Oxidation-driven surface dynamics on NiAl(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Hailang; Chen, Xidong; Li, Liang
Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling upmore » of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.« less
Oxidation-driven surface dynamics on NiAl(100)
Qin, Hailang; Chen, Xidong; Li, Liang; ...
2014-12-29
Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling upmore » of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Dongdong; Wu, Zhigang; Song, Miao
Understanding the growth mechanism of noble metal nanocrystals during solution synthesis is of significant importance for shape and property control. However, much remains unknown about the growth pathways of metal nanoparticles due to lack of direct observation. Using an in-situ transmission electron microscopy technique, we directly observed Ag nanocube and nanobar growth in aqueous solution through both classical monomer-by-monomer addition and non-classical particle attachment processes. During the particle attachment process, Ag nanocubes and nanobars formed via both oriented and non-oriented attachment. Our calculations, along with dynamics of the observed attachment, showed that van der Waals force overcame hydrodynamic and frictionmore » forces and drove the particles toward each other. During classical growth, an anisotropic growth was also revealed, and the resulting unsymmetrical shape constituted an intermediate state for Ag nanocube growth. We hypothesized that the temporary symmetry breaking resulted from different growth rates on {001} surfaces due to a local surface concentration variation caused by the imbalance between the consumption of Ag+ near the surface and the diffusion of Ag+ from bulk to surface.« less
Surface processes in OMVPE the frontiers
NASA Astrophysics Data System (ADS)
Stringfellow, G. B.; Shurtleff, J. K.; Lee, R. T.; Fetzer, C. M.; Jun, S. W.
2000-12-01
Surface processes have long been known to be an important part of any epitaxial growth process. These processes are closely linked to the surface structure. However, until recently, the surface structure and the surface processes were difficult to study experimentally for conventional vapor-phase epitaxy (VPE) and liquid-phase epitaxy. Recently, optical techniques such as surface photo absorption (SPA) have been developed to the point that they give useful information about the surface reconstruction in situ during organometallic vapor-phase epitaxial (OMVPE) growth. Thus, they can in many cases be used to monitor the surface processes. A powerful method for controlling the surface structure during epitaxial growth using surfactants has recently emerged. This work describes the use of the surfactants Te, a donor, and As, Sb, and Bi, elements that are isoelectronic with P, on the properties of GaInP grown by OMVPE. These surfactants are found to significantly affect the microscopic arrangement of Ga and In atoms in the bulk solid by effecting a change in the surface structure. CuPt ordering is ubiquitous in III/V semiconductor alloys. It is significant because of the dependence of bandgap energy on the degree of order. The CuPt structure is formed due to the strain induced by the formation of [ 1¯ 1 0] P dimers on the surface. Each of the surfactants studied is found to result in disordering for layers grown using conditions that would otherwise produce highly ordered GaInP. Te yields disordered material with no change in the SPA spectra. However, the step velocity is found to increased markedly. Thus, the effect appears to be kinetic. Sb causes disordering due to a replacement of [ 1¯ 1 0] P dimers on the nominally (0 0 1) surface by larger Sb dimers, which reduces the strain-induced driving force for CuPt ordering at the surface. Thus, the effect is due to surface thermodynamics. For high Sb concentrations in the vapor, a triple-period ordered structure is formed. The appearance of this phase coincides with a distinct change in the surface reconstruction as indicated by SPA spectroscopy. Modulation of the TESb flow rate during growth was used to produce an abrupt order/disorder heterostructure with a bandgap energy difference of 135 meV with no significant change in solid composition at the interface. SPA results show that addition of As during growth also reduces the degree of order by displacing some of the [ 1¯ 1 0] P dimers on the surface. In this case, significant As concentrations in the solid of a few percent are observed. Thus, As is not an effective surfactant. Addition of Bi during growth results in a change in the surface reconstruction, as indicated by SPA spectroscopy, for Bi concentrations producing disordered GaInP. Unlike Sb and As, the Bi also causes a marked increase in the step velocity coincident with the loss of order. For singular (001) substrates, island formation is suppressed by Bi, resulting in the growth of much smoother layers. Modulation of the TMBi concentration during growth has been used to produce disorder/order heterostructures. The use of isoelectronic surfactants during growth to influence the properties of a semiconducting solid is a new and exciting development in control of the OMVPE growth process. It is expected that the use of isoelectronic surfactants to determine the surface reconstruction will find application in the growth of complex device structures. It also appears likely that this will be useful for controlling other characteristics of the growth process and the properties of the resultant semiconductor materials.
NASA Astrophysics Data System (ADS)
Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik
2017-07-01
A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.
Lattice Gas Model Based Optimization of Plasma-Surface Processes for GaN-Based Compound Growth
NASA Astrophysics Data System (ADS)
Nonokawa, Kiyohide; Suzuki, Takuma; Kitamori, Kazutaka; Sawada, Takayuki
2001-10-01
Progress of the epitaxial growth technique for GaN-based compounds makes these materials attractive for applications in high temperature/high-power electronic devices as well as in short-wavelength optoelectronic devices. For MBE growth of GaN epilayer, atomic nitrogen is usually supplied from ECR-plasma while atomic Ga is supplied from conventional K-cell. To grow high-quality epilayer, fundamental knowledge of the detailed atomic process, such as adsorption, surface migration, incorporation, desorption and so forth, is required. We have studied the influence of growth conditions on the flatness of the growth front surface and the growth rate using Monte Carlo simulation based on the lattice gas model. Under the fixed Ga flux condition, the lower the nitrogen flux and/or the higher the growth temperature, the better the flatness of the front surface at the sacrifice of the growth rate of the epilayer. When the nitrogen flux is increased, the growth rate reaches saturation value determined from the Ga flux. At a fixed growth temperature, increasing of nitrogen to Ga flux ratio results in rough surface owing to 3-dimensional island formation. Other characteristics of MBE-GaN growth using ECR-plasma can be well reproduced.
Surface diffusion in homoepitaxial SrTiO3 thin films
NASA Astrophysics Data System (ADS)
Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho; Charm Lab Team; Nano Spintronics Lab Collaboration
The development of growth techniques such as molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) has facilitated growths of complex oxide thin films at the atomic level .... Systematic studies on surface diffusion process of adatoms using theoretical and experimental methods allow us to understand growth mechanism enabling atomically flat thin film surface. In this presentation, we introduce the synthesis of homoepitaxial SrTiO3 thin films using a PLD equipped with reflection of high energy electron diffraction (RHEED). We determine the surface diffusion time as a function of growth temperature and extract the activation energy of diffusion on the surface by in-situ monitoring the RHEED intensity recovery during the film deposition. From the extracted experimental results, we discuss the microscopic mechanism of the diffusion process
Energetic additive manufacturing process with feed wire
Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.
2000-11-07
A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.
Growth of surface and corner cracks in beta-processed and mill-annealed Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Bell, P. D.
1975-01-01
Empirical stress-intensity expressions were developed to relate the growth of cracks from corner flaws to the growth of cracks from surface flaws. An experimental program using beta-processed Ti-6Al-4V verified these expressions for stress ratios, R greater than or equal to 0. An empirical crack growth-rate expression which included stress-ratio and stress-level effects was also developed. Cracks grew approximately 10 percent faster in transverse-grain material than in longitudinal-grain material and at approximately the same rate in longitudinal-grain mill-annealed Ti-6Al-4V. Specimens having surface and corner cracks and made of longitudinal-grain, beta-processed material were tested with block loads, and increasing the stresses in a block did not significantly change the crack growth rates. Truncation of the basic ascending stress sequence within a block caused more rapid crack growth, whereas both the descending and low-to-high stress sequences slowed crack growth.
NASA Astrophysics Data System (ADS)
May, P. W.; Harvey, J. N.; Allan, N. L.; Richley, J. C.; Mankelevich, Yu. A.
2010-12-01
A one-dimensional kinetic Monte Carlo (KMC) model has been developed to simulate the chemical vapor deposition of a diamond (100) surface under conditions used to grow single-crystal diamond (SCD), microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films. The model considers adsorption, etching/desorption, lattice incorporation and surface migration but not defect formation or renucleation processes. Two methods have been devised for estimation of the gas phase concentrations of species at the growing diamond surface, and are used to determine adsorption rates for C1Hx hydrocarbons for the different conditions. The rate of migration of adsorbed carbon species is governed by the availability of neighboring radical sites, which, in turn, depend upon the rates of H abstraction and of surface-radical migration. The KMC model predicts growth rates and surface roughness for each of diamond types consistent with experiment. In the absence of defect formation and renucleation the average surface diffusion length, ℓ, is a key parameter controlling surface morphology. When ℓ <2, surface migration is limited by the lack of availability of surface radical sites, and the migrating surface species simply hop back and forth between two adjacent sites but do not travel far beyond their initial adsorption site. Thus, Eley-Rideal processes dominate the growth, leading to the rough surfaces seen in NCD and UNCD. The maximum or "intrinsic" surface roughness occurs for nominally zero-migration conditions (ℓ =0) with an rms value of approximately five carbon atoms. Conversely, when migration occurs over greater distances (ℓ >2), Langmuir-Hinshelwood processes dominate the growth producing the smoother surfaces of MCD and SCD. By extrapolation, we predict that atomically smooth surfaces over large areas should occur once migrating species can travel approximately five sites (ℓ ˜5). β-scission processes are found to be unimportant for MCD and SCD growth conditions, but can remove up to 5% of the adsorbing carbon for NCD and UNCD growth. C1Hx insertion reactions also contribute <1% to the growth for nearly all conditions, while C2Hx (x <2) insertion reactions are negligible due their very low concentrations at the surface. Finally, the predictions for growth rate and morphology for UNCD deposition in a microwave system were found to be anomalous compared to those for all the other growth conditions, suggesting that carbonaceous particulates created in these plasmas may significantly affect the gas chemistry.
Distinct ice patterns on solid surfaces with various wettabilities
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun
2017-01-01
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice Ih), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. PMID:29073045
Distinct ice patterns on solid surfaces with various wettabilities.
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun
2017-10-24
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice I h ), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. Published under the PNAS license.
Growth far from equilibrium: Examples from III-V semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuech, Thomas F.; Babcock, Susan E.; Mawst, Luke
The development of new applications has driven the field of materials design and synthesis to investigate materials that are not thermodynamically stable phases. Materials which are not thermodynamically stable can be synthesized and used in many applications. These materials are kinetically stabilized during use. The formation of such metastable materials requires both an understanding of the associated thermochemistry and the key surface transport processes present during growth. Phase separation is most easily accomplished at the growth surface during synthesis where mass transport is most rapid. These surface transport processes are sensitive to the surface stoichiometry, reconstruction, and chemistry as wellmore » as the growth temperature. The formation of new metastable semiconducting alloys with compositions deep within a compositional miscibility gap serves as model systems for the understanding of the surface chemical and physical processes controlling their formation. The GaAs{sub 1−y}Bi{sub y} system is used here to elucidate the role of surface chemistry in the formation of a homogeneous metastable composition during the chemical vapor deposition of the alloy system.« less
Development of silicon growth techniques from melt with surface heating
NASA Astrophysics Data System (ADS)
Kravtsov, Anatoly
2018-05-01
The paper contains literary and personal data on the development history of silicon-growing technology with volumetric and surface melt heating. It discusses the advantages and disadvantages of surface-heating technology. Examples are given of the implementation of such processes in the 60s-70s of the last century, and the reasons for the discontinuation of the relevant work. It describes the main solutions for the implementation of crystal growth process with the electron-beam heating of the melt surface, implemented by KEPP EU (Latvia). It discusses differences in the management of the growth process for the crystals with constant diameters compared to the Czochralski method. It lists geometrical and electro-physical properties of the obtained crystals. It describes the possible use of such crystals and the immediate challenges of technology development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kajita, Shin; Yoshida, Tomoko; Kitaoka, Daiki
It has been found recently that low-energy helium (He) plasma irradiation to tungsten (W) leads to the growth of W nanostructures on the surface. The process to grow the nanostructure is identified as a self-growth process of He bubbles and has a potential to open up a new plasma processing method. Here, we show that the metallic nanostructure formation process by the exposure to He plasma can occur in various metals such as, titanium, nickel, iron, and so on. When the irradiation conditions alter, the metallic cone arrays including nanobubbles inside are formed on the surface. Different from W cases,more » other processes than growth of fiberform structure, i.e., physical sputtering and the growth of large He bubbles, can be dominant on other metals during irradiation; various surface morphology changes can occur. The nanostructured W, part of which was oxidized, has revealed a significant photocatalytic activity under visible light (wavelength >700 nm) in decolorization of methylene blue without any co-catalyst.« less
Homoepitaxial and Heteroepitaxial Growth on Step-Free SiC Mesas
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Powell, J. Anthony
2004-01-01
This article describes the initial discovery and development of new approaches to SiC homoepitaxial and heteroepitaxial growth. These approaches are based upon the previously unanticipated ability to effectively supress two-dimensional nucleation of 3C-SiC on large basal plane terraces that form between growth steps when epitaxy is carried out on 4H- and 6H-SiC nearly on-axis substrates. After subdividing the growth surface into mesa regions, pure stepflow homoeptixay with no terrace nucleation was then used to grow all existing surface steps off the edges of screw-dislocation-free mesas, leaving behind perfectly on-axis (0001) basal plane mesa surfaces completely free of atomic-scale steps. Step-free mesa surfaces as large as 0.4 mm x 0.4 mm were experimentally realized, with the yield and size of step-free mesas being initally limited by substrate screw dislocations. Continued epitaxial growth following step-free surface formation leads to the formation of thin lateral cantilevers that extend the step-free surface area from the top edge of the mesa sidewalls. By selecting a proper pre-growth mesa shape and crystallographic orientation, the rate of cantilever growth can be greatly enhanced in a web growth process that has been used to (1) enlarge step-free surface areas and (2) overgrow and laterally relocate micropipes and screw dislocations. A new growth process, named step-free surface heteroepitaxy, has been developed to achieve 3C-SiC films on 4H- and 6H-SiC substrate mesas completely free of double positioning boundary and stacking fault defects. The process is based upon the controlled terrace nucleation and lateral expansion of a single island of 3C-SiC across a step-free mesa surface. Experimental results indicate that substrateepilayer lattice mismatch is at least partially relieved parallel to the interface without dislocations that undesirably thread through the thickness of the epilayer. These results should enable realization of improved SiC homojunction and heterojunction devices. In addition, these experiments offer important insights into the nature of polytypism during SiC crystal growth.
NASA Astrophysics Data System (ADS)
Bandić, Z. Z.; Hauenstein, R. J.; O'Steen, M. L.; McGill, T. C.
1996-03-01
Microscopic growth processes associated with GaN/GaAs molecular beam epitaxy (MBE) are examined through the introduction of a first-order kinetic model. The model is applied to the electron cyclotron resonance microwave plasma-assisted MBE (ECR-MBE) growth of a set of δ-GaNyAs1-y/GaAs strained-layer superlattices that consist of nitrided GaAs monolayers separated by GaAs spacers, and that exhibit a strong decrease of y with increasing T over the range 540-580 °C. This y(T) dependence is quantitatively explained in terms of microscopic anion exchange, and thermally activated N surface-desorption and surface-segregation processes. N surface segregation is found to be significant during GaAs overgrowth of GaNyAs1-y layers at typical GaN ECR-MBE growth temperatures, with an estimated activation energy Es˜0.9 eV. The observed y(T) dependence is shown to result from a combination of N surface segregation/desorption processes.
The dynamic nature of crystal growth in pores
Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; ...
2016-09-12
We report that the kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO 2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocitiesmore » predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Lastly, accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks.« less
Methods for growth of relatively large step-free SiC crystal surfaces
NASA Technical Reports Server (NTRS)
Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)
2002-01-01
A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.
Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns.
Barbagini, Francesca; Bengoechea-Encabo, Ana; Albert, Steven; Martinez, Javier; Sanchez García, Miguel Angel; Trampert, Achim; Calleja, Enrique
2011-12-14
Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials.
Laser Processed Condensing Heat Exchanger Technology Development
NASA Technical Reports Server (NTRS)
Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John
2017-01-01
The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.
Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO 3
Eres, Gyula; Tischler, J. Z.; Rouleau, C. M.; ...
2016-11-11
We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO 3. In this study, we show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing inmore » PLD. We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD “self-organizes” local step flow on a length scale consistent with the substrate temperature and PLD parameters.« less
Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eres, Gyula; Tischler, J. Z.; Rouleau, C. M.
We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO 3. In this study, we show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing inmore » PLD. We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD “self-organizes” local step flow on a length scale consistent with the substrate temperature and PLD parameters.« less
NASA Astrophysics Data System (ADS)
Shariati, Mohsen; Darjani, Mojtaba
2016-02-01
The continuous laterally aligned growth of In2O3 nanocrystal networks extended with nanowire and pyramid connections under annealing influence has been reported. These nanostructures have been grown on Si substrate by using oxygen-assisted annealing process through PVD growth technique. The formation of In2O3 nanocrystals has been achieved by the successive growth of critical self-nucleated condensation in three orientations. The preferred direction was the route between two pyramids especially in the smallest surface energy. The effects of substrate temperature in annealing process on the morphological properties of the as-grown nanostructures were investigated. The annealing technique showed that by controlling the surface energy, the morphology of structures was changed from unregulated array to defined nanostructures; especially nanowires 50 nm in width. The obtained nanostructures also were investigated by the (transmission electron microscopy) TEM, Raman spectrum and the (X-ray diffraction) XRD patterns. They indicated that the self-assembled In2O3 nanocrystal networks have been fabricated by the vapor-solid (VS) growth mechanism. The growth mechanism process was prompted to attribute the relationship among the kinetics parameters, surface diffusion and morphology of nanostructures.
A mathematical framework for modelling cambial surface evolution using a level set method
Sellier, Damien; Plank, Michael J.; Harrington, Jonathan J.
2011-01-01
Background and Aims During their lifetime, tree stems take a series of successive nested shapes. Individual tree growth models traditionally focus on apical growth and architecture. However, cambial growth, which is distributed over a surface layer wrapping the whole organism, equally contributes to plant form and function. This study aims at providing a framework to simulate how organism shape evolves as a result of a secondary growth process that occurs at the cellular scale. Methods The development of the vascular cambium is modelled as an expanding surface using the level set method. The surface consists of multiple compartments following distinct expansion rules. Growth behaviour can be formulated as a mathematical function of surface state variables and independent variables to describe biological processes. Key Results The model was coupled to an architectural model and to a forest stand model to simulate cambium dynamics and wood formation at the scale of the organism. The model is able to simulate competition between cambia, surface irregularities and local features. Predicting the shapes associated with arbitrarily complex growth functions does not add complexity to the numerical method itself. Conclusions Despite their slenderness, it is sometimes useful to conceive of trees as expanding surfaces. The proposed mathematical framework provides a way to integrate through time and space the biological and physical mechanisms underlying cambium activity. It can be used either to test growth hypotheses or to generate detailed maps of wood internal structure. PMID:21470972
Floating substrate process: Large-area silicon sheet task low-cost solar array project
NASA Technical Reports Server (NTRS)
Garfinkel, M.; Hall, R. N.
1978-01-01
Supercooling of silicon-tin alloy melts was studied. Values as high as 78 C at 1100 C and 39 C at 1200 C were observed, corresponding to supersaturation parameter values 0.025 and 0.053 at 1050 C and 1150 C, respectively. The interaction of tin with silane gas streams was investigated over the temperature range 1000 to 1200 C. Single-pass conversion efficiencies exceeding 30% were obtained. The growth habit of spontaneously-nucleated surface growth was determined to be consistent with dendritic and web growth from singly-twinned triangular nucleii. Surface growth of interlocking silicon crystals, thin enough to follow the surface of the liquid and with growth velocity as high as 5 mm/min, was obtained. Large area single-crystal growth along the melt surface was not achieved. Small single-crystal surface growth was obtained which did not propagate beyond a few millimeters.
NASA Astrophysics Data System (ADS)
Krzyżewski, Filip; Załuska-Kotur, Magdalena A.; Turski, Henryk; Sawicka, Marta; Skierbiszewski, Czesław
2017-01-01
The evolution of surface morphology during the growth of N-polar (000 1 bar) GaN under N-rich conditions is studied by kinetic Monte Carlo (kMC) simulations for two substrates miscuts 2° and 4°. The results are compared with experimentally observed surface morphologies of (000 1 bar) GaN layers grown by plasma-assisted molecular beam epitaxy. The proposed kMC two-component model of GaN(000 1 bar) surface where both types of atoms, nitrogen and gallium, attach to the surface and diffuse independently shows that at relatively high rates of the step flow (miscut angle < 2 °) the low mobility of gallium adatoms causes surface instabilities and leads to experimentally observed roughening while for low rates of the step flow (miscut 4°), smooth surface can be obtained. In the presence of almost immobile nitrogen atoms under N-rich conditions crystal growth is realized by the process of two-dimensional island nucleation and coalescence. Larger crystal miscut, lower growth rate or higher temperature results in similar effect of the surface smoothening. We show that the surface also smoothens for the growth conditions with very high N-excess. In the presence of large number of nitrogen atoms the mobility of gallium atoms changes locally thus providing easier coalescence of separated island.
Osseointegrated dental implants produced via microwave processing
NASA Astrophysics Data System (ADS)
Kutty, Muralithran G.
This research is a comprehensive effort to develop osseointegrated dental implants via microwave processing. A net-shape microwave sintering procedure was employed to fabricate dental implants. Commercial pure titanium powders (-100, -200 and -325 mesh sizes) were used in this work. This process eliminates the need for machining of implants and prevents contamination. The idea was to take advantage of the peculiar way microwave couple with metallic powders, i.e. generating heat in the interior of the sample and dissipating it away through the surface. The desired features for an implant, a dense core with surface pores, is not possible via conventional sintering. Coating with hydroxyapatite via electrodeposition and chemical combustion vapor deposition was also attempted to further enhance the bioactivity of this layer. Surface roughness and area were measured using a non-contact surface profilometer to further describe the unique surface. In-vitro studies, conducted using osteoblast cells extracted from neonatal rat calvarial, showed improved cell growth on all the uncoated porous samples. However, the highest cell growth was observed on the -200 mesh size samples. The higher surface area of the -200 mesh samples is attributed to this observation. This work was able to identify the processing parameters for titanium in microwave and establishes the importance of surface area as a key parameter for cell growth on porous surfaces as compared to surface roughness.
NASA Astrophysics Data System (ADS)
Keudell, A. V.
2000-10-01
The quantification of elementary plasma surface processes in glow discharges used for thin film deposition, is mandatory for a complete description of these low temperature plasmas. Since the surface to volume ratio in these discharge systems is often large, all particle densities in the discharge can be strongly influenced by any surface reactions. The identification and quantification of these surface processes will be illustrated for the plasma deposition of amorphous hydrogenated carbon films. A variety of experiments will be discussed ranging from plasma experiments using the cavity technique or ionization threshold mass spectrometry as well as a new class of experiments using quantified radical beams to quantify surface reactions in terms of sticking coefficients directly. It is shown that the reactivity of the hydrocarbon radicals depends strongly on the state of hybridization of the hydrocarbon growth precursor, and that the sticking coefficients for various hydrocarbon radicals are strongly influenced by the simultaneous interaction of several reactive species with the film surface. With the knowledge of these interaction mechanisms and the quantification of the corresponding cross sections, a better understanding of growth processes has become possible, ranging from the deposition of polycrystalline diamond in microwave discharges to the formation of re-deposited layers in fusion experiments.
Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns
2011-01-01
Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials. PMID:22168918
Ultrahigh vacuum process for the deposition of nanotubes and nanowires
Das, Biswajit; Lee, Myung B
2015-02-03
A system and method A method of growing an elongate nanoelement from a growth surface includes: a) cleaning a growth surface on a base element; b) providing an ultrahigh vacuum reaction environment over the cleaned growth surface; c) generating a reactive gas of an atomic material to be used in forming the nanoelement; d) projecting a stream of the reactive gas at the growth surface within the reactive environment while maintaining a vacuum of at most 1.times.10.sup.-4 Pascal; e) growing the elongate nanoelement from the growth surface within the environment while maintaining the pressure of step c); f) after a desired length of nanoelement is attained within the environment, stopping direction of reactive gas into the environment; and g) returning the environment to an ultrahigh vacuum condition.
Yuryev, Vladimir A; Arapkina, Larisa V
2011-09-05
Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.
Microstructure and growth model for rice-hull-derived SiC whiskers
NASA Technical Reports Server (NTRS)
Nutt, Steven R.
1988-01-01
The microstructure of silicon carbide whiskers grown from rice hulls has been studied using methods of high-resolution analytical electron microscopy. Small, partially crystalline inclusions (about 10 nm) containing calcium, manganese, and oxygen are concentrated in whisker core regions, while peripheral regions are generally inclusion free. The distinct microphase distribution is evidence of a two-stage growth process in which the core region grows first, followed by normal growth toward whisker sides. Partial dislocations extend radially from the core region to the surface and tend to be paired in V-shaped configurations. Whisker surfaces exhibit microroughness due to a tendency to develop small facets on close-packed planes. The microstructural data obtained from TEM observations are used as a basis for discussion of the mechanisms involved in whisker growth, and a model of the growth process is proposed. The model includes a two-dimensional growth mechanism involving vapor, liquid, and solid phases, although it is significantly different from the classical vapor-liquid-solid (VLS) process of whisker growth.
Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.
Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A
2011-10-01
A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.
NASA Astrophysics Data System (ADS)
Han, Xue-Feng; Liu, Xin; Nakano, Satoshi; Harada, Hirofumi; Miyamura, Yoshiji; Kakimoto, Koichi
2018-02-01
In FZ growth processes, the stability of the free surface is important in the production of single crystal silicon with high quality. To investigate the shape of the free surface in the FZ silicon crystal growth, a 3D numerical model that included gas and liquid phases was developed. In this present study, 3D Young-Laplacian equations have been solved using the Volume of Fluid (VOF) Model. Using this new model, we predicted the 3D shape of the free surface in FZ silicon crystal growth. The effect of magnetic pressure on shape of free surface has been considered. In particular, the free surface of the eccentric growth model, which could not be previously solved using the 2D Young-Laplacian equations, was solved using the VOF model. The calculation results are validated by the experimental results.
Mesoscale Elucidation of Surface Passivation in the Li-Sulfur Battery Cathode.
Liu, Zhixiao; Mukherjee, Partha P
2017-02-15
The cathode surface passivation caused by Li 2 S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2 S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2 S film on carbon cathode surface. Li 2 S film growth experiences nucleation, isolated Li 2 S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Li 2 S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2 S nucleation seeds form in such an operating temperature range, thereby facilitating heterogeneous growth and potentially inhibiting the lateral growth of the Li 2 S film, which may ultimately result in reduced surface passivation. The high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.
Combinatorial Characterization of TiO2 Chemical Vapor Deposition Utilizing Titanium Isopropoxide.
Reinke, Michael; Ponomarev, Evgeniy; Kuzminykh, Yury; Hoffmann, Patrik
2015-07-13
The combinatorial characterization of the growth kinetics in chemical vapor deposition processes is challenging because precise information about the local precursor flow is usually difficult to access. In consequence, combinatorial chemical vapor deposition techniques are utilized more to study functional properties of thin films as a function of chemical composition, growth rate or crystallinity than to study the growth process itself. We present an experimental procedure which allows the combinatorial study of precursor surface kinetics during the film growth using high vacuum chemical vapor deposition. As consequence of the high vacuum environment, the precursor transport takes place in the molecular flow regime, which allows predicting and modifying precursor impinging rates on the substrate with comparatively little experimental effort. In this contribution, we study the surface kinetics of titanium dioxide formation using titanium tetraisopropoxide as precursor molecule over a large parameter range. We discuss precursor flux and temperature dependent morphology, crystallinity, growth rates, and precursor deposition efficiency. We conclude that the surface reaction of the adsorbed precursor molecules comprises a higher order reaction component with respect to precursor surface coverage.
Thermally controlled growth of surface nanostructures on ion-modified AIII-BV semiconductor crystals
NASA Astrophysics Data System (ADS)
Trynkiewicz, Elzbieta; Jany, Benedykt R.; Wrana, Dominik; Krok, Franciszek
2018-01-01
The primary motivation for our systematic study is to provide a comprehensive overview of the role of sample temperature on the pattern evolution of several AIII-BV semiconductor crystal (001) surfaces (i.e., InSb, InP, InAs, GaSb) in terms of their response to low-energy Ar+ ion irradiation conditions. The surface morphology and the chemical diversity of such ion-modified binary materials has been characterized by means of scanning electron microscopy (SEM). In general, all surface textures following ion irradiation exhibit transitional behavior from small islands, via vertically oriented 3D nanostructures, to smoothened surface when the sample temperature is increased. This result reinforces our conviction that the mass redistribution of adatoms along the surface plays a vital role during the formation and growth process of surface nanostructures. We would like to emphasize that this paper addresses in detail for the first time the topic of the growth kinetics of the nanostructures with regard to thermal surface diffusion, while simultaneously offering some possible approaches to supplementing previous studies and therein gaining a new insight into this complex issue. The experimental results are discussed with reference to models of the pillars growth, abutting on preferential sputtering, the self-sustained etch masking effect and the redeposition process recently proposed to elucidate the observed nanostructuring mechanism.
Kinetics of surfactant-mediated epitaxy of III-V semiconductors
NASA Astrophysics Data System (ADS)
Grandjean, N.; Massies, J.
1996-05-01
Surfactant-mediated epitaxy (SME) of III-V semiconductors is studied in the case of the GaAs(001) growth using Te as surfactant. To account for the strong surface segregation of Te, a phenomenological exchange mechanism is used. This process explains the reduction of the surface diffusion length evidenced by scanning tunneling microscopy (STM). However, this kinetics effect is observed only for restricted growth conditions: the As surface coverage should be sufficient to allow the exchange process. STM results as well as Monte Carlo simulations clearly show that the group-V element surface coverage plays a key role in the kinetics of SME of III-V semiconductors.
NASA Astrophysics Data System (ADS)
Zhu, Qing; Zou, Lianfeng; Zhou, Guangwen; Saidi, Wissam A.; Yang, Judith C.
2016-10-01
Understanding of metal oxidation is critical to corrosion control, catalysis synthesis, and advanced materials engineering. Although, metal oxidation process is rather complicated, different processes, many of them coupled, are involved from the onset of reaction. Since first introduced, there has been great success in applying heteroepitaxial theory to the oxide growth on a metal surface as demonstrated in the Cu oxidation experiments. In this paper, we review the recent progress in experimental findings on Cu oxidation as well as the advances in the theoretical simulations of the Cu oxidation process. We focus on the effects of defects such as step edges, present on realistic metal surfaces, on the oxide growth dynamics. We show that the surface steps can change the mass transport of both Cu and O atoms during oxide growth, and ultimately lead to the formation of different oxide morphology. We also review the oxidation of Cu alloys and explore the effect of a secondary element to the oxide growth on a Cu surface. From the review of the work on Cu oxidation, we demonstrate the correlation of theoretical simulations at multiple scales with various experimental techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhixiao; Mukherjee, Partha P.
We report the cathode surface passivation caused by Li 2S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2S film on carbon cathode surface. Li 2S film growth experiences nucleation, isolated Li 2S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Limore » 2S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2S nucleation seeds form in such an operating temperature range, which facilitates heterogeneous growth and thereby inhibits the lateral growth of the Li 2S film, which may also result in reduced surface passivation. Finally, the high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.« less
NASA Astrophysics Data System (ADS)
Huan, Qing; Hu, Hao; Pan, Li-Da; Xiao, Jiang; Du, Shi-Xuan; Gao, Hong-Jun
2010-08-01
Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction. Finally, a phenomenal “two-branch" model is proposed to simulate the growth process of the seahorse pattern.
2011-01-01
Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature. PMID:21892938
A generalized electrochemical aggregative growth mechanism.
Ustarroz, Jon; Hammons, Joshua A; Altantzis, Thomas; Hubin, Annick; Bals, Sara; Terryn, Herman
2013-08-07
The early stages of nanocrystal nucleation and growth are still an active field of research and remain unrevealed. In this work, by the combination of aberration-corrected transmission electron microscopy (TEM) and electrochemical characterization of the electrodeposition of different metals, we provide a complete reformulation of the Volmer-Weber 3D island growth mechanism, which has always been accepted to explain the early stages of metal electrodeposition and thin-film growth on low-energy substrates. We have developed a Generalized Electrochemical Aggregative Growth Mechanism which mimics the atomistic processes during the early stages of thin-film growth, by incorporating nanoclusters as building blocks. We discuss the influence of new processes such as nanocluster self-limiting growth, surface diffusion, aggregation, and coalescence on the growth mechanism and morphology of the resulting nanostructures. Self-limiting growth mechanisms hinder nanocluster growth and favor coalescence driven growth. The size of the primary nanoclusters is independent of the applied potential and deposition time. The balance between nucleation, nanocluster surface diffusion, and coalescence depends on the material and the overpotential, and influences strongly the morphology of the deposits. A small extent of coalescence leads to ultraporous dendritic structures, large surface coverage, and small particle size. Contrarily, full recrystallization leads to larger hemispherical monocrystalline islands and smaller particle density. The mechanism we propose represents a scientific breakthrough from the fundamental point of view and indicates that achieving the right balance between nucleation, self-limiting growth, cluster surface diffusion, and coalescence is essential and opens new, exciting possibilities to build up enhanced supported nanostructures using nanoclusters as building blocks.
Surface growth kinematics via local curve evolution.
Moulton, Derek E; Goriely, Alain
2014-01-01
A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Naritaka, E-mail: naritaka@mail.saitama-u.ac.jp; Kawamura, Ryuzo; Yoshikawa, Hiroshi Y.
2016-06-07
In this study, we have directly observed nanoscale processes that occur on BaF{sub 2}(111) surfaces in various solutions using liquid-environment frequency modulation atomic force microscopy (FM-AFM) with a true atomic resolution. In addition, to investigate atomic-scale mechanisms of crystal growth process of BaF{sub 2}, we determined a suitable solution for atomic-resolution FM-AFM imaging of the BaF{sub 2}(111) surface. For undersaturated solutions, the surface is roughened by barium hydroxo complexes in the case of high pH, whereas by dissolution and proton or water molecule adsorption throughout the surface in the case of low pH. On the other hand, for supersaturated solutions,more » the surface shows two-dimensional nucleation and growth (σ = 0.1) and three-dimensional crystal growth with tetrahedral structures (σ = 1), where σ is the degree of supersaturation. The atomic-resolution imaging of the BaF{sub 2}(111) surface has been demonstrated in potassium fluoride (KF) and the supersaturated (σ = 0.1 and 1) solutions, wherein atomically flat terraces are shown at least for about 30 min.« less
Fan, Lisha; Gao, Xiang; Lee, Dongkyu; ...
2017-03-01
Here, this study demonstrates that precise control of nonequilibrium growth conditions during pulsed laser deposition (PLD) can be exploited to produce single-crystalline anatase TiO 2 nanobrush architectures with large surface areas terminated with high energy {001} facets. The data indicate that the key to nanobrush formation is controlling the atomic surface transport processes to balance defect aggregation and surface-smoothing processes. High-resolution scanning transmission electron microscopy data reveal that defect-mediated aggregation is the key to TiO 2 nanobrush formation. The large concentration of defects present at the intersection of domain boundaries promotes aggregation of PLD growth species, resulting in the growthmore » of the single-crystalline nanobrush architecture. This study proposes a model for the relationship between defect creation and growth mode in nonequilibrium environments, which enables application of this growth method to novel nanostructure design in a broad range of materials.« less
In situ x-ray surface diffraction chamber for pulsed laser ablation film growth studies
NASA Astrophysics Data System (ADS)
Tischler, J. Z.; Eres, G.; Lowndes, D. H.; Larson, B. C.; Yoon, M.; Chiang, T.-C.; Zschack, Paul
2000-06-01
Pulsed laser deposition is highly successful for growing complex films such as oxides for substrate buffer layers and HiTc oxide superconductors. A surface diffraction chamber has been constructed to study fundamental aspects of non-equilibrium film growth using pulsed laser deposition. Due to the pulsed nature of the ablating laser, the deposited atoms arrive on the substrate in short sub-millisecond pulses. Thus monitoring the surface x-ray diffraction following individual laser pulses (with resolution down to ˜1 ms) provides direct information on surface kinetics and the aggregation process during film growth. The chamber design, based upon a 2+2 surface diffraction geometry with the modifications necessary for laser ablation, is discussed, and initial measurements on homo-epitaxial growth of SrTiO3 are presented.
Xia, Ling; Huang, Rong; Li, Yinta
2017-01-01
The effects of growth phase on the lipid content and surface properties of oleaginous microalgae Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231 were investigated in this study. The results showed that throughout the growth phases, the lipid content of microalgae increased. The surface properties like particle size, the degree of hydrophobicity, and the total concentration of functional groups increased while net surface zeta potential decreased. The results suggested that the growth stage had significant influence not only on the lipid content but also on the surface characteristics. Moreover, the lipid content was significantly positively related to the concentration of hydroxyl functional groups in spite of algal strains or growth phases. These results provided a basis for further studies on the refinery process using oleaginous microalgae for biofuel production. PMID:29045481
Submicron Dropwise Condensation under Superheated and Rarefied Vapor Condition
Anand, Sushant; Son, Sang Young
2010-01-01
Phase change accompanying conversion of a saturated or superheated vapor in presence of subcooled surfaces is one of the most common occurring phenomena in nature. The mode of phase change which follows such a transformation is dependent upon surface properties like as of contact angle and thermodynamic conditions of the system. In present studies, an experimental approach is used to study the physics behind droplet growth on a partially wetting surface. Superheated vapor at low pressures of 4–5 torr was condensed on subcooled silicon surface with static contact angle as of 60° in absence of non-condensable gases, and the condensation process monitored using Environmental Scanning Electron Microscope (ESEM) with submicroscopic spatial resolution. The condensation process was analyzed in the form of size growth of isolated droplets for before a coalescence event ended the regime of single droplet growth. Droplet growth obtained as a function of time reveals that the rate of growth decreases as the droplet increases in size. This behavior is indicative of an overall droplet growth law existing over larger time scales of which the current observations in their brief time intervals could be fitted in. A theoretical model based on kinetic theory further support the experimental observations indicating a mechanism where growth occurs by interfacial mass transport directly on condensing droplet surface. Evidence was also found which establishes the presence of submicroscopic droplets nucleating and growing in between microscopic droplets for partially wetting case. PMID:20942412
Mesoscale Elucidation of Surface Passivation in the Li–Sulfur Battery Cathode
Liu, Zhixiao; Mukherjee, Partha P.
2017-01-23
We report the cathode surface passivation caused by Li 2S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2S film on carbon cathode surface. Li 2S film growth experiences nucleation, isolated Li 2S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Limore » 2S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2S nucleation seeds form in such an operating temperature range, which facilitates heterogeneous growth and thereby inhibits the lateral growth of the Li 2S film, which may also result in reduced surface passivation. Finally, the high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.« less
NASA Astrophysics Data System (ADS)
Futko, S. I.; Shulitskii, B. G.; Labunov, V. A.; Ermolaeva, E. M.
2018-01-01
A new kinetic model of isothermal growth of single-layer graphene on a copper catalyst as a result of the chemical vapor deposition of hydrocarbons on it at a low pressure has been developed on the basis of in situ measurements of the growth of graphene in the process of its synthesis. This model defines the synthesis of graphene with regard for the chemisorption and catalytic decomposition of ethylene on the surface of a copper catalyst, the diffusion of carbon atoms in the radial direction to the nucleation centers within the thin melted near-surface copper layer, and the nucleation and autocatalytic growth of graphene domains. It is shown that the time dependence of the rate of growth of a graphene domain has a characteristic asymmetrical bell-like shape. The dependences of the surface area and size of a graphene domain and the rate of its growth on the time at different synthesis temperatures and ethylene concentrations have been obtained. Time characteristics of the growth of graphene domains depending on the parameters of their synthesis were calculated. The results obtained can be used for determining optimum regimes of synthesis of graphene in the process of chemical vapor deposition of hydrocarbons on different catalysts with a low solubility of carbon.
Fracture processes and mechanisms of crack growth resistance in human enamel
NASA Astrophysics Data System (ADS)
Bajaj, Devendra; Park, Saejin; Quinn, George D.; Arola, Dwayne
2010-07-01
Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.
[Evolution of superolateral surface of the cerebral hemisphere on 16-21 weeks fetus].
Varlam, H; St Antohe, D
2002-01-01
Edification of neocortex is accompanied by the development and growth of the cerebral hemisphere, both processes being part of the more complex one, known under the name of telencephalization. The expression of this process is more acute on the superolateral surface of the cerebral hemisphere that expands laterally by growth of the frontal, temporal and parietal lobes. We describe the modifications of shape and deepness of the lateral cerebral fossa including the stages of its closure. We consider this event as the beginning of the appearance of gyri and sulci on the superolateral surface of the cerebral hemisphere.
Improved growth of GaN layers on ultra thin silicon nitride/Si (1 1 1) by RF-MBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mahesh; Roul, Basanta; Central Research Laboratory, Bharat Electronics, Bangalore 560013
High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN filmmore » grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth.« less
Food-safe modification of stainless steel food processing surfaces to reduce bacterial biofilms.
Awad, Tarek Samir; Asker, Dalal; Hatton, Benjamin D
2018-06-11
Biofilm formation on stainless steel (SS) surfaces of food processing plants, leading to foodborne illness outbreaks, is enabled by the attachment and confinement within microscale cavities of surface roughness (grooves, scratches). We report Foodsafe Oil-based Slippery Coatings (FOSCs) for food processing surfaces that suppress bacterial adherence and biofilm formation by trapping residual oil lubricant within these surface cavities to block microbial growth. SS surfaces were chemically functionalized with alkylphosphonic acid to preferentially wet a layer of food grade oil. FOSCs reduced the effective surface roughness, the adhesion of organic food residue, and bacteria. FOSCs significantly reduced Pseudomonas aeruginosa biofilm formation on standard roughness SS-316 by 5 log CFU cm-2, and by 3 log CFU cm-2 for mirror-finished SS. FOSCs also enhanced surface cleanability, which we measured by bacterial counts after conventional detergent cleaning. Importantly, both SS grades maintained their anti-biofilm activity after erosion of the oil layer by surface wear with glass beads, which suggests there is a residual volume of oil that remains to block surface cavity defects. These results indicate the potential of such low-cost, scalable approaches to enhance the cleanability of SS food processing surfaces and improve food safety by reducing biofilm growth.
Stochastic phase segregation on surfaces
Gera, Prerna
2017-01-01
Phase separation and coarsening is a phenomenon commonly seen in binary physical and chemical systems that occur in nature. Often, thermal fluctuations, modelled as stochastic noise, are present in the system and the phase segregation process occurs on a surface. In this work, the segregation process is modelled via the Cahn–Hilliard–Cook model, which is a fourth-order parabolic stochastic system. Coarsening is analysed on two sample surfaces: a unit sphere and a dumbbell. On both surfaces, a statistical analysis of the growth rate is performed, and the influence of noise level and mobility is also investigated. For the spherical interface, it is also shown that a lognormal distribution fits the growth rate well. PMID:28878994
Intrinsic stress evolution during amorphous oxide film growth on Al surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flötotto, D., E-mail: d.floetotto@is.mpg.de; Wang, Z. M.; Jeurgens, L. P. H.
2014-03-03
The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yiqun; Luo, Ming; Tao, Jing
We report our observation of changes to the crystallinity or morphology during seed-mediated growth of Au nanocrystals. When single-crystal Au seeds with a spherical or rod-like shape were treated with a chemical species such as S₂O₃²⁻ ions, twin defects were developed during the growth process to generate multiply twinned nanostructures. X-ray photoelectron spectroscopy analysis indicated that the S₂O₃²⁻ ions were chemisorbed on the surfaces of the seeds during the treatment. The chemisorbed S₂O₃²⁻ ions somehow influenced the crystallization of Au atoms added onto the surface during a growth process, leading to the formation of twin defects. In contrast to themore » spherical and rod-like Au seeds, the single-crystal structure was retained to generate a concave morphology when single-crystal Au seeds with a cubic or octahedral shape were used for a similar treatment and then seed-mediated growth. The different outcomes are likely related to the difference in spatial distribution of S₂O₃²⁻ ions chemisorbed on the surface of a seed. This approach based on surface modification is potentially extendable to other noble metals for engineering the crystallinity and morphology of nanocrystals formed via seed-mediated growth.« less
Zheng, Yiqun; Luo, Ming; Tao, Jing; ...
2014-12-11
We report our observation of changes to the crystallinity or morphology during seed-mediated growth of Au nanocrystals. When single-crystal Au seeds with a spherical or rod-like shape were treated with a chemical species such as S₂O₃²⁻ ions, twin defects were developed during the growth process to generate multiply twinned nanostructures. X-ray photoelectron spectroscopy analysis indicated that the S₂O₃²⁻ ions were chemisorbed on the surfaces of the seeds during the treatment. The chemisorbed S₂O₃²⁻ ions somehow influenced the crystallization of Au atoms added onto the surface during a growth process, leading to the formation of twin defects. In contrast to themore » spherical and rod-like Au seeds, the single-crystal structure was retained to generate a concave morphology when single-crystal Au seeds with a cubic or octahedral shape were used for a similar treatment and then seed-mediated growth. The different outcomes are likely related to the difference in spatial distribution of S₂O₃²⁻ ions chemisorbed on the surface of a seed. This approach based on surface modification is potentially extendable to other noble metals for engineering the crystallinity and morphology of nanocrystals formed via seed-mediated growth.« less
Mechanism for selective growth in electrical steel
NASA Astrophysics Data System (ADS)
Oh, Eun Jee; Heo, Nam Hoe; Kwon, Se Kyun; Koo, Yang Mo
2018-01-01
Through the competitive selective growth process between {100}, {110}, and {111} grains during final annealing which is governed by the primary grain size and the surface segregation concentration of sulfur, the sharp {110}<001> annealing texture can be developed in a C-and Al-free Fe-3%Si-0.1%Mn electrical steel. Generally, the selective growth of the {110} grains occurs actively under the low surface segregation concentration of sulfur. In spite of the surface energy disadvantage, the selective growth of a {hkl} grain can however occur, if the {hkl} grain size is larger than the critical grain size linearly proportional to the strip thickness.
Transient disturbance growth in flows over convex surfaces
NASA Astrophysics Data System (ADS)
Karp, Michael; Hack, M. J. Philipp
2017-11-01
Flows over curved surfaces occur in a wide range of applications including airfoils, compressor and turbine vanes as well as aerial, naval and ground vehicles. In most of these applications the surface has convex curvature, while concave surfaces are less common. Since monotonic boundary-layer flows over convex surfaces are exponentially stable, they have received considerably less attention than flows over concave walls which are destabilized by centrifugal forces. Non-modal mechanisms may nonetheless enable significant disturbance growth which can make the flow susceptible to secondary instabilities. A parametric investigation of the transient growth and secondary instability of flows over convex surfaces is performed. The specific conditions yielding the maximal transient growth and strongest instability are identified. The effect of wall-normal and spanwise inflection points on the instability process is discussed. Finally, the role and significance of additional parameters, such as the geometry and pressure gradient, is analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, A.R.; Lin, Y.; Auciello, O.
1994-07-01
Low-energy (5--15 keV) pulsed ion beam surface analysis comprises several different surface spectroscopies which possess the ability to provide a remarkably wide range of information directly relevant to the growth of single and multicomponent semiconductor, metal and metal-oxide thin films and layered structures. Ion beam methods have not however, been widely used as an [ital in] [ital situ] monitor of thin film growth because existing commercial instrumentation causes excessive film damage, physically conflicts with the deposition equipment, and requires a chamber pressure [similar to]10[sup [minus]7]--10[sup [minus]8] Torr, i.e., much lower than that associated with most deposition processes ([ge]10[sup [minus]4] Torr).more » We have developed time-of-flight ion scattering and recoil spectroscopy (TOF-SARS) as a nondestructive, [ital in] [ital situ], real-time probe of thin film composition and structure which does not physically interfere with the deposition process. Several TOF-SARS implementations are exceptionally surface specific, yet in a properly designed system can yield high-resolution data at ambient pressures well in excess of 10 mTorr (4--6 orders of magnitude higher than conventional surface analytic methods). Because of the exceptional surface specificity of these methods, TOF-SARS is ideally suited as a means of studying ultrathin layers and atomically abrupt interfaces. TOF-SARS instrumentation designed specifically for use as an [ital in] [ital situ], real-time monitor of growth processes for single and multicomponent thin films and layered structures is described here. Representative data are shown for [ital in] [ital situ] analysis of Pb and Zr layers at room temperature and high vacuum, as well as under conditions appropriate to the growth of Pb(Zr[sub [ital x
NASA Astrophysics Data System (ADS)
Kaser, L.; Patton, E. G.; Pfister, G. G.; Weinheimer, A. J.; Montzka, D. D.; Flocke, F.; Thompson, A. M.; Stauffer, R. M.; Halliday, H. S.
2017-06-01
Ozone concentrations at the Earth's surface are controlled by meteorological and chemical processes and are a function of advection, entrainment, deposition, and net chemical production/loss. The relative contributions of these processes vary in time and space. Understanding the relative importance of these processes controlling surface ozone concentrations is an essential component for designing effective regulatory strategies. Here we focus on the diurnal cycle of entrainment through atmospheric boundary layer (ABL) growth in the Colorado Front Range. Aircraft soundings and surface observations collected in July/August 2014 during the DISCOVER-AQ/FRAPPÉ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality/Front Range Air Pollution and Photochemistry Éxperiment) campaigns and equivalent data simulated by a regional chemical transport model are analyzed. Entrainment through ABL growth is most important in the early morning, fumigating the surface at a rate of 5 ppbv/h. The fumigation effect weakens near noon and changes sign to become a small dilution effect in the afternoon on the order of -1 ppbv/h. The chemical transport model WRF-Chem (Weather Research and Forecasting Model with chemistry) underestimates ozone at all altitudes during this study on the order of 10-15 ppbv. The entrainment through ABL growth is overestimated by the model in the order of 0.6-0.8 ppbv/h. This results from differences in boundary layer growth in the morning and ozone concentration jump across the ABL top in the afternoon. This implicates stronger modeled fumigation in the morning and weaker modeled dilution after 11:00 LT.
Alloyed surfaces: New substrates for graphene growth
NASA Astrophysics Data System (ADS)
Tresca, C.; Verbitskiy, N. I.; Fedorov, A.; Grüneis, A.; Profeta, G.
2017-11-01
We report a systematic ab-initio density functional theory investigation of Ni(111) surface alloyed with elements of group IV (Si, Ge and Sn), demonstrating the possibility to use it to grow high quality graphene. Ni(111) surface represents an ideal substrate for graphene, due to its catalytic properties and perfect matching with the graphene lattice constant. However, Dirac bands of graphene growth on Ni(111) are completely destroyed due to the strong hybridization between carbon pz and Ni d orbitals. Group IV atoms, namely Si, Ge and Sn, once deposited on Ni(111) surface, form an ordered alloyed surface with √{ 3} ×√{ 3} -R30° reconstruction. We demonstrate that, at variance with the pure Ni(111) surface, alloyed surfaces effectively decouple graphene from the substrate, resulting unstrained due to the nearly perfect lattice matching and preserves linear Dirac bands without the strong hybridization with Ni d states. The proposed surfaces can be prepared before graphene growth without resorting on post-growth processes which necessarily alter the electronic and structural properties of graphene.
Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth
NASA Technical Reports Server (NTRS)
Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.
2004-01-01
Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.
Implementation of a diffusion convection surface evolution model in WallDYN
NASA Astrophysics Data System (ADS)
Schmid, K.
2013-07-01
In thermonuclear fusion experiments with multiple plasma facing materials the formation of mixed materials is inevitable. The formation of these mixed material layers is a dynamic process driven the tight interaction between transport in the plasma scrape off layer and erosion/(re-) deposition at the surface. To track this global material erosion/deposition balance and the resulting formation of mixed material layers the WallDYN code has been developed which couples surface processes and plasma transport. The current surface model in WallDYN cannot fully handle the growth of layers nor does it include diffusion. However at elevated temperatures diffusion is a key process in the formation of mixed materials. To remedy this shortcoming a new surface model has been developed which, for the first time, describes both layer growth/recession and diffusion in a single continuous diffusion/convection equation. The paper will detail the derivation of the new surface model and compare it to TRIDYN calculations.
Engineering plasmonic nanostructured surfaces by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Ghidelli, Matteo; Mascaretti, Luca; Bricchi, Beatrice Roberta; Zapelli, Andrea; Russo, Valeria; Casari, Carlo Spartaco; Li Bassi, Andrea
2018-03-01
The synthesis and the optical response of gold nanoparticles (NPs) and thin nanostructured films grown by pulsed laser deposition (PLD) are here studied. Different PLD process parameters - including background gas pressure and the number of laser shots as well as post-deposition annealing treatments - have been varied to control the growth of Au NPs and films, thus tuning the surface plasmon characteristics. The mechanisms of NPs and film growth have been explored performing a morphological characterization by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), and the correlation with the optical behavior is investigated. We show that the size distribution and the morphology of the as deposited Au NPs depend on growth mechanisms which are controlled by tuning the deposition process, while the optical behavior is strongly affected by the average size and surface density of NPs or by the length of percolated Au domains. Furthermore, nucleation in gas phase has been reported at high (1000 Pa Ar) background pressures, enabling independent control of NP size and coverage, contrary to surface driven NP growth by diffusion and aggregation on substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N., E-mail: ramakrishnan@monash.edu
Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use ofmore » a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.« less
Island growth as a growth mode in atomic layer deposition: A phenomenological model
NASA Astrophysics Data System (ADS)
Puurunen, Riikka L.; Vandervorst, Wilfried
2004-12-01
Atomic layer deposition (ALD) has recently gained world-wide attention because of its suitability for the fabrication of conformal material layers with thickness in the nanometer range. Although the principles of ALD were realized about 40 years ago, the description of many physicochemical processes that occur during ALD growth is still under development. A constant amount of material deposited in an ALD reaction cycle, that is, growth-per-cycle (GPC), has been a paradigm in ALD through decades. The GPC may vary, however, especially in the beginning of the ALD growth. In this work, a division of ALD processes to four classes is proposed, on the basis of how the GPC varies with the number of ALD reaction cycles: linear growth, substrate-enhanced growth, and substrate-inhibited growth of type 1 and type 2. Island growth is identified as a likely origin for type 2 substrate-inhibited growth, where the GPC increases and goes through a maximum before it settles to a constant value characteristic of a steady growth. A simple phenomenological model is developed to describe island growth in ALD. The model assumes that the substrate is unreactive with the ALD reactants, except for reactive defects. ALD growth is assumed to proceed symmetrically from the defects, resulting islands of a conical shape. Random deposition is the growth mode on the islands. The model allows the simulation of GPC curves, surface fraction curves, and surface roughness, with physically significant parameters. When the model is applied to the zirconium tetrachloride/water and the trimethylaluminum/water ALD processes on hydrogen-terminated silicon, the calculated GPC curves and surface fractions agree with the experiments. The island growth model can be used to assess the occurrence of island growth, the size of islands formed, and point of formation of a continuous ALD-grown film. The benefits and limitations of the model and the general characteristics of type 2 substrate-inhibited ALD are discussed.
NASA Astrophysics Data System (ADS)
Jiao, Jiajia; Sun, Lili; Guo, Zaiyu; Hou, Sen; Holyst, Robert; Lu, Yun; Feng, Xizeng
2016-12-01
Polydimethylsiloxane (PDMS) is widely used as a cell culture platform to produce micro- and nano-technology based microdevices. However, the native PDMS surface is not suitable for cell adhesion and is always subject to bacterial pollution and cancer cell invasion. Coating the PDMS surface with antibacterial or anticancer materials often causes considerable harm to the non-cancer mammalian cells on it. We have developed a method to fabricate a biocompatible PDMS surface which not only promotes non-cancer mammalian cell growth but also has antibacterial and anticancer activities, by coating the PDMS surface with a Chinese herb extract, paeonol. Coating changes the wettability and the elemental composition of the PDMS surface. Molecular dynamic simulation indicates that the absorption of paeonol onto the PDMS surface is an energy favourable process. The paeonol-coated PDMS surface exhibits good antibacterial activity against both Gram-positive and Gram-negative bacteria. Moreover considerable antibacterial activity is maintained after the coated surface is rinsed or incubated in water. The coated PDMS surface inhibits bacterial growth on the contact surface and promotes non-cancer mammalian cell growth with low cell toxicity; meanwhile the growth of cancer cells is significantly inhibited. Our study will potentially guide PDMS surface modification approaches to produce biomedical devices.
Surface Phase Stability and Surfactant Behavior on InAsSb
NASA Astrophysics Data System (ADS)
Anderson, Evan M.
InAsSb and related III-As/III-Sb heterostructures are of technological interest for applications in long wavelength infrared optoelectronic devices. However, there remain challenges to growing high quality material for these devices due to the complex interaction between As and Sb. While this interaction has been the subject of intense study, little work has focused on how As and Sb behave at the material surface with even fewer investigations into the atomic scale details of the InAsSb surface. This is a major gap in current knowledge because these materials are typically grown via vapor deposition methods, one atomic layer at a time. Thus, all processes impacting the growth of the crystal and its resultant properties occur at the surface. Despite this, the atomic scale details of the surface phases and processes impacting the Sb-As interaction have not previously been reported. This dissertation investigates the surface As-Sb interaction at an atomistic scale and its modification through different surface chemistry to be used as a guide for future experiments to improve the quality InAsSb of heterostructures by manipulating the surface phase during growth. In order to accomplish this, first principles calculations and experiments are used to investigate this system from three complimentary vantage points. First, the influence of Sb on the InAs surface and the stable surface phases of this system are investigated. Next, a similar approach is used on the opposite compositional extreme of the InAsSb system: As on the surface of InSb. Finally, the interaction of As and Sb is modified by the use of Bi as a surfactant during growth of InAsSb films. The interaction between As and Sb is found to be driven through the formation of surface phases and Bi is found to alter this interaction. Phase diagrams of both Sb on InAs and As on InSb show that As and Sb are driven to intermix through the formation of alloyed surface phases. Additionally, these phases range from having bulk-like stoichiometry to being highly As or Sb rich for the full InAsSb compositional range, indicating that surface stoichiometry is a controllable parameter for InAsSb growth. Sb is shown to intermix with the InAs surface by roughening the surface in a process driven by a phase transition. This interaction between Sb and InAs is stronger than previously thought, which has implications for the crystal growth problem of compositional broadening of the interfaces of III-As/III-Sb heterostructures. Finally, applying Bi to the surface of InAsSb during growth shows that modifies the interaction between As and Sb by catalyzing the formation of InAs, which decreases Sb incorporation. The results of this dissertation lay the foundation for optimization of the crystal growth surface in order to improve the properties of InAsSb and arsenide/antimonide heterostructures.
NASA Technical Reports Server (NTRS)
Powell, J. Anthony (Inventor)
1993-01-01
The invention is a method for growing homoepitaxial films of SiC on low tilt angle vicinal (0001) SiC wafers. The invention proposes and teaches a new theoretical model for the homoepitaxial growth of SiC films on (0001) SiC substrates. The inventive method consists of preparing the growth surface of SiC wafers slightly off-axis (from less the 0.1 to 6 deg) from the (0001) plane, subjecting the growth surface to a suitable etch, and then growing the homoepitaxial film using conventional SiC growth techniques.
NASA Astrophysics Data System (ADS)
Kulikov, D. A.; Potapov, A. A.; Rassadin, A. E.; Stepanov, A. V.
2017-10-01
In the paper, methods of verification of models for growth of solid state surface by means of atomic force microscopy are suggested. Simulation of growth of fractals with cylindrical generatrix on the solid state surface is presented. Our mathematical model of this process is based on generalization of the Kardar-Parisi-Zhang equation. Corner stones of this generalization are both conjecture of anisotropy of growth of the surface and approximation of small angles. The method of characteristics has been applied to solve the Kardar-Parisi-Zhang equation. Its solution should be considered up to the gradient catastrophe. The difficulty of nondifferentiability of fractal initial generatrix has been overcome by transition from a mathematical fractal to a physical one.
Pennisi, Cristian P; Zachar, Vladimir; Gurevich, Leonid; Patriciu, Andrei; Struijk, Johannes J
2010-01-01
Polydimethylsiloxane (PDMS) or silicone rubber is a widely used implant material. Approaches to promote tissue integration to PDMS are desirable to avoid clinical problems associated with sliding and friction between tissue and implant. Plasma-etching is a useful way to control cell behavior on PDMS without additional coatings. In this work, different plasma processing conditions were used to modify the surface properties of PDMS substrates. Surface nanotopography and wettability were measured to study their effect on in vitro growth and morphology of fibroblasts. While fluorinated plasma treatments produced nanorough hydrophobic and superhydrophobic surfaces that had negative or little influences on cellular behavior, water vapor/oxygen plasma produced smooth hydrophillic surfaces that enhanced cell growth.
Advanced deposition model for thermal activated chemical vapor deposition
NASA Astrophysics Data System (ADS)
Cai, Dang
Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface reactions on the substrate surface, conductive, convective, inductive and radiative heat transfer, species transport and thereto-elastic stress distributions. Gas phase and surface reactions are studied thermodynamically and kinetically. Based on experimental results, detailed reaction mechanisms are proposed and the deposition rates are predicted. The deposition model proposed could be used for other experiments with similar operating conditions. Four different growth systems are presented in this thesis to discuss comprehensive transport phenomena in crystal growth from vapor. The first is the polysilicon bulk growth by modified Siemens technique in which a silicon tube is used as the starting material. The research effort has been focused on system design, geometric and operating parameters optimization, and heterogeneous and homogeneous silane pyrolysis analysis. The second is the GaN thin film growth by iodine vapor phase epitaxy technique. Heat and mass transport is studied analytically and numerically. Gas phase and surface reactions are analyzed thermodynamically and kinetically. Quasi-equilibrium and kinetic deposition models are developed to predict the growth rate. The third one is the AlN thin film growth by halide vapor phase epitaxy technique. The effects of gas phase and surface reactions on the crystal growth rate and deposition uniformity are studied. The last one is the AlN sublimation growth system. The research effort has been focused on the effect of thermal environment evolution on the crystal growth process. The thermoelastic stress formed in the as-grown AlN crystal is also calculated.
Growth of beta-MnO2 Films on TiO2(110) by Oxygen-Plasma-Assisted Molecular Beam Epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, Scott A.; Liang, Yong
Discusses the essential need to understand the heterogeneous chemistry of mineral surfaces at a molecular level for accurate modeling of surface complexion processes in natural environments. Describes the first MBE growth and characterization of ultrathin films of B-MnO2 on TiO2 (110).
NASA Astrophysics Data System (ADS)
Xu, Ziwei; Yan, Tianying; Liu, Guiwu; Qiao, Guanjun; Ding, Feng
2015-12-01
To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results.To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06016h
Ashby, Carol I.; Follstaedt, David M.; Mitchell, Christine C.; Han, Jung
2003-07-29
A process of growing a material on a substrate, particularly growing a Group II-VI or Group III-V material, by a vapor-phase growth technique where the growth process eliminates the need for utilization of a mask or removal of the substrate from the reactor at any time during the processing. A nucleation layer is first grown upon which a middle layer is grown to provide surfaces for subsequent lateral cantilever growth. The lateral growth rate is controlled by altering the reactor temperature, pressure, reactant concentrations or reactant flow rates. Semiconductor materials, such as GaN, can be produced with dislocation densities less than 10.sup.7 /cm.sup.2.
Adherent nanoparticles-mediated micro- and nanobubble nucleation
NASA Astrophysics Data System (ADS)
Chan, Chon U.; Chen, Long Quan; Lippert, Alexander; Arora, Manish; Ohl, Claus-Dieter
2014-11-01
Surface nanobubbles are commonly nucleated through water-ethanol-water exchange. It is believed that the higher gas solubility in ethanol and exothermic mixing leads to a supersaturation of gas in water. However details of the nucleation dynamic are still unknown. Here we apply the exchange process onto a glass surface deposited with nanoparticles and monitor the dynamics optically at video frame rates. During exchange bubbles of a few micron in diameter nucleate at the sites of nanoparticles. These microbubbles eventually dissolve in ethanol but are stable in water. This agrees with the nucleation process observed for surface nanobubbles. Also we find a reduction of surface attached nanobubbles near the particles, which might be due to gas uptake from the microbubble growth. Finally, high speed recordings reveal stick-slip motion of the triple contact line during the growth process. We will discuss possibilities of utilizing the findings for contamination detection and ultrasonic cleaning.
Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces
Xu, Dongwei; Zapol, Peter; Stephenson, G. Brian; ...
2017-04-12
The surface orientation can have profound effects on the atomic-scale processes of crystal growth and is essential to such technologies as GaN-based light-emitting diodes and high-power electronics. We investigate the dependence of homoepitaxial growth mechanisms on the surface orientation of a hexagonal crystal using kinetic Monte Carlo simulations. To model GaN metal-organic vapor phase epitaxy, in which N species are supplied in excess, only Ga atoms on a hexagonal close-packed (HCP) lattice are considered. The results are thus potentially applicable to any HCP material. Growth behaviors on c-plane (0001) and m-plane (011¯0) surfaces are compared. We present a reciprocal spacemore » analysis of the surface morphology, which allows extraction of growth mode boundaries and direct comparison with surface X-ray diffraction experiments. For each orientation, we map the boundaries between 3-dimensional, layer-by-layer, and step flow growth modes as a function of temperature and growth rate. Two models for surface diffusion are used, which produce different effective Ehrlich-Schwoebel step-edge barriers and different adatom diffusion anisotropies on m-plane surfaces. Simulation results in agreement with observed GaN island morphologies and growth mode boundaries are obtained. These indicate that anisotropy of step edge energy, rather than adatom diffusion, is responsible for the elongated islands observed on m-plane surfaces. As a result, island nucleation spacing obeys a power-law dependence on growth rate, with exponents of –0.24 and –0.29 for the m- and c-plane, respectively.« less
Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Dongwei; Zapol, Peter; Stephenson, G. Brian
The surface orientation can have profound effects on the atomic-scale processes of crystal growth and is essential to such technologies as GaN-based light-emitting diodes and high-power electronics. We investigate the dependence of homoepitaxial growth mechanisms on the surface orientation of a hexagonal crystal using kinetic Monte Carlo simulations. To model GaN metal-organic vapor phase epitaxy, in which N species are supplied in excess, only Ga atoms on a hexagonal close-packed (HCP) lattice are considered. The results are thus potentially applicable to any HCP material. Growth behaviors on c-plane (0001) and m-plane (011¯0) surfaces are compared. We present a reciprocal spacemore » analysis of the surface morphology, which allows extraction of growth mode boundaries and direct comparison with surface X-ray diffraction experiments. For each orientation, we map the boundaries between 3-dimensional, layer-by-layer, and step flow growth modes as a function of temperature and growth rate. Two models for surface diffusion are used, which produce different effective Ehrlich-Schwoebel step-edge barriers and different adatom diffusion anisotropies on m-plane surfaces. Simulation results in agreement with observed GaN island morphologies and growth mode boundaries are obtained. These indicate that anisotropy of step edge energy, rather than adatom diffusion, is responsible for the elongated islands observed on m-plane surfaces. As a result, island nucleation spacing obeys a power-law dependence on growth rate, with exponents of –0.24 and –0.29 for the m- and c-plane, respectively.« less
NASA Astrophysics Data System (ADS)
Li, Yingfeng; Li, Meicheng; Gu, TianSheng; Bai, Fan; Yu, Yue; Trevor, Mwenya; Yu, Yangxin
2013-11-01
By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon-copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.
Opposing effects of humidity on rhodochrosite surface oxidation.
Na, Chongzheng; Tang, Yuanzhi; Wang, Haitao; Martin, Scot T
2015-03-03
Rhodochrosite (MnCO3) is a model mineral representing carbonate aerosol particles containing redox-active elements that can influence particle surface reconstruction in humid air, thereby affecting the heterogeneous transformation of important atmospheric constituents such as nitric oxides, sulfur dioxides, and organic acids. Using in situ atomic force microscopy, we show that the surface reconstruction of rhodochrosite in humid oxygen leads to the formation and growth of oxide nanostructures. The oxidative reconstruction consists of two consecutive processes with distinctive time scales, including a long waiting period corresponding to slow nucleation and a rapid expansion phase corresponding to fast growth. By varying the relative humidity from 55 to 78%, we further show that increasing humidity has opposing effects on the two processes, accelerating nucleation from 2.8(±0.2) × 10(-3) to 3.0(±0.2) × 10(-2) h(-1) but decelerating growth from 7.5(±0.3) × 10(-3) to 3.1(±0.1) × 10(-3) μm(2) h(-1). Through quantitative analysis, we propose that nanostructure nucleation is controlled by rhodochrosite surface dissolution, similar to the dissolution-precipitation mechanism proposed for carbonate mineral surface reconstruction in aqueous solution. To explain nanostructure growth in humid oxygen, a new Cabrera-Mott mechanism involving electron tunneling and solid-state diffusion is proposed.
NASA Astrophysics Data System (ADS)
Wang, Hui; Wang, Jian-Tao; Cao, Ze-Xian; Zhang, Wen-Jun; Lee, Chun-Sing; Lee, Shuit-Tong; Zhang, Xiao-Hong
2015-03-01
While the vapour-liquid-solid process has been widely used for growing one-dimensional nanostructures, quantitative understanding of the process is still far from adequate. For example, the origins for the growth of periodic one-dimensional nanostructures are not fully understood. Here we observe that morphologies in a wide range of periodic one-dimensional nanostructures can be described by two quantitative relationships: first, inverse of the periodic spacing along the length direction follows an arithmetic sequence; second, the periodic spacing in the growth direction varies linearly with the diameter of the nanostructure. We further find that these geometric relationships can be explained by considering the surface curvature oscillation of the liquid sphere at the tip of the growing nanostructure. The work reveals the requirements of vapour-liquid-solid growth. It can be applied for quantitative understanding of vapour-liquid-solid growth and to design experiments for controlled growth of nanostructures with custom-designed morphologies.
Two-stage epitaxial growth of vertically-aligned SnO 2 nano-rods on(001) ceria
Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; ...
2014-09-20
Growth of high-aspect ratio oriented tin oxide, SnO 2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO 2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO 2 deposit. Second, vertical SnO 2nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 μm long nano-rods with an average diameter of ≈20 nm.
Modeling Calculation and Synthesis of Alumina Whiskers Based on the Vapor Deposition Process.
Gong, Wei; Li, Xiangcheng; Zhu, Boquan
2017-10-17
This study simulated the bulk structure and surface energy of Al₂O₃ based on the density of states (DOS) and studied the synthesis and microstructure of one-dimensional Al₂O₃ whiskers. The simulation results indicate that the (001) surface has a higher surface energy than the others. The growth mechanism of Al₂O₃ whiskers follows vapor-solid (VS) growth. For the (001) surface with the higher surface energy, the driving force of crystal growth would be more intense in the (001) plane, and the alumina crystal would tend to grow preferentially along the direction of the (001) plane from the tip of the crystal. The Al₂O₃ grows to the shape of whisker with [001] orientation, which is proved both through modeling and experimentation.
Growth of Listeria monocytogenes in Camembert and other soft cheeses at refrigeration temperatures.
Back, J P; Langford, S A; Kroll, R G
1993-08-01
Listeria monocytogenes survived and, under most conditions, multiplied when inoculated directly into the cheese milk of laboratory made Camembert cheeses. The rate and extent of growth was reduced at lower storage temperatures. Significantly higher rates of growth occurred at the surface compared with the centre of the cheeses, and these were probably associated with increased pH and proteolysis at the cheese surface due to the mould ripening process. Similar results were obtained with Camenbert cheeses surface inoculated after manufacture. There was also temperature-dependent growth of List. monocytogenes on a range of inoculated commercially manufactured soft cheeses. Significant growth occurred in Cambazola, French and English Brie, blue and white Lymeswold, French Camembert and Brie with garlic. Little if any growth occurred in blue and white Stilton, Mycella, Chaume and full fat soft cheese with garlic and herbs at the temperatures examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patella, F.; Arciprete, F.; Fanfoni, M.
2005-12-19
We have followed by reflection high-energy electron diffraction the nucleation of InAs quantum dots on GaAs(001), grown by molecular-beam epitaxy with growth interruptions. Surface mass transport gives rise, at the critical InAs thickness, to a huge nucleation of three-dimensional islands within 0.2 monolayers (ML). Such surface mass diffusion has been evidenced by observing the transition of the reflection high-energy electron diffraction pattern from two- to three-dimensional during the growth interruption after the deposition of 1.59 ML of InAs. It is suggested that the process is driven by the As{sub 2} adsorption-desorption process and by the lowering of the In bindingmore » energy due to compressive strain. The last condition is met first in the region surrounding dots at step edges where nucleation predominantly occurs.« less
Zou, Yanjiao; Aggarwal, Mini; Zheng, Wen-Guang; Wu, Hen-Ming; Cheung, Alice Y.
2011-01-01
Background RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. Scope We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). Significance The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber. PMID:22476487
Li, Bin; Yu, Bo; Zhou, Feng
2013-02-12
Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lilja, Mirjam; Butt, Umer; Shen, Zhijian; Bjöörn, Dorota
2013-11-01
Understanding of nucleation and growth kinetics of biomimetically deposited hydroxyapatite (HA) on crystalline TiO2 surfaces is important with respect to the application and performance of HA as functional implant coatings. Arc-evaporation was used to deposit TiO2 coatings dominated by anatase phase, rutile phase or their mixtures. Subsequent formation of HA from phosphate buffered saline solution (PBS) was investigated in real-time using in situ quartz crystal microbalance with dissipation technique (QCM-D). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the presence, morphology and crystal structure of TiO2 coatings and the formed HA. Increasing temperature of the PBS, increasing flow rate and applying a higher ion concentration in solution were found to accelerate HA nucleation process and hence affect growth kinetics. Lower PBS temperature resulted in the formation of HA coatings with flake-like morphology and increasing HA porosity. All TiO2 coatings under study enabled HA formation at body temperature, while in contrast Ti reference surfaces only supported HA nucleation and growth at elevated temperatures. QCM-D technique is a powerful tool for studying the impact of process parameters during biomimetic coating deposition on coating structure evolution in real time and provides valuable information for understanding, optimizing as well as tailoring the biomimetic HA growth processes.
Direct measurement of the propagation velocity of defects using coherent X-rays
Ulbrandt, Jeffrey G.; Rainville, Meliha G.; Wagenbach, Christa; ...
2016-03-28
The properties of artificially grown thin films are often strongly affected by the dynamic relationships between surface growth processes and subsurface structure. Coherent mixing of X-ray signals promises to provide an approach to better understand such processes. Here, we demonstrate the continuously variable mixing of surface and bulk scattering signals during realtime studies of sputter deposition of a-Si and a-WSi2 films by controlling the X-ray penetration and escape depths in coherent grazing-incidence small-angle X-ray scattering. Under conditions where the X-ray signal comes from both the growth surface and the thin film bulk, oscillations in temporal correlations arise from coherent interferencemore » between scattering from stationary bulk features and from the advancing surface. We also observe evidence that elongated bulk features propagate upwards at the same velocity as the surface. Moreover, a highly surface-sensitive mode is demonstrated that can access the surface dynamics independently of the subsurface structure.« less
Universal description of III-V/Si epitaxial growth processes
NASA Astrophysics Data System (ADS)
Lucci, I.; Charbonnier, S.; Pedesseau, L.; Vallet, M.; Cerutti, L.; Rodriguez, J.-B.; Tournié, E.; Bernard, R.; Létoublon, A.; Bertru, N.; Le Corre, A.; Rennesson, S.; Semond, F.; Patriarche, G.; Largeau, L.; Turban, P.; Ponchet, A.; Cornet, C.
2018-06-01
Here, we experimentally and theoretically clarify III-V/Si crystal growth processes. Atomically resolved microscopy shows that monodomain three-dimensional islands are observed at the early stages of AlSb, AlN, and GaP epitaxy on Si, independently of misfit. It is also shown that complete III-V/Si wetting cannot be achieved in most III-V/Si systems. Surface/interface contributions to the free-energy variations are found to be prominent over strain relief processes. We finally propose a general and unified description of III-V/Si growth processes, including a description of the formation of antiphase boundaries.
The Selective Epitaxy of Silicon at Low Temperatures.
NASA Astrophysics Data System (ADS)
Lou, Jen-Chung
1991-01-01
This dissertation has developed a process for the selective epitaxial growth (SEG) of silicon at low temperatures using a dichlorosilane-hydrogen mixture in a hot-wall low pressure chemical vapor deposition (LPCVD) reactor. Some basic issues concerning the quality of epilayers --substrate preparation, ex-situ and in-situ cleaning, and deposition cycle, have been studied. We find it necessary to use a plasma etch to open epitaxial windows for the SEG of Si. A cycled plasma etch, a thin sacrificial oxide growth, and an oxide etching step can completely remove plasma-etch-induced surface damage and contaminants, which result in high quality epilayers. A practical wafer cleaning step is developed for low temperature Si epitaxial growth. An ex-situ HF vapor treatment can completely remove chemical oxide from the silicon surface and retard the reoxidation of the silicon surface. An in-situ low-concentration DCS cycle can aid in decomposition of surface oxide during a 900 ^circC H_2 prebake step. An HF vapor treatment combined with a low-concentration of DCS cycle consistently achieves defect-free epilayers at 850^circC and lower temperatures. We also show that a BF_sp{2}{+ } or F^+ ion implantation is a potential ex-situ wafer cleaning process for SEG of Si at low temperatures. The mechanism for the formation of surface features on Si epilayers is also discussed. Based on O ^+ ion implantation, we showed that the oxygen incorporation in silicon epilayers suppresses the Si growth rate. Therefore, we attribute the formation of surface features to the local reduction of the Si growth rate due to the dissolution of oxide islands at the epi/substrate interface. Finally, with this developed process for the SEG of silicon, defect-free overgrown epilayers are also obtained. This achievement demonstrates the feasibility for the future silicon-on-oxide (SOI) manufacturing technology.
NASA Astrophysics Data System (ADS)
Lazarenko, A. A.; Berezovskaya, T. N.; Denisov, D. V.; Sobolev, M. S.; Pirogov, E. V.; Nikitina, E. V.
2017-11-01
This article discusses the process of preparation of a silicon surface for subsequent growth of dilute nitride alloys by molecular-beam epitaxy. The method of preparation of Si (100) and Si (111) substrates was developed. This method provides reproducible high-quality silicon surface for molecular-beam epitaxy of Si-GaP heterostructures. As a result, it managed to reduce the eviction oxide temperature below 800 °C, which is an important parameter for the MBE technology.
Zinc Oxide Grown by CVD Process as Transparent Contact for Thin Film Solar Cell Applications
NASA Astrophysics Data System (ADS)
Faÿ, S.; Shah, A.
Metalorganic chemical vapor deposition of ZnO films (MOCVD) [1] started to be comprehensively investigated in the 1980s, when thin film industries were looking for ZnO deposition processes especially useful for large-scale coatings at high growth rates. Later on, when TCO for thin film solar cells started to be developed, another advantage of growing TCO films by the CVD process has been highlighted: the surface roughness. Indeed, a large number of studies on CVD ZnO revealed that an as-grown rough surface cn be obtained with this deposition process [2-4]. A rough surface induces a light scattering effect, which can significantly improve light trapping (and therefore current photo-generation) within thin film silicon solar cells. The CVD process, indeed, directly leads to as-grown rough ZnO films without any post-etching step (the latter is often introduced to obtain a rough surface, when working with as-deposited flat sputtered ZnO). This fact could turn out to be a significant advantage when upscaling the manufacturing process for actual commercial production of thin film solar modules. The zinc and oxygen sources for CVD growth of ZnO films are given in Table 6.1.
Human Growth Hormone Adsorption Kinetics and Conformation on Self-Assembled Monolayers
Buijs, Jos; Britt, David W.; Hlady, Vladimir
2012-01-01
The adsorption process of the recombinant human growth hormone on organic films, created by self-assembly of octadecyltrichlorosilane, arachidic acid, and dipalmitoylphosphatidylcholine, is investigated and compared to adsorption on silica and methylated silica substrates. Information on the adsorption process of human growth hormone (hGH) is obtained by using total internal reflection fluorescence (TIRF). The intensity, spectra, and quenching of the intrinsic fluorescence emitted by the growth hormone’s single tryptophan are monitored and related to adsorption kinetics and protein conformation. For the various alkylated hydrophobic surfaces with differences in surface density and conformational freedom it is observed that the adsorbed amount of growth hormone is relatively large if the alkyl chains are in an ordered structure while the amounts adsorbed are considerably lower for adsorption onto less ordered alkyl chains of fatty acid and phospholipid layers. Adsorption on methylated surfaces results in a relatively large conformational change in the growth hormone’s structure, as displayed by a 7 nm blue shift in emission wavelength and a large increase in the effectiveness of fluorescence quenching. Conformational changes are less evident for hGH adsorption onto the fatty acid and phospholipid alkyl chains. Adsorption kinetics on the hydrophilic head groups of the self-assembled monolayers are similar to those on solid hydrophilic surfaces. The relatively small conformational changes in the hGH structure observed for adsorption on silica are even further reduced for adsorption on fatty acid head groups. PMID:25125795
NASA Technical Reports Server (NTRS)
Page, L. W.; From, T. P.
1977-01-01
The behavior of liquids in zero gravity environments is discussed with emphasis on foams, wetting, and wicks. A multipurpose electric furnace (MA-010) for the high temperature processing of metals and salts in zero-g is described. Experiments discussed include: monolectic and synthetic alloys (MA-041); multiple material melting point (MA-150); zero-g processing of metals (MA-070); surface tension induced convection (MA-041); halide eutectic growth; interface markings in crystals (MA-060); crystal growth from the vapor phase (MA-085); and photography of crystal growth (MA-028).
NASA Astrophysics Data System (ADS)
Svedberg, E. B.; Birch, J.; Edvardsson, C. N. L.; Sundgren, J.-E.
1999-07-01
The use of video recording of reflection high energy electron diffraction (RHEED) patterns for assessing the dynamic evolution of the surface morphology and crystallinity during growth was evaluated. As an example, Mo/V(001) superlattices with varying layer thickness (with periods Λ of 2.5 to 8.9 nm and a constant Mo:V ratio of 1:1) were examined. During the deposition, changes from two- to three-dimensional growth were observed in situ. From prior transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies, it is known that this transition is associated with a critical thickness and concurrent roughening of the V layer. Video recording and subsequent image and data processing allowed the surface morphology to be continuously followed during growth. Post-growth analyses of the recorded data provided the evolution of surface lattice parameters and short range [1-2 monolayer (ML)] surface roughnesses with a time resolution of 200-400 ms (0.02-0.04 nm thickness resolution). During growth of Mo, a smoothening effect could be observed while the growth of V evidently increased the surface roughness from 1 to 2 ML. Furthermore, the onset of coherency strain relaxation of the topmost growing layers was observed to occur at 2.0-2.5 nm layer thicknesses for both materials, which is in qualitative agreement with theoretical predictions.
Using atomistic simulations to model cadmium telluride thin film growth
NASA Astrophysics Data System (ADS)
Yu, Miao; Kenny, Steven D.
2016-03-01
Cadmium telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to conduct research on how defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. On-the-fly kinetic Monte Carlo technique is used to simulate the CdTe thin film growth on the (1 1 1) surfaces. The results show that on the (1 1 1) surfaces the growth mechanisms on surfaces which are terminated by Cd or Te are quite different, regardless of the deposition energy (0.1∼ 10 eV). On the Te-terminated (1 1 1) surface the deposited clusters first form a single mixed species layer, then the Te atoms in the mixed layer moved up to form a new layer. Whilst on the Cd-terminated (1 1 1) surface the new Cd and Te layers are formed at the same time. Such differences are probably caused by stronger bonding between ad-atoms and surface atoms on the Te layer than on the Cd layer.
Modeling the atomistic growth behavior of gold nanoparticles in solution
NASA Astrophysics Data System (ADS)
Turner, C. Heath; Lei, Yu; Bao, Yuping
2016-04-01
The properties of gold nanoparticles strongly depend on their three-dimensional atomic structure, leading to an increased emphasis on controlling and predicting nanoparticle structural evolution during the synthesis process. In order to provide this atomistic-level insight and establish a link to the experimentally-observed growth behavior, a kinetic Monte Carlo simulation (KMC) approach is developed for capturing Au nanoparticle growth characteristics. The advantage of this approach is that, compared to traditional molecular dynamics simulations, the atomistic nanoparticle structural evolution can be tracked on time scales that approach the actual experiments. This has enabled several different comparisons against experimental benchmarks, and it has helped transition the KMC simulations from a hypothetical toy model into a more experimentally-relevant test-bed. The model is initially parameterized by performing a series of automated comparisons of Au nanoparticle growth curves versus the experimental observations, and then the refined model allows for detailed structural analysis of the nanoparticle growth behavior. Although the Au nanoparticles are roughly spherical, the maximum/minimum dimensions deviate from the average by approximately 12.5%, which is consistent with the corresponding experiments. Also, a surface texture analysis highlights the changes in the surface structure as a function of time. While the nanoparticles show similar surface structures throughout the growth process, there can be some significant differences during the initial growth at different synthesis conditions.
NASA Astrophysics Data System (ADS)
Zhang, Chengzhu
A new microphysical model for the vapor growth and aspect ratio evolution of atmospheric ice crystals is presented. The method is based on the adaptive habit model of Chen and Lamb (1994), but is modified to include surface kinetic processes for crystal growth. Inclusion of surface kinetic effects is accomplished with a new theory that accounts for axis dependent growth. Deposition coefficients (growth efficiencies) are predicted for two axis directions based on laboratory-determined parameters for growth initiation (critical supersaturations) on each face. In essence, the new theory extends the adaptive habit approach of Chen and Lamb (1994) to ice saturation states below that of liquid saturation, where Chen and Lamb (1994) is likely most valid. The new model is used to simulate changes in crystal primary habit as a function of temperature and ice supersaturation. Predictions are compared with a detailed hexagonal growth model both in a single particle framework and in a Lagrangian parcel model to indicate the accuracy of the new method. Moreover, predictions of the ratio of the axis deposition coefficients match laboratory-generated data. A parameterization for predicting deposition coefficients is developed for the bulk microphysics frame work in Regional Atmospheric Modeling System (RAMS). Initial eddy-resolving model simulation is conducted to study the effect of surface kinetics on microphysical and dynamical processes in cold cloud development.
Szczotko, Maciej; Krogulski, Adam
2010-01-01
Elaboration of an assessment method for plumbing materials contacting drinking water was the main purpose of this study. The investigation was conducted in 8 week cycles in dynamic conditions using a continuous flow reactor. Microbial growth was measured indirectly by a bioluminescence technique (ATP assay). Every week swabs from the surface of tested materials (polypropylene and different types of polyethylene), from the domestic market were collected and the level of bioluminescence was examined. The results obtained from the surface of tested materials were repeatable and clearly approximated those obtained from the surface of a negative control (stainless steel, low susceptibility for microbial growth). The level of bioluminescence (ATP) on the surface of positive control (paraffin, high susceptibility for microbial growth) was many times higher than that observed on other materials. The presented investigation was the main part of a validation process, which in short time will serve to initiate a complete assessment system for organic materials contacting drinking water.
USDA-ARS?s Scientific Manuscript database
Listeria monocytogenes can colonize a poultry processing or further processing plant as a resident in floor drains. Limiting growth and attachment to drain surfaces may help lessen the potential for cross contamination of product. The objective of this study was to compare a synthetic hydrogen per...
Cylindrically symmetric Green's function approach for modeling the crystal growth morphology of ice.
Libbrecht, K G
1999-08-01
We describe a front-tracking Green's function approach to modeling cylindrically symmetric crystal growth. This method is simple to implement, and with little computer power can adequately model a wide range of physical situations. We apply the method to modeling the hexagonal prism growth of ice crystals, which is governed primarily by diffusion along with anisotropic surface kinetic processes. From ice crystal growth observations in air, we derive measurements of the kinetic growth coefficients for the basal and prism faces as a function of temperature, for supersaturations near the water saturation level. These measurements are interpreted in the context of a model for the nucleation and growth of ice, in which the growth dynamics are dominated by the structure of a disordered layer on the ice surfaces.
Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solovyov, VF; Wu, LJ; Rupich, MW
2014-12-15
Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2 nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 mu m long nano-rods with an average diameter of approximate to 20 nm. 2014 Elsevier B.V. All rights reserved.
Identification of the mechanism that confers superhydrophobicity on 316L stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobar, Ana M.; Llorca-Isern, Nuria; Rius-Ayra, Oriol
This study develops a rapid method to confer superhydrophobicity on 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. The highest contact angle (approaching 173°) was obtained after forming hierarchical structures with a non-aqueous electrolyte by an electrolytic process. Our goal was to induce superhydrophobicity directly on 316L stainless steel substrates and to establish which molecules cause the effect. The superhydrophobic behaviour is analysed by contact angle measurements, scanning electron microscopy (SEM), IR spectroscopy and atomic force microscopy (AFM). The growth mechanism is analysed using FE-SEM, TOF-SIMS and XPS in order to determine the molecules involved inmore » the reaction and the growth. The TOF-SIMS analysis revealed that the Ni{sup 2+} ions react with lauric acid to create an ester on the stainless steel surface. - Highlights: • This study develops a rapid and facile approach to impart superhydrophobicity properties to 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. Surface character changes from superhydrophilicity to superhydrophobicity. • This process changes the surface character from superhydrophilicity to superhydrophobicity. • The process based on electrolysis of a nickel salt in lauric acid provides superhydrophobic behaviour in 316L stainless steel. • The growth mechanism is proposed as a mode island (Volmert- Weber mode). • TOF-SIMS and XPS provided the identification of the molecules involved in the surface modification reaction on AISI 316L inducing superhydrophobicity.« less
Size control of Au NPs supported by pH operation
NASA Astrophysics Data System (ADS)
Ichiji, Masumi; Akiba, Hiroko; Hirasawa, Izumi
2017-07-01
Au NPs are expected to become useful functional particles, as particle gun used for plant gene transfer and also catalysts. We have studied PSD (particle size distribution) control of Au NPs by reduction crystallization. Previous study found out importance of seeds policy and also feeding profile. In this paper, effect of pH in the reduction crystallization was investigated to clarify the possibility of Au NPs PSD control by pH operation and also their growth process. Au NPs of size range 10-600 nm were obtained in single-jet system using ascorbic acid (AsA) as a reducing agent with adjusting pH of AsA. Au NPs are found to grow in the process of nucleation, agglomeration, agglomeration growth and surface growth. Au NPs tend to grow by agglomeration and become larger size in lower pH regions, and to grow only by surface growth and become smaller size in higher pH regions.
Morphologies of Solid Surfaces Produced Far from Equilibrium
1991-03-10
common to all these applications is that thc surface preparation processes used are far from chemical equilibrium. Many of the processes involve an...energetic ion beam, plasma or gas that is used to modify a surface, either by etching or depositing material. The electrical, optical and mechanical...growth, a number of continuum models have been used in the materials science literature, in particular in the context of electron-beam etching of
NASA Astrophysics Data System (ADS)
Jacobse, Leon; Huang, Yi-Fan; Koper, Marc T. M.; Rost, Marcel J.
2018-03-01
Platinum plays a central role in a variety of electrochemical devices and its practical use depends on the prevention of electrode degradation. However, understanding the underlying atomic processes under conditions of repeated oxidation and reduction inducing irreversible surface structure changes has proved challenging. Here, we examine the correlation between the evolution of the electrochemical signal of Pt(111) and its surface roughening by simultaneously performing cyclic voltammetry and in situ electrochemical scanning tunnelling microscopy (EC-STM). We identify a `nucleation and early growth' regime of nanoisland formation, and a `late growth' regime after island coalescence, which continues up to at least 170 cycles. The correlation analysis shows that each step site that is created in the `late growth' regime contributes equally strongly to both the electrochemical and the roughness evolution. In contrast, in the `nucleation and early growth' regime, created step sites contribute to the roughness, but not to the electrochemical signal.
Geometrical approach to tumor growth.
Escudero, Carlos
2006-08-01
Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.
Matrisian, L M; Planck, S R; Magun, B E
1984-03-10
We previously reported that 125I-labeled epidermal growth factor is processed intracellularly to acidic macromolecules in Rat-1 fibroblasts. The present study defines the precursor-product relationship and localization of the processing steps to subcellular organelles by the use of a single isoelectric species of 125I-epidermal growth factor and Percoll gradient fractionation. The native pI 4.55 125I-epidermal growth factor was rapidly processed to a pI 4.2 species on or near the cell surface and in organelles corresponding to clathrin-coated vesicles, Golgi, and endoplasmic reticulum. This species was then processed to a pI 4.35 species in similar organelles. The pI 4.2 and 4.35 species were converted to a pI 4.0 species in dense, lysosome-like organelles. This species was ultimately degraded and exocytosed from the cell as low molecular weight products.
Selected Topics on the Synthesis, Properties and Applications of Multiwalled Carbon Nanotubes
Stoner, B.R.; Brown, B.; Glass, J.T.
2014-01-01
Summary In summary, MWCNTs have been examined for a variety of electronic applications due to their unique structure and chemistry. Electrodes for field emission, energy and sensor applications hold particular interest. MWCNTs provide a very high surface area, relatively easy methods of surface modification, controllable and high concentration of reactive surface sites, and high specific capacitance. Combining MWCNTs with graphene structures, oxide and metal nanoparticles and certain polymers extends their performance and functionality. Such hybrid structures have been produced in situ during CNT growth and in two-step processes. Excellent progress on understanding the mechanisms of CNT growth has enabled numerous growth methods to all yield MWCNT structures in a variety of morphologies. PMID:24910503
Site-discrimination by molecular imposters at dissymmetric molecular crystal surfaces
NASA Astrophysics Data System (ADS)
Poloni, Laura N.
The organization of atoms and molecules into crystalline forms is ubiquitous in nature and has been critical to the development of many technologies on which modern society relies. Classical crystal growth theory can describe atomic crystal growth, however, a description of molecular crystal growth is lacking. Molecular crystals are often characterized by anisotropic intermolecular interactions and dissymmetric crystal surfaces with anisotropic growth rates along different crystallographic directions. This thesis describes combination of experimental and computational techniques to relate crystal structure to surface structure and observed growth rates. Molecular imposters, also known as tailor-made impurities, can be used to control crystal growth for practical applications such as inhibition of pathological crystals, but can also be used to understand site specificity at crystal growth surfaces. The first part of this thesis builds on previous real-time in situ atomic force microscopy (AFM) observations of dislocation-actuated growth on the morphologically significant face of hexagonal L-cystine crystals, which aggregate in vivo to form kidney stones in patients suffering from cystinuria. The inhibitory effect of various L-cystine structural mimics (a.k.a. molecular imposters) was investigated through experimental and computational methods to identify the key structural factors responsible for molecular recognition between molecular imposters and L-cystine crystal surface sites. The investigation of L-cystine crystal growth in the presence of molecular imposters through a combination of kinetic analysis using in situ AFM, morphology analysis and birefringence measurements of bulk crystals, and molecular modeling of imposter binding to energetically inequivalent surface sites revealed that different molecular imposters inhibited crystal growth by a Cabrera-Vermilyea pinning mechanism and that imposters bind to a single binding site on the dissymmetric {1000} L-cystine surfaces. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and L-cystine crystal step sites, thereby articulating a strategy for stone prevention based on molecular design. The second part of this thesis describes the crystal growth and inhibition of a P2X3 receptor antagonist, denoted as DAPSA, recently reported as a non-opioid treatment of chronic pain. The low solubility of this compound results in the formation of drug-induced renal calculi (a.k.a. xenostones). in situ AFM of the morphologically significant (011) DAPSA surface revealed dislocation-actuated growth spirals with an anisotropic morphology, behavior that can be attributed to the non-uniform rate of solute attachment to eight crystallographically unique steps of the spiral, a direct consequence of the dissymmetry of this crystal surface. Eighteen molecular imposters were selected from the screening library to systematically investigate the roles of imposter substitute position, size, and functionality on the step velocities along the eight unique crystallographic directions. A non-uniform reduction in step velocities was observed, signaling site discrimination of imposter binding that can be attributed to stereochemical recognition of the imposters at specific crystal sites. The anisotropy of growth inhibition observed in the presence of the various imposters is consistent with binding energies calculated for the thirty-two crystallographically unique kink sites on steps advancing along predominant growth directions. These results provide insight to the design of growth inhibitors for molecular crystalline solids with complex and dissymmetric surfaces, while also suggesting a strategy for formulations containing congeners that can prevent harmful crystal growth in human renal structures. The last two crystalline systems discussed in this thesis are two isomorphous crystal systems that are ideal for the study of impurity incorporation at dissymmetric surfaces because their morphology is dominated by dissymmetric {101} growth faces. Growth processes on the dissymmetric (101) surfaces of these crystalline systems were investigated using metadynamics simulations to determine the free energy of adsorption for solute and impurity attachment to different flat, stepped, and kinked (101) surface terminations. Results suggest that growth occurs via a non-Kossel crystal growth mechanism, and highlights the need for dissymmetric surface structures (i.e. steps and kinks) for a higher fidelity in the orientation of adsorbed molecules. Overall, the results presented in this thesis suggest that growth of molecular crystals, particularly at dissymmetric surfaces, is complex and requires the combination of several experimental and computational techniques to decipher the mechanisms responsible for growth phenomena. The use of molecular imposters to inhibit growth can be useful for the development of therapeutics for pathological crystals, but can also inform processes by which crystal growth occurs at complex surfaces as a result of their site selectivity.
Low-Temperature Silicon Epitaxy by Remote, Plasma - Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Habermehl, Scott Dwight
The dynamics of low temperature Si homoepitaxial and heteroepitaxial growth, by remote plasma enhanced chemical vapor deposition, RPECVD, have been investigated. For the critical step of pre-deposition surface preparation of Si(100) surfaces, the attributes of remote plasma generated atomic H are compared to results obtained with a rapid thermal desorption, RTD, technique and a hybrid H-plasma/RTD technique. Auger electron spectroscopy, AES, and electron diffraction analysis indicate the hybrid technique to be very effective at surface passivation, while the RTD process promotes the formation of SiC precipitates, which induce defective epitaxial growth. For GaP and GaAs substrates, the use of atomic H exposure is investigated as a surface passivation technique. AES shows this technique to be effective at producing atomically clean surfaces. For processing at 400^circrm C, the GaAs(100) surface is observed to reconstruct to a c(8 x 2)Ga symmetry while, at 530^ circrm C the vicinal GaP(100) surface, miscut 10^circ , is observed to reconstruct to a (1 x n) type symmetry; an unreconstructed (1 x 1) symmetry is observed for GaP(111). Differences in the efficiency with which native oxides are removed from the surface are attributed to variations in the local atomic bonding order of group V oxides. The microstructure of homoepitaxial Si films, deposited at temperatures of 25-450^circ rm C and pressures of 50-500 mTorr, is catalogued. Optimized conditions for the deposition of low defect, single crystal films are identified. The existence of two pressure dependent regimes for process activation are observed. In-situ mass spectral analysis indicates that the plasma afterglow is dominated by monosilane ions below 200 mTorr, while above 200 mTorr, low mass rm H_{x} ^+ (x = 1,2,3) and rm HHe^+ ions dominate. Consideration of the growth rate data indicates that downstream dissociative silane ionization, in the lower pressure regime, is responsible for an enhanced surface H abstraction rate. The observed increase in growth rate is concluded to be a manifestation of increased deposition site activation, resulting from the enhanced H abstraction mechanism. Secondary ion mass spectrometry measurements, of H incorporation in the Si films, yield an "effective" activation energy for the abstraction of surface H. A shift in the activation energy between 50 mTorr (0.7 eV) and 500 mTorr (0.3 eV) supports the conclusions for an ion-induced H abstraction mechanism. From this, a chemical sputtering reaction is proposed, whereby impinging ions react with chemisorbed H to form volatile species. Heteroepitaxial Si thin films are deposited upon GaP and GaAs surfaces. AES is used to evaluate the growth mode of Si on GaP(111) and vicinal GaP(100). In both instances, the data indicates a modified layer-plus-island growth mechanism, with possible interfacial alloy mixing. High quality epitaxial growth is observed to proceed on vicinal GaP(100) surfaces beyond the predicted critical thickness for strain relief of 140 A. For GaP(111), defective structures are observed well below the predicted critical thickness. This discrepancy is attributed to low precursor surface diffusion kinetics that are accommodated by the presence of steps on the vicinal surface. For deposition of Si on GaAs(100), disordered structure is observed within the first few monolayers of growth, which is in agreement with the predicted critical thickness for this system of approximately 10 A.
2D Process-based Microbialite Growth Model
NASA Astrophysics Data System (ADS)
Airo, A.; Smith, A.
2007-12-01
A 2D process-based microbialite growth model (MGM) has been developed that integrates the coupled effects of the microbialite growth and sediment distribution within a two-dimensional cross-section of a subaqueous bedrock profile. Sediment transport is realized through particle erosion and deposition that are a function of local wave energy which is computed on the basis of linear wave theory. Surface-normal microbialite growth is directly correlated to light intensity, which is computed for every point of the microbialite surface by using a Henyey- Greenstein-type relation for scattering and the Beer's Law for absorption in the water column. Shadowing effects by surrounding obstacles and/or overlying sediment are also considered. Sediment particles can be incorporated into the microbialite framework if growth occurs in the presence of sediment. The resulting meter-size microbialite constructs develop morphologies that correspond well to natural microbialites. Furthermore, changes of environmental factors such as light intensity, wave energy, and bedrock profile result in morphological variations of the microbialites that would be expected on the basis of the current understanding of microbialite growth and development.
Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.
Zhao, Pei; Kim, Sungjin; Chen, Xiao; Einarsson, Erik; Wang, Miao; Song, Yenan; Wang, Hongtao; Chiashi, Shohei; Xiang, Rong; Maruyama, Shigeo
2014-11-25
Using ethanol as the carbon source, self-limiting growth of AB-stacked bilayer graphene (BLG) has been achieved on Cu via an equilibrium chemical vapor deposition (CVD) process. We found that during this alcohol catalytic CVD (ACCVD) a source-gas pressure range exists to break the self-limitation of monolayer graphene on Cu, and at a certain equilibrium state it prefers to form uniform BLG with a high surface coverage of ∼94% and AB-stacking ratio of nearly 100%. More importantly, once the BLG is completed, this growth shows a self-limiting manner, and an extended ethanol flow time does not result in additional layers. We investigate the mechanism of this equilibrium BLG growth using isotopically labeled (13)C-ethanol and selective surface aryl functionalization, and results reveal that during the equilibrium ACCVD process a continuous substitution of graphene flakes occurs to the as-formed graphene and the BLG growth follows a layer-by-layer epitaxy mechanism. These phenomena are significantly in contrast to those observed for previously reported BLG growth using methane as precursor.
NASA Astrophysics Data System (ADS)
Mao, Gaojun; Cao, Rui; Guo, Xili; Jiang, Yong; Chen, Jianhong
2017-12-01
The kinetic processes of nucleation and growth of bainite laths in reheated weld metals are observed and analyzed by a combination of a laser confocal scanning microscope and an electron backscattering diffraction with a field emission scanning electron microscope. The results indicate that the surface relief induced by phase transformation is able to reveal the real microstructural morphologies of bainite laths when viewed from various angles. Five nucleation modes and six types of growth behaviors of bainite laths are revealed. The bainite lath growth rates are measured to vary over a wide range, from 2 μm/s to higher than 2000 μm/s. The orientations of the bainite laths within a prior austenite grain are examined and denoted as different variants. On the basis of variant identification, the reason is analyzed for various growth rates which are demonstrated to be affected by (1) the density of the high-angle misorientation in it, (2) the included angle between habit planes of different variants, and (3) the direction of lath growth with respect to the free (polished) surface.
NASA Astrophysics Data System (ADS)
Guo, Lei; Zaera, Francisco
2014-12-01
A simple procedure has been developed for the processing of silicon wafers in order to facilitate the spatially resolved growth of thin solid films on their surfaces. Specifically, a combination of silylation and UV/ozonolysis was tested as a way to control the concentration of the surface hydroxo groups required for subsequent atomic layer deposition (ALD) of metals or oxides. Water contact angle measurements were used to evaluate the hydrophilicity/hydrophobicity of the surface, a proxy for OH surface coverage, and to optimize the UV/ozonolysis treatment. Silylation with hexamethyldisilazane, trichloro(octadecyl)silane, or trimethylchlorosilane was found to be an efficient way to block the hydroxo sites and to passivate the underlying surface, and UV/O3 treatments were shown to effectively remove the silylation layer and to regain the surface reactivity. Both O3 and 185 nm UV radiation were determined necessary for the removal of the silylation layer, and additional 254 nm radiation was found to enhance the process. Attenuated total reflection-infrared absorption spectroscopy was employed to assess the success of the silylation and UV/O3 removal steps, and atomic force microscopy data provided evidence for the retention of the original smoothness of the surface. Selective growth of HfO2 films via TDMAHf + H2O ALD was seen only on the UV/O3 treated surfaces; total inhibition of the deposition was observed on the untreated silylated surfaces (as determined by x-ray photoelectron spectroscopy and ellipsometry). Residual film growth was still detected on the latter if the ALD was carried out at high temperatures (250 °C), because the silylation layer deteriorates under such harsh conditions and forms surface defects that act as nucleation sites for the growth of oxide grains (as identified by electron microscopy and scanning electron microscopy). We believe that the silylation-UV/O3 procedure advanced here could be easily implemented for the patterning of surfaces in many microelectronic applications.
Enhanced practical photosynthetic CO2 mitigation
Bayless, David J.; Vis-Chiasson, Morgan L.; Kremer, Gregory G.
2003-12-23
This process is unique in photosynthetic carbon sequestration. An on-site biological sequestration system directly decreases the concentration of carbon-containing compounds in the emissions of fossil generation units. In this process, photosynthetic microbes are attached to a growth surface arranged in a containment chamber that is lit by solar photons. A harvesting system ensures maximum organism growth and rate of CO.sub.2 uptake. Soluble carbon and nitrogen concentrations delivered to the cyanobacteria are enhanced, further increasing growth rate and carbon utilization.
Surface waves on floating liquids induced by ultrasound field
NASA Astrophysics Data System (ADS)
Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.
2013-01-01
We demonstrate a kind of wave pattern on the surface of floating liquids in a modulated ultrasound field. The waves are related to the liquid/solid phase transformation process. The nucleation sites of the eutectics locate at the center of these waves, and the eutectic growth direction is parallel to the propagation direction of the waves. It is revealed that such wave phenomenon can be ascribed to the interaction between ultrasound and eutectic growth at the liquid/solid interface. This result may provide a potential method for fabricating wave patterned surfaces on eutectic alloys.
Reaction pathways in atomistic models of thin film growth
NASA Astrophysics Data System (ADS)
Lloyd, Adam L.; Zhou, Ying; Yu, Miao; Scott, Chris; Smith, Roger; Kenny, Steven D.
2017-10-01
The atomistic processes that form the basis of thin film growth often involve complex multi-atom movements of atoms or groups of atoms on or close to the surface of a substrate. These transitions and their pathways are often difficult to predict in advance. By using an adaptive kinetic Monte Carlo (AKMC) approach, many complex mechanisms can be identified so that the growth processes can be understood and ultimately controlled. Here the AKMC technique is briefly described along with some special adaptions that can speed up the simulations when, for example, the transition barriers are small. Examples are given of such complex processes that occur in different material systems especially for the growth of metals and metallic oxides.
Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth
Brower, Landon J; Gentry, Lauren K; Napier, Amanda L
2017-01-01
Integration of surface-anchored metal-organic frameworks (surMOFs) within hierarchical architectures is necessary for potential sensing, electronic, optical, or separation applications. It is important to understand the fundamentals of film formation for these surMOFs in order to develop strategies for their incorporation with nanoscale control over lateral and vertical dimensions. This research identified processing parameters to control the film morphology for surMOFs of HKUST-1 fabricated by codeposition and seeded deposition. Time and temperature were investigated to observe film formation, to control film thickness, and to tune morphology. Film thickness was investigated by ellipsometry, while film structure and film roughness were characterized by atomic force microscopy. Films formed via codeposition resulted in nanocrystallites anchored to the gold substrate. A dynamic process at the interface was observed with a low density of large particulates (above 100 nm) initially forming on the substrate; and over time these particulates were slowly replaced by the prevalence of smaller crystallites (ca. 10 nm) covering the substrate at a high density. Elevated temperature was found to expedite the growth process to obtain the full range of surface morphologies with reasonable processing times. Seed crystals formed by the codeposition method were stable and nucleated growth throughout a subsequent layer-by-layer deposition process. These seed crystals templated the final film structure and tailor the features in lateral and vertical directions. Using codeposition and seeded growth, different surface morphologies with controllable nanoscale dimensions can be designed and fabricated for integration of MOF systems directly into device architectures and sensor platforms. PMID:29181287
Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth.
Brower, Landon J; Gentry, Lauren K; Napier, Amanda L; Anderson, Mary E
2017-01-01
Integration of surface-anchored metal-organic frameworks (surMOFs) within hierarchical architectures is necessary for potential sensing, electronic, optical, or separation applications. It is important to understand the fundamentals of film formation for these surMOFs in order to develop strategies for their incorporation with nanoscale control over lateral and vertical dimensions. This research identified processing parameters to control the film morphology for surMOFs of HKUST-1 fabricated by codeposition and seeded deposition. Time and temperature were investigated to observe film formation, to control film thickness, and to tune morphology. Film thickness was investigated by ellipsometry, while film structure and film roughness were characterized by atomic force microscopy. Films formed via codeposition resulted in nanocrystallites anchored to the gold substrate. A dynamic process at the interface was observed with a low density of large particulates (above 100 nm) initially forming on the substrate; and over time these particulates were slowly replaced by the prevalence of smaller crystallites (ca. 10 nm) covering the substrate at a high density. Elevated temperature was found to expedite the growth process to obtain the full range of surface morphologies with reasonable processing times. Seed crystals formed by the codeposition method were stable and nucleated growth throughout a subsequent layer-by-layer deposition process. These seed crystals templated the final film structure and tailor the features in lateral and vertical directions. Using codeposition and seeded growth, different surface morphologies with controllable nanoscale dimensions can be designed and fabricated for integration of MOF systems directly into device architectures and sensor platforms.
Bi-alkali antimonide photocathode growth: An X-ray diffraction study
Schubert, Susanne; Wong, Jared; Feng, Jun; ...
2016-07-21
Bi-alkali antimonide photocathodes are one of the best known sources of electrons for high current and/or high bunch charge applications like Energy Recovery Linacs or Free Electron Lasers. Despite their high quantum efficiency in visible light and low intrinsic emittance, the surface roughness of these photocathodes prohibits their use as low emittance cathodes in high accelerating gradient superconducting and normal conducting radio frequency photoguns and limits the minimum possible intrinsic emittance near the threshold. Also, the growth process for these materials is largely based on recipes obtained by trial and error and is very unreliable. In this paper, using X-raymore » diffraction, we investigate the different structural and chemical changes that take place during the growth process of the bi-alkali antimonide material K 2 CsSb. Our measurements give us a deeper understanding of the growth process of alkali-antimonide photocathodes allowing us to optimize it with the goal of minimizing the surface roughness to preserve the intrinsic emittance at high electric fields and increasing its reproducibility.« less
Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111)
NASA Astrophysics Data System (ADS)
Gallheber, B.-C.; Fischer, M.; Mayr, M.; Straub, J.; Schreck, M.
2018-06-01
Basic understanding of the fundamental processes in crystal growth as well as the structural quality of diamond synthesized by chemical vapour deposition on iridium surfaces has reached a high level for samples with (001) orientation. Diamond deposition on the alternative (111) surface is generally more challenging but of appreciable technological interest, too. In the present work, heteroepitaxy of diamond on Ir/YSZ/Si(111) with different off-axis angles and directions has been studied. During the growth of the first microns, strong and complex intrinsic stress states were rapidly formed. They restricted the range of suitable temperatures in this study to values between 830 °C and 970 °C. At low-stress conditions, the maximum growth rates were about 1 μm/h. They facilitated long-time processes which yielded pronounced structural improvements with minimum values of 0.08° for the azimuthal mosaic spread, 4 × 107 cm-2 for the dislocation density and 1.8 cm-1 for the Raman line width. This refinement is even faster than on (001) growth surfaces. It indicates substantial differences between the two crystal directions in terms of merging of mosaic blocks and annihilation of dislocations. Crystals with a thickness of up to 330 μm have been grown. The correlation of photoluminescence and μ-Raman tomograms with topography data also revealed fundamental differences in the off-axis growth between (001) and (111) orientation. Finally, the analysis of the microscopic structures at the growth surface provided the base for a model that can conclusively explain the intriguing reversal of stress tensor anisotropy caused by a simple inversion in sign of the off-axis angle.
1991-01-01
electrocrystallization, catalysis, and surface chemistry. In this process, submonolayer to monolayer(s) amounts of a metal can be electrodeposited on a foreign...mechanisms involving nucleation and growth processes. Although electrochemical methods are invaluable in controlling and measuring thermodynamic...obtain direct atomic structural information about metal deposits on an iodine covered Pt(IIl) surface . They found that electrodeposition occurred in a
Role of Transport and Kinetics in Growth of Renal Stones
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Iskovitz, Ilana
2012-01-01
Renal stone disease is not only a concern on earth but could conceivably pose as a serious risk to the astronauts health and safety in Space. In this paper, a combined transport-kinetics model for growth of calcium oxalate crystals is presented. The model is used to parametrically investigate the growth of renal calculi in urine with a focus on the coupled effects of transport and surface reaction on the ionic concentrations at the surface of the crystal and their impact on the resulting growth rates. It is shown that under nominal conditions of low solution supersaturation and low Damkohler number that typically exist on Earth, the surface concentrations of calcium and oxalate approach their bulk solution values in the urine and the growth rate is most likely limited by the surface reaction kinetics. But for higher solution supersaturations and larger Damkohler numbers that may be prevalent in the microgravity environment of Space, the calcium and oxalate surface concentrations tend to shift more towards their equilibrium or saturation values and thus the growth process may be limited by the transport through the medium. Furthermore, parametric numerical studies suggest that changes to the renal biochemistry of astronauts due in space may promote development of renal calculi during long duration space expeditions.
A sharp interface model for void growth in irradiated materials
NASA Astrophysics Data System (ADS)
Hochrainer, Thomas; El-Azab, Anter
2015-03-01
A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.
The growth and in situ characterization of chemical vapor deposited SiO2
NASA Technical Reports Server (NTRS)
Iyer, R.; Chang, R. R.; Lile, D. L.
1987-01-01
This paper reports the results of studies of the kinetics of remote (indirect) plasma enhanced low pressure CVD growth of SiO2 on Si and InP and of the in situ characterization of the electrical surface properties of InP during CVD processing. In the latter case photoluminescence was employed as a convenient and sensitive noninvasive method for characterizing surface trap densities. It was determined that, provided certain precautions are taken, the growth of SiO2 occurs in a reproducible and systematic fashion that can be expressed in an analytic form useful for growth rate prediction. Moreover, the in situ photoluminescence studies have yielded information on sample degradation resulting from heating and chemical exposure during the CVD growth.
Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanoto, H.; Loke, W. K.; Yoon, S. F.
In this paper, heteroepitaxial growth of GaAs on nominal (100) Ge/Si substrate was investigated. The root-mean square surface roughness of the sample where the first few monolayers of the GaAs were nucleated by migration enhanced epitaxy (MEE) is four times smaller compared to the sample without such a process, indicating better surface planarity. From the (004) x-ray diffraction rocking curve measurement, the full width at half maximum of the GaAs layer nucleated by MEE is 40% lower compared to that of the GaAs layer without such a process, indicating better crystal quality. Furthermore, it was found that the sample wheremore » the GaAs layer was nucleated by MEE experienced early relaxation. As the MEE process promotes two-dimensional growth, the GaAs layer where nucleation was initiated by such a process has fewer islandlike formations. This leads to a pseudomorphically grown GaAs layer, which experiences higher strain compared to the GaAs layer with more islandlike formations, where most relaxation occurs on the free surface of the islands. Therefore, for the same layer thickness, the GaAs layer on (100) Ge/Si substrate where nucleation was initiated by MEE relaxed first.« less
Zhang, Haoran; Zhang, Yaqian; Zhang, Yanhui; Chen, Zhiying; Sui, Yanping; Ge, Xiaoming; Deng, Rongxuan; Yu, Guanghui; Jin, Zhi; Liu, Xinyu
2016-08-24
Oxygen can passivate Cu surface active sites when graphene nucleates. Thus, the nucleation density is decreased. The CuO/Cu substrate was chosen for graphene domain synthesis in our study. The results indicate that the CuO/Cu substrate is beneficial for large-scale, single-crystal graphene domain synthesis. Graphene grown on the CuO/Cu substrate exhibits fewer nucleation sites than on Cu foils, suggesting that graphene follows an oxygen-dominating growth. Hydrogen treatment via a heating process could weaken the surface oxygen's role in limiting graphene nucleation under the competition of hydrogen and oxygen and could transfer the synthesis of graphene into a hydrogen-dominating growth. However, the competition only exists during the chemical vapor deposition heating process. For non-hydrogen heated samples, oxygen-dominating growth is experienced even though the samples are annealed in hydrogen for a long time after the heating process. With the temperature increases, the role of hydrogen gradually decreases. The balance of hydrogen and oxygen is adjusted by introducing hydrogen gas at a different heating temperatures. The oxygen concentration on the substrate surface is believed to determine the reactions mechanisms based on the secondary ion mass spectrometry test results. This study provides a new method for the controllable synthesis of graphene nucleation during a heating process.
Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid.
Zhou, Yubing; Deng, Bing; Zhou, Yu; Ren, Xibiao; Yin, Jianbo; Jin, Chuanhong; Liu, Zhongfan; Peng, Hailin
2016-03-09
The growth of high-quality two-dimensional (2D) layered chalcogenide crystals is highly important for practical applications in future electronics, optoelectronics, and photonics. Current route for the synthesis of 2D chalcogenide crystals by vapor deposition method mainly involves an energy intensive high-temperature growth process on solid substrates, often suffering from inhomogeneous nucleation density and grain size distribution. Here, we first demonstrate a facile vapor-phase synthesis of large-area high-quality 2D layered chalcogenide crystals on liquid metal surface with relatively low surface energy at a growth temperature as low as ∼100 °C. Uniform and large-domain-sized 2D crystals of GaSe and GaxIn1-xSe were grown on liquid metal surface even supported on a polyimide film. As-grown 2D GaSe crystals have been fabricated to flexible photodetectors, showing high photoresponse and excellent flexibility. Our strategy of energy-sustainable low-temperature growth on liquid metal surface may open a route to the synthesis of high-quality 2D crystals of Ga-, In-, Bi-, Hg-, Pb-, or Sn-based chalcogenides and halides.
Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering
NASA Astrophysics Data System (ADS)
Renaud, Gilles
Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having important physical properties such as superconductivity or magnetism is also briefly reviewed. The strengths and limitations of the technique, such as the need for single crystals and surfaces of high crystalline quality are discussed. Finally, an outlook of future prospects in the field is given, such as the study of more complex oxide surfaces, vicinal surfaces, reactive metal/oxide interfaces, metal oxidation processes, the use of surfactants to promote wetting of a metal deposited on an oxide surface or the study of oxide/liquid interfaces in a non-UHV environment.
Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion
NASA Technical Reports Server (NTRS)
Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)
2016-01-01
A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.
NASA Astrophysics Data System (ADS)
Winnerl, Andrea; Pereira, Rui N.; Stutzmann, Martin
2017-05-01
In this work, we use conductance and contact potential difference photo-transient data to study the influence of the growth technique, doping, and crystal polarity on the kinetics of photo-generated charges in GaN. We found that the processes, and corresponding time scales, involved in the decay of charge carriers generated at and close to the GaN surface via photo-excitation are notably independent of the growth technique, doping (n- and p-types), and also crystal polarity. Hence, the transfer of photo-generated charges from band states back to surface states proceeds always by hopping via shallow defect states in the space-charge region (SCR) close to the surface. Concerning the charge carrier photo-generation kinetics, we observe considerable differences between samples grown with different techniques. While for GaN grown by metal-organic chemical vapor deposition, the accumulation of photo-conduction electrons results mainly from a combined trapping-hopping process (slow), where photo-generated electrons hop via shallow defect states to the conduction band (CB), in hydride vapor phase epitaxy and molecular beam epitaxy materials, a faster direct process involving electron transfer via CB states is also present. The time scales of both processes are quite insensitive to the doping level and crystal polarity. However, these processes become irrelevant for very high doping levels (both n- and p-types), where the width of the SCR is much smaller than the photon penetration depth, and therefore, most charge carriers are generated outside the SCR.
NASA Astrophysics Data System (ADS)
Jung, Daehwan; Ironside, Daniel J.; Bank, Seth R.; Gossard, Arthur C.; Bowers, John E.
2018-05-01
We report the effect of growth interruptions on the structural and optical properties of InAs/InAlGaAs/InP quantum dots using molecular beam epitaxy. We find that the surface quantum dots experience an unintended ripening process during the sample cooling stage, which reshapes the uncapped InAs nanostructures. To prevent this, we performed a partial capping experiment to effectively inhibit structural reconfiguration of surface InAs nanostructures during the cooling stage, revealing that InAs nanostructures first form quantum dashes and then transform into quantum dots via a ripening process. Our result suggests that the appearance of buried InAs/InAlGaAs nanostructures can be easily misunderstood by surface analysis.
NASA Astrophysics Data System (ADS)
Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas
2014-04-01
Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.
NASA Astrophysics Data System (ADS)
Park, Yeonjoon
The advanced semiconductor material InGaAsN was grown with nitrogen plasma assisted Molecular Beam Epitaxy (MBE). The InGaAsN layers were characterized with High Resolution X-ray Diffraction (HRXDF), Atomic Fore Microscope (AFM), X-ray Photoemission Spectroscopy (XPS) and Photo-Luminescence (PL). The reduction of the band gap energy was observed with the incorporation of nitrogen and the lattice matched condition to the GaAs substrate was achieved with the additional incorporation of indium. A detailed investigation was made for the growth mode changes from planar layer-by-layer growth to 3D faceted growth with a higher concentration of nitrogen. A new X-ray diffraction analysis was developed and applied to the MBE growth on GaAs(111)B, which is one of the facet planes of InGaAsN. As an effort to enhance the processing tools for advanced semiconductor materials, gas assisted Focused Ion Beam (FIB) vertical milling was performed on GaN. The FIB processed area shows an atomically flat surface, which is good enough for the fabrication of Double Bragg Reflector (DBR) mirrors for the Blue GaN Vertical Cavity Surface Emitting Laser (VCSEL) Diodes. An in-situ electron beam system was developed to combine the enhanced lithographic processing capability with the atomic layer growth capability by MBE. The electron beam system has a compensation capability against substrate vibration and thermal drift. In-situ electron beam lithography was performed with the low pressure assisting gas. The advanced processing and characterization methods developed in this thesis will assist the development of superior semiconductor materials for the future.
Reduction of structural defects in thick 4H-SiC epitaxial layers grown on 4° off-axis substrates
NASA Astrophysics Data System (ADS)
Yazdanfar, M.; Ivanov, I. G.; Pedersen, H.; Kordina, O.; Janzén, E.
2013-06-01
By carefully controlling the surface chemistry of the chemical vapor deposition process for silicon carbide (SiC), 100 μm thick epitaxial layers with excellent morphology were grown on 4° off-axis SiC substrates at growth rates exceeding 100 μm/h. In order to reduce the formation of step bunching and structural defects, mainly triangular defects, the effect of varying parameters such as growth temperature, C/Si ratio, Cl/Si ratio, Si/H2 ratio, and in situ pre-growth surface etching time are studied. It was found that an in-situ pre growth etch at growth temperature and pressure using 0.6% HCl in hydrogen for 12 min reduced the structural defects by etching preferentially on surface damages of the substrate surface. By then applying a slightly lower growth temperature of 1575 °C, a C/Si ratio of 0.8, and a Cl/Si ratio of 5, 100 μm thick, step-bunch free epitaxial layer with a minimum triangular defect density and excellent morphology could be grown, thus enabling SiC power device structures to be grown on 4° off axis SiC substrates.
Batchwise growth of silica cone patterns via self-assembly of aligned nanowires.
Luo, Shudong; Zhou, Weiya; Chu, Weiguo; Shen, Jun; Zhang, Zengxing; Liu, Lifeng; Liu, Dongfang; Xiang, Yanjuan; Ma, Wenjun; Xie, Sishen
2007-03-01
Silica-cone patterns self-assembled from well-aligned nanowires are synthesized using gallium droplets as the catalyst and silicon wafers as the silicon source. The cones form a triangular pattern array radially on almost the whole surface of the molten Ga ball. Detailed field-emission scanning electron microscopy (SEM) analysis shows that the cone-pattern pieces frequently slide off and are detached from the molten Ga ball surface, which leads to the exposure of the catalyst surface and the growth of a new batch of silicon oxide nanowires as well as the cone patterns. The processes of growth and detachment alternate, giving rise to the formation of a volcano-like or a flower-like structure with bulk-quantity pieces of cone patterns piled up around the Ga ball. Consequently, the cone-patterned layer grows batch by batch until the reaction is terminated. Different to the conventional metal-catalyzed growth model, the batch-by-batch growth of the triangular cone patterns proceeds on the molten Ga balls via alternate growth on and detachment from the catalyst surface of the patterns; the Ga droplet can be used continuously and circularly as an effective catalyst for the growth of amorphous SiO(x) nanowires during the whole growth period. The intriguing batchwise growth phenomena may enrich our understanding of the vapour-liquid-solid (VLS) growth mechanism for the catalyst growth of nanowires or other nanostructures and may offer a different way of self-assembling novel silica nanostructures.
X-ray Reflectivity Characterization of Ion Distribution at Biomimetic Membrane Surfaces
NASA Astrophysics Data System (ADS)
Krüger, Peter; Pittler, Jens; Vaknin, David; Lösche, Mathias
2003-03-01
Ions at cell membrane surfaces may control the function and conformation of nearby biomolecules, thus playing an important role in inter- and intracellular transport as well as in biorecognition processes. Moreover, charge patterns at membrane surfaces may direct the growth of inorganic crystals in biomineralization. Langmuir monolayers are widely employed as model systems for studying charge distribution and growth processes at the organic/inorganic interface. We present a novel x-ray reflectivity technique that provides detailed information on ion distribution at biomembrane surfaces by using monochromatic x-rays at various energies at and away from the ion x-ray absorption edges. As a model, the interaction of Ba^2+ with DMPA^- (dimyristoyl phosphatidic acid) monolayers at the aqueous surface was studied. We find an unexpectedly large concentration of the cations near the interface where they form a Stern layer of bound ions. These studies have been complemented with conventional x-ray reflectivity measurements and extended to other anionic lipid species (DMPS, DMPG) and cations (Ca^2+).
Ga- and N-polar GaN Growths on SiC Substrate
2018-03-15
a transition process of a two-section NR are formulated and numerically studied to show the consistent results with experimental data. The relative...contributions of the VLS and VS growths in such a transition process are also numerically illustrated. Besides, the experimentally observed decrease... experimental data, a few important kinetic parameters can be determined. The anti-reflection functions of a surface nanostructure, including
Lai, Stanley C S; Lazenby, Robert A; Kirkman, Paul M; Unwin, Patrick R
2015-02-01
The nucleation and growth of metal nanoparticles (NPs) on surfaces is of considerable interest with regard to creating functional interfaces with myriad applications. Yet, key features of these processes remain elusive and are undergoing revision. Here, the mechanism of the electrodeposition of silver on basal plane highly oriented pyrolytic graphite (HOPG) is investigated as a model system at a wide range of length scales, spanning electrochemical measurements from the macroscale to the nanoscale using scanning electrochemical cell microscopy (SECCM), a pipette-based approach. The macroscale measurements show that the nucleation process cannot be modelled as either truly instantaneous or progressive, and that step edge sites of HOPG do not play a dominant role in nucleation events compared to the HOPG basal plane, as has been widely proposed. Moreover, nucleation numbers extracted from electrochemical analysis do not match those determined by atomic force microscopy (AFM). The high time and spatial resolution of the nanoscale pipette set-up reveals individual nucleation and growth events at the graphite basal surface that are resolved and analysed in detail. Based on these results, corroborated with complementary microscopy measurements, we propose that a nucleation-aggregative growth-detachment mechanism is an important feature of the electrodeposition of silver NPs on HOPG. These findings have major implications for NP electrodeposition and for understanding electrochemical processes at graphitic materials generally.
Continuum mathematical modelling of pathological growth of blood vessels
NASA Astrophysics Data System (ADS)
Stadnik, N. E.; Dats, E. P.
2018-04-01
The present study is devoted to the mathematical modelling of a human blood vessel pathological growth. The vessels are simulated as the thin-walled circular tube. The boundary value problem of the surface growth of an elastic thin-walled cylinder is solved. The analytical solution is obtained in terms of velocities of stress strain state parameters. The condition of thinness allows us to study finite displacements of cylinder surfaces by means of infinitesimal deformations. The stress-strain state characteristics, which depend on the mechanical parameters of the biological processes, are numerically computed and graphically analysed.
A diffusive ink transport model for lipid dip-pen nanolithography
NASA Astrophysics Data System (ADS)
Urtizberea, A.; Hirtz, M.
2015-09-01
Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04352b
In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.
Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian
2017-06-07
Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.
Kinetic aspects of chain growth in Fischer-Tropsch synthesis.
Filot, Ivo A W; Zijlstra, Bart; Broos, Robin J P; Chen, Wei; Pestman, Robert; Hensen, Emiel J M
2017-04-28
Microkinetics simulations are used to investigate the elementary reaction steps that control chain growth in the Fischer-Tropsch reaction. Chain growth in the FT reaction on stepped Ru surfaces proceeds via coupling of CH and CR surface intermediates. Essential to the growth mechanism are C-H dehydrogenation and C hydrogenation steps, whose kinetic consequences have been examined by formulating two novel kinetic concepts, the degree of chain-growth probability control and the thermodynamic degree of chain-growth probability control. For Ru the CO conversion rate is controlled by the removal of O atoms from the catalytic surface. The temperature of maximum CO conversion rate is higher than the temperature to obtain maximum chain-growth probability. Both maxima are determined by Sabatier behavior, but the steps that control chain-growth probability are different from those that control the overall rate. Below the optimum for obtaining long hydrocarbon chains, the reaction is limited by the high total surface coverage: in the absence of sufficient vacancies the CHCHR → CCHR + H reaction is slowed down. Beyond the optimum in chain-growth probability, CHCR + H → CHCHR and OH + H → H 2 O limit the chain-growth process. The thermodynamic degree of chain-growth probability control emphasizes the critical role of the H and free-site coverage and shows that at high temperature, chain depolymerization contributes to the decreased chain-growth probability. That is to say, during the FT reaction chain growth is much faster than chain depolymerization, which ensures high chain-growth probability. The chain-growth rate is also fast compared to chain-growth termination and the steps that control the overall CO conversion rate, which are O removal steps for Ru.
NASA Technical Reports Server (NTRS)
Grodzka, P. G.
1977-01-01
Ion thruster engines for spacecraft propulsion can serve as ion beam sources for potential space processing applications. The advantages of space vacuum environments and the possible gravity effects on thruster ion beam materials operations such as thin film growth, ion milling, and surface texturing were investigated. The direct gravity effect on sputter deposition and vapor deposition processes are discussed as well as techniques for cold and warm welding.
Atomic-scale visualization of oxide thin-film surfaces.
Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Okada, Yoshinori; Hitosugi, Taro
2018-01-01
The interfaces of complex oxide heterostructures exhibit intriguing phenomena not observed in their constituent materials. The oxide thin-film growth of such heterostructures has been successfully controlled with unit-cell precision; however, atomic-scale understandings of oxide thin-film surfaces and interfaces have remained insufficient. We examined, with atomic precision, the surface and electronic structures of oxide thin films and their growth processes using low-temperature scanning tunneling microscopy. Our results reveal that oxide thin-film surface structures are complicated in contrast to the general perception and that atomically ordered surfaces can be achieved with careful attention to the surface preparation. Such atomically ordered oxide thin-film surfaces offer great opportunities not only for investigating the microscopic origins of interfacial phenomena but also for exploring new surface phenomena and for studying the electronic states of complex oxides that are inaccessible using bulk samples.
Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel
NASA Astrophysics Data System (ADS)
Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying
2018-05-01
Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.
NASA Technical Reports Server (NTRS)
Jenkins, Michael G.; Ghosh, Asish; Salem, Jonathan A.
1990-01-01
Micromechanics fracture models are incorporated into three distinct fracture process zones which contribute to the crack growth resistance of fibrous composites. The frontal process zone includes microcracking, fiber debonding, and some fiber failure. The elastic process zone is related only to the linear elastic creation of new matrix and fiber fracture surfaces. The wake process zone includes fiber bridging, fiber pullout, and fiber breakage. The R-curve predictions of the model compare well with empirical results for a unidirectional, continuous fiber C/C composite. Separating the contributions of each process zone reveals the wake region to contain the dominant crack growth resistance mechanisms. Fractography showed the effects of the micromechanisms on the macroscopic fracture behavior.
Land Surface Process and Air Quality Research and Applications at MSFC
NASA Technical Reports Server (NTRS)
Quattrochi, Dale; Khan, Maudood
2007-01-01
This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.
Development of the mare regolith: some model considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quaide, W.; Oberbeck, V.
1975-05-01
Mare regolith is fragmental debris of variable thickness that lies upon fractured bedrock. Its origin by impact comminution of primarily local basaltic rocks is widely accepted, but the consequences of such an origin are not appreciated fully. This investigation uses results obtained in an earlier Monte Carlo study by Oberbeck et al. (1973) to shed light on those consequences by evaluating regolith growth and mixing as a function of time. Results reported are for average cases and must be used with caution. The study demonstrates that regolith growth is self regulated and has the same trend and nearly the samemore » terminal growth rates whatever the history of bombardment: rapid initial accumulation followed by diminishing rates of growth. Mixing and all other processes investigated are growth regulated. Mixing increases as growth slows, but never to the extent that the regolith is homogenized. Because the average regolith is never homogenized, products of growth regulated processes are preserved in the stratigraphy. Differences in material properties are to be expected in vertical sections of the regolith, therefore, this model is not sufficiently refined to permit prediction of all possible trends. It does indicate, however, that deeper levels contain thinner depositional units, lesser quantities of meteoritic and exotic components, and more debris derived from shallow levels in the mare basalts than material in near surface layers. Additionally, neutron fluence production is regulated by the growth process, but because rates of growth do not differ much over the last aeon, whatever the total age or early bombardment history, values of surface fluence may be similar in many areas whatever their age. (NL)« less
Kim, Yong Seung; Joo, Kisu; Jerng, Sahng-Kyoon; Lee, Jae Hong; Moon, Daeyoung; Kim, Jonghak; Yoon, Euijoon; Chun, Seung-Hyun
2014-03-25
The integration of graphene into devices is a challenging task because the preparation of a graphene-based device usually includes graphene growth on a metal surface at elevated temperatures (∼1000 °C) and a complicated postgrowth transfer process of graphene from the metal catalyst. Here we report a direct integration approach for incorporating polycrystalline graphene into light emitting diodes (LEDs) at low temperature by plasma-assisted metal-catalyst-free synthesis. Thermal degradation of the active layer in LEDs is negligible at our growth temperature, and LEDs could be fabricated without a transfer process. Moreover, in situ ohmic contact formation is observed between DG and p-GaN resulting from carbon diffusion into the p-GaN surface during the growth process. As a result, the contact resistance is reduced and the electrical properties of directly integrated LEDs outperform those of LEDs with transferred graphene electrodes. This relatively simple method of graphene integration will be easily adoptable in the industrialization of graphene-based devices.
NASA Astrophysics Data System (ADS)
Kowacz, M.; Putnis, C. V.; Putnis, A.
2007-11-01
The mechanism of barite growth has been investigated in a fluid cell of an Atomic Force Microscope by passing solutions of constant supersaturation ( Ω) but variable ion activity ratio ( r=a/a) over a barite substrate.The observed dependence of step-spreading velocity on solution stoichiometry can be explained by considering non-equivalent attachment frequency factors for the cation and anion. We show that the potential for two-dimensional nucleation changes under a constant thermodynamic driving force due to the kinetics of barium integration into the surface, and that the growth mode changes from preexisting step advancement to island spreading as the cation/anion activity ratio increases. Scanning electron microscopy studies of crystals grown in bulk solutions support our findings that matching the ion ratio in the fluid to that of the crystal lattice does not result in maximum growth and nucleation rates. Significantly more rapid rates correspond to solution stoichiometries where [Ba 2+] is in excess with respect to [ SO42-]. Experiments performed in dilute aqueous solutions of methanol show that even 0.02 molar fraction of organic cosolvent in the growth solution significantly accelerates step growth velocity and nucleation rates (while keeping Ω the same as in the reference solution in water). Our observations suggest that the effect of methanol on barite growth results first of all from reduction of the barrier that prevents the Ba 2+ from reaching the surface and corroborate the hypothesis that desolvation of the cation and of the surface is the rate limiting kinetic process for two-dimensional nucleation and for crystal growth.
Dropwise condensation dynamics in humid air
NASA Astrophysics Data System (ADS)
Castillo Chacon, Julian Eduardo
Dropwise condensation of atmospheric water vapor is important in multiple practical engineering applications. The roles of environmental factors and surface morphology/chemistry on the condensation dynamics need to be better understood to enable efficient water-harvesting, dehumidication, and other psychrometric processes. Systems and surfaces that promote faster condensation rates and self-shedding of condensate droplets could lead to improved mass transfer rates and higher water yields in harvesting applications. The thesis presents the design and construction of an experimental facility that allows visualization of the condensation process as a function of relative humidity. Dropwise condensation experiments are performed on a vertically oriented, hydrophobic surface at a controlled relative humidity and surface subcooling temperature. The distribution and growth of water droplets are monitored across the surface at different relative humidities (45%, 50%, 55%, and 70%) at a constant surface subcooling temperature of 15 °C below the ambient temperature. The droplet growth dynamics exhibits a strong dependency on relative humidity in the early stages during which there is a large population of small droplets on the surface and single droplet growth dominates over coalescence effects. At later stages, the dynamics of droplet growth is insensitive to relative humidity due to the dominance of coalescence effects. The overall volumetric rate of condensation on the surface is also assessed as a function of time and ambient relative humidity. Low relative humidity conditions not only slow the absolute rate of condensation, but also prolong an initial transient regime over which the condensation rate remains significantly below the steady-state value. The current state-of-the-art in dropwise condensation research indicates the need for systematic experimental investigations as a function of relative humidity. The improved understanding of the relative humidity effects on the growth of single and distributed droplets offered in this thesis can improve the prediction of heat and mass transfer during dropwise condensation of humid air under differing environmental conditions. This knowledge can be used to engineer condenser systems and surfaces that are adapted for local ambient relative humidity and temperature conditions.
Modeling Growth of Nanostructures in Plasmas
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.
2004-01-01
As semiconductor circuits shrink to CDs below 0.1 nm, it is becoming increasingly critical to replace and/or enhance existing technology with nanoscale structures, such as nanowires for interconnects. Nanowires grown in plasmas are strongly dependent on processing conditions, such as gas composition and substrate temperature. Growth occurs at specific sites, or step-edges, with the bulk growth rate of the nanowires determined from the equation of motion of the nucleating crystalline steps. Traditional front-tracking algorithms, such as string-based or level set methods, suffer either from numerical complications in higher spatial dimensions, or from difficulties in incorporating surface-intense physical and chemical phenomena. Phase field models have the robustness of the level set method, combined with the ability to implement surface-specific chemistry that is required to model crystal growth, although they do not necessarily directly solve for the advancing front location. We have adopted a phase field approach and will present results of the adatom density and step-growth location in time as a function of processing conditions, such as temperature and plasma gas composition.
NASA Astrophysics Data System (ADS)
Mechehoud, Fayçal; Khelil, Abdelbacet; Eddine Hakiki, Nour; Bubendorff, Jean-Luc
2016-08-01
The nucleation and growth of Co electrodeposits on n-Si(1 1 1) substrate have been investigated as a function of the applied potential in a large potential range using electrochemical techniques (voltammetry and chrono-amperometry) and surface imaging by atomic force microscopy (AFM). The surface preparation of the sample is crucial and we achieve a controlled n-Si(1 1 1) surface with mono-atomic steps and flat terraces. Using Scharifker-Hills models for fitting the current-time transients, we show that a transition from an instantaneous nucleation process to a progressive one occurs when the overpotential increases. A good agreement between the nucleation and growth parameters extracted from the models and the AFM data's is observed. The growth is of the Volmer-Weber type with a roughness and a spatial extension in the substrate plane of the deposited islands that increase with thickness.
Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces
Hauge, Robert H [Houston, TX; Xu, Ya-Qiong [Houston, TX; Shan, Hongwei [Houston, TX; Nicholas, Nolan Walker [South Charleston, WV; Kim, Myung Jong [Houston, TX; Schmidt, Howard K [Cypress, TX; Kittrell, W Carter [Houston, TX
2012-02-28
A new and useful nanotube growth substrate conditioning processes is herein disclosed that allows the growth of vertical arrays of carbon nanotubes where the average diameter of the nanotubes can be selected and/or controlled as compared to the prior art.
Native oxide formation on pentagonal copper nanowires: A TEM study
NASA Astrophysics Data System (ADS)
Hajimammadov, Rashad; Mohl, Melinda; Kordas, Krisztian
2018-06-01
Hydrothermally synthesized copper nanowires were allowed to oxidize in air at room temperature and 30% constant humidity for the period of 22 days. The growth of native oxide layer was followed up by high-resolution transmission electron microscopy and diffraction to reveal and understand the kinetics of the oxidation process. Copper oxides appear in the form of differently oriented crystalline phases around the metallic core as a shell-like layer (Cu2O) and as nanoscopic islands (CuO) on the top of that. Time dependent oxide thickness data suggests that oxidation follows the field-assisted growth model at the beginning of the process, as practically immediately an oxide layer of ∼2.8 nm thickness develops on the surface. However, after this initial rapid growth, the local field attenuates and the classical parabolic diffusion limited growth plays the main role in the oxidation. Because of the single crystal facets on the side surface of penta-twinned Cu nanowires, the oxidation rate in the diffusion limited regime is lower than in polycrystalline films.
Kinetics of low pressure CVD growth of SiO2 on InP and Si
NASA Technical Reports Server (NTRS)
Iyer, R.; Lile, D. L.
1988-01-01
The kinetics of low pressure CVD growth of SiO2 from SiH4 and O2 has been investigated for the case of an indirect (remote) plasma process. Homogeneous (gas phase) and heterogeneous operating ranges have been experimentally identified. The process was shown to be consistent within the heterogeneous surface-reaction dominated range of operation. A kinetic rate equation is given for growth at 14 W RF power input and 400 mtorr total pressure on both InP and Si substrates. The process exhibits an activation energy of 8.4 + or - 0.6 kcal/mol.
NASA Technical Reports Server (NTRS)
Tsukamoto, Katsuo
1988-01-01
Direct visualization of three dimensional transfer process of both heat and mass around a growing crystal and mono-molecular growth layers on the surface is possible in situ by means of high resolution Hoffman modulation contrast microscopy coupled with three wavelength two beam Mach-Zehnder interferometry. This in situ observation is very suitable for the verification of the growth mechanism of a crystal in a solution or a melt in microgravity.
Penetration of carbon-fabric-reinforced composites by edge cracks during thermal aging
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Kamvouris, John E.
1994-01-01
Thermo-oxidative stability (TOS) test results are significantly influenced by the formation and growth or presence of interlaminar and interlaminar cracks in the cut edges of all carbon-fiber-crosslinked high-temperature polymer matrix composites(exp 1-5) (i.e., unidirectional, crossplied, angle-plied, and fabric composites). The thermo-oxidative degradation of these composites is heavily dependent on the surface area that is exposed to the harmful environment and on the surface-to-volume ratio of the structure under study. Since the growth of cracks and voids on the composite surfaces significantly increases the exposed surface areas, it is imperative that the interaction between the aging process and the formation of new surface area as the aging time progresses be understood.
NASA Astrophysics Data System (ADS)
Iskandarova, I. M.; Knizhnik, A. A.; Bagatur'yants, A. A.; Potapkin, B. V.; Korkin, A. A.
2004-05-01
First-principles calculations have been performed to determine the structures and relative energies of different zirconium chloride groups chemisorbed on the tetragonal ZrO2(001) surface and to study the effects of the surface coverage with metal chloride groups and the degree of hydroxylation on the adsorption energies of metal precursors. It is shown that the molecular and dissociative adsorption energies of the ZrCl4 precursor on the bare t-ZrO2(001) surface are too small to hold ZrCl4 molecules on the surface during an atomic layer deposition (ALD) cycle at temperatures higher than 300°C. On the contrary, it has been found that molecular adsorption on the fully hydroxylated zirconia surface leads to the formation of a stable adsorbed complex. This strong adsorption of ZrCl4 molecules can lead to a decrease in the film growth rate of the ALD process at lower temperatures (<200°C). The energies of interaction between adsorbed ZrCl4 groups at a 50% surface coverage has been found to be relatively small, which explains the maximum film growth rate observed in the ZrCl4:H2O ALD process. Moreover, we found that the adsorbed ZrCl4 precursors after hydrolysis give rise to very stable hydroxyl groups, which can be responsible for film growth at high temperatures (up to 900°C).
Influence of substrate surface loading on the kinetic behaviour of aerobic granules.
Liu, Yu; Liu, Yong-Qiang; Wang, Zhi-Wu; Yang, Shu-Fang; Tay, Joo-Hwa
2005-06-01
In the aerobic granular sludge reactor, the substrate loading is related to the size of the aerobic granules cultivated. This study investigated the influence of substrate surface loading on the growth and substrate-utilization kinetics of aerobic granules. Results showed that microbial surface growth rate and surface biodegradation rate are fairly related to the substrate surface loading by the Monod-type equation. In this study, both the theoretical maximum growth yield and the Pirt maintenance coefficient were determined. It was found that the estimated theoretical maximum growth yield of aerobic granules was as low as 0.2 g biomass g(-1) chemical oxygen demand (COD) and 10-40% of input substrate-COD was consumed through the maintenance metabolism, while experimental results further showed that the unit oxygen uptake by aerobic granules was 0.68 g oxygen g(-1) COD, which was much higher than that reported in activated sludge processes. Based on the growth yield and unit oxygen uptake determined, an oxidative assimilation equation of acetate-fed aerobic granules was derived; and this was confirmed by respirometric tests. In aerobic granular culture, about 74% of the input substrate-carbon was converted to carbon dioxide. The growth yield of aerobic granules was three times lower than that of activated sludge. It is likely that high carbon dioxide production is the main cause of the low growth yield of aerobic granules, indicating a possible energy uncoupling in aerobic granular culture.
Status and directions of modified tribological surfaces by ion processes
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1988-01-01
An overview is presented of recent advances in modifying contacting surfaces in motion by the various ion assisted surface coating/modification processes to reduce and control tribological failures. The ion assisted coating processes and the surface modification processes offer the greatest potential to custom tailor and optimize the tribological performance. Hard, wear resistant and low shear coatings deposited by the ion assisted processes are discussed. Primarily the recent advances of sputtered MoS2 ion plated Au, Ag, Pb lubricating films and sputtered and ion plated hard, wear resistant TiN, HfN, TiC films are described in terms of structural property performance interrelationships which lead to improved adhesion, cohesion, nucleation, morphological growth, density, film thickness as determined by structural and chemical characterization and frictional and wear behavior. Also, the recent tribological advances using the surface modification processes such as ion implantation, ion beam mixing is discussed with emphasis on the development of lubricous high temperature ceramic surfaces.
NASA Astrophysics Data System (ADS)
Zhang, H.; Huang, Chongxiang; Guan, Zhongwei; Li, Jiukai; Liu, Yongjie; Chen, Ronghua; Wang, Qingyuan
2018-01-01
The purpose of this study was to evaluate rotary bending high-cycle fatigue properties and crack growth of Nimonic 80A-based metal and electron beam-welded joints. All the tests were performed at room temperature. Fracture surfaces under high-cycle fatigue and fatigue crack growth were observed by scanning electron microscopy. Microstructure, hardness and tensile properties were also evaluated in order to understand the effects on the fatigue results obtained. It was found that the tensile properties, hardness and high-cycle fatigue properties of the welded joint are lower than the base metal. The fracture surface of the high-cycle fatigue shows that fatigue crack initiated from the surface under the high stress amplitude and from the subsurface under the low stress amplitude. The effect of the welding process on the statistical fatigue data was studied with a special focus on probabilistic life prediction and probabilistic lifetime limits. The fatigue crack growth rate versus stress intensity factor range data were obtained from the fatigue crack growth tests. From the results, it was evident that the fatigue crack growth rates of the welded are higher than the base metal. The mechanisms and fracture modes of fatigue crack growth of welded specimens were found to be related to the stress intensity factor range ΔK. In addition, the effective fatigue crack propagation thresholds and mismatch of welded joints were described and discussed.
Investigation of Low Cost Substrate Approaches for III-V Solar Cells
NASA Astrophysics Data System (ADS)
Lichty, Marlene Lydia
With the need for cleaner energy sources, which can displace fossil fuel, the solar cell industry is of particular interest due to the abundancy of the Sun. Silicon currently dominates terrestrial applications, but efficiency improvements have saturated. III-V based solar cells have reported the highest efficiencies, however, high costs due to substrates and fabrication processes have limited these devices to specialty applications, such as space. In order to reduce the cost associated with fabricating III-V semiconductor substrate material, two different approaches were taken in this work with a particular focus on making III-Vs more applicable outside of specialty applications, including InP, InAsnd Ge. Typical material characterization techniques were used to analyze the samples and processes studied in this thesis. The first process examined was the direct epitaxial growth of III-V materials by MOCVD on cheaper substrates. More specifically, the direct growth of InP and InAs on metal foils. A growth time study and surface coverage analysis was performed for the growth of InP. A characterization study was then conducted on the second process, the aluminum- induced crystallization of germanium to determine the effects this process had on the surface. Crystalline InP, InAs and Ge were successfully characterized in this work, and show promise for use in cheaper III-V alternatives to terrestrial energy solutions.
Nie, Yifan; Liang, Chaoping; Cha, Pil-Ryung; Colombo, Luigi; Wallace, Robert M; Cho, Kyeongjae
2017-06-07
Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales, but its application to the growth modeling of van der Waals (vdW) heterostructures has not yet been developed. Specifically, the growth of single-layered transition metal dichalcogenides (TMDs) is currently facing tremendous challenges, and a detailed understanding based on KMC simulations would provide critical guidance to enable controlled growth of vdW heterostructures. In this work, a KMC simulation method is developed for the growth modeling on the vdW epitaxy of TMDs. The KMC method has introduced full material parameters for TMDs in bottom-up synthesis: metal and chalcogen adsorption/desorption/diffusion on substrate and grown TMD surface, TMD stacking sequence, chalcogen/metal ratio, flake edge diffusion and vacancy diffusion. The KMC processes result in multiple kinetic behaviors associated with various growth behaviors observed in experiments. Different phenomena observed during vdW epitaxy process are analysed in terms of complex competitions among multiple kinetic processes. The KMC method is used in the investigation and prediction of growth mechanisms, which provide qualitative suggestions to guide experimental study.
Laser Sintered Porous Ti-6Al-4V Implants Stimulate Vertical Bone Growth.
Cheng, Alice; Cohen, David J; Kahn, Adrian; Clohessy, Ryan M; Sahingur, Kaan; Newton, Joseph B; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi
2017-08-01
The objective of this study was to examine the ability of 3D implants with trabecular-bone-inspired porosity and micro-/nano-rough surfaces to enhance vertical bone ingrowth. Porous Ti-6Al-4V constructs were fabricated via laser-sintering and processed to obtain micro-/nano-rough surfaces. Male and female human osteoblasts were seeded on constructs to analyze cell morphology and response. Implants were then placed on rat calvaria for 10 weeks to assess vertical bone ingrowth, mechanical stability and osseointegration. All osteoblasts showed higher levels of osteocalcin, osteoprotegerin, vascular endothelial growth factor and bone morphogenetic protein 2 on porous constructs compared to solid laser-sintered controls. Porous implants placed in vivo resulted in an average of 3.1 ± 0.6 mm 3 vertical bone growth and osseointegration within implant pores and had significantly higher pull-out strength values than solid implants. New bone formation and pull-out strength was not improved with the addition of demineralized bone matrix putty. Scanning electron images and histological results corroborated vertical bone growth. This study indicates that Ti-6Al-4V implants fabricated by additive manufacturing to have porosity based on trabecular bone and post-build processing to have micro-/nano-surface roughness can support vertical bone growth in vivo, and suggests that these implants may be used clinically to increase osseointegration in challenging patient cases.
Development of Hairpin Vortices in Turbulent Spots and End-Wall Transition
NASA Technical Reports Server (NTRS)
Smith, Charles R.
2007-01-01
The end-stage phase of boundary layer transition is characterized by the development of hairpin-like vortices which evolve rapidly into patches of turbulent behavior. In general, the characteristics of the evolution form this hairpin stage to the turbulent stage is poorly understood, which has prompted the present experimental examination of hairpin vortex development and growth processes. Two topics of particular relevance to the workshop focus will be covered: 1) the growth of turbulent spots through the generatio and amalgamation of hairpin-like vortices, and 2) the development of hairpin vortices during transition in an end-wall junction flow. Brief summaries of these studies are described below. Using controlled generation of hairpin vortices by surface injection in a critical laminar boundary layer, detailed flow visualization studies have been done of the phases of growth of single hairpin vortices, from the initial hairgin generation, through the systematic generation of secondary hairpin-like flow structures, culminating in the evolution to a turbulent spot. The key to the growth process is strong vortex-surface interactions, which give rise to strong eruptive events adjacent to the surface, which results in the generation of subsequent hairpin vortex structures due to inviscid-viscuous interactions between the eruptive events and the free steam fluid. The general process of vortex-surface fluid interaction, coupled with subsequent interactions and amalgamation of the generated multiple hairpin-type vortices, is demonstrated as a physical mechanism for the growth and development of turbulent spots. When a boundary layer flow along a surface encounters a bluff body obstruction extending from the surface (such as cylinder or wing), the strong adverse pressure gradients generated by these types of flows result in the concentration of the impinging vorticity into a system of discrete vortices near the end-wall juncture of the obstruction, with the extensions of the vortices engirdling the obstruction to form "necklace" or "horseshoe" vortices. Recent hydrogen bubble and particle image visualization have shown that as Reynolds number is increased for a laminar approach flow, the flow will become critical, and a destabilization of the necklace vortices results in the development of an azimuthal waviness, or "kinks", in the vortices. These vortex kinks are accentuated by Biot-Savart effects, causing portions of a distorted necklace vortex to make a rapid approach to the surface, precipitating processes of localized, three-dimensional surface interactions. These interactions result in the rapid generation, focussing, and ejection of thin tongues of surface fluid, which rapidly roll-over and appear as hairpin vortices in the junction region. Subsequent amalgamation of these hairpin vortices with the necklace vortices produces a complex transitional-type flow. A presentation of key results from both these studies will be done, emphasizing both the ubiquity of such hairpin-type flow structures in manifold transitional-type flows, and the importance of vortex-surface interactions n the development of hairpin vortices.
Surface diffusion effects on growth of nanowires by chemical beam epitaxy
NASA Astrophysics Data System (ADS)
Persson, A. I.; Fröberg, L. E.; Jeppesen, S.; Björk, M. T.; Samuelson, L.
2007-02-01
Surface processes play a large role in the growth of semiconductor nanowires by chemical beam epitaxy. In particular, for III-V nanowires the surface diffusion of group-III species is important to understand in order to control the nanowire growth. In this paper, we have grown InAs-based nanowires positioned by electron beam lithography and have investigated the dependence of the diffusion of In species on temperature, group-III and -V source pressure and group-V source combinations by measuring nanowire growth rate for different nanowire spacings. We present a model which relates the nanowire growth rate to the migration length of In species. The model is fitted to the experimental data for different growth conditions, using the migration length as fitting parameter. The results show that the migration length increases with decreasing temperature and increasing group-V/group-III source pressure ratio. This will most often lead to an increase in growth rate, but deviations will occur due to incomplete decomposition and changes in sticking coefficient for group-III species. The results also show that the introduction of phosphorous precursor for growth of InAs1-xPx nanowires decreases the migration length of the In species followed by a decrease in nanowire growth rate.
Real time quantitative imaging for semiconductor crystal growth, control and characterization
NASA Technical Reports Server (NTRS)
Wargo, Michael J.
1991-01-01
A quantitative real time image processing system has been developed which can be software-reconfigured for semiconductor processing and characterization tasks. In thermal imager mode, 2D temperature distributions of semiconductor melt surfaces (900-1600 C) can be obtained with temperature and spatial resolutions better than 0.5 C and 0.5 mm, respectively, as demonstrated by analysis of melt surface thermal distributions. Temporal and spatial image processing techniques and multitasking computational capabilities convert such thermal imaging into a multimode sensor for crystal growth control. A second configuration of the image processing engine in conjunction with bright and dark field transmission optics is used to nonintrusively determine the microdistribution of free charge carriers and submicron sized crystalline defects in semiconductors. The IR absorption characteristics of wafers are determined with 10-micron spatial resolution and, after calibration, are converted into charge carrier density.
NASA Astrophysics Data System (ADS)
Datta, Amlan; Moed, Demi; Becla, Piotr; Overholt, Matthew; Motakef, Shariar
2016-10-01
Thallium bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. However, several critical issues need to be addressed before deployment of this material for long-term field applications can be realized. In this paper, progress made towards solving some of these challenges is discussed. The most significant factors for achieving long-term performance stability for TlBr devices include residual stress as generated during crystal growth and fabrication processes, surface conditions, and the choice of contact metal. Modifications to the commonly used traveling molten zone growth technique for TlBr crystals can significantly minimize the stresses generated by large temperature gradients near the melt-solid interface of the growing crystal. Plasma processing techniques were introduced for the first time to modify the Br-etched TlBr surfaces, which resulted in improvements to the surface conditions, and consequently the spectroscopic response of the detectors. Palladium electrodes resulted a 20-fold improvement in the room-temperature device lifetime when compared to its Br-etched Pt counterpart.
NASA Astrophysics Data System (ADS)
Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.
2018-01-01
Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.
Microspheres for the growth of silicon nanowires via vapor-liquid-solid mechanism
Gomez-Martinez, Arancha; Marquez, Francisco; Elizalde, Eduardo; ...
2014-01-01
Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. Here, the resulting material is composed of the microspheres with the silicon nanowires attached on their surface.
Nucleation and growth of chimney pores during electron-beam additive manufacturing
Cordero, Zachary C.; Dinwiddie, Ralph B.; Immel, David; ...
2016-12-05
The nucleation and growth of chimney pores during powder-bed, electron-beam additive manufacturing is investigated using in-situ infrared thermography as well as microcomputed tomography of as-printed parts. The pores are found to nucleate at dimples on the part s surface, clearly demonstrating how process parameters can affect surface roughness, which can in turn affect the internal defect structure in an additive manufactured part. Based on the results of this study, several strategies for suppressing the formation of chimney pores are discussed.
Unconstrained Heterogeneous Colloidal Quantum Dots Embedded in GaAs/GaSb Nanovoids
2014-04-17
ex-situ techniques when it comes to both CQD integration as well as regrowth, since the surface is free of contaminants and native oxides . 3.0...monitor the growth surface. The growth was started on a GaSb substrate through a thermal oxide desorption process at 540 C and then a GaSb smoothing...reduces the danger of contamination and/or oxidation of the produced CQDs, and also provides for the removal of any gas byproducts from the
Estimation of the specific surface area for a porous carrier.
Levstek, Meta; Plazl, Igor; Rouse, Joseph D
2010-03-01
In biofilm systems, treatment performance is primarily dependent upon the available biofilm growth surface area in the reactor. Specific surface area is thus a parameter that allows for making comparisons between different carrier technologies used for wastewater treatment. In this study, we estimated the effective surface area for a spherical, porous polyvinyl alcohol (PVA) gel carrier (Kuraray) that has previously demonstrated effectiveness for retention of autotrophic and heterotrophic biomass. This was accomplished by applying the GPS-X modeling tool (Hydromantis) to a comparative analysis of two moving-bed biofilm reactor (MBBR) systems. One system consisted of a lab-scale reactor that was fed synthetic wastewater under autotrophic conditions where only the nitrification process was studied. The other was a pre-denitrification pilot-scale plant that was fed real, primary-settled wastewater. Calibration of an MBBR process model for both systems indicated an effective specific surface area for PVA gel of 2500 m2/m3, versus a specific surface area of 1000 m2/m3 when only the outer surface of the gel beads is considered. In addition, the maximum specific growth rates for autotrophs and heterotrophs were estimated to be 1.2/day and 6.0/day, respectively.
Nanostructured Coatings of Inner Surfaces in Microporous Matrixes
2000-01-01
SURFACE ENERGY _.I", DISPERSED MATERIAL............................ ,BULK MATERIp,’ t. i02 10’ iol LM Figure 1. a) Surface arising due to process of...material dispersion . b) Surface energy per cm3 of dispersed material versus characteristic size of dispersed particles - nanostructures with different...growth and lateral microstructuring techniques have made it possible to realise low-dimensional electronic systems with quantum confined energy structure
NASA Astrophysics Data System (ADS)
Brown, G. J.; Haugan, H. J.; Mahalingam, K.; Grazulis, L.; Elhamri, S.
2015-01-01
The objective of this work is to establish molecular beam epitaxy (MBE) growth processes that can produce high quality InAs/GaInSb superlattice (SL) materials specifically tailored for very long wavelength infrared (VLWIR) detection. To accomplish this goal, several series of MBE growth optimization studies, using a SL structure of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, were performed to refine the MBE growth process and optimize growth parameters. Experimental results demonstrated that our "slow" MBE growth process can consistently produce an energy gap near 50 meV. This is an important factor in narrow band gap SLs. However, there are other growth factors that also impact the electrical and optical properties of the SL materials. The SL layers are particularly sensitive to the anion incorporation condition formed during the surface reconstruction process. Since antisite defects are potentially responsible for the inherent residual carrier concentrations and short carrier lifetimes, the optimization of anion incorporation conditions, by manipulating anion fluxes, anion species, and deposition temperature, was systematically studied. Optimization results are reported in the context of comparative studies on the influence of the growth temperature on the crystal structural quality and surface roughness performed under a designed set of deposition conditions. The optimized SL samples produced an overall strong photoresponse signal with a relatively sharp band edge that is essential for developing VLWIR detectors. A quantitative analysis of the lattice strain, performed at the atomic scale by aberration corrected transmission electron microscopy, provided valuable information about the strain distribution at the GaInSb-on-InAs interface and in the InAs layers, which was important for optimizing the anion conditions.
Survey Analysis of Materials Processing Experiments Aboard STS-47: Spacelab J
NASA Technical Reports Server (NTRS)
Sharpe, R. J.; Wright, M. D.
2009-01-01
This Technical Memorandum (TM) is a survey outline of materials processing experiments aboard Space Shuttle Mission STS-47: Spacelab J, a joint venture between NASA and the National Space Development Agency of Japan. The mission explored materials processing experiments including electronics and crystal growth materials, metals and alloys, glasses and ceramics, and fluids. Experiments covered include Growth of Silicone Spherical Crystals and Surface Oxidation, Growth Experiment of Narrow Band-Gap Semiconductor Lead-Tin-Tellurium Crystals in Space, Study on Solidification of Immiscible Alloys, Fabrication of Very-Low-Density, High-Stiffness Carbon Fiber/Aluminum Hybridized Composites, High Temperature Behavior of Glass, and Study of Bubble Behavior. The TM underscores the historical significance of these experiments in the context of materials processing in space.
NASA Astrophysics Data System (ADS)
DuMont, Jaime Willadean
In this thesis, in situ Fourier transform infrared (FTIR) spectroscopy was used to study: i) the growth and pyrolysis of molecular layer deposition (MLD) films. ii) the surface chemistry of atomic layer etching (ALE) processes. Atomic layer processes such as molecular layer deposition (MLD) and atomic layer etching (ALE) are techniques that can add or remove material with atomic level precision using sequential, self-limiting surface reactions. Deposition and removal processes at the atomic scale are powerful tools for many industrial and research applications such as energy storage and semiconductor nanofabrication. The first section of this thesis describes the chemistry of reactions leading to the MLD of aluminum and tin alkoxide polymer films known as "alucone" and "tincone", respectively. The subsequent pyrolysis of these films to produce metal oxide/carbon composites was also investigated. In situ FTIR spectroscopy was conducted to monitor surface species during MLD film growth and to monitor the films background infrared absorbance versus pyrolysis temperature. Ex situ techniques such as transmission electron microscopy (TEM), four-point probe and X-ray diffraction (XRD) were utilized to study the properties of the films post-pyrolysis. TEM confirmed that the pyrolyzed films maintained conformality during post-processing. Four-point probe monitored film resistivity versus pyrolysis temperature and XRD determined the film crystallinity. The second section of this thesis focuses on the surface chemistry of Al2O3 and SiO2 ALE processes, respectively. Thermal ALE processes have been recently developed which utilize sequential fluorination and ligand exchange reactions. An intimate knowledge of the surface chemistry is important in understanding the ALE process. In this section, the competition between the Al2O3 etching and AlF 3 growth that occur during sequential HF (fluorinating agent) and TMA (ligand exchange) exposures is investigated using in situ FTIR spectroscopy. Also included in this section is the first demonstration of thermal ALE for SiO2. In situ FTIR spectroscopy was conducted to monitor the loss of bulk Si-O vibrational modes corresponding to the removal of SiO2. FTIR was also used to monitor surface species during each ALE half cycle and to verify self-limiting behavior. X-ray reflectivity experiments were conducted to establish etch rates on thermal oxide silicon wafers.
Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth
NASA Astrophysics Data System (ADS)
Richter, Wolfgang
2007-06-01
In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ("alchemy") because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.
Fracture mechanics and surface chemistry investigations of environment-assisted crack growth
NASA Technical Reports Server (NTRS)
Wei, R. P.; Klier, K.; Simmons, G. W.; Chou, Y. T.
1984-01-01
It is pointed out that environment-assisted subcritical crack growth in high-strength steels and other high-strength alloys (particularly in hydrogen and in hydrogenous environments) is an important technological problem of long standing. This problem is directly related to issues of structural integrity, durability, and reliability. The terms 'hydrogen embrittlement' and 'stress corrosion cracking' have been employed to describe the considered phenomenon. This paper provides a summary of contributions made during the past ten years toward the understanding of environmentally assisted crack growth. The processes involved in crack growth are examined, and details regarding crack growth and chemical reactions are discussed, taking into account crack growth in steels exposed to water/water vapor, the effect of hydrogen, reactions involving hydrogen sulfide, and aspects of fracture surface morphology and composition. Attention is also given to the modeling of crack growth response, crack growth in gas mixtures, and the interaction of solute atoms with the crack-tip stress field.
Subtle charge balance controls surface-nucleated self-assembly of designed biopolymers.
Charbonneau, Céline; Kleijn, J Mieke; Cohen Stuart, Martien A
2014-03-25
We report the surface-nucleated self-assembly into fibrils of a biosynthetic amino acid polymer synthesized by the yeast Pichia pastoris. This polymer has a block-like architecture, with a central silk-like block labeled SH, responsible for the self-assembly into fibrils, and two collagen-like random coil end blocks (C) that colloidally stabilize the fibers in aqueous solution. The silk-like block contains histidine residues (pKa≈6) that are positively charged in the low pH region, which hinders self-assembly. In aqueous solution, CSHC self-assembles into fibers above a pH-dependent critical nucleation concentration Ccb. Below Ccb, where no self-assembly occurs in solution, fibril formation can be induced by a negatively charged surface (silica) in the pH range of 3.5-7. The density of the fibers at the surface and their length are controlled by a subtle balance in charge between the protein polymer and the silica surface, which is evidenced from the dependence on pH. With increasing number density of the fibers at the surface, their average length decreases. The results can be explained on the basis of a nucleation-and-growth mechanism: the surface density of fibers depends on the rate of nucleation, while their growth rate is limited by transport of proteins from solution. Screening of the charges on the surface and histidine units by adding NaCl influences the nucleation-and-growth process in a complicated fashion: at low pH, the growth is improved, while at high pH, the nucleation is limited. Under conditions where nucleation in the bulk solution is not possible, growth of the surface-nucleated fibers into the solution--away from the surface--can still occur.
Steady-state solution growth of microcrystalline silicon on nanocrystalline seed layers on glass
NASA Astrophysics Data System (ADS)
Bansen, R.; Ehlers, C.; Teubner, Th.; Boeck, T.
2016-09-01
The growth of polycrystalline silicon layers on glass from tin solutions at low temperatures is presented. This approach is based on the steady-state solution growth of Si crystallites on nanocrystalline seed layers, which are prepared in a preceding process step. Scanning electron microscopy and atomic force microscopy investigations reveal details about the seed layer surfaces, which consist of small hillocks, as well as about Sn inclusions and gaps along the glass substrate after solution growth. The successful growth of continuous microcrystalline Si layers with grain sizes up to several ten micrometers shows the feasibility of the process and makes it interesting for photovoltaics. Project supported by the German Research Foundation (DFG) (No. BO 1129/5-1).
Growth of Defect-Free 3C-SiC on 4H- and 6H-SiC Mesas Using Step-Free Surface Heteroepitaxy
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Powell, J. Anthony; Trunek, Andrew J.; Huang, Xianrong R.; Dudley, Michael
2001-01-01
A new growth process, herein named step-free surface heteroepitaxy, has achieved 3CSiC films completely free of double positioning boundaries and stacking faults on 4H-SiC and 6H-SiC substrate mesas. The process is based upon the initial 2-dimensional nucleation and lateral expansion of a single island of 3C-SiC on a 4H- or 6H-SiC mesa surface that is completely free of bilayer surface steps. Our experimental results indicate that substrate-epilayer in-plane lattice mismatch (delta a/a = 0.0854% for 3C/4H) is at least partially relieved parallel to the interface in the initial bilayers of the heterofilm, producing an at least partially relaxed 3C-SiC film without dislocations that undesirably thread through the thickness of the epilayer. This result should enable realization of improved 3C-SiC devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larimer, Curtis; Suter, Jonathan D.; Bonheyo, George
Biofilms are ubiquitous and deleteriously impact a wide range of industrial processes, medical and dental health issues, and environmental problems such as transport of invasive species and the fuel efficiency of ocean going vessels. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein we describe a non-destructive high resolution method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometric optical microscopy. Using this technique, surface morphology, surface roughness, and biofilm thickness can be measured non-destructively and with high resolutionmore » as a function of time without disruption of the biofilm activity and processes. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Typical bacterial growth curves were observed. Increase in surface roughness was a leading indicator of biofilm growth.« less
Schlegelová, J; Babák, V; Holasová, M; Dendis, M
2008-01-01
Isolates from the "farm to fork" samples (182 isolates from 2779 samples) were examined genotypically (icaAB genes) and phenotypically (in vitro biofilm formation, typical growth on Congo red agar; CRA) with the aim to assess the risk of penetration of virulent strains of Staphylococcus epidermidis into the food chain. The contamination of meat and milk products was significantly higher in comparison with raw materials. Contamination of contact surfaces in the meat-processing plants was significantly lower than that of contact surfaces in the dairy plants. The ica genes (which precondition the biofilm formation) were concurrently detected in 20 isolates that also showed a typical growth on CRA. Two ica operon-negative isolates produced biofilm in vitro but perhaps by an ica-independent mechanism. The surfaces in the dairy plants and the milk products were more frequently contaminated with ica operon-positive strains (2.3 and 1.2 % samples) than the other sample types (0-0.6 % samples).
Sedao, Xxx; Shugaev, Maxim V; Wu, Chengping; Douillard, Thierry; Esnouf, Claude; Maurice, Claire; Reynaud, Stéphanie; Pigeon, Florent; Garrelie, Florence; Zhigilei, Leonid V; Colombier, Jean-Philippe
2016-07-26
The structural changes generated in surface regions of single crystal Ni targets by femtosecond laser irradiation are investigated experimentally and computationally for laser fluences that, in the multipulse irradiation regime, produce sub-100 nm high spatial frequency surface structures. Detailed experimental characterization of the irradiated targets combining electron back scattered diffraction analysis with high-resolution transmission electron microscopy reveals the presence of multiple nanoscale twinned domains in the irradiated surface regions of single crystal targets with (111) surface orientation. Atomistic- and continuum-level simulations performed for experimental irradiation conditions reproduce the generation of twinned domains and establish the conditions leading to the formation of growth twin boundaries in the course of the fast transient melting and epitaxial regrowth of the surface regions of the irradiated targets. The observation of growth twins in the irradiated Ni(111) targets provides strong evidence of the role of surface melting and resolidification in the formation of high spatial frequency surface structures. This also suggests that the formation of twinned domains can be used as a sensitive measure of the levels of liquid undercooling achieved in short pulse laser processing of metals.
NASA Technical Reports Server (NTRS)
Penn, B. G.; Shields, A.; Frazier, D. O.
1988-01-01
Methods for the growth of polydiacetylene thin films by melt and vapor growth and their subsequent polymerization are summarized. Films with random orientations were obtained when glass or quartz were used as substrates in the vapor growth process. Oriented polydiacetylene films were fabricated by the vapor deposition of diacetylene monomer onto oriented polydiacetylene on a glass substrate and its subsequent polymerization by UV light. A method for the growth of oriented thin films by a melt-shear growth process as well as a method of film growth by seeded recrstallization from the melt between glass plates, that may be applied to the growth of polydiacetylene films, are described. Moreover, a method is presented for the fabrication of single crystal thin films of polyacetylenes by irradiation of the surface of diacetylene single crystals to a depth between 100 and 2000 angstroms.
Thermal effects in nano-sized adsorbate islands growth processes at vapor deposition
NASA Astrophysics Data System (ADS)
Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Dvornichenko, Alina V.
2016-02-01
We study a model of pattern formation in adsorptive systems with a local change in the surface temperature due to adsorption/desorption processes. It is found that thermal effects shrink the domain of main system parameters, when pattern formation is possible. It is shown that an increase in a surface reheat efficiency delays ordering processes. We have found that a distribution of adsorbate islands over sizes depends on relaxation and reheat processes. We have shown that the mean linear size of stationary adsorbate islands is of nano-meter range.
NASA Technical Reports Server (NTRS)
Sedbrook, John C.; Carroll, Kathleen L.; Hung, Kai F.; Masson, Patrick H.; Somerville, Chris R.
2002-01-01
To investigate how roots respond to directional cues, we characterized a T-DNA-tagged Arabidopsis mutant named sku5 in which the roots skewed and looped away from the normal downward direction of growth on inclined agar surfaces. sku5 roots and etiolated hypocotyls were slightly shorter than normal and exhibited a counterclockwise (left-handed) axial rotation bias. The surface-dependent skewing phenotype disappeared when the roots penetrated the agar surface, but the axial rotation defect persisted, revealing that these two directional growth processes are separable. The SKU5 gene belongs to a 19-member gene family designated SKS (SKU5 Similar) that is related structurally to the multiple-copper oxidases ascorbate oxidase and laccase. However, the SKS proteins lack several of the conserved copper binding motifs characteristic of copper oxidases, and no enzymatic function could be assigned to the SKU5 protein. Analysis of plants expressing SKU5 reporter constructs and protein gel blot analysis showed that SKU5 was expressed most strongly in expanding tissues. SKU5 was glycosylated and modified by glycosyl phosphatidylinositol and localized to both the plasma membrane and the cell wall. Our observations suggest that SKU5 affects two directional growth processes, possibly by participating in cell wall expansion.
Understanding the growth mechanism of graphene on Ge/Si(001) surfaces
NASA Astrophysics Data System (ADS)
Dabrowski, J.; Lippert, G.; Avila, J.; Baringhaus, J.; Colambo, I.; Dedkov, Yu S.; Herziger, F.; Lupina, G.; Maultzsch, J.; Schaffus, T.; Schroeder, T.; Kot, M.; Tegenkamp, C.; Vignaud, D.; Asensio, M.-C.
2016-08-01
The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene “molecules” nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.
Understanding the growth mechanism of graphene on Ge/Si(001) surfaces
Dabrowski, J.; Lippert, G.; Avila, J.; Baringhaus, J.; Colambo, I.; Dedkov, Yu S.; Herziger, F.; Lupina, G.; Maultzsch, J.; Schaffus, T.; Schroeder, T.; Kot, M.; Tegenkamp, C.; Vignaud, D.; Asensio, M.-C.
2016-01-01
The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene “molecules” nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process. PMID:27531322
Understanding the growth mechanism of graphene on Ge/Si(001) surfaces.
Dabrowski, J; Lippert, G; Avila, J; Baringhaus, J; Colambo, I; Dedkov, Yu S; Herziger, F; Lupina, G; Maultzsch, J; Schaffus, T; Schroeder, T; Kot, M; Tegenkamp, C; Vignaud, D; Asensio, M-C
2016-08-17
The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene "molecules" nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Tao, Wei-Kuo; Lau, William K. M. (Technical Monitor)
2002-01-01
The sensitivities to surface friction and the Coriolis parameter in tropical cyclogenesis are studied using an axisymmetric version of the Goddard cloud ensemble model. Our experiments demonstrate that tropical cyclogenesis can still occur without surface friction. However, the resulting tropical cyclone has very unrealistic structure. Surface friction plays an important role of giving the tropical cyclones their observed smaller size and diminished intensity. Sensitivity of the cyclogenesis process to surface friction. in terms of kinetic energy growth, has different signs in different phases of the tropical cyclone. Contrary to the notion of Ekman pumping efficiency, which implies a preference for the highest Coriolis parameter in the growth rate if all other parameters are unchanged, our experiments show no such preference.
NASA Astrophysics Data System (ADS)
Futko, S. I.; Shulitskii, B. G.; Labunov, V. A.; Ermolaeva, E. M.
2016-11-01
A kinetic model of isothermal synthesis of multilayer graphene on the surface of a nickel foil in the process of chemical vapor deposition, on it, of hydrocarbons supplied in the pulsed regime is considered. The dependences of the number of graphene layers formed and the time of their growth on the temperature of the process, the concentration of acetylene, and the thickness of the nickel foil were calculated. The regime parameters of the process of chemical vapor deposition, at which single-layer graphene and bi-layer graphene are formed, were determined. The dynamics of growth of graphene domains at chemical-vapor-deposition parameters changing in wide ranges was investigated. It is shown that the time dependences of the rates of growth of single-layer graphene and bi-layer graphene are nonlinear in character and that they are determined by the kinetics of nucleation and growth of graphene and the diffusion flow of carbon atoms in the nickel foil.
Visible light-induced insulin aggregation on surfaces via photoexcitation of bound thioflavin T.
Chouchane, Karim; Pignot-Paintrand, Isabelle; Bruckert, Franz; Weidenhaupt, Marianne
2018-04-01
Insulin is known to form amyloid aggregates when agitated in a hydrophobic container. Amyloid aggregation is routinely measured by the fluorescence of the conformational dye thioflavin T, which, when incorporated into amyloid fibers, fluoresces at 480 nm. The kinetics of amyloid aggregation in general is characterized by an initial lag-phase, during which aggregative nuclei form on the hydrophobic surface. These nuclei then lead to the formation of fibrils presenting a rapid growth during the elongation phase. Here we describe a novel mechanism of insulin amyloid aggregation which is surprisingly devoid of a lag-time for nucleation. The excitation of thioflavin T by visible light at 440 nm induces the aggregation of thioflavin T-positive insulin fibrils on hydrophobic surfaces in the presence of strong agitation and at physiological pH. This process is material surface-induced and depends on the fact that surface-adsorbed insulin can bind thioflavin T. Light-induced insulin aggregation kinetics is thioflavin T-mediated and is based on an energy transfer from visible light to the protein via thioflavin T. It relies on a constant supply of thioflavin T and insulin from the solution to the aggregate. The growth rate increases with the irradiance and with the concentration of thioflavin T. The supply of insulin seems to be the limiting factor of aggregate growth. This light-induced aggregation process allows the formation of local surface-bound aggregation patterns. Copyright © 2018 Elsevier B.V. All rights reserved.
Application Of Optical Processing For Growth Of Silicon Dioxide
Sopori, Bhushan L.
1997-06-17
A process for producing a silicon dioxide film on a surface of a silicon substrate. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm.sup.2 to about 6 watts/cm.sup.2 for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm.sup.2 for growth of a 100.ANG.-300.ANG. film at a resultant temperature of about 400.degree. C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO.sub.2 /Si interface to be very low.
Growth and modelling of spherical crystalline morphologies of molecular materials
NASA Astrophysics Data System (ADS)
Shalev, O.; Biswas, S.; Yang, Y.; Eddir, T.; Lu, W.; Clarke, R.; Shtein, M.
2014-10-01
Crystalline, yet smooth, sphere-like morphologies of small molecular compounds are desirable in a wide range of applications but are very challenging to obtain using common growth techniques, where either amorphous films or faceted crystallites are the norm. Here we show solvent-free, guard flow-assisted organic vapour jet printing of non-faceted, crystalline microspheroids of archetypal small molecular materials used in organic electronic applications. We demonstrate how process parameters control the size distribution of the spheroids and propose an analytical model and a phase diagram predicting the surface morphology evolution of different molecules based on processing conditions, coupled with the thermophysical and mechanical properties of the molecules. This experimental approach opens a path for exciting applications of small molecular organic compounds in optical coatings, textured surfaces with controlled wettability, pharmaceutical and food substance printing and others, where thick organic films and particles with high surface area are needed.
Subsurface Growth of CoSi2 by Deposition of Co on Si-Capped CoSi2 Seed Regions
NASA Technical Reports Server (NTRS)
Fathauer, R. W.; George, T.; Pike, W. T.
1991-01-01
At a growth temperature of 800 C, Co deposited on Si(111) diffuses through a Si cap and exhibits oriented growth on buried CoSi2 grains, a process referred to as endotaxy. This occurs preferentially to surface nucleation of CoSi2 provided the thickness of the Si cap is less than a critical value between 100 and 200 nm for a deposition rate of 0.01 nm/s. Steady-state endotaxy is modeled under the assumption that the process is controlled by Co diffusion.
NASA Astrophysics Data System (ADS)
Choi, Kyeonggon; Lee, Kiyeol; Jeong, Jaehoon; Ye, Jongpil
2017-03-01
We present the results of low-temperature growth of graphene on polycrystalline copper foil surfaces at 800 °C by using low-pressure chemical-vapor deposition of alcohol precursors. The structural quality of the graphene sample was found to depend significantly on the ambient conditions during the annealing and the growth processes. The improved quality of graphene grown in an oxidizing environment was found to be associated with a lower nucleation density, suggesting that chemisorbed oxygen atoms play a critical role in determining the quality of graphene.
Frost grain size metamorphism - Implications for remote sensing of planetary surfaces
NASA Technical Reports Server (NTRS)
Clark, R. N.; Fanale, F. P.; Zent, A. P.
1983-01-01
The effective grain size of a material on a planetary surface affects the strength of absorption features observed in the reflectance of a particulate surface. In the case of a planetary surface containing volatile ices, the absorption characteristics can change in connection with processes leading to a change in the grain size of the material. The present investigation is concerned with an evaluation regarding the occurrence of such processes and the implications for remote sensing applications. It is found that quantitative modeling of the kinetics of grain growth and destruction by thermal and nonthermal processes can provide a means to reconcile apparent optical paths in the volatile portions of planetary surfaces with the physical history of those surfaces. Attention is also given to conditions in the case of the Pluto/Triton system, Uranus and Saturnian satellites, and the Galilean system.
In Vitro Characterization of the Two-Stage Non-Classical Reassembly Pathway of S-Layers
Breitwieser, Andreas; Iturri, Jagoba; Toca-Herrera, Jose-Luis; Sleytr, Uwe B.; Pum, Dietmar
2017-01-01
The recombinant bacterial surface layer (S-layer) protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i) adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii) the recrystallization process is triggered—after washing away the unbound S-layer protein—by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating) with tailor-made biological sensing layers. PMID:28216572
Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids
NASA Astrophysics Data System (ADS)
Cai, Y.; Wu, H. A.; Luo, S. N.
2014-06-01
Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (˜0.9 J {m}^{-2}) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (1033 - 34 s-1 m-3) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.
Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.
Cai, Y; Wu, H A; Luo, S N
2014-06-07
Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (~0.9 J m⁻²) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10(33 - 34) s(-1) m(-3)) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.
Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wu, H. A., E-mail: wuha@ustc.edu.cn
2014-06-07
Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energymore » barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (∼0.9 J m{sup −2}) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10{sup 33−34} s{sup −1} m{sup −3}) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.« less
Does the Sverdrup critical depth model explain bloom dynamics in estuaries?
Lucas, L.V.; Cloern, J.E.; Koseff, Jeffrey R.; Monismith, Stephen G.; Thompson, J.K.
1998-01-01
In this paper we use numerical models of coupled biological-hydrodynamic processes to search for general principles of bloom regulation in estuarine waters. We address three questions: what are the dynamics of stratification in coastal systems as influenced by variable freshwater input and tidal stirring? How does phytoplankton growth respond to these dynamics? Can the classical Sverdrup Critical Depth Model (SCDM) be used to predict the timing of bloom events in shallow coastal domains such as estuaries? We present results of simulation experiments which assume that vertical transport and net phytoplankton growth rates are horizontally homogeneous. In the present approach the temporally and spatially varying turbulent diffusivities for various stratification scenarios are calculated using a hydrodynamic code that includes the Mellor-Yamada 2.5 turbulence closure model. These diffusivities are then used in a time- and depth-dependent advection-diffusion equation, incorporating sources and sinks, for the phytoplankton biomass. Our modeling results show that, whereas persistent stratification greatly increases the probability of a bloom, semidiurnal periodic stratification does not increase the likelihood of a phytoplankton bloom over that of a constantly unstratified water column. Thus, for phytoplankton blooms, the physical regime of periodic stratification is closer to complete mixing than to persistent stratification. Furthermore, the details of persistent stratification are important: surface layer depth, thickness of the pycnocline, vertical density difference, and tidal current speed all weigh heavily in producing conditions which promote the onset of phytoplankton blooms. Our model results for shallow tidal systems do not conform to the classical concepts of stratification and blooms in deep pelagic systems. First, earlier studies (Riley, 1942, for example) suggest a monotonic increase in surface layer production as the surface layer shallows. Our model results suggest, however, a nonmonotonic relationship between phytoplankton population growth and surface layer depth, which results from a balance between several 'competing' processes, including the interaction of sinking with turbulent mixing and average net growth occurring within the surface layer. Second, we show that the traditional SCDM must be refined for application to energetic shallow systems or for systems in which surface layer mixing is not strong enough to counteract the sinking loss of phytoplankton. This need for refinement arises because of the leakage of phytoplankton from the surface layer by turbulent diffusion and sinking, processes not considered in the classical SCDM. Our model shows that, even for low sinking rates and small turbulent diffusivities, a significant % of the phytoplankton biomass produced in the surface layer can be lost by these processes.
A kinetic model for stress generation in thin films grown from energetic vapor fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chason, E.; Karlson, M.; Colin, J. J.
We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on themore » grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.« less
Process for selectively patterning epitaxial film growth on a semiconductor substrate
Sheldon, P.; Hayes, R.E.
1984-12-04
Disclosed is a process for selectively patterning epitaxial film growth on a semiconductor substrate. The process includes forming a masking member on the surface of the substrate, the masking member having at least two layers including a first layer disposed on the substrate and the second layer covering the first layer. A window is then opened in a selected portion of the second layer by removing that portion to expose the first layer thereunder. The first layer is then subjected to an etchant introduced through the window to dissolve the first layer a sufficient amount to expose the substrate surface directly beneath the window, the first layer being adapted to preferentially dissolve at a substantially greater rate than the second layer so as to create an overhanging ledge portion with the second layer by undercutting the edges thereof adjacent the window. The epitaxial film is then deposited on the exposed substrate surface directly beneath the window. Finally, an etchant is introduced through the window to dissolve the remainder of the first layer so as to lift-off the second layer and materials deposited thereon to fully expose the balance of the substrate surface.
Process for selectively patterning epitaxial film growth on a semiconductor substrate
Sheldon, Peter; Hayes, Russell E.
1986-01-01
A process is disclosed for selectively patterning epitaxial film growth on a semiconductor substrate. The process includes forming a masking member on the surface of the substrate, the masking member having at least two layers including a first layer disposed on the substrate and the second layer covering the first layer. A window is then opened in a selected portion of the second layer by removing that portion to expose the first layer thereunder. The first layer is then subjected to an etchant introduced through the window to dissolve a sufficient amount of the first layer to expose the substrate surface directly beneath the window, the first layer being adapted to preferentially dissolve at a substantially greater rate than the second layer so as to create an overhanging ledge portion with the second layer by undercutting the edges thereof adjacent to the window. The epitaxial film is then deposited on the exposed substrate surface directly beneath the window. Finally, an etchant is introduced through the window to dissolve the remainder of the first layer so as to lift-off the second layer and materials deposited thereon to fully expose the balance of the substrate surface.
NASA Astrophysics Data System (ADS)
Jasikova, Darina; Kotek, Michal
2014-03-01
The development of industrial technology also brings with optimized surface quality, particularly where there is contact with food. Application ultra-hydrophobic surface significantly reduces the growth of bacteria and facilitates cleaning processes. Testing and evaluation of surface quality are used two methods: impinging droplet and inclined surface method optimized with high speed shadowgraphy, which give information about dynamic contact angle. This article presents the results of research into new methods of measuring ultra-hydrophobic patented technology.
Ni2C surface carbide to catalyze low-temperature graphene growth
NASA Astrophysics Data System (ADS)
Martinez-Gordillo, Rafael; Varvenne, Céline; Amara, Hakim; Bichara, Christophe
2018-05-01
The possibility to grow a graphene layer using the chemical-vapor-deposition technique over a Ni2C /Ni (111 ) substrate has been identified experimentally, with the advantage of having a lower processing temperature (T <500 ∘C ), compared to standard growth over a Ni (111 ) surface. To understand the role of the metal carbide/metal catalyst, we first perform a static study of the Ni2C /Ni (111 ) structure and of the binding and removal of a carbon atom at the surface, using both a tight-binding (TB) energetic model and ab initio calculations. Grand-canonical Monte Carlo TB simulations then allow us (i) to determine the thermodynamic conditions to grow graphene and (ii) to separate key reaction steps in the growth mechanism explaining how the Ni2C /Ni (111 ) substrate catalyzes graphene formation at low temperature.
NASA Astrophysics Data System (ADS)
Niu, Tianchao; Zhang, Jialin; Chen, Wei
2017-12-01
Chemical vapor deposition (CVD) is the most promising approach for producing low-cost, high-quality, and large area graphene. Revealing the graphene growth mechanism at the atomic-scale is of great importance for realizing single crystal graphene (SCG) over wafer scale. Density functional theoretical (DFT) calculations are playing an increasingly important role in revealing the structure of the most stable carbon species, understanding the evolution processes, and disclosing the active sites. Scanning tunneling microscopy (STM) is a powerful surface characterization tool to illustrate the real space distribution and atomic structures of growth intermediates during the CVD process. Combining them together can provide valuable information to improve the atomically controlled growth of SCG. Starting from a basic concept of the substrate effect on realizing SCG, this review covers the progress made in theoretical investigations on various carbon species during graphene growth on different transition metal substrates, in the STM study of the structural intermediates on transition metal surfaces, and in synthesizing graphene nanoribbons with atomic-precise width and edge structure, ending with a perspective on the future development of 2D materials beyond graphene.
Role of Pb for Ag growth on H-passivated Si(1 0 0) surfaces
NASA Astrophysics Data System (ADS)
Mathew, S.; Satpati, B.; Joseph, B.; Dev, B. N.
2005-08-01
We have deposited Ag on hydrogen passivated Si(1 0 0) surfaces under high vacuum conditions at room temperature. The deposition, followed by annealing at 250 °C for 30 min, produced silver islands of an average lateral size 36±14 nm. Depositing a small amount of Pb prior to Ag deposition reduced the average island size to 14±5 nm. A small amount of Pb, initially present at the Ag-Si interface, is found to be segregating to the surface of Ag after annealing. Both these aspects, namely, reduction of the island size and Pb floating on the Ag surface conform to the surfactant action of Pb. Samples have been characterized by transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS). A selective etching process that preferentially removes Pb, in conjunction with RBS, was used to detect surface segregation of Pb involving depth scales below the resolution of conventional RBS. The annealing and etching process leaves only smaller Ag islands on the surface with complete removal of Pb. Ag growth in the presence of Pb leads to smaller Ag islands with a narrower size distribution.
Nonequilibrium Interlayer Transport in Pulsed Laser Deposition
NASA Astrophysics Data System (ADS)
Tischler, J. Z.; Eres, Gyula; Larson, B. C.; Rouleau, Christopher M.; Zschack, P.; Lowndes, Douglas H.
2006-06-01
We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.
Temperature determination using pyrometry
Breiland, William G.; Gurary, Alexander I.; Boguslavskiy, Vadim
2002-01-01
A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.
Current Status of the Quality of 4H-SiC Substrates and Epilayers for Power Device Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudley, M.; Wang, H.; Guo, Jianqiu
ABSTRACT Interfacial dislocations (IDs) and half-loop arrays (HLAs) present in the epilayers of 4H-SiC crystal are known to have a deleterious effect on device performance. Synchrotron X-ray Topography studies carried out on n-type 4H-SiC offcut wafers before and after epitaxial growth show that in many cases BPD segments in the substrate are responsible for creating IDs and HLAs during CVD growth. This paper reviews the behaviors of BPDs in the substrate during the epitaxial growth in different cases: (1) screw-oriented BPD segments intersecting the surface replicate directly through the interface during the epitaxial growth and take part in stress relaxationmore » process by creating IDs and HLAs (Matthews-Blakeslee model [1] ); (2) non-screw oriented BPD half loop intersecting the surface glides towards and replicates through the interface, while the intersection points convert to threading edge dislocations (TEDs) and pin the half loop, leaving straight screw segments in the epilayer and then create IDs and HLAs; (3) edge oriented short BPD segments well below the surface get dragged towards the interface during epitaxial growth, leaving two long screw segments in their wake, some of which replicate through the interface and create IDs and HLAs. The driving force for the BPDs to glide toward the interface is thermal stress and driving force for the relaxation process to occur is the lattice parameter difference at growth temperature which results from the doping concentration difference between the substrate and epilayer.« less
Effects of Different R ratios on Fatigue Crack Growth in Laser Peened Friction Stir Welds
NASA Technical Reports Server (NTRS)
Hatamleh, Omar; Hackel, Lloyd; Forth, Scott
2007-01-01
The influence of laser peening on the fatigue crack growth behavior of friction stir welded (FSW) Aluminum Alloy (AA) 7075-T7351 sheets was investigated. The surface modification resulting from the peening process on the fatigue crack growth of FSW was assessed for two different R ratios. The investigation indicated a significant decrease in fatigue crack growth rates resulting from using laser shock peening compared with unpeened, welded and unwelded specimens. The slower fatigue crack growth rate was attributed to the compressive residual stresses induced by the peening.
Nitrogen-Polar (000 1 ¯ ) GaN Grown on c-Plane Sapphire with a High-Temperature AlN Buffer.
Song, Jie; Han, Jung
2017-03-02
We demonstrate growing nitrogen-polar (N-polar) GaN epilayer on c-plane sapphire using a thin AlN buffer layer by metalorganic chemical vapor deposition. We have studied the influence of the AlN buffer layer on the polarity, crystalline quality, and surface morphology of the GaN epilayer and found that the growth temperature of the AlN buffer layer played a critical role in the growth of the GaN epilayer. The low growth temperature of the AlN buffer results in gallium-polar GaN. Even a nitridation process has been conducted. High growth temperature for an AlN buffer layer is required to achieve pure N-polarity, high crystalline quality, and smooth surface morphology for a GaN epilayer.
2003-05-07
KENNEDY SPACE CENTER, FLA. - Dr. Dennis Morrison, NASA Johnson Space Center, processes one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Brebrick, Robert F.; Volz, Martin P.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin P.; Shih, Hung-Dah
2001-01-01
Crystal growth by vapor transport has several distinct advantages over melt growth techniques. Among various potential benefits from material processing in reduced gravity the followings two are considered to be related to crystal growth by vapor transport: (1) elimination of the crystal weight and its influence on the defect formation and (2) reduction of natural buoyancy-driven convective flows arising from thermally and/ or solutally induced density gradient in fluids. The previous results on vapor crystal growth of semiconductors showed the improvements in surface morphology, crystalline quality, electrical properties and dopant distribution of the crystals grown in reduced gravity as compared to the crystals grown on Earth. But the mechanisms, which are responsible for the improvements and cause the gravitational effects on the complicated and coupled processes of vapor mass transport and growth kinetics, are not well understood.
NASA Astrophysics Data System (ADS)
Yamamoto, Akio; Makino, Shinya; Kanatani, Keito; Kuzuhara, Masaaki
2018-04-01
In this study, the metal-organic-vapor-phase-epitaxial growth behavior and electrical properties of AlGaN/GaN structures prepared by the growth of an AlGaN layer on a reactive-ion-etched (RIE) GaN surface without regrown GaN layers were investigated. The annealing of RIE-GaN surfaces in NH3 + H2 atmosphere, employed immediately before AlGaN growth, was a key process in obtaining a clean GaN surface for AlGaN growth, that is, in obtaining an electron mobility as high as 1350 cm2 V-1 s-1 in a fabricated AlGaN/RIE-GaN structure. High-electron-mobility transistors (HEMTs) were successfully fabricated with AlGaN/RIE-GaN wafers. With decreasing density of dotlike defects observed on the surfaces of AlGaN/RIE-GaN wafers, both two-dimensional electron gas properties of AlGaN/RIE-GaN structures and DC characteristics of HEMTs were markedly improved. Since dotlike defect density was markedly dependent on RIE lot, rather than on growth lot, surface contaminations of GaN during RIE were believed to be responsible for the formation of dotlike defects and, therefore, for the inferior electrical properties.
On the origin of reflectance-anisotropy oscillations during GaAs (0 0 1) homoepitaxy
NASA Astrophysics Data System (ADS)
Ortega-Gallegos, J.; Guevara-Macías, L. E.; Ariza-Flores, A. D.; Castro-García, R.; Lastras-Martínez, L. F.; Balderas-Navarro, R. E.; López-Estopier, R. E.; Lastras-Martínez, A.
2018-05-01
We report on the first spectroscopic study of reflectance-anisotropy (RA) oscillations during molecular beam epitaxy (MBE) GaAs homoepitaxy. Real-time RA spectra measured during epitaxial growth were carried out with a recently developed rapid RA multichannel spectrometer with 100 ms per spectrum acquisition time. An analysis of the time-resolved RA spectra shows that RA oscillations are mostly due to the periodic modulation of the surface orthorhombic strain associated to surface reconstruction. Results reported here demonstrate the power of real-time RA spectroscopy as a probe for the study of epitaxial growth processes. In particular, given its sub monolayer surface-strain sensitivity, RA spectroscopy results a very convenient tool to study epitaxial growth mechanisms in real-time with sub monolayer resolution. This capability allows for real-time RA spectroscopy to be used as a probe for the in situ, real-time control of epitaxial growth, with the additional advantage of operating in higher pressure systems such as CVD, where RHEED monitoring cannot be implemented.
NASA Astrophysics Data System (ADS)
Dove, P. M.; Davis, K. J.; De Yoreo, J. J.; Orme, C. A.
2001-12-01
Deciphering the complex strategies by which organisms produce nanocrystalline materials with exquisite morphologies is central to understanding biomineralizing systems. One control on the morphology of biogenic nanoparticles is the specific interactions of their surfaces with the organic functional groups provided by the organism and the various inorganic species present in the ambient environment. It is now possible to directly probe the microscopic structural controls on crystal morphology by making quantitative measurements of the dynamic processes occurring at the mineral-water interface. These observations can provide crucial information concerning the actual mechanisms of growth that is otherwise unobtainable through macroscopic techniques. Here we use in situ molecular-scale observations of step dynamics and growth hillock morphology to directly resolve roles of principal impurities in regulating calcite surface morphologies. We show that the interactions of certain inorganic as well as organic impurities with the calcite surface are dependent upon the molecular-scale structures of step-edges. These interactions can assume a primary role in directing crystal morphology. In calcite growth experiments containing magnesium, we show that growth hillock structures become modified owing to the preferential inhibition of step motion along directions approximately parallel to the [010]. Compositional analyses have shown that Mg incorporates at different levels into the two types of nonequivalent steps, which meet at the hillock corner parallel to [010]. A simple calculation of the strain caused by this difference indicates that we should expect a significant retardation at this corner, in agreement with the observed development of [010] steps. If the low-energy step-risers produced by these [010] steps is perpendicular to the c-axis as seems likely from crystallographic considerations, this effect provides a plausible mechanism for the elongated calcite crystal habits found in natural environments that contain magnesium. In a separate study, step-specific interactions are also found between chiral aspartate molecules and the calcite surface. The L and D- aspartate enantiomers exhibit structure preferences for the different types of step-risers on the calcite surface. These site-specific interactions result in the transfer of asymmetry from the organic molecule to the crystal surface through the formation of chiral growth hillocks and surface morphologies. These studies yield direct experimental insight into the molecular-scale structural controls on nanocrystal morphology in biomineralizing systems.
Kusaba, Akira; Li, Guanchen; von Spakovsky, Michael R; Kangawa, Yoshihiro; Kakimoto, Koichi
2017-08-15
Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and N ad -H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict the behavior of non-equilibrium processes, even those far from equilibrium where the state evolution is a combination of reversible and irreversible dynamics. SEAQT is an ideal choice to handle this problem on a first-principles basis since the chemical adsorption process starts from a highly non-equilibrium state. A result of the analysis shows that the probability of adsorption on 3Ga-H is significantly higher than that on N ad -H + Ga-H. Additionally, the growth temperature dependence of these adsorption probabilities and the temperature increase due to the heat of reaction is determined. The non-equilibrium thermodynamic modeling applied can lead to better control of the MOVPE process through the selection of preferable reconstructed surfaces. The modeling also demonstrates the efficacy of DFT-SEAQT coupling for determining detailed non-equilibrium process characteristics with a much smaller computational burden than would be entailed with mechanics-based, microscopic-mesoscopic approaches.
Kusaba, Akira; von Spakovsky, Michael R.; Kangawa, Yoshihiro; Kakimoto, Koichi
2017-01-01
Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and Nad-H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict the behavior of non-equilibrium processes, even those far from equilibrium where the state evolution is a combination of reversible and irreversible dynamics. SEAQT is an ideal choice to handle this problem on a first-principles basis since the chemical adsorption process starts from a highly non-equilibrium state. A result of the analysis shows that the probability of adsorption on 3Ga-H is significantly higher than that on Nad-H + Ga-H. Additionally, the growth temperature dependence of these adsorption probabilities and the temperature increase due to the heat of reaction is determined. The non-equilibrium thermodynamic modeling applied can lead to better control of the MOVPE process through the selection of preferable reconstructed surfaces. The modeling also demonstrates the efficacy of DFT-SEAQT coupling for determining detailed non-equilibrium process characteristics with a much smaller computational burden than would be entailed with mechanics-based, microscopic-mesoscopic approaches. PMID:28809816
Interacting effects of ozone and CO2 on growth and physiological processes in northern forest trees
J. G. Isebrands; D. F. Karnosky
1996-01-01
Globally, surface-level concentrations of both CO2 and ozone (O3) are increasing annually. Because many studies have shown beneficial effects of increasing CO2, predictions have been made that elevated levels of CO2 would compensate for growth decreases caused by O3...
Surfacing the Depths: Thoughts on Imitation, Resonance and Growth
ERIC Educational Resources Information Center
Music, Graham
2005-01-01
This paper examines some of the research on imitation that shows it to be much more than simply a behavioural or reflex response, but rather an aspect of the growth of genuine social and psychological interaction and part of an intersubjective process that includes the representation of object relationships. Differentiations between mind,…
NASA Astrophysics Data System (ADS)
Louna, Zineeddine; Goda, Ibrahim; Ganghoffer, Jean-François
2018-01-01
We construct in the present paper constitutive models for bone remodeling based on micromechanical analyses at the scale of a representative unit cell (RUC) including a porous trabecular microstructure. The time evolution of the microstructure is simulated as a surface remodeling process by relating the surface growth remodeling velocity to a surface driving force incorporating a (surface) Eshelby tensor. Adopting the framework of irreversible thermodynamics, a 2D constitutive model based on the setting up of the free energy density and a dissipation potential is identified from FE simulations performed over a unit cell representative of the trabecular architecture obtained from real bone microstructures. The static and evolutive effective properties of bone at the scale of the RUC are obtained by combining a methodology for the evaluation of the average kinematic and static variables over a prototype unit cell and numerical simulations with controlled imposed first gradient rates. The formulated effective growth constitutive law at the scale of the homogenized set of trabeculae within the RUC is of viscoplastic type and relates the average growth strain rate to the homogenized stress tensor. The postulated model includes a power law function of an effective stress chosen to depend on the first and second stress invariants. The model coefficients are calibrated from a set of virtual testing performed over the RUC subjected to a sequence of loadings. Numerical simulations show that overall bone growth does not show any growth kinematic hardening. The obtained results quantify the strength and importance of different types of external loads (uniaxial tension, simple shear, and biaxial loading) on the overall remodeling process and the development of elastic deformations within the RUC.
Design of Ceramic Springs for Use in Semiconductor Crystal Growth in Microgravity
NASA Technical Reports Server (NTRS)
Kaforey, M. F.; Deeb, C. W.; Matthiesen, D. H.
1999-01-01
Segregation studies can be done in microgravity to reduce buoyancy driven convection and investigate diffusion-controlled growth during the growth of semiconductor crystals. During these experiments, it is necessary to prevent free surface formation in order to avoid surface tension driven convection (Marangoni convection). Semiconductor materials such as gallium arsenide and germanium shrink upon melting, so a spring is necessary to reduce the volume of the growth chamber and prevent the formation of a free surface when the sample melts. A spring used in this application must be able to withstand both the high temperature and the processing atmosphere. During the growth of gallium arsenide crystals during the GTE Labs/USAF/NASA GaAs GAS Program and during the CWRU GaAs programs aboard the First and Second United States microgravity Laboratories, springs made of pyrolytic boron nitride (PBN) leaves were used. The mechanical properties of these PBN springs have been investigated and springs having spring constants ranging from 0.25 N/mm to 25 N/mm were measured. With this improved understanding comes the ability to design springs for more general applications, and guidelines are given for optimizing the design of PBN springs for crystal growth applications.
Yamamoto, Takehiro; Ueda, Shuya
2013-01-01
Biofilm is a slime-like complex aggregate of microorganisms and their products, extracellular polymer substances, that grows on a solid surface. The growth phenomenon of biofilm is relevant to the corrosion and clogging of water pipes, the chemical processes in a bioreactor, and bioremediation. In these phenomena, the behavior of the biofilm under flow has an important role. Therefore, controlling the biofilm behavior in each process is important. To provide a computational tool for analyzing biofilm growth, the present study proposes a computational model for the simulation of biofilm growth in flows. This model accounts for the growth, decay, detachment and adhesion of biofilms. The proposed model couples the computation of the surrounding fluid flow, using the finite volume method, with the simulation of biofilm growth, using the cellular automaton approach, a relatively low-computational-cost method. Furthermore, a stochastic approach for considering the adhesion process is proposed. Numerical simulations for the biofilm growth on a planar wall and that in an L-shaped rectangular channel were carried out. A variety of biofilm structures were observed depending on the strength of the flow. Moreover, the importance of the detachment and adhesion processes was confirmed.
NASA Astrophysics Data System (ADS)
López-Escalante, M. C.; Ściana, B.; Dawidowski, W.; Bielak, K.; Gabás, M.
2018-03-01
This work presents the results of X-ray photoelectron spectroscopy studies on the bonding N configuration in InGaAsN epilayers grown by atmospheric pressure metal organic vapour phase epitaxy. Growth temperature has been tuned in order to obtain both, relaxed and strained layers. The studies were concentrated on analysing the influence of the growth temperature, post growth thermal annealing process and surface quality on the formation of Ga-N and In-N bonds as well as N-related defects. The contamination of InGaAsN films by growth precursor residues and oxides has also been addressed. The growth temperature stands out as a decisive factor boosting In-N bonds formation, while the thermal annealing seems to affect the N-related defects density in the layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor
A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less
Imaging transport phenomena during lysozyme protein crystal growth by the hanging drop technique
NASA Astrophysics Data System (ADS)
Sethia Gupta, Anamika; Gupta, Rajive; Panigrahi, P. K.; Muralidhar, K.
2013-06-01
The present study reports the transport process that occurs during the growth of lysozyme protein crystals by the hanging drop technique. A rainbow schlieren technique has been employed for imaging changes in salt concentration. A one dimensional color filter is used to record the deflection of the light beam. An optical microscope and an X-ray crystallography unit are used to characterize the size, tetragonal shape and Bravais lattice constants of the grown crystals. A parametric study on the effect of drop composition, drop size, reservoir height and number of drops on the crystal size and quality is reported. Changes in refractive index are not large enough to create a meaningful schlieren image in the air gap between the drop and the reservoir. However, condensation of fresh water over the reservoir solution creates large changes in the concentration of NaCl, giving rise to clear color patterns in the schlieren images. These have been analyzed to obtain salt concentration profiles near the free surface of the reservoir solution as a function of time. The diffusion of fresh water into the reservoir solution at the early stages of crystal growth followed by the mass flux of salt from the bulk solution towards the free surface has been recorded. The overall crystal growth process can be classified into two regimes, as demarcated by the changes in slope of salt concentration within the reservoir. The salt concentration in the reservoir equilibrates at long times when the crystallization process is complete. Thus, transport processes in the reservoir emerge as the route to monitor protein crystal growth in the hanging drop configuration. Results show that crystal growth rate is faster for a higher lysozyme concentration, smaller drops, and larger reservoir heights.
Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor; ...
2017-10-25
A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less
Selective growth of titanium dioxide by low-temperature chemical vapor deposition.
Reinke, Michael; Kuzminykh, Yury; Hoffmann, Patrik
2015-05-13
A key factor in engineering integrated optical devices such as electro-optic switches or waveguides is the patterning of thin films into specific geometries. In particular for functional oxides, etching processes are usually developed to a much lower extent than for silicon or silicon dioxide; therefore, selective area deposition techniques are of high interest for these materials. We report the selective area deposition of titanium dioxide using titanium isopropoxide and water in a high-vacuum chemical vapor deposition (HV-CVD) process at a substrate temperature of 225 °C. Here—contrary to conventional thermal CVD processes—only hydrolysis of the precursor on the surface drives the film growth as the thermal energy is not sufficient to thermally decompose the precursor. Local modification of the substrate surface energy by perfluoroalkylsilanization leads to a reduced surface residence time of the precursors and, consequently, to lower reaction rate and a prolonged incubation period before nucleation occurs, hence, enabling selective area growth. We discuss the dependence of the incubation time and the selectivity of the deposition process on the presence of the perfluoroalkylsilanization layer and on the precursor impinging rates—with selectivity, we refer to the difference of desired material deposition, before nucleation occurs in the undesired regions. The highest measured selectivity reached (99 ± 5) nm, a factor of 3 superior than previously reported in an atomic layer deposition process using the same chemistry. Furthermore, resolution of the obtained patterns will be discussed and illustrated.
Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins.
Sunde, Margaret; Pham, Chi L L; Kwan, Ann H
2017-06-20
Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.
Forming n/p Junctions With An Excimer Laser
NASA Technical Reports Server (NTRS)
Alexander, Paul, Jr.; Campbell, Robert B.; Wong, David C.; Bottenberg, William L.; Byron, Stanley
1988-01-01
Compact equipment yields high-quality solar cells. Computer controls pulses of excimer laser and movement of silcon wafer. Mirrors direct laser beam to wafer. Lenses focus beam to small spot on surface. Process suitable for silicon made by dendritic-web-growth process.
Ng, Rachel Qiao-Ming; Tok, E S; Kang, H Chuan
2009-07-28
At low temperatures, hydrogen desorption is known to be the rate-limiting process in silicon germanium film growth via chemical vapor deposition. Since surface germanium lowers the hydrogen desorption barrier, Si(x)Ge((1-x)) film growth rate increases with the surface germanium fraction. At high temperatures, however, the molecular mechanisms determining the epitaxial growth rate are not well established despite much experimental work. We investigate these mechanisms in the context of disilane adsorption because disilane is an important precursor used in film growth. In particular, we want to understand the molecular steps that lead, in the high temperature regime, to a decrease in growth rate as the surface germanium increases. In addition, there is a need to consider the issue of whether disilane adsorbs via silicon-silicon bond dissociation or via silicon-hydrogen bond dissociation. It is usually assumed that disilane adsorption occurs via silicon-silicon bond dissociation, but in recent work we provided theoretical evidence that silicon-hydrogen bond dissociation is more important. In order to address these issues, we calculate the chemisorption barriers for disilane on silicon germanium using first-principles density functional theory methods. We use the calculated barriers to estimate film growth rates that are then critically compared to the experimental data. This enables us to establish a connection between the dependence of the film growth rate on the surface germanium content and the kinetics of the initial adsorption step. We show that the generally accepted mechanism where disilane chemisorbs via silicon-silicon bond dissociation is not consistent with the data for film growth kinetics. Silicon-hydrogen bond dissociation paths have to be included in order to give good agreement with the experimental data for high temperature film growth rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Hsu, Chih-Wei; Forsberg, Urban
2015-02-28
Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon andmore » oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.« less
NASA Astrophysics Data System (ADS)
Yoo, Seung Hwa; Joh, Han-Ik; Lee, Sungho
2017-04-01
Porous carbon nanofibers (PCNFs) with CNF branches (PCNF/bCNF) were synthesized by a simple heat treatment method. Conventional methods to synthesize this unique structure usually follow a typical route, which consists of CNF preparation, catalyst deposition, and secondary CNF growth. In contrast, our method utilized a one-step carbonization process of polymer nanofibers, which were electrospun from a one-pot solution consisted of polyacrylonitrile, polystyrene (PS), and iron acetylacetonate. Various structures of PCNF/CNF were synthesized by changing the solution composition and molecular weight of PS. It was verified that the content and molecular weight of PS were critical for the growth of catalyst particles and subsequent growth of CNF branches. The morphology, phase of catalyst, and carbon structure of PCNF/bCNF were analyzed at different temperature steps during carbonization. It was found that pores were generated by the evaporation of PS and the catalyst particles were formed on the surface of PCNF at 700 °C. The gases originated from the evaporation of PS acted as a carbon source for the growth of CNF branches that started at 900 °C. Finally, when the carbonization process was finished at 1200 °C, uniform and abundant CNF branches were formed on the surface of PCNF.
Fabrication of planarised conductively patterned diamond for bio-applications.
Tong, Wei; Fox, Kate; Ganesan, Kumaravelu; Turnley, Ann M; Shimoni, Olga; Tran, Phong A; Lohrmann, Alexander; McFarlane, Thomas; Ahnood, Arman; Garrett, David J; Meffin, Hamish; O'Brien-Simpson, Neil M; Reynolds, Eric C; Prawer, Steven
2014-10-01
The development of smooth, featureless surfaces for biomedical microelectronics is a challenging feat. Other than the traditional electronic materials like silicon, few microelectronic circuits can be produced with conductive features without compromising the surface topography and/or biocompatibility. Diamond is fast becoming a highly sought after biomaterial for electrical stimulation, however, its inherent surface roughness introduced by the growth process limits its applications in electronic circuitry. In this study, we introduce a fabrication method for developing conductive features in an insulating diamond substrate whilst maintaining a planar topography. Using a combination of microwave plasma enhanced chemical vapour deposition, inductively coupled plasma reactive ion etching, secondary diamond growth and silicon wet-etching, we have produced a patterned substrate in which the surface roughness at the interface between the conducting and insulating diamond is approximately 3 nm. We also show that the patterned smooth topography is capable of neuronal cell adhesion and growth whilst restricting bacterial adhesion. Copyright © 2014 Elsevier B.V. All rights reserved.
An assessment of calcite crystal growth mechanisms based on crystal size distributions
Kile, D.E.; Eberl, D.D.; Hoch, A.R.; Reddy, M.M.
2000-01-01
Calcite crystal growth experiments were undertaken to test a recently proposed model that relates crystal growth mechanisms to the shapes of crystal size distributions (CSDs). According to this approach, CSDs for minerals have three basic shapes: (1) asymptotic, which is related to a crystal growth mechanism having constant-rate nucleation accompanied by surface-controlled growth; (2) lognormal, which results from decaying-rate nucleation accompanied by surface-controlled growth; and (3) a theoretical, universal, steady-state curve attributed to Ostwald ripening. In addition, there is a fourth crystal growth mechanism that does not have a specific CSD shape, but which preserves the relative shapes of previously formed CSDs. This mechanism is attributed to supply-controlled growth. All three shapes were produced experimentally in the calcite growth experiments by modifying nucleation conditions and solution concentrations. The asymptotic CSD formed when additional reactants were added stepwise to the surface of solutions that were supersaturated with respect to calcite (initial Ω = 20, where Ω = 1 represents saturation), thereby leading to the continuous nucleation and growth of calcite crystals. Lognormal CSDs resulted when reactants were added continuously below the solution surface, via a submerged tube, to similarly supersaturated solutions (initial Ω = 22 to 41), thereby leading to a single nucleation event followed by surface-controlled growth. The Ostwald CSD resulted when concentrated reactants were rapidly mixed, leading initially to high levels of supersaturation (Ω >100), and to the formation and subsequent dissolution of very small nuclei, thereby yielding CSDs having small crystal size variances. The three CSD shapes likely were produced early in the crystallization process, in the nanometer crystal size range, and preserved during subsequent growth. Preservation of the relative shapes of the CSDs indicates that a supply-controlled growth mechanism was established and maintained during the constant-composition experiments. CSDs having shapes intermediate between lognormal and Ostwald also were generated by varying the initial levels of supersaturation (initial Ω = 28.2 to 69.2) in rapidly mixed solutions. Lognormal CSDs were observed for natural calcite crystals that are found in septarian concretions occurring in southeastern Colorado. Based on the model described above, these CSDs indicate initial growth by surface control, followed by supply-controlled growth. Thus, CSDs may be used to deduce crystal growth mechanisms from which geologic conditions early in the growth history of a mineral can be inferred. Conversely, CSD shape can be predicted during industrial crystallization by applying the appropriate conditions for a particular growth mechanism.
Surface studies relevant to silicon carbide chemical vapor deposition
NASA Technical Reports Server (NTRS)
Stinespring, C. D.; Wormhoudt, J. C.
1989-01-01
Reactions of C2H4, C3H8, and CH4 on the Si(111) surface and C2H4 on the Si(100) surface were investigated for surface temperatures in the range of 1062-1495 K. Results led to the identification of the reaction products, a characterization of the solid-state transport process, a determination of the nucleation mechanism and growth kinetics, and an assessment of orientation effects. Based on these results and on the modeling studies of Stinespring and Wormhoudt (1988) on the associated gas phase chemistry, a physical model for the two-step beta-SiC CVD process is proposed.
Drop-wise and film-wise water condensation processes occurring on metallic micro-scaled surfaces
NASA Astrophysics Data System (ADS)
Starostin, Anton; Valtsifer, Viktor; Barkay, Zahava; Legchenkova, Irina; Danchuk, Viktor; Bormashenko, Edward
2018-06-01
Water condensation was studied on silanized (superhydrophobic) and fluorinated (superoleophobic) micro-rough aluminum surfaces of the same topography. Condensation on superhydrophobic surfaces occurred via film-wise mechanism, whereas on superoleophobic surfaces it was drop-wise. The difference in the pathways of condensation was attributed to the various energy barriers separating the Cassie and Wenzel wetting states on the investigated surfaces. The higher barriers inherent for superoleophobic surfaces promoted the drop-wise condensation. Triple-stage kinetics of growth of droplets condensed on superoleophobic surfaces is reported and discussed.
NASA Astrophysics Data System (ADS)
Gentile, A.; Ruffino, F.; D'Andrea, C.; Gucciardi, P. G.; Reitano, R.; Grimaldi, M. G.
2016-06-01
Micrometric Au structures, presenting a dendritic nano-structure, have been fabricated on a Si-based substrate. The fabrication method involves the deposition of a thin Au film on the substrate and a high-temperature annealing (1100°C) using fast heating and cooling ramps. The thermal process produces the growth, from the substrate, of Si micro-pillars whose top surfaces, covered by a crystalline Au layer, present a nanodendritic morphology. In addition to the micro-pillars, the sample surface presents a complex structural and chemical composition including Si3N4 regions due to the silicon-nitrogen intermixing during the heating stage. By studying the kinetic processes at the Au-Si interface during the thermal treatment, we describe the stages involved in the micro-pillars growth, in the dendritic morphology development, and in the Au atoms entrapment at the top of the dendritic surfaces. Finally, we present the analyses of the optical and surface enhanced Raman scattering properties of the Au dendritic aggregates. We show, in particular, that: (1) the Au dendrites aggregates act as effective scattering elements for the electromagnetic radiation in the infrared spectral region; and (2) the higher surface area due to the branched dendritic structure is responsible for the improvement in the sensitivity of the surface enhanced Raman scattering activity.
Atomically Flat Surfaces Developed for Improved Semiconductor Devices
NASA Technical Reports Server (NTRS)
Powell, J. Anthony
2001-01-01
New wide bandgap semiconductor materials are being developed to meet the diverse high temperature, -power, and -frequency demands of the aerospace industry. Two of the most promising emerging materials are silicon carbide (SiC) for high-temperature and high power applications and gallium nitride (GaN) for high-frequency and optical (blue-light-emitting diodes and lasers) applications. This past year Glenn scientists implemented a NASA-patented crystal growth process for producing arrays of device-size mesas whose tops are atomically flat (i.e., step-free). It is expected that these mesas can be used for fabricating SiC and GaN devices with major improvements in performance and lifetime. The promising new SiC and GaN devices are fabricated in thin-crystal films (known as epi films) that are grown on commercial single-crystal SiC wafers. At this time, no commercial GaN wafers exist. Crystal defects, known as screw defects and micropipes, that are present in the commercial SiC wafers propagate into the epi films and degrade the performance and lifetime of subsequently fabricated devices. The new technology isolates the screw defects in a small percentage of small device-size mesas on the surface of commercial SiC wafers. This enables atomically flat surfaces to be grown on the remaining defect-free mesas. We believe that the atomically flat mesas can also be used to grow GaN epi films with a much lower defect density than in the GaN epi films currently being grown. Much improved devices are expected from these improved low-defect epi films. Surface-sensitive SiC devices such as Schottky diodes and field effect transistors should benefit from atomically flat substrates. Also, we believe that the atomically flat SiC surface will be an ideal surface on which to fabricate nanoscale sensors and devices. The process for achieving atomically flat surfaces is illustrated. The surface steps present on the "as-received" commercial SiC wafer is also illustrated. because of the small tilt angle between the crystal "basal" plane and the polished wafer surface. These steps are used in normal SiC epi film growth in a process known as stepflow growth to produce material for device fabrication. In the new process, the first step is to etch an array of mesas on the SiC wafer top surface. Then, epi film growth is carried out in the step flow fashion until all steps have grown themselves out of existence on each defect-free mesa. If the size of the mesas is sufficiently small (about 0.1 by 0.1 mm), then only a small percentage of the mesas will contain an undesired screw defect. Mesas with screw defects supply steps during the growth process, allowing a rough surface with unwanted hillocks to form on the mesa. The improvement in SiC epi surface morphology achievable with the new technology is shown. An atomic force microscope image of a typical SiC commercial epilayer surface is also shown. A similar image of an SiC atomically flat epi surface grown in a Glenn laboratory is given. With the current screw defect density of commercial wafers (about 5000 defects/cm2), the yield of atomically free 0.1 by 0.l mm mesas is expected to be about 90 percent. This is large enough for many types of electronic and optical devices. The implementation of this new technology was recently published in Applied Physics Letters. This work was initially carried out in-house under a Director's Discretionary Fund project and is currently being further developed under the Information Technology Base Program.
Heterogeneous nucleation and growth of nanoparticles at environmental interfaces
Jun, Young -Shin; Kim, Doyoon; Neil, Chelsea W.
2016-08-11
Here, mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth’s crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolutionmore » of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of water chemistry and substrate identity on heterogeneously and homogeneously formed nanoscale precipitate size dimensions and total particle volume. Using this technique, we also provided a new platform for quantitatively comparing between heterogeneous and homogeneous nucleation and growth of nanoparticles and obtaining undiscovered interfacial energies between nuclei and surfaces. In addition, nanoscale surface characterization tools, such as in situ atomic force microscopy (AFM), were utilized to support and complement our findings. With these powerful nanoscale tools, we systematically evaluated the influences of environmentally abundant (oxy)anions and cations and the properties of environmental surfaces, such as surface charge and hydrophobicity. The findings, significantly enhanced by in situ observations, can lead to a more accurate prediction of the behaviors of nanoparticles in the environment and enable better control of the physicochemical properties of nanoparticles in engineered systems, such as catalytic reactions and energy storage.« less
Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces.
Jun, Young-Shin; Kim, Doyoon; Neil, Chelsea W
2016-09-20
Mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth's crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolution of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of water chemistry and substrate identity on heterogeneously and homogeneously formed nanoscale precipitate size dimensions and total particle volume. Using this technique, we also provided a new platform for quantitatively comparing between heterogeneous and homogeneous nucleation and growth of nanoparticles and obtaining undiscovered interfacial energies between nuclei and surfaces. In addition, nanoscale surface characterization tools, such as in situ atomic force microscopy (AFM), were utilized to support and complement our findings. With these powerful nanoscale tools, we systematically evaluated the influences of environmentally abundant (oxy)anions and cations and the properties of environmental surfaces, such as surface charge and hydrophobicity. The findings, significantly enhanced by in situ observations, can lead to a more accurate prediction of the behaviors of nanoparticles in the environment and enable better control of the physicochemical properties of nanoparticles in engineered systems, such as catalytic reactions and energy storage.
Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.
Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry
2015-12-09
We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.
Application of optical processing for growth of silicon dioxide
Sopori, B.L.
1997-06-17
A process for producing a silicon dioxide film on a surface of a silicon substrate is disclosed. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm{sup 2} to about 6 watts/cm{sup 2} for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm{sup 2} for growth of a 100{angstrom}-300{angstrom} film at a resultant temperature of about 400 C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO{sub 2}/Si interface to be very low. 1 fig.
1983-03-01
network dissolution, electron beam simulated desorption, electron signal decay, oxidation, oxide layer , growth kinetics, silicon carbide, assivation...surface layers on silicate glasses are reviewed. A type IIIB glass surface is proposed. The mechanisms of hydrothermal attack of two phase lithia...method to make reliable lifetime predictions. Use of electron beam techniques is essential for understanding surface layers formed on glasses (Section III
Biodegradable polyester-based microcarriers with modified surface tailored for tissue engineering.
Privalova, A; Markvicheva, E; Sevrin, Ch; Drozdova, M; Kottgen, C; Gilbert, B; Ortiz, M; Grandfils, Ch
2015-03-01
Microcarriers have been proposed in tissue engineering, namely for bone, cartilage, skin, vascular, and central nervous system. Although polyester-based microcarriers have been already used for this purpose, their surface properties should be improved to provide better cell growth. The goal of this study was to prepare microbeads based on poly(D,L-lactide) acid, poly(L-lactide) acid, and to study cell behavior (adhesion, spreading, growth, and proliferation) in function of microbead topography and surface chemistry. To improve L-929 fibroblasts adhesion, microbead surface has been modified with three polycations: chitosan, poly(2-dimethylamino ethylmethacrylate) (PDMAEMA), or chitosan-g-oligolactide copolymer (chit-g-OLA). Although modification of the microbead surface with chitosan and PDMAEMA was performed through physical adsorption on the previously prepared microbeads, chit-g-OLA copolymer was introduced directly during microbead processing. This simple approach (1) bypass the use of an emulsifier (polyvinyl alcohol, PVA); (2) avoid surface "contamination" with PVA molecules limiting a control of the surface characteristics. In vitro study of the growth of mouse fibroblasts on the microbeads showed that both surface topography and chemistry affected cell attachment, spreading, and proliferation. Cultivation of L-929 fibroblasts for 7 days resulted in the formation of a 3D cell-scaffold network. © 2014 Wiley Periodicals, Inc.
Investigation of Polyurea-Crosslinked Silica Aerogels as a Neuronal Scaffold: A Pilot Study
Sabri, Firouzeh; Cole, Judith A.; Scarbrough, Michael C.; Leventis, Nicholas
2012-01-01
Background Polymer crosslinked aerogels are an attractive class of materials for future implant applications particularly as a biomaterial for the support of nerve growth. The low density and nano-porous structure of this material combined with large surface area, high mechanical strength, and tunable surface properties, make aerogels materials with a high potential in aiding repair of injuries of the peripheral nervous system. However, the interaction of neurons with aerogels remains to be investigated. Methodology In this work the attachment and growth of neurons on clear polyurea crosslinked silica aerogels (PCSA) coated with: poly-L-lysine, basement membrane extract (BME), and laminin1 was investigated by means of optical and scanning electron microscopy. After comparing the attachment and growth capability of neurons on these different coatings, laminin1 and BME were chosen for nerve cell attachment and growth on PCSA surfaces. The behavior of neurons on treated petri dish surfaces was used as the control and behavior of neurons on treated PCSA discs was compared against it. Conclusions/Significance This study demonstrates that: 1) untreated PCSA surfaces do not support attachment and growth of nerve cells, 2) a thin application of laminin1 layer onto the PCSA discs adhered well to the PCSA surface while also supporting growth and differentiation of neurons as evidenced by the number of processes extended and b3-tubulin expression, 3) three dimensional porous structure of PCSA remains intact after fixing protocols necessary for preservation of biological samples and 4) laminin1 coating proved to be the most effective method for attaching neurons to the desired regions on PCSA discs. This work provides the basis for potential use of PCSA as a biomaterial scaffold for neural regeneration. PMID:22448239
NASA Astrophysics Data System (ADS)
Kim, Seul-Gi; Hu, Qicheng; Nam, Ki-Bong; Kim, Mun Ja; Yoo, Ji-Beom
2018-04-01
Large-scale graphitic thin film with high thickness uniformity needs to be developed for industrial applications. Graphitic films with thicknesses ranging from 3 to 20 nm have rarely been reported, and achieving the thickness uniformity in that range is a challenging task. In this study, a process for growing 20 nm-thick graphite films on Ni with improved thickness uniformity is demonstrated and compared with the conventional growth process. In the film grown by the process, the surface roughness and coverage were improved and no wrinkles were observed. Observations of the film structure reveal the reasons for the improvements and growth mechanisms.
Choi, Jin-Ho; Li, Zhancheng; Cui, Ping; Fan, Xiaodong; Zhang, Hui; Zeng, Changgan; Zhang, Zhenyu
2013-01-01
London dispersion force is ubiquitous in nature, and is increasingly recognized to be an important factor in a variety of surface processes. Here we demonstrate unambiguously the decisive role of London dispersion force in non-equilibrium growth of ordered nanostructures on metal substrates using aromatic source molecules. Our first-principles based multi-scale modeling shows that a drastic reduction in the growth temperature, from ~1000°C to ~300°C, can be achieved in graphene growth on Cu(111) when the typical carbon source of methane is replaced by benzene or p-Terphenyl. The London dispersion force enhances their adsorption energies by about (0.5–1.8) eV, thereby preventing their easy desorption, facilitating dehydrogenation, and promoting graphene growth at much lower temperatures. These quantitative predictions are validated in our experimental tests, showing convincing demonstration of monolayer graphene growth using the p-Terphenyl source. The general trends established are also more broadly applicable in molecular synthesis of surface-based nanostructures. PMID:23722566
Fluid Physics and Macromolecular Crystal Growth in Microgravity
NASA Technical Reports Server (NTRS)
Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.
2000-01-01
The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows. Buoyancy driven convection results from density differences between the bulk solution and fluid close to the crystal surface which has been depleted of macromolecules due to crystal growth. Schlieren photograph of a growing lysozyme crystal illustrating a 'growth plume' resulting from buoyancy driven convection. Both sedimentation and buoyancy driven convection have a negative effect on crystal growth and microgravity is seen as a way to both greatly reduce sedimentation and provide greater stability for 'depletion zones' around growing crystals. Some current crystal growth hardware however such as those based on a vapor diffusion techniques, may also be introducing unwanted Marangoni convection which becomes more pronounced in microgravity. Negative effects of g-jitter on crystal growth have also been observed. To study the magnitude of fluid flows around growing crystals we have attached a number of different fluorescent probes to lysozyme molecules. At low concentrations, less than 40% of the total protein, the probes do not appear to effect the crystal growth process. By using these probes we expect to determine not only the effect of induced flows due to crystal growth hardware design but also hope to optimize crystallization hardware so that destructive flows are minimized both on the ground and in microgravity.
Fundamental Studies of Crystal Growth of Microporous Materials
NASA Technical Reports Server (NTRS)
Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.
Growth of biaxially textured template layers using ion beam assisted deposition
NASA Astrophysics Data System (ADS)
Park, Seh-Jin
A two-step IBAD (ion beam assisted deposition) method is investigated, and compared to the conventional IBAD methods. The two step method uses surface energy anisotropy to achieve uniaxial texture and ion beam irradiation for biaxial texture. The biaxial texture was achieved by selective surface etching and enhanced by grain overgrowth. In this method, biaxial texture alignment is performed on a (001) uniaxially textured buffer layer. The material selected for achieving uniaxial texture, YBCO (YBa2Cu3O7-x), has strong surface energy anisotropy. YBCO is chemically susceptible to the reaction with the adjacent layer. Yttria stabilized zirconia (YSZ) was used to prevent the reaction between YBCO and the substrates (polycrystalline Ni alloy [Hastelloy] and amorphous SiNx/Si). A SrTiO3 layer was deposited on the uniaxially textured YBCO layer to retard stoichiometry change with subsequent processing. STO is well lattice matched with YBCO. A top layer of Ni was then deposited. The Ni layer was used for studying the effect of grain overgrowth. The obtained uniaxial Ni films were used for subsequent ion beam processing. Ar ion beam irradiation onto the uniaxially textured Ni film was used to study the effect of selective grain etching in achieving in-plane aligned Ni grains. Additional Ni deposition induces the overgrowth of the in-plane aligned Ni grains and, finally, the overall in-plane alignment. The in-plane alignment is examined with XRD phi scan. The effect of surface polarity of insulating oxide substrates on the epitaxial growth behavior was investigated. The lattice strain energy was the most important factor for determining the orientation of Ni films on a non-polar surface. However, for a polar surface, the surface energy plays an important role in determining the final orientation of the Ni films based on the experimental and theoretical results. Y2O3 growth behavior was also studied. The lattice strain energy is the most important factor for Y2O3 growth on single crystalline substrates. The surface energy anisotropy is the most important factor for the growth on amorphous substrates. The XRD phi scan study shows that Ar ion beam irradiation with favorable angle of incidence enhances the in-plane alignment of Y2O3 films grown on randomly oriented substrates due to the ion channeling.
Semiconductor Laser Joint Study Program with Rome Laboratory
1994-09-01
VCSELs 3.3 Laser Wafer Growth by Molecular Beam Epitaxy 8 The VCSEL structures were grown by molecular beam ...cavity surface emittimg lasers ( VCSEL ), Optical 40 interconnects, Moelcular beam epitaxy It CECOOE 17. SECURfTY CLASWICATION SECURFlY CLASSIFICATION 1 Q...7 3.3 Laser Wafer Growth by Molecular Beam Epitax. ............ 8 3.4 VCSEL Fabrication Process ................................................
NASA Technical Reports Server (NTRS)
Li, C.
1975-01-01
Computer programs are developed and used in the study of the combined effects of evaporation and solidification in space processing. The temperature and solute concentration profiles during directional solidification of binary alloys with surface evaporation were mathematically formulated. Computer results are included along with an econotechnical model of crystal growth. This model allows: prediction of crystal size, quality, and cost; systematic selection of the best growth equipment or alloy system; optimization of growth or material parameters; and a maximization of zero-gravity effects. Segregation in GaAs crystals was examined along with vibration effects on GaAs crystal growth. It was found that a unique segregation pattern and strong convention currents exist in GaAs crystal growth. Some beneficial effects from vibration during GaAs growth were discovered. The implications of the results in space processing are indicated.
Oliva, Michele; Dunand, Christophe
2007-01-01
Arabidopsis seedlings growing on inclined agar surfaces exhibit characteristic root behaviours called 'waving' and 'skewing': the former consists of a series of undulations, whereas the latter is a deviation from the direction of gravity. Even though the precise basis of these growth patterns is not well understood, both gravity and the contact between the medium and the root are considered to be the major players that result in these processes. The influence of these forces on root surface-dependent behaviours can be verified by growing seedlings at different gel pitches: plants growing on vertical plates present roots with slight waving and skewing when compared with seedlings grown on plates held at minor angles of < 90 degrees . However, other factors are thought to modulate root growth on agar; for instance, it has been demonstrated that the presence and concentration of certain compounds in the medium (such as sucrose) and of drugs able to modify the plant cell cytoskeleton also affect skewing and waving. The recent discovery of an active role of ethylene on surface-dependent root behaviour, and the finding of new mutants showing anomalous growth, pave the way for a more detailed description of these phenomena.
Abnormal growth kinetics of h-BN epitaxial monolayer on Ru(0001) enhanced by subsurface Ar species
NASA Astrophysics Data System (ADS)
Wei, Wei; Meng, Jie; Meng, Caixia; Ning, Yanxiao; Li, Qunxiang; Fu, Qiang; Bao, Xinhe
2018-04-01
Growth kinetics of epitaxial films often follows the diffusion-limited aggregation mechanism, which shows a "fractal-to-compact" morphological transition with increasing growth temperature or decreasing deposition flux. Here, we observe an abnormal "compact-to-fractal" morphological transition with increasing growth temperature for hexagonal boron nitride growth on the Ru(0001) surface. The unusual growth process can be explained by a reaction-limited aggregation (RLA) mechanism. Moreover, introduction of the subsurface Ar atoms has enhanced this RLA growth behavior by decreasing both reaction and diffusion barriers. Our work may shed light on the epitaxial growth of two-dimensional atomic crystals and help to control their morphology.
NASA Astrophysics Data System (ADS)
Nakamura, Daisuke; Kimura, Taishi; Narita, Tetsuo; Suzumura, Akitoshi; Kimoto, Tsunenobu; Nakashima, Kenji
2017-11-01
A novel sintered tantalum carbide coating (SinTaC) prepared via a wet ceramic process is proposed as an approach to reducing the production cost and improving the crystal quality of bulk-grown crystals and epitaxially grown films of wide-bandgap semiconductors. Here, we verify the applicability of the SinTaC components as susceptors for chemical vapor deposition (CVD)-SiC and metal-organic chemical vapor deposition (MOCVD)-GaN epitaxial growth in terms of impurity incorporation from the SinTaC layers and also clarify the surface-roughness controllability of SinTaC layers and its advantage in CVD applications. The residual impurity elements in the SinTaC layers were confirmed to not severely incorporate into the CVD-SiC and MOCVD-GaN epilayers grown using the SinTaC susceptors. The quality of the epilayers was also confirmed to be equivalent to that of epilayers grown using conventional susceptors. Furthermore, the surface roughness of the SinTaC components was controllable over a wide range of average roughness (0.4 ≤ Ra ≤ 5 μm) and maximum height roughness (3 ≤ Rz ≤ 36 μm) through simple additional surface treatment procedures, and the surface-roughened SinTaC susceptor fabricated using these procedures was predicted to effectively reduce thermal stress on epi-wafers. These results confirm that SinTaC susceptors are applicable to epitaxial growth processes and are advantageous over conventional susceptor materials for reducing the epi-cost and improving the quality of epi-wafers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, C.D.; Lai, M.O.; Cotterell, B.
Since the Lanxide process was advanced for forming of Al{sub 2}O{sub 3} ceramic composite by directed oxidation of Al alloys, much work has been done with various mechanisms being proposed. The mechanisms have claimed that only certain dopants are essential to the growth process. Nevertheless, no united consensus has yet been reached. In the present work, Al alloy containing 5% Mg was oxidized in air for 12 hours at 1,150 C with or without surface dopants of MgO or Pd. The resultant composites showed very different microstructures. Without any surface doping, the alloy did not develop any portion of compositemore » as the initial intimate oxide film stops further oxidation. This intimate oxide film can either be broken off by mechanical means or penetrated by reaction with surface dopants, so that the composite can grow and develop. The results show that the previously reported incubation time is not only related to reaction processes but also to the initial mechanical disturbances. Doping with Pd made the composite darker in color as the grains of the alumina ceramic matrix and inclusions of Al metal are finer. This shows that Pd may make the top oxide layer less intimate, and more nucleation sites are therefore available for oxidation. A new model is presented for oxide sustained growth based on the existence of oxygen active top surface layer and the capillary flow of molten metal around ceramic phase.« less
Computer modeling of dendritic web growth processes and characterization of the material
NASA Technical Reports Server (NTRS)
Seidensticker, R. G.; Kothmann, R. E.; Mchugh, J. P.; Duncan, C. S.; Hopkins, R. H.; Blais, P. D.; Davis, J. R.; Rohatgi, A.
1978-01-01
High area throughput rate will be required for the economical production of silicon dendritic web for solar cells. Web width depends largely on the temperature distribution on the melt surface while growth speed is controlled by the dissipation of the latent heat of fusion. Thermal models were developed to investigate each of these aspects, and were used to engineer the design of laboratory equipment capable of producing crystals over 4 cm wide; growth speeds up to 10 cm/min were achieved. The web crystals were characterized by resistivity, lifetime and etch pit density data as well as by detailed solar cell I-V data. Solar cells ranged in efficiency from about 10 to 14.5% (AM-1) depending on growth conditions. Cells with lower efficiency displayed lowered bulk lifetime believed to be due to surface contamination.
Modelling the growth process of porous aluminum oxide film during anodization
NASA Astrophysics Data System (ADS)
Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.
2015-11-01
Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process.
Lattice diffusion and vapor solid growths forming nanoarchitectures on ZnO nanowires
NASA Astrophysics Data System (ADS)
Sombrio, Guilherme; Rivaldo-Gómez, C. M.; Pomar, Cesar A. D.; Souza, Jose A.
2017-12-01
We report hierarchical nanoarchitectures formed on the tips and sidewalls of ZnO nanowires which is formed on the top of microtubes. The whole growth process of these micro/nanostructures during thermal oxidation combines lattice/grain/surface ionic diffusion along with vapor solid mechanism. All the process takes place along with the presence of an electric current, which plays an important role forming the ZnO molecules due to Zn metal evaporation and attracting them to condense into nanostructures of several morphologies. The observation of a very long needle-like nanowire reveals the stack nature of the growth. These nanoarchitectures are rarely observed experimentally. Raman scattering confirms phonon confinement in the nanostructures. Photoluminescence measurements indicate a route for engineering defects on the surface of ZnO microtubes after the complete coalescence of the nanostructures through heat treatment. This experiment would be useful for improving nanostructure organization which could provide an impact in the manufacturability of nanostructure-based systems.
In situ studies of oxide nucleation, growth, and transformation using slow electrons
NASA Astrophysics Data System (ADS)
Flege, Jan Ingo; Grinter, David C.
2018-05-01
Surface processes such as metal oxidation and metal oxide growth invariably influence the physical and chemical properties of materials and determine their interaction with their surroundings and hence their functionality in many technical applications. On a fundamental level, these processes are found to be governed by a complex interplay of thermodynamic variables and kinetic constraints, resulting in a rich variety of material-specific phenomena. In this review article, we discuss recent results and insights on transition metal oxidation and rare-earth oxide growth acquired by low-energy electron microscopy and related techniques. We demonstrate that the use of in situ surface sensitive methods is a prerequisite to gaining a deeper understanding of the underlying concepts and the mechanisms responsible for the emerging oxide structure and morphology. Furthermore, examples will be provided on how structural and chemical modifications of the oxide films and nanostructures can be followed in real-time and analyzed in terms of local reactivity and cooperative effects relevant for heterogeneous model catalysis.
Zhang, Xing-Hong; Shao, Rui-Wen; Jin, Lei; Wang, Jian-Yu; Zheng, Kun; Zhao, Chao-Liang; Han, Jie-Cai; Chen, Bin; Sekiguchi, Takashi; Zhang, Zhi; Zou, Jin; Song, Bo
2015-01-01
By understanding the growth mechanism of nanomaterials, the morphological features of nanostructures can be rationally controlled, thereby achieving the desired physical properties for specific applications. Herein, the growth habits of aluminum nitride (AlN) nanostructures and single crystals synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport process were investigated by transmission electron microscopy. The detailed structural characterizations strongly suggested that the growth of AlN nanostructures including AlN nanowires and nanohelixes follow a sequential and periodic rotation in the growth direction, which is independent of the size and shape of the material. Based on these experimental observations, an helical growth mechanism that may originate from the coeffect of the polar-surface and dislocation-driven growth is proposed, which offers a new insight into the related growth kinetics of low-dimensional AlN structures and will enable the rational design and synthesis of novel AlN nanostructures. Further, with the increase of temperature, the growth process of AlN grains followed the helical growth model. PMID:25976071
A diffusive ink transport model for lipid dip-pen nanolithography.
Urtizberea, A; Hirtz, M
2015-10-14
Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.
NASA Astrophysics Data System (ADS)
Tower, Joshua P.; Kamieniecki, Emil; Nguyen, M. C.; Danel, Adrien
1999-08-01
The Surface Charge Profiler (SCP) has been introduced for monitoring and development of silicon epitaxial processes. The SCP measures the near-surface doping concentration and offers advantages that lead to yield enhancement in several ways. First, non-destructive measurement technology enables in-line process monitoring, eliminating the need to sacrifice production wafers for resistivity measurements. Additionally, the full-wafer mapping capability helps in development of improved epitaxial growth processes and early detection of reactor problems. As examples, we present the use of SCP to study the effects of susceptor degradation in barrel reactors and to study autodoping for development of improved dopant uniformity.
NASA Technical Reports Server (NTRS)
Banks, Bruce; Miller, Sharon; deGroh, Kim; Chan, Amy; Sahota, Mandeep
2001-01-01
The application of a microscopic surface texture produced by ion beam sputter texturing to the surfaces of polymer implants has been shown to result in significant increases in cellular attachment compared to smooth surface implants in animal studies. A collaborative program between NASA Glenn Research Center and the Cleveland Clinic Foundation has been established to evaluate the potential for improving osteoblast attachment to surfaces that have been microscopically roughened by atomic oxygen texturing. The range of surface textures that are feasible depends upon both the texturing process and the duration of treatment. To determine whether surface texture saturates or continues to increase with treatment duration, an effort was conducted to examine the development of surface textures produced by various physical and chemical erosion processes. Both experimental tests and computational modeling were performed to explore the growth of surface texture with treatment time. Surface texturing by means of abrasive grit blasting of glass, stainless steel, and polymethylmethacry I ate surfaces was examined to measure the growth in roughness with grit blasting duration by surface profilometry measurements. Laboratory tests and computational modeling was also conducted to examine the development of texture on Aclar(R) (chlorotfifluoroethylene) and Kapton(R) polyimide, respectively. For the atomic oxygen texturing tests of Aclar(R), atomic force microscopy was used to measure the development of texture with atomic oxygen fluence. The results of all the testing and computational modeling support the premise that development of surface roughness obeys Poisson statistics. The results indicate that surface roughness does not saturate but increases as the square root of the treatment time.
Modeling the growth processes of polyelectrolyte multilayers using a quartz crystal resonator.
Salomäki, Mikko; Kankare, Jouko
2007-07-26
The layer-by-layer buildup of chitosan/hyaluronan (CH/HA) and poly(l-lysine)/hyaluronan (PLL/HA) multilayers was followed on a quartz crystal resonator (QCR) in different ionic strengths and at different temperatures. These polyelectrolytes were chosen to demonstrate the method whereby useful information is retrieved from acoustically thick polymer layers during their buildup. Surface acoustic impedance recorded in these measurements gives a single or double spiral when plotted in the complex plane. The shape of this spiral depends on the viscoelasticity of the layer material and regularity of the growth process. The polymer layer is assumed to consist of one or two zones. A mathematical model was devised to represent the separation of the layer to two zones with different viscoelastic properties. Viscoelastic quantities of the layer material and the mode and parameters of the growth process were acquired by fitting a spiral to the experimental data. In all the cases the growth process was mainly exponential as a function of deposition cycles, the growth exponent being between 0.250 and 0.275.
Li, Yuan; Chopra, Nitin
2015-05-21
Patterned growth of multilayer graphene shell encapsulated gold nanoparticles (GNPs) and their covalent linking with inorganic quantum dots are demonstrated. GNPs were grown using a xylene chemical vapor deposition process, where the surface oxidized gold nanoparticles catalyze the multilayer graphene shell growth in a single step process. The graphene shell encapsulating gold nanoparticles could be further functionalized with carboxylic groups, which were covalently linked to amine-terminated quantum dots resulting in GNP-quantum dot heterostructures. The compositions, morphologies, crystallinity, and surface functionalization of GNPs and their heterostructures with quantum dots were evaluated using microscopic, spectroscopic, and analytical methods. Furthermore, optical properties of the derived architectures were studied using both experimental methods and simulations. Finally, GNP-quantum dot heterostructures were studied for photocatalytic degradation of phenol.
Precipitate resolution in an electron irradiated ni-si alloy
NASA Astrophysics Data System (ADS)
Watanabe, H.; Muroga, T.; Yoshida, N.; Kitajima, K.
1988-09-01
Precipitate resolution processes in a Ni-12.6 at% Si alloy under electron irradiation have been observed by means of HVEM. Above 400°C, growth and resolution of Ni 3Si precipitates were observed simultaneously. The detail stereoscopic observation showed that the precipitates close to free surfaces grew, while those in the middle of a specimen dissolved. The critical dose when the precipitates start to shrink increases with increasing the depth. This depth dependence of the precipitate behavior under irradiation has a close relation with the formation of surface precipitates and the growth of solute depleted zone beneath them. The temperature and dose dependence of the resolution rate showed that the precipitates in the solute depleted zone dissolved by the interface controlled process of radiation-enhanced diffusion.
Mitigation of substrate defects in reticles using multilayer buffer layers
Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.
2001-01-01
A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.
Photochemistry, Ion Chemistry, and Haze Formation in Pluto’s Atmosphere
NASA Astrophysics Data System (ADS)
Summers, Michael E.; Stern, S. A.; Gladstone, G. Randal; Young, Leslie A.; Olkin, C. B.; Weaver, H. A.; Cheng, A. F.; Strobel, D. F.; Ennico, K. A.; Kammer, J. A.; Parker, A. H.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A. J.; Tsang, C. C.; Versteeg, M. H.; Greathouse, T. K.; Linscott, I. R.; Tyler, L. G.; Woods, W. W.; Hinson, D. P.; Parker, J. W.; Renaud, J. P.; Ewell, M.; Lisse, Cary M.
2015-11-01
The detection of ethylene (C2H4) and acetylene (C2H2) in Pluto’s atmosphere provides important ground-truth observations for validating photochemical models of Pluto’s atmosphere. Their detection also confirms the production of precursor chemical compounds involved in the formation of tholins, which are thought to give Pluto’s surface its reddish color. Photochemical models predict many other hydrocarbon and nitrile products, currently undetected, which may also be participants in tholin production on Pluto’s surface or on atmospheric haze particles. The observed atmospheric haze layer extending to altitudes of ~140 km above Pluto’s surface, suggests a global and very robust process of atmospheric particle nucleation, growth, and sedimentation onto Pluto’s surface. The high altitude extent of the haze layer suggests that the nucleation process begins above the expected altitude range where hydrocarbons become supersaturated (below ~30 km altitude). This situation may be analogous to that in Titan’s atmosphere, wherein nucleation and aerosol growth is directly related to large negative ion production. In the case of Pluto, this means that nucleation may occur at altitudes as high as 1200 km altitude where ionization in Pluto’s atmosphere peaks. In this paper we discuss these processes and their implications for haze formation in Pluto’s atmosphere and its deposition onto Pluto’s surface. This work was supported by NASA's New Horizons project.
Fatigue Crack Growth in Peened Friction Stir Welds
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Hatamleh, Omar
2008-01-01
Friction stir welding induces residual stresses that accelerates fatigue crack growth in the weld nugget. Shot peening over the weld had little effect on growth rate. Laser peening over the weld retarded the growth rate: Final crack growth rate was comparable to the base, un-welded material. Crack tunneling evident from residual compressive stresses. 2195-T8 fracture surfaces were highly textured. Texturing makes comparisons difficult as the material system is affecting the data as much as the processing. Material usage becoming more common in space applications requiring additional work to develop useful datasets for damage tolerance analyses.
Activation of Cell Surface Bound 20S Proteasome Inhibits Vascular Cell Growth and Arteriogenesis
Ito, Wulf D.; Lund, Natalie; Zhang, Ziyang; Buck, Friedrich; Lellek, Heinrich; Horst, Andrea; Machens, Hans-Günther; Schunkert, Heribert; Schaper, Wolfgang; Meinertz, Thomas
2015-01-01
Arteriogenesis is an inflammatory process associated with rapid cellular changes involving vascular resident endothelial progenitor cells (VR-EPCs). Extracellular cell surface bound 20S proteasome has been implicated to play an important role in inflammatory processes. In our search for antigens initially regulated during collateral growth mAb CTA 157-2 was generated against membrane fractions of growing collateral vessels. CTA 157-2 stained endothelium of growing collateral vessels and the cell surface of VR-EPCs. CTA 157-2 bound a protein complex (760 kDa) that was identified as 26 kDa α7 and 21 kDa β3 subunit of 20S proteasome in mass spectrometry. Furthermore we demonstrated specific staining of 20S proteasome after immunoprecipitation of VR-EPC membrane extract with CTA 157-2 sepharose beads. Functionally, CTA 157-2 enhanced concentration dependently AMC (7-amino-4-methylcoumarin) cleavage from LLVY (N-Succinyl-Leu-Leu-Val-Tyr) by recombinant 20S proteasome as well as proteasomal activity in VR-EPC extracts. Proliferation of VR-EPCs (BrdU incorporation) was reduced by CTA 157-2. Infusion of the antibody into the collateral circulation reduced number of collateral arteries, collateral proliferation, and collateral conductance in vivo. In conclusion our results indicate that extracellular cell surface bound 20S proteasome influences VR-EPC function in vitro and collateral growth in vivo. PMID:26146628
Preparation of a semiconductor thin film
Pehnt, Martin; Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.
1998-01-01
A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.
Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)
1994-01-01
The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.
Arnould, C; Volcke, C; Lamarque, C; Thiry, P A; Delhalle, J; Mekhalif, Z
2009-08-15
Titanium and its alloys are widely used in surgical implants due to their appropriate properties like corrosion resistance, biocompatibility, and load bearing. Unfortunately when metals are used for orthopedic and dental implants there is the possibility of loosening over a long period of time. Surface modification is a good way to counter this problem. A thin tantalum oxide layer obtained by layer-by-layer (LBL) sol-gel deposition on top of a titanium surface is expected to improve biocorrosion resistance in the body fluid, biocompatibility, and radio-opacity. This elaboration step is followed by a modification of the tantalum oxide surface with an organodiphosphonic acid self-assembled monolayer, capable of chemically binding to the oxide surface, and also improving hydroxyapatite growth. The different steps of this proposed process are characterized by surfaces techniques like contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM).
NASA Astrophysics Data System (ADS)
Messié, Monique; Chavez, Francisco P.
2017-09-01
A simple combination of wind-driven nutrient upwelling, surface currents, and plankton growth/grazing equations generates zooplankton patchiness and hotspots in coastal upwelling regions. Starting with an initial input of nitrate from coastal upwelling, growth and grazing equations evolve phytoplankton and zooplankton over time and space following surface currents. The model simulates the transition from coastal (large phytoplankton, e.g., diatoms) to offshore (picophytoplankton and microzooplankton) communities, and in between generates a large zooplankton maximum. The method was applied to four major upwelling systems (California, Peru, Northwest Africa, and Benguela) using latitudinal estimates of wind-driven nitrate supply and satellite-based surface currents. The resulting zooplankton simulations are patchy in nature; areas of high concentrations coincide with previously documented copepod and krill hotspots. The exercise highlights the importance of the upwelling process and surface currents in shaping plankton communities.
2002-09-30
CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces Alan W. Decho Department...TITLE AND SUBTITLE CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces 5a. CONTRACT...structures produced by bacteria. Their growth appears to depend on biofilm processes and light distributions ( photosynthesis ). Therefore, the data acquired
Nanoscale Surface Modification of Polycrystalline Tin Sulphide Films during Plasma Treatment
NASA Astrophysics Data System (ADS)
Zimin, S. P.; Gorlachev, E. S.; Dubov, G. A.; Amirov, I. I.; Naumov, V. V.; Gremenok, V. F.; Ivanov, V. A.; Seidi, H. G.
2013-05-01
In this paper, we present a comparative research of the nanoscale modification of the surface morphology of polycrystalline SnS films on glass substrates with two different preferred growth orientations processed in inductively coupled argon plasma. We report a new effect of polycrystalline SnS film surface smoothing during plasma treatment, which can be advantageous for the fabrication of multilayer solar cell devices with SnS absorption layers.
Wang, Hao; Alfredsson, Viveka; Tropsch, Juergen; Ettl, Roland; Nylander, Tommy
2015-09-30
The effects of sodium polyacrylate (NaPAA) as well as potassium oleate on the nucleation and calcium carbonate crystal growth on hard surfaces, i.e., stainless steel and silica, have been investigated at different temperatures. The relation between the surface deposition and the corresponding bulk processes has been revealed by combining dynamic light scattering (DLS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and ellipsometry. The aim was to further our understanding of the crystal deposition/growth mechanism and how it can be controlled by the presence of polyelectrolytes (NaPAA) or soap (potassium oleate). The addition of polyelectrolytes (NaPAA) or soap (potassium oleate) decreases the size of CaCO3 particles in bulk solution and affects both crystal structure and morphology in the bulk as well as on hard surfaces. The amount of particles on hard surfaces decreases significantly in the presence of both potassium oleate and NaPAA. This was found to be a consequence of potassium oleate or NaPAA adsorption on the hard surface as well as on the CaCO3 crystal surfaces. Here, the polymer NaPAA exhibited a stronger inhibition effect on the formation and growth of CaCO3 particles than potassium oleate.
Simulations of Quantum Dot Growth on Semiconductor Surfaces: Morphological Design of Sensor Concepts
2008-12-01
size equalization can be clearly illustrated during the growth process. In this work we develop a fast multiscale 3D kinetic Monte Carlo ( KMC ) QD...model will provide an attractive means for producing predictably ordered nanostructures. MODEL DESCRIPTION The 3D layer-by-layer KMC growth model...Voter, 2001) and KMC simulation experience (Pan et al., 2004; Pan et al., 2006; Meixner et al, 2003) in 2D, we therefore propose the following simple
Columnar and subsurface silicide growth with novel molecular beam epitaxy techniques
NASA Technical Reports Server (NTRS)
Fathauer, R. W.; George, T.; Pike, W. T.
1992-01-01
We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800 C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.
Regiospecific Nucleation and Growth of Silane Coupling Agent Droplets onto Colloidal Particles
2017-01-01
Nucleation-and-growth processes are used extensively in the synthesis of spherical colloids, and more recently regiospecific nucleation-and-growth processes have been exploited to prepare more complex colloids such as patchy particles. We demonstrate that surface geometry alone can be made to play the dominant role in determining the final particle geometry in such syntheses, meaning that intricate chemical surface patternings are not required. We present a synthesis method for “lollipop”-shaped colloidal heterodimers (patchy particles), combining a recently published nucleation-and-growth technique with our recent findings that particle geometry influences the locus of droplet adsorption onto anisotropic template particles. Specifically, 3-methacryloxypropyl trimethoxysilane (MPTMS) is nucleated and grown onto bullet-shaped and nail-shaped colloids. The shape of the template particle can be chosen such that the MPTMS adsorbs regiospecifically onto the flat ends. In particular, we find that particles with a wider base increase the range of droplet volumes for which the minimum in the free energy of adsorption is located at the flat end of the particle compared with bullet-shaped particles of the same aspect ratio. We put forward an extensive analysis of the synthesis mechanism and experimentally determine the physical properties of the heterodimers, supported by theoretical simulations. Here we numerically optimize, for the first time, the shape of finite-sized droplets as a function of their position on the rod-like silica particle surface. We expect that our findings will give an impulse to complex particle creation by regiospecific nucleation and growth. PMID:29057028
Stress-corrosion behavior of aluminum-lithium alloys in aqueous salt environments
NASA Technical Reports Server (NTRS)
Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.
1984-01-01
The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg; two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.
Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments
NASA Technical Reports Server (NTRS)
Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.
1983-01-01
The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.
NASA Astrophysics Data System (ADS)
Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu
2011-06-01
In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.
System and method for crystalline sheet growth using a cold block and gas jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellerman, Peter L.; Mackintosh, Brian; Carlson, Frederick M.
A crystallizer for growing a crystalline sheet from a melt may include a cold block having a cold block surface that faces an exposed surface of the melt, the cold block configured to generate a cold block temperature at the cold block surface that is lower than a melt temperature of the melt at the exposed surface. The system may also include a nozzle disposed within the cold block and configured to deliver a gas jet to the exposed surface, wherein the gas jet and the cold block are interoperative to generate a process zone that removes heat from themore » exposed surface at a first heat removal rate that is greater than a second heat removal rate from the exposed surface in outer regions outside of the process zone.« less
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
NASA Astrophysics Data System (ADS)
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung
2016-04-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.
Preparation of a semiconductor thin film
Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.
1998-01-27
A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.
NASA Astrophysics Data System (ADS)
Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A.; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung
2016-03-01
Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.
Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A; Yoo, Jung Ho; Lee, Kyoung G; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung
2016-03-10
Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.
Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung
2016-01-01
Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties. PMID:26961409
Sea level and turbidity controls on mangrove soil surface elevation change
Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.
2015-01-01
Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.
NASA Astrophysics Data System (ADS)
O'Steen, M. L.; Hauenstein, R. J.; Bandić, Z. Z.; Feenstra, R. M.; Hwang, S. J.; McGill, T. C.
1996-03-01
GaN is a robust semiconducting material offering a large, direct bandgap appropriate for use in blue-green to UV light emitting diodes and laser diodes. Attainment of device quality GaN has been difficult due to the lack of substrate materials that are suitably matched to the unusually small lattice parameter of GaN. To better control heteroepitaxial growth quality, a fundamental study of the initial stages of GaN growth by Electron Cyclotron Resonance Nitrogen Plasma-Assisted Molecular Beam Epitaxy (ECR-MBE) has been performed. The effect of an ECR Nitrogen plasma on a GaAs (100) surface is examined through time resolved reflection high energy electron diffraction, high resolution x-ray diffraction, and cross-sectional scanning tunneling microscopy. Fully commensurate GaN_yAs_1-y/GaAs heterostructures involving ultrathin GaN_yAs_1-y layers are obtained, and thermally activated microscopic growth processes are identified and quantitatively characterized through the aid of a specially developed kinetic model. The implications for ECR-MBE growth of GaN/GaAs mutilayers is discussed.
Lyu, Lai; Yan, Dengbiao; Yu, Guangfei; Cao, Wenrui; Hu, Chun
2018-04-03
Carbon nitride compounds (CN) complexed with the in-situ-produced Cu(II) on the surface of CuAlO 2 substrate (CN-Cu(II)-CuAlO 2 ) is prepared via a surface growth process for the first time and exhibits exceptionally high activity and efficiency for the degradation of the refractory pollutants in water through a Fenton-like process in a wide pH range. The reaction rate for bisphenol A removal is ∼25 times higher than that of the CuAlO 2 . According to the characterization, Cu(II) generation on the surface of CuAlO 2 during the surface growth process results in the marked decrease of the surface oxygen vacancies and the formation of the C-O-Cu bridges between CN and Cu(II)-CuAlO 2 in the catalyst. The electron paramagnetic resonance (EPR) analysis and density functional theory (DFT) calculations demonstrate that the dual reaction centers are produced around the Cu and C sites due to the cation-π interactions through the C-O-Cu bridges in CN-Cu(II)-CuAlO 2 . During the Fenton-like reactions, the electron-rich center around Cu is responsible for the efficient reduction of H 2 O 2 to • OH, and the electron-poor center around C captures electrons from H 2 O 2 or pollutants and diverts them to the electron-rich area via the C-O-Cu bridge. Thus, the catalyst exhibits excellent catalytic performance for the refractory pollutant degradation. This study can deepen our understanding on the enhanced Fenton reactivity for water purification through functionalizing with organic solid-phase ligands on the catalyst surface.
Calcium influences sensitivity to growth inhibition induced by a cell surface sialoglycopeptide
NASA Technical Reports Server (NTRS)
Betz, N. A.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)
1994-01-01
While studies concerning mitogenic factors have been an important area of research for many years, much less is understood about the mechanisms of action of cell surface growth inhibitors. We have purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) which can reversibly inhibit the proliferation of diverse cell types. The studies discussed in this article show that three mouse keratinocyte cell lines exhibit sixty-fold greater sensitivity than other fibroblasts and epithelial-like cells to CeReS-18-induced growth inhibition. Growth inhibition induced by CeReS-18 treatment is a reversible process, and the three mouse keratinocyte cell lines exhibited either single or multiple cell cycle arrest points, although a predominantly G0/G1 cell cycle arrest point was exhibited in Swiss 3T3 fibroblasts. The sensitivity of the mouse keratinocyte cell lines to CeReS-18-induced growth inhibition was not affected by the degree of tumorigenic progression in the cell lines and was not due to differences in CeReS-18 binding affinity or number of cell surface receptors per cell. However, the sensitivity of both murine fibroblasts and keratinocytes could be altered by changing the extracellular calcium concentration, such that increased extracellular calcium concentrations resulted in decreased sensitivity to CeReS-18-induced proliferation inhibition. Thus the increased sensitivity of the murine keratinocyte cell lines to CeReS-18 could be ascribed to the low calcium concentration used in their propagation. Studies are currently under way investigating the role of calcium in CeReS-18-induced growth arrest. The CeReS-18 may serve as a very useful tool to study negative growth control and the signal transduction events associated with cell cycling.
NASA Astrophysics Data System (ADS)
Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.
2014-09-01
The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.
Multiple relaxations of the cluster surface diffusion in a homoepitaxial SrTiO3 layer
NASA Astrophysics Data System (ADS)
Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho
2018-03-01
We examine the surface diffusion process of adatomic clusters on a (001)-oriented SrTiO3 single crystal using reflection high energy electron diffraction (RHEED). We find that the recovery curve of the RHEED intensity acquired after a homoepitaxial half-layer growth can be accurately fit into a double exponential function, indicating the existence of two dominant relaxation mechanisms. The characteristic relaxation times at selected growth temperatures are investigated to determine the diffusion activation barriers of 0.67 eV and 0.91 eV, respectively. The Monte Carlo simulation of the cluster hopping model suggests that the decrease in the number of dimeric and trimeric clusters during surface diffusion is the origin of the observed relaxation phenomena.
Patterned growth of carbon nanotubes on Si substrates without predeposition of metal catalysts
NASA Astrophysics Data System (ADS)
Chen, Y.; Yu, J.
2005-07-01
Aligned carbon nanotubes (CNTs) can be readily synthesized on quartz or silicon-oxide-coated Si substrates using a chemical vapor deposition method, but it is difficult to grow them on pure Si substrates without predeposition of metal catalysts. We report that aligned CNTs were grown by pyrolysis of iron phthalocyanine at 1000°C on the templates created on Si substrates with simple mechanical scratching. Scanning electron microscopy and x-ray energy spectroscopy analysis revealed that the trenches and patterns created on the surface of Si substrates were preferred nucleation sites for nanotube growth due to a high surface energy, metastable surface structure, and possible capillarity effect. A two-step pyrolysis process maintained Fe as an active catalyst.
NASA Astrophysics Data System (ADS)
Li, Xueming; Dong, Kun; Tang, Libin; Wu, Yongjun; Yang, Peizhi; Zhang, Pengxiang
2010-02-01
Vertical-aligned Ag nanoflake arrays are fabricated on the surface of an anodic aluminum oxide (AAO) template under a hydrothermal condition for the first time. The porous surface of AAO templates and the precursor solution may play key roles in the process of fabricating Ag nanoflakes. The rim of pores can provide many active sites for nucleation and growth, and then nanoflake arrays gradually form through self-assembly of Ag on the surface of AAO membranes. The product is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and a growth mechanism of nanoflake is deduced. This work demonstrates that it is possible to make ordered nanoarrays without dissolving templates using the hydrothermal method, and this interesting Ag nanoflake arrays may provide a wider range of nanoscale applications.
Numerical simulation of condensation on structured surfaces.
Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei
2014-11-25
Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.
NASA Astrophysics Data System (ADS)
Fuller, Brian M.; Sklar, Leonard S.; Compson, Zacchaeus G.; Adams, Kenneth J.; Marks, Jane C.; Wilcox, Andrew C.
2011-03-01
The linkages between fluvial geomorphology and aquatic ecosystems are commonly conceptualized as a one-way causal chain in which geomorphic processes create the physical template for ecological dynamics. In streams with a travertine step-pool morphology, however, biotic processes strongly influence the formation and growth of travertine dams, creating the potential for numerous feedbacks. Here we take advantage of the decommissioning of a hydroelectric project on Fossil Creek, Arizona, where restoration of CaCO 3-rich baseflow has triggered rapid regrowth of travertine dams, to explore the interactions between biotic and abiotic factors in travertine morphodynamics. We consider three conceptual frameworks, where biotic factors independently modulate the rate of physical and chemical processes that produce travertine dams; combine with abiotic factors in a set of feedback loops; and work in opposition to abiotic processes, such that the travertine step-pool morphology reflects a dynamic balance between dominantly-biotic constructive processes and dominantly-abiotic destructive processes. We consider separately three phases of an idealized life cycle of travertine dams: dam formation, growth, and destruction by erosive floods. Dam formation is catalyzed by abiotic factors (e.g. channel constrictions, and bedrock steps) and biotic factors (e.g. woody debris, and emergent vegetation). From measurements of changes over time in travertine thickness on a bedrock step, we find evidence for a positive feedback between flow hydraulics and travertine accrual. Measurements of organic content in travertine samples from this step show that algal growth contributes substantially to travertine accumulation and suggest that growth is most rapid during seasonal algal blooms. To document vertical growth of travertine dams, we embedded 252 magnets into nascent travertine dams, along a 10 km stretch of river. Growth rates are calculated from changes over time in the magnetic field intensity at the dam surface. At each magnet we record a range of hydraulic and travertine composition variables to characterize the dominant mechanism of growth: abiotic precipitation, algal growth, trapping of organic material, or in situ plant growth. We find: (1) rapid growth of travertine dams following flow restoration, averaging more than 2 cm/year; (2) growth rates decline downstream, consistent with loss of dissolved constituents because of upstream travertine deposition, but also parallel to a decline in organic content in dam surface material and a downstream shift in dominant biotic mechanism; (3) biotic mechanisms are associated with faster growth rates; and (4) correlations between hydraulic attributes and growth rates are more consistent with biotic than abiotic controls. We conclude that the strong influence of living organisms on rates of travertine growth, coupled with the beneficial effects of travertine on ecosystem dynamics, demonstrate a positive feedback between biology and geomorphology. During our two-year study period, erosive flood flows occurred causing widespread removal of travertine. The temporal distribution of travertine growth and erosion over the study period is consistent with a bimodal magnitude-frequency relation in which growth dominates except when large, infrequent storms occur. This model may be useful in other systems where biology exerts strong controls on geomorphic processes.
NASA Technical Reports Server (NTRS)
Holko, K. H.; Moore, T. J. (Inventor)
1973-01-01
Surfaces of unrecrystallized alloys are sanded and polished. This is followed by a two-step welding process by which the strength of the parent metal is retained at the weld joint. The first step forces the surfaces into intimate contact at a temperature where the metal still has good ductility. The second step causes diffusion, recrystallization, and grain growth across the original weld interface.
Growth kinetics and island evolution during double-pulsed molecular beam epitaxy of InN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, A.; Hein, C.; Bremers, H.
The kinetic processes of InN growth using alternating source fluxes with sub-monolayer In pulses in plasma-assisted molecular beam epitaxy have been investigated. Growth at various temperatures reveals the existence of two growth regimes. While growth at low temperatures is solely governed by surface diffusion, a combination of decomposition, desorption, and diffusion becomes decisive at growth temperatures of 470 °C and above. At this critical temperature, the surface morphology changes from a grainy structure to a structure made of huge islands. The formation of those islands is attributed to the development of an indium adlayer, which can be observed via reflection highmore » energy electron diffraction monitoring. Based on the growth experiments conducted at temperatures below T{sub Growth} = 470 °C, an activation energy for diffusion of 0.54 ± 0.02 eV has been determined from the decreasing InN island density. A comparison between growth on metalorganic vapor phase epitaxy GaN templates and pseudo bulk GaN indicates that step edges and dislocations are favorable nucleation sites. Based on the results, we developed a growth model, which describes the main mechanisms of the growth.« less
Atomistic simulation of Al-graphene thin film growth on polycrystalline Al substrate
NASA Astrophysics Data System (ADS)
Zhang, Lan; Zhu, Yongchao; Li, Na; Rong, Yan; Xia, Huimin; Ma, Huizhong
2018-03-01
The growth of Al-Graphene composite coatings on polycrystalline Al substrate was investigated by using classical molecular dynamics (MD) simulations. Unlike the diffusion behaviors on single crystal surface, most of adatoms were easily bound by the steps on polycrystalline Al surface, owing to the local accelerated energy. Both Ehrlich-Schwoebel (ES) barriers and the steering effect backed up the volmer-weber growth mode, which was consistent with the dynamic growth process observed in the deposit. The morphology of composite coatings was significantly affected by graphene flakes. Enrichment of graphene flakes gave rise to an increase of the local thickness, and graphene flakes only existed in Al grain boundaries. The size of Al grains in the composite coating visibly decreased when compared with that in the pure Al coating. This grain refinement and the mechanical property can be reinforced by the increase of graphene flakes.
NASA Astrophysics Data System (ADS)
Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.
2015-04-01
The development of European surface wind storms out of normal mid-latitude cyclones is substantially influenced by upstream tropospheric growth factors over the Northern Atlantic. The main factors include divergence and vorticity advection in the upper troposphere, latent heat release and the presence of instabilities of short baroclinic waves of suitable wave lengths. In this study we examine a subset of these potential growth factors and their related influences on the transformation of extra-tropical cyclones into severe damage prone surface storm systems. Previous studies have shown links between specific growth factors and surface wind storms related to extreme cyclones. In our study we investigate in further detail spatial and temporal variability patterns of these upstream processes at different vertical levels of the troposphere. The analyses will comprise of the three growth factors baroclinicity, latent heat release and upper tropospheric divergence. Our definition of surface wind storms is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. We also make use of a well-established extra-tropical cyclone identification and tracking algorithm. These cyclone tracks form the base for a composite analysis of the aforementioned growth factors using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM). Our composite analysis corroborates previous similar studies but extends them by using an impact based algorithm for the identification of strong wind systems. Based on this composite analysis we further identify variability patterns for each growth factor most important for the transformation of a cyclone into a surface wind storm. We thus also address the question whether the link between storm intensity and related growth factor anomaly taking into account its spatial variability is stable and can be quantified. While the robustness of our preliminary results is generally dependent on the growth factor investigated, some examples include i) the overall availability of latent heat seems to be less important than its spatial structure around the cyclone core and ii) the variability of upper-tropospheric baroclinicity appears to be highest north of the surface position of the cyclone, especially for those that transform into a surface storm.
Directed self-assembly of metal oxide quantum dots: Copper oxide on strontium titanium trioxide
NASA Astrophysics Data System (ADS)
Du, Yingge
2007-12-01
This dissertation explores the use of focused ion-beams (FIB) to direct the self-assembly of Cu2O quantum dots (QDs) on SrTiO3 (100) substrates via point implants of Ga+ at 30 keV After Ga+ implant and subsequent chemical and thermal surface preparation, oxygen plasma-assisted molecular beam-epitaxy (OPA-MBE) is used to grow Cu 2O QDs. The research of this dissertation finds that, for high FIB implant dose (5.6x1018 ions/cm2) and large interdot spacing (1000 nm), multiple QDs can be formed preferentially on the edges of FIB modified pits. For lower doses and/or smaller interdot spacings (8.8x1014 ions/cm2 and lower, 130 or 167 nm), individual QDs nucleate first within the pits. Under carefully controlled conditions, the separation and arrangement of the Cu2O QDs follows the FIB patterned template. This study finds that the FIB directed self-assembly technique works for different FIB doses, FIB interdot spacings and OPA-MBE deposition thicknesses, suggesting that this method is robust and flexible. Examination of QD growth on low-dose implant surfaces revealed a multi-step growth process. Initial deposition filled the pits just to the level of the original unmodified crystal growth surface. Following a pause in QD growth and the deposition of additional material, QD growth resumed on top of these perfectly filled pits. As growth continued, the dots reached a self-limiting size such that additional material deposition generated more QDs of similar size rather than continued growth of the large dots. This dissertation also seeks to increase understanding of the relative rolls played in the directed self-assembly process by local substrate chemistry, surface morphology, crystal-linity, and stress/strain. Experimental results revealed that although Ga concentration was noticeably higher on modified regions after FIB implant, no measurable Ga was found on the surface after high temperature annealing performed prior to QD growth. Thus Ga related chemistry/reactivity changes appear unlikely to be primary motivators of directed self-assembly. Low dose implant patterning created local depressions on the surface. This pit shape topography appears to be a strong contributor to the preferred nucleation within the pits, as the sidewalls of those surface pits could contain a high density of surface steps, which are known to decrease the adatom diffusion length and act as sinks to absorb the diffusing species. To further interpret the low dose implant results, calculations of total free-energy changes have been performed to study the differences between nucleation on a flat substrate surface and nucleation within a surface pit. This analysis shows that nucleation within a pit is almost always energetically favorable. In some special cases, assuming the pits have an inverted pyramidal shape, calculations show that island formation within the pits lowers the system total free-energy from the beginning of growth, i.e. there is no critical radius or energy barrier before a stable nucleus can be formed. The major geometric difference between high and low dose implantation area was revealed by AFM studies, which showed that pits generated by high implantation dose were still rounded after annealing and before growth, while pits from lower doses patterning had developed square edges oriented along the <100> directions of the substrate. These geometric differences suggest differences in crystalline or strain/stress states, either/both of which could have caused the subsequent different island growth characteristics. Continued study of directed self-assembly of metal oxide quantum dots should lead to better understanding of the creation of well ordered, precisely controlled, high density QD arrays, ultimately contributing to the development of next generation nanoelectronic, magnetic, and optical devices.
Fluid Physics and Macromolecular Crystal Growth in Microgravity
NASA Technical Reports Server (NTRS)
Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.; Helliwell, J.; Rose, M. Franklin (Technical Monitor)
2000-01-01
The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows.
Atomistics of vapour–liquid–solid nanowire growth
Wang, Hailong; Zepeda-Ruiz, Luis A.; Gilmer, George H.; Upmanyu, Moneesh
2013-01-01
Vapour–liquid–solid route and its variants are routinely used for scalable synthesis of semiconducting nanowires, yet the fundamental growth processes remain unknown. Here we employ atomic-scale computations based on model potentials to study the stability and growth of gold-catalysed silicon nanowires. Equilibrium studies uncover segregation at the solid-like surface of the catalyst particle, a liquid AuSi droplet, and a silicon-rich droplet–nanowire interface enveloped by heterogeneous truncating facets. Supersaturation of the droplets leads to rapid one-dimensional growth on the truncating facets and much slower nucleation-controlled two-dimensional growth on the main facet. Surface diffusion is suppressed and the excess Si flux occurs through the droplet bulk which, together with the Si-rich interface and contact line, lowers the nucleation barrier on the main facet. The ensuing step flow is modified by Au diffusion away from the step edges. Our study highlights key interfacial characteristics for morphological and compositional control of semiconducting nanowire arrays. PMID:23752586
Effect of indium droplets on growth of InGaN film by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Zheng, Xiantong; Liang, Hongwei; Wang, Ping; Sun, Xiaoxiao; Chen, Zhaoying; Wang, Tao; Sheng, Bowen; Wang, Yixin; Chen, Ling; Wang, Ding; Rong, Xin; Li, Mo; Zhang, Jian; Wang, Xinqiang
2018-01-01
Effect of indium (In) droplets on InGaN thin films grown by molecular beam epitaxy (MBE) has been investigated. The surface of InGaN covered by In droplets shows a smoother topography than that without droplets, indicating that the presence of In droplets is beneficial to the two dimensional growth. Beneath the In droplets, many ring-like structures are observed. The arrangement of these "ring" shows the movement of the In droplets during the InGaN growth. A qualitative growth model is proposed to explain the evolution of the InGaN surface morphology in In-droplet-induced-epitaxy process, giving an explanation that a local vapor-liquid-solid (VLS) system is preferentially formed at the edge of the droplets, leading to a high growth rate. Furthermore, the energy dispersive X-ray spectroscopy results reveal that the relatively higher In/Ga flux ratio in the region covered by the In droplet results in a locally higher In content.
NASA Astrophysics Data System (ADS)
Chong, Haining; Wang, Zhewei; Chen, Chaonan; Xu, Zemin; Wu, Ke; Wu, Lan; Xu, Bo; Ye, Hui
2018-04-01
In order to suppress dislocation generation, we develop a "three-step growth" method to heteroepitaxy low dislocation density germanium (Ge) layers on silicon with the MBE process. The method is composed of 3 growth steps: low temperature (LT) seed layer, LT-HT intermediate layer as well as high temperature (HT) epilayer, successively. Threading dislocation density (TDD) of epitaxial Ge layers is measured as low as 1.4 × 106 cm-2 by optimizing the growth parameters. The results of Raman spectrum showed that the internal strain of heteroepitaxial Ge layers is tensile and homogeneous. During the growth of LT-HT intermediate layer, TDD reduction can be obtained by lowering the temperature ramping rate, and high rate deposition maintains smooth surface morphology in Ge epilayer. A mechanism based on thermodynamics is used to explain the TDD and surface morphological dependence on temperature ramping rate and deposition rate. Furthermore, we demonstrate that the Ge layer obtained can provide an excellent platform for III-V materials integrated on Si.
Selective-area growth and controlled substrate coupling of transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Bersch, Brian M.; Eichfeld, Sarah M.; Lin, Yu-Chuan; Zhang, Kehao; Bhimanapati, Ganesh R.; Piasecki, Aleksander F.; Labella, Michael, III; Robinson, Joshua A.
2017-06-01
Developing a means for true bottom-up, selective-area growth of two-dimensional (2D) materials on device-ready substrates will enable synthesis in regions only where they are needed. Here, we demonstrate seed-free, site-specific nucleation of transition metal dichalcogenides (TMDs) with precise control over lateral growth by utilizing an ultra-thin polymeric surface functionalization capable of precluding nucleation and growth. This polymer functional layer (PFL) is derived from conventional photoresists and lithographic processing, and is compatible with multiple growth techniques, precursors (metal organics, solid-source) and TMDs. Additionally, we demonstrate that the substrate can play a major role in TMD transport properties. With proper TMD/substrate decoupling, top-gated field-effect transistors (FETs) fabricated with selectively-grown monolayer MoS2 channels are competitive with current reported MoS2 FETs. The work presented here demonstrates that substrate surface engineering is key to realizing precisely located and geometrically-defined 2D layers via unseeded chemical vapor deposition techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amatya, J. M.; Floro, J. A.
2015-12-28
Chemical ordering in semiconductor alloys could modify thermal and electronic transport, with potential benefits to thermoelectric properties. Here, metastable ordering that occurs during heteroepitaxial growth of Si{sub 1−x}Ge{sub x} thin film alloys on Si(001) and Ge(001) substrates is investigated. A parametric study was performed to study how strain, surface roughness, and growth parameters affect the order parameter during the alloy growth. The order parameter for the alloy films was carefully quantified using x-ray diffraction, taking into account an often-overlooked issue associated with the presence of multiple spatial variants associated with ordering along equivalent <111> directions. Optimal ordering was observed inmore » the films having the smoothest surfaces. Extended strain relaxation is suggested to reduce the apparent order through creation of anti-phase boundaries. Ordering surprisingly persists even when the film surface extensively roughens to form (105) facets. Growth on deliberately miscut Si(001) surfaces does not affect the volume-averaged order parameter but does impact the relative volume fractions of the equivalent ordered variants in a manner consistent with geometrically necessary changes in step populations. These results provide somewhat self-contradictory implications for the role of step edges in controlling the ordering process, indicating that our understanding is still incomplete.« less
Growth of Au on Ni(110): A Semiempirical Modeling of Surface Alloy Phases
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ibanez-Meier, Rodrigo; Ferrante, John
1995-01-01
Recent experiments using scanning tunneling microscopy show evidence for the formation of surface alloys of otherwise immiscible metals. Such is the case for Au deposited in Ni(110), where experiments by Pleth Nielsen el al.indicate that at low Au coverage (less than 0. 5 ML), Au atoms replace Ni atoms in the surface layer forming a surface alloy while the Ni atoms form islands on the surface. In this paper, we present results of a theoretical modeling of this phenomenon using the recently developed Bozzolo-Ferrante-Smith method for alloys. We provide results of an extensive analysis of the growth process that strongly support the conclusions drawn from the experiment: at very low coverages, there is a tendency for dimer formation on the overlayer, which later exchange positions with Ni atoms in the surface layer, thus accounting for the large number of substituted dimers. Ni island formation as well as other alternative short-range-order patterns are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höcker, Jan; Duchoň, Tomáš; Veltruská, Kateřina
2016-01-06
We present a novel and simple method for the preparation of a well-defined CeO 2(100) model system on Cu(111) based on the adjustment of the Ce/O ratio during growth. The method yields micrometer-sized, several nanometers high, single-phase CeO 2(100) islands with controllable size and surface termination that can be benchmarked against the known (111) nanostructured islands on Cu(111). We also demonstrate the ability to adjust the Ce to O stoichiometry from CeO 2(100) (100% Ce 4+) to c-Ce 2O 3(100) (100% Ce 3+), which can be readily recognized by characteristic surface reconstructions observed by low-energy electron diffraction. Finally, the discoverymore » of the highly stable CeO x(100) phase on a hexagonally close packed metal surface represents an unexpected growth mechanism of ceria on Cu(111), and it provides novel opportunities to prepare more elaborate models, benchmark surface chemical reactivity, and thus gain valuable insights into the redox chemistry of ceria in catalytic processes.« less
Metal Catalyst for Low-Temperature Growth of Controlled Zinc Oxide Nanowires on Arbitrary Substrates
Kim, Baek Hyun; Kwon, Jae W.
2014-01-01
Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires. PMID:24625584
Microphysical Properties and Water Budget for Summer Convective Clouds over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Guo, X.; Tang, J.; Chang, Y.
2017-12-01
During the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the clouds and precipitation processes over the Tibetan Plateau have been intensively investigated. On basis of field campaign, the cloud microphysical structure, water transformation and budget properties for typical convective precipitation processes in the summer season of 2014 over the plateau are studied using mesoscale numerical prediction model (WRF) combined with observational data collected during the experiment. The results indicate that WRF model could reproduce the general characteristics of diurnal variation of clouds and precipitation process over the plateau, however, the temporal and spatial distribution and intensity of cloud bands and precipitation simulated by WRF model still had large differences with those observed. Ice process played a critical role in the development of summer convective clouds and precipitation over the plateau. The surface precipitation was primarily formed by the melting process of graupel particles. Although the warm cloud microphysical process had small direct contribution on the surface precipitation, it had an important contribution in the formation of graupel embryos. High amount of supercooled cloud water content and graupel particles could be found in the clouds. The formation and growth of snow particles relied on the conversion of ice crystal and the aggregation with ice crystal over 12 km (-40°), but the formation of snow particles below 12 km (-40°)was dependent on the conversion of Bergeron process of ice crystals and its growth resulted from riming process with supercooled cloud water. The accretion process of supercooled raindrops by ice crystal and snow particles contributed to the production of graupel embryos and their growth mainly relied on the riming process with supercooled cloud water and aggregation process with snow particles. The mean daily conversion rate from vapor to precipitation was as high as 27.27%, which is close to Yangtze River downstream, and is higher than the regions of northern and northwestern China. The contribution of daily mean surface evaporation to precipitation was 10.92%, indicating that the 90% rainfall was from the conversion of water vapor outside the plateau.
NASA Astrophysics Data System (ADS)
Nasehnejad, Maryam; Nabiyouni, G.; Gholipour Shahraki, Mehran
2018-03-01
In this study a 3D multi-particle diffusion limited aggregation method is employed to simulate growth of rough surfaces with fractal behavior in electrodeposition process. A deposition model is used in which the radial motion of the particles with probability P, competes with random motions with probability 1 - P. Thin films growth is simulated for different values of probability P (related to the electric field) and thickness of the layer(related to the number of deposited particles). The influence of these parameters on morphology, kinetic of roughening and the fractal dimension of the simulated surfaces has been investigated. The results show that the surface roughness increases with increasing the deposition time and scaling exponents exhibit a complex behavior which is called as anomalous scaling. It seems that in electrodeposition process, radial motion of the particles toward the growing seeds may be an important mechanism leading to anomalous scaling. The results also indicate that the larger values of probability P, results in smoother topography with more densely packed structure. We have suggested a dynamic scaling ansatz for interface width has a function of deposition time, scan length and probability. Two different methods are employed to evaluate the fractal dimension of the simulated surfaces which are "cube counting" and "roughness" methods. The results of both methods show that by increasing the probability P or decreasing the deposition time, the fractal dimension of the simulated surfaces is increased. All gained values for fractal dimensions are close to 2.5 in the diffusion limited aggregation model.
Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis.
Partridge, Emily A; Le Roy, Christine; Di Guglielmo, Gianni M; Pawling, Judy; Cheung, Pam; Granovsky, Maria; Nabi, Ivan R; Wrana, Jeffrey L; Dennis, James W
2004-10-01
The Golgi enzyme beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is up-regulated in carcinomas and promotes the substitution of N-glycan with poly N-acetyllactosamine, the preferred ligand for galectin-3 (Gal-3). Here, we report that expression of Mgat5 sensitized mouse cells to multiple cytokines. Gal-3 cross-linked Mgat5-modified N-glycans on epidermal growth factor and transforming growth factor-beta receptors at the cell surface and delayed their removal by constitutive endocytosis. Mgat5 expression in mammary carcinoma was rate limiting for cytokine signaling and consequently for epithelial-mesenchymal transition, cell motility, and tumor metastasis. Mgat5 also promoted cytokine-mediated leukocyte signaling, phagocytosis, and extravasation in vivo. Thus, conditional regulation of N-glycan processing drives synchronous modification of cytokine receptors, which balances their surface retention against loss via endocytosis.
Chemical Vapor Deposition at High Pressure in a Microgravity Environment
NASA Technical Reports Server (NTRS)
McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao
1999-01-01
In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.
Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers
NASA Astrophysics Data System (ADS)
Bollmann, Tjeerd R. J.
2018-04-01
Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.
García, Sergio; Trueba, Alfredo; Vega, Luis M; Madariaga, Ernesto
2016-11-01
The present study evaluated biofilm growth in AISI 316L stainless steel tubes for seawater-cooled exchanger-condensers that had four different arithmetic mean surface roughness values ranging from 0.14 μm to 1.2 μm. The results of fluid frictional resistance and heat transfer resistance regarding biofilm formation in the roughest surface showed increases of 28.2% and 19.1% respectively, compared with the smoothest surface. The biofilm thickness taken at the end of the experiment showed variations of up to 74% between the smoothest and roughest surfaces. The thermal efficiency of the heat transfer process in the tube with the roughest surface was 17.4% greater than that in the tube with the smoothest surface. The results suggest that the finish of the inner surfaces of the tubes in heat exchanger-condensers is critical for improving energy efficiency and avoiding biofilm adhesion. This may be utilised to reduce biofilm adhesion and growth in the design of heat exchanger-condensers.
NASA Astrophysics Data System (ADS)
Zhang, Xinyue; Xia, Chunhui; Li, Kaitao; Lin, Yanjun
2018-06-01
Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce3+ can react with OH- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.
NASA Astrophysics Data System (ADS)
Zhang, Xinyue; Xia, Chunhui; Li, Kaitao; Lin, Yanjun
2018-04-01
Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce3+ can react with OH- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.
Bonduelle, Colin V; Lau, Woon M; Gillies, Elizabeth R
2011-05-01
The functionalization of surfaces with poly(ethylene oxide) (PEO) is an effective means of imparting resistance to the adsorption of proteins and the attachment and growth of cells, properties that are critical for many biomedical applications. In this work, a new hyperthermal hydrogen induced cross-linking (HHIC) method was explored as a simple one-step approach for attaching PEO to surfaces through the selective cleavage of C-H bonds and subsequent cross-linking of the resulting carbon radicals. In order to study the effects of the process on the polymer, PEO-coated silicon wafers were prepared and the effects of different treatment times were investigated. Subsequently, using an optimized treatment time and a modified butyl polymer with increased affinity for PEO, the technique was applied to butyl rubber surfaces. All of the treated surfaces exhibited significantly reduced protein adsorption and cell growth relative to control surfaces and compared favorably with surfaces that were functionalized with PEO using conventional chemical methods. Thus HHIC is a simple and effective means of attaching PEO to non-functional polymer surfaces.
Effect of cathodic polarization on coating doxycycline on titanium surfaces.
Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J
2016-06-01
Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Malkin, A. J.; Kuznetsov, Yu. G.; McPherson, A.
2001-11-01
In situ atomic force microscopy (AFM) was used to investigate surface evolution during the growth of single crystals of turnip yellow mosaic virus (TYMV), cucumber mosaic virus (CMV) and glucose isomerase. Growth of these crystals proceeded by two-dimensional (2D) nucleation. For glucose isomerase, from supersaturation dependencies of tangential step rates and critical step length, the kinetic coefficients of the steps and the surface free energy of the step edge were calculated for different crystallographic directions. The molecular structure of the step edges, the adsorption of individual virus particles and their aggregates, and the initial stages of formation of 2D nuclei on the surfaces of TYMV and CMV crystals were recorded. The surfaces of individual TYMV virions within crystals were visualized, and hexameric and pentameric capsomers of the T=3 capsids were clearly resolved. This, so far as we are aware, is the first direct visualization of the capsomere structure of a virus by AFM. In the course of recording the in situ development of the TYMV crystals, a profound restructuring of the surface arrangement was observed. This transformation was highly cooperative in nature, but the transitions were unambiguous and readily explicable in terms of an organized loss of classes of virus particles from specific lattice positions.
McKee, Rodney Allen; Walker, Frederick Joseph
1998-01-01
A structure including a film of a desired perovskite oxide which overlies and is fully commensurate with the material surface of a semiconductor-based substrate and an associated process for constructing the structure involves the build up of an interfacial template film of perovskite between the material surface and the desired perovskite film. The lattice parameters of the material surface and the perovskite of the template film are taken into account so that during the growth of the perovskite template film upon the material surface, the orientation of the perovskite of the template is rotated 45.degree. with respect to the orientation of the underlying material surface and thereby effects a transition in the lattice structure from fcc (of the semiconductor-based material) to the simple cubic lattice structure of perovskite while the fully commensurate periodicity between the perovskite template film and the underlying material surface is maintained. The film-growth techniques of the invention can be used to fabricate solid state electrical components wherein a perovskite film is built up upon a semiconductor-based material and the perovskite film is adapted to exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic or large dielectric properties during use of the component.
Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten
Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; ...
2016-11-15
Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10 6 to 10 12 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structuremore » around the bubble.« less
Solid/melt interface studies of high-speed silicon sheet growth
NASA Technical Reports Server (NTRS)
Ciszek, T. F.
1984-01-01
Radial growth-rate anisotropies and limiting growth forms of point nucleated, dislocation-free silicon sheets spreading horizontally on the free surface of a silicon melt have been measured for (100), (110), (111), and (112) sheet planes. Sixteen-millimeter movie photography was used to record the growth process. Analysis of the sheet edges has lead to predicted geometries for the tip shape of unidirectional, dislocation-free, horizontally growing sheets propagating in various directions within the above-mentioned planes. Similar techniques were used to study polycrystalline sheets and dendrite propagation. For dendrites, growth rates on the order of 2.5 m/min and growth rate anisotropies on the order of 25 were measured.
Research study on materials processing in space, experiment M512
NASA Technical Reports Server (NTRS)
Rubenstein, M.; Hopkins, R. H.; Kim, H. B.
1973-01-01
Gallium arsenide, a commercially valuable semiconductor, has been prepared from the melt (M.P. 1237C), by vapor growth, and by growth from metallic solutions. It has been established that growth from metallic solution can produce material with high, and perhaps with the highest possible, chemical homogeneity and crystalline perfection. Growth of GaAs from metallic solution can be performed at relatively low temperatures (about 600C) and is relatively insensitive to temperature fluctuations. However, this type of crystal growth is subject to the decided disadvantage that density induced convection currents may produce variations in rates of growth at a growing surface. This problem would be minimized under reduced gravity conditions.
Ceriotti, M; Montalenti, F; Bernasconi, M
2012-03-14
By means of first-principles calculations we studied the decomposition pathways of SiH₃ on Ge(100) and of GeH₃ on Si(100), of interest for the growth of crystalline SiGe alloys and Si/Ge heterostructures by plasma-enhanced chemical vapor deposition. We also investigated H desorption via reaction of two adsorbed SiH₂/GeH₂ species (β₂ reaction) or via Eley-Rideal abstraction of surface H atoms from the impinging SiH₃ and GeH₃ species. The calculated activation energies for the different processes suggest that the rate-limiting step for the growth of Si/Ge systems is still the β₂ reaction of two SiH₂ as in the growth of crystalline Si.
Engineered Multifunctional Surfaces for Fluid Handling
NASA Technical Reports Server (NTRS)
Thomas, Chris; Ma, Yonghui; Weislogel, Mark
2012-01-01
Designs incorporating variations in capillary geometry and hydrophilic and/or antibacterial surface properties have been developed that are capable of passive gas/liquid separation and passive water flow. These designs can incorporate capillary grooves and/or surfaces arranged to create linear and circumferential capillary geometry at the micro and macro scale, radial fin configurations, micro holes and patterns, and combinations of the above. The antibacterial property of this design inhibits the growth of bacteria or the development of biofilm. The hydrophilic property reduces the water contact angle with a treated substrate such that water spreads into a thin layer atop the treated surface. These antibacterial and hydrophilic properties applied to a thermally conductive surface, combined with capillary geometry, create a novel heat exchanger capable of condensing water from a humid, two-phase water and gas flow onto the treated heat exchanger surfaces, and passively separating the condensed water from the gas flow in a reduced gravity application. The overall process to generate the antibacterial and hydrophilic properties includes multiple steps to generate the two different surface properties, and can be divided into two major steps. Step 1 uses a magnetron-based sputtering technique to implant the silver atoms into the base material. A layer of silver is built up on top of the base material. Completion of this step provides the antibacterial property. Step 2 uses a cold-plasma technique to generate the hydrophilic surface property on top of the silver layer generated in Step 1. Completion of this step provides the hydrophilic property in addition to the antibacterial property. Thermally conductive materials are fabricated and then treated to create the antibacterial and hydrophilic surface properties. The individual parts are assembled to create a condensing heat exchanger with antibacterial and hydrophilic surface properties and capillary geometry, which is capable of passive phase separation in a reduced gravity application. The plasma processes for creating antibacterial and hydrophilic surface properties are suitable for applications where water is present on an exposed surface for an extended time, such that bacteria or biofilms could form, and where there is a need to manage the water on the surface. The processes are also suitable for applications where only the hydrophilic property is needed. In particular, the processes are applicable to condensing heat exchangers (CHXs), which benefit from the antibacterial properties as well as the hydrophilic properties. Water condensing onto the control surfaces of the CHX will provide the moist conditions necessary for the growth of bacteria and the formation of biofilms. The antibacterial properties of the base layer (silver) will mitigate and prevent the growth of bacteria and formation of biofilms that would otherwise reduce the CHX performance. In addition, the hydrophilic properties reduce the water contact angle and prevent water droplets from bridging between control surfaces. Overall, the hydrophilic properties reduce the pressure drop across the CHX.
NASA Astrophysics Data System (ADS)
Schneider, Andreas; Rea, Susan; Huq, Ejaz; Bonfield, William
2003-04-01
HAPEX is an artificial bone analogue composite based on hydroxyapatite and polyethylene, which can be applied for growth of bone cells. Due to its biocompatibility and favourable mechanical properties, HAPEX is used for orthopaedic implants like tympanic (middle ear) bones. The morphology of HAPEX surfaces is of high interest and it is believed that surface structuring on a micron scale might improve the growth conditions for bone cells. A new and simple approach for the microstructuring of HAPEX surfaces has been investigated using LIGA technique. LIGA is a combination of several processes, in particular lithography, electroplating and forming/moulding. For HAPEX surface structuring, arrays of dots, grids and lines with typical lateral dimension ranging from 5 μm to 50 μm were created on a chromium photomask and the patterns were transferred into thick SU-8 photoresist (structure height > 10 μm) by UV lithography. Subsequently, the SU-8 structures served as moulds for electroplating nickel on Si wafers and nickel substrates. The final nickel microstructures were used as embossing master for the HAPEX material. Embossing was carried out using a conventional press (> 500 hPa) with the facility to heat the master and the HAPEX. The temperature ranged from ambient to a few degrees above glass transition temperature (Tg) of HAPEX. The paper will include details of the fabrication process and process tolerances in lateral and vertical directions. Data obtained are correlated to the temperature used during embossing.
Crystalline order of a water/glycine film coadsorbed on the (104) calcite surface.
Magdans, Uta; Torrelles, Xavier; Angermund, Klaus; Gies, Hermann; Rius, Jordi
2007-04-24
For biomineralization processes, the interaction of the surface of calcite crystals with organic molecules is of particular importance. Especially, biologically controlled biomineralization as in exoskeletons of mollusks and echinoderms, e.g., sea urchin with single-crystal-like spines and shells,1-3 requires molecular control of seed formation and growth process. So far, experiments showing the obvious influence of organic molecules on the morphology and habit of calcite crystals have demonstrated the molecular dimension of the interaction.4-7 Details of the kinetics of growth and dissolution of mineral surfaces influenced by additives are available,8,9 but other experimental data about the structure of the organic/inorganic interface on the atomic scale are rare. On the other hand, complicated organic macromolecules which are involved in biomineralization are numerous, with only a small fraction solved in structure and function so far.10-13 Therefore, model systems have to be designed to provide a basic understanding for the interaction process.14 Using grazing incidence X-ray diffraction combined with molecular modeling techniques, we show that glycine molecules order periodically on the calcite (104) face in competition with the solvent water when exposed to an aqueous solution of the most simple amino acid. In contrast to the general concept of the charge-matching fit of organic molecules on mineral surfaces,4,14 glycine is not attached to the calcite surface directly but substitutes for water molecules in the second hydration layer.
Controlled growth of vertically aligned carbon nanotubes on metal substrates
NASA Astrophysics Data System (ADS)
Gao, Zhaoli
Carbon nanotube (CNT) is a fascinating material with extraordinary electrical thermal and mechanical properties. Growing vertically aligned CNT (VACNT) arrays on metal substrates is an important step in bringing CNT into practical applications such as thermal interface materials (TIMs) and microelectrodes. However, the growth process is challenging due to the difficulties in preventing catalyst diffusion and controlling catalyst dewetting on metal substrates with physical surface heterogeneity. In this work, the catalyst diffusion mechanism and catalyst dewetting theory were studied for the controlled growth of VACNTs on metal substrates. The diffusion time of the catalyst, the diffusion coefficients for the catalyst in the substrate materials and the number density of catalyst nanoparticles after dewetting are identified as the key parameters, based on which three strategies are developed. Firstly, a fast-heating catalyst pretreatment strategy was used, aiming at preserving the amount of catalyst prior to CNT growth by reducing the catalyst diffusion time. The catalyst lifetime is extended from half an hour to one hour on a patterned Al thin film and a VACNT height of 106 mum, about twenty fold of that reported in the literature, was attained. Secondly, a diffusion barrier layer strategy is employed for a reduction of catalyst diffusion into the substrate materials. Enhancement of VACNT growth on Cu substrates was achieved by adopting a conformal Al2O 3 diffusion barrier layer fabricated by a specially designed atomic layer deposition (ALD) system. Lastly, a novel catalyst glancing angle deposition (GLAD) strategy is performed to manipulate the morphology of a relatively thick catalyst on metal substrates with physical surface heterogeneity, aiming to obtain uniform and dense catalyst nanoparticles after dewetting in the pretreatment process for enhanced VACNT growth. We are able to control the VACNT growth conditions on metal substrates in terms of their distribution, heights and alignments. Catalyst loss is controlled by the catalyst diffusion time and catalyst diffusion coefficients. A shorter catalyst diffusion time and smaller diffusion coefficient enhance VACNT growth on metals due to reduced catalyst loss during the pretreatment process. The dewetting behaviors of the thin film catalysts are influenced by the physical surface heterogeneity of the substrates which leads to non-uniform growth of VACNTs. The GLAD process facilitates the deposition of a relatively thick catalyst layer for the creation of dense and uniform catalyst nanoparticles. Applications of VACNT-metal structures in TIMs and microelectrodes are demonstrated. The VACNT-TIMs fabricated on Al alloy substrates have a typical thermal contact resistivity of 17.1 mm2˙K/W and their effective application in high-brightness LED thermal management was demonstrated. Electrochemical characterization was carried out on VACNT microelectrodes for the development of high resolution retinal prostheses and a satisfactory electrochemical property was again demonstrated.
Hydrogen Surfactant Effect on ZnO/GaN Heterostructures Growth
NASA Astrophysics Data System (ADS)
Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Zhu, Junyi
To grow high quality heterostructures based on ZnO and GaN, growth conditions that favor the layer by layer (Frank-Van der Merwe) growth mode have to be applied. However, if A wets B, B would not wet A without special treatments. A famous example is the epitaxial growth of Si/Ge/Si heterostructure with the help of arsenic surfactant in the late 1980s. It has been confirmed by the previous experiments and our calculations that poor crystal quality and 3D growth mode were obtained when GaN grown on ZnO polar surfaces while high quality ZnO was achieved on (0001) and (000-1)-oriented GaN. During the standard OMVPE growth processes, hydrogen is a common impurity and hydrogen-involved surface reconstructions have been well investigated experimentally and theoretically elsewhere. Due to the above facts, we proposed key growth strategies by using hydrogen as a surfactant to achieve ideal growth mode for GaN on ZnO (000-1) surface. This novel strategy may for the first time make the growth of high quality GaN single crystal on ZnO substrate possible. This surfactant effect is expected to largely improve the crystal quality and the efficiency of ZnO/GaN super lattices or other heterostructure devices. Part of the computing resources was provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project code of 4053134 and 3132748 at CUHK.
Preparation of patterned graphene-ZnO hybrid nanoflower and nanorods on ITO surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Sin Tee; Umar, Marjoni Imamora Ali; Ginting, Riski Titian
2013-11-27
Hybrid ZnO nanostructure with controlled morphology have been proved to enhance the physical and chemical properties of the material and used as photodiode and sensor. In this paper, hybrid graphene-ZnO nanoflower and nanorods have been successfully synthesized via a seed mediated method with micropatterned ZnO nanoseed treated with multilayer graphene (MLG) in a hydrothermal process. In typical process, the ZnO nanoseeds with and without resists were spin coated with a multilayer graphene prior to the growth process. The treated seed was then used to grow the ZnO nanostructures in the growth solution that contained equimolar (0.04 M) of zinc nitratemore » hexahydrate and hexamethylenetetramine. The growth process was carried out inside an autoclave at temperature 70 °C. The growth time was 4 h. It was proved that the MLG treatment on micropatterning substrate may induce new morphology formation of ZnO nanostructure. It is expected that the heteroepitaxy reaction occurred between the MLG and ZnO interface. This presence method can be used as an alternative approach to control the morphology of hybrid ZnO nanostructure growth.« less
Redox processes at a nanostructured interface under strong electric fields.
Steurer, Wolfram; Surnev, Svetlozar; Netzer, Falko P; Sementa, Luca; Negreiros, Fabio R; Barcaro, Giovanni; Durante, Nicola; Fortunelli, Alessandro
2014-09-21
Manipulation of chemistry and film growth via external electric fields is a longstanding goal in surface science. Numerous systems have been predicted to show such effects but experimental evidence is sparse. Here we demonstrate in a custom-designed UHV apparatus that the application of spatially extended, homogeneous, very high (>1 V nm(-1)) DC-fields not only changes the system energetics but triggers dynamic processes which become important much before static contributions appreciably modify the potential energy landscape. We take a well characterized ultrathin NiO film on a Ag(100) support as a proof-of-principle test case, and show how it gets reduced to supported Ni clusters under fields exceeding the threshold of +0.9 V nm(-1). Using an effective model, we trace the observed interfacial redox process down to a dissociative electron attachment resonant mechanism. The proposed approach can be easily implemented and generally applied to a wide range of interfacial systems, thus opening new opportunities for the manipulation of film growth and reaction processes at solid surfaces under strong external fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Suresh C.; Gupta, Neha
2015-12-15
A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, numbermore » density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.« less
NASA Astrophysics Data System (ADS)
Cui, Hongtao; Kalinin, Sergei; Yang, Xiaojing; Lowndes, Douglas
2005-03-01
Carbon nanofibers (CNFs) are grown on tipless cantilevers as probe tips for scanning probe microscopy. A catalyst dot pattern is formed on the surface of the tipless cantilever using electron beam lithography and CNF growth is performed in a direct-current plasma enhanced chemical vapor deposition reactor. Because the CNF is aligned with the electric field near the edge of the cantilever during growth, it is tilted with respect to the cantilever surface, which compensates partially for the probe tilt introduced when used in scanning probe microscopy. CNFs with different shapes and tip radii can be produced by variation of experimental conditions. The tip geometries of the CNF probes are defined by their catalyst particles, whose magnetic nature also imparts a capability for imaging magnetic samples. We have demonstrated their use in both atomic force and magnetic force surface imaging. These probe tips may provide information on magnetic phenomena at the nanometer scale in connection with the drive for ever-increasing storage density of magnetic hard disks.
NASA Technical Reports Server (NTRS)
Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli
2010-01-01
The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.
NASA Astrophysics Data System (ADS)
Khan, Imran; Huang, Shengli; Wu, Chenxu
2017-12-01
The structural transformation of multi-walled carbon nanotubes (MWCNT) under electron beam (e-beam) irradiation at room temperature is studied, with respect to a novel passivation effect due to gold nanoparticles (Au NPs). MWCNT structural evolution induced by energetic e-beam irradiation leads to faster shrinkage, as revealed via in situ transmission electron microscopy, while MWCNT surface modification with Au NPs (Au-MWCNT) slows down the shrinkage by impeding the structural evolution process for a prolonged time under the same irradiation conditions. The new relationship between MWCNT and Au-MWCNT shrinking radii and irradiation time illustrates that the MWCNT shrinkage rate is faster than either theoretical predictions or the same process in Au-MWCNTs. As compared with the outer surface energy (positive curvature), the inner surface energy (negative curvature) of the MWCNT contributes more to the athermal evaporation of tube wall atoms, leading to structural instability and shrinkage under e-beam irradiation. Conversely, Au NPs possess only outer surface energy (positive curvature) compared with the MWCNT. Their presence on MWCNT surfaces retards the dynamics of MWCNT structural evolution by slowing down the evaporation process of carbon atoms, thus restricting Au-MWCNT shrinkage. Au NP interaction and growth evolves athermally on MWCNT surfaces, exhibits increase in their size, and indicates the association of this mechanism with the coalescence induced by e-beam activated electronic excitations. Despite their growth, Au NPs show extreme structural stability, and remain crystalline under prolonged irradiation. It is proposed that the surface energy of MWCNTs and Au NPs, together with e-beam activated soft modes or lattice instability effects, predominantly govern all the above varieties of structural evolution.
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrov, D. A.; Bell, G. I.; Smedley, J.
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...
2017-10-26
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Influence of asymmetric magnetic perturbation on the nonlinear evolution of double tearing modes
NASA Astrophysics Data System (ADS)
Xiong, G. Z.; Wang, L.; Li, X. Q.; Liu, H. F.; Tang, C. J.; Huang, J.; Zhang, X.; Wang, X. Q.
2017-06-01
The effects of asymmetric magnetic perturbation on the triggering and evolution of double tearing modes (DTMs) are investigated using nonlinear magnetohydrodynamics simulations in a slab geometry. We find that for reversed magnetic shear plasmas the resistive reconnection process induced by the initial perturbation at one rational surface can drive a new island at the other rational surface with the same mode number. The four typical states of the mode for the time evolution are found, and include: (i) a linear growth stage; (ii) a linear/nonlinear stable stage; (iii) an interactively driving stage; and (iv) a symmetric DTM stage. These differ from previous simulation results. Moreover, nonlinear DTM growth is found to strongly depend on the asymmetric magnetic perturbation, particularly in the early nonlinear phase. The initial perturbation strength scale of island width suggests that the left island enters into a Sweet-Parker growth process when the right island is sufficiently large to effectively drive the other. These results predict that although externally applied magnetic perturbations can suppress the neoclassical tearing mode they can also trigger new instabilities such as asymmetric DTMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Emily L., E-mail: emily.warren@nrel.gov; Kibbler, Alan E.; France, Ryan M.
2015-08-24
Antiphase-domain (APD) free GaP films were grown on Si(100) substrates prepared by annealing under dilute AsH{sub 3} in situ in an MOCVD reactor. LEED and AES surface analysis of Si(100) surfaces prepared by this treatment show that AsH{sub 3} etching quickly removes O and C contaminants at a relatively low temperature (690–740 °C), and creates a single-domain “A-type” As/Si surface reconstruction. The resulting GaP epilayers grown at the same temperature are APD-free, and could thereby serve as templates for direct growth of III-V semiconductors on Si. This single chamber process has a low thermal budget, and can enable heteroepitaxial integration ofmore » III-Vs and Si at an industrial scale.« less
NASA Technical Reports Server (NTRS)
Dietz, Nikolaus; Bachmann, Klaus J.
1995-01-01
This paper describes the results of real-time optical monitoring of epitaxial growth processes by p-polarized reflectance spectroscopy (PRS) using a single wavelength application under pulsed chemical beam epitaxy (PCBE) condition. The high surface sensitivity of PRS allows the monitoring of submonolayer precursors coverage on the surface as shown for GaP homoepitaxy and GaP on Si heteroepitaxy as examples. In the case of heteroepitaxy, the growth rate and optical properties are revealed by PRS using interference oscillations as they occur during growth. Super-imposed on these interference oscillations, the PRS signal exhibits a fine structure caused by the periodic alteration of the surface chemistry by the pulsed supply of chemical precursors. This fine structure is modeled under conditions where the surface chemistry cycles between phosphorus supersaturated and phosphorus depleted surfaces. The mathematical model describes the fine structure using a surface layer that increases during the tertiarybutyl phosphine (TBP) supply and decreases during and after the triethylgallium (TEG) pulse, which increases the growing GaP film thickness. The imaginary part of the dielectric function of the surface layer is revealed from the turning points in the fine structure, where the optical response to the first precursor pulse in the cycle sequence changes sign. The amplitude of the fine structure is determined by the surface layer thickness and the complex dielectric functions for the surface layer with the underlying bulk film. Surface kinetic data can be obtained by analyzing the rise and decay transients of the fine structure.
Weszl, Miklós; Tóth, Krisztián László; Kientzl, Imre; Nagy, Péter; Pammer, Dávid; Pelyhe, Liza; Vrana, Nihal E; Scharnweber, Dieter; Wolf-Brandstetter, Cornelia; Joób F, Árpád; Bognár, Eszter
2017-09-01
The objective of this study was to investigate the reproducibility, mechanical integrity, surface characteristics and corrosion behavior of nanotubular (NT) titanium oxide arrays in comparison with a novel nano-pitted (NP) anodic film. Surface treatment processes were developed to grow homogenous NT and NP anodic films on the surface of grade 2 titanium discs and dental implants. The effect of process parameters on the surface characteristics and reproducibility of the anodic films was investigated and optimized. The mechanical integrity of the NT and NP anodic films were investigated by scanning electron microscopy, surface roughness measurement, scratch resistance and screwing tests, while the chemical and physicochemical properties were investigated in corrosion tests, contact angle measurement and X-ray photoelectron spectroscopy (XPS). The growth of NT anodic films was highly affected by process parameters, especially by temperature, and they were apt to corrosion and exfoliation. In contrast, the anodic growth of NP film showed high reproducibility even on the surface of 3-dimensional screw dental implants and they did not show signs of corrosion and exfoliation. The underlying reason of the difference in the tendency for exfoliation of the NT and NP anodic films is unclear; however the XPS analysis revealed fluorine dopants in a magnitude larger concentration on NT anodic film than on NP surface, which was identified as a possible causative. Concerning other surface characteristics that are supposed to affect the biological behavior of titanium implants, surface roughness values were found to be similar, whereas considerable differences were revealed in the wettability of the NT and NP anodic films. Our findings suggest that the applicability of NT anodic films on the surface of titanium bone implants may be limited because of mechanical considerations. In contrast, it is worth to consider the applicability of nano-pitted anodic films over nanotubular arrays for the enhancement of the biological properties of titanium implants. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd
2011-03-01
The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.
Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce
2016-08-24
The growth conditions of two types of indium-based III-V nanowires, InP and InN, are tailored such that instead of yielding conventional wire-type morphologies, single-crystal conical structures are formed with an enlarged diameter either near the base or near the tip. By using indium droplets as a growth catalyst, combined with an excess indium supply during growth, "ice cream cone" type structures are formed with a nanowire "cone" and an indium-based "ice cream" droplet on top for both InP and InN. Surface polycrystallinity and annihilation of the catalyst tip of the conical InP nanowires are observed when the indium supply is turned off during the growth process. This growth design technique is extended to create single-crystal InN nanowires with the same morphology. Conical InN nanowires with an enlarged base are obtained through the use of an excess combined Au-In growth catalyst. Electrochemical studies of the InP nanowires on silicon demonstrate a reduction photocurrent as a proof of photovolatic behavior and provide insight as to how the observed surface polycrystallinity and the resulting interface affect these device-level properties. Additionally, a photovoltage is induced in both types of conical InN nanowires on silicon, which is not replicated in epitaxial InN thin films.
Dynamic observation on the growth behaviors in manganese silicide/silicon nanowire heterostructures.
Hsieh, Yu-Hsun; Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Lin, Wan-Jhen; Wu, Wen-Wei
2015-02-07
Metal silicide nanowires (NWs) are very interesting materials with diverse physical properties. Among the silicides, manganese silicide nanostructures have attracted wide attention due to their several potential applications, including in microelectronics, optoelectronics, spintronics and thermoelectric devices. In this work, we exhibited the formation of pure manganese silicide and manganese silicide/silicon nanowire heterostructures through solid state reaction with line contacts between manganese pads and silicon NWs. Dynamical process and phase characterization were investigated by in situ transmission electron microscopy (in situ TEM) and spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), respectively. The growth dynamics of the manganese silicide phase under thermal effects were systematically studied. Additionally, Al2O3, serving as the surface oxide, altered the growth behavior of the MnSi nanowire, enhancing the silicide/Si epitaxial growth and effecting the diffusion process in the silicon nanowire as well. In addition to fundamental science, this significant study has great potential in advancing future processing techniques in nanotechnology and related applications.
Yang, Fu-lin; Zhou, Guang-sheng; Zhang, Feng; Wang, Feng-yu; Bao, Fang; Ping, Xiao-yan
2009-12-01
Based on the meteorological and biological observation data from the temperate desert steppe ecosystem research station in Sunitezuoqi of Inner Mongolia during growth season (from May 1st to October 15th, 2008), the diurnal and seasonal characteristics of surface albedo in the steppe were analyzed, with related model constructed. In the steppe, the diurnal variation of surface albedo was mainly affected by solar altitude, being higher just after sunrise and before sunset and lower in midday. During growth season, the surface albedo was from 0.20 to 0.34, with an average of 0.25, and was higher in May, decreased in June, kept relatively stable from July to September, and increased in October. This seasonal variation was related to the phenology of canopy leaf, and affected by precipitation process. Soil water content (SWC) and leaf area index (LAI) were the key factors affecting the surface albedo. A model for the surface albedo responding to SWC and LAI was developed, which showed a good performance in consistent between simulated and observed surface albedo.
Shiba, Fumiyuki; Okawa, Yusuke
2005-11-24
Supersaturation ratio, S, has been theoretically related to the supply rate of solute, Q, from growth rate and mass-balance equations in the quasi-steady state in the growth process of isotropic monodisperse particles. The derived equation, (S - 1) = (1/D + 1/kr)(Q/betaC(0)nr) + 2V(m)gamma/rRT, suggests a linear dependence of S on Q under constant n and r, where D is the diffusion coefficient, k is the rate constant for surface-reaction, C(0) is the solubility, n and r are the number and radius of growing particles, respectively, V(m) is the molar volume of particles, R is the gas constant, T is the absolute temperature, and beta is the shape factor defined by beta identical with (1/r(2)) dupsilon/dr, where upsilon is the volume of an individual particle. The equation was applied to the analysis of growth kinetics and determinations of critical supersaturation ratio in monodisperse AgBr particles in the controlled double-jet system with the assistance of a potentiometric supersaturation measurement. In both cubic and octahedral particles, growth rates were completely limited by diffusion and surface-reaction at pBr ( identical with -log[Br(-)]) 3.0 and 1.0, respectively, while the growths were intermediate of them at pBr 2.0 and 4.0. The growth parameters, DC(0) and kC(0), were experimentally determined. Also, critical supersaturation ratio was estimated as 1.28 as an average in the present study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Young -Shin; Kim, Doyoon; Neil, Chelsea W.
Here, mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth’s crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolutionmore » of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of water chemistry and substrate identity on heterogeneously and homogeneously formed nanoscale precipitate size dimensions and total particle volume. Using this technique, we also provided a new platform for quantitatively comparing between heterogeneous and homogeneous nucleation and growth of nanoparticles and obtaining undiscovered interfacial energies between nuclei and surfaces. In addition, nanoscale surface characterization tools, such as in situ atomic force microscopy (AFM), were utilized to support and complement our findings. With these powerful nanoscale tools, we systematically evaluated the influences of environmentally abundant (oxy)anions and cations and the properties of environmental surfaces, such as surface charge and hydrophobicity. The findings, significantly enhanced by in situ observations, can lead to a more accurate prediction of the behaviors of nanoparticles in the environment and enable better control of the physicochemical properties of nanoparticles in engineered systems, such as catalytic reactions and energy storage.« less
In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils
2016-01-01
The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts. PMID:27576749
In vitro cell response to differences in poly-L-lactide crystallinity.
Park, A; Cima, L G
1996-05-01
Many different processing techniques are currently being used to produce tissue regeneration devices from polyesters in the polylactide/polyglycolide family. While it is generally well recognized that processing techniques influence bulk mechanical and degradation properties of these materials, the effects on surface properties are relatively less well studied. We thus investigated the effects of processing conditions that are known to change bulk properties, but not composition, on the surface properties of poly-L-lactide (PLLA). Specifically, we investigated the role of bulk crystallinity of PLLA substrates on several physiochemical aspects of the surface and on the attachment, morphology, and differentiated function of cultured primary hepatocytes and growth of 3T3 fibroblasts. We fabricated smooth, clear PLLA films of 13-37% crystallinity. Glancing angle X-ray diffraction indicated that low crystallinity films lacked order in the first 50 A of the surface while relatively high crystallinity films had detectable order in this range. In other aspects, the surfaces of all PLLA substrates appeared identical with XPS, SEM, and advancing contact angle analysis, but contact angle hysteresis was slightly greater for more crystalline films. Although the physicochemical properties of the surfaces appeared almost identical, we observed differences in cell behavior on less crystalline versus more crystalline films. Hepatocytes formed spheroids on all PLLA substrates, but spheroid formation was faster (24-48 H) on crystalline substrates. quantitative image analysis was used to assess the average cell area as a function of time in culture, and our data confirm previous reports that retention of differentiated function is inversely related to cell spreading where function was assessed by P-450 enzyme activity. In addition, the growth rate of 3T3 fibroblasts was lower on crystalline substrates than on amorphous substrates. An important conclusion from this work is that processing techniques that lead to seemingly inconsequential changes in bulk and surface properties of these polymers may influence biological response.
NASA Astrophysics Data System (ADS)
Li, Kun-Dar; Huang, Po-Yu
2017-12-01
In order to simulate a process of directional vapor deposition, in this study, a numerical approach was applied to model the growth and evolution of surface morphologies for the crystallographic structures of thin films. The critical factors affecting the surface morphologies in a deposition process, such as the crystallographic symmetry, anisotropic interfacial energy, shadowing effect, and deposition rate, were all enclosed in the theoretical model. By altering the parameters of crystallographic symmetry in the structures, the faceted nano-columns with rectangular and hexagonal shapes were established in the simulation results. Furthermore, for revealing the influences of the anisotropic strength and the deposition rate theoretically on the crystallographic structure formations, various parameters adjusted in the numerical calculations were also investigated. Not only the morphologies but also the surface roughnesses for different processing conditions were distinctly demonstrated with the quantitative analysis of the simulations.
Laminar Soot Processes (Lsp) Experiment: Findings From Ground-Based Measurements
NASA Technical Reports Server (NTRS)
Kim, C. H.; El-Leathy, A. M.; Faeth, G. M.; Xu, F.
2003-01-01
Processes of soot formation and oxidation must be understood in order to achieve reliable computational combustion calculations for nonpremixed (diffusion) flames involving hydrocarbon fuels. Motivated by this observation, the present investigation extended earlier work on soot formation and oxidation in laminar jet ethylene/air and methane/oxygen premixed and acetylene-nitrogen/air diffusion flames at atmospheric pressure in this laboratory, emphasizing soot surface growth and early soot surface oxidation in laminar diffusion flames fueled with a variety of hydrocarbons at pressures in the range 0.1 - 1.0 atm.
Observation of defects evolution in electronic materials
NASA Astrophysics Data System (ADS)
Jang, Jung Hun
Advanced characterization techniques have been used to obtain a better understanding of the microstructure of electronic materials. The structural evolution, especially defects, has been investigated during the film growth and post-growth processes. Obtaining the relation between the defect evolution and growth/post-growth parameters is very important to obtain highly crystalline films. In this work, the growth and post-growth related defects in GaN, ZnO, strained-Si/SiGe films have been studied using several advanced characterization techniques. First of all, the growth of related defects in GaN and p-type ZnO films have been studied. The effect of growth parameters, such as growth temperature, gas flow rate, dopants used during the deposition, on the crystalline quality of the GaN and ZnO layers was investigated by high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM). In GaN films, it was found that the edge and mixed type threading dislocations were the dominant defects so that the only relevant figure of merit (FOM) for the crystalline quality should be the FWHM value of o-RC of the surface perpendicular plane which could be determined by a grazing incidence x-ray diffraction (GIXD) technique as shown in this work. The understanding of the relationship between the defect evolution and growth parameters allowed for the growth of high crystalline GaN films. For ZnO films, it was found that the degree of texture and crystalline quality of P-doped ZnO films decreased with increasing the phosphorus atomic percent. In addition, the result from the x-ray diffraction line profile analysis showed that the 0.5 at % P-doped ZnO film showed much higher microstrain than the 1.0 at % P-doped ZnO film, which indicated that the phosphorus atoms were segregated with increasing P atomic percentage. Finally, post-growth related defects in strained-Si/SiGe films were investigated. Postgrowth processes used in this work included high temperature N2 annealing, ion-implantation, and thermal oxidation. Advanced characterization techniques have been used to obtain information about strain, relaxation, layer thickness, elemental composition, defects, surface/interface morphology changes and so on. Based on the understanding of defects behavior during the strain relaxation after post thermal processes, a new manufacturing process to obtain highly-relaxed and thin Si1-xGex layers, which could be used as virtual substrates for strained-Si applications, was found.
Analysis of electron beam induced deposition (EBID) of residual hydrocarbons in electron microscopy
NASA Astrophysics Data System (ADS)
Rykaczewski, Konrad; White, William B.; Fedorov, Andrei G.
2007-03-01
In this work we have developed a comprehensive dynamic model of electron beam induced deposition (EBID) of residual hydrocarbon coupling mass transport, electron transport and scattering, and species decomposition to predict the deposition of carbon nanopillars. The simulations predict the local species and electron density distributions, as well as the three-demensional morphology and the growth rate of the deposit. Since the process occurs in a high vacuum environment, surface diffusion is considered as the primary transport mode of surface-adsorbed hydrocarbon precursor. The governing surface transport equation (STE) of the adsorbed species is derived and solved numerically. The transport, scattering, and absorption of primary electron as well as secondary electron generation are treated using the Monte Carlo method. Low energy secondary electrons are the major contributors to hydrocarbon decomposition due to their energy range matching peak dissociation reaction cross section energies for precursor molecules. The deposit and substrate are treated as a continuous entity allowing the simulation of the growth of a realistically sized deposit rather than a large number of cells representing each individual atom as in previously published simulations [Mitsuishi et al., Ultramicroscopy 103, 17 (2005); Silvis-Cividjian, Ph.D. thesis, University of Delft, 2002]. Such formulation allows for simple coupling of the STE with the dynamic growth of the nanopillar. Three different growth regimes occurring in EBID are identified using scaling analysis, and simulations are used to describe the deposit morphology and precursor surface concentration specific for each growth regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, K.; Tonks, M.; Zhang, Y.
A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared tomore » the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.« less
Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase
NASA Technical Reports Server (NTRS)
Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar
2002-01-01
Lysozyme, and most particularly the tetragonal form of the protein, has become the default standard protein for use in macromolecule crystal nucleation and growth studies. There is a substantial body of experimental evidence, from this and other laboratories, that strongly suggests this proteins crystal nucleation and growth is by addition of associated species that are preformed by standard reversible concentration-driven self association processes in the bulk solution. The evidence includes high resolution AFM studies of the surface packing and of growth unit size at incorporation, fluorescence resonance energy transfer measurements of intermolecular distances in dilute solution, dialysis kinetics, and modeling of the growth rate data. We have developed a selfassociation model for the proteins crystal nucleation and growth. The model accounts for the obtained crystal symmetry, explains the observed surface structures, and shows the importance of the symmetry obtained by self-association in solution to the process as a whole. Further, it indicates that nucleation and crystal growth are not distinct mechanistically, but identical, with the primary difference being the probability that the particle will continue to grow or dissolve. This model also offers a possible mechanism for fluid flow effects on the growth process and how microgravity may affect it. While a single lysozyme molecule is relatively small (M.W. = 14,400), a structured octamer in the 4(sub 3) helix configuration (the proposed average sized growth unit) would have a M.W. = 115,000 and dimensions of 5.6 x 5.6 x 7.6 nm. Direct AFM measurements of growth unit incorporation indicate that units as wide as 11.2 nm and as long as 11.4 nm commonly attach to the crystal. These measurements were made at approximately saturation conditions, and they reflect the sizes of species that both added or desorbed from the crystal surface. The larger and less isotropic the associated species the more likely that it will be oriented to some degree in a flowing boundary layer, even at the low flow velocities measured about macromolecule crystals. Flow-driven effects resulting in misorientation upon addition to and incorporation into the crystal need only be a small fraction of a percentage to significantly affect the resulting crystal. One Earth, concentration gradient driven flow will maintain a high interfacial concentration, i.e., a high level (essentially that of the bulk solution) of solute association at the interface and higher growth rate. Higher growth rates mean an increased probability that misaligned growth units are trapped by subsequent growth layers before they can be desorbed and try again, or that the desorbing species will be smaller than the adsorbing species. In microgravity the extended diffusive boundary layer will lower the interfacial concentration. This results in a net dissociation of aggregated species that diffuse in from the bulk solution, i.e., smaller associated species, which are more likely able to make multiple attempts to correctly bind, yielding higher quality crystals.
NASA Astrophysics Data System (ADS)
Hauenstein, R. J.; Collins, D. A.; Cai, X. P.; O'Steen, M. L.; McGill, T. C.
1995-05-01
Effect of a nitrogen electron-cyclotron-resonance (ECR) microwave plasma on near-surface composition, crystal structure, and morphology of the As-stabilized GaAs (100) surface is investigated with the use of digitally image-processed in situ reflection high energy electron diffraction. Nitridation is performed on molecular beam epitaxially (MBE) grown GaAs surfaces near 600 °C under typical conditions for ECR microwave plasma-assisted MBE growth of GaN films on GaAs. Brief plasma exposures (≊3-5 s) are shown to result in a specular, coherently strained, relatively stable, GaN film approximately one monolayer in thickness, which can be commensurately overgrown with GaAs while longer exposures (up to 1 min) result in incommensurate zincblende epitaxial GaN island structures. Specular and nonspecular film formations are explained in terms of N-for-As surface and subsurface anion exchange reactions, respectively. Commensurate growth of ultrathin buried GaN layers in GaAs is achieved.
QM/MD studies on graphene growth from small islands on the Ni(111) surface
NASA Astrophysics Data System (ADS)
Jiao, Menggai; Song, Wei; Qian, Hu-Jun; Wang, Ying; Wu, Zhijian; Irle, Stephan; Morokuma, Keiji
2016-01-01
Quantum chemical molecular dynamics simulations of graphene growth from small island precursors in different carbon nucleation densities on the Ni(111) surface at high temperatures have been conducted. The results indicate that small islands are not static, i.e. lateral diffusion and vertical fluctuation are frequently observed. In the case of low carbon nucleation density, carbon atoms or small carbon patches diffuse and attach to the edge of the nuclei to expand the size of the growing carbon network. The growth of graphene precursors is accompanied by the corresponding changes in the bonding of nickel atoms with the precipitation of subsurface carbon atoms. This is because the carbon-carbon interaction is stronger than the nickel-carbon interaction. In the case of high carbon nucleation densities, the dominant ripening mechanism depends on different growth stages. In the initial stage, the coalescence of carbon islands takes place via the Smoluchowski ripening mechanism. In the later stage the Smoluchowski ripening process is damped owing to the higher diffusion barrier of larger clusters and the restriction of movement by self-assembled nickel step edges. The cross-linking mechanism eventually takes over by the coalescence of extended polyyne chains between graphene islands. In either case, the Ostwald ripening process is not found in our molecular dynamics simulations due to the stability of carbon-carbon bonds within the islands. These investigations should be instructive to the control of graphene growth in experiments.Quantum chemical molecular dynamics simulations of graphene growth from small island precursors in different carbon nucleation densities on the Ni(111) surface at high temperatures have been conducted. The results indicate that small islands are not static, i.e. lateral diffusion and vertical fluctuation are frequently observed. In the case of low carbon nucleation density, carbon atoms or small carbon patches diffuse and attach to the edge of the nuclei to expand the size of the growing carbon network. The growth of graphene precursors is accompanied by the corresponding changes in the bonding of nickel atoms with the precipitation of subsurface carbon atoms. This is because the carbon-carbon interaction is stronger than the nickel-carbon interaction. In the case of high carbon nucleation densities, the dominant ripening mechanism depends on different growth stages. In the initial stage, the coalescence of carbon islands takes place via the Smoluchowski ripening mechanism. In the later stage the Smoluchowski ripening process is damped owing to the higher diffusion barrier of larger clusters and the restriction of movement by self-assembled nickel step edges. The cross-linking mechanism eventually takes over by the coalescence of extended polyyne chains between graphene islands. In either case, the Ostwald ripening process is not found in our molecular dynamics simulations due to the stability of carbon-carbon bonds within the islands. These investigations should be instructive to the control of graphene growth in experiments. Electronic supplementary information (ESI) available: There are two movies showing the simulation process and they are provided in separate files. Movie S1 is the evolution of QM/MD simulations of the growth of graphene from one C13 on the Ni(111) surface for trajectory D@C13. Movie S2 is the evolution of QM/MD simulations of the growth of graphene from two C13 species on the Ni(111) surface for trajectory C@2C13. Fig. S1 shows the optimized geometries of C13-G and C13-H on the Ni(111) surface. Fig. S2 is the final structures of trajectories A-J@C13 following 400 ps QM/MD simulation for the Ni(111) + C13 system. Fig. S3 is the final structures of trajectories A-J@2C13 following 350 ps QM/MD simulation for the Ni(111) + 2C13 system. Fig. S4 shows average polygonal carbon ring populations formed during graphene growth from the Ni(111) + C13 and Ni(111) + 2C13 systems. Fig. S5 shows the averaged δ value of the C13 clusters and the nickel catalyst in the Ni(111) + C13 and Ni(111) + 2C13 systems. Fig. S6 depicts the total Mermin free energy as a function of simulation time in the Ni(111) + 2C13 system. See DOI: 10.1039/c5nr07680c
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung
2016-01-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255
Numerical Estimation of the Curvature of Biological Surfaces
NASA Technical Reports Server (NTRS)
Todd, P. H.
1985-01-01
Many biological systems may profitably be studied as surface phenomena. A model consisting of isotropic growth of a curved surface from a flat sheet is assumed. With such a model, the Gaussian curvature of the final surface determines whether growth rate of the surface is subharmonic or superharmonic. These properties correspond to notions of convexity and concavity, and thus to local excess growth and local deficiency of growth. In biological models where the major factors controlling surface growth are intrinsic to the surface, researchers thus gained from geometrical study information on the differential growth undergone by the surface. These ideas were applied to an analysis of the folding of the cerebral cortex, a geometrically rather complex surface growth. A numerical surface curvature technique based on an approximation to the Dupin indicatrix of the surface was developed. A metric for comparing curvature estimates is introduced, and considerable numerical testing indicated the reliability of this technique.
Sewsynker-Sukai, Yeshona; Gueguim Kana, E B
2018-08-01
This study investigates the simultaneous saccharification and fermentation (SSF) process for bioethanol production from corn cobs with prehydrolysis (PSSF) and without prehydrolysis (OSSF). Two response surface models were developed with high coefficients of determination (>0.90). Process optimization gave high bioethanol concentrations and bioethanol conversions for the PSSF (36.92 ± 1.34 g/L and 62.36 ± 2.27%) and OSSF (35.04 ± 0.170 g/L and 58.13 ± 0.283%) models respectively. Additionally, the logistic and modified Gompertz models were used to study the kinetics of microbial cell growth and ethanol formation under microaerophilic and anaerobic conditions. Cell growth in the OSSF microaerophilic process gave the highest maximum specific growth rate (µ max ) of 0.274 h -1 . The PSSF microaerophilic bioprocess gave the highest potential maximum bioethanol concentration (P m ) (42.24 g/L). This study demonstrated that microaerophilic rather than anaerobic culture conditions enhanced cell growth and bioethanol production, and that additional prehydrolysis steps do not significantly impact on the bioethanol concentration and conversion in SSF process. Copyright © 2018 Elsevier Ltd. All rights reserved.
2003-05-07
KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Rotational homogeneity in graphene grown on Au(111)
NASA Astrophysics Data System (ADS)
Wofford, Joseph; Starodub, Elena; Walter, Andrew; Nie, Shu; Bostwick, Aaron; Bartelt, Norman; Thürmer, Konrad; Rotenberg, Eli; McCarty, Kevin; Dubon, Oscar
2012-02-01
The set of properties offered by the (111) surface of gold makes it intriguing as a platform on which to study the fundamental processes that underpin graphene growth on metals. Among these are the low carbon solubility and an interaction strength with graphene that is predicted to be smaller than most transition metals. We have investigated this synthesis process using low-energy electron microscopy and diffraction to monitor the sample surface in real time, and found that the resulting graphene film possesses a remarkable degree of rotational homogeneity. The dominant orientation of the graphene is aligned with the Au lattice, with a small minority rotated by 30 degrees. The origins of this in-plane structuring are puzzling because angularly resolved photo-emission spectroscopy and scanning tunneling microscopy experiments both suggest only a relatively small interaction between the two materials. Finally, the implications of these findings for the growth of high structural-quality graphene films are discussed.
Xie, Hui Jun; Li, Chong Wei; Zhang, Ya Juan; Song, Ai Yun
2016-04-22
Imperviousness in watershed is a key index to measure urbanization status which exerts an important impact on both eco-hydrological process and spatio-temporal pattern. Taking Yuqiao Reservoir Watershed as a case study area, based on the ENVI 5.1 software, the basic impervious surface information was extracted from remote sensing images taken in 1984, 1994, 2004 and 2013. The linear spectral mixture analysis (LSMA) model was applied to extract the impervious surface area (ISA) in nine coverage classes of watershed in order to analyze its spatio-temporal varying trend in terms of the landscape pattern metrics. Results showed that the RMSE and IS pixel accuracy of all samples were 0.005 and 85.4% respectively, which indicated that the method of extracting impervious surface on a basin scale was feasible. The average of ISA showed a linear growth, from 0.16 to 0.23, the impervious surface area increased by 4.9% in the whole watershed, and the total impervious surface area increased by 1 time. In the sub-basin road network, the impervious surface area increased gradually with the density of the road network, and its expansion pattern was of infilling growth. The patch shape of the middle coverage degree was irregular, and its fragmentation degree was the highest. The fragmentation degree and diversity of the landscape in the whole river basin increased year by year due to increasing human disturbance.
Mueller, R F; Characklis, W G; Jones, W L; Sears, J T
1992-05-01
The processes leading to bacterial colonization on solid-water interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 microm (for silicon) to 0.015 microm (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varied by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.
Kawakita, Jin; Weitzel, Matthias
2011-04-01
Hybrid materials of the organic and inorganic semiconductors have a potential to show the better performance in the charge separation at the junction upon the photovoltaic action by the presence of the space charge layer in the inorganic semiconductor. In this study, the photo-anodic polymerization was selected as a fabrication method for the hybrid materials composed of TiO2 and polypyrrole on the basis of some advantages of this method. For the process control of the photo-anodic polymerization, it is important to elucidate the formation and growth mechanisms of the organic polymer. In this study, a flat sheet of single-crystal TiO2 was used as a well-defined surface for preparation of the organic polymer of pyrrole. Photo-anodic polarization behaviour was clarified and polypyrrole was prepared on TiO2. The formation process, especially the initial step was revealed by observation of polypyrrole with atomic force microscope (AFM) and statistical interpretation of the morphology of polypyrrole in the nano-scopic level. The formation process of polypyrrole on the TiO2 surface was summarized; (1) adsorption of precursors, (2) localized formation and growth of polypyrrole under the photo-illumination, and (3) homogenous growth of polypyrrole with the external current application under the photo-illumination.
NASA Astrophysics Data System (ADS)
Mehdi, H.; Monier, G.; Hoggan, P. E.; Bideux, L.; Robert-Goumet, C.; Dubrovskii, V. G.
2018-01-01
The high density of interface and surface states that cause the strong Fermi pinning observed on GaAs surfaces can be reduced by depositing GaN ultra-thin films on GaAs. To further improve this passivation, it is necessary to investigate the nitridation phenomena by identifying the distinct steps occurring during the process and to understand and quantify the growth kinetics of GaAs nitridation under different conditions. Nitridation of the cleaned GaAs substrate was performed using N2 plasma source. Two approaches have been combined. Firstly, an AR-XPS (Angle Resolved X-ray Photoelectron Spectroscopy) study is carried out to determine the chemical environments of the Ga, As and N atoms and the composition depth profile of the GaN thin film which allow us to summarize the nitridation process in three steps. Moreover, the temperature and time treatment have been investigated and show a significant impact on the formation of the GaN layer. The second approach is a refined growth kinetic model which better describes the GaN growth as a function of the nitridation time. This model clarifies the exchange mechanism of arsenic with nitrogen atoms at the GaN/GaAs interface and the phenomenon of quasi-saturation of the process observed experimentally.
Method for Surface Texturing Titanium Products
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
1998-01-01
The present invention teaches a method of producing a textured surface upon an arbitrarily configured titanium or titanium alloy object for the purpose of improving bonding between the object and other materials such as polymer matrix composites and/or human bone for the direct in-growth of orthopaedic implants. The titanium or titanium alloy object is placed in an electrolytic cell having an ultrasonically agitated solution of sodium chloride therein whereby a pattern of uniform "pock mark" like pores or cavities are produced upon the object's surface. The process is very cost effective compared to other methods of producing rough surfaces on titanium and titanium alloy components. The surface textures produced by the present invention are etched directly into the parent metal at discrete sites separated by areas unaffected by the etching process. Bonding materials to such surface textures on titanium or titanium alloy can thus support a shear load even if adhesion of the bonding material is poor.
NASA Technical Reports Server (NTRS)
Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John
2002-01-01
Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.
2011-01-01
A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs) on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min) and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications. PACS: 81.07.Bc; 81.16.-c; 81.07.Gf. PMID:22027275
NASA Astrophysics Data System (ADS)
Wang, G.; Liu, L.; Chen, G.
2016-12-01
The complex environmental physical and chemical processes and interplay with the associating biological responses are keys to understanding the environmental microbiology ensconced in environmental remediation, water quality control, food safety, nutrient cycling, and etc., yet remain poorly understood. Using experimental micromodels, we study how environmental conditions (e.g., hydration fluctuation, nutrient limitation, pH variation, etc.) affect microbial extracellular polymeric substances (EPS) production and their configuration within various hydrated surfaces, and impacts on microbial motility, surface attachment, aggregation, and other bioremediation activities. To elucidate the potential mechanisms underlying the complex bio-physicochemical processes, we developed an individual-based and spatio-temporally resolved modeling platform that explicitly considers microscale aqueous-phase configuration and nutrient transport/diffusion and associated biophysical processes affecting individual microbial cell life history. We quantitatively explore the effects of the above microscale environmental processes on bio-physicochemical interactions affecting microbial growth, motility, surface attachment and aggregation, and shaping population interactions and functions. Simulation scenarios of microbial induced pollutant (e.g., roxarsone) biotransformation on various hydrated rough surfaces will also be present.
Observation of Charge Generation and Transfer during CVD Growth of Carbon Nanotubes.
Wang, Jiangtao; Liu, Peng; Xia, Bingyu; Wei, Haoming; Wei, Yang; Wu, Yang; Liu, Kai; Zhang, Lina; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili
2016-07-13
Carbon nanotube (CNT) is believed to be the most promising material for next generation IC industries with the prerequisite of chirality specific growth. For various approaches to controlling the chiral indices of CNTs, the key is to deepen the understanding of the catalytic growth mechanism in chemical vapor deposition (CVD). Here we show our discovery that the as-grown CNTs are all negatively charged after Fe-catalyzed CVD process. The extra electrons come from the charge generation and transfer during the growth of CNTs, which indicates that an electrochemical process happens in the surface reaction step. We then designed an in situ measurement equipment, verifying that the CVD growth of CNTs can be regarded as a primary battery system. Furthermore, we found that the variation of the Fermi level in Fe catalysts have a significant impact on the chirality of CNTs when different external electric fields are applied. These findings not only provide a new perspective on the growth of CNTs but also open up new possibilities for controlling the growth of CNTs by electrochemical methods.
Chemical etching and organometallic chemical vapor deposition on varied geometries of GaAs
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Landis, Geoffrey A.; Wilt, David M.
1989-01-01
Results of micron-spaced geometries produced by wet chemical etching and subsequent OMCVD growth on various GaAs surfaces are presented. The polar lattice increases the complexity of the process. The slow-etch planes defined by anisotropic etching are not always the same as the growth facets produced during MOCVD deposition, especially for deposition on higher-order planes produced by the hex groove etching.
NASA Technical Reports Server (NTRS)
Smith, Stephen W.; Piascik, Robert S.
2001-01-01
To study the effects of atmospheric species on the fatigue crack growth behavior of an a+B titanium alloy (Ti 6-2-2-2-2) at room temperature and 177 C, fatigue tests were performed in laboratory air, ultrahigh vacuum, and high purity water vapor, oxygen, nitrogen and helium at various partial pressures. Accelerated fatigue crack growth rates in laboratory air compared to ultrahigh vacuum are linked to the damaging effects of both water vapor and oxygen. Observations of the fatigue crack growth behavior in ultrahigh purity environments, along with surface film analysis using X-ray photoelectron spectroscopy (XPS), suggest that multiple crack-tip processes govern the damaging effects of air. Three possible mechanisms are proposed: 1) at low pressure (less than 10(exp -1) Pa), accelerated da/dN is likely due to monolayer adsorption on crack-tip surfaces presumably resulting in decreased bond strengths at the fatigue crack tip, 2) for pressures greater than 10(exp -1) Pa, accelerated da/dN in oxygen may result from oxidation at the crack tip limiting reversible slip, and 3) in water vapor, absorption of atomic hydrogen at the reactive crack tip resulting in process zone embrittlement.
Chen, Tao; Neville, Anne; Sorbie, Ken; Zhong, Zhong
2007-01-01
The formation of calcium carbonate mineral scale is a persistent and expensive problem in oil and gas production, water piping systems, power generator, and batch precipitation. The aim of this paper is to further the understanding of scale formation and inhibition by in situ probing of crystal growth by synchrotron radiation wide angle X-ray scattering (WAXS) at ambient and elevated temperature. This novel technique enables in situ study of mineral scale formation and inhibition and as such, information on the nucleation and growth processes are accessible. This technique studies bulk precipitation and surface deposition in the same system and will be of great benefit to the understanding of an industrial scaling system. It offers an exciting prospect for the study of scaling. It has been shown that the nucleation and growth of various calcareous polymorphs and their individual crystal planes can be followed in real-time and from this the following conclusions are reached. The process of scale deposition on the surface can be divided into an unstable phase and a stable phase. The initial phase of crystallization of calcium carbonate is characterized by instability with individual planes from various vaterite and aragonite polymorphs emerging and subsequently disappearing under the hydrodynamic conditions. After the initial unstable phase, various calcium carbonate crystal planes adhere on the surface and then grow on the surface. At 25 degrees C, the main plane of surface deposit is calcite and a strong (104) peak is detected. The other calcite planes (102), (006), (110) (113) and (202) are hardly detectable under this condition. At 80 degrees C, the main planes in the surface deposit are the (104), (113) and (110) planes of calcite. Stable planes of vaterite and aragonite are also observed. This paper will discuss how surface scale evolves--exploring the power of the synchrotron in situ methodology.
In situ experimental formation and growth of Fe nanoparticles and vesicles in lunar soil
NASA Astrophysics Data System (ADS)
Thompson, Michelle S.; Zega, Thomas J.; Howe, Jane Y.
2017-03-01
We report the results of the first dynamic, in situ heating of lunar soils to simulate micrometeorite impacts on the lunar surface. We performed slow- and rapid-heating experiments inside the transmission electron microscope to understand the chemical and microstructural changes in surface soils resulting from space-weathering processes. Our slow-heating experiments show that the formation of Fe nanoparticles begins at 575 °C. These nanoparticles also form as a result of rapid-heating experiments, and electron energy-loss spectroscopy measurements indicate the Fe nanoparticles are composed entirely of Fe0, suggesting this simulation accurately mimics micrometeorite space-weathering processes occurring on airless body surfaces. In addition to Fe nanoparticles, rapid-heating experiments also formed vesiculated textures in the samples. Several grains were subjected to repeated thermal shocks, and the measured size distribution and number of Fe nanoparticles evolved with each subsequent heating event. These results provide insight into the formation and growth mechanisms for Fe nanoparticles in space-weathered soils and could provide a new methodology for relative age dating of individual soil grains from within a sample population.
NASA Astrophysics Data System (ADS)
Wlazło, M.; Majewski, J. A.
2018-03-01
We study the dissociative adsorption of methane at the surface of graphene. Free energy profiles, which include activation energies for different steps of the reaction, are computed from constrained ab initio molecular dynamics. At 300 K, the reaction barriers are much lower than experimental bond dissociation energies of gaseous methane, strongly indicating that the graphene surface acts as a catalyst of methane decomposition. On the other hand, the barriers are still much higher than on the nickel surface. Methane dissociation therefore occurs at a higher rate on nickel than on graphene. This reaction is a prerequisite for graphene growth from a precursor gas. Thus, the growth of the first monolayer should be a fast and efficient process while subsequent layers grow at a diminished rate and in a more controllable manner. Defects may also influence reaction energetics. This is evident from our results, in which simple defects (Stone-Wales defect and nitrogen substitution) lead to different free energy landscapes at both dissociation and adsorption steps of the process.
NASA Astrophysics Data System (ADS)
Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander
2018-02-01
In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.
Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander
2018-02-02
In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.
Thin Film Deposition Using Energetic Ions
Manova, Darina; Gerlach, Jürgen W.; Mändl, Stephan
2010-01-01
One important recent trend in deposition technology is the continuous expansion of available processes towards higher ion assistance with the subsequent beneficial effects to film properties. Nowadays, a multitude of processes, including laser ablation and deposition, vacuum arc deposition, ion assisted deposition, high power impulse magnetron sputtering and plasma immersion ion implantation, are available. However, there are obstacles to overcome in all technologies, including line-of-sight processes, particle contaminations and low growth rates, which lead to ongoing process refinements and development of new methods. Concerning the deposited thin films, control of energetic ion bombardment leads to improved adhesion, reduced substrate temperatures, control of intrinsic stress within the films as well as adjustment of surface texture, phase formation and nanotopography. This review illustrates recent trends for both areas; plasma process and solid state surface processes. PMID:28883323
Silva, R M; Ferro, M C; Araujo, J R; Achete, C A; Clavel, G; Silva, R F; Pinna, N
2016-07-19
Zinc oxide thin films were deposited on vertically aligned nitrogen-doped carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) from diethylzinc and water. The study demonstrates that doping CNTs with nitrogen is an effective approach for the "activation" of the CNTs surface for the ALD of metal oxides. Conformal ZnO coatings are already obtained after 50 ALD cycles, whereas at lower ALD cycles an island growth mode is observed. Moreover, the process allows for a uniform growth from the top to the bottom of the vertically aligned N-CNT arrays. X-ray photoelectron spectroscopy demonstrates that ZnO nucleation takes place at the N-containing species on the surface of the CNTs by the formation of the Zn-N bonds at the interface between the CNTs and the ZnO film.
Method for producing damage resistant optics
Hackel, Lloyd A.; Burnham, Alan K.; Penetrante, Bernardino M.; Brusasco, Raymond M.; Wegner, Paul J.; Hrubesh, Lawrence W.; Kozlowski, Mark R.; Feit, Michael D.
2003-01-01
The present invention provides a system that mitigates the growth of surface damage in an optic. Damage to the optic is minimally initiated. In an embodiment of the invention, damage sites in the optic are initiated, located, and then treated to stop the growth of the damage sites. The step of initiating damage sites in the optic includes a scan of the optic using a laser to initiate defects. The exact positions of the initiated sites are identified. A mitigation process is performed that locally or globally removes the cause of subsequent growth of the damaged sites.
Primary arm spacing in chill block melt spun Ni-Mo alloys
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Glasgow, T. K.
1986-01-01
Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.
Primary arm spacing in chill block melt spun Ni-Mo alloys
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Glasgow, T. K.
1987-01-01
Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt pct Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacing measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.
Merola, C.; Cheng, H.-W.; Schwenzfeier, K.; Kristiansen, K.; Chen, Y.-J.; Dobbs, H. A.; Valtiner, M.
2017-01-01
Reactivity in confinement is central to a wide range of applications and systems, yet it is notoriously difficult to probe reactions in confined spaces in real time. Using a modified electrochemical surface forces apparatus (EC-SFA) on confined metallic surfaces, we observe in situ nano- to microscale dissolution and pit formation (qualitatively similar to previous observation on nonmetallic surfaces, e.g., silica) in well-defined geometries in environments relevant to corrosion processes. We follow “crevice corrosion” processes in real time in different pH-neutral NaCl solutions and applied surface potentials of nickel (vs. Ag|AgCl electrode in solution) for the mica–nickel confined interface of total area ∼0.03 mm2. The initial corrosion proceeds as self-catalyzed pitting, visualized by the sudden appearance of circular pits with uniform diameters of 6–7 μm and depth ∼2–3 nm. At concentrations above 10 mM NaCl, pitting is initiated at the outer rim of the confined zone, while below 10 mM NaCl, pitting is initiated inside the confined zone. We compare statistical analysis of growth kinetics and shape evolution of individual nanoscale deep pits with estimates from macroscopic experiments to study initial pit growth and propagation. Our data and experimental techniques reveal a mechanism that suggests initial corrosion results in formation of an aggressive interfacial electrolyte that rapidly accelerates pitting, similar to crack initiation and propagation within the confined area. These results support a general mechanism for nanoscale material degradation and dissolution (e.g., crevice corrosion) of polycrystalline nonnoble metals, alloys, and inorganic materials within confined interfaces. PMID:28827338
Condensational Droplet Growth in Rarefied Quiescent Vapor and Forced Convective Conditions
NASA Astrophysics Data System (ADS)
Anand, Sushant
Multiphase Heat transfer is ubiquitous in diverse fields of application such as cooling systems, micro and mini power systems and many chemical processes. By now, single phase dynamics are mostly understood in their applications in vast fields, however multiphase systems especially involving phase changes are still a challenge. Present study aims to enhance understanding in this domain especially in the field of condensation heat transfer. Of special relevance to present studies is study of condensation phenomenon for detection of airborne nanoparticles using heterogeneous nucleation. Detection of particulate matter in the environment via heterogeneous condensation is based on the droplet growth phenomenon where seeding particles in presence of supersaturated vapor undergo condensation on their surface and amplify in size to micrometric ranges, thereby making them optically visible. Previous investigations show that condensation is a molecular exchange process affected by mean free path of vapor molecules (lambda) in conjunction with size of condensing droplet (d), which is measured in terms of Knudsen number (Kn=lambda/ d). In an event involving heterogeneous nucleation with favorable thermodynamic conditions for condensation to take place, the droplet growth process begins with accretion of vapor molecules on a surface through random molecular collision (Kn>1) until diffusive forces start dominating the mass transport process (Kn<<1). Knowledge of droplet growth thus requires understanding of mass transport in both of these regimes. Present study aims to understand the dynamics of the Microthermofluidic sensor which has been developed, based on above mentioned fundamentals. Using continuum approach, numerical modeling was carried to understand the effect of various system parameters for improving the device performance to produce conditions which can lead to conditions abetting condensational growth. The study reveals that the minimum size of nanoparticle which can be detected is critically dependent upon controlling wall geometry and size, wall temperature, flow rate and relative humidity of nanoparticle laden air stream. Droplet growths rates and sizes have been predicted based on different models. The efficacy of the device under various conditions has been measured in terms of its ability to activate nanoparticles of different sizes. Since the condensation mechanism is dependent upon the Knudsen regime in which droplets are growing via condensation, special consideration was made to understand their behavior in large Knudsen number conditions. For this purpose, ESEM was used to study condensation on a bare surface. Droplet growth obtained as a function of time reveals that the rate of growth decreases as the droplet increases in size. The experimental results obtained from these experiments were matched with theoretical description provided by a model based on framework of kinetic theory. Evidence was also found which establishes the presence of submicroscopic droplets nucleating and growing in between microscopic droplets for partially wetting case.
Molecular beam epitaxial growth and structural characterization of ZnS on (001) GaAs
NASA Technical Reports Server (NTRS)
Benz, R. G., II; Huang, P. C.; Stock, S. R.; Summers, C. J.
1988-01-01
The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as assessed by X-ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces.
Neuronal growth on L- and D-cysteine self-assembled monolayers reveals neuronal chiral sensitivity.
Baranes, Koby; Moshe, Hagay; Alon, Noa; Schwartz, Shmulik; Shefi, Orit
2014-05-21
Studying the interaction between neuronal cells and chiral molecules is fundamental for the design of novel biomaterials and drugs. Chirality influences all biological processes that involve intermolecular interaction. One common method used to study cellular interactions with different enantiomeric targets is the use of chiral surfaces. Based on previous studies that demonstrated the importance of cysteine in the nervous system, we studied the effect of L- and D-cysteine on single neuronal growth. L-Cysteine, which normally functions as a neuromodulator or a neuroprotective antioxidant, causes damage at elevated levels, which may occur post trauma. In this study, we grew adult neurons in culture enriched with L- and D-cysteine as free compounds or as self-assembled monolayers of chiral surfaces and examined the effect on the neuronal morphology and adhesion. Notably, we have found that exposure to the L-cysteine enantiomer inhibited, and even prevented, neuronal attachment more severely than exposure to the D-cysteine enantiomer. Atop the L-cysteine surfaces, neuronal growth was reduced and degenerated. Since the cysteine molecules were attached to the surface via the thiol groups, the neuronal membrane was exposed to the molecular chiral site. Thus, our results have demonstrated high neuronal chiral sensitivity, revealing chiral surfaces as indirect regulators of neuronal cells and providing a reference for studying chiral drugs.
MBE growth of VCSELs for high volume applications
NASA Astrophysics Data System (ADS)
Jäger, Roland; Riedl, Michael C.
2011-05-01
Mass market applications like laser computer mouse or optical data transmission based on vertical-cavity surface-emitting laser (VCSEL) chips need a high over all yield including epitaxy, processing, dicing, mounting and testing. One yield limitation for VCSEL structures is the emission wavelength variation of the substrate surface area leading to the fraction on laser chips which are below or above the specification limits. For most 850 nm VCSEL products a resonator wavelength variation of ±2 nm is common. This represents an average resonator thickness variation of much less than 1% which is quite challenging to be fulfilled on the entire processed wafer surface area. A high over all yield is demonstrated on MBE grown VCSEL structures.
NASA Astrophysics Data System (ADS)
Corti, Giancarlo; Brown, Justin; Rajabi, Negar; McIlroy, D. N.
2018-03-01
The growth efficiency of one-dimension (1D) nanostructures via the vapor-liquid-solid process is commonly attributed to parameters such as precursor vapor pressure, substrate temperature, and the choice of the catalyst. The work presented herein is an investigation of the use of silica nanosprings (SNs) as a 3D substrate for improving the growth efficiency of SN themselves. SNs are a 1D nanomaterial that form a nonwoven structure with optimal geometric characteristics and surface properties that mitigate collisions between growing nanosprings and ripening of the gold catalyst, which should improve SN yield. Nanospring growth, for an eight hour period, on an SN coated surface relative to an equivalent flat substrate increased from ≈25 mgh-1 to ≈80 mgh-1, respectively. All things being equal, by splitting the typical amount of catalyst, in this case gold, between the first and second growth, the double growth procedure produced more than three times more nanosprings than the equivalent single growth of a SN. In addition, using an SN as a substrate increased the sustained growth condition from four to eight hours, and thus increased by a factor of ten the gravimetric yield of SNs relative to the mass of gold used.
Chang, Hee Jung; Ilott, Andrew J; Trease, Nicole M; Mohammadi, Mohaddese; Jerschow, Alexej; Grey, Clare P
2015-12-09
Lithium dendrite growth in lithium ion and lithium rechargeable batteries is associated with severe safety concerns. To overcome these problems, a fundamental understanding of the growth mechanism of dendrites under working conditions is needed. In this work, in situ (7)Li magnetic resonance (MRI) is performed on both the electrolyte and lithium metal electrodes in symmetric lithium cells, allowing the behavior of the electrolyte concentration gradient to be studied and correlated with the type and rate of microstructure growth on the Li metal electrode. For this purpose, chemical shift (CS) imaging of the metal electrodes is a particularly sensitive diagnostic method, enabling a clear distinction to be made between different types of microstructural growth occurring at the electrode surface and the eventual dendrite growth between the electrodes. The CS imaging shows that mossy types of microstructure grow close to the surface of the anode from the beginning of charge in every cell studied, while dendritic growth is triggered much later. Simple metrics have been developed to interpret the MRI data sets and to compare results from a series of cells charged at different current densities. The results show that at high charge rates, there is a strong correlation between the onset time of dendrite growth and the local depletion of the electrolyte at the surface of the electrode observed both experimentally and predicted theoretical (via the Sand's time model). A separate mechanism of dendrite growth is observed at low currents, which is not governed by salt depletion in the bulk liquid electrolyte. The MRI approach presented here allows the rate and nature of a process that occurs in the solid electrode to be correlated with the concentrations of components in the electrolyte.
NASA Astrophysics Data System (ADS)
Garratt, E.; Nikoobakht, B.
2015-08-01
Recent breakthroughs in deterministic approaches to the fabrication of nanowire arrays have demonstrated the possibility of fabricating such networks using low-cost scalable methods. In this regard, we have developed a scalable growth platform for lateral fabrication of nanocrystals with high precision utilizing lattice match and symmetry. Using this planar architecture, a number of homo- and heterostructures have been demonstrated including ZnO nanowires grown over GaN. The latter combination produces horizontal, epitaxially formed crystals aligned in the plane of the substrate containing a very low number of intrinsic defects. We use such ordered structures as model systems in the interests of gauging the interfacial structural dynamics in relation to external stimuli. Nanosecond pulses of focused ion beams are used to slightly modify the substrate surface and selectively form lattice disorders in the path of nanowire growth to examine the nanocrystal, namely: its directionality and lattice defects. High resolution electron microscopies are used to reveal some interesting structural effects; for instance, a minimum threshold of surface defects that can divert nanowires. We also discuss data indicating formation of surface strains and show their mitigation during the growth process.
Lee, Wi Hyoung; Park, Jaesung; Sim, Sung Hyun; Lim, Soojin; Kim, Kwang S; Hong, Byung Hee; Cho, Kilwon
2011-03-30
Organic electronic devices that use graphene electrodes have received considerable attention because graphene is regarded as an ideal candidate electrode material. Transfer and lithographic processes during fabrication of patterned graphene electrodes typically leave polymer residues on the graphene surfaces. However, the impact of these residues on the organic semiconductor growth mechanism on graphene surface has not been reported yet. Here, we demonstrate that polymer residues remaining on graphene surfaces induce a stand-up orientation of pentacene, thereby controlling pentacene growth such that the molecular assembly is optimal for charge transport. Thus, pentacene field-effect transistors (FETs) using source/drain monolayer graphene electrodes with polymer residues show a high field-effect mobility of 1.2 cm(2)/V s. In contrast, epitaxial growth of pentacene having molecular assembly of lying-down structure is facilitated by π-π interaction between pentacene and the clean graphene electrode without polymer residues, which adversely affects lateral charge transport at the interface between electrode and channel. Our studies provide that the obtained high field-effect mobility in pentacene FETs using monolayer graphene electrodes arises from the extrinsic effects of polymer residues as well as the intrinsic characteristics of the highly conductive, ultrathin two-dimensional monolayer graphene electrodes.
Influence of hydrophobicity on ice accumulation process under sleet and wind conditions
NASA Astrophysics Data System (ADS)
Xu, Ke; Hu, Jianlin; Shu, Lichun; Jiang, Xingliang; Huang, Zhengyong
2018-03-01
Glaze, the most dangerous ice type in natural environment, forms during sleet weather, which is usually accompanied with wind. The icing performance of hydrophobic coatings under the impact of wind needs further research. This paper studies the influence of hydrophobicity on ice accumulation process under sleet and wind conditions by computer simulations and icing tests. The results indicate that the heat dissipation process of droplets on samples with various hydrophobicity will be accelerated by wind significantly and that a higher hydrophobicity cannot reduce the cooling rate effectively. However, on different hydrophobic surfaces, the ice accumulation process has different characteristics. On a hydrophilic surface, the falling droplets form continuously water film, which will be cooled fast. On superhydrophobic surface, the frozen droplets form ice bulges, which can shield from wind and slow down the heat dissipation process. These ice accumulation characteristics lead to the difference in ice morphology and make a higher hydrophobic surface to have a lower ice mass growth rate in long period icing tests. As a conclusion, superhydrophobic coating remain icephobic under wind and sleet conditions.
Unsteady Crystal Growth Due to Step-Bunch Cascading
NASA Technical Reports Server (NTRS)
Vekilov, Peter G.; Lin, Hong; Rosenberger, Franz
1997-01-01
Based on our experimental findings of growth rate fluctuations during the crystallization of the protein lysozym, we have developed a numerical model that combines diffusion in the bulk of a solution with diffusive transport to microscopic growth steps that propagate on a finite crystal facet. Nonlinearities in layer growth kinetics arising from step interaction by bulk and surface diffusion, and from step generation by surface nucleation, are taken into account. On evaluation of the model with properties characteristic for the solute transport, and the generation and propagation of steps in the lysozyme system, growth rate fluctuations of the same magnitude and characteristic time, as in the experiments, are obtained. The fluctuation time scale is large compared to that of step generation. Variations of the governing parameters of the model reveal that both the nonlinearity in step kinetics and mixed transport-kinetics control of the crystallization process are necessary conditions for the fluctuations. On a microscopic scale, the fluctuations are associated with a morphological instability of the vicinal face, in which a step bunch triggers a cascade of new step bunches through the microscopic interfacial supersaturation distribution.
Buijs; Hlady
1997-06-01
Interactions of recombinant human growth hormone and lysozyme with solid surfaces are studied using total internal reflection fluorescence (TIRF) and monitoring the protein's intrinsic tryptophan fluorescence. The intensity, spectra, quenching, and polarization of the fluorescence emitted by the adsorbed proteins are monitored and related to adsorption kinetics, protein conformation, and fluorophore rotational mobility. To study the influence of electrostatic and hydrophobic interactions on the adsorption process, three sorbent surfaces are used which differ in charge and hydrophobicity. The chemical surface groups are silanol, methyl, and quaternary amine. Results indicate that adsorption of hGH is dominated by hydrophobic interactions. Lysozyme adsoption is strongly affected by the ionic strength. This effect is probably caused by an ionic strength dependent conformational state in solution which, in turn, influences the affinity for adsorption. Both proteins are more strongly bound to hydrophobic surfaces and this strong interaction is accompanied by a less compact conformation. Furthermore, it was seen that regardless of the characteristics of the sorbent surface, the rotational mobility of both proteins' tryptophans is largely reduced upon adsorption.
Size and shape dependence of CO adsorption sites on sapphire supported Fe microcrystals
NASA Technical Reports Server (NTRS)
Papageorgopoulos, C.; Heinemann, K.
1985-01-01
The surface structure and stoichiometry of alumina substrates, as well as the size, growth characteristics, and shape of Fe deposits on sapphire substrates have been investigated by low energy electron diffraction (LEED), Auger electron spectroscopy, electron energy loss spectroscopy, and X-ray photoemission spectroscopy (XPS), as well as work function measurements, in conjunction with transition electron microscopy observations. The substrates used in this work were the following: (1) new, clean Al2O3; (2) same surface amorphized by Ar ion bombardment; (3) same surface regenerated by 650 C annealing; (4) amorphous alumina films on Ta slab; and (5) polycrystal alumina films, obtained by heating amorphous films to 600 C. Substrate cleaning was found to be most effective in producing a reproducible surface upon oxygen RF plasma treatment. The Fe nucleation and growth process was found to depend strongly on the type of substrate surface and deposition conditions. Ar ion bombardment under beam flooding, and subsequent annealing at 650 C was found an effective means to restore the original Al2O3 (1102) surface for renewed Fe deposition.
Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces
NASA Technical Reports Server (NTRS)
Chao, David F.; Sankovic, John M.; Motil, Brian J.; Zhang, Nengli
2007-01-01
Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer.
Precursor-Surface Reactions in Plasma Deposition of Silicon Thin Films
NASA Astrophysics Data System (ADS)
Bakos, Tamas
2005-03-01
Device-quality hydrogenated amorphous silicon (a-Si:H) thin films are usually grown by plasma deposition under conditions where the SiH3 radical is the dominant deposition precursor. In this presentation, we report results of first-principles density functional theory calculations on the interactions of the SiH3 radical with the crystalline Si(100)-(2x1):H surface in conjunction with molecular-dynamics simulations of a-Si:H thin film growth by SiH3 radicals, which elucidate the pathways and energetics of surface reactions that govern important film properties. In particular, we show that an SiH3 radical can insert into strained surface Si-Si dimer bonds, abstract surface H through an Eley-Rideal mechanism, and passivate surface dangling bonds; these reactions follow exothermic and barrierless pathways that lead to a temperature-independent growth rate in agreement with experimental measurements. We also identify a thermally activated surface H abstraction process, in which the SiH3 radical diffuses through overcoordinated surface Si atoms until it encounters a favorable site for H abstraction; the diffusion and H-abstraction steps have commensurate activation barriers. This mechanism explains partly the reduction of the film H content at elevated substrate temperatures.
Growth process optimization of ZnO thin film using atomic layer deposition
NASA Astrophysics Data System (ADS)
Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao
2016-12-01
The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.
Biomechanical ordering and buckling due to microbial growth confined at oil-water interfaces
NASA Astrophysics Data System (ADS)
Juarez, Gabriel; Stocker, Roman
2015-11-01
Bacteria are unicellular organisms that often exist as densely populated, surface-associated communities. Bacteria are also environmental colloids and spontaneously attach and self-assemble at liquid-liquid interfaces. Here, we present results on the growth dynamics of individual rod-shaped bacteria confined to finite oil-water interfaces of varying curvature. Through experiments using microfluidic chambers and time-lapse microscopy, we study the formation of macroscopic structures observed as adsorbed bacteria grow, divide, and self-assemble in a nematic phase due to biomechanical interactions. The continued growth at the interface leads to a jammed monolayer of cells, which then causes the interface to buckle and undergo large deformations including wrinkling and tubulation. These observations highlight the interplay between physical environment, such as confinement and interface curvature, and active biological processes, such as growth, at the scale of individual agents and shape our understanding of macroscale processes such as microbial degradation of oil in the ocean.
Monitoring small-crack growth by the replication method
NASA Technical Reports Server (NTRS)
Swain, Mary H.
1992-01-01
The suitability of the acetate replication method for monitoring the growth of small cracks is discussed. Applications of this technique are shown for cracks growing at the notch root in semicircular-edge-notch specimens of a variety of aluminum alloys and one steel. The calculated crack growth rate versus Delta K relationship for small cracks was compared to that for large cracks obtained from middle-crack-tension specimens. The primary advantage of this techinque is that it provides an opportunity, at the completion of the test, to go backward in time towards the crack initiation event and 'zoom in' on areas of interest on the specimen surface with a resolution of about 0.1 micron. The primary disadvantage is the inability to automate the process. Also, for some materials, the replication process may alter the crack-tip chemistry or plastic zone, thereby affecting crack growth rates.
Kile, D.E.; Eberl, D.D.
2003-01-01
Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent (proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be distinguished from each other because the relative size difference among crystals is maintained during proportionate growth, leading to a constant crystal size variance (??2) for a crystal size distribution (CSD) as the mean size increases. The absolute size difference among crystals is maintained during constant growth, resulting in a decrease in size variance. Results of these experiments show that for centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of convection and Brownian motion, which promote an advective environment and hence proportionate growth for minute crystals in non-stirred systems, thereby indicating the importance of solution velocity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally occurring crystals indicate that proportionate growth is by far the most common growth law, thereby suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to crystal surfaces.
FISCHER, GUILLAUME; DRAHI, ETIENNE; FOLDYNA, MARTIN; GERMER, THOMAS A.; JOHNSON, ERIK V.
2018-01-01
Using a plasma to generate a surface texture with feature sizes on the order of tens to hundreds of nanometers (“nanotexturing”) is a promising technique being considered to improve efficiency in thin, high-efficiency crystalline silicon solar cells. This study investigates the evolution of the optical properties of silicon samples with various initial surface finishes (from mirror polish to various states of micron-scale roughness) during a plasma nanotexturing process. It is shown that during said process, the appearance and growth of nanocone-like structures are essentially independent of the initial surface finish, as quantified by the auto-correlation function of the surface morphology. During the first stage of the process (2 min to 15 min etching), the reflectance and light-trapping abilities of the nanotextured surfaces are strongly influenced by the initial surface roughness; however, the differences tend to diminish as the nanostructures become larger. For the longest etching times (15 min or more), the effective reflectance is less than 5 % and a strong anisotropic scattering behavior is also observed for all samples, leading to very elevated levels of light-trapping. PMID:29220984
SAW chirp filter technology for satellite on-board processing applications
NASA Astrophysics Data System (ADS)
Shaw, M. D.; Miller, N. D. J.; Malarky, A. P.; Warne, D. H.
1989-11-01
Market growth in the area of thin route satellite communications services has led to consideration of nontraditional system architectures requiring sophisticated on-board processing functions. Surface acoustic wave (SAW) technology exists today which can provide implementation of key on-board processing subsystems by using multicarrier demodulators. This paper presents a review of this signal processing technology, along with a brief review of dispersive SAW device technology as applied to the implementation of multicarrier demodulators for on-board signal processing.
Comparative studies of thin film growth on aluminium by AFM, TEM and GDOES characterization
NASA Astrophysics Data System (ADS)
Qi, Jiantao; Thompson, George E.
2016-07-01
In this present study, comparative studies of trivalent chromium conversion coating formation, associated with aluminium dissolution process, have been investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and glow-discharge optical emission spectroscopy (GDOES). High-resolution electron micrographs revealed the evident and uniform coating initiation on the whole surface after conversion treatment for only 30 s, although a network of metal ridges was created by HF etching pre-treatment. In terms of conversion treatment process on electropolished aluminium, constant kinetics of coating growth, ∼0.30 ± 0.2 nm/s, were found after the prolonged conversion treatment for 600 s. The availability of electrolyte anions for coating deposition determined the growth process. Simultaneously, a proceeding process of aluminium dissolution during conversion treatment, of ∼0.11 ± 0.02 nm/s, was found for the first time, indicating constant kinetics of anodic reactions. The distinct process of aluminium consumption was assigned with loss of corrosion protection of the deposited coating material as evidenced in the electrochemical impedance spectroscopy. Based on the present data, a new mechanism of coating growth on aluminium was proposed, and it consisted of an activation period (0-30 s), a linear growth period (0.30 nm/s, up for 600 s) and limited growth period (0.17 nm/s, 600-1200 s). In addition, the air-drying post-treatment and a high-vacuum environment in the microscope revealed a coating shrinkage, especially in the coatings after conversion treatments for longer time.
Diffusive interaction of multiple surface nanobubbles: shrinkage, growth, and coarsening.
Zhu, Xiaojue; Verzicco, Roberto; Zhang, Xuehua; Lohse, Detlef
2018-03-14
Surface nanobubbles are nanoscopic spherical-cap shaped gaseous domains on immersed substrates which are stable, even for days. After the stability of a single surface nanobubble has been theoretically explained, i.e. contact line pinning and gas oversaturation are required to stabilize it against diffusive dissolution [Lohse and Zhang, Phys. Rev. E, 2015, 91, 031003(R)], here we focus on the collective diffusive interaction of multiple nanobubbles. For that purpose we develop a finite difference scheme for the diffusion equation with the appropriate boundary conditions and with the immersed boundary method used to represent the growing or shrinking bubbles. After validation of the scheme against the exact results of Epstein and Plesset for a bulk bubble [J. Chem. Phys., 1950, 18, 1505] and of Lohse and Zhang for a surface bubble, the framework of these simulations is used to describe the coarsening process of competitively growing nanobubbles. The coarsening process for such diffusively interacting nanobubbles slows down with advancing time and increasing bubble distance. The present results for surface nanobubbles are also applicable for immersed surface nanodroplets, for which better controlled experimental results of the coarsening process exist.
Gao, Shan; Liao, Quanwen; Liu, Wei; Liu, Zhichun
2017-10-31
Recently, numerous studies focused on the wetting process of droplets on various surfaces at a microscale level. However, there are a limited number of studies about the mechanism of condensation on patterned surfaces. The present study performed the dynamic wetting behavior of water droplets and condensation process of water molecules on substrates with different pillar structure parameters, through molecular dynamic simulation. The dynamic wetting results indicated that droplets exhibit Cassie state, PW state, and Wenzel state successively on textured surfaces with decreasing solid fraction. The droplets possess a higher static contact angle and a smaller spreading exponent on textured surfaces than those on smooth surfaces. The condensation processes, including the formation, growth, and coalescence of a nanodroplet, are simulated and quantitatively recorded, which are difficult to be observed by experiments. In addition, a wetting transition and a dewetting transition were observed and analyzed in condensation on textured surfaces. Combining these simulation results with previous theoretical and experimental studies will guide us to understand the hypostasis and mechanism of the condensation more clearly.
NASA Astrophysics Data System (ADS)
Naderi, Ebadollah; Nanavati, Sachin; Majumder, Chiranjib; Ghaisas, S. V.
2015-01-01
CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as Aa site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from Aa (occupied) to Aa (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.
Mechanics of wind ripple stratigraphy.
Forrest, S B; Haff, P K
1992-03-06
Stratigraphic patterns preserved under translating surface undulations or ripples in a depositional eolian environment are computed on a grain by grain basis using physically based cellular automata models. The spontaneous appearance, growth, and motion of the simulated ripples correspond in many respects to the behavior of natural ripples. The simulations show that climbing strata can be produced by impact alone; direct action of fluid shear is unnecessary. The model provides a means for evaluating the connection between mechanical processes occurring in the paleoenvironment during deposition and the resulting stratigraphy preserved in the geologic column: vertical compression of small laminae above a planar surface indicates nascent ripple growth; supercritical laminae are associated with unusually intense deposition episodes; and a plane erosion surface separating sets of well-developed laminae is consistent with continued migration of mature ripples during a hiatus in deposition.
Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix J
NASA Technical Reports Server (NTRS)
El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2003-01-01
The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and 0) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and 02 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.
Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix B
NASA Technical Reports Server (NTRS)
El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and O) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and O2 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.
Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1997-01-01
Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.
The fiber walk: a model of tip-driven growth with lateral expansion.
Bucksch, Alexander; Turk, Greg; Weitz, Joshua S
2014-01-01
Tip-driven growth processes underlie the development of many plants. To date, tip-driven growth processes have been modeled as an elongating path or series of segments, without taking into account lateral expansion during elongation. Instead, models of growth often introduce an explicit thickness by expanding the area around the completed elongated path. Modeling expansion in this way can lead to contradictions in the physical plausibility of the resulting surface and to uncertainty about how the object reached certain regions of space. Here, we introduce fiber walks as a self-avoiding random walk model for tip-driven growth processes that includes lateral expansion. In 2D, the fiber walk takes place on a square lattice and the space occupied by the fiber is modeled as a lateral contraction of the lattice. This contraction influences the possible subsequent steps of the fiber walk. The boundary of the area consumed by the contraction is derived as the dual of the lattice faces adjacent to the fiber. We show that fiber walks generate fibers that have well-defined curvatures, and thus enable the identification of the process underlying the occupancy of physical space. Hence, fiber walks provide a base from which to model both the extension and expansion of physical biological objects with finite thickness.
The Fiber Walk: A Model of Tip-Driven Growth with Lateral Expansion
Bucksch, Alexander; Turk, Greg; Weitz, Joshua S.
2014-01-01
Tip-driven growth processes underlie the development of many plants. To date, tip-driven growth processes have been modeled as an elongating path or series of segments, without taking into account lateral expansion during elongation. Instead, models of growth often introduce an explicit thickness by expanding the area around the completed elongated path. Modeling expansion in this way can lead to contradictions in the physical plausibility of the resulting surface and to uncertainty about how the object reached certain regions of space. Here, we introduce fiber walks as a self-avoiding random walk model for tip-driven growth processes that includes lateral expansion. In 2D, the fiber walk takes place on a square lattice and the space occupied by the fiber is modeled as a lateral contraction of the lattice. This contraction influences the possible subsequent steps of the fiber walk. The boundary of the area consumed by the contraction is derived as the dual of the lattice faces adjacent to the fiber. We show that fiber walks generate fibers that have well-defined curvatures, and thus enable the identification of the process underlying the occupancy of physical space. Hence, fiber walks provide a base from which to model both the extension and expansion of physical biological objects with finite thickness. PMID:24465607
The effect of processing on the surface physical stability of amorphous solid dispersions.
Yang, Ziyi; Nollenberger, Kathrin; Albers, Jessica; Moffat, Jonathan; Craig, Duncan; Qi, Sheng
2014-11-01
The focus of this study was to investigate the effect of processing on the surface crystallization of amorphous molecular dispersions and gain insight into the mechanisms underpinning this effect. The model systems, amorphous molecular dispersions of felodipine-EUDRAGIT® E PO, were processed both using spin coating (an ultra-fast solvent evaporation based method) and hot melt extrusion (HME) (a melting based method). Amorphous solid dispersions with drug loadings of 10-90% (w/w) were obtained by both processing methods. Samples were stored under 75% RH/room temperatures for up to 10months. Surface crystallization was observed shortly after preparation for the HME samples with high drug loadings (50-90%). Surface crystallization was characterized by powder X-ray diffraction (PXRD), ATR-FTIR spectroscopy and imaging techniques (SEM, AFM and localized thermal analysis). Spin coated molecular dispersions showed significantly higher surface physical stability than hot melt extruded samples. For both systems, the progress of the surface crystal growth followed zero order kinetics on aging. Drug enrichment at the surfaces of HME samples on aging was observed, which may contribute to surface crystallization of amorphous molecular dispersions. In conclusion it was found the amorphous molecular dispersions prepared by spin coating had a significantly higher surface physical stability than the corresponding HME samples, which may be attributed to the increased process-related apparent drug-polymer solubility and reduced molecular mobility due to the quenching effect caused by the rapid solvent evaporation in spin coating. Copyright © 2014 Elsevier B.V. All rights reserved.
Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz
NASA Technical Reports Server (NTRS)
Gratz, A. J.; Manne, S.; Hansma, P. K.
1991-01-01
The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.
Can accurate kinetic laws be created to describe chemical weathering?
NASA Astrophysics Data System (ADS)
Schott, Jacques; Oelkers, Eric H.; Bénézeth, Pascale; Goddéris, Yves; François, Louis
2012-11-01
Knowledge of the mechanisms and rates of mineral dissolution and growth, especially close to equilibrium, is essential for describing the temporal and spatial evolution of natural processes like weathering and its impact on CO2 budget and climate. The Surface Complexation approach (SC) combined with Transition State Theory (TST) provides an efficient framework for describing mineral dissolution over wide ranges of solution composition, chemical affinity, and temperature. There has been a large debate for several years, however, about the comparative merits of SC/TS versus classical growth theories for describing mineral dissolution and growth at near-to-equilibrium conditions. This study considers recent results obtained in our laboratory on oxides, hydroxides, silicates, and carbonates on near-equilibrium dissolution and growth via the combination of complementary microscopic and macroscopic techniques including hydrothermal atomic force microscopy, hydrogen-electrode concentration cell, mixed flow and batch reactors. Results show that the dissolution and precipitation of hydroxides, kaolinite, and hydromagnesite powders of relatively high BET surface area closely follow SC/TST rate laws with a linear dependence of both dissolution and growth rates on fluid saturation state (Ω) even at very close to equilibrium conditions (|ΔG| < 500 J/mol). This occurs because sufficient reactive sites (e.g. at kink, steps, and edges) are available at the exposed faces for dissolution and/or growth, allowing reactions to proceed via the direct and reversible detachment/attachment of reactants at the surface. In contrast, for magnesite and quartz, which have low surface areas, fewer active sites are available for growth and dissolution. Such minerals exhibit rates dependencies on Ω at near equilibrium conditions ranging from linear to highly non-linear functions of Ω, depending on the treatment of the crystals before the reaction. It follows that the form of the f(ΔG) function describing the growth and dissolution of minerals with low surface areas depends on the availability of reactive sites at the exposed faces and thus on the history of the mineral-fluid interaction and the hydrodynamic conditions under which the crystals are reacted. It is advocated that the crystal surface roughness could serve as a proxy of the density of reactive sites. The consequences of the different rate laws on the quantification of loess weathering along the Mississippi valley for the next one hundred years are examined.
STIR: Tailored Interfaces for High Strength Composites Across Strain Rates
2013-09-02
following by the nanowire growth . For the seeding process, the fibers were dipped into a colloidal solution of ZnO nanoparticles (2nm diameter) that was...to the fabric prior to nanowire growth . The synthesis of ZnO nanowire on Kevlar fabric surface was conducted in two steps; initial seeding and...Patterson, Mohammad H. Malakooti, Henry A. Sodano. Modification of Pullout Behavior of Kevlar Fabric by Zinc Oxide Nanowire Reinforcement, Proceedings of
Ab initio-based approach to structural change of compound semiconductor surfaces during MBE growth
NASA Astrophysics Data System (ADS)
Ito, Tomonori; Akiyama, Toru; Nakamura, Kohji
2009-01-01
Phase diagrams of GaAs and GaN surfaces are systematically investigated by using our ab initio-based approach in conjunction with molecular beam epitaxy (MBE). The phase diagrams are obtained as a function of growth parameters such as temperature and beam equivalent pressure (BEP). The versatility of our approach is exemplified by the phase diagram calculations for GaAs(0 0 1) surfaces, where the stable phases and those phase boundaries are successfully determined as functions of temperature and As 2 and As 4 BEPs. The initial growth processes are clarified by the phase diagram calculations for GaAs(1 1 1)B-(2×2). The calculated results demonstrate that the As-trimer desorption on the GaAs(1 1 1)B-(2×2) with Ga adatoms occurs beyond 500-700 K while the desorption without Ga adatoms does beyond 800-1000 K. This self-surfactant effect induced by Ga adsorption crucially affects the initial growth of GaAs on the GaAs(1 1 1)B-(2×2). Furthermore, the phase diagram calculations for GaN(0 0 0 1) suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1×1) to the (2×2)-Ga via newly found (1×1) and vice versa. On the basis of this finding, the possibility of ghost island formation during MBE growth is discussed.
Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires.
Hou, Wen Chi; Hong, Franklin Chau-Nan
2009-02-04
This study investigates the growth of GaN nanowires by controlling the surface diffusion of Ga species on sapphire in a plasma-enhanced chemical vapor deposition (CVD) system. Under nitrogen-rich growth conditions, Ga has a tendency to adsorb on the substrate surface diffusing to nanowires to contribute to their growth. The significance of surface diffusion on the growth of nanowires is dependent on the environment of the nanowire on the substrate surface as well as the gas phase species and compositions. Under nitrogen-rich growth conditions, the growth rate is strongly dependent on the surface diffusion of gallium, but the addition of 5% hydrogen in nitrogen plasma instantly diminishes the surface diffusion effect. Gallium desorbs easily from the surface by reaction with hydrogen. On the other hand, under gallium-rich growth conditions, nanowire growth is shown to be dominated by the gas phase deposition, with negligible contribution from surface diffusion. This is the first study reporting the inhibition of surface diffusion effects by hydrogen addition, which can be useful in tailoring the growth and characteristics of nanowires. Without any evidence of direct deposition on the nanowire surface, gallium and nitrogen are shown to dissolve into the catalyst for growing the nanowires at 900 degrees C.
Cheesman, Andrew; Harvey, Jeremy N; Ashfold, Michael N R
2008-11-13
Accurate potential energy surface calculations are presented for many of the key steps involved in diamond chemical vapor deposition on the [100] surface (in its 2 x 1 reconstructed and hydrogenated form). The growing diamond surface was described by using a large (approximately 1500 atoms) cluster model, with the key atoms involved in chemical steps being described by using a quantum mechanical (QM, density functional theory, DFT) method and the bulk of the atoms being described by molecular mechanics (MM). The resulting hybrid QM/MM calculations are more systematic and/or at a higher level of theory than previous work on this growth process. The dominant process for carbon addition, in the form of methyl radicals, is predicted to be addition to a surface radical site, opening of the adjacent C-C dimer bond, insertion, and ultimate ring closure. Other steps such as insertion across the trough between rows of dimer bonds or addition to a neighboring dimer leading to formation of a reconstruction on the next layer may also contribute. Etching of carbon can also occur; the most likely mechanism involves loss of a two-carbon moiety in the form of ethene. The present higher-level calculations confirm that migration of inserted carbon along both dimer rows and chains should be relatively facile, with barriers of approximately 150 kJ mol (-1) when starting from suitable diradical species, and that this step should play an important role in establishing growth of smooth surfaces.
NASA Astrophysics Data System (ADS)
Chen, Zhiwen; Liu, Changqing; Wu, Yiping; An, Bing
2015-12-01
The growth of intermetallic compounds (IMCs) on the free surface of 99Sn-1Cu solder joints perpendicular to the interdiffusion direction has been investigated in this work. The specimens were specifically designed and polished to reveal a flat free surface at the solder/Cu interface for investigation. After aging at 175°C for progressively increased durations, the height of the perpendicular IMCs was examined and found to follow a parabolic law with aging duration that could be expressed as y = 0.11√ t, where t is the aging duration in hours and y is the height of the perpendicular IMCs in μm. For comparison, the planar growth of IMCs along the interdiffusion direction was also investigated in 99Sn-1Cu/Cu solder joints. After prolonged aging at 175°C, the thickness of the planar interfacial IMC layers also increased parabolically with aging duration and could be expressed as h_{{IMC}} = 0.27√ t + 4.6, where h is the thickness in μm and t is the time in hours. It was found that both the planar and perpendicular growth of the IMCs were diffusion-controlled processes, but the perpendicular growth of the IMCs was much slower than their planar growth due to the longer diffusion distance. It is proposed that Cu3Sn forms prior to the formation of Cu6Sn5 in the perpendicular IMCs, being the reverse order compared with the planar IMC growth.
NASA Technical Reports Server (NTRS)
Reuter, Walter G. (Editor); Underwood, John H. (Editor); Newman, James C., Jr. (Editor)
1990-01-01
The present volume on surface-crack growth modeling, experimental methods, and structures, discusses elastoplastic behavior, the fracture analysis of three-dimensional bodies with surface cracks, optical measurements of free-surface effects on natural surfaces and through cracks, an optical and finite-element investigation of a plastically deformed surface flaw under tension, fracture behavior prediction for rapidly loaded surface-cracked specimens, and surface cracks in thick laminated fiber composite plates. Also discussed are a novel study procedure for crack initiation and growth in thermal fatigue testing, the growth of surface cracks under fatigue and monotonically increasing load, the subcritical growth of a surface flaw, surface crack propagation in notched and unnotched rods, and theoretical and experimental analyses of surface cracks in weldments.
Sahu, Bibhuti Bhusan; Han, Jeon Geon; Kersten, Holger
2017-02-15
Understanding the science and engineering of thin films using plasma assisted deposition methods with controlled growth and microstructure is a key issue in modern nanotechnology, impacting both fundamental research and technological applications. Different plasma parameters like electrons, ions, radical species and neutrals play a critical role in nucleation and growth and the corresponding film microstructure as well as plasma-induced surface chemistry. The film microstructure is also closely associated with deposition energy which is controlled by electrons, ions, radical species and activated neutrals. The integrated studies on the fundamental physical properties that govern the plasmas seek to determine their structure and modification capabilities under specific experimental conditions. There is a requirement for identification, determination, and quantification of the surface activity of the species in the plasma. Here, we report a detailed study of hydrogenated amorphous and crystalline silicon (c-Si:H) processes to investigate the evolution of plasma parameters using a theoretical model. The deposition processes undertaken using a plasma enhanced chemical vapor deposition method are characterized by a reactive mixture of hydrogen and silane. Later, various contributions of energy fluxes on the substrate are considered and modeled to investigate their role in the growth of the microstructure of the deposited film. Numerous plasma diagnostic tools are used to compare the experimental data with the theoretical results. The film growth and microstructure are evaluated in light of deposition energy flux under different operating conditions.
Smith, M M; Campbell, K S
1987-10-14
The dental plates of the Devonian lungfish Chirodipterus australis Miles (Osteichthyes; Dipnoi) are shown to have achieved their characteristic morphology by a growth process different from that assumed for the plates of genera such as Dipterus. Each plate was thickened by the addition of layers of bone that also extended the plate labially, thus providing the base on which and into which dentine grew. Distinctive features of the dentition are: (a) labial increase of the dentine mass by the addition of blister-like denticles of simple enamel-covered dentine, which is initially ingrown by pleromic dentine and subsequently resorbed and replaced by petrodentine; (b) increase in the midline by a similar process that results in the addition of one (or possibly two) new ridges; (c) resorption of the posterior edge of the pterygoid plates and the posterior and posteromedial edges of the prearticular plates, with subsequent development over the resorbed surfaces of several generations of simple regenerative dentine; (d) resorption and redeposition of pleromic dentine and bone in a triangular region posteromedially on the pterygoid plates; (e) the formation of tuberosities that simulate teeth at a short distance in from the labial edge, by four processes: formation of an undulating plate margin, differential growth of petrodentine (hard compact dentine) within the pulp cavity, differential wear of the petrodentine and the adjacent bone plus pleromic dentine, and slightly greater growth of the petrodentine towards the occlusal surface relative to the adjacent bone and dentine; (f) expansion of the large flat surfaces of the plates by gradual replacement of the bone and dentine at the proximal ends of the furrows and also by the development of linkages of petrodentine across the furrows; (g) development of isolated tuberosities on the flat posterolateral parts of the plates. The petrodentine of the ridges, tuberosities and plateaus of the plates is indistinguishable structurally and in its mode of growth from the petrodentine in extant species of dipnoans. Plates similar to those of C. australis have been observed in Stomiahykus, Archaeonectes, Conchodus, Palaedaphus and Sunwapta, as well as several species usually referred to as Dipterus. Sunwapta may be congeneric with C. australis.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Shi, Xiaoxu; Lohmann, Gerrit
2017-09-01
A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.
N-Type delta Doping of High-Purity Silicon Imaging Arrays
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh
2005-01-01
A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including metallization. The success of the process depends on accurate temperature control, surface treatment, growth of high-quality crystalline silicon, and precise control of thicknesses of layers. MBE affords the necessary nanometer- scale control of the placement of atoms for delta doping. More specifically, the process consists of MBE deposition of a thin silicon buffer layer, the n-type delta doping layer, and a thin silicon cap layer. The n dopant selected for initial experiments was antimony, but other n dopants as (phosphorus or arsenic) could be used. All n-type dopants in silicon tend to surface-segregate during growth, leading to a broadened dopant-concentration- versus-depth profile. In order to keep the profile as narrow as possible, the substrate temperature is held below 300 C during deposition of the silicon cap layer onto the antimony delta layer. The deposition of silicon includes a silicon- surface-preparation step, involving H-termination, that enables the growth of high-quality crystalline silicon at the relatively low temperature with close to full electrical activation of donors in the surface layer.
Guo, Peng; La Plante, Erika Callagon; Wang, Bu; Chen, Xin; Balonis, Magdalena; Bauchy, Mathieu; Sant, Gaurav
2018-05-22
The Cl - -induced corrosion of metals and alloys is of relevance to a wide range of engineered materials, structures, and systems. Because of the challenges in studying pitting corrosion in a quantitative and statistically significant manner, its kinetics remain poorly understood. Herein, by direct, nano- to micro-scale observations using vertical scanning interferometry (VSI), we examine the temporal evolution of pitting corrosion on AISI 1045 carbon steel over large surface areas in Cl - -free, and Cl - -enriched solutions. Special focus is paid to examine the nucleation and growth of pits, and the associated formation of roughened regions on steel surfaces. By statistical analysis of hundreds of individual pits, three stages of pitting corrosion, namely, induction, propagation, and saturation, are quantitatively distinguished. By quantifying the kinetics of these processes, we contextualize our current understanding of electrochemical corrosion within a framework that considers spatial dynamics and morphology evolutions. In the presence of Cl - ions, corrosion is highly accelerated due to multiple autocatalytic factors including destabilization of protective surface oxide films and preservation of aggressive microenvironments within the pits, both of which promote continued pit nucleation and growth. These findings offer new insights into predicting and modeling steel corrosion processes in mid-pH aqueous environments.
FTIR absorption reflection study of biomimetic growth of phosphates on titanium implants
NASA Astrophysics Data System (ADS)
Stoch, A.; Jastrzębski, W.; Brożek, A.; Stoch, J.; Szaraniec, J.; Trybalska, B.; Kmita, G.
2000-11-01
Titanium has been used for many medical applications; however, its joining to a living bone still is not satisfactorily good, challenging appropriate investigations. The aim of this work was to generate chemical modifications at its surface such that in vivo conditions, heterogeneous nucleation, and then growth of apatite from the body fluid could be easily induced and successfully performed. For this purpose, on the titanium samples, the oxide sublayers containing titanium, calcium and silicon (TCS) were deposited from a suitable solution using the sol-gel deep-coating procedure. Dried samples were heated at 400°C then cooled and thermostatically held in synthetic body fluids (SBF, SBFIII) under physiological conditions to mimic the natural process of apatite formation. Changes in surface composition of TCS sublayers caused by the heating were studied with XPS. Infrared spectroscopy and scanning electron microscopy monitored successive steps of apatite growth. It was found that in SBF, at the precoated titanium surface, nucleation and growth of the apatite containing carbonate took place. In SBFIII, for a higher concentration of calcium ions in comparison with SBF, a much-enhanced growth of the apatite free of carbonate was observed. TCS precoatings applied on stainless steel and Cr-Co-Mo alloy (Micromed) act also as bioactive interfaces with high ability to nucleation of biologically equivalent apatite. Biomimetic formation of this apatite on biologically inactive materials can be an important step in implant surgery.
The effect of copper pre-cleaning on graphene synthesis.
Kim, Soo Min; Hsu, Allen; Lee, Yi-Hsien; Dresselhaus, Mildred; Palacios, Tomás; Kim, Ki Kang; Kong, Jing
2013-09-13
Copper foil is the most common substrate to synthesize monolayer graphene by chemical vapor deposition (CVD). The surface morphology and conditions of the copper foil can be very different depending on the various suppliers or different batches. These surface properties of copper strongly affect the growth behavior of graphene, thus rendering the growth conditions irreproducible when different batches of Cu foil are used. Furthermore, the quality of the graphene is severely affected as well. In this work, we report a facile method of copper pre-cleaning to improve the graphene quality and the reproducibility of the growth process. We found that the commercial Ni etchant (based on nitric acid) or nitric acid is the most effective cleaning agent among various acidic or basic solutions. The graphene grown on thus-treated copper surfaces is very clean and mostly monolayer when observed under scanning electron microscopy (SEM) and optical imaging, as compared to the graphene grown on untreated copper foil. Different batches (but with the same catalog number) of copper foil from Alfa Aesar Company were examined to explore the effect of copper pre-cleaning; consistent growth results were obtained when pre-cleaning was used. This method overcomes a commonly encountered problem in graphene growth and could become one of the standard protocols for preparing the copper foil substrate for growing graphene or other 2D materials.
Solid-State Division progress report for period ending March 31, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Watson, D.M.
1983-09-01
Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)
Hossain, Md Shakhawath; Bergstrom, D J; Chen, X B
2015-11-01
The in vitro chondrocyte cell culture process in a perfusion bioreactor provides enhanced nutrient supply as well as the flow-induced shear stress that may have a positive influence on the cell growth. Mathematical and computational modelling of such a culture process, by solving the coupled flow, mass transfer and cell growth equations simultaneously, can provide important insight into the biomechanical environment of a bioreactor and the related cell growth process. To do this, a two-way coupling between the local flow field and cell growth is required. Notably, most of the computational and mathematical models to date have not taken into account the influence of the cell growth on the local flow field and nutrient concentration. The present research aimed at developing a mathematical model and performing a numerical simulation using the lattice Boltzmann method to predict the chondrocyte cell growth without a scaffold on a flat plate placed inside a perfusion bioreactor. The model considers the two-way coupling between the cell growth and local flow field, and the simulation has been performed for 174 culture days. To incorporate the cell growth into the model, a control-volume-based surface growth modelling approach has been adopted. The simulation results show the variation of local fluid velocity, shear stress and concentration distribution during the culture period due to the growth of the cell phase and also illustrate that the shear stress can increase the cell volume fraction to a certain extent.
Geographic Analysis and Monitoring Program
Campbell, Jon C.
2007-01-01
The surface of the Earth is changing rapidly, at local, regional, national, and global scales, with significant repercussions for people, the economy, and the environment. Some changes have natural causes, such as wildland fires or hurricanes, while other changes on the land, such as resource extraction, agricultural practices, and urban growth, are human-induced processes. There are other types of changes that are a combination of natural and human-induced factors; landslides and floods, for example, are fundamentally natural processes that are often intensified or accelerated by human land use practices. Whatever their cause, land-surface changes can have profound environmental and economic impacts.
NASA Astrophysics Data System (ADS)
Oliveira, Fernando G.; Ribeiro, Ana R.; Perez, Geronimo; Archanjo, Bráulio S.; Gouvea, Cristol P.; Araújo, Joyce R.; Campos, Andrea P. C.; Kuznetsov, Alexei; Almeida, Clara M.; Maru, Márcia M.; Achete, Carlos A.; Ponthiaux, Pierre; Celis, Jean-Pierre; Rocha, Luis A.
2015-06-01
The growth of the dental implant market increases the concern regarding the quality, efficiency, and lifetime of dental implants. Titanium and its alloys are dominant materials in this field thanks to their high biocompatibility and corrosion resistance, but they possess a very low wear resistance. Besides problems related to osteointegration and bacterial infections, tribocorrosion phenomena being the simultaneous action between corrosion and wear, are likely to occur during the lifetime of the implant. Therefore, tribocorrosion resistant surfaces are needed to guarantee the preservation of dental implants. This work focused on the incorporation of magnesium, together with calcium and phosphorous, in the structure of titanium oxide films produced by micro-arc oxidation (MAO). The characterization of morphology, chemical composition, and crystalline structure of the surfaces provided important insights leading to (1) a better understanding of the oxide film growth mechanisms during the MAO treatment; and (2) a better awareness on the degradation process during tribocorrosion tests. The addition of magnesium was shown to support the formation of rutile which improves the tribocorrosion properties of the surfaces.
Investigation of nucleation and growth processes of diamond films by atomic force microscopy
NASA Technical Reports Server (NTRS)
George, M. A.; Burger, A.; Collins, W. E.; Davidson, J. L.; Barnes, A. V.; Tolk, N. H.
1994-01-01
The nucleation and growth of plasma-enhanced chemical-vapor deposited polycrystalline diamond films were studied using atomic force microscopy (AFM). AFM images were obtained for (1) nucleated diamond films produced from depositions that were terminated during the initial stages of growth, (2) the silicon substrate-diamond film interface side of diamond films (1-4 micrometers thick) removed from the original surface of the substrate, and (3) the cross-sectional fracture surface of the film, including the Si/diamond interface. Pronounced tip effects were observed for early-stage diamond nucleation attributed to tip convolution in the AFM images. AFM images of the film's cross section and interface, however, were not highly affected by tip convolution, and the images indicate that the surface of the silicon substrate is initially covered by a small grained polycrystalline-like film and the formation of this precursor film is followed by nucleation of the diamond film on top of this layer. X-ray photoelectron spectroscopy spectra indicate that some silicon carbide is present in the precursor layer.
Passive film growth on titanium alloys: physicochemical and biologic considerations.
Eliades, T
1997-01-01
The role of reactive oxygen derivatives (hydroxy peroxide, hydroxyl radical, and singlet oxygen) on the precipitation of inorganic and organic complexes onto the surface of titanium implant alloys is discussed in this review. In addition, the effect of possible implication of several biologic entities surrounding the implant on the implant-tissue interface constituents is described. Evidence from relevant studies suggests that local microenvironmental byproducts and factors associated with the inflammatory response resulting from the implant-induced tissue insult may enhance the expressivity of the inherent, clinically important property of titanium to form oxides. Growth of titanium oxide may be explained through several processes derived from biologic, thermodynamic, and electrochemical approaches. The models proposed to interpret this phenomenon are often contradictory, demonstrating inward or outward from the bulk material passive film growth, with increasing or self-limiting levels of oxide formation as a function of time. However, in vivo observations are consistent with aging-induced thickening of the complexes precipitated on the implant material surface. This review attempts to clarify several critical issues pertaining to passive film formation and kinetics on titanium-alloy surfaces.
Adsorption inhibition as a mechanism of freezing resistance in polar fishes.
Raymond, J A; DeVries, A L
1977-01-01
Polar fishes are known to have serum proteins and glycoproteins that protect them from freezing, by a noncolligative process. Measurements of antifreeze concentrations in ice and scanning electron micrographs of freeze-dried antifreeze solutions indicate that the antifreezes are incorporated in ice during freezing. The antifreezes also have a pronounced effect on the crystal habit of ice grown in their presence. Each of four antifreezes investigated caused ice to grow in long needles whose axes were parallel to the ice c axis. Together these results indicate the antifreezes adsorb to ice surfaces and inhibit their growth. A model in which adsorbed antifreezes raise the curvature of growth steps on the ice surface is proposed to account for the observed depression of the temperature at which freezing occurs and agrees well with experimental observations. The model is similar to one previously proposed for other cases of crystal growth inhibition. Images PMID:267952
NASA Astrophysics Data System (ADS)
Withanage, Wenura K.; Penmatsa, Sashank V.; Acharya, Narendra; Melbourne, Thomas; Cunnane, D.; Karasik, B. S.; Xi, X. X.
2018-07-01
We report on the growth of high quality MgB2 thin films on silicon and silicon-on-insulator substrates by hybrid physical chemical vapor deposition. A boron buffer layer was deposited on all sides of the Si substrate to prevent the reaction of Mg vapor and Si. Ar ion milling at a low angle of 1° was used to reduce the roughness of the boron buffer layer before the MgB2 growth. An Ar ion milling at low angle of 1° was also applied to the MgB2 surface to reduce its roughness. The resultant MgB2 films showed excellent superconducting properties and a smooth surface. The process produces thin MgB2 films suitable for waveguide-based superconducting hot electron bolometers and other MgB2-based electronic devices.
Sobanska, M; Fernández-Garrido, S; Zytkiewicz, Z R; Tchutchulashvili, G; Gieraltowska, S; Brandt, O; Geelhaar, L
2016-08-12
We present a comprehensive description of the self-assembled nucleation and growth of GaN nanowires (NWs) by plasma-assisted molecular beam epitaxy on amorphous Al x O y buffers (a-Al x O y ) prepared by atomic layer deposition. The results are compared with those obtained on nitridated Si(111). Using line-of-sight quadrupole mass spectrometry, we analyze in situ the incorporation of Ga starting from the incubation and nucleation stages till the formation of the final nanowire ensemble and observe qualitatively the same time dependence for the two types of substrates. However, on a-Al x O y the incubation time is shorter and the nucleation faster than on nitridated Si. Moreover, on a-Al x O y we observe a novel effect of decrease in incorporated Ga flux for long growth durations which we explain by coalescence of NWs leading to reduction of the GaN surface area where Ga may reside. Dedicated samples are used to analyze the evolution of surface morphology. In particular, no GaN nuclei are detected when growth is interrupted during the incubation stage. Moreover, for a-Al x O y , the same shape transition from spherical cap-shaped GaN crystallites to the NW-like geometry is found as it is known for nitridated Si. However, while the critical radius for this transition is only slightly larger for a-Al x O y than for nitridated Si, the critical height is more than six times larger for a-Al x O y . Finally, we observe that in fully developed NW ensembles, the substrate no longer influences growth kinetics and the same N-limited axial growth rate is measured on both substrates. We conclude that the same nucleation and growth processes take place on a-Al x O y as on nitridated Si and that these processes are of a general nature. Quantitatively, nucleation proceeds somewhat differently, which indicates the influence of the substrate, but once shadowing limits growth processes to the upper part of the NW ensemble, they are not affected anymore by the type of substrate.
NASA Astrophysics Data System (ADS)
Rezvanpanah, Elham; Ghaffarian Anbaran, S. Reza
2017-11-01
This study establishes a model and simulation scheme to describe the effect of crystallinity as one of the most effective parameters on cell growth phenomena in a solid batch foaming process. The governing model of cell growth dynamics, based on the well-known ‘Cell model’, is attained in details. To include the effect of crystallinity in the model, the properties of the polymer/gas mixtures (i.e. solubility, diffusivity, surface tension and viscosity) are estimated by modifying relations to consider the effect of crystallinity. A finite element-finite difference (FEFD) method is employed to solve the highly nonlinear and coupled equations of cell growth dynamics. The proposed simulation is able to evaluate all properties of the system at the given process condition and uses them to calculate the cell size, pressure and gas concentration gradient with time. A high-density polyethylene/nitrogen (HDPE/N2) system is used herein as a case study. Comparing the simulation results with the others works and experimental results verify the accuracy of the simulation scheme. The cell growth is a complicated combination of several phenomena. This study attempted to reach a better understanding of cell growth trend, driving and retarding forces and the effect of crystallinity on them.
Modeling the Gas Nitriding Process of Low Alloy Steels
NASA Astrophysics Data System (ADS)
Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.
2013-07-01
The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.
NASA Astrophysics Data System (ADS)
Dagdeviren, Omur; Zhou, Chao; Zou, Ke; Simon, Georg; Albright, Stephen; Mandal, Subhasish; Morales-Acosta, Mayra; Zhu, Xiaodong; Ismail-Beigi, Sohrab; Walker, Frederick; Ahn, Charles; Schwarz, Udo; Altman, Eric
Revealing the local electronic properties of surfaces and their link to structural properties is an important problem for topological crystalline insulators (TCI) in which metallic surface states are protected by crystal symmetry. The microstructure and electronic properties of TCI SnTe film surfaces grown by molecular beam epitaxy were characterized using scanning probe microscopy. These results reveal the influence of various defects on the electronic properties: tilt boundaries leading to dislocation arrays that serve as periodic nucleation sites for pit growth; screw dislocations, and point defects. These features have varying length scale and display variations in the electronic structure of the surface, which are mapped with scanning tunneling microscopy images as standing waves superimposed on atomic scale images of the surface topography that consequently shape the wave patterns. Since the growth process results in symmetry breaking defects that patterns the topological states, we propose that the scanning probe tip can pattern the surface and electronic structure and enable the fabrication of topological devices on the SnTe surface. Financial support from the National Science Foundation through the Yale Materials Research Science and Engineering Center (Grant No. MRSEC DMR-1119826) and FAME.
NASA Astrophysics Data System (ADS)
Lundager Madsen, Hans Erik
2014-09-01
In an attempt to grow pure crystals of the iron(II) phosphate vivianite, Fe3(PO4)2,8H2O, from a solution of Mohr's salt, Fe(NH4)2(SO4)2,6H2O, added to a solution of ammonium phosphate, hydroxylammonium chloride, NH3OHCl, was added to the iron(II) stock solution to eliminate oxidation of iron(II) by oxygen from the air. However, the effect turned out to be the opposite of the expected: whereas hydroxylamine reduces iron(III) in bulk solution, it acted as a strong oxidant in the presence of growing iron phosphate crystals, causing the crystallization of the iron(III) phosphate strengite, FePO4,2H2O, as the only solid phase. Evidently the crystal surface catalyses oxidation of iron(II) by hydroxylamine. The usual composite kinetics of spiral growth and surface nucleation was found. The surface-nucleation part yielded edge free energy λ in the range 12-45 pJ/m, virtually independent of temperature and in the range typical for phosphates of divalent metals. The scatter of values for λ presumably arises from contributions from different crystal forms to the overall growth rate. The low mean value points to strong adsorption of iron(II), which is subsequently oxidized at the crystal surface, forming strengite. The state of the system did not tend to thermodynamic equilibrium, but to a metastable state, presumably controlled by the iron(II) rich surface layer of the crystal. In addition to crystal growth, it was possible to measure nucleation kinetics by light scattering (turbidimetry). A point of transition from heterogeneous to homogeneous nucleation was found, and from the results for the homogeneous domain a rather precise value of crystal surface free energy γ=55 mJ/m2 was found. This is a relatively low value as well, indicating that the redox process plays a role already at the nucleation stage.
Impact of Tissue Factor Localization on Blood Clot Structure and Resistance under Venous Shear.
Govindarajan, Vijay; Zhu, Shu; Li, Ruizhi; Lu, Yichen; Diamond, Scott L; Reifman, Jaques; Mitrophanov, Alexander Y
2018-02-27
The structure and growth of a blood clot depend on the localization of tissue factor (TF), which can trigger clotting during the hemostatic process or promote thrombosis when exposed to blood under pathological conditions. We sought to understand how the growth, structure, and mechanical properties of clots under flow are shaped by the simultaneously varying TF surface density and its exposure area. We used an eight-channel microfluidic device equipped with a 20- or 100-μm-long collagen surface patterned with lipidated TF of surface densities ∼0.1 and ∼2 molecules/μm 2 . Human whole blood was perfused at venous shear, and clot growth was continually measured. Using our recently developed computational model of clot formation, we performed simulations to gain insights into the clot's structure and its resistance to blood flow. An increase in TF exposure area resulted not only in accelerated bulk platelet, thrombin, and fibrin accumulation, but also in increased height of the platelet mass and increased clot resistance to flow. Moreover, increasing the TF surface density or exposure area enhanced platelet deposition by approximately twofold, and thrombin and fibrin generation by greater than threefold, thereby increasing both clot size and its viscous resistance. Finally, TF effects on blood flow occlusion were more pronounced for the longer thrombogenic surface than for the shorter one. Our results suggest that TF surface density and its exposure area can independently enhance both the clot's occlusivity and its resistance to blood flow. These findings provide, to our knowledge, new insights into how TF affects thrombus growth in time and space under flow. Copyright © 2018 Biophysical Society. All rights reserved.
Grinter, David C.; Senanayake, Sanjaya D.; Flege, Jan Ingo
2016-11-15
Ceria is an important material for chemical conversion processes in catalysis. Its intrinsic properties as a reducible oxide can be exploited to achieve catalytic selectivity and activity. However, numerous phenomenological characteristics of ceria remain unknown and its active nature is ever slowly being unraveled. Well defined models of ceria (111) are an important way to systematically study these properties and take advantage of new in situ methods that require pristine materials that allow for the interrogation of the most fundamental traits of this material. The ceria-Ru(0001) model is now the most well studied model surface with numerous aspects of itsmore » preparation, atomic structure and reactivity studied by several groups. The preparation of CeO x structures oriented with a (111) surface termination can be achieved through molecular beam deposition, facilitating the growth of well-defined nanostructures, microparticles, and films on the Ru(0001) surface. The growth mechanism exploits the epitaxial relationship between CeOx and Ru to form a carpet mode of well oriented layers of Osingle bondCesingle bondO. These models can be studied to unravel the atomic structure and the oxidation state (Ce 4+ and Ce 3+), as prepared and under redox conditions (reduction/oxidation) or with reaction using reactants (e.g., H 2, methanol). Here, we present a discussion of these most recent observations pertaining to the growth mode, arrangement of atoms on the surface, characteristic chemical state, and redox chemistry of the CeO x-Ru surface. As a result, with insights from these studies we propose new strategies to further unravel the chemistry of ceria.« less
A Study of Biomolecules as Growth Modifiers of Calcium Oxalate Crystals
NASA Astrophysics Data System (ADS)
Kwak, Junha John
Crystallization processes are ubiquitous in nature, science, and technology. Controlling crystal growth is pivotal in many industries as material properties and functions can be tailored by tuning crystal habits (e.g. size, shape, phase). In biomineralization, organisms exert excellent control over bottom-up synthesis and assembly of inorganic-organic structures (e.g. bones, teeth, exoskeletons). This is made possible by growth modifiers that range from small molecules to macromolecules, such as proteins. Molecular recognition of the mineral phase allows proteins to function as nucleation templates, matrices, and growth inhibitors or promoters. We are interested in taking a biomimetic approach to control crystallization via biomolecular growth modifiers. We investigated calcium oxalate monohydrate (COM), found in plants and kidney stones, as a model system of crystallization. We studied the effects of four common proteins on COM crystallization: bovine serum albumin (BSA), transferrin, lactoferrin, and lysozyme. Through kinetic studies of COM crystallization, we classified BSA and lysozyme as COM growth inhibitor and promoter respectively. Their inhibition and promotion effects were also evident in the macroscopic crystal habit. Through adsorption and microscopy experiments, we showed that BSA exhibits binding specificity for the apical surfaces of macroscopic COM crystals. Lysozyme, on the other, functions via a non-binding mechanism at the surface to accelerate the growth of the apical surfaces. We also synthesized and studied peptides derived from the protein primary sequences to identify putative domains responsible for these inhibition and promotion effects. Collectively, our study of physiologically relevant biomolecules suggests potential roles of COM modifiers in pathological crystallization and helps to develop guidelines for rational design of biomolecular growth modifiers for applications in crystal engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villegier, J.C.; Goniche, M.; Renard, P.
1985-03-01
All-niobium nitride Josephson junctions have been prepared successfully using a new processing called SNOP: Selective Niobium (Nitride) Overlap Process. Such a process involves the ''trilayer'' deposition on the whole wafer before selective patterning of the electrodes by optically controlled Dry Reactive Ion Etching. Only two photomask levels are need to define an ''overlap'' or a ''cross-type'' junction with a good accuracy. The properties of the niobium nitride films deposited by DC-Magnetron sputtering and the surface oxide growth are analysed. The most critical point to obtain high quality and high gap value junctions resides in the early stage of the NbNmore » counterelectrode growth. Some possibilities to overcome such a handicap exist even if the fabrication needs substrate temperatures below 250/sup 0/C.« less
Modeling Surface Growth of Escherichia coli on Agar Plates
Fujikawa, Hiroshi; Morozumi, Satoshi
2005-01-01
Surface growth of Escherichia coli cells on a membrane filter placed on a nutrient agar plate under various conditions was studied with a mathematical model. The surface growth of bacterial cells showed a sigmoidal curve with time on a semilogarithmic plot. To describe it, a new logistic model that we presented earlier (H. Fujikawa et al., Food Microbiol. 21:501-509, 2004) was modified. Growth curves at various constant temperatures (10 to 34°C) were successfully described with the modified model (model III). Model III gave better predictions of the rate constant of growth and the lag period than a modified Gompertz model and the Baranyi model. Using the parameter values of model III at the constant temperatures, surface growth at various temperatures was successfully predicted. Surface growth curves at various initial cell numbers were also sigmoidal and converged to the same maximum cell numbers at the stationary phase. Surface growth curves at various nutrient levels were also sigmoidal. The maximum cell number and the rate of growth were lower as the nutrient level decreased. The surface growth curve was the same as that in a liquid, except for the large curvature at the deceleration period. These curves were also well described with model III. The pattern of increase in the ATP content of cells grown on a surface was sigmoidal, similar to that for cell growth. We discovered several characteristics of the surface growth of bacterial cells under various growth conditions and examined the applicability of our model to describe these growth curves. PMID:16332768
On the formation and early evolution of soot in turbulent nonpremixed flames
NASA Astrophysics Data System (ADS)
Bisetti, F.; Blanquart, G.; Mueller, M. E.; Pitsch, H.
2010-11-01
A direct numerical simulation of soot formation in a turbulent nonpremixed flame has been performed to investigate unsteady hydrodynamic strain effects on soot growth processes and transport immediately following nucleation. For the first time in a DNS, polycyclic aromatic hydrocarbon (PAH) species are included in the chemical kinetics mechanism to describe soot inception. A novel statistical representation of soot aggregates based on the Hybrid Method of Moments (HMOM) is employed. In agreement with previous experimental studies in laminar flames, Damköhler number effects are significant, and soot nucleation and growth are locally inhibited by high scalar dissipation rate. Upon formation on the rich side of the flame, soot is displaced relative to curved mixture fraction iso-surfaces due to differential diffusion effects. Soot traveling towards the flame is oxidized, and aggregates displaced away from the flame grow by condensation of PAH species on the surface of soot aggregates. In contrast to previous DNS studies employing simplified models, we find that soot-flame interaction plays a limited role in soot growth. Nucleation and condensation processes occurring in the fuel stream are responsible for the greatest generation of soot mass.
NASA Astrophysics Data System (ADS)
Nürnberger, Philipp; Reinhardt, Hendrik M.; Rhinow, Daniel; Riedel, René; Werner, Simon; Hampp, Norbert A.
2017-10-01
In this paper we introduce a versatile tool for the controlled growth and alignment of copper-silicide nanocrystals. The method takes advantage of a unique self-organization phenomenon denoted as laser-induced periodic surface structures (LIPSS). Copper films (3 ± 0.2 nm) are sputter-deposited onto single crystal silicon (100) substrates with a thin oxide layer (4 ± 0.2 nm), and subsequently exposed to linearly polarized nanosecond laser pulses (τ ≈ 6 ns) at a central wavelength of 532 nm. The irradiation triggers dewetting of the Cu film and simultaneous formation of periodic Cu nanowires (LIPSS), which partially penetrate the oxide layer to the Si substrate. These LIPSS act as nucleation centers for the growth of Cu-Si crystals during thermal processing at 500 °C under forming gas 95/5 atmosphere. Exemplified by our model system Cu/SiO2/Si, LIPSS are demonstrated to facilitate the diffusion reaction between Cu and underlying Si. Moreover, adjustment of the laser polarization allows us to precisely control the nanocrystal alignment with respect to the LIPSS orientation. Potential applications and conceivable alternatives of this process are discussed.
NASA Astrophysics Data System (ADS)
Zheng, Chenju; Lv, Jiajiang; Zhou, Shengjun; Liu, Sheng
2017-04-01
For improvement of the light extraction efficiency of GaN-based lateral light-emitting diodes (LEDs), a p-GaN surface was textured through a low-temperature (850 °C) p-GaN growth process. However, the p-GaN texturing process caused luster inconsistency between the n-pad and the p-pad due to the roughness difference between the indium-tin oxide (ITO) and the n-GaN beneath the pads, which decreased the image recognition rate and accuracy during the wire bonding process for LED packaging. Therefore, an under-etching process was proposed to improve the luster consistency between the p-pad and the n-pad of GaN-based LEDs with a naturally textured p-GaN surface. The under-etching process decreased the roughness of the exposed n-GaN surface from 109 nm to 73.1 nm, which was similar to the roughness (74.8 nm) of the ITO surface. Optical microscopy showed that LEDs with a naturally textured p-GaN surface exhibited excellent luster consistency between the n-pad and the p-pad after the proposed under-etching process had been applied. Further analysis indicated that the LEDs with a naturally textured p-GaN surface showed no degradation of optical or the electrical performance after the proposed under-etching process had been applied. At a 20-mA injection current, the light output power of a LED with naturally a textured p-GaN surface was 8.7% higher than that of a LED with a smooth p-GaN surface.
NASA Astrophysics Data System (ADS)
Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.
2013-12-01
The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the UnrealTM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.
2011-01-01
The study of surface morphology of Au deposited on mica is crucial for the fabrication of flat Au films for applications in biological, electronic, and optical devices. The understanding of the growth mechanisms of Au on mica allows to tune the process parameters to obtain ultra-flat film as suitable platform for anchoring self-assembling monolayers, molecules, nanotubes, and nanoparticles. Furthermore, atomically flat Au substrates are ideal for imaging adsorbate layers using scanning probe microscopy techniques. The control of these mechanisms is a prerequisite for control of the film nano- and micro-structure to obtain materials with desired morphological properties. We report on an atomic force microscopy (AFM) study of the morphology evolution of Au film deposited on mica by room-temperature sputtering as a function of subsequent annealing processes. Starting from an Au continuous film on the mica substrate, the AFM technique allowed us to observe nucleation and growth of Au clusters when annealing process is performed in the 573-773 K temperature range and 900-3600 s time range. The evolution of the clusters size was quantified allowing us to evaluate the growth exponent 〈z〉 = 1.88 ± 0.06. Furthermore, we observed that the late stage of cluster growth is accompanied by the formation of circular depletion zones around the largest clusters. From the quantification of the evolution of the size of these zones, the Au surface diffusion coefficient was evaluated in D(T) = [(7.42 × 10−13) ± (5.94 × 10−14) m2/s]exp(−(0.33±0.04) eVkT). These quantitative data and their correlation with existing theoretical models elucidate the kinetic growth mechanisms of the sputtered Au on mica. As a consequence we acquired a methodology to control the morphological characteristics of the Au film simply controlling the annealing temperature and time. PMID:24576328
Error-growth dynamics and predictability of surface thermally induced atmospheric flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, X.; Pielke, R.A.
1993-09-01
Using the CSU Regional Atmospheric Modeling System (RAMS) in its nonhydrostatic and compressible configuration, over 200 two-dimensional simulations with [Delta]x = 2 km and [Delta]x = 100 m are performed to study in detail the initial adjustment process and the error-growth dynamics of surface thermally induced circulation including the sensitivity to initial conditions, boundary conditions, and model parameters, and to study the predictability as a function of the size of surface heat patches under a calm mean wind. It is found that the error growth is not sensitive to the characterisitics of the initial perturbations. The numerical smoothing has amore » strong impact on the initial adjustment process and on the error-growth dynamics. The predictability and flow structures, it is found that the vertical velocity field is strongly affected by the mean wind, and the flow structures are quite sensitive to the initial soil water content. The transition from organized flow to the situation in which fluxes are dominated by noncoherent turbulent eddies under a calm mean wind is quantitatively evaluated and this transition is different for different variables. The relationship between the predictability of a realization and of an ensemble average is discussed. The predictability and the coherent circulations modulated by the surface inhomogeneities are also studied by computing the autocorrelations and the power spectra. The three-dimensional mesoscale and large-eddy simulations are performed to verify the above results. It is found that the two-dimensional mesoscale (or fine resolution) simulation yields very close or similar results regarding the predictability as those from the three-dimensional mesoscale (or large eddy) simulation. The horizontally averaged quantities based on two-dimensional fine-resolution simulations are insensitive to initial perturbations and agree with those based on three-dimensional large-eddy simulations. 87 refs., 25 figs.« less
Santos, André L S; d'Avila-Levy, Claudia M; Dias, Felipe A; Ribeiro, Rachel O; Pereira, Fernanda M; Elias, Camila G R; Souto-Padrón, Thaïs; Lopes, Angela H C S; Alviano, Celuta S; Branquinha, Marta H; Soares, Rosangela M A
2006-01-01
In this study, we report the ultrastructural and growth alterations caused by cysteine peptidase inhibitors on the plant trypanosomatid Phytomonas serpens. We showed that the cysteine peptidase inhibitors at 10 microM were able to arrest cellular growth as well as promote alterations in the cell morphology, including the parasites becoming short and round. Additionally, iodoacetamide induced ultrastructural alterations, such as disintegration of cytoplasmic organelles, swelling of the nucleus and kinetoplast-mitochondrion complex, which culminated in parasite death. Leupeptin and antipain induced the appearance of microvillar extensions and blebs on the cytoplasmic membrane, resembling a shedding process. A 40 kDa cysteine peptidase was detected in hydrophobic and hydrophilic phases of P. serpens cells after Triton X-114 extraction. Additionally, we have shown through immunoblotting that anti-cruzipain polyclonal antibodies recognised two major polypeptides in P. serpens, including a 40 kDa component. Flow cytometry analysis confirmed that this cruzipain-like protein has a location on the cell surface. Ultrastructural immunocytochemical analysis demonstrated the presence of the cruzipain-like protein on the surface and in small membrane fragments released from leupeptin-treated parasites. Furthermore, the involvement of cysteine peptidases of P. serpens in the interaction with explanted salivary glands of the phytophagous insect Oncopeltus fasciatus was also investigated. When P. serpens cells were pre-treated with either cysteine peptidase inhibitors or anti-cruzipain antibody, a significant reduction of the interaction process was observed. Collectively, these results suggest that cysteine peptidases participate in several biological processes in P. serpens including cell growth and interaction with the invertebrate vector.
NASA Astrophysics Data System (ADS)
Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen; Enzmann, Frieder; Kersten, Michael; Haberthür, David; Kuhs, Werner F.
2015-06-01
The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in situ at submicron resolution. Here we report on synchrotron-based microtomographic studies by which the nucleation and growth processes of gas hydrate were observed at 276 K in various sedimentary matrices such as natural quartz (with and without admixtures of montmorillonite type clay) or glass beads with different surface properties, at varying water saturation. Both juvenile water and metastably gas-enriched water obtained from gas hydrate decomposition was used. Xenon gas was employed to enhance the density contrast between gas hydrate and the fluid phases involved. The nucleation sites can be easily identified and the various growth patterns are clearly established. In sediments under-saturated with juvenile water, nucleation starts at the water-gas interface resulting in an initially several micrometer thick gas hydrate film; further growth proceeds to form isometric single crystals of 10-20 µm size. The growth of gas hydrate from gas-enriched water follows a different pattern, via the nucleation in the bulk of liquid producing polyhedral single crystals. A striking feature in both cases is the systematic appearance of a fluid phase film of up to several micron thickness between gas hydrates and the surface of the quartz grains. These microstructural findings are relevant for future efforts of quantitative rock physics modeling of gas hydrates in sedimentary matrices and explain the anomalous attenuation of seismic/sonic waves.
Experimental study of modification mechanism at a wear-resistant surfacing
NASA Astrophysics Data System (ADS)
Dema, R. R.; Amirov, R. N.; Kalugina, O. B.
2018-01-01
In the study, a simulation of the crystallization process was carried out for the deposition of the near-eutectic structure alloys with inoculants presence in order to reveal the regularities of the inoculant effect and parameters of the process mode simulating surfacing on the structure of the crystallization front and on the nucleation rate and kinetics of growth of equiaxed crystallites of primary phases occurring in the volume of the melt. The simulation technique of primary crystallization of alloys similar to eutectic alloys in the presence of modifiers is offered. The possibility of fully eutectic structure during surfacing of nominal hypereutectic alloys of type white cast irons in wide range of deviations from the nominal composition is revealed.
Cooling the vertical surface by conditionally single pulses
NASA Astrophysics Data System (ADS)
Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor
2017-10-01
You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.
A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface
NASA Astrophysics Data System (ADS)
Naderi, Ebadollah; Ghaisas, S. V.
2016-08-01
In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.
A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naderi, Ebadollah, E-mail: enaderi42@gmail.com; Ghaisas, S. V.
2016-08-15
In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked outmore » from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.« less
Hypersensitivity pneumonitis in a hardwood processing plant related to heavy mold exposure.
Veillette, Marc; Cormier, Yvon; Israël-Assayaq, Evelyne; Meriaux, Anne; Duchaine, Caroline
2006-06-01
Two workers employed in a hardwood floor plant presented symptoms suggestive of hypersensitivity pneumonitis (HP). At that plant, kiln-dried wood often shows moldy growth and is subsequently brought inside for processing. This study evaluated the environment in attempt to identify the causative antigen and verify whether other workers of this and similar plants had or were at risk of developing HP. Dust from dust-removing systems and molds on the surface of wood planks were collected and air samples taken from a sister plant. Blood samples, spirometry, and symptoms' questionnaires were obtained from 11 co-workers. Dense Paecilomyces growth was observed on the surface of the dried processed wood in the index plant. This fungal genus was not detected in the sister plant. An additional worker had symptoms suggestive of HP, and his bronchoalveolar lavage revealed a lymphocytic alveolitis. The 3 confirmed cases of HP and the other 10 workers had positive specific IgG antibodies to Paecilomyces. We report 3 cases of HP out of 13 workers and a 100% sensitization to molds in workers of a hardwood processing plant. This rate is much higher than what is commonly seen in other environments associated with HP. The drying process is suspected of being responsible for the massive Paecilomyces contamination likely responsible for the HP.
NASA Astrophysics Data System (ADS)
Stiegler, J.; Lang, T.; von Kaenel, Y.; Michler, J.; Blank, E.
1997-01-01
The growth kinetics of diamond films deposited at low substrate temperatures (600-400 °C) from the carbon-hydrogen gas system have been studied. When the substrate temperature alone was varied, independently of all other process parameters in the microwave plasma reactor, an activation energy in the order of 7 kcal/mol was observed. This value did not change with different carbon concentrations in hydrogen. It is supposed that growth kinetics in this temperature range are controlled by a single chemical reaction, probably the abstraction of surface bonded hydrogen by gas phase atomic hydrogen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidtbauer, Jan; Bansen, Roman; Heimburger, Robert
Germanium nanowires (NWs) were grown onto Ge(111) substrates by the vapor-liquid-solid process using gold droplets. The growth was carried out in a molecular beam epitaxy chamber at substrate temperatures between 370 Degree-Sign C and 510 Degree-Sign C. The resulting nanowire growth rate turns out to be highly dependent on the substrate temperature exhibiting the maximum at T = 430 Degree-Sign C. The temperature dependence of growth rate can be attributed to surface diffusion both along the substrate and nanowire sidewalls. Analyzing the diffusive material transport yields a diffusion length of 126 nm at a substrate temperature of 430 Degree-Sign C.
NASA Technical Reports Server (NTRS)
Dai, Z.; El-Leathy, A. M.; Kim, C. H.; Krishnan, S. S.; Lin, K.-C.; Xu, F.; Faeth, G. M.
2002-01-01
This is the final report of a research program considering the structure and the soot surface reaction properties of laminar nonpremixed (diffusion) flames. The study was limited to ground-based measurements of buoyant laminar jet diffusion flames at pressures of 0.1-1.0 atm. The motivation for the research is that soot formation in flames is a major unresolved problem of combustion science that influences the pollutant emissions, durability and performance of power and propulsion systems, as well as the potential for developing computational combustion. The investigation was divided into two phases considering the structure of laminar soot-containing diffusion flames and the soot surface reaction properties (soot surface growth and oxidation) of these flames, in turn. The first phase of the research addressed flame and soot structure properties of buoyant laminar jet diffusion flames at various pressures. The measurements showed that H, OH and O radical concentrations were generally in superequilibrium concentrations at atmospheric pressure but tended toward subequilibrium concentrations as pressures decreased. The measurements indicated that the original fuel decomposed into more robust compounds at elevated temperatures, such as acetylene (unless the original fuel was acetylene) and H, which are the major reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. The second phase of the research addressed soot surface reaction properties, e.g., soot surface growth and surface oxidation. It was found that soot surface growth rates in both laminar premixed and diffusion flames were in good agreement, that these rates were relatively independent of fuel type, and that these rates could be correlated by the Hydrogen-Abstraction/Carbon-Addition (HACA) mechanisms of Colket and Hall (1994), Frenklach et al. (1990,1994), and Kazakov et al. (1995). It was also found that soot surface oxidation rates were relatively independent of fuel type, were not correlated with O2, CO2, H2O and O collision rates but were correlated with the collision rates of OH with a collision efficiency of 0.14, in agreement with the early measurements in premixed flames of Neoh et al. (1980), after allowing for oxidation by O2 via the classical rate expression of Nagle and Strickland-Constable (1962).
PROCEEDINGS OF THE CROSS DISCIPLINE ECOSYTEM MODELING AND ANALYSIS WORKSHOP
The complexity of environmental problems we face now and in the future is ever increasing. Process linkages among air, land, surface and subsurface water require interdisciplinary modeling approaches. The dynamics of land use change spurred by population and economic growth, ...
Comments on an Analytical Thermal Agglomeration for Problems with Surface Growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, N. E.
2017-03-22
Up until Dec 2016, the thermal agglomeration was very heuristic, and as such, difficult to define. The lack of predictability became problematic, and the current notes represent the first real attempt to systematize the specification of the agglomerated process parameters.
Theoretical studies of growth processes and electronic properties of nanostructures on surfaces
NASA Astrophysics Data System (ADS)
Mo, Yina
Low dimensional nanostructures have been of particular interest because of their potential applications in both theoretical studies and industrial use. Although great efforts have been put into obtaining better understanding of the formation and properties of these materials, many questions still remain unanswered. This thesis work has focused on theoretical studies of (1) the growth processes of magnetic nanowires on transition-metal surfaces, (2) the dynamics of pentacene thin-film growth and island structures on inert surfaces, and (3) our proposal of a new type of semiconducting nanotube. In the first study, we elucidated a novel and intriguing kinetic pathway for the formation of Fe nanowires on the upper edge of a monatomic-layer-high step on Cu(111) using first-principles calculations. The identification of a hidden fundamental Fe basal line within the Cu steps prior to the formation of the apparent upper step edge Fe wire produces a totally different view of step-decorating wire structures and offers new possibilities for the study of the properties of these wires. Subsequent experiments with scanning tunneling microscopy unambiguously established the essential role of embedded Fe atoms as precursors to monatomic wire growth. A more general study of adatom behavior near transition-metal step edges illustrated a systematic trend in the adatom energetics and kinetics, resulted from the electronic interactions between the adatom and the surfaces. This work opens the possibility of controlled manufacturing of one-dimensional nanowires. In the second study, we investigated pentacene thin-films on H-diamond, H-silica and OH-silica surfaces via force field molecular dynamics simulations. Pentacene island structures on these surfaces were identified and found to have a 90-degree rotation relative to the structure proposed by some experimental groups. Our work may facilitate the design and control of experimental pentacene thin-film growth, and thus the development of organic thin-film transistors. Finally, in our third study, we proposed a new type of structurally simple and energetically stable cyanide transition metal nanotube, based on the planar structure of M(CN)2, (M = Ni, Pd, Pt). These nanotubes have semiconducting character with large band gaps (2--3 eV), which are insensitive to the chirality and diameter. We have investigated the energetic, electronic, and mechanical properties of these materials in both planar and tubular forms through first-principles density functional calculations. These calculations reveal interesting multi-center bonding features that should lead to preferential growth of tubes of a particular chirality. The unique features of these nanotubes should make them capable of being mass-produced, which is one of the most significant shortcomings of semiconducting carbon nanotubes.
Fractal Measure and Microscopic Modeling of Osseointegration.
Santos, Leonardo Cavalcanti Bezerra; Carvalho, Alessandra Albuquerque; Leão, Jair Carneiro; Neto, Paulo Jose; Stosic, Tatijana; Stosic, Borko
2015-01-01
In this study, the process of osseointegration on titanium implant surfaces with different physicochemical treatments subjected to a simulated corporal fluid submersion was evaluated using the concept of fractal dimension. It was found that different treatments led to rather different calcium phosphate crystal growth patterns, with fractal dimension ranging from 1.68 to 1.93. The observed crystal patterns may be explained by a general deposition, diffusion, and aggregation growth mechanism, where diffusing particle sticking probability plays a fundamental role.
Understanding the true shape of Au-catalyzed GaAs nanowires.
Jiang, Nian; Wong-Leung, Jennifer; Joyce, Hannah J; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati
2014-10-08
With increasing interest in nanowire-based devices, a thorough understanding of the nanowire shape is required to gain tight control of the quality of nanowire heterostructures and improve the performance of related devices. We present a systematic study of the sidewalls of Au-catalyzed GaAs nanowires by investigating the faceting process from the beginning with vapor-liquid-solid (VLS) nucleation, followed by the simultaneous radial growth on the sidewalls, and to the end with sidewall transformation during annealing. The VLS nucleation interface of our GaAs nanowires is revealed by examining cross sections of the nanowire, where the nanowire exhibits a Reuleaux triangular shape with three curved surfaces along {112}A. These curved surfaces are not thermodynamically stable and adopt {112}A facets during radial growth. We observe clear differences in radial growth rate between the ⟨112⟩A and ⟨112⟩B directions with {112}B facets forming due to the slower radial growth rate along ⟨112⟩B directions. These sidewalls transform to {110} facets after high temperature (>500 °C) annealing. A nucleation model is proposed to explain the origin of the Reuleaux triangular shape of the nanowires, and the sidewall evolution is explained by surface kinetic and thermodynamic limitations.
Fei, Ze-yuan; Xu, Yi-feng; Wang, Jie; Fan, Bing-feng; Ma, Xue-jin; Wang, Gang
2018-01-01
Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality. PMID:29515883
Li, Jian; Fei, Ze-Yuan; Xu, Yi-Feng; Wang, Jie; Fan, Bing-Feng; Ma, Xue-Jin; Wang, Gang
2018-02-01
Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality.
NASA Astrophysics Data System (ADS)
Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho
2015-12-01
There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm2 V-1 s-1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact.
NASA Astrophysics Data System (ADS)
Li, Jian; Fei, Ze-yuan; Xu, Yi-feng; Wang, Jie; Fan, Bing-feng; Ma, Xue-jin; Wang, Gang
2018-02-01
Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality.
NASA Technical Reports Server (NTRS)
Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.
2002-01-01
The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.
Can Solution Supersaturation Affect Protein Crystal Quality?
NASA Technical Reports Server (NTRS)
Gorti, Sridhar
2013-01-01
The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.
NASA Astrophysics Data System (ADS)
Lansari, Yamina
The growth of Hg-based single layers and multiple quantum well structures by conventional molecular beam epitaxy (MBE) and photoassisted MBE was studied. The use of photoassisted MBE, an epitaxial growth technique developed at NCSU, has resulted in a substantial reduction of the film growth temperature. Indeed, substrate temperatures 50 to 100^circC lower than those customarily used by others for conventional MBE growth of Hg-based layers were successfully employed. Photoassisted MBE allowed the preparation of excellent structural quality HgTe layers (FWHM for the (400) diffraction peak ~ 40 arcsec), HgCdTe layers (FWHM for the (400) diffraction peak ~ 14 arcsec), and HgTeCdTe superlattices (FWHM for the (400) diffraction peak ~ 28 arcsec). In addition, n-type and p-type modulation-doping of Hg-based multilayers was accomplished by photoassisted MBE. This technique has been shown to have a significant effect on the growth process kinetics as well as on the desorption rates of the film species, thereby affecting dopant incorporation mechanisms and allowing for the successful substitutional doping of the multilayer structures. Finally, surface morphology studies were completed using scanning electron microscopy (SEM) and Nomarsky optical microscopy to study the effects of substrate surface preparation, growth initiation, and growth parameters on the density of pyramidal hillocks, a common growth defect plaguing the Hg-based layers grown in the (100) direction. Conditions which minimize the hillock density for (100) film growth have been determined.
NASA Astrophysics Data System (ADS)
Devasia, Sebin; Anila, E. I.
2018-04-01
Here we report the growth and characterization of chemically grown aluminium doped zinc oxide nanorods on seed layers. The seed layers were prepared by chemical spray pyrolysis which acted as the growth centers. The growth duration of nanorods were varied from 3h to 12h in steps of 3h. Further, investigations on their structural, morphological, electrical and optical properties. The SEM images confirmed the hexagonal shaped nanorod arrays grown on the seed layers. Later, the x-ray diffraction measurements revealed the pure zinc oxide phase of the samples. Photoluminescence and photoconductivity studies were carried out to analyze the potential of its optoelectronic properties.
Process for forming silicon carbide films and microcomponents
Hamza, A.V.; Balooch, M.; Moalem, M.
1999-01-19
Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C{sub 60} precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C{sub 60} with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C{sub 60} on silicon dioxide at surface temperatures less than 1250 K. 5 figs.
Process for forming silicon carbide films and microcomponents
Hamza, Alex V.; Balooch, Mehdi; Moalem, Mehran
1999-01-01
Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C.sub.60 precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C.sub.60 with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C.sub.60 on silicon dioxide at surface temperatures less than 1250 K.
Effects of Laser and Shot Peening on Fatigue Crack Growth in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Hatamleh, Omar; Forman, Royce; Lyons, Jed
2006-01-01
The effects of laser, and shot peening on the fatigue life of Friction Stir Welds (FSW) have been investigated. The surface roughness resulting from various peening techniques was assessed, and the fracture surfaces microstructure was characterized. Laser peening resulted in an increase in fatigue life approximately 60%, while shot peening resulted in 10% increase when compared to the unpeened material. The surface roughness of shot peening was significantly higher compared to the base material, while specimens processed with laser peening were relatively smooth.