliant walls are less receptive than rigid walls, i.e. freestream turbulence generates weaker disturbances over compliant walls. This effect intensifies with increasing compliance. Where a compliant panel is embedded into a rigid surface, the leading and trailing edges of the panel can introduce a stabilising or destabilising disturbance on the streaks depending on the Reynolds number. It is therefore possible to optimise the wall to suppress streaks and hence bypass. K-modes can also act as a theoretical model for the near-wall structures that generate the high skin-friction drag in turbulent BLs. In this scenario, increasing compliance increases the spanwise spacing and weakens the streak. This explains experimental observations that wall compliance reduces skin-friction drag and turbulence levels in turbulent BLs.
Numerical analysis of the formation process of aerosols in the alveoli
NASA Astrophysics Data System (ADS)
Haslbeck, Karsten; Seume, Jörg R.
2008-11-01
For a successful diagnosis of lung diseases through an analysis of non-volatile molecules in the exhaled breath, an exact understanding of the aerosol formation process is required. This process is modeled using Computational Fluid Dynamics (CFD). The model shows the interaction of the boundary surface between the streamed airway and the local epithelial liquid layer. A 2-D volume mesh of an alveolus is generated by taking into account the connection of the alveoli with the sacculi alveolares (SA). The Volume of Fluid (VOF) Method is used to model the interface between the gas and the liquid film. The non-Newtonian flow is modeled by the implementation of the Ostwald de Waele model. Surface tension is a function of the surfactant concentration. The VOF-Method allows the distribution of the concentration of the epithelial liquid layer at the surface to be traced in a transient manner. The simulations show the rupturing of the liquid film through the drop formation. Aerosol particles are ejected into the SA and do not collide with the walls. The quantity, the geometrical size as well as the velocity distributions of the generated aerosols are determined. The data presented in the paper provide the boundary conditions for future CFD analysis of the aerosol transport through the airways up to exhalation.
A scheme for computing surface layer turbulent fluxes from mean flow surface observations
NASA Technical Reports Server (NTRS)
Hoffert, M. I.; Storch, J.
1978-01-01
A physical model and computational scheme are developed for generating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at some fixed height in the atmospheric surface layer, where conditions at this reference level are presumed known from observations or the evolving state of a numerical atmospheric circulation model. The method is based on coupling the Monin-Obukov surface layer similarity profiles which include buoyant stability effects on mean velocity, temperature and humidity to a force-restore formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant fluxes at the surface. Additional parameters needed to implement the scheme are the thermal heat capacity of the soil per unit surface area, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity to solar radiation.
NASA Astrophysics Data System (ADS)
Borri, Claudia; Paggi, Marco
2015-02-01
The random process theory (RPT) has been widely applied to predict the joint probability distribution functions (PDFs) of asperity heights and curvatures of rough surfaces. A check of the predictions of RPT against the actual statistics of numerically generated random fractal surfaces and of real rough surfaces has been only partially undertaken. The present experimental and numerical study provides a deep critical comparison on this matter, providing some insight into the capabilities and limitations in applying RPT and fractal modeling to antireflective and hydrophobic rough surfaces, two important types of textured surfaces. A multi-resolution experimental campaign using a confocal profilometer with different lenses is carried out and a comprehensive software for the statistical description of rough surfaces is developed. It is found that the topology of the analyzed textured surfaces cannot be fully described according to RPT and fractal modeling. The following complexities emerge: (i) the presence of cut-offs or bi-fractality in the power-law power-spectral density (PSD) functions; (ii) a more pronounced shift of the PSD by changing resolution as compared to what was expected from fractal modeling; (iii) inaccuracy of the RPT in describing the joint PDFs of asperity heights and curvatures of textured surfaces; (iv) lack of resolution-invariance of joint PDFs of textured surfaces in case of special surface treatments, not accounted for by fractal modeling.
A simple model for the generation of the vestibular evoked myogenic potential (VEMP).
Wit, Hero P; Kingma, Charlotte M
2006-06-01
To describe the mechanism by which the vestibular evoked myogenic potential is generated. Vestibular evoked myogenic potential generation is modeled by adding a large number of muscle motor unit action potentials. These action potentials occur randomly in time along a 100 ms long time axis. But because between approximately 15 and 20 ms after a loud short sound stimulus (almost) no action potentials are generated during VEMP measurements in human subjects, no action potentials are present in the model during this time. The evoked potential is the result of the lack of amplitude cancellation in the averaged surface electromyogram at the edges of this 5 ms long time interval. The relatively simple model describes generation and some properties of the vestibular evoked myogenic potential very well. It is shown that, in contrast with other evoked potentials (BAEPs, VERs), the vestibular evoked myogenic potential is the result of an interruption of activity and not that of summed synchronized neural action potentials.
MacDonald, G; Mackenzie, J A; Nolan, M; Insall, R H
2016-03-15
In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk-surface reaction-diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulk-surface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane.
The role of stochastic storms on hillslope runoff generation and connectivity in a dryland basin
NASA Astrophysics Data System (ADS)
Michaelides, K.; Singer, M. B.; Mudd, S. M.
2016-12-01
Despite low annual rainfall, dryland basins can generate significant surface runoff during certain rainstorms, which can cause flash flooding and high rates of erosion. However, it remains challenging to anticipate the nature and frequency of runoff generation in hydrological systems which are driven by spatially and temporally stochastic rainstorms. In particular, the stochasticity of rainfall presents challenges to simulating the hydrological response of dryland basins and understanding flow connectivity from hillslopes to the channel. Here we simulate hillslope runoff generation using rainfall characteristics produced by a simple stochastic rainfall generator, which is based on a rich rainfall dataset from the Walnut Gulch Experimental Watershed (WGEW) in Arizona, USA. We assess hillslope runoff generation using the hydrological model, COUP2D, driven by a subset of characteristic output from multiple ensembles of decadal monsoonal rainfall from the stochastic rainfall generator. The rainfall generator operates across WGEW by simulating storms with areas smaller than the basin and enables explicit characterization of rainfall characteristics at any location. We combine the characteristics of rainfall intensity and duration with data on rainstorm area and location to model the surface runoff properties (depth, velocity, duration, distance downslope) on a range of hillslopes within the basin derived from LiDAR analysis. We also analyze connectivity of flow from hillslopes to the channel for various combinations of hillslopes and storms. This approach provides a framework for understanding spatial and temporal dynamics of runoff generation and connectivity that is faithful to the hydrological characteristics of dryland environments.
Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise
Shannon, Sarah R.; Payne, Antony J.; Bartholomew, Ian D.; van den Broeke, Michiel R.; Edwards, Tamsin L.; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J.; Huybrechts, Philippe; Mair, Douglas W. F.; Nienow, Peter W.; Perego, Mauro; Price, Stephen F.; Smeets, C. J. P. Paul; Sole, Andrew J.; van de Wal, Roderik S. W.; Zwinger, Thomas
2013-01-01
We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet’s contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone. PMID:23940337
Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise.
Shannon, Sarah R; Payne, Antony J; Bartholomew, Ian D; van den Broeke, Michiel R; Edwards, Tamsin L; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J; Huybrechts, Philippe; Mair, Douglas W F; Nienow, Peter W; Perego, Mauro; Price, Stephen F; Smeets, C J P Paul; Sole, Andrew J; van de Wal, Roderik S W; Zwinger, Thomas
2013-08-27
We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet's contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone.
Active Serpentinization and the Potential for a Diverse Subsurface Biosphere
NASA Astrophysics Data System (ADS)
Canovas, P. A.; Shock, E.
2013-12-01
The ubiquitous nature of serpentinization and the unique fluids it generates have major consequences for habitat generation, abiotic organic synthesis, and biosynthesis. The production of hydrogen from the anaerobic hydrolysis of ultramafic minerals sets the redox state of serpentinizing fluids to be thermodynamically favorable for these processes. Consequently, a host of specialized microbial populations and metabolisms can be sustained. Active low-temperature serpentinizing systems, such as the Samail ophiolite in Oman, offer an ideal opportunity to investigate biogeochemical processes during the alteration of ultramafic minerals. At the Samail ophiolite in particular, serpentinization may provide the potential for an active subsurface microbial community shielded from potentially unfavorable surface conditions. Support for this assertion comes from geochemical data including Mg, Ca, CH4 (aq), and H2 (aq) abundances indicating that methane is a product of serpentinization. To further investigate viable metabolic strategies, affinity calculations were performed on both the surface waters and the hyperalkaline springs, which may be considered as messengers of processes occurring in the subsurface. Almost all sites yield positive affinities (i.e., are thermodynamically favorable) for a diverse suite of serpentinization metabolisms including methanogenesis, anammox, and carbon monoxide, nitrate, and sulfate reduction with hydrogen, as well as anaerobic methanotrophy coupled to nitrate, nitrite, and sulfate reduction. Reaction path modeling was performed to ascertain the extent to which serpentinization and mixing of surface waters with hyperalkaline spring waters in the subsurface can generate suitable habitats. The serpentinization model simulates the reaction of pristine Oman harzburgite with surface water to quantify the redox state and generation of hyperalkaline spring water. Preliminary results show that water-rock ratios as high as 100 could effectively reduce the system and create a thermodynamic drive sufficient to convert all of the dissolved inorganic carbon into methane. This indicates that the system is poised to create the reducing conditions necessary to support a subsurface biosphere very early in the serpentinizing process, and that the subsurface biosphere could extend upwards to very near the surface. The mixing model simulates the percolation of surface water into the active serpentinization zone. During the mixing process, methane is calculated to be more stable than carbonate species until approximately 100g of surface water have been added to 1 kg of the serpentinizing fluid. These results suggest that unreacted surface water flowing directly into the serpentinizing zone can create the disequilibria necessary for methanogenesis, and possibly other metabolisms, to proceed while still maintaining the low redox state of the system. As long as the recharge to the hyperalkaline reservoir does not exceed ten percent of the reservoir, methanogenesis and other serpentinization metabolisms can thrive off the disequilibria generated through mixing.
NASA Astrophysics Data System (ADS)
Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.
2017-02-01
Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.
Brodie, Ian M
2012-01-01
Suspended solids from urban impervious surfaces (SSUIS) is a spreadsheet-based model that predicts the mass loading of suspended solids (SS) in stormwater runoff generated from impervious urban surfaces. The model is intended to be a research tool and incorporates several particle accumulation and washoff processes. Development of SSUIS is based on interpretation of storm event data obtained from a galvanised iron roof, a concrete car park and a bitumen road located in Toowoomba, Australia. SSUIS is a source area model that tracks the particle mass balance on the impervious surface and within its lateral drain to a point of discharge. Particles are separated into two groups: free and detained, depending on the rainfall energy required for surface washoff. Calibration and verification of SSUIS against the Toowoomba SS data yielded R(2) values ranging from 0.60 to 0.98. Parameter sensitivity analysis and an example of how SSUIS can be applied to predict the treatment efficiency of a grass swale are also provided.
NASA Astrophysics Data System (ADS)
Kim, H.; Meneghini, R.; Jones, J.; Liao, L.
2011-12-01
A comprehensive space-borne radar simulator has been developed to support active microwave sensor satellite missions. The two major objectives of this study are: 1) to develop a radar simulator optimized for the Dual-frequency Precipitation Radar (KuPR and KaPR) on the Global Precipitation Measurement Mission satellite (GPM-DPR) and 2) to generate the synthetic test datasets for DPR algorithm development. This simulator consists of two modules: a DPR scanning configuration module and a forward module that generates atmospheric and surface radar observations. To generate realistic DPR test data, the scanning configuration module specifies the technical characteristics of DPR sensor and emulates the scanning geometry of the DPR with a inner swath of about 120 km, which contains matched-beam data from both frequencies, and an outer swath from 120 to 245 km over which only Ku-band data will be acquired. The second module is a forward model used to compute radar observables (reflectivity, attenuation and polarimetric variables) from input model variables including temperature, pressure and water content (rain water, cloud water, cloud ice, snow, graupel and water vapor) over the radar resolution volume. Presently, the input data to the simulator come from the Goddard Cumulus Ensemble (GCE) and Weather Research and Forecast (WRF) models where a constant mass density is assumed for each species with a particle size distribution given by an exponential distribution with fixed intercept parameter (N0) and a slope parameter (Λ) determined from the equivalent water content. Although the model data do not presently contain mixed phase hydrometeors, the Yokoyama-Tanaka melting model is used along with the Bruggeman effective dielectric constant to replace rain and snow particles, where both are present, with mixed phase particles while preserving the snow/water fraction. For testing one of the DPR retrieval algorithms, the Surface Reference Technique (SRT), the simulator uses the normalized radar cross sections of the surface,σ0, at each frequency and incidence angle to generate the radar return power from the surface. The simulated σ0 data are modeled as realizations from jointly Gaussian random variables with means, variances and correlations obtained from measurements of σ0 from the JPL APR2 (2nd generation Airborne Precipitation Radar) data, which operates at approximately the same frequencies as the DPR. We will discuss the general capabilities of the radar simulator, present some sample results and show how they can be used to assess the performance of the radar retrieval algorithms proposed for the Dual-Frequency GPM radar. In addition, we will report on updates to the simulator using inputs from cloud models with spectral bin microphysics.
Analysis of the interaction of an electron beam with back surface field solar cells
NASA Technical Reports Server (NTRS)
Von Roos, O.; Luke, K. L.
1983-01-01
In this paper the short circuit current Isc induced by the electron beam of a scanning electron microscope in a back surface field solar cell will be determined theoretically. It will be shown that, in a configuration used previously for solar cells with an ohmic back surface, the Isc gives a convenient means for estimating the back surface recombination velocities and thus the quality of back surface field cells. Numerical data will be presented applicable to a point source model for the electron-hole pair generation.
Dai, Zhendong; Gorb, Stanislav N; Schwarz, Uli
2002-08-01
This paper studies slide-resisting forces generated by claws in the free-walking beetle Pachnoda marginata (Coleoptera, Scarabaeoidea) with emphasis on the relationship between the dimension of the claw tip and the substrate texture. To evaluate the force range by which the claw can interact with a substrate, forces generated by the freely moving legs were measured using a load cell force transducer. To obtain information about material properties of the claw, its mechanical strength was tested in a fracture experiment, and the internal structure of the fractured claw material was studied by scanning electron microscopy. The bending stress of the claw was evaluated as 143.4-684.2 MPa, depending on the cross-section model selected. Data from these different approaches led us to propose a model explaining the saturation of friction force with increased texture roughness. The forces are determined by the relative size of the surface roughness R(a) (or an average particle diameter) and the diameter of the claw tip. When surface roughness is much bigger than the claw tip diameter, the beetle can grasp surface irregularities and generate a high degree of attachment due to mechanical interlocking with substrate texture. When R(a) is lower than or comparable to the claw tip diameter, the frictional properties of the contact between claw and substrate particles play a key role in the generation of the friction force.
The impact of surface area, volume, curvature, and Lennard-Jones potential to solvation modeling.
Nguyen, Duc D; Wei, Guo-Wei
2017-01-05
This article explores the impact of surface area, volume, curvature, and Lennard-Jones (LJ) potential on solvation free energy predictions. Rigidity surfaces are utilized to generate robust analytical expressions for maximum, minimum, mean, and Gaussian curvatures of solvent-solute interfaces, and define a generalized Poisson-Boltzmann (GPB) equation with a smooth dielectric profile. Extensive correlation analysis is performed to examine the linear dependence of surface area, surface enclosed volume, maximum curvature, minimum curvature, mean curvature, and Gaussian curvature for solvation modeling. It is found that surface area and surfaces enclosed volumes are highly correlated to each other's, and poorly correlated to various curvatures for six test sets of molecules. Different curvatures are weakly correlated to each other for six test sets of molecules, but are strongly correlated to each other within each test set of molecules. Based on correlation analysis, we construct twenty six nontrivial nonpolar solvation models. Our numerical results reveal that the LJ potential plays a vital role in nonpolar solvation modeling, especially for molecules involving strong van der Waals interactions. It is found that curvatures are at least as important as surface area or surface enclosed volume in nonpolar solvation modeling. In conjugation with the GPB model, various curvature-based nonpolar solvation models are shown to offer some of the best solvation free energy predictions for a wide range of test sets. For example, root mean square errors from a model constituting surface area, volume, mean curvature, and LJ potential are less than 0.42 kcal/mol for all test sets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Diffraction peak profiles of surface relaxed spherical nanocrystals
NASA Astrophysics Data System (ADS)
Perez-Demydenko, C.; Scardi, P.
2017-09-01
A model is proposed for surface relaxation of spherical nanocrystals. Besides reproducing the primary effect of changing the average unit cell parameter, the model accounts for the inhomogeneous atomic displacement caused by surface relaxation and its effect on the diffraction line profiles. Based on three parameters with clear physical meanings - extension of the sub-coordination effect, maximum radial displacement due to sub-coordination, and effective hydrostatic pressure - the model also considers elastic anisotropy and provides parametric expressions of the diffraction line profiles directly applicable in data analysis. The model was tested on spherical nanocrystals of several fcc metals, matching atomic positions with those provided by Molecular Dynamics (MD) simulations based on embedded atom potentials. Agreement was also verified between powder diffraction patterns generated by the Debye scattering equation, using atomic positions from MD and the proposed model.
Accelerated deflation promotes homogeneous airspace liquid distribution in the edematous lung.
Wu, You; Nguyen, Tam L; Perlman, Carrie E
2017-04-01
Edematous lungs contain regions with heterogeneous alveolar flooding. Liquid is trapped in flooded alveoli by a pressure barrier-higher liquid pressure at the border than in the center of flooded alveoli-that is proportional to surface tension, T Stress is concentrated between aerated and flooded alveoli, to a degree proportional to T Mechanical ventilation, by cyclically increasing T , injuriously exacerbates stress concentrations. Overcoming the pressure barrier to redistribute liquid more homogeneously between alveoli should reduce stress concentration prevalence and ventilation injury. In isolated rat lungs, we test whether accelerated deflation can overcome the pressure barrier and catapult liquid out of flooded alveoli. We generate a local edema model with normal T by microinfusing liquid into surface alveoli. We generate a global edema model with high T by establishing hydrostatic edema, which does not alter T , and then gently ventilating the edematous lungs, which increases T at 15 cmH 2 O transpulmonary pressure by 52%. Thus ventilation of globally edematous lungs increases T , which should increase stress concentrations and, with positive feedback, cause escalating ventilation injury. In the local model, when the pressure barrier is moderate, accelerated deflation causes liquid to escape from flooded alveoli and redistribute more equitably. Flooding heterogeneity tends to decrease. In the global model, accelerated deflation causes liquid escape, but-because of elevated T -the liquid jumps to nearby, aerated alveoli. Flooding heterogeneity is unaltered. In pulmonary edema with normal T , early ventilation with accelerated deflation might reduce the positive feedback mechanism through which ventilation injury increases over time. NEW & NOTEWORTHY We introduce, in the isolated rat lung, a new model of pulmonary edema with elevated surface tension. We first generate hydrostatic edema and then ventilate gently to increase surface tension. We investigate the mechanical mechanisms through which 1 ) ventilation injures edematous lungs and 2 ) ventilation with accelerated deflation might lessen ventilation injury. Copyright © 2017 the American Physiological Society.
Accelerated deflation promotes homogeneous airspace liquid distribution in the edematous lung
Wu, You; Nguyen, Tam L.
2017-01-01
Edematous lungs contain regions with heterogeneous alveolar flooding. Liquid is trapped in flooded alveoli by a pressure barrier—higher liquid pressure at the border than in the center of flooded alveoli—that is proportional to surface tension, T. Stress is concentrated between aerated and flooded alveoli, to a degree proportional to T. Mechanical ventilation, by cyclically increasing T, injuriously exacerbates stress concentrations. Overcoming the pressure barrier to redistribute liquid more homogeneously between alveoli should reduce stress concentration prevalence and ventilation injury. In isolated rat lungs, we test whether accelerated deflation can overcome the pressure barrier and catapult liquid out of flooded alveoli. We generate a local edema model with normal T by microinfusing liquid into surface alveoli. We generate a global edema model with high T by establishing hydrostatic edema, which does not alter T, and then gently ventilating the edematous lungs, which increases T at 15 cmH2O transpulmonary pressure by 52%. Thus ventilation of globally edematous lungs increases T, which should increase stress concentrations and, with positive feedback, cause escalating ventilation injury. In the local model, when the pressure barrier is moderate, accelerated deflation causes liquid to escape from flooded alveoli and redistribute more equitably. Flooding heterogeneity tends to decrease. In the global model, accelerated deflation causes liquid escape, but—because of elevated T—the liquid jumps to nearby, aerated alveoli. Flooding heterogeneity is unaltered. In pulmonary edema with normal T, early ventilation with accelerated deflation might reduce the positive feedback mechanism through which ventilation injury increases over time. NEW & NOTEWORTHY We introduce, in the isolated rat lung, a new model of pulmonary edema with elevated surface tension. We first generate hydrostatic edema and then ventilate gently to increase surface tension. We investigate the mechanical mechanisms through which 1) ventilation injures edematous lungs and 2) ventilation with accelerated deflation might lessen ventilation injury. PMID:27979983
NASA Astrophysics Data System (ADS)
Nishino, Takayuki
The face hobbing process has been widely applied in automotive industry. But so far few analytical tools have been developed. This makes it difficult for us to optimize gear design. To settle this situation, this study aims at developing a computerized tool to predict the running performances such as loaded tooth contact pattern, static transmission error and so on. First, based upon kinematical analysis of a cutting machine, a mathematical description of tooth surface generation is given. Second, based upon the theory of gearing and differential geometry, conjugate tooth surfaces are studied. Then contact lines are generated. Third, load distribution along contact lines is formulated. Last, the numerical model is validated by measuring loaded transmission error and loaded tooth contact pattern.
NASA Astrophysics Data System (ADS)
Li, Linlin; Vrieling, Anton; Skidmore, Andrew; Wang, Tiejun; Turak, Eren
2018-04-01
Detailed spatial information of changes in surface water extent is needed for water management and biodiversity conservation, particularly in drier parts of the globe where small, temporally-variant wetlands prevail. Although global surface water histories are now generated from 30 m Landsat data, for many locations they contain large temporal gaps particularly for longer periods (>10 years) due to revisit intervals and cloud cover. Daily Moderate Resolution Imaging Spectrometer (MODIS) imagery has potential to fill such gaps, but its relatively coarse spatial resolution may not detect small water bodies, which can be of great ecological importance. To address this problem, this study proposes and tests options for estimating the surface water fraction from MODIS 16-day 500 m Bidirectional Reflectance Distribution Function (BRDF) corrected surface reflectance image composites. The spatial extent of two Landsat tiles over Spain were selected as test areas. We obtained a 500 m reference dataset on surface water fraction by spatially aggregating 30 m binary water masks obtained from the Landsat-derived C-version of Function of Mask (CFmask), which themselves were evaluated against high-resolution Google Earth imagery. Twelve regression tree models were developed with two approaches, Random Forest and Cubist, using spectral metrics derived from MODIS data and topographic parameters generated from a 30 m spatial resolution digital elevation model. Results showed that accuracies were higher when we included annual summary statistics of the spectral metrics as predictor variables. Models trained on a single Landsat tile were ineffective in mapping surface water in the other tile, but global models trained with environmental conditions from both tiles can provide accurate results for both study areas. We achieved the highest accuracy with Cubist global model (R2 = 0.91, RMSE = 11.05%, MAE = 7.67%). Our method was not only effective for mapping permanent water fraction, but also in accurately capturing temporal fluctuations of surface water. Based on this good performance, we produced surface water fraction maps at 16-day interval for the 2000-2015 MODIS archive. Our approach is promising for monitoring surface water fraction at high frequency time intervals over much larger regions provided that training data are collected across the spatial domain for which the model will be applied.
NASA Technical Reports Server (NTRS)
Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.
1989-01-01
Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to our three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans substantially mitigates land surface cooling, an effect that one-dimensional models cannot quantify. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stage of cooling than in the one-dimensional model study. These two differences between three-dimensional and one-dimensional model simulations were noted previously in studies of nuclear winter; GCM-simulated climatic changes in the Alvarez-inspired scenario of asteroid/comet winter, however, are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though less severe, climatic changes, according to our GCM. Our conclusion is that it is difficult to imagine an asteroid or comet impact leading to anything approaching complete global freezing, but quite reasonable to assume that impacts at the Alvarez level, or even smaller, dramatically alter the climate in at least a patchy sense.
Aeroheating Predictions for X-34 Using an Inviscid-Boundary Layer Method
NASA Technical Reports Server (NTRS)
Riley, Christopher J.; Kleb, William L.; Alter, Steven J.
1998-01-01
Radiative equilibrium surface temperatures and surface heating rates from a combined inviscid-boundary layer method are presented for the X-34 Reusable Launch Vehicle for several points along the hypersonic descent portion of its trajectory. Inviscid, perfect-gas solutions are generated with the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and the Data-Parallel Lower-Upper Relaxation (DPLUR) code. Surface temperatures and heating rates are then computed using the Langley Approximate Three-Dimensional Convective Heating (LATCH) engineering code employing both laminar and turbulent flow models. The combined inviscid-boundary layer method provides accurate predictions of surface temperatures over most of the vehicle and requires much less computational effort than a Navier-Stokes code. This enables the generation of a more thorough aerothermal database which is necessary to design the thermal protection system and specify the vehicle's flight limits.
Towards ultrahydrophobic surfaces: a biomimetic approach
NASA Astrophysics Data System (ADS)
Mock, Ulrike; Förster, Ralf; Menz, Wolfgang; Rühe, Jürgen
2005-03-01
We report on efforts to mimic the wetting behaviour of surfaces or leaves of certain plants, which are rendered ultrahydrophobic through a dense layer of hairs grown on top of the leaf. We use a simple moulding approach to obtain elastic hydrophilic hydrogel networks with pillar structures that may serve as model systems for such hairy surfaces. In order to generate such structures, we first generate either a steel master or directly use a lady's mantle leaf. Second, the master is moulded against a silicone to yield an elastomer, which is a negative of the hairy surface. A subsequent radical polymerization in the negative leads to the formation of an elastic hydrogel even for the very high aspect ratios characteristic of the natural system. The results of some preliminary contact angle measurements on the obtained structures are discussed.
Compressible magma/mantle dynamics: 3-D, adaptive simulations in ASPECT
NASA Astrophysics Data System (ADS)
Dannberg, Juliane; Heister, Timo
2016-12-01
Melt generation and migration are an important link between surface processes and the thermal and chemical evolution of the Earth's interior. However, their vastly different timescales make it difficult to study mantle convection and melt migration in a unified framework, especially for 3-D global models. And although experiments suggest an increase in melt volume of up to 20 per cent from the depth of melt generation to the surface, previous computations have neglected the individual compressibilities of the solid and the fluid phase. Here, we describe our extension of the finite element mantle convection code ASPECT that adds melt generation and migration. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in areas where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. Together with a high-performance, massively parallel implementation, this allows for high-resolution, 3-D, compressible, global mantle convection simulations coupled with melt migration. We evaluate the functionality and potential of this method using a series of benchmarks and model setups, compare results of the compressible and incompressible formulation, and show the effectiveness of adaptive mesh refinement when applied to melt migration. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. This approach could prove particularly useful applied to modelling the generation of komatiites or other melts originating in greater depths. The implementation is available in the Open Source ASPECT repository.
Accurate Modelling of Surface Currents and Internal Tides in a Semi-enclosed Coastal Sea
NASA Astrophysics Data System (ADS)
Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.
2016-02-01
The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). Tides in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal tides are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic tides reinforce, whereas the observations show that at the surface the baroclinic tides oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the tides, the necessary modifications to the model required to correct the phase, the resulting baroclinic tides and the improvements in the surface currents.
Modeling surface backgrounds from radon progeny plate-out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumpilly, G.; Guiseppe, V. E.; Snyder, N.
2013-08-08
The next generation low-background detectors operating deep underground aim for unprecedented low levels of radioactive backgrounds. The surface deposition and subsequent implantation of radon progeny in detector materials will be a source of energetic background events. We investigate Monte Carlo and model-based simulations to understand the surface implantation profile of radon progeny. Depending on the material and region of interest of a rare event search, these partial energy depositions can be problematic. Motivated by the use of Ge crystals for the detection of neutrinoless double-beta decay, we wish to understand the detector response of surface backgrounds from radon progeny. Wemore » look at the simulation of surface decays using a validated implantation distribution based on nuclear recoils and a realistic surface texture. Results of the simulations and measured α spectra are presented.« less
Comparing the Degree of Land-Atmosphere Interaction in Four Atmospheric General Circulation Models
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Dirmeyer, Paul A.; Hahmann, Andrea N.; Ijpelaar, Ruben; Tyahla, Lori; Cox, Peter; Suarez, Max J.; Houser, Paul R. (Technical Monitor)
2001-01-01
Land-atmosphere feedback, by which (for example) precipitation-induced moisture anomalies at the land surface affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated feedback strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective inter-model comparison of land-atmosphere feedback strength. The experiment essentially consists of an ensemble of simulations in which each member simulation artificially maintains the same time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicates the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that feedback strength does indeed vary significantly between the AGCMs.
Modeling and simulation for fewer-axis grinding of complex surface
NASA Astrophysics Data System (ADS)
Li, Zhengjian; Peng, Xiaoqiang; Song, Ci
2017-10-01
As the basis of fewer-axis grinding of complex surface, the grinding mathematical model is of great importance. A mathematical model of the grinding wheel was established, and then coordinate and normal vector of the wheel profile could be calculated. Through normal vector matching at the cutter contact point and the coordinate system transformation, the grinding mathematical model was established to work out the coordinate of the cutter location point. Based on the model, interference analysis was simulated to find out the right position and posture of workpiece for grinding. Then positioning errors of the workpiece including the translation positioning error and the rotation positioning error were analyzed respectively, and the main locating datum was obtained. According to the analysis results, the grinding tool path was planned and generated to grind the complex surface, and good form accuracy was obtained. The grinding mathematical model is simple, feasible and can be widely applied.
NASA Astrophysics Data System (ADS)
Kohler, M. D.; Castillo, J.; Massari, A.; Clayton, R. W.
2017-12-01
Earthquake-induced motions recorded by spatially dense seismic arrays in buildings located in the northern Los Angeles basin suggest the presence of complex, amplified surface wave effects on the seismic demand of mid-rise buildings. Several moderate earthquakes produced large-amplitude, seismic energy with slow shear-wave velocities that cannot be explained or accurately modeled by any published 3D seismic velocity models or by Vs30 values. Numerical experiments are conducted to determine if sedimentary basin features are responsible for these rarely modeled and poorly documented contributions to seismic demand computations. This is accomplished through a physics-based wave propagation examination of the effects of different sedimentary basin geometries on the nonlinear response of a mid-rise structural model based on an existing, instrumented building. Using two-dimensional finite-difference predictive modeling, we show that when an earthquake focal depth is near the vertical edge of an elongated and relatively shallow sedimentary basin, dramatically amplified and complex surface waves are generated as a result of the waveguide effect introduced by this velocity structure. In addition, for certain source-receiver distances and basin geometries, body waves convert to secondary Rayleigh waves that propagate both at the free-surface interface and along the depth interface of the basin that show up as multiple large-amplitude arrivals. This study is motivated by observations from the spatially dense, high-sample-rate acceleration data recorded by the Community Seismic Network, a community-hosted strong-motion network, currently consisting of hundreds of sensors located in the southern California area. The results provide quantitative insight into the causative relationship between a sedimentary basin shape and the generation of Rayleigh waves at depth, surface waves at the free surface, scattered seismic energy, and the sensitivity of building responses to each of these.
Evaluation of Cartosat-1 Multi-Scale Digital Surface Modelling Over France
Gianinetto, Marco
2009-01-01
On 5 May 2005, the Indian Space Research Organization launched Cartosat-1, the eleventh satellite of its constellation, dedicated to the stereo viewing of the Earth's surface for terrain modeling and large-scale mapping, from the Satish Dhawan Space Centre (India). In early 2006, the Indian Space Research Organization started the Cartosat-1 Scientific Assessment Programme, jointly established with the International Society for Photogrammetry and Remote Sensing. Within this framework, this study evaluated the capabilities of digital surface modeling from Cartosat-1 stereo data for the French test sites of Mausanne les Alpilles and Salon de Provence. The investigation pointed out that for hilly territories it is possible to produce high-resolution digital surface models with a root mean square error less than 7.1 m and a linear error at 90% confidence level less than 9.5 m. The accuracy of the generated digital surface models also fulfilled the requirements of the French Reference 3D®, so Cartosat-1 data may be used to produce or update such kinds of products. PMID:22412311
A first generation dynamic ingress, redistribution and transport model of soil track-in: DIRT.
Johnson, D L
2008-12-01
This work introduces a spatially resolved quantitative model, based on conservation of mass and first order transfer kinetics, for following the transport and redistribution of outdoor soil to, and within, the indoor environment by track-in on footwear. Implementations of the DIRT model examined the influence of room size, rug area and location, shoe size, and mass transfer coefficients for smooth and carpeted floor surfaces using the ratio of mass loading on carpeted to smooth floor surfaces as a performance metric. Results showed that in the limit for large numbers of random steps the dual aspects of deposition to and track-off from the carpets govern this ratio. Using recently obtained experimental measurements, historic transport and distribution parameters, cleaning efficiencies for the different floor surfaces, and indoor dust deposition rates to provide model boundary conditions, DIRT predicts realistic floor surface loadings. The spatio-temporal variability in model predictions agrees with field observations and suggests that floor surface dust loadings are constantly in flux; steady state distributions are hardly, if ever, achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou
Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less
Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou; ...
2017-09-07
Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less
Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun
2018-05-17
This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.
Some useful innovations with TRASYS and SINDA-85
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.
1993-01-01
Several innovative methods were used to allow more efficient and accurate thermal analysis using SINDA-85 and TRASYS, including model integration and reduction, planetary surface calculations, and model animation. Integration with other modeling and analysis codes allows an analyst to import a geometry from a solid modeling or computer-aided design (CAD) software package, rather than building the geometry 'by hand.' This is more efficient as well as potentially more accurate. However, the use of solid modeling software often generates large analytical models. The problem of reducing large models was elegantly solved using the response of the transient derivative to a forcing step function. The thermal analysis of a lunar rover implemented two unusual features of the TRASYS/SINDA system. A little-known TRASYS routine SURFP calculates the solar heating of a rover on the lunar surface for several different rover positions and orientations. This is used not only to determine the rover temperatures, but also to automatically determine the power generated by the solar arrays. The animation of transient thermal results is an effective tool, especially in a vivid case such as the 14-day progress of the sun over the lunar rover. An animated color map on the solid model displays the progression of temperatures.
Computer-generated imagery for 4-D meteorological data
NASA Technical Reports Server (NTRS)
Hibbard, William L.
1986-01-01
The University of Wisconsin-Madison Space Science and Engineering Center is developing animated stereo display terminals for use with McIDAS (Man-computer Interactive Data Access System). This paper describes image-generation techniques which have been developed to take maximum advantage of these terminals, integrating large quantities of four-dimensional meteorological data from balloon and satellite soundings, satellite images, Doppler and volumetric radar, and conventional surface observations. The images have been designed to use perspective, shading, hidden-surface removal, and transparency to augment the animation and stereo-display geometry. They create an illusion of a moving three-dimensional model of the atmosphere. This paper describes the design of these images and a number of rules of thumb for generating four-dimensional meteorological displays.
Systems and methods for locating and imaging proppant in an induced fracture
Aldridge, David F.; Bartel, Lewis C.
2016-02-02
Born Scattering Inversion (BSI) systems and methods are disclosed. A BSI system may be incorporated in a well system for accessing natural gas, oil and geothermal reserves in a geologic formation beneath the surface of the Earth. The BSI system may be used to generate a three-dimensional image of a proppant-filled hydraulically-induced fracture in the geologic formation. The BSI system may include computing equipment and sensors for measuring electromagnetic fields in the vicinity of the fracture before and after the fracture is generated, adjusting the parameters of a first Born approximation model of a scattered component of the surface electromagnetic fields using the measured electromagnetic fields, and generating the image of the proppant-filled fracture using the adjusted parameters.
NASA Astrophysics Data System (ADS)
Vidal, F.; Busson, B.; Six, C.; Pluchery, O.; Tadjeddine, A.
2002-04-01
The Pt( hkl)/methanol in acidic solution interface which constitutes a model of the anodic part of a fuel cell is studied by infrared-visible sum frequency generation vibrational spectroscopy. Methanol dissociative adsorption leads to CO poisoning of the Pt electrode surfaces. The structure of the CO/Pt( hkl) interface depends strongly on the orientation of the surface electrode.
Laboratory modeling of edge wave generation over a plane beach by breaking waves
NASA Astrophysics Data System (ADS)
Abcha, Nizar; Ezersky, Alexander; Pelinovsky, Efim
2015-04-01
Edge waves play an important role in coastal hydrodynamics: in sediment transport, in formation of coastline structure and coastal bottom topography. Investigation of physical mechanisms leading to the edge waves generation allows us to determine their effect on the characteristics of spatially periodic patterns like crescent submarine bars and cusps observed in the coastal zone. In the present paper we investigate parametric excitation of edge wave with frequency two times less than the frequency of surface wave propagating perpendicular to the beach. Such mechanism of edge wave generation has been studied previously in a large number of papers using the assumption of non-breaking waves. This assumption was used in theoretical calculations and such conditions were created in laboratory experiments. In the natural conditions, the wave breaking is typical when edge waves are generated at sea beach. We study features of such processes in laboratory experiments. Experiments were performed in the wave flume of the Laboratory of Continental and Coast Morphodynamics (M2C), Caen. The flume is equipment with a wave maker controlled by computer. To model a plane beach, a PVC plate is placed at small angle to the horizontal bottom. Several resistive probes were used to measure characteristics of waves: one of them was used to measure free surface displacement near the wave maker and two probes were glued on the inclined plate. These probes allowed us to measure run-up due to parametrically excited edge waves. Run-up height is determined by processing a movie shot by high-speed camera. Sub-harmonic generation of standing edge waves is observed for definite control parameters: edge waves represent themselves a spatial mode with wavelength equal to double width of the flume; the frequency of edge wave is equal to half of surface wave frequency. Appearance of sub-harmonic mode instability is studied using probes and movie processing. The dependence of edge wave exponential growth rate index on the amplitude of surface wave is found. On the plane of parameters (amplitude - frequency) of surface wave we have found a region corresponding parametric instability leading to excitation of edge waves. It is shown that for small super criticalities, the amplitude of edge wave grows with amplitude of surface wave. For large amplitude of surface wave, wave breaking appears and parametric instability is suppressed. Such suppression of instability is caused by increasing of turbulent viscosity in near shore zone. It was shown that parametric excitation of edge wave can increase significantly (up to two times) the maximal run-up. Theoretical model is developed to explain suppression of instability due to turbulent viscosity. This theoretical model is based on nonlinear mode amplitude equation including terms responsible for parametric forcing, frequency detuning, nonlinear detuning, linear and nonlinear edge wave damping. Dependence of coefficients on turbulent viscosity is discussed.
Modeling runoff generation in a small snow-dominated mountainous catchment
USDA-ARS?s Scientific Manuscript database
Snowmelt in mountainous areas is an important contributor to river water flows in the western United States. We developed a distributed model that calculates solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow–soil–bedrock heat exchange, soil wat...
USDA-ARS?s Scientific Manuscript database
Measurement of geomorphic change may be of interest to researchers and practitioners in a variety of fields including geology, geomorphology, hydrology, engineering, and soil science. Landscapes are often represented by digital elevation models. Surface models generated of the same landscape over a ...
Shaded-Color Picture Generation of Computer-Defined Arbitrary Shapes
NASA Technical Reports Server (NTRS)
Cozzolongo, J. V.; Hermstad, D. L.; Mccoy, D. S.; Clark, J.
1986-01-01
SHADE computer program generates realistic color-shaded pictures from computer-defined arbitrary shapes. Objects defined for computer representation displayed as smooth, color-shaded surfaces, including varying degrees of transparency. Results also used for presentation of computational results. By performing color mapping, SHADE colors model surface to display analysis results as pressures, stresses, and temperatures. NASA has used SHADE extensively in sign and analysis of high-performance aircraft. Industry should find applications for SHADE in computer-aided design and computer-aided manufacturing. SHADE written in VAX FORTRAN and MACRO Assembler for either interactive or batch execution.
3D active shape models of human brain structures: application to patient-specific mesh generation
NASA Astrophysics Data System (ADS)
Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.
2015-03-01
The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.
SubductionGenerator: A program to build three-dimensional plate configurations
NASA Astrophysics Data System (ADS)
Jadamec, M. A.; Kreylos, O.; Billen, M. I.; Turcotte, D. L.; Knepley, M.
2016-12-01
Geologic, geochemical, and geophysical data from subduction zones indicate that a two-dimensional paradigm for plate tectonic boundaries is no longer adequate to explain the observations. Many open source software packages exist to simulate the viscous flow of the Earth, such as the dynamics of subduction. However, there are few open source programs that generate the three-dimensional model input. We present an open source software program, SubductionGenerator, that constructs the three-dimensional initial thermal structure and plate boundary structure. A 3D model mesh and tectonic configuration are constructed based on a user specified model domain, slab surface, seafloor age grid file, and shear zone surface. The initial 3D thermal structure for the plates and mantle within the model domain is then constructed using a series of libraries within the code that use a half-space cooling model, plate cooling model, and smoothing functions. The code maps the initial 3D thermal structure and the 3D plate interface onto the mesh nodes using a series of libraries including a k-d tree to increase efficiency. In this way, complicated geometries and multiple plates with variable thickness can be built onto a multi-resolution finite element mesh with a 3D thermal structure and 3D isotropic shear zones oriented at any angle with respect to the grid. SubductionGenerator is aimed at model set-ups more representative of the earth, which can be particularly challenging to construct. Examples include subduction zones where the physical attributes vary in space, such as slab dip and temperature, and overriding plate temperature and thickness. Thus, the program can been used to construct initial tectonic configurations for triple junctions and plate boundary corners.
Abdel Moniem, H E M; Schemerhorn, B J; DeWoody, J A; Holland, J D
2016-10-01
Landscape connectivity, the degree to which the landscape structure facilitates or impedes organismal movement and gene flow, is increasingly important to conservationists and land managers. Metrics for describing the undulating shape of continuous habitat surfaces can expand the usefulness of continuous gradient surfaces that describe habitat and predict the flow of organisms and genes. We adopted a landscape gradient model of habitat and used surface metrics of connectivity to model the genetic continuity between populations of the banded longhorn beetle [Typocerus v. velutinus (Olivier)] collected at 17 sites across a fragmentation gradient in Indiana, USA. We tested the hypothesis that greater habitat connectivity facilitates gene flow between beetle populations against a null model of isolation by distance (IBD). We used next-generation sequencing to develop 10 polymorphic microsatellite loci and genotype the individual beetles to assess the population genetic structure. Isolation by distance did not explain the population genetic structure. The surface metrics model of habitat connectivity explained the variance in genetic dissimilarities 30 times better than the IBD model. We conclude that surface metrology of habitat maps is a powerful extension of landscape genetics in heterogeneous landscapes. © 2016 John Wiley & Sons Ltd.
Surface patterning of nanoparticles with polymer patches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse
Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties.more » At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. We demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. Furthermore, these patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.« less
Surface patterning of nanoparticles with polymer patches
Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse; ...
2016-08-24
Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties.more » At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. We demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. Furthermore, these patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.« less
Surface patterning of nanoparticles with polymer patches
NASA Astrophysics Data System (ADS)
Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse; Klinkova, Anna; Larin, Egor M.; Querejeta-Fernández, Ana; Han, Lili; Xin, Huolin L.; Gang, Oleg; Zhulina, Ekaterina B.; Rubinstein, Michael; Kumacheva, Eugenia
2016-10-01
Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.
Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.
2009-01-01
The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.
Whitecaps, sea-salt aerosols, and climate
NASA Astrophysics Data System (ADS)
Anguelova, Magdalena Dimitrova
Oceanic whitecaps are the major source of sea-salt aerosols. Because these aerosols are dominant in remote marine air, they control the radiative properties of the clean background atmosphere by scattering sunlight, changing cloud properties and lifetime, and providing media for chemical reactions. Including sea-salt effects in climate models improves predictions, but simulating their generation is first necessary. To make the sea-salt generation function currently used in climate models more relevant for aerosol investigations, this study proposes two modifications. First, the conventional relation between whitecap coverage, W, and the 10-meter wind speed, U10, used in typical generation functions is expanded to include additional factors that affect whitecaps and sea-salt aerosol formation. Second, the sea-salt generation function is extended to smaller sizes; sea-salt aerosol with initial radii from 0.4 to 20 mum can now be modeled. To achieve these goals, this thesis develops a new method for estimating whitecap coverage on a global scale using satellite measurements of the brightness temperature of the ocean surface. Whitecap coverage evaluated with this method incorporates the effects of atmospheric stability, sea-surface temperature, salinity, wind fetch, wind duration, and the amount of surface-active material. Assimilating satellite-derived values for whitecap coverage in the sea-salt generation function incorporates the effects of all environmental factors on sea-salt production and predicts realistic sea-salt aerosol loadings into the atmosphere. An extensive database of whitecap coverage and sea-salt aerosol fluxes has been compiled with the new method and is used to investigate their spatial and temporal characteristics. The composite effect of all environmental factors suggests a more uniform latitudinal distribution of whitecaps and sea-salt aerosols than that predicted from wind speed alone. The effect of sea-surface temperature, TS, is parameterized for the first time using regression analysis. The resulting parameterization W( U10, TS) is a better predictor of whitecap coverage than the conventional W(U 10) relation. This thesis also considers the contribution of oceanic whitecaps to ocean albedo and CO2 transfer and evaluates the direct effect of sea-salt aerosols on climate, the sea-salt contribution to CCN formation, and the role of sea-salt aerosols in atmospheric chemistry.
Developing an Empirical Model for Jet-Surface Interaction Noise
NASA Technical Reports Server (NTRS)
Brown, Clifford A.
2014-01-01
The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are fit to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.
Developing an Empirical Model for Jet-Surface Interaction Noise
NASA Technical Reports Server (NTRS)
Brown, Clif
2014-01-01
The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are t to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.
Rapid recipe formulation for plasma etching of new materials
NASA Astrophysics Data System (ADS)
Chopra, Meghali; Zhang, Zizhuo; Ekerdt, John; Bonnecaze, Roger T.
2016-03-01
A fast and inexpensive scheme for etch rate prediction using flexible continuum models and Bayesian statistics is demonstrated. Bulk etch rates of MgO are predicted using a steady-state model with volume-averaged plasma parameters and classical Langmuir surface kinetics. Plasma particle and surface kinetics are modeled within a global plasma framework using single component Metropolis Hastings methods and limited data. The accuracy of these predictions is evaluated with synthetic and experimental etch rate data for magnesium oxide in an ICP-RIE system. This approach is compared and superior to factorial models generated from JMP, a software package frequently employed for recipe creation and optimization.
NASA Astrophysics Data System (ADS)
Charles, T. K.; Paganin, D. M.; Dowd, R. T.
2016-08-01
Intrinsic emittance is often the limiting factor for brightness in fourth generation light sources and as such, a good understanding of the factors affecting intrinsic emittance is essential in order to be able to decrease it. Here we present a parameterization model describing the proportional increase in emittance induced by cathode surface roughness. One major benefit behind the parameterization approach presented here is that it takes the complexity of a Monte Carlo model and reduces the results to a straight-forward empirical model. The resulting models describe the proportional increase in transverse momentum introduced by surface roughness, and are applicable to various metal types, photon wavelengths, applied electric fields, and cathode surface terrains. The analysis includes the increase in emittance due to changes in the electric field induced by roughness as well as the increase in transverse momentum resultant from the spatially varying surface normal. We also compare the results of the Parameterization Model to an Analytical Model which employs various approximations to produce a more compact expression with the cost of a reduction in accuracy.
Multiple organ definition in CT using a Bayesian approach for 3D model fitting
NASA Astrophysics Data System (ADS)
Boes, Jennifer L.; Weymouth, Terry E.; Meyer, Charles R.
1995-08-01
Organ definition in computed tomography (CT) is of interest for treatment planning and response monitoring. We present a method for organ definition using a priori information about shape encoded in a set of biometric organ models--specifically for the liver and kidney-- that accurately represents patient population shape information. Each model is generated by averaging surfaces from a learning set of organ shapes previously registered into a standard space defined by a small set of landmarks. The model is placed in a specific patient's data set by identifying these landmarks and using them as the basis for model deformation; this preliminary representation is then iteratively fit to the patient's data based on a Bayesian formulation of the model's priors and CT edge information, yielding a complete organ surface. We demonstrate this technique using a set of fifteen abdominal CT data sets for liver surface definition both before and after the addition of a kidney model to the fitting; we demonstrate the effectiveness of this tool for organ surface definition in this low-contrast domain.
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.
2011-01-01
The Land Information System (LIS; http://lis.gsfc.nasa.gov) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite-and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected as a co-winner of NASA?s 2005 Software of the Year award.LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has e volved from two earlier efforts -- North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations.In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) for their land data assimilation systems to support weather and climate modeling. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through "plugins". LIS has been coupled to the Weather Research and Forecasting (WRF) model to support studies of land-atmosphere coupling be enabling ensembles of land surface states to be tested against multiple representations of the atmospheric boundary layer. LIS has also been demonstrated for parameter estimation, who showed that the use of sequential remotely sensed soil moisture products can be used to derive soil hydraulic and texture properties given a sufficient dynamic range in the soil moisture retrievals and accurate precipitation inputs.LIS has also recently been demonstrated for multi-model data assimilation using an Ensemble Kalman Filter for sequential assimilation of soil moisture, snow, and temperature.Ongoing work has demonstrated the value of bias correction as part of the filter, and also that of joint calibration and assimilation.Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeorological modeling, assimilation and parameter estimation will be presented as advancements towards the next generation of integrated observation and modeling systems
Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries.
Vasco, Enrique; Polop, Celia
2017-12-22
The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.
Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries
NASA Astrophysics Data System (ADS)
Vasco, Enrique; Polop, Celia
2017-12-01
The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.
ERIC Educational Resources Information Center
Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Volkau, Ihar; Marchenko, Yevgen; Aminah, Bivi; Gelas, Arnaud; Huang, Su; Lee, Looi Chow; Liu, Jimin; Ng, Ting Ting; Nowinska, Natalia G.; Qian, Guoyu Yu; Puspitasari, Fiftarina; Runge, Val M.
2009-01-01
The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables…
Closed geometric models in medical applications
NASA Astrophysics Data System (ADS)
Jagannathan, Lakshmipathy; Nowinski, Wieslaw L.; Raphel, Jose K.; Nguyen, Bonnie T.
1996-04-01
Conventional surface fitting methods give twisted surfaces and complicates capping closures. This is a typical character of surfaces that lack rectangular topology. We suggest an algorithm which overcomes these limitations. The analysis of the algorithm is presented with experimental results. This algorithm assumes the mass center lying inside the object. Both capping closure and twisting are results of inadequate information on the geometric proximity of the points and surfaces which are proximal in the parametric space. Geometric proximity at the contour level is handled by mapping the points along the contour onto a hyper-spherical space. The resulting angular gradation with respect to the centroid is monotonic and hence avoids the twisting problem. Inter-contour geometric proximity is achieved by partitioning the point set based on the angle it makes with the respective centroids. Avoidance of capping complications is achieved by generating closed cross curves connecting curves which are reflections about the abscissa. The method is of immense use for the generation of the deep cerebral structures and is applied to the deep structures generated from the Schaltenbrand- Wahren brain atlas.
A deformable surface model for real-time water drop animation.
Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun
2012-08-01
A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.
Computational Geometry and Computer-Aided Design
NASA Technical Reports Server (NTRS)
Fay, T. H. (Compiler); Shoosmith, J. N. (Compiler)
1985-01-01
Extended abstracts of papers addressing the analysis, representation, and synthesis of shape information are presented. Curves and shape control, grid generation and contouring, solid modelling, surfaces, and curve intersection are specifically addressed.
Thermospheric density and satellite drag modeling
NASA Astrophysics Data System (ADS)
Mehta, Piyush Mukesh
The United States depends heavily on its space infrastructure for a vast number of commercial and military applications. Space Situational Awareness (SSA) and Threat Assessment require maintaining accurate knowledge of the orbits of resident space objects (RSOs) and the associated uncertainties. Atmospheric drag is the largest source of uncertainty for low-perigee RSOs. The uncertainty stems from inaccurate modeling of neutral atmospheric mass density and inaccurate modeling of the interaction between the atmosphere and the RSO. In order to reduce the uncertainty in drag modeling, both atmospheric density and drag coefficient (CD) models need to be improved. Early atmospheric density models were developed from orbital drag data or observations of a few early compact satellites. To simplify calculations, densities derived from orbit data used a fixed CD value of 2.2 measured in a laboratory using clean surfaces. Measurements from pressure gauges obtained in the early 1990s have confirmed the adsorption of atomic oxygen on satellite surfaces. The varying levels of adsorbed oxygen along with the constantly changing atmospheric conditions cause large variations in CD with altitude and along the orbit of the satellite. Therefore, the use of a fixed CD in early development has resulted in large biases in atmospheric density models. A technique for generating corrections to empirical density models using precision orbit ephemerides (POE) as measurements in an optimal orbit determination process was recently developed. The process generates simultaneous corrections to the atmospheric density and ballistic coefficient (BC) by modeling the corrections as statistical exponentially decaying Gauss-Markov processes. The technique has been successfully implemented in generating density corrections using the CHAMP and GRACE satellites. This work examines the effectiveness, specifically the transfer of density models errors into BC estimates, of the technique using the CHAMP and GRACE satellites. Moving toward accurate atmospheric models and absolute densities requires physics based models for CD. Closed-form solutions of CD have been developed and exist for a handful of simple geometries (flat plate, sphere, and cylinder). However, for complex geometries, the Direct Simulation Monte Carlo (DSMC) method is an important tool for developing CD models. DSMC is computationally intensive and real-time simulations for CD are not feasible. Therefore, parameterized models for CD are required. Modeling CD for an RSO requires knowledge of the gas-surface interaction (GSI) that defines the manner in which the atmospheric particles exchange momentum and energy with the surface. The momentum and energy exchange is further influenced by likely adsorption of atomic oxygen that may partially or completely cover the surface. An important parameter that characterizes the GSI is the energy accommodation coefficient, α. An innovative and state-of-the-art technique of developing parameterized drag coefficient models is presented and validated using the GRACE satellite. The effect of gas-surface interactions on physical drag coefficients is examined. An attempt to reveal the nature of gas-surface interactions at altitudes above 500 km is made using the STELLA satellite. A model that can accurately estimate CD has the potential to: (i) reduce the sources of uncertainty in the drag model, (ii) improve density estimates by resolving time-varying biases and moving toward absolute densities, and (iii) increase data sources for density estimation by allowing for the use of a wide range of RSOs as information sources. Results from this work have the potential to significantly improve the accuracy of conjunction analysis and SSA.
Soil roughness, slope and surface storage relationship for impervious areas
NASA Astrophysics Data System (ADS)
Borselli, Lorenzo; Torri, Dino
2010-11-01
SummaryThe study of the relationships between surface roughness, local slope gradient and maximum volume of water storage in surface depressions is a fundamental element in the development of hydrological models to be used in soil and water conservation strategies. Good estimates of the maximum volume of water storage are important for runoff assessment during rainfall events. Some attempts to link surface storage to parameters such as indices of surface roughness and, more rarely, local gradient have been proposed by several authors with empirical equations often conflicting between them and usually based on a narrow range of slope gradients. This suggests care in selecting any of the proposed equations or models and invites one to verify the existence of more realistic experimental relationships, based on physical models of the surfaces and valid for a larger range of gradients. The aim of this study is to develop such a relation for predicting/estimating the maximum volume of water that a soil surface, with given roughness characteristics and local slope gradient, can store. Experimental work has been carried out in order to reproduce reliable rough surfaces able to maintain the following properties during the experimental activity: (a) impervious surface to avoid biased storage determination; (b) stable, un-erodible surfaces to avoid changes of retention volume during tests; (c) absence of hydrophobic behaviour. To meet the conditions a-c we generate physical surfaces with various roughness magnitude using plasticine (emulsion of non-expansible clay and oil). The plasticine surface, reproducing surfaces of arable soils, was then wetted and dirtied with a very fine timber sawdust. This reduced the natural hydrophobic behaviour of the plasticine to an undetectable value. Storage experiments were conducted with plasticine rough surfaces on top of large rigid polystyrene plates inclined at different slope gradient: 2%, 5%, 10%, 20%, 30%. Roughness data collected on the generated plasticine surfaces were successfully compared with roughness data collected on real soil surfaces for similar conditions. A set of roughness indices was computed for each surface using roughness profiles measured with a laser profile meter. Roughness indices included quantiles of the Abbot-Firestone curve, which is used in surface metrology for industrial application to characterize surface roughness in a non-parametric approach ( Whitehouse, 1994). Storage data were fitted with an empirical equation (double negative exponential of roughness and slope). Several roughness indices resulted well related to storage. The better results were obtained using the Abbot-Firestone curve parameter P100. Beside this storage empirical model (SEM) a geometrical model was also developed, trying to give a more physical basis to the result obtained so far. Depression geometry was approximated with spherical cups. A general physical model was derived (storage cup model - SCM). The cup approximation identifies where roughness elevation comes in and how it relates to slope gradient in defining depression volume. Moreover, the exponential decay used for assessing slope effect on storage volume in the empirical model of Eqs. (8) and (9) emerges as consistent with distribution of cup sizes.
Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, M.D.
2005-06-01
Laser-ablation based decontamination is a new and effective approach for simultaneous removal and characterization of contaminants from surfaces (e.g., building interior and exterior walls, ground floors, etc.). The scientific objectives of this research are to: (1) characterize particulate matter generated during the laser-ablation based decontamination, (2) develop a technique for simultaneous cleaning and spectroscopic verification, and (3) develop an empirical model for predicting particle generation for the size range from 10 nm to tens of micrometers. This research project provides fundamental data obtained through a systematic study on the particle generation mechanism, and also provides a working model for predictionmore » of particle generation such that an effective operational strategy can be devised to facilitate worker protection.« less
NASA Astrophysics Data System (ADS)
Liu, Q.
2011-09-01
At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel l.; Brown, Clifford A.; Walker, Bruce E.
2014-01-01
An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14- by 22-ft wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations--a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed four sweeps, for a total span of 168 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Brown, Cliff; Walker, Bruce E.
2014-01-01
An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations - a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 inches. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed 4 sweeps, for a total span of 168 inches acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels.
NASA Astrophysics Data System (ADS)
Li, Y.; Chang, J.; Luo, L.
2017-12-01
It is of great importance for water resources management to model the truly hydrological process under changing environment, especially under significant changes of underlying surfaces like the Wei River Bain (WRB) where the subsurface hydrology is highly influenced by human activities, and to systematically investigate the interactions among LULC change, streamflow variation and changes in runoff generation process. Therefore, we proposed the idea of evolving parameters in hydrological model (SWAT) to reflect the changes in physical environment with different LULC conditions. Then with these evolving parameters, the spatiotemporal impacts of LULC changes on streamflow were quantified, and qualitative analysis was conducted to further explore how LULC changes affect the streamflow from the perspective of runoff generation mechanism. Results indicate the following: 1) evolving parameter calibration is not only effective but necessary to ensure the validity of the model when dealing with significant changes in underlying surfaces due to human activities. 2) compared to the baseline period, the streamflow in wet seasons increased in the 1990s but decreased in the 2000s. While at yearly and dry seasonal scales, the streamflow decreased in both two decades; 3) the expansion of cropland is the major contributor to the reduction of surface water component, thus causing the decline in streamflow at yearly and dry seasonal scales. While compared to the 1990s, the expansions of woodland in the middle stream and grassland in the downstream are the main stressors that increased the soil water component, thus leading to the more decline of the streamflow in the 2000s.
Asteroid Bennu Temperature Maps for OSIRIS-REx Spacecraft and Instrument Thermal Analyses
NASA Technical Reports Server (NTRS)
Choi, Michael K.; Emery, Josh; Delbo, Marco
2014-01-01
A thermophysical model has been developed to generate asteroid Bennu surface temperature maps for OSIRIS-REx spacecraft and instrument thermal design and analyses at the Critical Design Review (CDR). Two-dimensional temperature maps for worst hot and worst cold cases are used in Thermal Desktop to assure adequate thermal design margins. To minimize the complexity of the Bennu geometry in Thermal Desktop, it is modeled as a sphere instead of the radar shape. The post-CDR updated thermal inertia and a modified approach show that the new surface temperature predictions are more benign. Therefore the CDR Bennu surface temperature predictions are conservative.
Sulfate and Pb-210 Simulated in a Global Model Using Assimilated Meteorological Fields
NASA Technical Reports Server (NTRS)
Chin, Mian; Rood, Richard; Lin, S.-J.; Jacob, Daniel; Muller, Jean-Francois
1999-01-01
This report presents the results of distributions of tropospheric sulfate, Pb-210 and their precursors from a global 3-D model. This model is driven by assimilated meteorological fields generated by the Goddard Data Assimilation Office. Model results are compared with observations from surface sites and from multiplatform field campaigns of Pacific Exploratory Missions (PEM) and Advanced Composition Explorer (ACE). The model generally captures the seasonal variation of sulfate at the surface sites, and reproduces well the short-term in-situ observations. We will discuss the roles of various processes contributing to the sulfate levels in the troposphere, and the roles of sulfate aerosol in regional and global radiative forcing.
An Automatic and Robust Algorithm of Reestablishment of Digital Dental Occlusion
Chang, Yu-Bing; Xia, James J.; Gateno, Jaime; Xiong, Zixiang; Zhou, Xiaobo; Wong, Stephen T. C.
2017-01-01
In the field of craniomaxillofacial (CMF) surgery, surgical planning can be performed on composite 3-D models that are generated by merging a computerized tomography scan with digital dental models. Digital dental models can be generated by scanning the surfaces of plaster dental models or dental impressions with a high-resolution laser scanner. During the planning process, one of the essential steps is to reestablish the dental occlusion. Unfortunately, this task is time-consuming and often inaccurate. This paper presents a new approach to automatically and efficiently reestablish dental occlusion. It includes two steps. The first step is to initially position the models based on dental curves and a point matching technique. The second step is to reposition the models to the final desired occlusion based on iterative surface-based minimum distance mapping with collision constraints. With linearization of rotation matrix, the alignment is modeled by solving quadratic programming. The simulation was completed on 12 sets of digital dental models. Two sets of dental models were partially edentulous, and another two sets have first premolar extractions for orthodontic treatment. Two validation methods were applied to the articulated models. The results show that using our method, the dental models can be successfully articulated with a small degree of deviations from the occlusion achieved with the gold-standard method. PMID:20529735
NASA Astrophysics Data System (ADS)
Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain
2010-05-01
The evaluation of climate change impact on groundwater reserves represents a difficult task because both hydrological and climatic processes are complex and difficult to model. In this study, we present an innovative methodology that combines the use of integrated surface - subsurface hydrological models with advanced stochastic transient climate change scenarios. This methodology is applied to the Geer basin (480 km²) in Belgium, which is intensively exploited to supply the city of Liège (Belgium) with drinking water. The physically-based, spatially-distributed, surface-subsurface flow model has been developed with the finite element model HydroGeoSphere . The simultaneous solution of surface and subsurface flow equations in HydroGeoSphere, as well as the internal calculation of the actual evapotranspiration as a function of the soil moisture at each node of the evaporative zone, enables a better representation of interconnected processes in all domains of the catchment (fully saturated zone, partially saturated zone, surface). Additionally, the use of both surface and subsurface observed data to calibrate the model better constrains the calibration of the different water balance terms. Crucially, in the context of climate change impacts on groundwater resources, the evaluation of groundwater recharge is improved. . This surface-subsurface flow model is combined with advanced climate change scenarios for the Geer basin. Climate change simulations were obtained from six regional climate model (RCM) scenarios assuming the SRES A2 greenhouse gases emission (medium-high) scenario. These RCM scenarios were statistically downscaled using a transient stochastic weather generator technique, combining 'RainSim' and the 'CRU weather generator' for temperature and evapotranspiration time series. This downscaling technique exhibits three advantages compared with the 'delta change' method usually used in groundwater impact studies. (1) Corrections to climate model output are applied not only to the mean of climatic variables, but also across the statistical distributions of these variables. This is important as these distributions are expected to change in the future, with more extreme rainfall events, separated by longer dry periods. (2) The novel approach used in this study can simulate transient climate change from 2010 to 2085, rather than time series representative of a stationary climate for the period 2071-2100. (3) The weather generator is used to generate a large number of equiprobable climate change scenarios for each RCM, representative of the natural variability of the weather. All of these scenarios are applied as input to the Geer basin model to assess the projected impact of climate change on groundwater levels, the uncertainty arising for different RCM projections and the uncertainty linked to natural climatic variability. Using the output results from all scenarios, 95% confidence intervals are calculated for each year and month between 2010 and 2085. The climate change scenarios for the Geer basin model predict hotter and drier summers and warmer and wetter winters. Considering the results of this study, it is very likely that groundwater levels and surface flow rates in the Geer basin will decrease by the end of the century. This is of concern because it also means that groundwater quantities available for abstraction will also decrease. However, this study also shows that the uncertainty of these projections is relatively large compared to the projected changes so that it remains difficult to confidently determine the magnitude of the decrease. The use and combination of an integrated surface - subsurface model and stochastic climate change scenarios has never been used in previous climate change impact studies on groundwater resources. It constitutes an innovation and is an important tool for helping water managers to take decisions.
NASA Astrophysics Data System (ADS)
Sherman, Christopher Scott
Naturally occurring geologic heterogeneity is an important, but often overlooked, aspect of seismic wave propagation. This dissertation presents a strategy for modeling the effects of heterogeneity using a combination of geostatistics and Finite Difference simulation. In the first chapter, I discuss my motivations for studying geologic heterogeneity and seis- mic wave propagation. Models based upon fractal statistics are powerful tools in geophysics for modeling heterogeneity. The important features of these fractal models are illustrated using borehole log data from an oil well and geomorphological observations from a site in Death Valley, California. A large part of the computational work presented in this disserta- tion was completed using the Finite Difference Code E3D. I discuss the Python-based user interface for E3D and the computational strategies for working with heterogeneous models developed over the course of this research. The second chapter explores a phenomenon observed for wave propagation in heteroge- neous media - the generation of unexpected shear wave phases in the near-source region. In spite of their popularity amongst seismic researchers, approximate methods for modeling wave propagation in these media, such as the Born and Rytov methods or Radiative Trans- fer Theory, are incapable of explaining these shear waves. This is primarily due to these method's assumptions regarding the coupling of near-source terms with the heterogeneities and mode conversion. To determine the source of these shear waves, I generate a suite of 3D synthetic heterogeneous fractal geologic models and use E3D to simulate the wave propaga- tion for a vertical point force on the surface of the models. I also present a methodology for calculating the effective source radiation patterns from the models. The numerical results show that, due to a combination of mode conversion and coupling with near-source hetero- geneity, shear wave energy on the order of 10% of the compressional wave energy may be generated within the shear radiation node of the source. Interestingly, in some cases this shear wave may arise as a coherent pulse, which may be used to improve seismic imaging efforts. In the third and fourth chapters, I discuss the results of a numerical analysis and field study of seismic near-surface tunnel detection methods. Detecting unknown tunnels and voids, such as old mine workings or solution cavities in karst terrain, is a challenging prob- lem in geophysics and has implications for geotechnical design, public safety, and domestic security. Over the years, a number of different geophysical methods have been developed to locate these objects (microgravity, resistivity, seismic diffraction, etc.), each with varying results. One of the major challenges facing these methods is understanding the influence of geologic heterogeneity on their results, which makes this problem a natural extension of the modeling work discussed in previous chapters. In the third chapter, I present the results of a numerical study of surface-wave based tunnel detection methods. The results of this analysis show that these methods are capable of detecting a void buried within one wavelength of the surface, with size potentially much less than one wavelength. In addition, seismic surface- wave based detection methods are effective in media with moderate heterogeneity (epsilon < 5 %), and in fact, this heterogeneity may serve to increase the resolution of these methods. In the fourth chapter, I discuss the results of a field study of tunnel detection methods at a site within the Black Diamond Mines Regional Preserve, near Antioch California. I use a com- bination of surface wave backscattering, 1D surface wave attenuation, and 2D attenuation tomography to locate and determine the condition of two tunnels at this site. These results compliment the numerical study in chapter 3 and highlight their usefulness for detecting tunnels at other sites.
Photometric Modeling of Simulated Surace-Resolved Bennu Images
NASA Astrophysics Data System (ADS)
Golish, D.; DellaGiustina, D. N.; Clark, B.; Li, J. Y.; Zou, X. D.; Bennett, C. A.; Lauretta, D. S.
2017-12-01
The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) is a NASA mission to study and return a sample of asteroid (101955) Bennu. Imaging data from the mission will be used to develop empirical surface-resolved photometric models of Bennu at a series of wavelengths. These models will be used to photometrically correct panchromatic and color base maps of Bennu, compensating for variations due to shadows and photometric angle differences, thereby minimizing seams in mosaicked images. Well-corrected mosaics are critical to the generation of a global hazard map and a global 1064-nm reflectance map which predicts LIDAR response. These data products directly feed into the selection of a site from which to safely acquire a sample. We also require photometric correction for the creation of color ratio maps of Bennu. Color ratios maps provide insight into the composition and geological history of the surface and allow for comparison to other Solar System small bodies. In advance of OSIRIS-REx's arrival at Bennu, we use simulated images to judge the efficacy of both the photometric modeling software and the mission observation plan. Our simulation software is based on USGS's Integrated Software for Imagers and Spectrometers (ISIS) and uses a synthetic shape model, a camera model, and an empirical photometric model to generate simulated images. This approach gives us the flexibility to create simulated images of Bennu based on analog surfaces from other small Solar System bodies and to test our modeling software under those conditions. Our photometric modeling software fits image data to several conventional empirical photometric models and produces the best fit model parameters. The process is largely automated, which is crucial to the efficient production of data products during proximity operations. The software also produces several metrics on the quality of the observations themselves, such as surface coverage and the completeness of the data set for evaluating the phase and disk functions of the surface. Application of this software to simulated mission data has revealed limitations in the initial mission design, which has fed back into the planning process. The entire photometric pipeline further serves as an exercise of planned activities for proximity operations.
3D Printing of Protein Models in an Undergraduate Laboratory: Leucine Zippers
ERIC Educational Resources Information Center
Meyer, Scott C.
2015-01-01
An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…
A physically-based stochastic model has been applied to estimate residential chlorpyrifos exposure and dace to children via the non-dietary ingestion and dermal residue contact pathways. Time-location-activity data for 2825 children were sampled from national surveys to generat...
Impact of submesoscales on surface material distribution in a gulf of Mexico mesoscale eddy
NASA Astrophysics Data System (ADS)
Haza, A. C.; Özgökmen, T. M.; Hogan, P.
2016-11-01
Understanding material distribution at the ocean's surface is important for a number of applications, in particular for buoyant pollutants such as oil spills. The main tools to estimate surface flows are satellite altimeters, as well as data-assimilative ocean general circulation models (OGCMs). Current-generation altimeter products rely on the geostrophic approximation to derive surface currents. Recent modeling and experimental work revealed existence of ageostrophic submesoscale motions within the upper ocean boundary layer. The next frontier is how submesoscales influence transport pathways in the upper ocean, which is a multi-scale problem involving the interaction of submesoscale and mesoscale coherent structures. Here we focus on a mesoscale eddy that exhibits submesoscale fluctuations along its rim. The high-resolution OCGM fields are then treated with two filters. A Lanczos filter is applied to velocity fields to remove the kinetic energy over the submesoscales. Then a Gaussian filter is used for the modeled sea surface height to simulate a geostrophic velocity field that would be available from gridded satellite altimeter data. Lagrangian Coherent Structures (LCS) are then generated from full-resolution and filtered fields to compare Lagrangian characteristics corresponding to different realizations of the surface velocity fields. It is found that while mesoscale currents exert a general control over the pathways of the tracer initially launched in the mesoscale eddy, there is a leak across the mesoscale transport barriers, induced by submesoscale motions. This leak is quantified as 20% of the tracer when using the submesoscale filter over one month of advection, while it increases to 50% using the geostrophic velocity field. We conclude that LCS computed from mesoscale surface velocity fields can be considered as a good first-order proxy, but the leakage of material across them in the presence of submesoscales can be significant.
NASA Astrophysics Data System (ADS)
Xiong, Chuan; Shi, Jiancheng
2014-01-01
To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.
Developing a laser shockwave model for characterizing diffusion bonded interfaces
NASA Astrophysics Data System (ADS)
Lacy, Jeffrey M.; Smith, James A.; Rabin, Barry H.
2015-03-01
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.
Quantitative characterization of surface topography using spectral analysis
NASA Astrophysics Data System (ADS)
Jacobs, Tevis D. B.; Junge, Till; Pastewka, Lars
2017-03-01
Roughness determines many functional properties of surfaces, such as adhesion, friction, and (thermal and electrical) contact conductance. Recent analytical models and simulations enable quantitative prediction of these properties from knowledge of the power spectral density (PSD) of the surface topography. The utility of the PSD is that it contains statistical information that is unbiased by the particular scan size and pixel resolution chosen by the researcher. In this article, we first review the mathematical definition of the PSD, including the one- and two-dimensional cases, and common variations of each. We then discuss strategies for reconstructing an accurate PSD of a surface using topography measurements at different size scales. Finally, we discuss detecting and mitigating artifacts at the smallest scales, and computing upper/lower bounds on functional properties obtained from models. We accompany our discussion with virtual measurements on computer-generated surfaces. This discussion summarizes how to analyze topography measurements to reconstruct a reliable PSD. Analytical models demonstrate the potential for tuning functional properties by rationally tailoring surface topography—however, this potential can only be achieved through the accurate, quantitative reconstruction of the PSDs of real-world surfaces.
NASA Astrophysics Data System (ADS)
Jerng, Dong Wook; Kim, Dong Eok
2018-01-01
The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.
Simulations and experiments of ejecta generation in twice-shocked metals
NASA Astrophysics Data System (ADS)
Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William; Hammerberg, James; Cherne, Frank; Andrews, Malcolm
2016-11-01
Using continuum hydrodynamics embedded in the FLASH code, we model ejecta generation in recent target experiments, where a metallic surface was loaded by two successive shock waves. The experimental data were obtained from a two-shockwave, high-explosive tool at Los Alamos National Laboratory, capable of generating ejecta from a shocked tin surface in to a vacuum. In both simulations and experiment, linear growth is observed following the first shock event, while the second shock strikes a finite-amplitude interface leading to nonlinear growth. The timing of the second incident shock was varied systematically in our simulations to realize a finite-amplitude re-initialization of the RM instability driving the ejecta. We find the shape of the interface at the event of second shock is critical in determining the amount of ejecta, and thus must be used as an initial condition to evaluate subsequent ejected mass using a source model. In particular, the agreement between simulations, experiments and the mass model is improved when shape effects associated with the interface at second shock are incorporated. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.
2010-01-01
A methodology is described for generating first-order plant equations of motion for aeroelastic and aeroservoelastic applications. The description begins with the process of generating data files representing specialized mode-shapes, such as rigid-body and control surface modes, using both PATRAN and NASTRAN analysis. NASTRAN executes the 146 solution sequence using numerous Direct Matrix Abstraction Program (DMAP) calls to import the mode-shape files and to perform the aeroelastic response analysis. The aeroelastic response analysis calculates and extracts structural frequencies, generalized masses, frequency-dependent generalized aerodynamic force (GAF) coefficients, sensor deflections and load coefficients data as text-formatted data files. The data files are then re-sequenced and re-formatted using a custom written FORTRAN program. The text-formatted data files are stored and coefficients for s-plane equations are fitted to the frequency-dependent GAF coefficients using two Interactions of Structures, Aerodynamics and Controls (ISAC) programs. With tabular files from stored data created by ISAC, MATLAB generates the first-order aeroservoelastic plant equations of motion. These equations include control-surface actuator, turbulence, sensor and load modeling. Altitude varying root-locus plot and PSD plot results for a model of the F-18 aircraft are presented to demonstrate the capability.
Unstructured 3D Delaunay mesh generation applied to planes, trains and automobiles
NASA Technical Reports Server (NTRS)
Blake, Kenneth R.; Spragle, Gregory S.
1993-01-01
Technical issues associated with domain-tessellation production, including initial boundary node triangulation and volume mesh refinement, are presented for the 'TGrid' 3D Delaunay unstructured grid generation program. The approach employed is noted to be capable of preserving predefined triangular surface facets in the final tessellation. The capabilities of the approach are demonstrated by generating grids about an entire fighter aircraft configuration, a train, and a wind tunnel model of an automobile.
CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models
Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.
2013-01-01
The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.
Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope
NASA Technical Reports Server (NTRS)
Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric
2009-01-01
The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.
NASA Astrophysics Data System (ADS)
Giannini, Alessandra; Lyon, Bradfield; Seager, Richard; Vigaud, Nicolas
2018-01-01
We propose a dynamical interpretation of model projections for an end-of-century wetting in equatorial East Africa. In the current generation of global climate models, increased atmospheric moisture content associated with warming is not the dominant process explaining the increase in rainfall, as the regional circulation is only weakly convergent even during the rainy seasons. Instead, projected wetter future conditions are generally consistent with the El Niño-like trend in tropical Pacific sea surface temperatures in climate models. In addition, a weakening in moisture convergence over the adjacent Congo Basin and Maritime Continent cores of convection results in the weakening of near-surface winds, which increases moisture advection from the Congo Basin core toward the East African margin. Overall confidence in the projections is limited by the significant biases in simulation of the regional climatology and disagreement between observed and modeled tropical Pacific sea surface temperature trends to date.
Simulation of Runoff Concentration on Arable Fields and the Impact of Adapted Tillage Practises
NASA Astrophysics Data System (ADS)
Winter, F.; Disse, M.
2012-04-01
Conservational tillage can reduce runoff on arable fields. Due to crop residues remaining on the fields a seasonal constant ground cover is achieved. This additional soil cover not only decreases the drying of the topsoil but also reduces the mechanical impact of raindrops and the possibly resulting soil crust. Further implications of the mulch layer can be observed during heavy precipitation events and occurring surface runoff. The natural roughness of the ground surface is further increased and thus the flow velocity is decreased, resulting in an enhanced ability of runoff to infiltrate into the soil (so called Runon-Infiltration). The hydrological model system WaSiM-ETH hitherto simulates runoff concentration by a flow time grid in the catchment, which is derived from topographical features of the catchment during the preprocessing analysis. The retention of both surface runoff and interflow is modelled by a single reservoir in every discrete flow time zone until the outlet of a subcatchment is reached. For a more detailed analysis of the flow paths in catchments of the lower mesoscale (< 1 km2) the model was extended by a kinematic wave approach for the surface runoff concentration. This allows the simulation of small-scale variation in runoff generation and its temporal distribution in detail. Therefore the assessment of adapted tillage systems can be derived. On singular fields of the Scheyern research farm north-west of Munich it can be shown how different crops and tillage practises can influence runoff generation and concentration during single heavy precipitation events. From the simulation of individual events in agricultural areas of the lower mesoscale hydrologically susceptible areas can be identified and the positive impact of an adapted agricultural management on runoff generation and concentration can be quantifed.
NASA Astrophysics Data System (ADS)
Roiaz, Matteo; Pramhaas, Verena; Li, Xia; Rameshan, Christoph; Rupprechter, Günther
2018-04-01
A new custom-designed ultrahigh vacuum (UHV) chamber coupled to a UHV and atmospheric-pressure-compatible spectroscopic and catalytic reaction cell is described, which allows us to perform IR-vis sum frequency generation (SFG) vibrational spectroscopy during catalytic (kinetic) measurements. SFG spectroscopy is an exceptional tool to study vibrational properties of surface adsorbates under operando conditions, close to those of technical catalysis. This versatile setup allows performing surface science, SFG spectroscopy, catalysis, and electrochemical investigations on model systems, including single crystals, thin films, and deposited metal nanoparticles, under well-controlled conditions of gas composition, pressure, temperature, and potential. The UHV chamber enables us to prepare the model catalysts and to analyze their surface structure and composition by low energy electron diffraction and Auger electron spectroscopy, respectively. Thereafter, a sample transfer mechanism moves samples under UHV to the spectroscopic cell, avoiding air exposure. In the catalytic cell, SFG spectroscopy and catalytic tests (reactant/product analysis by mass spectrometry or gas chromatography) are performed simultaneously. A dedicated sample manipulation stage allows the model catalysts to be examined from LN2 temperature to 1273 K, with gaseous reactants in a pressure range from UHV to atmospheric. For post-reaction analysis, the SFG cell is rapidly evacuated and samples are transferred back to the UHV chamber. The capabilities of this new setup are demonstrated by benchmark results of CO adsorption on Pt and Pd(111) single crystal surfaces and of CO adsorption and oxidation on a ZrO2 supported Pt nanoparticle model catalyst grown by atomic layer deposition.
Sander, Ian M; McGoldrick, Matthew T; Helms, My N; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W Matthew
2017-07-01
Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing has the potential to advance learning, many academic programs have been slow to adopt its use in the classroom despite increased availability of the equipment and digital databases already established for educational use. Herein, a protocol is reported for the production of enlarged bone core and accurate representation of human sinus passages in a 3D printed format using entirely consumer-grade printers and a combination of free-software platforms. The comparative resolutions of three surface rendering programs were also determined using the sinuses, a human body, and a human wrist data files to compare the abilities of different software available for surface map generation of biomedical data. Data shows that 3D Slicer provided highest compatibility and surface resolution for anatomical 3D printing. Generated surface maps were then 3D printed via fused deposition modeling (FDM printing). In conclusion, a methodological approach that explains the production of anatomical models using entirely consumer-grade, fused deposition modeling machines, and a combination of free software platforms is presented in this report. The methods outlined will facilitate the incorporation of 3D printed anatomical models in the classroom. Anat Sci Educ 10: 383-391. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Modelling and simulation of wood chip combustion in a hot air generator system.
Rajika, J K A T; Narayana, Mahinsasa
2016-01-01
This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.
Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation.
Sheppard, Amy L; Evans, C John; Singh, Krish D; Wolffsohn, James S; Dunne, Mark C M; Davies, Leon N
2011-06-01
To quantify changes in crystalline lens curvature, thickness, equatorial diameter, surface area, and volume during accommodation using a novel two-dimensional magnetic resonance imaging (MRI) paradigm to generate a complete three-dimensional crystalline lens surface model. Nineteen volunteers, aged 19 to 30 years, were recruited. T(2)-weighted MRIs, optimized to show fluid-filled chambers of the eye, were acquired using an eight-channel radio frequency head coil. Twenty-four oblique-axial slices of 0.8 mm thickness, with no interslice gaps, were acquired to visualize the crystalline lens. Three Maltese cross-type accommodative stimuli (at 0.17, 4.0, and 8.0 D) were presented randomly to the subjects in the MRI to examine lenticular changes with accommodation. MRIs were analyzed to generate a three-dimensional surface model. During accommodation, mean crystalline lens thickness increased (F = 33.39, P < 0.001), whereas lens equatorial diameter (F = 24.00, P < 0.001) and surface radii both decreased (anterior surface, F = 21.78, P < 0.001; posterior surface, F = 13.81, P < 0.001). Over the same stimulus range, mean crystalline lens surface area decreased (F = 7.04, P < 0.005) with a corresponding increase in lens volume (F = 6.06, P = 0.005). These biometric changes represent a 1.82% decrease and 2.30% increase in crystalline lens surface area and volume, respectively. CONCLUSIONS; The results indicate that the capsular bag undergoes elastic deformation during accommodation, causing reduced surface area, and the observed volumetric changes oppose the theory that the lens is incompressible.
Lee, Robert J; Pham, John; Choy, Michael; Weissheimer, Andre; Dougherty, Harry L; Sameshima, Glenn T; Tong, Hongsheng
2014-03-01
The purpose of this study was to develop a new methodology to visualize in 3 dimensions whole teeth, including the roots, at any moment during orthodontic treatment without the need for multiple cone-beam computed tomography (CBCT) scans. An extraoral typodont model was created using extracted teeth placed in a wax base. These teeth were arranged to represent a typical malocclusion. Initial records of the malocclusion, including CBCT and intraoral surface scans, were taken. Threshold segmentation of the CBCT was performed to generate a 3-dimensional virtual model. This model and the intraoral surface scan model were superimposed to generate a complete set of digital composite teeth composed of high-resolution surface scan crowns sutured to the CBCT roots. These composite teeth were individually isolated from their respective arches for single-tooth manipulations. Orthodontic treatment for the malocclusion typodont model was performed, and posttreatment intraoral surface scans before and after bracket removal were taken. A CBCT scan after bracket removal was also obtained. The isolated composite teeth were individually superimposed onto the posttreatment surface scan, creating the expected root position setup. To validate this setup, it was compared with the posttreatment CBCT scan, which showed the true positions of the roots. Color displacement maps were generated to confirm accurate crown superimpositions and to measure the discrepancies between the expected and the true root positions. Color displacement maps through crown superimpositions showed differences between the expected and true root positions of 0.1678 ± 0.3178 mm for the maxillary teeth and 0.1140 ± 0.1587 mm for the mandibular teeth with brackets. Once the brackets were removed, differences of 0.1634 ± 0.3204 mm for the maxillary teeth and 0.0902 ± 0.2505 mm for the mandibular teeth were found. A new reliable approach was demonstrated in an ex-vivo typdont model to have the potential to track the 3-dimensional positions of whole teeth including the roots, with only the initial CBCT scan and consecutive intraoral scans. Since the presence of brackets in the intraoral scan had a minimal influence in the analysis, this method can be applied at any stage of orthodontic treatment. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Dynamic model of target charging by short laser pulse interactions
NASA Astrophysics Data System (ADS)
Poyé, A.; Dubois, J.-L.; Lubrano-Lavaderci, F.; D'Humières, E.; Bardon, M.; Hulin, S.; Bailly-Grandvaux, M.; Ribolzi, J.; Raffestin, D.; Santos, J. J.; Nicolaï, Ph.; Tikhonchuk, V.
2015-10-01
A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments.
Dynamic model of target charging by short laser pulse interactions.
Poyé, A; Dubois, J-L; Lubrano-Lavaderci, F; D'Humières, E; Bardon, M; Hulin, S; Bailly-Grandvaux, M; Ribolzi, J; Raffestin, D; Santos, J J; Nicolaï, Ph; Tikhonchuk, V
2015-10-01
A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments.
Finite element simulation for damage detection of surface rust in steel rebars using elastic waves
NASA Astrophysics Data System (ADS)
Tang, Qixiang; Yu, Tzuyang
2016-04-01
Steel rebar corrosion reduces the integrity and service life of reinforced concrete (RC) structures and causes their gradual and sudden failures. Early stage detection of steel rebar corrosion can improve the efficiency of routine maintenance and prevent sudden failures from happening. In this paper, detecting the presence of surface rust in steel rebars is investigated by the finite element method (FEM) using surface-generated elastic waves. Simulated wave propagation mimics the sensing scheme of a fiber optic acoustic generator mounted on the surface of steel rebars. Formation of surface rust in steel rebars is modeled by changing material's property at local elements. In this paper, various locations of a fiber optic acoustic transducer and a receiver were considered. Megahertz elastic waves were used and different sizes of surface rust were applied. Transient responses of surface displacement and pressure were studied. It is found that surface rust is most detectable when the rust location is between the transducer and the receiver. Displacement response of intact steel rebar is needed in order to obtain background-subtracted response with a better signal-to-noise ratio. When the size of surface rust increases, reduced amplitude in displacement was obtained by the receiver.
Comparison of Gap Elements and Contact Algorithm for 3D Contact Analysis of Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Tiku, K.; Kumar, A.; Handschuh, R.
1994-01-01
Three dimensional stress analysis of spiral bevel gears in mesh using the finite element method is presented. A finite element model is generated by solving equations that identify tooth surface coordinates. Contact is simulated by the automatic generation of nonpenetration constraints. This method is compared to a finite element contact analysis conducted with gap elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupowicz, J.J.; Scott, D.B.; Rentler, R.M.
Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high fresh water contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 358 fault steaming days at a 40 ppM sulfate concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heatmore » transfer tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited significant general corrosion beneath thick surface deposits.« less
2017-01-01
The domestic ferret (Mustela putorius furo) serves as an animal model for the study of several viruses that cause human disease, most notably influenza. Despite the importance of this animal model, characterization of the immune response by flow cytometry (FCM) is severely hampered due to the limited number of commercially available reagents. To begin to address this unmet need and to facilitate more in-depth study of ferret B cells including the identification of antibody-secreting cells, eight unique murine monoclonal antibodies (mAb) with specificity for ferret immunoglobulin (Ig) were generated using conventional B cell hybridoma technology. These mAb were screened for reactivity against ferret peripheral blood mononuclear cells by FCM and demonstrate specificity for CD79β+ B cells. Several of these mAb are specific for the light chain of surface B cell receptor (BCR) and enable segregation of kappa and lambda B cells. Additionally, a mAb that yielded surface staining of nearly all surface BCR positive cells (i.e., pan ferret Ig) was generated. Collectively, these MαF-Ig mAb offer advancement compared to the existing portfolio of polyclonal anti-ferret Ig detection reagents and should be applicable to a wide array of immunologic assays including the identification of antibody-secreting cells by FCM. PMID:28286781
Acquisition and processing pitfall with clipped traces in surface-wave analysis
NASA Astrophysics Data System (ADS)
Gao, Lingli; Pan, Yudi
2016-02-01
Multichannel analysis of surface waves (MASW) is widely used in estimating near-surface shear (S)-wave velocity. In the MASW method, generating a reliable dispersion image in the frequency-velocity (f-v) domain is an important processing step. A locus along peaks of dispersion energy at different frequencies allows the dispersion curves to be constructed for inversion. When the offsets are short, the output seismic data may exceed the dynamic ranges of geophones/seismograph, as a result of which, peaks and (or) troughs of traces will be squared off in recorded shot gathers. Dispersion images generated by the raw shot gathers with clipped traces would be contaminated by artifacts, which might be misidentified as Rayleigh-wave phase velocities or body-wave velocities and potentially lead to incorrect results. We performed some synthetic models containing clipped traces, and analyzed amplitude spectra of unclipped and clipped waves. The results indicate that artifacts in the dispersion image are dependent on the level of clipping. A real-world example also shows how clipped traces would affect the dispersion image. All the results suggest that clipped traces should be removed from the shot gathers before generating dispersion images, in order to pick accurate phase velocities and set reasonable initial inversion models.
CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE*
MIKUCKI, MICHAEL; ZHOU, Y. C.
2017-01-01
This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization. PMID:29056778
Propagation of relativistic surface harmonics radiation in free space
NASA Astrophysics Data System (ADS)
an der Brügge, Daniel; Pukhov, Alexander
2007-09-01
Relativistic high-harmonics generation from overdense plasma surfaces is studied using three-dimensional particle-in-cell simulations. It is shown that the simple vacuum propagation in the real three-dimensional geometry strongly affects the harmonics spectrum on the optical axis. It may even lead to the formation of attosecond pulses without any special optical filters. To make good use of these effects it is necessary to shape either the laser pulse focal spot, or the surface material in such a way that the S-number of the interaction [see Gordienko and Pukhov, Phys. Plasmas 12, 043109 (2005)] is preserved over the largest possible area. The three-dimensional simulations are carefully compared with the one-dimensional ones. It is shown that the one-dimensional models work well even in cases where the laser is focused to a quite small spot on the harmonics generating surface (σ≈λ).
NASA Astrophysics Data System (ADS)
Soomro, Feroz Ahmed; Haq, Rizwan Ul; Al-Mdallal, Qasem M.; Zhang, Qiang
2018-03-01
In this study, heat generation/absorption effects are studied in the presence of nonlinear thermal radiation along a moving slip surface. Uniform magnetic field and convective condition along the stretching surface are adjusted to deal the slip mechanisms in term of Brownian motion and thermophoresis for nanofluid. The mathematical model is constructed in the form of coupled partial differential equations. By introducing the suitable similarity transformation, system of coupled nonlinear ordinary differential equations are obtained. Finite difference approach is implemented to obtain the unknown functions of velocity, temperature, nanoparticle concentration. To deduct the effects at the surface, physical quantities of interest are computed under the effects of controlled physical parameters. Present numerical solutions are validated via numerical comparison with existing published work for limiting cases. Present study indicates that due to increase in both Brownian motion and thermophoresis, the Nusselt number decreases while Sherwood number shows the gradual increase.
Concept for maritime near-surface surveillance using water Raman scattering
Shokair, Isaac R.; Johnson, Mark S.; Schmitt, Randal L.; ...
2018-06-08
Here, we discuss a maritime surveillance and detection concept based on Raman scattering of water molecules. Using a range-gated scanning lidar that detects Raman scattered photons from water, the absence or change of signal indicates the presence of a non-water object. With sufficient spatial resolution, a two-dimensional outline of the object can be generated by the scanning lidar. Because Raman scattering is an inelastic process with a relatively large wavelength shift for water, this concept avoids the often problematic elastic scattering for objects at or very close to the water surface or from the bottom surface for shallow waters. Themore » maximum detection depth for this concept is limited by the attenuation of the excitation and return Raman light in water. If excitation in the UV is used, fluorescence can be used for discrimination between organic and non-organic objects. In this paper, we present a lidar model for this concept and discuss results of proof-of-concept measurements. Using published cross section values, the model and measurements are in reasonable agreement and show that a sufficient number of Raman photons can be generated for modest lidar parameters to make this concept useful for near-surface detection.« less
Concept for maritime near-surface surveillance using water Raman scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shokair, Isaac R.; Johnson, Mark S.; Schmitt, Randal L.
Here, we discuss a maritime surveillance and detection concept based on Raman scattering of water molecules. Using a range-gated scanning lidar that detects Raman scattered photons from water, the absence or change of signal indicates the presence of a non-water object. With sufficient spatial resolution, a two-dimensional outline of the object can be generated by the scanning lidar. Because Raman scattering is an inelastic process with a relatively large wavelength shift for water, this concept avoids the often problematic elastic scattering for objects at or very close to the water surface or from the bottom surface for shallow waters. Themore » maximum detection depth for this concept is limited by the attenuation of the excitation and return Raman light in water. If excitation in the UV is used, fluorescence can be used for discrimination between organic and non-organic objects. In this paper, we present a lidar model for this concept and discuss results of proof-of-concept measurements. Using published cross section values, the model and measurements are in reasonable agreement and show that a sufficient number of Raman photons can be generated for modest lidar parameters to make this concept useful for near-surface detection.« less
Issues on generating primordial anisotropies at the end of inflation
NASA Astrophysics Data System (ADS)
Emami, Razieh; Firouzjahi, Hassan
2012-01-01
We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.
Evolution of a steam atmosphere during earth's accretion
NASA Astrophysics Data System (ADS)
Zahnle, K. J.; Kasting, J. F.; Pollack, J. B.
1988-04-01
The evolution of an impact-generated steam atmosphere around an accreting earth is presently modeled under the assumption of Safronov (1978) accretion, in a scheme that encompasses the degassing of planetesimals on impact, thermal blanketing by the steam atmosphere, surface-to-interior water exchange, the shock heating and convective cooling of the earth's interior, and hydrogen escape due both to solar EUV-powered planetary wind and impact erosion. The model yields four distinct classes of impact-generated atmospheres: the first, on which emphasis is placed, has as its salient feature a molten surface that is maintained by the opacity of a massive water vapor atmosphere; the second occurs when the EUV-limited escape exceeds the impact degassing rate, while the third is dominated by impact erosion and the fourth is characterized by an atmosphere more massive than any thus far encountered.
Evolution of a steam atmosphere during earth's accretion
NASA Technical Reports Server (NTRS)
Zahnle, Kevin J.; Kasting, James F.; Pollack, James B.
1988-01-01
The evolution of an impact-generated steam atmosphere around an accreting earth is presently modeled under the assumption of Safronov (1978) accretion, in a scheme that encompasses the degassing of planetesimals on impact, thermal blanketing by the steam atmosphere, surface-to-interior water exchange, the shock heating and convective cooling of the earth's interior, and hydrogen escape due both to solar EUV-powered planetary wind and impact erosion. The model yields four distinct classes of impact-generated atmospheres: the first, on which emphasis is placed, has as its salient feature a molten surface that is maintained by the opacity of a massive water vapor atmosphere; the second occurs when the EUV-limited escape exceeds the impact degassing rate, while the third is dominated by impact erosion and the fourth is characterized by an atmosphere more massive than any thus far encountered.
NASA Technical Reports Server (NTRS)
Fabanich, William A., Jr.
2014-01-01
SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractor's thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces/solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing/repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the "mark-up" of that geometry. These so-called "mark-ups" control how finite element (FE) meshes are to be generated through the "tagging" of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. "Domain-tags" were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine the objects each time as one would if using TDMesher. The use of SpaceClaim/TD Direct helps simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It also saves time and effort in the subsequent analysis.
NASA Technical Reports Server (NTRS)
Fabanich, William
2014-01-01
SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractors thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the mark-up of that geometry. These so-called mark-ups control how finite element (FE) meshes were generated and allowed the tagging of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. Domain-tags were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine these objects each time as one would if using TD Mesher.The use of SpaceClaim/TD Direct has helped simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It has also saved time and effort in the subsequent analysis.
NASA Astrophysics Data System (ADS)
Carrião, Marcus S.; Bakuzis, Andris F.
2016-04-01
The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy.The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy. Electronic supplementary information (ESI) available: Unit cells per region calculation; core-shell Hamiltonian; magnetisation description functions; energy argument of Brillouin function; polydisperse models; details of experimental procedure; LRT versus core-shell model; model calculation software; and shell thickness study. See DOI: 10.1039/C5NR09093H
Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Rose, Joshua R.; Rigge, Matthew; Walvoord, Michelle Ann
2014-01-01
The distribution of permafrost is important to understand because of permafrost's influence on high-latitude ecosystem structure and functions. Moreover, near-surface (defined here as within 1 m of the Earth's surface) permafrost is particularly susceptible to a warming climate and is generally poorly mapped at regional scales. Subsequently, our objectives were to (1) develop the first-known binary and probabilistic maps of near-surface permafrost distributions at a 30 m resolution in the Alaskan Yukon River Basin by employing decision tree models, field measurements, and remotely sensed and mapped biophysical data; (2) evaluate the relative contribution of 39 biophysical variables used in the models; and (3) assess the landscape-scale factors controlling spatial variations in permafrost extent. Areas estimated to be present and absent of near-surface permafrost occupy approximately 46% and 45% of the Alaskan Yukon River Basin, respectively; masked areas (e.g., water and developed) account for the remaining 9% of the landscape. Strong predictors of near-surface permafrost include climatic indices, land cover, topography, and Landsat 7 Enhanced Thematic Mapper Plus spectral information. Our quantitative modeling approach enabled us to generate regional near-surface permafrost maps and provide essential information for resource managers and modelers to better understand near-surface permafrost distribution and how it relates to environmental factors and conditions.
NASA Astrophysics Data System (ADS)
Alidoost, F.; Arefi, H.
2017-11-01
Nowadays, Unmanned Aerial System (UAS)-based photogrammetry offers an affordable, fast and effective approach to real-time acquisition of high resolution geospatial information and automatic 3D modelling of objects for numerous applications such as topography mapping, 3D city modelling, orthophoto generation, and cultural heritages preservation. In this paper, the capability of four different state-of-the-art software packages as 3DSurvey, Agisoft Photoscan, Pix4Dmapper Pro and SURE is examined to generate high density point cloud as well as a Digital Surface Model (DSM) over a historical site. The main steps of this study are including: image acquisition, point cloud generation, and accuracy assessment. The overlapping images are first captured using a quadcopter and next are processed by different software to generate point clouds and DSMs. In order to evaluate the accuracy and quality of point clouds and DSMs, both visual and geometric assessments are carry out and the comparison results are reported.
Surface roughness manifestations of deep-seated landslide processes
NASA Astrophysics Data System (ADS)
Booth, A. M.; Roering, J. J.; Lamb, M. P.
2012-12-01
In many mountainous drainage basins, deep-seated landslides evacuate large volumes of sediment from small surface areas, leaving behind a strong topographic signature that sets landscape roughness over a range of spatial scales. At long spatial wavelengths of hundreds to thousands of meters, landslides tend to inhibit channel incision and limit topographic relief, effectively smoothing the topography at this length scale. However, at short spatial wavelengths on the order of meters, deformation of deep-seated landslides generates surface roughness that allows expert mappers or automated algorithms to distinguish landslides from the surrounding terrain. Here, we directly connect the characteristic spatial wavelengths and amplitudes of this fine scale surface roughness to the underlying landslide deformation processes. We utilize the two-dimensional wavelet transform with high-resolution, airborne LiDAR-derived digital elevation models to systematically document the characteristic length scales and amplitudes of different kinematic units within slow moving earthflows, a common type of deep-seated landslide. In earthflow source areas, discrete slumped blocks generate high surface roughness, reflecting an extensional deformation regime. In earthflow transport zones, where material translates with minimal surface deformation, roughness decreases as other surface processes quickly smooth short wavelength features. In earthflow depositional toes, compression folds and thrust faults again increase short wavelength surface roughness. When an earthflow becomes inactive, roughness in all of these kinematic zones systematically decreases with time, allowing relative dating of earthflow deposits. We also document how each of these roughness expressions depends on earthflow velocity, using sub-pixel change detection software (COSI-Corr) and pairs of orthorectified aerial photographs to determine spatially extensive landslide surface displacements. In source areas, the wavelength of slumped blocks tends to correlate with velocity as predicted by a simple sliding block model, but the amplitude is insensitive to velocity, suggesting that landslide depth rather than velocity sets this characteristic block amplitude. In both transport zones and depositional toes, the amplitude of the surface roughness is higher where the longitudinal gradient in velocity is higher, confirming that differential movement generates and maintains this fine scale roughness.
Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model.
Dikpati, Mausumi; Suresh, Akshaya; Burkepile, Joan
The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential-field source-surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation; these dynamo-generated fields are extended from the photosphere to the corona using a potential-field source-surface model. Assuming axisymmetry, we take linear combinations of associated Legendre polynomials that match the more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986 - 1991), we compute the coefficients of the associated Legendre polynomials up to degree eight and compare with observations. We show that at minimum the dipole term dominates, but it fades as the cycle progresses; higher-order multipolar terms begin to dominate. The amplitudes of these terms are not exactly the same for the two limbs, indicating that there is a longitude dependence. While both the 1986 and the 1996 minimum coronas were dipolar, the minimum in 2008 was unusual, since there was a substantial departure from a dipole. We investigate the physical cause of this departure by including a North-South asymmetry in the surface source of the magnetic fields in our flux-transport dynamo model, and find that this asymmetry could be one of the reasons for departure from the dipole in the 2008 minimum.
The effects of sea spray and atmosphere-wave coupling on air-sea exchange during a tropical cyclone
NASA Astrophysics Data System (ADS)
Garg, Nikhil; Kwee Ng, Eddie Yin; Narasimalu, Srikanth
2018-04-01
The study investigates the role of the air-sea interface using numerical simulations of Hurricane Arthur (2014) in the Atlantic. More specifically, the present study aims to discern the role ocean surface waves and sea spray play in modulating the intensity and structure of a tropical cyclone (TC). To investigate the effects of ocean surface waves and sea spray, numerical simulations were carried out using a coupled atmosphere-wave model, whereby a sea spray microphysical model was incorporated within the coupled model. Furthermore, this study also explores how sea spray generation can be modelled using wave energy dissipation due to whitecaps; whitecaps are considered as the primary mode of spray droplets generation at hurricane intensity wind speeds. Three different numerical simulations including the sea- state-dependent momentum flux, the sea-spray-mediated heat flux, and a combination of the former two processes with the sea-spray-mediated momentum flux were conducted. The foregoing numerical simulations were evaluated against the National Data Buoy Center (NDBC) buoy and satellite altimeter measurements as well as a control simulation using an uncoupled atmosphere model. The results indicate that the model simulations were able to capture the storm track and intensity: the surface wave coupling results in a stronger TC. Moreover, it is also noted that when only spray-mediated heat fluxes are applied in conjunction with the sea-state-dependent momentum flux, they result in a slightly weaker TC, albeit stronger compared to the control simulation. However, when a spray-mediated momentum flux is applied together with spray heat fluxes, it results in a comparably stronger TC. The results presented here allude to the role surface friction plays in the intensification of a TC.
GIS Data Based Automatic High-Fidelity 3D Road Network Modeling
NASA Technical Reports Server (NTRS)
Wang, Jie; Shen, Yuzhong
2011-01-01
3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks
NASA Technical Reports Server (NTRS)
Bunker, Ronald S.; Bailey, Jeremy C.; Ameri, Ali A.
1999-01-01
A combined computational and experimental study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines(>100MW). This paper is concerned with the design and execution of the experimental portion of the study. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57 x 10(exp 6), and total turning of about 110 degrees. A hue detection based liquid crystal method is used to obtain the detailed heat transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5% or 9%. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp-edge and rounded-edge tip geometries at each of the inlet turbulence intensity levels.
Elastic wave generated by granular impact on rough and erodible surfaces
NASA Astrophysics Data System (ADS)
Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Farin, Maxime
2018-01-01
The elastic waves generated by impactors hitting rough and erodible surfaces are studied. For this purpose, beads of variable materials, diameters, and velocities are dropped on (i) a smooth PMMA plate, (ii) stuck glass beads on the PMMA plate to create roughness, and (iii) the rough plate covered with layers of free particles to investigate erodible beds. The Hertz model validity to describe impacts on a smooth surface is confirmed. For rough and erodible surfaces, an empirical scaling law that relates the elastic energy to the radius Rb and normal velocity Vz of the impactor is deduced from experimental data. In addition, the radiated elastic energy is found to decrease exponentially with respect to the bed thickness. Lastly, we show that the variability of the elastic energy among shocks increases from some percents to 70% between smooth and erodible surfaces. This work is a first step to better quantify seismic emissions of rock impacts in natural environment, in particular on unconsolidated soils.
Surface matching for correlation of virtual models: Theory and application
NASA Technical Reports Server (NTRS)
Caracciolo, Roberto; Fanton, Francesco; Gasparetto, Alessandro
1994-01-01
Virtual reality can enable a robot user to off line generate and test in a virtual environment a sequence of operations to be executed by the robot in an assembly cell. Virtual models of objects are to be correlated to the real entities they represent by means of a suitable transformation. A solution to the correlation problem, which is basically a problem of 3-dimensional adjusting, has been found exploiting the surface matching theory. An iterative algorithm has been developed, which matches the geometric surface representing the shape of the virtual model of an object, with a set of points measured on the surface in the real world. A peculiar feature of the algorithm is to work also if there is no one-to-one correspondence between the measured points and those representing the surface model. Furthermore the problem of avoiding convergence to local minima is solved, by defining a starting point of states ensuring convergence to the global minimum. The developed algorithm has been tested by simulation. Finally, this paper proposes a specific application, i.e., correlating a robot cell, equipped for biomedical use with its virtual representation.
Modeling the dynamics of shape generation and sensing by proteins on lipid membranes
NASA Astrophysics Data System (ADS)
Walani, Nikhil; Arroyo, Marino
Lipid membranes are fluid surfaces with flexural resistance that interact with proteins to perform their function in a biological context. A set of these proteins are responsible for shaping the lipid membranes, or of sensing curvature. A large body of work has examined the curvature sensing and generation properties of these proteins. Even though such processes are fundamentally dynamical in cells and in in vitro reconstituted systems, theoretical and computational studies have largely focussed on equilibrium thermodynamics. In this work, we propose a theoretical framework based on Onsager's variational principle of irreversible thermodynamics that captures the dynamics of adsorption, diffusion, and shape generation or sensing of proteins on lipid surfaces. We acknowledge the funds from European Research Council CoG- 681434 to support this research.
Kolandaivelu, Kumaran; Bailey, Lynn; Buzzi, Stefano; Zucker, Arik; Milleret, Vincent; Ziogas, Algirdas; Ehrbar, Martin; Khattab, Ahmed A; Stanley, James R L; Wong, Gee K; Zani, Brett; Markham, Peter M; Tzafriri, Abraham R; Bhatt, Deepak L; Edelman, Elazer R
2017-04-20
Simple surface modifications can enhance coronary stent performance. Ultra-hydrophilic surface (UHS) treatment of contemporary bare metal stents (BMS) was assessed in vivo to verify whether such stents can provide long-term efficacy comparable to second-generation drug-eluting stents (DES) while promoting healing comparably to BMS. UHS-treated BMS, untreated BMS and corresponding DES were tested for three commercial platforms. A thirty-day and a 90-day porcine coronary model were used to characterise late tissue response. Three-day porcine coronary and seven-day rabbit iliac models were used for early healing assessment. In porcine coronary arteries, hydrophilic treatment reduced intimal hyperplasia relative to the BMS and corresponding DES platforms (1.5-fold to threefold reduction in 30-day angiographic and histological stenosis; p<0.04). Endothelialisation was similar on UHS-treated BMS and untreated BMS, both in swine and rabbit models, and lower on DES. Elevation in thrombotic indices was infrequent (never observed with UHS, rare with BMS, most often with DES), but, when present, correlated with reduced endothelialisation (p<0.01). Ultra-hydrophilic surface treatment of contemporary stents conferred good healing while moderating neointimal and thrombotic responses. Such surfaces may offer safe alternatives to DES, particularly when rapid healing and short dual antiplatelet therapy (DAPT) are crucial.
Reverse engineering of aircraft wing data using a partial differential equation surface model
NASA Astrophysics Data System (ADS)
Huband, Jacalyn Mann
Reverse engineering is a multi-step process used in industry to determine a production representation of an existing physical object. This representation is in the form of mathematical equations that are compatible with computer-aided design and computer-aided manufacturing (CAD/CAM) equipment. The four basic steps to the reverse engineering process are data acquisition, data separation, surface or curve fitting, and CAD/CAM production. The surface fitting step determines the design representation of the object, and thus is critical to the success or failure of the reverse engineering process. Although surface fitting methods described in the literature are used to model a variety of surfaces, they are not suitable for reversing aircraft wings. In this dissertation, we develop and demonstrate a new strategy for reversing a mathematical representation of an aircraft wing. The basis of our strategy is to take an aircraft design model and determine if an inverse model can be derived. A candidate design model for this research is the partial differential equation (PDE) surface model, proposed by Bloor and Wilson and used in the Rapid Airplane Parameter Input Design (RAPID) tool at the NASA-LaRC Geolab. There are several basic mathematical problems involved in reversing the PDE surface model: (i) deriving a computational approximation of the surface function; (ii) determining a radial parametrization of the wing; (iii) choosing mathematical models or classes of functions for representation of the boundary functions; (iv) fitting the boundary data points by the chosen boundary functions; and (v) simultaneously solving for the axial parameterization and the derivative boundary functions. The study of the techniques to solve the above mathematical problems has culminated in a reverse PDE surface model and two reverse PDE surface algorithms. One reverse PDE surface algorithm recovers engineering design parameters for the RAPID tool from aircraft wing data and the other generates a PDE surface model with spline boundary functions from an arbitrary set of grid points. Our numerical tests show that the reverse PDE surface model and the reverse PDE surface algorithms can be used for the reverse engineering of aircraft wing data.
Surface fire effects on conifer and hardwood crowns--applications of an integral plume model
Matthew Dickinson; Anthony Bova; Kathleen Kavanagh; Antoine Randolph; Lawrence Band
2009-01-01
An integral plume model was applied to the problems of tree death from canopy injury in dormant-season hardwoods and branch embolism in Douglas fir (Pseudotsuga menziesii) crowns. Our purpose was to generate testable hypotheses. We used the integral plume models to relate crown injury to bole injury and to explore the effects of variation in fire...
A two-level generative model for cloth representation and shape from shading.
Han, Feng; Zhu, Song-Chun
2007-07-01
In this paper, we present a two-level generative model for representing the images and surface depth maps of drapery and clothes. The upper level consists of a number of folds which will generate the high contrast (ridge) areas with a dictionary of shading primitives (for 2D images) and fold primitives (for 3D depth maps). These primitives are represented in parametric forms and are learned in a supervised learning phase using 3D surfaces of clothes acquired through photometric stereo. The lower level consists of the remaining flat areas which fill between the folds with a smoothness prior (Markov random field). We show that the classical ill-posed problem-shape from shading (SFS) can be much improved by this two-level model for its reduced dimensionality and incorporation of middle-level visual knowledge, i.e., the dictionary of primitives. Given an input image, we first infer the folds and compute a sketch graph using a sketch pursuit algorithm as in the primal sketch [10], [11]. The 3D folds are estimated by parameter fitting using the fold dictionary and they form the "skeleton" of the drapery/cloth surfaces. Then, the lower level is computed by conventional SFS method using the fold areas as boundary conditions. The two levels interact at the final stage by optimizing a joint Bayesian posterior probability on the depth map. We show a number of experiments which demonstrate more robust results in comparison with state-of-the-art work. In a broader scope, our representation can be viewed as a two-level inhomogeneous MRF model which is applicable to general shape-from-X problems. Our study is an attempt to revisit Marr's idea [23] of computing the 2(1/2)D sketch from primal sketch. In a companion paper [2], we study shape from stereo based on a similar two-level generative sketch representation.
NASA Astrophysics Data System (ADS)
Moncoulon, D.; Labat, D.; Ardon, J.; Leblois, E.; Onfroy, T.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.
2014-09-01
The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible (but which have not yet occurred) flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2010 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90 % of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff, due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of the CCR (Caisse Centrale de Reassurance) claim database have shown that approximately 45 % of the insured flood losses are located inside the floodplains and 45 % outside. Another 10 % is due to sea surge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: a generation of fictive river flows based on the historical records of the river gauge network and a generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (Macif) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).
Linking the Weather Generator with Regional Climate Model
NASA Astrophysics Data System (ADS)
Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan
2013-04-01
One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).
Comparison of two perturbation methods to estimate the land surface modeling uncertainty
NASA Astrophysics Data System (ADS)
Su, H.; Houser, P.; Tian, Y.; Kumar, S.; Geiger, J.; Belvedere, D.
2007-12-01
In land surface modeling, it is almost impossible to simulate the land surface processes without any error because the earth system is highly complex and the physics of the land processes has not yet been understood sufficiently. In most cases, people want to know not only the model output but also the uncertainty in the modeling, to estimate how reliable the modeling is. Ensemble perturbation is an effective way to estimate the uncertainty in land surface modeling, since land surface models are highly nonlinear which makes the analytical approach not applicable in this estimation. The ideal perturbation noise is zero mean Gaussian distribution, however, this requirement can't be satisfied if the perturbed variables in land surface model have physical boundaries because part of the perturbation noises has to be removed to feed the land surface models properly. Two different perturbation methods are employed in our study to investigate their impact on quantifying land surface modeling uncertainty base on the Land Information System (LIS) framework developed by NASA/GSFC land team. One perturbation method is the built-in algorithm named "STATIC" in LIS version 5; the other is a new perturbation algorithm which was recently developed to minimize the overall bias in the perturbation by incorporating additional information from the whole time series for the perturbed variable. The statistical properties of the perturbation noise generated by the two different algorithms are investigated thoroughly by using a large ensemble size on a NASA supercomputer and then the corresponding uncertainty estimates based on the two perturbation methods are compared. Their further impacts on data assimilation are also discussed. Finally, an optimal perturbation method is suggested.
A model of the ground surface temperature for micrometeorological analysis
NASA Astrophysics Data System (ADS)
Leaf, Julian S.; Erell, Evyatar
2017-07-01
Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.
Modelling middle pliocene warm climates of the USA
Haywood, A.M.; Valdes, P.J.; Sellwood, B.W.; Kaplan, J.O.; Dowsett, H.J.
2001-01-01
The middle Pliocene warm period represents a unique time slice in which to model and understand climatic processes operating under a warm climatic regime. Palaeoclimatic model simulations, focussed on the United States of America (USA), for the middle Pliocene (ca 3 Ma) were generated using the USGS PRISM2 2?? ?? 2?? data set of boundary conditions and the UK Meteorological Office's HadAMS General Circulation Model (GCM). Model results suggest that conditions in the USA during the middle Pliocene can be characterised as annually warmer (by 2?? to 4??C), less seasonal, wetter (by a maximum of 4 to 8 mm/day) and with an absence of freezing winters over the central and southern Great Plains. A sensitivity experiment suggests that the main forcing mechanisms for surface temperature changes in near coastal areas are the imposed Pliocene sea surface temperatures (SST's). In interior regions, reduced Northern Hemisphere terrestrial ice, combined with less snow cover and a reduction in the elevation of the western cordillera of North America, generate atmospheric circulation changes and positive albedo feedbacks that raise surface temperatures. A complex set of climatic feedback mechanisms cause an enhancement of the hydrological cycle magnifying the moisture bearing westerly wind belt during the winter season (Dec., Jan., Feb.). Predictions produced by the model are in broad agreement with available geological evidence. However, the GCM appears to underestimate precipitation levels in the interior and central regions of the southern USA. Copyright: Palaeontological Association, 22 June 2001.
Sergeyev, Ivan; Moyna, Guillermo
2005-05-02
A novel method for the determination of the three-dimensional (3D) structure of oligosaccharides in the solid state using experimental 13C NMR data is presented. The approach employs this information, combined with 13C chemical shift surfaces (CSSs) for the glycosidic bond carbons in the generation of NMR pseudopotential energy functions suitable for use as constraints in molecular modeling simulations. Application of the method to trehalose, cellobiose, and cellotetraose produces 3D models that agree remarkably well with the reported X-ray structures, with phi and psi dihedral angles that are within 10 degrees from the ones observed in the crystals. The usefulness of the approach is further demonstrated in the determination of the 3D structure of the cellohexaose, an hexasaccharide for which no X-ray data has been reported, as well as in the generation of accurate structural models for cellulose II and amylose V6.
Ravald, L; Fornstedt, T
2001-01-26
The bi-Langmuir equation has recently been proven essential to describe chiral chromatographic surfaces and we therefore investigated the accuracy of the elution by characteristic points method (ECP) for estimation of bi-Langmuir isotherm parameters. The ECP calculations was done on elution profiles generated by the equilibrium-dispersive model of chromatography for five different sets of bi-Langmuir parameters. The ECP method generates two different errors; (i) the error of the ECP calculated isotherm and (ii) the model error of the fitting to the ECP isotherm. Both errors decreased with increasing column efficiency. Moreover, the model error was strongly affected by the weight of the bi-Langmuir function fitted. For some bi-Langmuir compositions the error of the ECP calculated isotherm is too large even at high column efficiencies. Guidelines will be given on surface types to be avoided and on column efficiencies and loading factors required for adequate parameter estimations with ECP.
Dérive à la surface de l'océan sous l'effet des vagues
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Martin-Lauzer, François-Régis; Chapron, Bertrand; Craneguy, Philippe; Girard-Ardhuin, Fanny; Elfouhaily, Tanos
2004-09-01
We model the drift velocity near the ocean surface separating the motion induced by the local current, itself influenced by winds and waves, and the motion induced by the waves, which are generated by local and remote winds. Application to the drift of 'tar balls', following the sinking of the oil tanker Prestige-Nassau in November 2002, shows that waves contribute at least one third of the drift for pollutants floating 1 m below the surface, with a mean direction about 30° to the right of the wind-sea direction. Although not new, this result was previously obtained with specific models, whereas the formalism used here combines classical wave and circulation forecasting models. To cite this article: F. Ardhuin et al., C. R. Geoscience 336 (2004).
Ocean salinities reveal strong global water cycle intensification during 1950 to 2000.
Durack, Paul J; Wijffels, Susan E; Matear, Richard J
2012-04-27
Fundamental thermodynamics and climate models suggest that dry regions will become drier and wet regions will become wetter in response to warming. Efforts to detect this long-term response in sparse surface observations of rainfall and evaporation remain ambiguous. We show that ocean salinity patterns express an identifiable fingerprint of an intensifying water cycle. Our 50-year observed global surface salinity changes, combined with changes from global climate models, present robust evidence of an intensified global water cycle at a rate of 8 ± 5% per degree of surface warming. This rate is double the response projected by current-generation climate models and suggests that a substantial (16 to 24%) intensification of the global water cycle will occur in a future 2° to 3° warmer world.
Enhancements to NURBS-Based FEA Airfoil Modeler: SABER
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Trowbridge, D. A.
2003-01-01
NURBS (Non-Uniform Rational B-Splines) have become a common way for CAD programs to fit a smooth surface to discrete geometric data. This concept has been extended to allow for the fitting of analysis data in a similar manner and "attaching" the analysis data to the geometric definition of the structure. The "attaching" of analysis data to the geometric definition allows for a more seamless sharing of data between analysis disciplines. NURBS have become a useful tool in the modeling of airfoils. The use of NURBS has allowed for the development of software that easily and consistently generates plate finite element models of the midcamber surface of a given airfoil. The resulting displacements can then be applied to the original airfoil surface and the deformed shape calculated.
Radiometric Block Adjusment and Digital Radiometric Model Generation
NASA Astrophysics Data System (ADS)
Pros, A.; Colomina, I.; Navarro, J. A.; Antequera, R.; Andrinal, P.
2013-05-01
In this paper we present a radiometric block adjustment method that is related to geometric block adjustment and to the concept of a terrain Digital Radiometric Model (DRM) as a complement to the terrain digital elevation and surface models. A DRM, in our concept, is a function that for each ground point returns a reflectance value and a Bidirectional Reflectance Distribution Function (BRDF). In a similar way to the terrain geometric reconstruction procedure, given an image block of some terrain area, we split the DRM generation in two phases: radiometric block adjustment and DRM generation. In the paper we concentrate on the radiometric block adjustment step, but we also describe a preliminary DRM generator. In the block adjustment step, after a radiometric pre-calibraton step, local atmosphere radiative transfer parameters, and ground reflectances and BRDFs at the radiometric tie points are estimated. This radiometric block adjustment is based on atmospheric radiative transfer (ART) models, pre-selected BRDF models and radiometric ground control points. The proposed concept is implemented and applied in an experimental campaign, and the obtained results are presented. The DRM and orthophoto mosaics are generated showing no radiometric differences at the seam lines.
NASA Astrophysics Data System (ADS)
Parsakhoo, Zahra; Shao, Yaping
2017-04-01
Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).
A method to generate the surface cell layer of the 3D virtual shoot apex from apical initials.
Kucypera, Krzysztof; Lipowczan, Marcin; Piekarska-Stachowiak, Anna; Nakielski, Jerzy
2017-01-01
The development of cell pattern in the surface cell layer of the shoot apex can be investigated in vivo by use of a time-lapse confocal images, showing naked meristem in 3D in successive times. However, how this layer is originated from apical initials and develops as a result of growth and divisions of their descendants, remains unknown. This is an open area for computer modelling. A method to generate the surface cell layer is presented on the example of the 3D paraboloidal shoot apical dome. In the used model the layer originates from three apical initials that meet at the dome summit and develops through growth and cell divisions under the isotropic surface growth, defined by the growth tensor. The cells, which are described by polyhedrons, divide anticlinally with the smallest division plane that passes depending on the used mode through the cell center, or the point found randomly near this center. The formation of the surface cell pattern is described with the attention being paid to activity of the apical initials and fates of their descendants. The computer generated surface layer that included about 350 cells required about 1200 divisions of the apical initials and their derivatives. The derivatives were arranged into three more or less equal clonal sectors composed of cellular clones at different age. Each apical initial renewed itself 7-8 times to produce the sector. In the shape and location and the cellular clones the following divisions of the initial were manifested. The application of the random factor resulted in more realistic cell pattern in comparison to the pure mode. The cell divisions were analyzed statistically on the top view. When all of the division walls were considered, their angular distribution was uniform, whereas in the distribution that was limited to apical initials only, some preferences related to their arrangement at the dome summit were observed. The realistic surface cell pattern was obtained. The present method is a useful tool to generate surface cell layer, study activity of initial cells and their derivatives, and how cell expansion and division are coordinated during growth. We expect its further application to clarify the question of a number and permanence or impermanence of initial cells, and possible relationship between their shape and oriented divisions, both on the ground of the growth tensor approach.
On the generation of internal wave modes by surface waves
NASA Astrophysics Data System (ADS)
Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian
2016-04-01
Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.
NASA Technical Reports Server (NTRS)
Yang, R.; Houser, P.; Joiner, J.
1998-01-01
The surface ground temperature (Tg) is an important meteorological variable, because it represents an integrated thermal state of the land surface determined by a complex surface energy budget. Furthermore, Tg affects both the surface sensible and latent heat fluxes. Through these fluxes. the surface budget is coupled with the atmosphere above. Accurate Tg data are useful for estimating the surface radiation budget and fluxes, as well as soil moisture. Tg is not included in conventional synoptical weather station reports. Currently, satellites provide Tg estimates globally. It is necessary to carefully consider appropriate methods of using these satellite data in a data assimilation system. Recently, an Off-line Land surface GEOS Assimilation (OLGA) system was implemented at the Data Assimilation Office at NASA-GSFC. One of the goals of OLGA is to assimilate satellite-derived Tg data. Prior to the Tg assimilation, a thorough investigation of satellite- and model-derived Tg, including error estimates, is required. In this study we examine the Tg from the n Project (ISCCP DI) data and the OLGA simulations. The ISCCP data used here are 3-hourly DI data (2.5x2.5 degree resolution) for 1992 summer months (June, July, and August) and winter months (January and February). The model Tg for the same periods were generated by OLGA. The forcing data for this OLGA 1992 simulation were generated from the GEOS-1 Data Assimilation System (DAS) at Data Assimilation Office NASA-GSFC. We examine the discrepancies between ISCCP and OLGA Tg with a focus on its spatial and temporal characteristics, particularly on the diurnal cycle. The error statistics in both data sets, including bias, will be estimated. The impact of surface properties, including vegetation cover and type, topography, etc, on the discrepancies will be addressed.
Lin, Chung Hsun; Guan, Jingjiao; Chau, Shiu Wu; Chen, Shia Chung; Lee, L James
2010-08-04
DNA molecules in a solution can be immobilized and stretched into a highly ordered array on a solid surface containing micropillars by molecular combing technique. However, the mechanism of this process is not well understood. In this study, we demonstrated the generation of DNA nanostrand array with linear, zigzag, and fork-zigzag patterns and the microfluidic processes are modeled based on a deforming body-fitted grid approach. The simulation results provide insights for explaining the stretching, immobilizing, and patterning of DNA molecules observed in the experiments.
Exploring a potential energy surface by machine learning for characterizing atomic transport
NASA Astrophysics Data System (ADS)
Kanamori, Kenta; Toyoura, Kazuaki; Honda, Junya; Hattori, Kazuki; Seko, Atsuto; Karasuyama, Masayuki; Shitara, Kazuki; Shiga, Motoki; Kuwabara, Akihide; Takeuchi, Ichiro
2018-03-01
We propose a machine-learning method for evaluating the potential barrier governing atomic transport based on the preferential selection of dominant points for atomic transport. The proposed method generates numerous random samples of the entire potential energy surface (PES) from a probabilistic Gaussian process model of the PES, which enables defining the likelihood of the dominant points. The robustness and efficiency of the method are demonstrated on a dozen model cases for proton diffusion in oxides, in comparison with a conventional nudge elastic band method.
Analytic model for low-frequency noise in nanorod devices.
Lee, Jungil; Yu, Byung Yong; Han, Ilki; Choi, Kyoung Jin; Ghibaudo, Gerard
2008-10-01
In this work analytic model for generation of excess low-frequency noise in nanorod devices such as field-effect transistors are developed. In back-gate field-effect transistors where most of the surface area of the nanorod is exposed to the ambient, the surface states could be the major noise source via random walk of electrons for the low-frequency or 1/f noise. In dual gate transistors, the interface states and oxide traps can compete with each other as the main noise source via random walk and tunneling, respectively.
NASA Astrophysics Data System (ADS)
Oliveira, N. P.; Maciel, L.; Catarino, A. P.; Rocha, A. M.
2017-10-01
This work proposes the creation of models of surfaces using a parametric computer modelling software to obtain three-dimensional structures in weft knitted fabrics produced on single needle system machines. Digital prototyping, another feature of digital modelling software, was also explored in three-dimensional drawings generated using the Rhinoceros software. With this approach, different 3D structures were developed and produced. Physical characterization tests were then performed on the resulting 3D weft knitted structures to assess their ability to promote comfort. From the obtained results, it is apparent that the developed structures have potential for application in different market segments, such as clothing and interior textiles.
A mathematical framework for modelling cambial surface evolution using a level set method
Sellier, Damien; Plank, Michael J.; Harrington, Jonathan J.
2011-01-01
Background and Aims During their lifetime, tree stems take a series of successive nested shapes. Individual tree growth models traditionally focus on apical growth and architecture. However, cambial growth, which is distributed over a surface layer wrapping the whole organism, equally contributes to plant form and function. This study aims at providing a framework to simulate how organism shape evolves as a result of a secondary growth process that occurs at the cellular scale. Methods The development of the vascular cambium is modelled as an expanding surface using the level set method. The surface consists of multiple compartments following distinct expansion rules. Growth behaviour can be formulated as a mathematical function of surface state variables and independent variables to describe biological processes. Key Results The model was coupled to an architectural model and to a forest stand model to simulate cambium dynamics and wood formation at the scale of the organism. The model is able to simulate competition between cambia, surface irregularities and local features. Predicting the shapes associated with arbitrarily complex growth functions does not add complexity to the numerical method itself. Conclusions Despite their slenderness, it is sometimes useful to conceive of trees as expanding surfaces. The proposed mathematical framework provides a way to integrate through time and space the biological and physical mechanisms underlying cambium activity. It can be used either to test growth hypotheses or to generate detailed maps of wood internal structure. PMID:21470972
Field-controllable second harmonic generation at a graphene oxide heterointerface
NASA Astrophysics Data System (ADS)
Fernandes, Gustavo E.; Kim, Jin Ho; Osgood, Richard, III; Xu, Jimmy
2018-03-01
We report on the voltage-dependent SHG signal obtained in a reduced-graphene oxide (rGO)/p-type Si heterointerface. A simple qualitative model considering the interaction between the heterointerface depletion region potential and the naturally occurring surface dipole layer on the rGO is introduced to account for the characteristics of the SHG signal, specifically, a minimum point at ≈ -3 V bias on the rGO side of the interface. This feature-rich system has the potential to provide field-controllable surface-dipole moments and second-order nonlinearities, which may find applications in tunable nonlinear photonic devices for realizing second-harmonic generation and optical-rectification.
Effect of gamma-ray irradiation on the surface states of MOS tunnel junctions
NASA Technical Reports Server (NTRS)
Ma, T. P.; Barker, R. C.
1974-01-01
Gamma-ray irradiation with doses up to 8 megarad produces no significant change on either the C(V) or the G(V) characteristics of MOS tunnel junctions with intermediate oxide thicknesses (40-60 A), whereas the expected flat-band shift toward negative electrode voltages occurs in control thick oxide capacitors. A simple tunneling model would explain the results if the radiation-generated hole traps are assumed to lie below the valence band of the silicon. The experiments also suggest that the observed radiation-generated interface states in conventional MOS devices are not due to the radiation damage of the silicon surface.
NASA Astrophysics Data System (ADS)
Weiler, M.
2016-12-01
Heavy rain induced flash floods are still a serious hazard and generate high damages in urban areas. In particular in the spatially complex urban areas, the temporal and spatial pattern of runoff generation processes at a wide spatial range during extreme rainfall events need to be predicted including the specific effects of green infrastructure and urban forests. In addition, the initial conditions (soil moisture pattern, water storage of green infrastructure) and the effect of lateral redistribution of water (run-on effects and re-infiltration) have to be included in order realistically predict flash flood generation. We further developed the distributed, process-based model RoGeR (Runoff Generation Research) to include the relevant features and processes in urban areas in order to test the effects of different settings, initial conditions and the lateral redistribution of water on the predicted flood response. The uncalibrated model RoGeR runs at a spatial resolution of 1*1m² (LiDAR, degree of sealing, landuse), soil properties and geology (1:50.000). In addition, different green infrastructures are included into the model as well as the effect of trees on interception and transpiration. A hydraulic model was included into RoGeR to predict surface runoff, water redistribution, and re-infiltration. During rainfall events, RoGeR predicts at 5 min temporal resolution, but the model also simulates evapotranspiration and groundwater recharge during rain-free periods at a longer time step. The model framework was applied to several case studies in Germany where intense rainfall events produced flash floods causing high damage in urban areas and to a long-term research catchment in an urban setting (Vauban, Freiburg), where a variety of green infrastructures dominates the hydrology. Urban-RoGeR allowed us to study the effects of different green infrastructures on reducing the flood peak, but also its effect on the water balance (evapotranspiration and groundwater recharge). We could also show that infiltration of surface runoff from areas with a low infiltration (lateral redistribution) reduce the flood peaks by over 90% in certain areas and situations. Finally, we also evaluated the model to long-term runoff observations (surface runoff, ET, roof runoff) and to flood marks in the selected case studies.
NASA Astrophysics Data System (ADS)
Alpers, Werner; Wong, Wai Kin; Dagestad, Knut-Frode; Chan, Pak Wai
2015-10-01
Wind fronts associated with cold-air outbreaks from the Chinese continent in the winter are often observed over the northern South China Sea and are well studied. However, wind fronts caused by another type of synoptic setting, the sudden increase or freshening of the north-east monsoon, which is caused by the merging of two anticyclonic regions over the Chinese continent, are also frequently encountered over the northern South China Sea. For the first time, such an event is investigated using multi-sensor satellite data, weather radar images, and a high-resolution atmospheric numerical model. It is shown that the wind front generated by the freshening of the north-east monsoon is quite similar to wind fronts generated by cold-air outbreaks. Furthermore, we investigate fine-scale features of the wind front that are visible on synthetic aperture radar (SAR) images through variations of the small-scale sea-surface roughness. The SAR image was acquired by the Advanced SAR of the European Envisat satellite over the South China Sea off the coast of Hong Kong and has a resolution of 150 m. It shows notches (dents) in the frontal line and also radar signatures of embedded rain cells. This (rare) SAR image, together with a quasi-simultaneously acquired weather radar image, provide excellent data with which to test the performance of the pre-operational version of the Atmospheric Integrated Rapid-cycle (AIR) forecast model system of the Hong Kong Observatory with respect to modelling rain cells at frontal boundaries. The calculations using a horizontal resolution with 3-km resolution show that the model reproduces quite well the position of the notches where rain cells are generated. The model shows further that at the position of the notches the vorticity of the airflow is increased leading to the uplift of warmer, moister air from the sea-surface to higher levels. With respect to the 10-km resolution model, the comparison of model data with the near-surface wind field derived from the SAR image shows that the AIR model overestimates the wind speed in the lee of the coastal mountains east of Hong Kong, probably due to the incorrect inclusion of the coastal topography.
NASA Astrophysics Data System (ADS)
Harder, P.; Pomeroy, J. W.; Helgason, W.
2017-12-01
Spring snowmelt is the most important hydrological event in semi-arid agricultural cold regions, recharging soil moisture and generating the majority of annual runoff. Adoption of no-till agricultural practices means vast areas of the Canadian Prairies, and other analogous regions, are characterized by standing crop stubble. The emergence of stubble during snowmelt will have important implications for the snowpack energy balance. In addition, spatiotemporally dynamic snowcover heterogeneity leads to enhancement of turbulent flux contributions to melt by advection of energy from warm moist bare ground to snow. Stubble emergence and advection are generally unaccounted for in snow models. To address these challenges a stubble-snow-atmosphere surface energy balance model is developed that relates stubble parameters to the snow surface energy balance. Existing fractal understandings of snowcover geometry are applied to a conceptualized boundary layer integration model to estimate a sensible and latent heat advection efficiency. The small-scale nature of stubble-snow-atmosphere interactions makes direct validation of the energy balance terms challenging. However, the energy balance estimates are assessed by comparing to measured snow and stubble surface temperatures, snow surface incoming shortwave radiation and areal average turbulent fluxes. Advection estimates are validated from a two-dimensional air temperature, water vapor and windspeed profiles. Snowcover geometry relationships are validated/updated with unmanned air vehicle observations. Observations for model assessment occurred in 2015 and 2016 on wheat and canola stubble fields in north-central Saskatchewan, Canada. The model is not calibrated to melt rates, yet compares well with available observations, providing confidence in the model structure and parameterization. Sensitivity analysis using the model revealed compensatory relationships in energy balance terms resulting in limited reduction of energy available for snowmelt as stubble height increases. The proposed model is used to diagnose the influence of stubble management and climate change on melt processes to reveal the potential implications on runoff generation, infiltration and land-atmosphere interactions.
NASA Technical Reports Server (NTRS)
Fang, Hongliang; Beaudoing, Hiroko; Rodell, Matthew; Teng, BIll; Vollmer, Bruce
2008-01-01
The Global Land Data Assimilation System (GLDAS) is generating a series of land surface state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and sensible heat flux) products simulated by four land surface Models (CLM, Mosaic, Noah and VIC). These products are now accessible at the Hydrology Data and Information Services Center (HDISC), a component of NASA Goddard Earth Sciences Data and Information Services Center (GESDISC).