Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation
NASA Technical Reports Server (NTRS)
Quinn, Robert D.; Gong, Leslie
1990-01-01
A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.
Program documentation: Surface heating rate of thin skin models (THNSKN)
NASA Technical Reports Server (NTRS)
Mcbryde, J. D.
1975-01-01
Program THNSKN computes the mean heating rate at a maximum of 100 locations on the surface of thin skin transient heating rate models. Output is printed in tabular form and consists of time history tabulation of temperatures, average temperatures, heat loss without conduction correction, mean heating rate, least squares heating rate, and the percent standard error of the least squares heating rates. The input tape used is produced by the program EHTS03.
Aerodynamic heating and surface temperatures on vehicles for computer-aided design studies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Kania, L. A.; Chitty, A.
1983-01-01
A computer subprogram has been developed to calculate aerodynamic and radiative heating rates and to determine surface temperatures by integrating the heating rates along the trajectory of a vehicle. Convective heating rates are calculated by applying the axisymmetric analogue to inviscid surface streamlines and using relatively simple techniques to calculate laminar, transitional, or turbulent heating rates. Options are provided for the selection of gas model, transition criterion, turbulent heating method, Reynolds Analogy factor, and entropy-layer swallowing effects. Heating rates are compared to experimental data, and the time history of surface temperatures are given for a high-speed trajectory. The computer subprogram is developed for preliminary design and mission analysis where parametric studies are needed at all speeds.
Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones
NASA Astrophysics Data System (ADS)
Irimpan, Kiran Joy; Menezes, Viren
2018-03-01
Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.
Turbulent Heat-Transfer Coefficients in the Vicinity of Surface Protuberances
NASA Technical Reports Server (NTRS)
Wisniewski, Richard J.
1958-01-01
Local turbulent heating rates were obtained in the vicinity of surface protuberances mounted on the cylinder section of a cone cylinder model at a Mach number of 3.12. Data were obtained at Reynolds number per foot of 4.5 and 6 million for an unswept cylinder, a 45 deg swept cylinder, a 45 deg elbow, and several 90 deg elbows. The unswept cylinder and the 90 deg elbows increased the local turbulent heating rates in the vicinity of the surface protuberances. The data of the 45 deg swept cylinder and the 45 deg elbow resulted in heating rates lower than those observed without surface protuberances. In general, sweeping a surface protuberance resulted in heating rates comparable or lower than those measured without surface protuberances.
Rate of precipitation of calcium phosphate on heated surfaces.
Barton, K P; Chapman, T W; Lund, D
1985-03-01
Fouling of a heated stainless steel surface by calcium phosphate precipitation has been studied in an annular flow apparatus, instrumented to provide a constant heat flux while measuring local metal-surface temperatures. Models of the heat and mass-transfer boundary layers are used to estimate interfacial temperatures and concentrations, from which the heterogeneous reaction rate is inferred. The analysis indicates that the reaction rate is a function of both chemical kinetics and mass transfer limitations.
NASA Astrophysics Data System (ADS)
Sahoo, N.; Kulkarni, V.; Jagadeesh, G.; Reddy, K. P. J.
Effect of coolant gas injection in the stagnation region on the surface heat transfer rates and aerodynamic drag for a large angle blunt body flying at hypersonic Mach number is reported for two stagnation enthalpies. A 60° apex-angle blunt cone model is employed for this purpose with air injection at the nose through a hole of 2mm diameter. The convective surface heating rates and aerodynamic drag are measured simultaneously using surface mounted platinum thin film sensors and internally mounted accelerometer balance system, respectively. About 35-40% reduction in surface heating rates is observed in the vicinity of stagnation region whereas 15-25% reduction in surface heating rates is felt beyond the stagnation region at stagnation enthalpy of 1.6MJ/kg. The aerodynamic drag expressed in terms of drag coefficient is found to increase by 20% due to the air injection.
NASA Technical Reports Server (NTRS)
Chapman, A. J.
1973-01-01
Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.
Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong
2014-01-01
An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219
Columbia: The first five flights entry heating data series. Volume 2: The OMS Pod
NASA Technical Reports Server (NTRS)
Williams, S. D.
1983-01-01
Entry heating flight data and wind tunnel data on the OMS Pod are presented for the first five flights of the Space Shuttle Orbiter. The heating rate data are presented in terms of normalized film heat transfer coefficients as a function of angle-of-attack, Mach number, and normal shock Reynolds number. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program. Time history plots of the surface heating rates and temperatures are also presented.
NASA Technical Reports Server (NTRS)
Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.
2005-01-01
A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.
Aerodynamic pressures and heating rates on surfaces between split elevons at Mach 6.6
NASA Technical Reports Server (NTRS)
Hunt, L. Roane
1988-01-01
An aerothermal study was performed in the Langley 8-Foot High Temperature Tunnel at Mach number 6.6 to define the pressures and heating rates on the surfaces between split elevons similar to those used on the Space Shuttle. Tests were performed with both laminar and turbulent boundary layers on the wing surface upstream of the elevons. The flow in the chordwise gap between the elevons was characterized by flow separation at the gap entrance and flow reattachment at a depth into the gap inversely proportional to the gap width. The gap pressure and heating rate increased significantly with decrease of elevon gap width, and the maximum gap heating rate was proportional to the maximum gap pressure. Correlation of the present results indicate that the gap heating was directly proportional to the elevon windward surface pressure and was not dependent upon whether the boundary layer on the windward elevon surface was laminar or turbulent.
Turbulence modeling and surface heat transfer in a stagnation flow region
NASA Technical Reports Server (NTRS)
Wang, C. R.; Yeh, F. C.
1987-01-01
Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.
NASA Technical Reports Server (NTRS)
Ting, Paul C.; Rochelle, William C.; Curry, Donald M.
1988-01-01
Results are presented from predictions of aerothermodynamic heating rates, temperatures, and pressures on the surface of the Shuttle Entry Air Data System (SEADS) nosecap during Orbiter reentry. These results are compared with data obtained by the first actual flight of the SEADS system aboard STS-61C. The data also used to predict heating rates and surface temperatures for a hypothetical Transatlantic Abort Landing entry trajectory, whose analysis involved ascertaining the increases in heating rate as the airstream flowed across regions of the lower surface catalycity carbon/carbon composite to the higher surface catalycity columbium pressure ports.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1982-01-01
Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.
NASA Astrophysics Data System (ADS)
Phinichka, Natthapong
In strip casting the cast surface forms during the initial stage of solidification and the phenomenon that occurs during the first 50 milliseconds of contact time between the liquid steel and the mold define the cast surface and its quality. However the exact mechanism of the initial solidification and the process variables that affect initial solidification phenomena during that time are not well understood. The primary goal of this work is to develop a fundamental understanding of factors controlling strip casting. The purpose of the experimental study is to better understand the role of processing parameters on initial solidification phenomena, heat transfer rate and the formation of the cast steel surface. An investigation was made to evaluate the heat transfer rate of different kinds of steels. The experimental apparatus was designed for millisecond resolution of heat transfer behavior. A novel approach of simultaneous in-situ observation and measurement of rapid heat transfer was developed and enabled a coupling between the interfacial heat transfer rate and droplet solidification rate. The solidification rate was estimated from the varying position of the solidification front as captured by a CCD camera. The effects of experimental parameters such as melt superheat, sulfur content and oxide accumulation at the interface on measured heat flux were studied. It was found that the heat flux increased slightly when the percent of sulfur and increased significantly when superheat increased. The oxide accumulation at the interface was found to be manganese and silicon based oxide. When the liquid steel droplets were ejected onto the copper substrate repeatedly, without cleaning the substrate surface between the ejections, a large increase in the interfacial heat flux was observed. The results of the film study indicated that a liquid oxide film existed at the interface. The surface roughness measurement of the solidified specimen decreased with repeated experimentation and better contact between the droplet and the mold was found to be the cause of the improved heat transfer rate.
NASA Technical Reports Server (NTRS)
Williams, S. D.
1983-01-01
Entry heating flight data and wind tunnel data on the lower wing 50% and 80% Semi-Spans are presented for the first five flights of the Space Shuttle Orbiter. The heating rate data is presented in terms of normalized film heat transfer coefficients as a function of angle-of-attack, Mach number, and Normal Shock Reynolds number. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program. Time history plots of the surface heating rates and temperatures are also presented.
Thermal sensation, rate of temperature change, and the heat dissipation design for tablet computers.
Zhang, Han; Hedge, Alan; Cosley, Daniel
2017-07-01
Past research has shown that the rate of change of skin surface temperature can affect thermal sensation. This study investigated users' thermal responses to a tablet heating surface with different heat pads and different temperature change rates. The test conditions included: A. keeping the surface at a constant 42 °C, B. increasing the surface temperature from 38 °C to 42 °C at a rate of 0.02 °C/s in progressive intervals, C. increasing the temperature at 0.15 °C/s in progressive intervals, and D. Heating two left and right side pads alternately from 38 °C to 42 °C at 0.15 °C/s in progressive intervals. Overall results showed the lowest temperature change rate of 0.02 °C/s was most preferred in terms of thermal comfort. The findings suggest a potential to improve user thermal experience by dissipating tablet computer heat at a lower temperature change rate, or by alternating the dissipation areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Glass, Christopher E.
1989-01-01
The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.
Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams
NASA Astrophysics Data System (ADS)
Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.
2016-06-01
Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.
NASA Astrophysics Data System (ADS)
Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung
2018-02-01
In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.
NASA Astrophysics Data System (ADS)
Hosseinian, A.; Meghdadi Isfahani, A. H.
2018-04-01
In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.
Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces
NASA Astrophysics Data System (ADS)
Olceroglu, Emre
Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non-condensable gases (NCGs), a novel characterization technique has been developed based on image tracking of droplet growth rates. The full-field dynamic characterization of superhydrophobic surfaces during condensation has been achieved using high-speed microscopy coupled with image-processing algorithms. This method is able to resolve heat fluxes as low as 20 W/m 2 and heat transfer coefficients of up to 1000 kW/m2, across an array of 1000's of microscale droplets simultaneously. Nanostructured surfaces with mixed wettability have been used to demonstrate delayed flooding during superhydrophobic condensation. These surfaces have been optimized and characterized using optical and electron microscopy, leading to the observation of self-organizing microscale droplets. The self-organization of small droplets effectively delays the onset of surface flooding, allowing the superhydrophobic surfaces to operate at higher supersaturations. Additionally, hierarchical surfaces have been fabricated and characterized showing enhanced droplet growth rates as compared to existing models. This enhancement has been shown to be derived from the presence of small feeder droplets nucleating within the microscale unit cells of the hierarchical surfaces. Based on the experimental observations, a mechanistic model for growth rates has been developed for superhydrophobic hierarchical surfaces. While superhydrophobic surfaces exhibit high heat transfer rates they are inherently unstable due to the necessity to maintain a non-wetted state in a condensing environment. As an alternative condensation surface, a novel design is introduced here using ambiphilic structures to promote the formation of a thin continuous liquid film across the surface which can still provide the benefits of superhydrophobic condensation. Preliminary results show that the ambiphilic structures restrain the film thickness, thus maintaining a low thermal resistance while simultaneously maximizing the liquid-vapor interface available for condensation.
Effect of surface radiation on natural convection in an asymmetrically heated channel-chimney system
NASA Astrophysics Data System (ADS)
Nasri, Zied; Derouich, Youssef; Laatar, Ali Hatem; Balti, Jalloul
2018-05-01
In this paper, a more realistic numerical approach that takes into account the effect of surface radiation on the laminar air flow induced by natural convection in a channel-chimney system asymmetrically heated at uniform heat flux is used. The aim is to enrich the results given in Nasri et al. (Int J Therm Sci 90:122-134, 2015) by varying all the geometric parameters of the system and by taking into account the effect of surface radiation on the flows. The numerical results are first validated against experimental and numerical data available in the literature. The computations have allowed the determination of optimal configurations that maximize the mass flow rate and the convective heat transfer and minimize the heated wall temperatures. The analysis of the temperature fields with the streamlines and the pressure fields has helped to explain the effects of surface radiation and of the different thermo-geometrical parameters on the system performances to improve the mass flow rate and the heat transfer with respect to the simple channel. It is shown that the thermal performance of the channel-chimney system in terms of lower heated wall temperatures is little affected by the surface radiation. At the end, simple correlation equations have been proposed for quickly and easily predict the optimal configurations as well as the corresponding enhancement rates of the induced mass flow rate and the convective heat transfer.
NASA Technical Reports Server (NTRS)
Williams, S. D.
1984-01-01
Entry heating flight data and wind tunnel data on the side fuselage and payload bay door, Z = 400 and 440 trace aft of X/L=0.2, for the first five flights of the Space Shuttle Orbiter are presented. The heating rate data are reviewed in terms of normalized film heat transfer coefficients as a function of angle of attack, Mach number, and normal shock Reynolds number. The surface heatings rates and temperatures were obtained by the JSC NONLIN/INVERSE computer program. Time history plots of the surface heating rates and temperatures are outlined.
Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface
NASA Technical Reports Server (NTRS)
Nema, V. K.; Sharma, O. P.
1986-01-01
To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.
A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.
Gu, X N; Zheng, W; Cheng, Y; Zheng, Y F
2009-09-01
To reduce the biocorrosion rate by surface modification, Mg-Ca alloy (1.4wt.% Ca content) was soaked in three alkaline solutions (Na(2)HPO(4), Na(2)CO(3) and NaHCO(3)) for 24h, respectively, and subsequently heat treated at 773K for 12h. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that magnesium oxide layers with the thickness of about 13, 9 and 26microm were formed on the surfaces of Mg-Ca alloy after the above different alkaline heat treatments. Atomic force microscopy showed that the surfaces of Mg-Ca alloy samples became rough after three alkaline heat treatments. The in vitro corrosion tests in simulated body fluid indicated that the corrosion rates of Mg-Ca alloy were effectively decreased after alkaline heat treatments, with the following sequence: NaHCO(3) heated
NASA Technical Reports Server (NTRS)
Hunt, L. Roane; Notestine, Kristopher K.
1990-01-01
Surface and gap pressures and heating-rate distributions were obtained for simulated Thermal Protection System (TPS) tile arrays on the curved surface test apparatus of the Langley 8-Foot High Temperature Tunnel at Mach 6.6. The results indicated that the chine gap pressures varied inversely with gap width because larger gap widths allowed greater venting from the gap to the lower model side pressures. Lower gap pressures caused greater flow ingress from the surface and increased gap heating. Generally, gap heating was greater in the longitudinal gaps than in the circumferential gaps. Gap heating decreased with increasing gap depth. Circumferential gap heating at the mid-depth was generally less than about 10 percent of the external surface value. Gap heating was most severe at local T-gap junctions and tile-to-tile forward-facing steps that caused the greatest heating from flow impingement. The use of flow stoppers at discrete locations reduced heating from flow impingement. The use of flow stoppers at discrete locations reduced heating in most gaps but increased heating in others. Limited use of flow stoppers or gap filler in longitudinal gaps could reduce gap heating in open circumferential gaps in regions of high surface pressure gradients.
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
Technical Reports - FY16 Q1 - October-December 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lordi, Vincenzo; Rubenstein, Brenda M.; Ray, Keith G.
2016-01-20
Recent experiments have demonstrated that the frequency dependence of motional heating rates in ion traps can vary dramatically with temperature.1-6 More specifically, it has been shown that, at temperatures below roughly 70 K, heating rates are substantially lower than those observed at temperatures above 70 K.1,2 These observations, combined with experiments that show that ion bombardment may also reduce heating rates,4,5 suggest that one potential source of heating may be the presence of unwanted adatoms on trap surfaces. Based upon this evidence, this past quarter, we have used our previously detailed microscopic model of anomalous heating to study which adatomsmore » may be responsible for the observed temperature-dependent scaling of motional heating rates with frequency. We have also examined the validity of one of the key assumptions in our model - that surface adatom dipoles can be accurately obtained from a variational ansatz - by using more direct DFT calculations of the dipole moments. Our current results suggest that the adatoms potentially responsible for the observed motional heating rates should bind weakly to the electrode surface and likely have a mass that exceeds that of Ne. Preliminary DFT calculations suggest that an analytical adatom dipole model,9 previously used in the ion trap noise literature7 to obtain the dipole as a function of adatom-surface distance, may be insufficiently accurate. Therefore, we are working toward obtaining a tabulation of the distance-dependent dipole for several adsorbates using first principles calculations for more accurate input to the heating model. The accurate calculation of the adatom dipole is important because its fluctuation is what couples to and heats the trapped ion qubit. Future work will focus on calculating the frequency spectra of a variety of hydrocarbons, which should have the binding characteristics identified below as necessary for reproducing experimental results. Upcoming efforts will moreover be directed toward deriving an improved microscopic model of heating which will enable direct comparisons of heating rates with measured ion-surface distances and will more accurately account for experimental parameters such as the trapping frequency, ion-electrode distance, and RF power applied to the electrodes.« less
Reduction of Trapped-Ion Anomalous Heating by in situ Surface Plasma Cleaning
2015-04-29
the trap chip temperature. To load ions, we initially cool 88Sr atoms into a remotely-located magneto - optical trap (MOT), then use a resonant push beam... trap heating rates [10]. Furthermore, some previous experiments have shown an improvement in the heating rates of surface-electrode ion traps after...rate when the trap chip is held at 4 K is not significantly improved by the plasma cleaning. While the observed frequency scaling is not the same in
NASA Astrophysics Data System (ADS)
Cho, Jaeyong; Lee, Joonsang
2017-11-01
The condensation is the one of the efficient heat transfer phenomenon that transfers the heat along an interface between two phases. This condensation is affected by the wettability of surface. Heat transfer rate can be improved by controlling the wettability of surface. Recently, the researches with patterned wettability, which is composed by a combination of hydrophilic and hydrophobic surface, have been performed to improve the heat transfer rate of condensation. In this study, we performed numerical simulation for condensation of droplet on the patterned wettability, and we analyze condensation phenomenon on the wettability pattered surface through the kinetic energy, heat flux curve, and droplet shape in the vicinity of the droplet. When we performed numerical simulations and analyzing the condensation with patterned wettability, we used the lattice Boltzmann method for the base model, and phase change was solved by Peng-Robinson equation of sate. We can find that the droplet is generated at the bottom surface and high condensation rate can be maintained on the patterned wettability. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.
Modeling the pyrolysis study of non-charring polymers under reduced pressure environments
NASA Astrophysics Data System (ADS)
Zong, Ruowen; Kang, Ruxue; Hu, Yanghui; Zhi, Youran
2018-04-01
In order to study the pyrolysis of non-charring polymers under reduced pressure environments, a series of experiments based on black acrylonitrile butadiene styrene (ABS) was conducted in a reduced pressure chamber under different external heat fluxes. The temperatures of the top surface and the bottom of the sample and the mass loss during the whole process were measured in real time. A one-dimensional numerical model was developed to predict the top surface and the bottom surface temperatures of ABS during the pyrolysis at different reduced pressures and external heat fluxes, and the model was validated by the experimental data. The results of the study indicate that the profiles of the top surface and the bottom surface temperatures are different at different pressures and heat fluxes. The temperature and the mass loss rate of the sample under a lower heat flux decreased significantly as the pressure was increased. However, under a higher heat flux, the temperature and the mass loss rate showed little sensitivity to the pressure. The simulated results fitted the experimental results better at the higher heat flux than at the lower heat flux.
NASA Technical Reports Server (NTRS)
Quinn, Robert D.; Gong, Leslie
2000-01-01
This report describes a method that can calculate transient aerodynamic heating and transient surface temperatures at supersonic and hypersonic speeds. This method can rapidly calculate temperature and heating rate time-histories for complete flight trajectories. Semi-empirical theories are used to calculate laminar and turbulent heat transfer coefficients and a procedure for estimating boundary-layer transition is included. Results from this method are compared with flight data from the X-15 research vehicle, YF-12 airplane, and the Space Shuttle Orbiter. These comparisons show that the calculated values are in good agreement with the measured flight data.
Equipment for Hot-to-serve Foods
NASA Technical Reports Server (NTRS)
Smith, D. P.
1985-01-01
Patented surface heating devices with a much faster air-to-solid heat transfer rate than previous air ovens were developed. The accelerated surface heating can brown, sear or crisp much more rapidly than in conventional ovens so that partially prepared food can be finished quickly and tastefully immediately before serving. The crisp, freshly browned surfaces result from the faster heat transfer which does not dry out the food. The devices are then compared to convection ovens and microwave heating processes.
Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow
NASA Astrophysics Data System (ADS)
Yang, Xiaofeng; Gui, Yewei; Tang, Wei; Du, Yanxia; Liu, Lei; Xiao, Guangming; Wei, Dong
2018-06-01
This paper deals with the surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow. An interface condition with finite-rate thermochemistry was established to balance the three-dimensional Navier-Stokes solver and TPS thermal response solver, and a series of coupled simulations of chemical non-equilibrium aerothermodynamics and structure heat transfer with various surface catalycities were performed for hypersonic Mars entries. The analysis of surface thermochemistry reveals that the surface chemical reactions have great contribution to aerodynamic heating, and the temperature-dependence of finite-rate catalysis highly influences the evolution of the coupling aerodynamic heating in the coupling process. For fixed free stream parameters with proper catalytic excitation energy, a "leap" phenomenon of the TPS-coupled heat flux with the coupling time appears in the initial stage of the coupling process, due to the strong thermochemical effects on the TPS surface.
Finite-Rate Ablation Boundary Conditions for Carbon-Phenolic Heat-Shield
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Milos, Frank S.
2003-01-01
A formulation of finite-rate ablation surface boundary conditions, including oxidation, nitridation, and sublimation of carbonaceous material with pyrolysis gas injection, has been developed based on surface species mass conservation. These surface boundary conditions are discretized and integrated with a Navier-Stokes solver. This numerical procedure can predict aerothermal heating, chemical species concentration, and carbonaceous material ablation rate over the heatshield surface of re-entry space vehicles. In this study, the gas-gas and gas-surface interactions are established for air flow over a carbon-phenolic heatshield. Two finite-rate gas-surface interaction models are considered in the present study. The first model is based on the work of Park, and the second model includes the kinetics suggested by Zhluktov and Abe. Nineteen gas phase chemical reactions and four gas-surface interactions are considered in the present model. There is a total of fourteen gas phase chemical species, including five species for air and nine species for ablation products. Three test cases are studied in this paper. The first case is a graphite test model in the arc-jet stream; the second is a light weight Phenolic Impregnated Carbon Ablator at the Stardust re-entry peak heating conditions, and the third is a fully dense carbon-phenolic heatshield at the peak heating point of a proposed Mars Sample Return Earth Entry Vehicle. Predictions based on both finite-rate gas- surface interaction models are compared with those obtained using B' tables, which were created based on the chemical equilibrium assumption. Stagnation point convective heat fluxes predicted using Park's finite-rate model are far below those obtained from chemical equilibrium B' tables and Zhluktov's model. Recession predictions from Zhluktov's model are generally lower than those obtained from Park's model and chemical equilibrium B' tables. The effect of species mass diffusion on predicted ablation rate is also examined.
NASA Technical Reports Server (NTRS)
Perkins, Porter J.; Mulholland, Donald R.
1948-01-01
The icing protection afforded an internal air-heated propeller blade by radial partitioning at 50-percent chord to confine the heated air to the forward half of the blade was determined in the NACA Cleveland icing research tunnel. A modified production-model hollow steel propeller, was used for the investigation. Temperatures of the blade surfaces for several heating rates were measured under various tunnel Icing' conditions. Photographic observations of ice formations on blade surfaces and blade heat-exchanger effectiveness were obtained. With 50-percent partitioning of the blades, adequate icing protection at 1050 rpm was obtained with a heating rate of 26,000 Btu per hour per blade at the blade shank using an air temperature of 400 F with a flow rate of 280 pounds per hour per blade, which is one-third less heat than was found necessary for similar Ice protection with unpartitioned blades. The chordwise distribution of the applied heat, as determined by surface temperature measurements, was considered unsatisfactory with much of the heat dissipated well back of the leading edge. Heat-exchanger effectiveness of approximately 56 percent also Indicated poor utilization of available heat. This effectiveness was, however, 9 percent greater than that obtained from unpartitioned blades.
Process optimization of an auger pyrolyzer with heat carrier using response surface methodology.
Brown, J N; Brown, R C
2012-01-01
A 1 kg/h auger reactor utilizing mechanical mixing of steel shot heat carrier was used to pyrolyze red oak wood biomass. Response surface methodology was employed using a circumscribed central composite design of experiments to optimize the system. Factors investigated were: heat carrier inlet temperature and mass flow rate, rotational speed of screws in the reactor, and volumetric flow rate of sweep gas. Conditions for maximum bio-oil and minimum char yields were high flow rate of sweep gas (3.5 standard L/min), high heat carrier temperature (∼600 °C), high auger speeds (63 RPM) and high heat carrier mass flow rates (18 kg/h). Regression models for bio-oil and char yields are described including identification of a novel interaction effect between heat carrier mass flow rate and auger speed. Results suggest that auger reactors, which are rarely described in literature, are well suited for bio-oil production. The reactor achieved liquid yields greater than 73 wt.%. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Norman, I.; Rochelle, W. C.; Kimbrough, B. S.; Ritrivi, C. A.; Ting, P. C.; Dotts, R. L.
1982-01-01
Thermal performance verification of Reusable Surface Insulation (RSI) has been accomplished by comparisons of STS-2 Orbiter Flight Test (OFT) data with Thermal Math Model (TMM) predictions. The OFT data was obtained from Development Flight Instrumentation RSI plug and gap thermocouples. Quartertile RSI TMMs were developed using measured flight data for surface temperature and pressure environments. Reference surface heating rates, derived from surface temperature data, were multiplied by gap heating ratios to obtain tile sidewall heating rates. This TMM analysis resulted in good agreement of predicted temperatures with flight data for thermocouples located in the RSI, Strain Isolation Pad, filler bar and structure.
NASA Astrophysics Data System (ADS)
Vasiliev, N. V.; Zeigarnik, Yu A.; Khodakov, K. A.
2017-11-01
Experimentally studying of subcooled water boiling in rectangular channel electrically heated from one side was conducted. Flat surfaces, both smooth and coated by microarc oxidation technology, were used as heating surfaces. The tests were conducted at atmospheric pressure in the range of mass flow rate from 650 to 1300 kg/(m2 s) and water subcooling relative to saturation temperature from 23 to 75 °C. Using high-speed filming a change in the two-phase flow structure and its statistic characteristics (nucleation sites density, vapor bubble distribution by size, etc.) were studied. With an increase in the heat flux density (with the mass flow rate and subcooling being the same) and amount and size of the vapor bubbles increased also. At a relatively high heat flux density, non-spherical vapor agglomerates appeared at the heating surface as a result of coalescence of small bubbles. They originated in chaotic manner in arbitrary points of the heating surface and then after random evolution in form and size collapsed. The agglomerate size reached several millimeters and their duration of life was several milliseconds. After formation of large vapor agglomerates, with a further small increase in heat flux density a burnout of the heating surface occurred. In most cases the same effect took place if the large agglomerates were retained for several minutes.
NASA Technical Reports Server (NTRS)
Stainback, Calvin
1960-01-01
An experimental investigation was conducted to evaluate the heat-transfer characteristics of a hypersonic glide configuration having 79.5 deg of sweepback (measured in the plane of the leading edges) and 45 of dihedral. The tests were conducted at a nominal Mach number of 4.95 and a stagnation temperature of 400 F. The test-section unit Reynolds number was varied from 1.95 x 10(exp 6) to 12.24 x 10(exp 6) per foot. The results indicated that the laminar-flow heat-transfer rate to the lower surface of the model decreased as the distance from the ridge line increased except for thermocouples located near the semispan at an angle of attack of 00 with respect to the plane of the leading edges. The heat-transfer distribution (local heating rate relative to the ridge-line heating rate) was similar to the theoretical heat-transfer distribution for a two-dimensional blunt body, if the ridge line was assumed to be the stagnation line, and could be predicted by this theory provided a modified Newtonian pressure distribution was used. Except in the vicinity of the apex, the ridge-line heat-transfer rate could also be predicted from two-dimensional blunt-body heat-transfer theory provided it was assumed that the stagnation-line heat-transfer rate varied as the cosine of the effective sweep (sine of the angle of attack of the ridge line). The heat-transfer level on the lower surface and the nondimensional heat-transfer distribution around the body on the lower surface were in qualitative agreement with the results of a geometric study of highly swept delta wings with large positive dihedrals made in reference 1.
Distributed Roughness Effects on Blunt-Body Transition and Turbulent Heating
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2014-01-01
An experimental program has been conducted to obtain data on the effects of surface roughness on blunt bodies at laminar, transitional, and turbulent conditions. Wind tunnel models with distributed surface roughness heights from 0.06 mm to 1.75 mm were tested and heating data were obtained using global surface thermography. Heating rates of up to 85% higher than predicted, smooth-surface turbulent levels were measured.
Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat
2014-01-01
This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer.
Reactive Liftoff of Crystalline Cellulose Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teixeira, Andrew R.; Krumm, Christoph; Vinter, Katherine P.
Here, the condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500–600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C). Introduction of macroporosity to the heated surface was shownmore » to completely inhibit the cellulose Leidenfrost effect, providing a tunable design parameter to control particle heat transfer rates in industrial biomass reactors.« less
Reactive Liftoff of Crystalline Cellulose Particles
Teixeira, Andrew R.; Krumm, Christoph; Vinter, Katherine P.; Paulsen, Alex D.; Zhu, Cheng; Maduskar, Saurabh; Joseph, Kristeen E.; Greco, Katharine; Stelatto, Michael; Davis, Eric; Vincent, Brendon; Hermann, Richard; Suszynski, Wieslaw; Schmidt, Lanny D.; Fan, Wei; Rothstein, Jonathan P.; Dauenhauer, Paul J.
2015-01-01
The condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500–600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C). Introduction of macroporosity to the heated surface was shown to completely inhibit the cellulose Leidenfrost effect, providing a tunable design parameter to control particle heat transfer rates in industrial biomass reactors. PMID:26057818
Cross, Alan; Collard, Mark; Nelson, Andrew
2008-01-01
The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached. PMID:18560580
Cross, Alan; Collard, Mark; Nelson, Andrew
2008-06-18
The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.
Heat transfer about a vertical permeable membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaviany, M.
1988-05-01
The natural convection heat transfer about both sides of vertical walls without any seepage has been studied and the effects of the wall thickness and thermal conductivity on the local and average heat transfer rates have been determined. Viskanta and Lankford have concluded that in predicting the heat transfer rate through the wall, for low-thermal-conductivity walls the a priori unknown wall surface temperatures can be walls the a priori unknown wall surface temperatures can be estimated as the arithmetic average of the reservoir temperatures without loss of accuracy (for most practical situations). Sparrow and Prakash treated the surface temperature asmore » variable but used the local temperature along with the available isothermal boundary-layer analysis for determination of the local heat transfer rate and found this to be reasonable at relatively low Grashof numbers. In this study the heat trasnfer rate between two reservoirs of different temperature connected in part through a permeable membrane is analyzed. Rather than solving the complete problem numerically for the three domains (fluid-wall-fluid), the available results on the effects of suction and blowing on the natural convection boundary layer are used in an analysis of the membranes with low thermal conductivity and small seepage velocities, which are characteristic of membranes considered. This will lead to rather simple expressions for the determination of the heat transfer rate.« less
NASA Technical Reports Server (NTRS)
Kaufman, L. G., II; Johnson, C. B.
1984-01-01
Aerodynamic surface heating rate distributions in three dimensional shock wave boundary layer interaction flow regions are presented for a generic set of model configurations representative of the aft portion of hypersonic aircraft. Heat transfer data were obtained using the phase change coating technique (paint) and, at particular spanwise and streamwise stations for sample cases, by the thin wall transient temperature technique (thermocouples). Surface oil flow patterns are also shown. The good accuracy of the detailed heat transfer data, as attested in part by their repeatability, is attributable partially to the comparatively high temperature potential of the NASA-Langley Mach 8 Variable Density Tunnel. The data are well suited to help guide heating analyses of Mach 8 aircraft, and should be considered in formulating improvements to empiric analytic methods for calculating heat transfer rate coefficient distributions.
NASA Technical Reports Server (NTRS)
Wittliff, C. E.
1982-01-01
The aerodynamic heating of a tip-fin controller mounted on a Space Shuttle Orbiter model was studied experimentally in the Calspan Advanced Technology Center 96 inch Hypersonic Shock Tunnel. A 0.0175 scale model was tested at Mach numbers from 10 to 17.5 at angles of attack typical of a shuttle entry. The study was conducted in two phases. In phase 1 testing a thermographic phosphor technique was used to qualitatively determine the areas of high heat-transfer rates. Based on the results of this phase, the model was instrumented with 40 thin-film resistance thermometers to obtain quantitative measurements of the aerodynamic heating. The results of the phase 2 testing indicate that the highest heating rates, which occur on the leading edge of the tip-fin controller, are very sensitive to angle of attack for alpha or = 30 deg. The shock wave from the leading edge of the orbiter wing impinges on the leading edge of the tip-fin controller resulting in peak values of h/h(Ref) in the range from 1.5 to 2.0. Away from the leading edge, the heat-transfer rates never exceed h/h(Ref) = 0.25 when the control surface, is not deflected. With the control surface deflected 20 deg, the heat-transfer rates had a maximum value of h/h(Ref) = 0.3. The heating rates are quite nonuniform over the outboard surface and are sensitive to angle of attack.
Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed
NASA Astrophysics Data System (ADS)
Sahoo, Niranjan; Kulkarni, Vinayak; Saravanan, S.; Jagadeesh, G.; Reddy, K. P. J.
2005-03-01
Effectiveness of film cooling technique to reduce convective heating rates for a large angle blunt cone flying at hypersonic Mach number and its effect on the aerodynamic characteristics is investigated experimentally by measuring surface heat-transfer rates and aerodynamic drag coefficient simultaneously. The test model is a 60° apex-angle blunt cone with an internally mounted accelerometer balance system for measuring aerodynamic drag and an array of surface mounted platinum thin film gauges for measuring heat-transfer rates. The coolant gas (air, carbon dioxide, and/or helium) is injected into the hypersonic flow at the nose of the test model. The experiments are performed at a flow free stream Mach number of 5.75 and 0° angle of attack for stagnation enthalpies of 1.16MJ/kg and 1.6MJ/kg with and without gas injection. About 30%-45% overall reduction in heat-transfer rates is observed with helium as coolant gas except at stagnation regions. With all other coolants, the reduction in surface heat-transfer rate is between 10%-25%. The aerodynamic drag coefficient is found to increase by 12% with helium injection whereas with other gases this increase is about 27%.
An electronic system for measuring thermophysical properties of wind tunnel models
NASA Technical Reports Server (NTRS)
Corwin, R. R.; Kramer, J. S.
1975-01-01
An electronic system is described which measures the surface temperature of a small portion of the surface of the model or sample at high speeds using an infrared radiometer. This data is processed along with heating rate data from the reference heat gauge in a small computer and prints out the desired thermophysical properties, time, surface temperature, and reference heat rate. This system allows fast and accurate property measurements over thirty temperature increments. The technique, the details of the apparatus, the procedure for making these measurements, and the results of some preliminary tests are presented.
System and method for crystalline sheet growth using a cold block and gas jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellerman, Peter L.; Mackintosh, Brian; Carlson, Frederick M.
A crystallizer for growing a crystalline sheet from a melt may include a cold block having a cold block surface that faces an exposed surface of the melt, the cold block configured to generate a cold block temperature at the cold block surface that is lower than a melt temperature of the melt at the exposed surface. The system may also include a nozzle disposed within the cold block and configured to deliver a gas jet to the exposed surface, wherein the gas jet and the cold block are interoperative to generate a process zone that removes heat from themore » exposed surface at a first heat removal rate that is greater than a second heat removal rate from the exposed surface in outer regions outside of the process zone.« less
NASA Astrophysics Data System (ADS)
Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad
2017-02-01
High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.
Cooling the vertical surface by conditionally single pulses
NASA Astrophysics Data System (ADS)
Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor
2017-10-01
You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.
NASA Astrophysics Data System (ADS)
Kshirsagar, Jagdeep M.; Shrivastava, Ramakant
2018-06-01
In Present study, the critical heat flux (CHF) and boiling heat transfer coefficient of alumina nanoparticles with the base fluid as deionised water is measured. The selected concentrations of nanofluids for the experimentation are from 0.3, 0.6, 0.9, 1.2 and 1.5 wt%. The main objective to select higher concentration is that to study the surface morphology of heater surface at higher concentrations and its effect on critical heat flux and heat transfer coefficient. It is observed that the critical heat flux enhancement rate decreases as concentration increases and surface roughness of heater surface decreases after 1.2 wt% concentration of nanofluids.
Evaporator film coefficients of grooved heat pipes
NASA Technical Reports Server (NTRS)
Kamotani, Y.
1978-01-01
The heat transfer rate in the meniscus attachment region of a grooved heat pipe evaporator is studied theoretically. The analysis shows that the evaporation takes place mainly in the region where the liquid changes its shape sharply. However, comparisons with available heat transfer data indicate that the heat transfer rate in the meniscus varying region is substantially reduced probably due to groove wall surface roughness.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1972-01-01
A relatively simple method is presented for including the effect of variable entropy at the boundary-layer edge in a heat transfer method developed previously. For each inviscid surface streamline an approximate shockwave shape is calculated using a modified form of Maslen's method for inviscid axisymmetric flows. The entropy for the streamline at the edge of the boundary layer is determined by equating the mass flux through the shock wave to that inside the boundary layer. Approximations used in this technique allow the heating rates along each inviscid surface streamline to be calculated independent of the other streamlines. The shock standoff distances computed by the present method are found to compare well with those computed by Maslen's asymmetric method. Heating rates are presented for blunted circular and elliptical cones and a typical space shuttle orbiter at angles of attack. Variable entropy effects are found to increase heating rates downstream of the nose significantly higher than those computed using normal-shock entropy, and turbulent heating rates increased more than laminar rates. Effects of Reynolds number and angles of attack are also shown.
Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets
NASA Technical Reports Server (NTRS)
Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas
2013-01-01
Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.
Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring
NASA Astrophysics Data System (ADS)
Meyer, Amelie; Fer, Ilker; Sundfjord, Arild; Peterson, Algot K.
2017-06-01
Mixing and heat flux rates collected in the Eurasian Basin north of Svalbard during the N-ICE2015 drift expedition are presented. The observations cover the deep Nansen Basin, the Svalbard continental slope, and the shallow Yermak Plateau from winter to summer. Mean quiescent winter heat flux values in the Nansen Basin are 2 W m-2 at the ice-ocean interface, 3 W m-2 in the pycnocline, and 1 W m-2 below the pycnocline. Large heat fluxes exceeding 300 W m-2 are observed in the late spring close to the surface over the Yermak Plateau. The data consisting of 588 microstructure profiles and 50 days of high-resolution under-ice turbulence measurements are used to quantify the impact of several forcing factors on turbulent dissipation and heat flux rates. Wind forcing increases turbulent dissipation seven times in the upper 50 m, and doubles heat fluxes at the ice-ocean interface. The presence of warm Atlantic Water close to the surface increases the temperature gradient in the water column, leading to enhanced heat flux rates within the pycnocline. Steep topography consistently enhances dissipation rates by a factor of four and episodically increases heat flux at depth. It is, however, the combination of storms and shallow Atlantic Water that leads to the highest heat flux rates observed: ice-ocean interface heat fluxes average 100 W m-2 during peak events and are associated with rapid basal sea ice melt, reaching 25 cm/d.
Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M
2015-10-28
Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat transfer and water collection applications.
Reentry heating analysis of space shuttle with comparison of flight data
NASA Technical Reports Server (NTRS)
Gong, L.; Quinn, R. D.; Ko, W. L.
1982-01-01
Surface heating rates and surface temperatures for a space shuttle reentry profile were calculated for two wing cross sections and one fuselage cross section. Heating rates and temperatures at 12 locations on the wing and 6 locations on the fuselage are presented. The heating on the lower wing was most severe, with peak temperatures reaching values of 1240 C for turbulent flow and 900 C for laminar flow. For the fuselage, the most severe heating occured on the lower glove surface where peak temperatures of 910 C and 700 C were calculated for turbulent flow and laminar flow, respectively. Aluminum structural temperatures were calculated using a finite difference thermal analyzer computer program, and the predicted temperatures are compared to measured flight data. Skin temperatures measured on the lower surface of the wing and bay 1 of the upper surface of the wing agreed best with temperatures calculated assuming laminar flow. The measured temperatures at bays two and four on the upper surface of the wing were in quite good agreement with the temperatures calculated assuming separated flow. The measured temperatures on the lower forward spar cap of bay four were in good agreement with values predicted assuming laminar flow.
Heating and Cooling Rates With an Esophageal Heat Exchange System.
Kalasbail, Prathima; Makarova, Natalya; Garrett, Frank; Sessler, Daniel I
2018-04-01
The Esophageal Cooling Device circulates warm or cool water through an esophageal heat exchanger, but warming and cooling efficacy in patients remains unknown. We therefore determined heat exchange rates during warming and cooling. Nineteen patients completed the trial. All had general endotracheal anesthesia for nonthoracic surgery. Intraoperative heat transfer was measured during cooling (exchanger fluid at 7°C) and warming (fluid at 42°C). Each was evaluated for 30 minutes, with the initial condition determined randomly, starting at least 40 minutes after induction of anesthesia. Heat transfer rate was estimated from fluid flow through the esophageal heat exchanger and inflow and outflow temperatures. Core temperature was estimated from a zero-heat-flux thermometer positioned on the forehead. Mean heat transfer rate during warming was 18 (95% confidence interval, 16-20) W, which increased core temperature at a rate of 0.5°C/h ± 0.6°C/h (mean ± standard deviation). During cooling, mean heat transfer rate was -53 (-59 to -48) W, which decreased core temperature at a rate of 0.9°C/h ± 0.9°C/h. Esophageal warming transferred 18 W which is considerably less than the 80 W reported with lower or upper body forced-air covers. However, esophageal warming can be used to supplement surface warming or provide warming in cases not amenable to surface warming. Esophageal cooling transferred more than twice as much heat as warming, consequent to the much larger difference between core and circulating fluid temperature with cooling (29°C) than warming (6°C). Esophageal cooling extracts less heat than endovascular catheters but can be used to supplement catheter-based cooling or possibly replace them in appropriate patients.
Prediction of Unshsrouded Rotor Blade Tip Heat Transfer
NASA Technical Reports Server (NTRS)
Ameri, A. A.; Steinthorsson, E.
1994-01-01
The rate of heat transfer on the tip of a turbine rotor blade and on the blade surface in the vicinity of the tip, was successfully predicted. The computations were performed with a multiblock computer code which solves the Reynolds Averaged Navier-Stokes equations using an efficient multigrid method. The case considered for the present calculations was the Space Shuttle Main Engine (SSME) high pressure fuel side turbine. The predictions of the blade tip heat transfer agreed reasonably well with the experimental measurements using the present level of grid refinement. On the tip surface, regions with high rate of heat transfer was found to exist close to the pressure side and suction side edges. Enhancement of the heat transfer was also observed on the blade surface near the tip. Further comparison of the predictions was performed with results obtained from correlations based on fully developed channel flow.
NASA Technical Reports Server (NTRS)
Bertin, J. J.; Idar, E. S., III; Galanski, S. R.
1977-01-01
The theoretical heat-transfer distributions are compared with experimental heat-transfer distributions obtained in Tunnel B at AEDC using a 0.0175 scale model of the space shuttle orbiter configuration for which the first 80% of the windward surface was roughened by a simulated tile misalignment. The theoretical solutions indicate that thinning the boundary layer by surface cooling increased the nondimensionalized value of the local heat-transfer coefficient. Tile misalignment did not significantly affect the heat-transfer rate in regions where the boundary layer was either laminar or turbulent.
NASA Technical Reports Server (NTRS)
Taylor, A. H.; Jackson, L. R.; Weinstein, I.
1977-01-01
Three thermal protection systems proposed for a hypersonic research airplane were subjected to high heating rates in the Langley 8 foot, high temperature structures tunnel. Metallic heat sink (Lockalloy), reusable surface insulation, and insulator-ablator materials were each tested under similar conditions. The specimens were tested for a 10 second exposure on the windward side of an elevon deflected 30 deg. The metallic heat sink panel exhibited no damage; whereas the reusable surface insulation tiles were debonded from the panel and the insulator-ablator panel eroded through its thickness, thus exposing the aluminum structure to the Mach 7 environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabakov, Boyan
2015-07-01
Microfabricated segmented surface ion traps are one viable avenue to scalable quantum information processing. At Sandia National Laboratories we design, fabricate, and characterize such traps. Our unique fabrication capabilities allow us to design traps that facilitate tasks beyond quantum information processing. The design and performance of a trap with a target capability of storing hundreds of equally spaced ions on a ring is described. Such a device could aid experimental studies of phenomena as diverse as Hawking radiation, quantum phase transitions, and the Aharonov - Bohm effect. The fabricated device is demonstrated to hold a ~ 400 ion circular crystal,more » with 9 μm average spacing between ions. The task is accomplished by first characterizing undesired electric fields in the trapping volume and then designing and applying an electric field that substantially reduces the undesired fields. In addition, experimental efforts are described to reduce the motional heating rates in a surface trap by low energy in situ argon plasma treatment that reduces the amount of surface contaminants. The experiment explores the premise that carbonaceous compounds present on the surface contribute to the anomalous heating of secular motion modes in surface traps. This is a research area of fundamental interest to the ion trapping community, as heating adversely affects coherence and thus gate fidelity. The device used provides high optical laser access, substantially reducing scatter from the surface, and thus charging that may lead to excess micromotion. Heating rates for different axial mode frequencies are compared before and after plasma treatment. The presence of a carbon source near the plasma prevents making a conclusion on the observed absence of change in heating rates.« less
A Method for Determining the Rate of Heat Transfer from a Wing or Streamline Body
NASA Technical Reports Server (NTRS)
Frick, Charles W; Mccullough, George B
1945-01-01
A method for calculating the rate of heat transfer from the surface of an airfoil or streamline body is presented. A comparison with the results of an experimental investigation indicates that the accuracy of the method is good. This method may be used to calculate the heat supply necessary for heat de-icing or in ascertaining the heat loss from the fuselage of an aircraft operating at great altitude. To illustrate the method, the total rate of heat transfer from an airfoil is calculated and compared with the experimental results.
An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skyllingstad, E.D.; Denbo, D.W.
Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less
Turbulent convection driven by internal radiative heating of melt ponds on sea ice
NASA Astrophysics Data System (ADS)
Wells, Andrew; Langton, Tom; Rees Jones, David; Moon, Woosok
2016-11-01
The melting of Arctic sea ice is strongly influenced by heat transfer through melt ponds which form on the ice surface. Melt ponds are internally heated by the absorption of incoming radiation and cooled by surface heat fluxes, resulting in vigorous buoyancy-driven convection in the pond interior. Motivated by this setting, we conduct two-dimensional direct-numerical simulations of the turbulent convective flow of a Boussinesq fluid between two horizontal boundaries, with internal heating predicted from a two-stream radiation model. A linearised thermal boundary condition describes heat exchange with the overlying atmosphere, whilst the lower boundary is isothermal. Vertically asymmetric convective flow modifies the upper surface temperature, and hence controls the partitioning of the incoming heat flux between emission at the upper and lower boundaries. We determine how the downward heat flux into the ice varies with a Rayleigh number based on the internal heating rate, the flux ratio of background surface cooling compared to internal heating, and a Biot number characterising the sensitivity of surface fluxes to surface temperature. Thus we elucidate the physical controls on heat transfer through Arctic melt ponds which determine the fate of sea ice in the summer.
Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel
NASA Astrophysics Data System (ADS)
Fouladi, Fama
This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.
Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.
2006-01-01
The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.
Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.
2003-01-01
The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.
Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang
2012-11-01
It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere were the main cause of heating effect. The results showed that closer distances to the transducer surface showed higher cooling rates. On the other hand, despite having a bigger distance from the transducer, when the sphere was located close to the gas-liquid interface the enhancement factor of heat transfer was higher. Ultrasound irradiation showed promising effect for the enhancement of convective heat transfer rate during immersion cooling. More investigations are required to demonstrate the behavior of ultrasound assisted heat transfer and resolve the proper way of the application of ultrasound to assist the cooling and/or freezing processes. Copyright © 2012 Elsevier B.V. All rights reserved.
Development of a Model for the Heat Release Rate of Wood. A Status Report.
1985-05-01
K) *contraction factor L effective heat of gasification (kJ/kg) (positive) Lv latent heat of vaporization of water (kJ/kg) (positive) m mass (kg) M...designates the slice bounded by the rear surface 0 ambient or original *0 oxygen R radiation rel release S front surface of specimen Vol volatiles ix w water ...calorimeter. Along the other pathway, char is formed with the release of water and other volatiles having low heats of combustion. The effective heat of
Research on Streamlines and Aerodynamic Heating for Unstructured Grids on High-Speed Vehicles
NASA Technical Reports Server (NTRS)
DeJarnette, Fred R.; Hamilton, H. Harris (Technical Monitor)
2001-01-01
Engineering codes are needed which can calculate convective heating rates accurately and expeditiously on the surfaces of high-speed vehicles. One code which has proven to meet these needs is the Langley Approximate Three-Dimensional Convective Heating (LATCH) code. It uses the axisymmetric analogue in an integral boundary-layer method to calculate laminar and turbulent heating rates along inviscid surface streamlines. It requires the solution of the inviscid flow field to provide the surface properties needed to calculate the streamlines and streamline metrics. The LATCH code has been used with inviscid codes which calculated the flow field on structured grids, Several more recent inviscid codes calculate flow field properties on unstructured grids. The present research develops a method to calculate inviscid surface streamlines, the streamline metrics, and heating rates using the properties calculated from inviscid flow fields on unstructured grids. Mr. Chris Riley, prior to his departure from NASA LaRC, developed a preliminary code in the C language, called "UNLATCH", to accomplish these goals. No publication was made on his research. The present research extends and improves on the code developed by Riley. Particular attention is devoted to the stagnation region, and the method is intended for programming in the FORTRAN 90 language.
NASA Astrophysics Data System (ADS)
Vilella, Kenny; Deschamps, Frédéric
2018-07-01
Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, for example, generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and the bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2-D and 3-D Cartesiangeometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean that reconciles geochemical observations and magma ocean dynamics.
NASA Astrophysics Data System (ADS)
Vilella, Kenny; Deschamps, Frederic
2018-04-01
Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, e.g., generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2D and 3D-Cartesian geometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean that reconciles geochemical observations and magma ocean dynamics.
Heat Transfer to a Thin Solid Combustible in Flame Spreading at Microgravity
NASA Technical Reports Server (NTRS)
Bhattacharjee, S.; Altenkirch, R. A.; Olson, S. L.; Sotos, R. G.
1991-01-01
The heat transfer rate to a thin solid combustible from an attached diffusion flame, spreading across the surface of the combustible in a quiescent, microgravity environment, was determined from measurements made in the drop tower facility at NASA-Lewis Research Center. With first-order Arrhenius pyrolysis kinetics, the solid-phase mass and energy equations along with the measured spread rate and surface temperature profiles were used to calculate the net heat flux to the surface. Results of the measurements are compared to the numerical solution of the complete set of coupled differential equations that describes the temperature, species, and velocity fields in the gas and solid phases. The theory and experiment agree on the major qualitative features of the heat transfer. Some fundamental differences are attributed to the neglect of radiation in the theoretical model.
Thermally determining flow and/or heat load distribution in parallel paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.
A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.
Thermally determining flow and/or heat load distribution in parallel paths
Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.
2016-12-13
A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.
Xing-xia Ma; Grant T. Kirker; Ming-liang Jiang; Yu-zhang Wu
2016-01-01
Surface coatings of melamine-modified urea-formaldehyde resins (MUFs) containing ammonium polyphosphate (APP) have been shown to significantly improve the fire retardancy of wood by prolonging the ignition time and reducing the heat release rate, total heat released, and mass loss rate. Dual protection of wood against both decay and fire has been proposed for remedial...
Radiant heat exchange calculations in radiantly heated and cooled enclosures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, K.S.; Zhang, P.
1995-08-01
This paper presents the development of a three-dimensional mathematical model to compute the radiant heat exchange between surfaces separated by a transparent and/or opaque medium. The model formulation accommodates arbitrary arrangements of the interior surfaces, as well as arbitrary placement of obstacles within the enclosure. The discrete ordinates radiation model is applied and has the capability to analyze the effect of irregular geometries and diverse surface temperatures and radiative properties. The model is verified by comparing calculated heat transfer rates to heat transfer rates determined from the exact radiosity method for four different enclosures. The four enclosures were selected tomore » provide a wide range of verification. This three-dimensional model based on the discrete ordinates method can be applied to a building to assist the design engineer in sizing a radiant heating system. By coupling this model with a convective and conductive heat transfer model and a thermal comfort model, the comfort levels throughout the room can be easily and efficiently mapped for a given radiant heater location. In addition, objects such as airplanes, trucks, furniture, and partitions can be easily incorporated to determine their effect on the performance of the radiant heating system.« less
NASA Technical Reports Server (NTRS)
Wang, K. C.
1994-01-01
A numerical procedure for predicting the convective heating rate of hypersonic reentry vehicles is described. The procedure, which is based on the axisymmetric analog, consists of obtaining the three-dimensional inviscid flowfield solution; then the surface streamlines and metrics are calculated using the inviscid velocity components on the surface; finally, an axisymmetric boundary layer code or approximate convective heating equations are used to evaluate heating rates. This approach yields heating predictions to general three-dimensional body shapes. The procedure has been applied to the prediction of the wing leading edge heating to the Space Shuttle Orbiter. The numerical results are compared with the results of heat transfer testing (OH66) of an 0.025 scale model of the Space Shuttle Orbiter configuration in the Calspan Hypersonic Shock Tunnel (HST) at Mach 10 and angles of attack of 30 and 40 degrees. Comparisons with STS-5 flight data at Mach 9.15 and angle of attack of 37.4 degrees and STS-2 flight data at Mach 12.86 and angle of attack of 39.7 degrees are also given.
Ohta, Haruhiko; Ohno, Toshiyuki; Hioki, Fumiaki; Shinmoto, Yasuhisa
2004-11-01
A two-phase flow loop is a promising method for application to thermal management systems for large-scale space platforms handling large amounts of energy. Boiling heat transfer reduces the size and weight of cold plates. The transportation of latent heat reduces the mass flow rate of working fluid and pump power. To develop compact heat exchangers for the removal of waste heat from electronic devices with high heat generation density, experiments on a method to increase the critical heat flux for a narrow heated channel between parallel heated and unheated plates were conducted. Fine grooves are machined on the heating surface in a transverse direction to the flow and liquid is supplied underneath flattened bubbles by the capillary pressure difference from auxiliary liquid channels separated by porous metal plates from the main heated channel. The critical heat flux values for the present heated channel structure are more than twice those for a flat surface at gap sizes 2 mm and 0.7 mm. The validity of the present structure with auxiliary liquid channels is confirmed by experiments in which the liquid supply to the grooves is interrupted. The increment in the critical heat flux compared to those for a flat surface takes a maximum value at a certain flow rate of liquid supply to the heated channel. The increment is expected to become larger when the length of the heated channel is increased and/or the gravity level is reduced.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.
1977-01-01
Drag and heating rates on wavy surfaces typical of current corrugated plate designs for thermal protection systems were determined experimentally. Pressure-distribution, heating-rate, and oil-flow tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.4 and 4.5 with the corrugated surface exposed to both thick and thin turbulent boundary layers. Tests were conducted with the corrugations at cross-flow angles from 0 deg to 90 deg to the flow. Results show that for cross-flow angles of 30 deg or less, the pressure drag coefficients are less than the local flat-plate skin-friction coefficients and are not significantly affected by Mach number, Reynolds number, or boundary-layer thickness over the ranges investigated. For cross-flow angles greater than 30 deg, the drag coefficients increase significantly with cross-flow angle and moderately with Reynolds number. Increasing the Mach number causes a significant reduction in the pressure drag. The average and peak heating penalties due to the corrugated surface are small for cross-flow angles of 10 deg or less but are significantly higher for the larger cross-flow angles.
TQUID Magnetometer and Artificial Neural Circuitry Based on a Topological Kondo Insulator
2016-05-01
phenomena in this surface-bulk system. Sufficient Joule heating , induced by an external DC current, can heat the bulk into a less insulating state, and...are the surface and bulk resistances with insulating gap Δ; H = H0(/0)3 and are the heat capacity dominated by phonons and...0, while Δ is the energy gap in the insulating bulk; is the temperature independent heat transfer rate trough external leads, which plays the
Aeroheating Predictions for X-34 Using an Inviscid-Boundary Layer Method
NASA Technical Reports Server (NTRS)
Riley, Christopher J.; Kleb, William L.; Alter, Steven J.
1998-01-01
Radiative equilibrium surface temperatures and surface heating rates from a combined inviscid-boundary layer method are presented for the X-34 Reusable Launch Vehicle for several points along the hypersonic descent portion of its trajectory. Inviscid, perfect-gas solutions are generated with the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and the Data-Parallel Lower-Upper Relaxation (DPLUR) code. Surface temperatures and heating rates are then computed using the Langley Approximate Three-Dimensional Convective Heating (LATCH) engineering code employing both laminar and turbulent flow models. The combined inviscid-boundary layer method provides accurate predictions of surface temperatures over most of the vehicle and requires much less computational effort than a Navier-Stokes code. This enables the generation of a more thorough aerothermal database which is necessary to design the thermal protection system and specify the vehicle's flight limits.
Spray cooling characteristics of nanofluids for electronic power devices.
Hsieh, Shou-Shing; Leu, Hsin-Yuan; Liu, Hao-Hsiang
2015-01-01
The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm(2) with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10(-4) kg/cm(2)s.
Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas
NASA Astrophysics Data System (ADS)
Price, Adam N.; Lindsey, Cary R.; Fairley, Jerry P.
2017-12-01
Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semiquantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, a quantitative framework connecting surface temperature observations with conditions in the subsurface is currently lacking. Here, we model an area of shallow subsurface flow at Burgdorf Hot Springs, a rustic commercial resort in the Payette National Forest, north of McCall, ID, USA. We calibrate the model using shallow (0.2 m depth) ground temperature measurements and overburden thickness estimates from seismic refraction studies. The calibrated model predicts negligible loss of heat energy from the laterally migrating fluids at the Burgdorf site, in spite of the fact that thermal anomalies are observed in the unconsolidated near-surface alluvium. Although elevated near-surface ground temperatures are commonly assumed to result from locally high heat flux, this conflicts with the small apparent heat loss during lateral flow inferred at the Burgdorf site. We hypothesize an alternative explanation for near-surface temperature anomalies that is only weakly dependent on heat flux, and more strongly controlled by the Biot number, a dimensionless parameter that compares the rate at which convection carries heat away from the land surface to the rate at which it is supplied by conduction to the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splitter, Derek A; Hendricks, Terry Lee; Ghandhi, Jaal B
2014-01-01
The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integratedmore » piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition. However, for reactivity-controlled compression ignition, the mean surface temperature increased with changes in boost suggesting that equivalence ratio affects steady-state heat transfer.« less
NASA Astrophysics Data System (ADS)
Garel, F.; Kaminski, E.; Tait, S.; Limare, A.
2011-12-01
During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a transient evolution of the radiated heat flux closely related to the variations of the flow area. The study of experiments with time-variable effusion rates finally gives first leads on the inertia of the thermal surface structure. This is to be related to the time-period over which the thermal proxy averages the actual effusion rate, hence to the acquisition frequency appropriate for a thermal monitoring of effusive volcanic eruptions.
Consideration of Wear Rates at High Velocities
2010-03-01
Strain vs. Three-dimensional Model . . . . . . . . . . . . 57 3.11 Example Single Asperity Wear Rate Integral . . . . . . . . . . 58 4.1 Third Stage...Slipper Accumulated Frictional Heating . . . . . . 67 4.2 Surface Temperature Third Stage Slipper, ave=0.5 . . . . . . . 67 4.3 Melt Depth Example...64 A3S Coefficient for Frictional Heat Curve Fit, Third Stage Slipper 66 B3S Coefficient for Frictional Heat Curve Fit, Third
Heat loss through the glabrous skin surfaces of heavily insulated, heat-stressed individuals.
Grahn, D A; Dillon, J L; Heller, H C
2009-07-01
Insulation reduces heat exchange between a body and the environment. Glabrous (nonhairy) skin surfaces (palms of the hands, soles of the feet, face, and ears) constitute a small percentage of total body surface area but contain specialized vascular structures that facilitate heat loss. We have previously reported that cooling the glabrous skin surfaces is effective in alleviating heat stress and that the application of local subatmospheric pressure enhances the effect. In this paper, we compare the effects of cooling multiple glabrous skin surfaces with and without vacuum on thermal recovery in heavily insulated heat-stressed individuals. Esophageal temperatures (T(es)) and heart rates were monitored throughout the trials. Water loss was determined from pre- and post-trial nude weights. Treadmill exercise (5.6 km/h, 9-16% slope, and 25-45 min duration) in a hot environment (41.5 degrees C, 20-30% relative humidity) while wearing insulating pants and jackets was used to induce heat stress (T(es)>or=39 degrees C). For postexercise recovery, the subjects donned additional insulation (a balaclava, winter gloves, and impermeable boot covers) and rested in the hot environment for 60 min. Postexercise cooling treatments included control (no cooling) or the application of a 10 degrees C closed water circulating system to (a) the hand(s) with or without application of a local subatmospheric pressure, (b) the face, (c) the feet, or (d) multiple glabrous skin regions. Following exercise induction of heat stress in heavily insulated subjects, the rate of recovery of T(es) was 0.4+/-0.2 degrees C/h(n=12), but with application of cooling to one hand, the rate was 0.8+/-0.3 degrees C/h(n=12), and with one hand cooling with subatmospheric pressure, the rate was 1.0+/-0.2 degrees C/h(n=12). Cooling alone yielded two responses, one resembling that of cooling with subatmospheric pressure (n=8) and one resembling that of no cooling (n=4). The effect of treating multiple surfaces was additive (no cooling, DeltaT(es)=-0.4+/-0.2 degrees C; one hand, -0.9+/-0.3 degrees C; face, -1.0+/-0.3 degrees C; two hands, -1.3+/-0.1 degrees C; two feet, -1.3+/-0.3 degrees C; and face, feet, and hands, -1.6+/-0.2 degrees C). Cooling treatments had a similar effect on water loss and final resting heart rate. In heat-stressed resting subjects, cooling the glabrous skin regions was effective in lowering T(es). Under this protocol, the application of local subatmospheric pressure did not significantly increase heat transfer per se but, presumably, increased the likelihood of an effect.
NASA Astrophysics Data System (ADS)
Jepson, Mark A. E.; Rowlett, Matthew; Higginson, Rebecca L.
2017-03-01
Although the formation of sigma phase in duplex stainless steels is reasonably well documented, the effect of surface finish on its formation rate in surface regions has not been previously noted. The growth of the sigma phase precipitated in the subsurface region (to a maximum depth of 120 μm) has been quantified after heat treatment of S32205 duplex stainless steel at 1073 K (800 °C) and 1173 K (900 °C) after preparation to two surface finishes. Here, results are presented that show that there is a change in the rate of sigma phase formation in the surface region of the material, with a coarser surface finish leading to a greater depth of precipitation at a given time and temperature of heat treatment. The growth rate and morphology of the precipitated sigma has been examined and explored in conjunction with thermodynamic equilibrium phase calculations.
Singh, Ajay V; Gollner, Michael J
2016-06-01
Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.
Singh, Ajay V.; Gollner, Michael J.
2016-01-01
Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided. PMID:27285827
NASA Astrophysics Data System (ADS)
Daitoku, Tadafumi; Utaka, Yoshio
In air-conditioning systems, it is desirable that the liquid-solid phase change temperature of a cool energy storage material is approximately 10 °C from the perspective of improving coefficient of performance (COP). Moreover, a thermal storage material that forms slurry can realize large heat capacity of working fluids. Since the solid that adheres to the heat transfer surface forms a thermal resistance layer and remarkably reduces the rate of cold storage, it is important to avoid the adhesion of a thick solid layer on the surface so as to realize efficient energy storage. Considering a harvest type cooling unit, the force required for removing the solid phase from the heat transfer surface was studied. Tetra-n-butylammonium Bromide (TBAB) clathrate hydrate was used as a cold storage material. The effect of the heat transfer surface properties on the scraping force for detachment of adhered solid of TBAB hydrate to the heat transfer surface was examined experimentally.
Performance of thermal barrier coatings in high heat flux environments
NASA Technical Reports Server (NTRS)
Miller, R. A.; Berndt, C. C.
1984-01-01
Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8%Y2O3 specimens survived 3000 of the 0.5 sec cycles with failing. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 2 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12%Y2O3 or ZrO2-20%Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.
High-resolution hot-film measurement of surface heat flux to an impinging jet
NASA Astrophysics Data System (ADS)
O'Donovan, T. S.; Persoons, T.; Murray, D. B.
2011-10-01
To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.
Indirect evaporative coolers with enhanced heat transfer
Kozubal, Eric; Woods, Jason; Judkoff, Ron
2015-09-22
A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.
NASA Astrophysics Data System (ADS)
Kozhevnikov, Danil A.; Sheremet, Mikhail A.
2018-01-01
The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.
NASA Astrophysics Data System (ADS)
Ruiz, Maritza
Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well as enhancements due to increased buoyant forces on vapor bubbles resulting from centripetal acceleration in the flow which will tend to draw the vapor towards the outlet. This can also aid in the reduction of vapor obstruction of the flow. The flow was identified as transitioning through three regimes as the heat rate was increased: partial subcooled flow boiling, oscillating boiling and fully developed flow boiling. During partial subcooled flow boiling, both forced convective and nucleate boiling effects are important. During oscillating boiling, the system fluctuated between partial subcooled flow boiling and fully developed nucleate boiling. Temperature and pressure oscillations were significant in this regime and are likely due to bubble constriction of flow in the microchannel. This regime of boiling is generally undesirable due to the large oscillations in temperatures and pressure and design constraints should be established to avoid large oscillations from occurring. During fully developed flow boiling, water vapor rapidly leaves the surface and the flow does not sustain large oscillations. Reducing inlet subcooling levels was found to reduce the magnitude of oscillations in the oscillating boiling regime. Additionally, reduced inlet subcooling levels reduced the average surface temperature at the highest heat flux levels tested when heat transfer was dominated by nucleate boiling, yet increased the average surface temperatures at low heat flux levels when heat transfer was dominated by forced convection. Experiments demonstrated heat fluxes up to 301 W/cm. 2at an average surface temperature of 134 deg C under partial subcooled flow boiling conditions. At this peak heat flux, the system required a pumping power to heat rate ratio of 0.01%. This heat flux is 2.4 times the typical values for critical heat flux in pool boiling under similar conditions.
Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James Edward; Sohal, Manohar Singh
2000-08-01
This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally appliedmore » one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.« less
Natural convection of Al2O3-water nanofluid in a wavy enclosure
NASA Astrophysics Data System (ADS)
Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.
2017-06-01
Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat transfer medium and the effects of changing geometrical parameters, which will help in developing novel geometries with enhanced and controlled heat-transfer for solar collectors, electronic cooling, and food processing industries.
NASA Astrophysics Data System (ADS)
Zhang, L.
2017-12-01
Heat flow is an important constraint to study the thermal structure and evolution in modeling experiments. Based on the surface heat flow map and recent geochemistry results, a 2D transient heat conduction-advection model is used to investigate how the effects of sedimentation rate, magmatic intrusion, extension duration and rate on the surface heat flow distribution of the Okinawa Trough. Surface heat flow distribution map is interpolated based on a data set with 664 measurements in the Ryukyu trench-arc-basin system. The map shows an obviously correspondence between heat flows and tectonic zones, characterized by belts in E-W and blocks in S-N. The heat flow is extremely high and variable in the central Okinawa Trough (COT). The lowest heat values are distributed in the northwest of West Philippine Sea near the Ryukyu Trench. This phenomenon is likely related to increasing hydrothermal circulation of cold water into the upper portion of the incoming plate because of bend-faulting and little sediment coverage. Simulation results show that (1) High sedimentation rate can reduce heat flow by 30-35 % in the southern OT. (2) The sedimentation-corrected heat flow indicates that mantle upwelling occurred in the whole OT. The isotherm of 1000°C reaches to the depth of 19 km in the axil of the COT after 10 Ma. (3) The heat flow can be improved drastically by dyke intrusion along normal faults, but subsequent decreases rapidly about 15% after 0.1 Ma, which indicates the age of dyke intrusion under the Iheya area is younger than 0.5 Ma, and the depth is shallower than 2 km. Moreover, the magma fluid upward migrated along the magma conduits is required for the extremely high heat flow and its Darcy velocity can reach to 9 cm/yr. Based on the distribution of heat flow, we suggest that there is a different evolution model between the central- northern OT and the southern. The time of rifting in the NOT-COT began at 10 Ma with the mean rate of 0.4 cm/yr, while the rifting of the SOT started from 6 Ma with higher rate of 0.6 cm/yr.
Afterbody Heating Predictions for a Mars Science Laboratory Entry Vehicle
NASA Technical Reports Server (NTRS)
Edquist, Karl T.
2005-01-01
The Mars Science Laboratory mission intends to deliver a large rover to the Martian surface within 10 km of its target site. One candidate entry vehicle aeroshell consists of a 3.75-m diameter, 70-deg sphere-cone forebody and a biconic afterbody similar to that of Viking. This paper presents computational fluid dynamics predictions of laminar afterbody heating rates for this configuration and a 2010 arrival at Mars. Computational solutions at flight conditions used an 8-species Mars gas model in chemical and thermal non-equilibrium. A grid resolution study examined the effects of mesh spacing on afterbody heating rates and resulted in grids used for heating predictions on a reference entry trajectory. Afterbody heating rate reaches its maximum value near 0.6 W/sq cm on the first windward afterbody cone at the time of peak freestream dynamic pressure. Predicted afterbody heating rates generally are below 3% of the forebody laminar nose cap heating rate throughout the design trajectory. The heating rates integrated over time provide total heat load during entry, which drives thermal protection material thickness.
Planform structure and heat transfer in turbulent free convection over horizontal surfaces
NASA Astrophysics Data System (ADS)
Theerthan, S. Ananda; Arakeri, Jaywant H.
2000-04-01
This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.
Boiling and quenching heat transfer advancement by nanoscale surface modification.
Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N
2017-07-21
All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.
Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures
NASA Technical Reports Server (NTRS)
Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.
2007-01-01
Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.
Liquid cooled plate heat exchanger for battery cooling of an electric vehicle (EV)
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Rahman, H. Y.; Mahlia, T. M. I.; Sheng, J. L. Y.
2016-03-01
A liquid cooled plate heat exchanger was designed to improve the battery life of an electric vehicle which suffers from premature aging or degradation due to the heat generation during discharging and charging period. Computational fluid dynamics (CFD) was used as a tool to analyse the temperature distribution when a constant surface heat flux was set at the bottom surface of the battery. Several initial and boundary conditions were set based on the past studies on the plate heat exchanger in the simulation software. The design of the plate heat exchanger was based on the Nissan Leaf battery pack to analyse the temperature patterns. Water at different mass flow rates was used as heat transfer fluid. The analysis revealed the designed plate heat exchanger could maintain the surface temperature within the range of 20 to 40°C which is within the safe operating temperature of the battery.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (9) Heating rate for furnace, gas, electric resistance, and other surface heating methods must not... thickness in inches for thickness over 2 inches. (10) Heating route for induction heating must not exceed... still air. When furnace cooling is used, the pipe sections must be cooled in the furnace to 1000 °F and...
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (9) Heating rate for furnace, gas, electric resistance, and other surface heating methods must not... thickness in inches for thickness over 2 inches. (10) Heating route for induction heating must not exceed... still air. When furnace cooling is used, the pipe sections must be cooled in the furnace to 1000 °F and...
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (9) Heating rate for furnace, gas, electric resistance, and other surface heating methods must not... thickness in inches for thickness over 2 inches. (10) Heating route for induction heating must not exceed... still air. When furnace cooling is used, the pipe sections must be cooled in the furnace to 1000 °F and...
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (9) Heating rate for furnace, gas, electric resistance, and other surface heating methods must not... thickness in inches for thickness over 2 inches. (10) Heating route for induction heating must not exceed... still air. When furnace cooling is used, the pipe sections must be cooled in the furnace to 1000 °F and...
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (9) Heating rate for furnace, gas, electric resistance, and other surface heating methods must not... thickness in inches for thickness over 2 inches. (10) Heating route for induction heating must not exceed... still air. When furnace cooling is used, the pipe sections must be cooled in the furnace to 1000 °F and...
Heat transfer between a heated plate and an impinging transient diesel spray
NASA Astrophysics Data System (ADS)
Arcoumanis, C.; Chang, J.-C.
1993-12-01
An experimental investigation was performed to determine the heat-transfer distribution in the vicinity of a transient diesel spray impinging on a heated flat plate. The spray prior to impingement was characterised in terms of simultaneous droplet sizes and velocities by phase-Doppler anemometry while during its impingement on the plate, which was heated at temperatures between 150 205°C, the instantaneous surface temperature and associated rates of wall heat transfer were monitored by fast response thermocouples. The parameters examined in this work included the distance between the nozzle and the wall surface, the radial distance from the impingement point, the injection frequency, the injected volume and the pre-impingement wall temperature. The results showed that the wall heat transfer rates are dependent on the spray characteristics prior to impingement; the higher the “velocity of arrival” of the droplet is, the higher the heat transfer. A correlation was thus developed for the instantaneous and spatially-resolved spray/wall heat transfer based on experimentally-determined Nusselt, Reynolds, Prandtl and Weber numbers over a wide range of test conditions.
NASA Astrophysics Data System (ADS)
Bae, Sang-Chul; Katsuta, Masafumi
Our final goal of this study is to develop the heat driven type compact metal hydride (MH) refrigeration system for the vending machine and the show case, and to attain a refrigeration temperature of 243 K by using a heat source of about 423K. The reaction rate of the MH to use for the heat source, MH used for heat source is studied firstly because the MH refrigeration system consists of two MHs, one is used for the heat source and the other is used for the cooling load extracting. As for the reaction rate in the hydriding process, initially, a rapid surface reaction, governed by the relation 1-(1-F )1/3=kht . After the MH surface has been covered by hydride, the reaction becomes diffusion controlled with the relation 1-3(1-F ' )2/3+2(1-F ' )=k'ht . The reaction rates, kh and k'h , are exponentially proportional to the pressure difference and increase with temperature. And, as for the dehydriding process, it is found out that the rate-controlling step is uniquely diffusion reaction. The dehydriding reaction rate is exponentially proportional to the pressure difference and the initial reacted fraction, and increases with temperature. Finally, on the basis of these experimental results, the brand new rate correlations are reasonably derived. The predicted results for this correlation are in successfully agreement with the experimental ones.
Forced convection in the wakes of sliding bubbles
NASA Astrophysics Data System (ADS)
Meehan, O'Reilly; Donnelly, B.; Persoons, T.; Nolan, K.; Murray, D. B.
2016-09-01
Both vapour and gas bubbles are known to significantly increase heat transfer rates between a heated surface and the surrounding fluid, even with no phase change. However, the complex wake structures means that the surface cooling is not fully understood. The current study uses high speed infra-red thermography to measure the surface temperature and convective heat flux enhancement associated with an air bubble sliding under an inclined surface, with a particular focus on the wake. Enhancement levels of 6 times natural convection levels are observed, along with cooling patterns consistent with a possible hairpin vortex structure interacting with the thermal boundary layer. Local regions of suppressed convective heat transfer highlight the complexity of the bubble wake in two-phase applications.
Definition of hydraulic stability of KVGM-100 hot-water boiler and minimum water flow rate
NASA Astrophysics Data System (ADS)
Belov, A. A.; Ozerov, A. N.; Usikov, N. V.; Shkondin, I. A.
2016-08-01
In domestic power engineering, the methods of quantitative and qualitative-quantitative adjusting the load of the heat supply systems are widely distributed; furthermore, during the greater part of the heating period, the actual discharge of network water is less than estimated values when changing to quantitative adjustment. Hence, the hydraulic circuits of hot-water boilers should ensure the water velocities, minimizing the scale formation and excluding the formation of stagnant zones. The results of the calculations of hot-water KVGM-100 boiler and minimum water flow rate for the basic and peak modes at the fulfillment of condition of the lack of surface boil are presented in the article. The minimal flow rates of water at its underheating to the saturation state and the thermal flows in the furnace chamber were defined. The boiler hydraulic calculation was performed using the "Hydraulic" program, and the analysis of permissible and actual velocities of the water movement in the pipes of the heating surfaces was carried out. Based on the thermal calculations of furnace chamber and thermal- hydraulic calculations of heating surfaces, the following conclusions were drawn: the minimum velocity of water movement (by condition of boiling surface) at lifting movement of environment increases from 0.64 to 0.79 m/s; it increases from 1.14 to 1.38 m/s at down movement of environmental; the minimum water flow rate by the boiler in the basic mode (by condition of the surface boiling) increased from 887 t/h at the load of 20% up to 1074 t/h at the load of 100%. The minimum flow rate is 1074 t/h at nominal load and is achieved at the pressure at the boiler outlet equal to 1.1 MPa; the minimum water flow rate by the boiler in the peak mode by condition of surface boiling increases from 1669 t/h at the load of 20% up to 2021 t/h at the load of 100%.
NASA Technical Reports Server (NTRS)
Wang, Chi R.; Yeh, Frederick C.
1987-01-01
A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.
Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J
BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.
NASA Astrophysics Data System (ADS)
Asher, W. E.; Jessup, A. T.; Liang, H.; Zappa, C. J.
2008-12-01
The air-sea flux, F, of a sparingly soluble nonreactive gas can be expressed as F = kG(CS-CW), where kG is the gas transfer velocity, CS is the concentration of gas that would be expected in the water if the system were in Henry's Gas Law equilibrium, and CW is the gas concentration in the bulk water. An analogous relationship for the net heat flux can also be written using the heat transfer velocity, kH, and the bulk-skin temperature difference in the aqueous phase. Surface divergence theory for the air-water transfer of gas and heat predicts that kG and kH will scale as the square root of the surface divergence rate, r. However, because of the interaction between diffusivity and the scale depth of the surface divergences, the scale factor for heat is likely to be different from the scale factor for gases. Infrared imagery was used to measure the timescales of variations in temperature at a water surface and laser-induced fluorescence (LIF) was used to measure temporal fluctuations in aqueous-phase concentrations of carbon dioxide (CO2) at a water surface. The rate at which these temperature and concentration fluctuations occur is then assumed to be related to r. The divergence rates derived for temperature from the IR images can be compared to the rates for gas derived from the LIF measurements to understand how r estimated from the two measurements differ. The square root of r is compared to concurrently measured kG for helium and sulfur hexafluoride to test the assumption that r1/2 scales with kG. Additionally, we measured kH using the active controlled flux technique, and those heat transfer velocities can also be used to test for a r1/2 dependence. All measurements reported here were made in the APL-UW synthetic jet array facility.
NASA Astrophysics Data System (ADS)
Santos, Severino Guilherme Caetano Gonçalves dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes
2017-02-01
The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation ( P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m2. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m2 for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.
Establishment of a Super Small-Scale Cookoff Bomb (SSCB) Test Facility at MRL
1989-01-01
major areas of interest are cookoff of explosives and PBX formulations. CONTENTS Page 1. INTRODUCTION 7 2. EXPERIMENTAL 8 2.1 Description of SSCB Test...the slow heating rate than at the fast heating rate, in accordance with the generally accepted belief. Similarly, as the TATB content increased, the...correlation with TATB content ), and explosive surface temperatures of 187-246 *C were found at the slow heating rate, with a marked increase in the temperature
The impact of surface chemistry on the performance of localized solar-driven evaporation system
Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-01-01
This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation. PMID:26337561
The impact of surface chemistry on the performance of localized solar-driven evaporation system.
Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-09-04
This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.
Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role
Ruairuen, Watcharee
2015-01-01
As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/R net (67%), G/R net (6%), H/R net (27%) where LE is latent heat flux, R net is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123
Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role.
Ruairuen, Watcharee; Fochesatto, Gilberto J; Sparrow, Elena B; Schnabel, William; Zhang, Mingchu; Kim, Yongwon
2015-01-01
As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems.
Mo, Yu; Zhao, Lei; Wang, Zhonghui; Chen, Chia-Lung; Tan, Giin-Yu Amy; Wang, Jing-Yuan
2014-04-01
A work applied response surface methodology coupled with Box-Behnken design (RSM-BBD) has been developed to enhance styrene recovery from waste polystyrene (WPS) through pyrolysis. The relationship between styrene yield and three selected operating parameters (i.e., temperature, heating rate, and carrier gas flow rate) was investigated. A second order polynomial equation was successfully built to describe the process and predict styrene yield under the study conditions. The factors identified as statistically significant to styrene production were: temperature, with a quadratic effect; heating rate, with a linear effect; carrier gas flow rate, with a quadratic effect; interaction between temperature and carrier gas flow rate; and interaction between heating rate and carrier gas flow rate. The optimum conditions for the current system were determined to be at a temperature range of 470-505°C, a heating rate of 40°C/min, and a carrier gas flow rate range of 115-140mL/min. Under such conditions, 64.52% WPS was recovered as styrene, which was 12% more than the highest reported yield for reactors of similar size. It is concluded that RSM-BBD is an effective approach for yield optimization of styrene recovery from WPS pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Deveikis, W. D.; Bartlett, W.
1978-01-01
An experimental aerodynamic heating investigation was conducted to determine effects of hot boundary-layer ingestion into the cove on the windward surface between a wing and elevon for cove seal leak areas nominally between 0 and 100 percent of cove entrance area. Pressure and heating-rate distributions were obtained on the wing and elevon surfaces and on the cove walls of a full-scale model that represented a section of the cove region on the space shuttle orbiter. Data were obtained for both attached and separated turbulent boundary layers upstream of the unswept cove entrance. Average free-stream Mach number was 6.9, average free-stream unit Reynolds numbers were 1.31 x 10 to the 6th power and 4.40 x 10 to the 6th power per meter (0.40 x 10 to the 6th power and 1.34 x 10 to the 6th power per foot), and average total temperature was 1888 K (3400 R). Cove pressures and heating rates varied as a function of seal leak area independent of leak aspect ratio. Although cove heating rates for attached flow did not appear intolerable, it was postulated that convective heating in the cove may increase with time. For separated flow, the cove environment was considered too severe for unprotected interior structures of control surfaces.
NASA Technical Reports Server (NTRS)
1994-01-01
A heat flux microsensor developed under a NASP Small Business Innovation Research (SBIR) has a wide range of potential commercial applications. Vatell Corporation originally designed microsensors for use in very high temperatures. The company then used the technology to develop heat flux sensors to measure the rate of heat energy flowing in and out of a surface as well as readings on the surface temperature. Additional major advantages include response to heat flux in less than 10 microseconds and the ability to withstand temperatures up to 1,200 degrees centigrade. Commercial applications are used in high speed aerodynamics, supersonic combustion, blade cooling, and mass flow measurements, etc.
Measuring Fluxes Of Heat To A Plasma-Arc Anode
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Menart, James A.; Pfender, Emil; Heberlein, Joachim
1995-01-01
Three probes constructed to provide measurements indicative of conductive, convective, and radiative transfer of heat from free-burning plasma arc to water-cooled copper anode used in generating arc. Each probe consists mainly of copper body with two thermocouples embedded at locations 4 mm apart along length. Thermocouples provide measure of rate of conduction of heat along probe and transfers of heat from plasma to sensing surface at tip of probe. Probes identical except sensing surface of one uncoated and other two coated with different materials to make them sensitive to different components of overall flux of heat.
NASA Technical Reports Server (NTRS)
Hamilton, H. H., II
1980-01-01
A theoretical method was developed for computing approximate laminar heating rates on three dimensional configurations at angle of attack. The method is based on the axisymmetric analogue which is used to reduce the three dimensional boundary layer equations along surface streamlines to an equivalent axisymmetric form by using the metric coefficient which describes streamline divergence (or convergence). The method was coupled with a three dimensional inviscid flow field program for computing surface streamline paths, metric coefficients, and boundary layer edge conditions.
Ignition of combustible fluids by heated surfaces
NASA Astrophysics Data System (ADS)
Bennett, Joseph Michael
The ignition of flammable fluids leaking onto hot machinery components is a common cause of fires and property loss to society. For example, the U.S. Air Force has over 100 engine fires per year. There is a comparable number in the civilian air fleet. Many of these fires are due to ruptured fuel, oil or hydraulic lines impinging on hot engine components. Also, over 500,000 vehicle fires occur each year on U.S. roads. Many of these are due to leaking fluids onto hot exhaust manifolds or other exhaust components. The design of fire protection systems for aircraft and road vehicles must take into account the problems of hot surface ignition as well as re-ignition that can occur once the fire is initially extinguished. The lack of understanding of ignition and re-ignition results in heavy, high-capacity fire extinguishers to address the fire threat. It is desired to better understand the mechanisms that control this phenomenon, and exploit this understanding in producing machinery designs that can mitigate this threat. The purpose of this effort is to gain a fundamental understanding of ignition by heated surfaces. This is done by performing experimental measurements on the impingement of vertical streams of combustible fluids onto horizontal heated surfaces, and then determine the mechanisms that control the process, in terms of physical, controllable parameters (such as fuel type, flow rate and surface temperature). An initial exhaustive review of the literature revealed a small sample of pertinent findings of previous investigators, focused on droplet ignition. Boiling modes present during contact with the heated surface were also shown to control evaporation rates and ignition delays, in addition to surface temperatures and fluid properties. An experimental apparatus was designed and constructed to create the scenario of interest in a controllable fashion, with a 20 cm horizontal heated plate with variable heating supply. Fuels were applied as streams ranging from 0.67 ml/sec to 9.5 ml/sec. Heptane, hexadecane, dodecane and kerosene were the fuels investigated in the study, and experiments were performed over a range of surface temperatures. Of the 388 fuel impingement experiments performed, 226 resulted in ignition events. Of these, 124 were classified as "airborne" ignitions, where spontaneous ignition occurred up to 60 cm above the surface. A model was derived as a predictor of ignition delays observed in these experiments, based upon a fuel evaporation rate-dominated process. This model, which utilized information derived from prior Nusselt number heat transfer correlations and simple plume models, exhibited a high degree of successful correlation with experimental data. This model was sufficiently robust to be applied to all the fuels studied, and all boiling modes (nucleate, transition and boiling) and flow rates. This facilitated a means of predicting ignition delay times based upon fundamental operating parameters of fuel type, flow rate and surface temperature, and assist in the design of fire-safe systems.
High heating rate thermal desorption for molecular surface sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S.; Van Berkel, Gary J.
2016-03-29
A method for analyzing a sample having at least one analyte includes the step of heating the sample at a rate of at least 10.sup.6 K/s to thermally desorb at least one analyte from the sample. The desorbed analyte is collected. The analyte can then be analyzed.
Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems
NASA Technical Reports Server (NTRS)
Risch, Tim; Kostyk, Chris
2016-01-01
Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.
Unitized Regenerative Fuel Cell System Gas Storage/Radiator Development
NASA Technical Reports Server (NTRS)
Jakupca, Ian; Burke, Kenneth A.
2003-01-01
The ancillary components for Unitized Regenerative Fuel Cell (URFC) Energy Storage System are being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes. The heat pipes are coiled around each tank and covered with a thin layer of thermally conductive layer of carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different sized commercial grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. The results were incorporated into a model that simulates the performance of similar radiators using lightweight, space rated carbon composite tanks.
CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk
The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity ofmore » an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.« less
Radiation Coupling with the FUN3D Unstructured-Grid CFD Code
NASA Technical Reports Server (NTRS)
Wood, William A.
2012-01-01
The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.
NASA Technical Reports Server (NTRS)
Kurits, Inna; Lewis, M. J.; Hamner, M. P.; Norris, Joseph D.
2007-01-01
Heat transfer rates are an extremely important consideration in the design of hypersonic vehicles such as atmospheric reentry vehicles. This paper describes the development of a data reduction methodology to evaluate global heat transfer rates using surface temperature-time histories measured with the temperature sensitive paint (TSP) system at AEDC Hypervelocity Wind Tunnel 9. As a part of this development effort, a scale model of the NASA Crew Exploration Vehicle (CEV) was painted with TSP and multiple sequences of high resolution images were acquired during a five run test program. Heat transfer calculation from TSP data in Tunnel 9 is challenging due to relatively long run times, high Reynolds number environment and the desire to utilize typical stainless steel wind tunnel models used for force and moment testing. An approach to reduce TSP data into convective heat flux was developed, taking into consideration the conditions listed above. Surface temperatures from high quality quantitative global temperature maps acquired with the TSP system were then used as an input into the algorithm. Preliminary comparison of the heat flux calculated using the TSP surface temperature data with the value calculated using the standard thermocouple data is reported.
Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Wood, William A.; Oliver, A. Brandon
2011-01-01
Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.
NASA Astrophysics Data System (ADS)
Liu, Joseph T. C.; Barbosa Decastilho, Cintia Juliana; Fuller, Mark E.; Sane, Aakash
2017-11-01
The present work uses a perturbation procedure to deduce the small nanoparticle volume concentration conservation equations for momentum, heat and concentration diffusion. Thermal physical variables are obtained from conventional means (mixture and field theories) for alumina-water and gold-water nanofluids. In the case of gold-water nano fluid molecular dynamics results are used to estimate such properties, including transport coefficients. The very thin diffusion layer at large Schmidt numbers is found to have a great impact on the velocity and temperature profiles owing to their dependency on transport properties. This has a profound effect on the conduction surface heat transfer rate enhancement and skin friction suppression for the case of nano fluid concentration withdrawal at the wall, while the diffusional surface heat transfer rate is negligible due to large Schmidt numbers. Possible experimental directed at this interesting phenomenon is suggested.
The effects of radiative heat loss on microgravity flame spread
NASA Technical Reports Server (NTRS)
Fakheri, Ahmad; Olson, Sandra L.
1989-01-01
The effect of radiative heat loss from the surface of a solid material burning in a zero gravity environment in an opposed flow is studied through the use of a numerical model. Radiative heat loss is found to decrease the flame spread rate, the boundary layer thickness, and pyrolysis lengths. Blowoff extinction is predicted to occur at slower opposesd flow velocities than would occur if the radiative loss is not present. The radiative heat fluxes are comparable to the conduction fluxes, indicating the significance of the surface energy loss.
A passive cooling system proposal for multifunction and high-power displays
NASA Astrophysics Data System (ADS)
Tari, Ilker
2013-03-01
Flat panel displays are conventionally cooled by internal natural convection, which constrains the possible rate of heat transfer from the panel. On one hand, during the last few years, the power consumption and the related cooling requirement for 1080p displays have decreased mostly due to energy savings by the switch to LED backlighting and more efficient electronics. However, on the other hand, the required cooling rate recently started to increase with new directions in the industry such as 3D displays, and ultra-high-resolution displays (recent 4K announcements and planned introduction of 8K). In addition to these trends in display technology itself, there is also a trend to integrate consumer entertainment products into displays with the ultimate goal of designing a multifunction device replacing the TV, the media player, the PC, the game console and the sound system. Considering the increasing power requirement for higher fidelity in video processing, these multifunction devices tend to generate very high heat fluxes, which are impossible to dissipate with internal natural convection. In order to overcome this obstacle, instead of active cooling with forced convection that comes with drawbacks of noise, additional power consumption, and reduced reliability, a passive cooling system relying on external natural convection and radiation is proposed here. The proposed cooling system consists of a heat spreader flat heat pipe and aluminum plate-finned heat sink with anodized surfaces. For this system, the possible maximum heat dissipation rates from the standard size panels (in 26-70 inch range) are estimated by using our recently obtained heat transfer correlations for the natural convection from aluminum plate-finned heat sinks together with the surface-to-surface radiation. With the use of the proposed passive cooling system, the possibility of dissipating very high heat rates is demonstrated, hinting a promising green alternative to active cooling.
NASA Astrophysics Data System (ADS)
He, Yuanyuan; Bai, Bing; Li, Xiaochun
2017-11-01
CO2 and water are two commonly employed heat transmission fluids in several fields. Their temperature and pressure determine their phase states, thus affecting the heat transfer performance of the water/CO2. The heat transfer characteristics of gaseous CO2 and gaseous water flowing through fractured hot dry rock still need a great deal of investigation, in order to understand and evaluate the heat extraction in enhanced geothermal systems. In this work, we develop a 2D numerical model to compare the heat transfer performance of gaseous CO2 and gaseous water flowing through a single fracture aperture of 0.2 mm in a φ 50 × 50 mm cylindrical granite sample with a confining temperature of 200°C under different inlet mass flow rates. Our results indicate that: (1) the final outlet temperatures of the fluid are very close to the outer surface temperature under low inlet mass flow rate, regardless of the sample length. (2) Both the temperature of the fluid (gaseous CO2/gaseous water) and inner surface temperature rise sharply at the inlet, and the inner surface temperature is always higher than the fluid temperature. However, their temperature difference becomes increasingly small. (3) Both the overall heat transfer coefficient (OHTC) and local heat transfer coefficient (LHTC) of gaseous CO2 and gaseous water increase with increasing inlet mass flow rates. (4) Both the OHTC and LHTC of gaseous CO2 are lower than those of gaseous water under the same conditions; therefore, the heat mining performance of gaseous water is superior to gaseous CO2 under high temperature and low pressure.
Local Mass and Heat Transfer on a Turbine Blade Tip
Jin, P.; Goldstein, R. J.
2003-01-01
Locmore » al mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 × 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.« less
Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.
2014-01-01
Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730
Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E
2014-01-01
Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.
NASA Astrophysics Data System (ADS)
Umair, Siddique Mohammed; Kolawale, Abhijeet Rangnath; Bhise, Ganesh Anurath; Gulhane, Nitin Parashram
Thermal management in the looming world of electronic packaging system is the most prior and conspicuous issue as far as the working efficiency of the system is concerned. The cooling in such systems can be achieved by impinging air jet over the heat sink as jet impingement cooling is one of the cooling technologies which are widely studied now. Here the modulation in impinging and geometric parameters results in the establishment of the characteristic cooling rate over the target surface. The characteristic cooling curve actually resembles non-uniformity in cooling rate. This non-uniformity favors the area average heat dissipation rate. In order to study the non-uniformity in cooling characteristic, the present study takes an initiative in plotting the local Nusselt number magnitude against the non-dimensional radial distance of the different thickness of target surfaces. For this, the steady temperature distribution over the target surface under the impingement of air jet is being determined numerically. The work is completely inclined towards the determination of critical value of geometric thickness below which the non-uniformity in the Nusselt profile starts. This is done by numerically examining different target surfaces under constant Reynolds number and nozzle-target spacing. The occurrences of non-uniformity in Nusselt profile contributes to over a 42% enhancement in area average Nusselt magnitude. The critical value of characteristic thickness (t/d) reported in the present investigation approximate to 0.05. Below this value, the impingement of air jet generates a discrete pressure zones over the target surface in the form of pressure spots. As a result of this, the air flowing in contact with the target surface experiences a damping potential, in due of which it gets more time and contact with the surface to dissipate heat.
NASA Technical Reports Server (NTRS)
Basu, S.; Cetegen, B. M.
2005-01-01
An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.
Double diffusive conjugate heat transfer: Part II
NASA Astrophysics Data System (ADS)
Azeem, Soudagar, Manzoor Elahi M.
2018-05-01
Conjugate heat transfer in porous medium is an important study involved in many practical applications. The current study is aimed to investigate the double diffusive flow in a square porous cavity subjected to left vertical surface heating and right vertical surface cooling respectively along with left and right surfaces maintained at high and low concentration. The three governing equations are converted into algebraic form of equations by applying finite element method and solved in iterative manner. The study is focused to investigate the effect of presence of solid inside the cavity with respect to varying buoyancy ratio. It is found that the local heat and mass transfer rate decreases along the height of cavity.
Heat and water rate transfer processes in the human respiratory tract at various altitudes.
Kandjov, I M
2001-02-01
The process of the respiratory air conditioning as a process of heat and mass exchange at the interface inspired air-airways surface was studied. Using a model of airways (Olson et al., 1970) where the segments of the respiratory tract are like cylinders with a fixed length and diameter, the corresponding heat transfer equations, in the paper are founded basic rate exchange parameters-convective heat transfer coefficient h(c)(W m(-2) degrees C(-1)) and evaporative heat transfer coefficient h(e)(W m(-2)hPa(-1)). The rate transfer parameters assumed as sources with known heat power are connected to airflow rate in different airways segments. Relationships expressing warming rate of inspired air due to convection, warming rate of inspired air due to evaporation, water diffused in the inspired air from the airways wall, i.e. a system of air conditioning parameters, was composed. The altitude dynamics of the relations is studied. Every rate conditioning parameter is an increasing function of altitude. The process of diffusion in the peripheral bronchial generations as a basic transfer process is analysed. The following phenomenon is in effect: the diffusion coefficient increases with altitude and causes a compensation of simultaneous decreasing of O(2)and CO(2)densities in atmospheric air. Due to this compensation, the diffusion in the peripheral generations with altitude is approximately constant. The elements of the human anatomy optimality as well as the established dynamics are discussed and assumed. The square form of the airways after the trachea expressed in terms of transfer supposes (in view of maximum contact surface), that a maximum heat and water exchange is achieved, i.e. high degree of air condition at fixed environmental parameters and respiration regime. Copyright 2001 Academic Press.
Estimating ocean-air heat fluxes during cold air outbreaks by satellite
NASA Technical Reports Server (NTRS)
Chou, S. H.; Atlas, D.
1981-01-01
Nomograms of mean column heating due to surface sensible and latent heat fluxes were developed. Mean sensible heating of the cloud free region is related to the cloud free path (CFP, the distance from the shore to the first cloud formation) and the difference between land air and sea surface temperatures, theta sub 1 and theta sub 0, respectively. Mean latent heating is related to the CFP and the difference between land air and sea surface humidities q sub 1 and q sub 0 respectively. Results are also applicable to any path within the cloud free region. Corresponding heat fluxes may be obtained by multiplying the mean heating by the mean wind speed in the boundary layer. The sensible heating estimated by the present method is found to be in good agreement with that computed from the bulk transfer formula. The sensitivity of the solutions to the variations in the initial coastal soundings and large scale subsidence is also investigated. The results are not sensitive to divergence but are affected by the initial lapse rate of potential temperature; the greater the stability, the smaller the heating, other things being equal. Unless one knows the lapse rate at the shore, this requires another independent measurement. For this purpose the downwind slope of the square of the boundary layer height is used, the mean value of which is also directly proportional to the mean sensible heating. The height of the boundary layer should be measurable by future spaceborn lidar systems.
1992-11-01
heat transfer surfaces located in the path of the exiting combustion gases generate additional steam. Flue gas particulates entrained in the combustion...anid the overall heat transfer surface anid boiler volume can be reduced. After the hot flue gas exits thie bed, it enters the external COnv.ctfion...rates, underfeed stoker fired combustors emit little smoke, and only a low concentration of particulates entrained in the flue gas . Under these
Ignition characteristics of the iron-based alloy UNS S66286 in pressurized oxygen
NASA Technical Reports Server (NTRS)
Bransford, James W.; Billard, Phillip A.; Hurley, James A.; Mcdermott, Kathleen M.; Vazquez, Isaura
1988-01-01
The development of ignition and combustion in pressurized oxygen atmospheres was studied for the iron based alloy UNS S66286. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to destruction from temperatures below the solidus temperature. In addition endothermic events occurred as the alloy was heated, many at reproducible temperatures. Many endothermic events occurred prior to abrupt increases in surface temperature and appeared to accelerate the rate of increase in specimen temperature to rates greater than what would be expected from increased temperature alone. It is suggested that the source of these endotherms may increase the oxidation rate of the alloy. Ignition parameters are defined and the temperatures at which these parameters occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (25 to 2000 psia).
Heat Tolerance in Curraleiro Pe-Duro, Pantaneiro and Nelore Cattle Using Thermographic Images
Cardoso, Caio Cesar; Lima, Flávia Gontijo; Fioravanti, Maria Clorinda Soares; do Egito, Andrea Alves; Silva, Flávia Cristina de Paula e; Tanure, Candice Bergmann; Peripolli, Vanessa; McManus, Concepta
2016-01-01
The objective of this study was to compare physiological and thermographic responses to heat stress in three breeds of cattle. Fifteen animals of each of the Nelore, Pantaneiro and Curraleiro Pe-Duro breeds, of approximately two years of age, were evaluated. Heart and respiratory rates, rectal and surface temperature of animals as well as soil temperature were recorded at 8:30 and 15:30 on six days. Variance, correlation, principal factors and canonical analyses were carried out. There were significant differences in the rectal temperature, heart and respiratory rate between breeds (p < 0.001). Nelore and Pantaneiro breeds had the highest rectal temperatures and the lowest respiratory rate (p < 0.001). Breed was also significant for surface temperatures (p < 0.05) showing that this factor significantly affected the response of the animal to heat tolerance in different ways. The Curraleiro Pe-Duro breed had the lowest surface temperatures independent of the period evaluated, with fewer animals that suffered with the climatic conditions, so this may be considered the best adapted when heat challenged under the experimental conditions. Thermography data showed a good correlation with the physiological indexes, and body area, neck and rump were the main points. PMID:26840335
Implicit Coupling Approach for Simulation of Charring Carbon Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2013-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption
Why Do Elephants Flap Their Ears?
NASA Astrophysics Data System (ADS)
Koffi, Moise; Jiji, Latif; Andreopoulos, Yiannis
2009-11-01
It is estimated that a 4200 kg elephant generates as much as 5.12 kW of heat. How the elephant dissipates its metabolic heat and regulates its body temperature has been investigated during the past seven decades. Findings and conclusions differ sharply. The high rate of metabolic heat coupled with low surface area to volume ratio and the absence of sweat glands eliminate surface convection as the primary mechanism for heat removal. Noting that the elephant ears have high surface area to volume ratio and an extensive vascular network, ear flapping is thought to be the principal thermoregulatory mechanism. A computational and experimental program is carried out to examine flow and heat transfer characteristics. The ear is modeled as a uniformly heated oscillating rectangular plate. Our computational work involves a three-dimensional time dependent CFD code with heat transfer capabilities to obtain predictions of the flow field and surface temperature distributions. This information was used to design an experimental setup with a uniformly heated plate of size 0.2m x 0.3m oscillating at 1.6 cycles per second. Results show that surface temperature increases and reaches a steady periodic oscillation after a period of transient oscillation. The role of the vortices shed off the plate in heat transfer enhancement will be discussed.
Columbia: The first 5 flights entry heating data series. Volume 1: An overview
NASA Technical Reports Server (NTRS)
Williams, S. D.
1984-01-01
Entry heating flight data and wind tunnel data on the lower windward and upper lee side centerline, lower wing 50% and 80% semi-spans, side fuselage and payload bay door, Z-400 and 440 trace aft of X/L=0.2, and OMS Pod trace 3, are presented for the first five flights of the space shuttle orbiter. Heating rate distributions are presented in terms of normalized shock Reynolds number to show the sensitivity of heating to these parameters. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program.
Study of Aerothermodynamic Modeling Issues Relevant to High-Speed Sample Return Vehicles
NASA Technical Reports Server (NTRS)
Johnston, Christopher O.
2014-01-01
This paper examines the application of state-of-the-art coupled ablation and radiation simulations to highspeed sample return vehicles, such as those returning from Mars or an asteroid. A defining characteristic of these entries is that the surface recession rates and temperatures are driven by nonequilibrium convective and radiative heating through a boundary layer with significant surface blowing and ablation products. Measurements relevant to validating the simulation of these phenomena are reviewed and the Stardust entry is identified as providing the best relevant measurements. A coupled ablation and radiation flowfield analysis is presented that implements a finite-rate surface chemistry model. Comparisons between this finite-rate model and a equilibrium ablation model show that, while good agreement is seen for diffusion-limited oxidation cases, the finite-rate model predicts up to 50% lower char rates than the equilibrium model at sublimation conditions. Both the equilibrium and finite rate models predict significant negative mass flux at the surface due to sublimation of atomic carbon. A sensitivity analysis to flowfield and surface chemistry rates show that, for a sample return capsule at 10, 12, and 14 km/s, the sublimation rates for C and C3 provide the largest changes to the convective flux, radiative flux, and char rate. A parametric uncertainty analysis of the radiative heating due to radiation modeling parameters indicates uncertainties ranging from 27% at 10 km/s to 36% at 14 km/s. Applying the developed coupled analysis to the Stardust entry results in temperatures within 10% of those inferred from observations, and final recession values within 20% of measurements, which improves upon the 60% over-prediction at the stagnation point obtained through an uncoupled analysis. Emission from CN Violet is shown to be over-predicted by nearly and order-of-magnitude, which is consistent with the results of previous independent analyses. Finally, the coupled analysis is applied to a 14 km/s Earth entry representative of a Mars sample return. Although the radiative heating provides a larger fraction of the total heating, the influence of ablation and radiation on the flowfield are shown to be similar to Stardust.
Near-field heat transfer between graphene/hBN multilayers
NASA Astrophysics Data System (ADS)
Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro
2017-06-01
We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.
NASA Technical Reports Server (NTRS)
Mulholland, Donald R.; Perkins, Porter J.
1948-01-01
The icing protection obtained from an internally air-heated propeller blade partitioned to confine the heated air forward of 25-percent chord was investigated in the NACA Cleveland icing research tunnel. A production-model hollow steel propeller was modified with an Internal radial partition at 25-percent chord and with shank and tip openings to admit and exhaust the heated air. Temperatures were measured on the blade surfaces and in the heated-air system during tunnel icing conditions. Heat-exchanger effectiveness and photographs of Ice formations on the blades were obtained. Surface temperature measurements indicated that confining the heated air forward of the 25-percent chord gave.a more economical distribution of the applied heat as compared with unpartitioned and 50-percent partitioned blades, by dissipating a greater percentage of the available heat at the leading edge. At a propeller speed of 850 rpm, a heating rate of 7000 Btu per hour per blade at a shank air temperature of 400 F provided adequate Icing protection at ambient-air temperatures of 23 F but not at temperatures as low as 15 F. With the heating rate used, a heat-exchanger effectiveness of 77 percent was obtained as compared to 56 percent for 50-percent partitioned and 47 percent for unpartitioned blades.
Magma Chambers, Thermal Energy, and the Unsuccessful Search for a Magma Chamber Thermostat
NASA Astrophysics Data System (ADS)
Glazner, A. F.
2015-12-01
Although the traditional concept that plutons are the frozen corpses of huge, highly liquid magma chambers ("big red blobs") is losing favor, the related notion that magma bodies can spend long periods of time (~106years) in a mushy, highly crystalline state is widely accepted. However, analysis of the thermal balance of magmatic systems indicates that it is difficult to maintain a significant portion in a simmering, mushy state, whether or not the system is eutectic-like. Magma bodies cool primarily by loss of heat to the Earth's surface. The balance between cooling via energy loss to the surface and heating via magma accretion can be denoted as M = ρLa/q, where ρ is magma density, L is latent heat of crystallization, a is the vertical rate of magma accretion, and q is surface heat flux. If M>1, then magma accretion outpaces cooling and a magma chamber forms. For reasonable values of ρ, L, and q, the rate of accretion amust be > ~15 mm/yr to form a persistent volume above the solidus. This rate is extremely high, an order of magnitude faster than estimated pluton-filling rates, and would produce a body 10 km thick in 700 ka, an order of magnitude faster than geochronology indicates. Regardless of the rate of magma supply, the proportion of crystals in the system must vary dramatically with depth at any given time owing to transfer of heat. Mechanical stirring (e.g., by convection) could serve to homogenize crystal content in a magma body, but this is unachievable in crystal-rich, locked-up magma. Without convection the lower part of the magma body becomes much hotter than the top—a process familiar to anyone who has scorched a pot of oatmeal. Thermal models that succeed in producing persistent, large bodies of magma rely on scenarios that are unrealistic (e.g., omitting heat loss to the planet's surface), self-fulfilling prophecies (e.g., setting unnaturally high temperatures as fixed boundary conditions), or physically unreasonable (e.g., magma is intruded faster than geodetic and geophysical observations allow). Magma addition and conductive heat loss rates that are consistent with observation invariably lead to the conclusion that large, long-lived magma bodies, mushy or not, are thermally unsustainable.
Advances in the Surface Renewal Flux Measurement Method
NASA Astrophysics Data System (ADS)
Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.
2011-12-01
The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments underestimate the sensible heat flux, yielding results that are less than 50% of the sensible heat flux measured with finer sensors. We present the methodology for correcting the thermocouple signal to avoid underestimating the heat flux at both the smallest and the second smallest coherent structure scale.
Hu, Guangji; Li, Jianbing; Zhang, Xinying; Li, Yubao
2017-05-01
The treatment of waste biomass (sawdust) through co-pyrolysis with refinery oily sludge was carried out in a fixed-bed reactor. Response surface method was applied to evaluate the main and interaction effects of three experimental factors (sawdust percentage in feedstock, temperature, and heating rate) on pyrolysis oil and char yields. It was found that the oil and char yields increased with sawdust percentage in feedstock. The interaction between heating rate and sawdust percentage as well as between heating rate and temperature was significant on the pyrolysis oil yield. The higher heating value of oil originated from sawdust during co-pyrolysis at a sawdust/oily sludge ratio of 3:1 increased by 5 MJ/kg as compared to that during sawdust pyrolysis alone, indicating a synergistic effect of co-pyrolysis. As a result, petroleum sludge can be used as an effective additive in the pyrolysis of waste biomass for improving its energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transpiration cooling of hypersonic blunt bodies with finite rate surface reactions
NASA Technical Reports Server (NTRS)
Henline, William D.
1989-01-01
The convective heat flux blockage to blunt body and hypersonic vehicles by transpiration cooling are presented. The general problem of mass addition to laminar boundary layers is reviewed. Results of similarity analysis of the boundary layer problem are provided for surface heat flux with transpiration cooling. Detailed non-similar results are presented from the numerical program, BLIMPK. Comparisons are made with the similarity theory. The effects of surface catalysis are investigated.
Atmospheric Science Data Center
2015-11-24
... Parameters: Clouds Irradiance Latent Heat Flux Liquid Water Content Precipitation Rate Sea Surface ... Solar Transmittance Specific Humidity Surface Stress System Optical Depth Temperature Wind Direction Wind Speed ...
Mechanical, structural and dissolution properties of heat treated thin-film phosphate based glasses
NASA Astrophysics Data System (ADS)
Stuart, Bryan W.; Gimeno-Fabra, Miquel; Segal, Joel; Ahmed, Ifty; Grant, David M.
2017-09-01
Here we show the deposition of 2.7 μm thick phosphate based glass films produced by magnetron sputtering, followed by post heat treatments at 500 °C. Variations in degradation properties pre and post heat treatment were attributed to the formation of Hematite crystals within a glass matrix, iron oxidation and the depletion of hydrophilic P-O-P bonds within the surface layer. As deposited and heat treated coatings showed interfacial tensile adhesion in excess of 73.6 MPa; which surpassed ISO and FDA requirements for HA coatings. Scratch testing of coatings on polished substrates revealed brittle failure mechanisms, amplified due to heat treatment and interfacial failure occurring from 2.3 to 5.0 N. Coatings that were deposited onto sandblasted substrates to mimic commercial implant surfaces, did not suffer from tensile cracking or trackside delamination showing substantial interfacial improvements to between 8.6 and 11.3 N. An exponential dissolution rate was observed from 0 to 2 h for as deposited coatings, which was eliminated via heat treatment. From 2 to 24 h ion release rates ordered P > Na > Mg > Ca > Fe whilst all coatings exhibited linear degradation rates, which reduced by factors of 2.4-3.0 following heat treatments.
NASA Technical Reports Server (NTRS)
Bradley, P. F.; Throckmorton, D. A.
1981-01-01
A study was completed to determine the sensitivity of computed convective heating rates to uncertainties in the thermal protection system thermal model. Those parameters considered were: density, thermal conductivity, and specific heat of both the reusable surface insulation and its coating; coating thickness and emittance; and temperature measurement uncertainty. The assessment used a modified version of the computer program to calculate heating rates from temperature time histories. The original version of the program solves the direct one dimensional heating problem and this modified version of The program is set up to solve the inverse problem. The modified program was used in thermocouple data reduction for shuttle flight data. Both nominal thermal models and altered thermal models were used to determine the necessity for accurate knowledge of thermal protection system's material thermal properties. For many thermal properties, the sensitivity (inaccuracies created in the calculation of convective heating rate by an altered property) was very low.
On the remote measurement of evaporation rates from bare wet soil under variable cloud cover
NASA Technical Reports Server (NTRS)
Auer, S.
1976-01-01
Evaporation rates from a natural wet soil surface are calculated from an energy balance equation at 0.1-hour intervals. A procedure is developed for calculating the heat flux through the soil surface from a harmonic analysis of the surface temperature curve. The evaporation integrated over an entire 24-hour period is compared with daily evaporation rates obtained from published models.
Impact of heat release on strain rate field in turbulent premixed Bunsen flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coriton, Bruno Rene Leon; Frank, Jonathan H.
2016-08-10
The effects of combustion on the strain rate field are investigated in turbulent premixed CH 4/air Bunsen flames using simultaneous tomographic PIV and OH LIF measurements. Tomographic PIV provides three-dimensional velocity measurements, from which the complete strain rate tensor is determined. The OH LIF measurements are used to determine the position of the flame surface and the flame-normal orientation within the imaging plane. This combination of diagnostic techniques enables quantification of divergence as well as flame-normal and tangential strain rates, which are otherwise biased using only planar measurements. Measurements are compared in three lean-to-stoichiometric flames that have different amounts ofmore » heat release and Damköhler numbers greater than unity. The effects of heat release on the principal strain rates and their alignment relative to the local flame normal are analyzed. The extensive strain rate preferentially aligns with the flame normal in the reaction zone, which has been indicated by previous studies. The strength of this alignment increases with increasing heat release and, as a result, the flame-normal strain rate becomes highly extensive. These effects are associated with the gas expansion normal to the flame surface, which is largest for the stoichiometric flame. In the preheat zone, the compressive strain rate has a tendency to align with the flame normal. Away from the flame front, the flame – strain rate alignment is arbitrary in both the reactants and products. The flame-tangential strain rate is on average positive across the flame front, and therefore the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence. As a result, increases in heat release result in larger positive values of the divergence as well as flame-normal and tangential strain rates, the tangential strain rate has a weaker dependence on heat release than the flame-normal strain rate and the divergence.« less
Notley, Sean R; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu; Taylor, Nigel A S
2016-07-01
Human heat loss is thought, in part, to be morphologically related. It was therefore hypothesized that when heat-loss requirements and body temperatures were matched, that the mass-specific surface area alone could significantly explain both cutaneous vascular and sudomotor responses during compensable exercise. These thermoeffector responses were examined in 36 men with widely varying mass-specific surface areas (range, 232.3-292.7 cm(2)/kg), but of similar age, aerobic fitness, and adiposity. Subjects completed two trials under compensable conditions (28.1°C, 36.8% relative humidity), each involving rest (20 min) and steady-state cycling (45 min) at two matched metabolic heat-production rates (light, ∼135 W/m(2); moderate, ∼200 W/m(2)). Following equivalent mean body temperature changes, forearm blood flow and vascular conductance (r = 0.63 and r = 0.65) shared significant, positive associations with the mass-specific surface area during light work (P < 0.05), explaining ∼45% of the vasomotor variation. Conversely, during light and moderate work, whole body sweat rate, as well as local sweat rate and sudomotor sensitivity at three of four measured sites, revealed moderate, negative relationships with the mass-specific surface area (correlation coefficient range -0.37 to -0.73, P < 0.05). Moreover, those relationships could uniquely account for between 10 and 53% of those sweating responses (P < 0.05). Therefore, both thermoeffector responses displayed a significant morphological dependency in the presence of equivalent thermoafferent drive. Indeed, up to half of the interindividual variation in these effector responses could now be explained through morphological differences and the first principles governing heat transfer. Copyright © 2016 the American Physiological Society.
Notley, Sean R.; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu
2016-01-01
Human heat loss is thought, in part, to be morphologically related. It was therefore hypothesized that when heat-loss requirements and body temperatures were matched, that the mass-specific surface area alone could significantly explain both cutaneous vascular and sudomotor responses during compensable exercise. These thermoeffector responses were examined in 36 men with widely varying mass-specific surface areas (range, 232.3-292.7 cm2/kg), but of similar age, aerobic fitness, and adiposity. Subjects completed two trials under compensable conditions (28.1°C, 36.8% relative humidity), each involving rest (20 min) and steady-state cycling (45 min) at two matched metabolic heat-production rates (light, ∼135 W/m2; moderate, ∼200 W/m2). Following equivalent mean body temperature changes, forearm blood flow and vascular conductance (r = 0.63 and r = 0.65) shared significant, positive associations with the mass-specific surface area during light work (P < 0.05), explaining ∼45% of the vasomotor variation. Conversely, during light and moderate work, whole body sweat rate, as well as local sweat rate and sudomotor sensitivity at three of four measured sites, revealed moderate, negative relationships with the mass-specific surface area (correlation coefficient range −0.37 to −0.73, P < 0.05). Moreover, those relationships could uniquely account for between 10 and 53% of those sweating responses (P < 0.05). Therefore, both thermoeffector responses displayed a significant morphological dependency in the presence of equivalent thermoafferent drive. Indeed, up to half of the interindividual variation in these effector responses could now be explained through morphological differences and the first principles governing heat transfer. PMID:27125845
Roberts, Jr., Charles E.; Chadwell, Christopher J.
2004-09-21
The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2016-12-01
Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.
Experimental and theoretical study of shuttle lee-side heat transfer rates
NASA Technical Reports Server (NTRS)
Mruk, G. K.; Bertin, J.; Lamb, J. P.
1975-01-01
The experimental program which was conducted in the Calspan 96-inch hypersonic shock tunnel to investigate what effect the windward surface temperature had on the heat transfer to the leeward surface of the space shuttle orbiter is discussed. Heat-transfer distributions, surface-pressure distributions, and schlieren photographs were obtained for an 0.01-scale model of the 139 configuration space shuttle orbiter at angles-of-attack of 30 and 40 deg. Similar data were obtained for an 0.01 scale wingless model of the 139 configuration at angles-of-attack of 30 and 90 deg. Data were obtained for Mach numbers from Reynolds numbers, and surface temperatures and compared with theoretical results.
Heat transfer to an unconfined ceiling from an impinging buoyant diffusion flame
NASA Astrophysics Data System (ADS)
Weng, W. G.; Hasemi, Y.
2006-05-01
Impinging flames are used in fire safety research, industrial heating and melting, and aerospace applications. Multiple modes of heat transfer, such as natural convection, forced convection and thermal radiation, etc. are commonly important in those processes. However, the detailed heat transfer mechanisms are not well understood. In this paper, a model is developed to calculate the thermal response of an unconfined nonburning ceiling from an impinging buoyant diffusion flame. This model uses an algorithm for conduction into the ceiling material. It takes account of heat transfer due to radiation from the fire source to the ceiling surface, and due to reradiation from the ceiling surface to other items. Using experimental data, the convective heat transfer coefficient at lower surface is deduced from this model. In addition, the predicted heat fluxes are compared with the existing experimental data, and the comparison results validate the presented model. It is indicated that this model can be used to predict radial-dependent surface temperature histories under a variety of different realistic levels of fire energy generation rates and fire-to-ceiling separation distance.
2006-09-30
temperature and the upwelling IR radiative heat flux were obtained from a pyrometer . The heat fluxes are combined to compute the net heat flux into or out...sampled acoustic Doppler velocimeters (ADVs) and thermistors (Figure 1b). These measurements provide inertial-range estimates of dissipation rates...horizontal velocity at the sea surface were obtained with a “fanbeam” acoustic Doppler current profiler (ADCP), which produces spatial maps of the
Computational Aeroheating Predictions for Mars Lander Configurations
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Alter, Stephen J.
2003-01-01
The proposed Mars Science Laboratory (MSL) mission is intended to deliver a large rover to the Martian surface within 10 km of the target site. This paper presents computational fluid dynamics (CFD) predictions of forebody heating rates for two MSL entry configurations with fixed aerodynamic trim tabs. Results are compared to heating on a 70-deg sphere-cone reference geometry. All three heatshield geometries are designed to trim hypersonically at a 16 deg angle of attack in order to generate the lift-to-drag ratio (L/D) required for precision landing. Comparisons between CFD and tunnel data are generally in good agreement for each configuration, but the computations predict more flow separation and higher heating on a trim tab inclined 10 deg relative to the surface. CFD solutions at flight conditions were obtained using an 8-species Mars gas in chemical and thermal nonequilibrium. Laminar and Baldwin-Lomax solutions were used to estimate the effects of the trim tabs and turbulence on heating. A tab extending smoothly from the heatshield flank is not predicted to increase laminar or turbulent heating rates above the reference levels. Laminar heating on a tab deflected 10 deg from the conical heatshield is influenced by flow separation and is up to 35% above the baseline heating rate. The turbulent solution on the inclined tab configuration predicts attached flow and a 43% heating increase above the reference level.
Computational Aeroheating Predictions for Mars Lander Configurations
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Alter, Stephen J.
2003-01-01
The proposed Mars Science Laboratory (MSL) mission is intended to deliver a large rover to the Martian surface within 10 km of the target site. This paper presents computational fluid dynamics (CFD) predictions of forebody heating rates for two MSL entry configurations with fixed aerodynamic trim tabs. Results are compared to heating on a 70-deg sphere-cone reference geometry. All three heatshield geometries are designed to trim hypersonically at a 16 deg angle of attack in order to generate the lift-to-drag ratio (LID) required for precision landing. Comparisons between CFD and tunnel data are generally in good agreement for each configuration, but the computations predict more flow separation and higher heating on a trim tab inclined 10 deg relative to the surface. CFD solutions at flight conditions were obtained using an 8-species Mars gas in chemical and thermal non-equilibrium. Laminar and Baldwin-Lomax solutions were used to estimate the effects of the trim tabs and turbulence on heating. A tab extending smoothly from the heatshield flank is not predicted to increase laminar or turbulent heating rates above the reference levels. Laminar heating on a tab deflected 10 deg from the conical heatshield is influenced by flow separation and is up to 35% above the baseline heating rate. The turbulent solution on the inclined tab configuration predicts attached flow and a 43% heating increase above the reference level.
Prediction of Experimental Surface Heat Flux of Thin Film Gauges using ANFIS
NASA Astrophysics Data System (ADS)
Sarma, Shrutidhara; Sahoo, Niranjan; Unal, Aynur
2018-05-01
Precise quantification of surface heat fluxes in highly transient environment is of paramount importance from the design point of view of several engineering equipment like thermal protection or cooling systems. Such environments are simulated in experimental facilities by exposing the surface with transient heat loads typically step/impulsive in nature. The surface heating rates are then determined from highly transient temperature history captured by efficient surface temperature sensors. The classical approach is to use thin film gauges (TFGs) in which temperature variations are acquired within milliseconds, thereby allowing calculation of surface heat flux, based on the theory of one-dimensional heat conduction on a semi-infinite body. With recent developments in the soft computing methods, the present study is an attempt for the application of intelligent system technique, called adaptive neuro fuzzy inference system (ANFIS) to recover surface heat fluxes from a given temperature history recorded by TFGs without having the need to solve lengthy analytical equations. Experiments have been carried out by applying known quantity of `impulse heat load' through laser beam on TFGs. The corresponding voltage signals have been acquired and surface heat fluxes are estimated through classical analytical approach. These signals are then used to `train' the ANFIS model, which later predicts output for `test' values. Results from both methods have been compared and these surface heat fluxes are used to predict the non-linear relationship between thermal and electrical properties of the gauges that are exceedingly pertinent to the design of efficient TFGs. Further, surface plots have been created to give an insight about dimensionality effect of the non-linear dependence of thermal/electrical parameters on each other. Later, it is observed that a properly optimized ANFIS model can predict the impulsive heat profiles with significant accuracy. This paper thus shows the appropriateness of soft computing technique as a practically constructive replacement for tedious analytical formulation and henceforth, effectively quantifies the modeling of TFGs.
40 CFR 63.4081 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and electric heat pumps. Specifically excluded are heat transfer coils and large commercial and... high as the rates specified in paragraph (a) of this section. (3) The surface coating of heat transfer...) or by automated means (e.g., transfer through pipes using pumps); and (9) Handling and conveying of...
Aerodynamic heating on AFE due to nonequilibrium flow with variable entropy at boundary layer edge
NASA Technical Reports Server (NTRS)
Ting, P. C.; Rochelle, W. C.; Bouslog, S. A.; Tam, L. T.; Scott, C. D.; Curry, D. M.
1991-01-01
A method of predicting the aerobrake aerothermodynamic environment on the NASA Aeroassist Flight Experiment (AFE) vehicle is described. Results of a three dimensional inviscid nonequilibrium solution are used as input to an axisymmetric nonequilibrium boundary layer program to predict AFE convective heating rates. Inviscid flow field properties are obtained from the Euler option of the Viscous Reacting Flow (VRFLO) code at the boundary layer edge. Heating rates on the AFE surface are generated with the Boundary Layer Integral Matrix Procedure (BLIMP) code for a partially catalytic surface composed of Reusable Surface Insulation (RSI) times. The 1864 kg AFE will fly an aerobraking trajectory, simulating return from geosynchronous Earth orbit, with a 75 km perigee and a 10 km/sec entry velocity. Results of this analysis will provide principal investigators and thermal analysts with aeroheating environments to perform experiment and thermal protection system design.
NASA Astrophysics Data System (ADS)
Houpert, Loïc; Testor, Pierre; Durrieu de Madron, Xavier; Somot, Samuel; D'Ortenzio, Fabrizio; Estournel, Claude; Lavigne, Héloïse
2014-05-01
We present a relatively high resolution Mediterranean climatology (0.5°x0.5°x12 months) of the seasonal thermocline based on a comprehensive collection of temperature profiles of the last 44 years (1969-2012). The database includes more than 190,000 profiles, merging CTD, XBT, profiling floats, and gliders observations. This data set is first used to describe the seasonal cycle of the mixed layer depth and of the seasonal thermocline and on the whole Mediterranean on a monthly climatological basis. Our analysis discriminates several regions with coherent behaviors, in particular the deep water formation sites, characterized by significant differences in the winter mixing intensity. Heat Storage Rate (HSR) is calculated as the time rate of change of the heat content due to variations in the temperature integrated from the surface down to the base of the seasonal thermocline. Heat Entrainment Rate (HER) is calculated as the time rate of change of the heat content due to the deepening of thermocline base. We propose a new independent estimate of the seasonal cycle of the Net surface Heat Flux, calculated on average over the Mediterranean Sea for the 1979-2011 period, based only on in-situ observations. We used our new climatologies of HSR and of HER, combined to existing climatology of the horizontal heat flux at Gibraltar Strait. Although there is a good agreement between our estimation of NHF, from observations, with modeled NHF, some differences may be noticed during specific periods. A part of these differences may be explained by the high temporal and spatial variability of the Mixed Layer Depth and of the seasonal thermocline, responsible for very localized heat transfer in the ocean.
Numerical Analysis of Convection/Transpiration Cooling
NASA Technical Reports Server (NTRS)
Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale
1999-01-01
An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.
NASA Astrophysics Data System (ADS)
Ruiz-Luna, H.; Porcayo-Calderon, J.; Alvarado-Orozco, J. M.; Mora-García, A. G.; Martinez-Gomez, L.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.
2017-12-01
The low-temperature electrochemical behavior of HVOF Ni-20Cr coatings was assessed. The coatings were evaluated in different conditions including as-sprayed, as-ground, and heat-treated in air and argon atmospheres. A detailed analysis of the coatings was carried out by means of XRD, SEM, and EPMA, prior and after the corrosion test. The corrosion rate was analyzed in a NaCl solution saturated with CO2. Results demonstrate that the use of a low-oxygen partial pressure favors the formation of a Cr2O3 layer on the surface of the coatings. According to the electrochemical results, the lower corrosion rates were obtained for the heat-treated coatings irrespective of the surface finishing, being the ground and argon heat-treated condition that shows the best corrosion performance. This behavior is due to the synergistic effect of the low-pressure heat treatment and the grinding processes. The grinding promotes a more homogeneous reaction area without surface heterogeneities such as voids, and the pre-oxidation treatment decreases the porosity content of the coating and also allows the growing of a Cr-rich oxide scale which acts as a barrier against the ions of the aqueous solution.
High rate fabrication of compression molded components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.
2016-04-19
A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; andmore » applying molding pressure to the pre-form to form the composite component.« less
DeVine, Aubrey C; Vu, Phuong T; Yost, Michael G; Seto, Edmund Y W; Busch Isaksen, Tania M
2017-08-20
This research analyzed the relationship between extreme heat and Emergency Medical Service (EMS) calls in King County, WA, USA between 2007 and 2012, including the effect of community-level characteristics. Extreme heat thresholds for the Basic Life Support (BLS) data and the Advanced Life Support (ALS) data were found using a piecewise generalized linear model with Akaike Information Criterion (AIC). The association between heat exposure and EMS call rates was investigated using a generalized estimating equations with Poisson mean model, while adjusting for community-level indicators of poverty, impervious surface, and elderly population (65+). In addition, we examined the effect modifications of these community-level factors. Extreme-heat thresholds of 31.1 °C and 33.5 °C humidex were determined for the BLS and ALS data, respectively. After adjusting for other variables in the model, increased BLS call volume was significantly associated with occurring on a heat day (relative rate (RR) = 1.080, p < 0.001), as well as in locations with higher percent poverty (RR = 1.066, p < 0.001). No significant effect modification was identified for the BLS data on a heat day. Controlling for other variables, higher ALS call volume was found to be significantly associated with a heat day (RR = 1.067, p < 0.001), as well as in locations with higher percent impervious surface (RR = 1.015, p = 0.039), higher percent of the population 65 years or older (RR = 1.057, p = 0.005), and higher percent poverty (RR = 1.041, p = 0.016). Furthermore, percent poverty and impervious surface were found to significantly modify the relative rate of ALS call volumes between a heat day and non-heat day. We conclude that EMS call volume increases significantly on a heat day compared to non-heat day for both call types. While this study shows that there is some effect modification between the community-level variables and call volume on a heat day, further research is necessary. Our findings also suggest that with adequate power, spatially refined analyses may not be necessary to accurately estimate the extreme-heat effect on health.
Urban evaporation rates for water-permeable pavements.
Starke, P; Göbel, P; Coldewey, W G
2010-01-01
In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.
Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite.
Mardoukhi, Ahmad; Mardoukhi, Yousof; Hokka, Mikko; Kuokkala, Veli-Tapani
2017-01-28
This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).
Modeling long-term permafrost degradation
NASA Astrophysics Data System (ADS)
Nicolsky, D.; Romanovsky, V. E.
2017-12-01
Permafrost, as an important part of the Cryosphere, has been also strongly affected by climate warming and a wide spread of the permafrost responses to the warming is currently observed. In particular, at some locations rather slow rates of the permafrost degradations are noticed. We related this behavior to the presence of unfrozen water in frozen fine-grained earth material. In this research, we examine not-very-commonly-discussed heat flux from the ground surface into the permafrost and consequently discuss implications of the unfrozen liquid water content on the long-term thawing of permafrost. We conduct a series of numerical experiments and demonstrate that the presence of fine-grained material with substantial unfrozen liquid water content at below 0C temperature can significantly slow down the thawing rate and hence can increase resilience of permafrost to the warming events. This effect is highly nonlinear and a difference between the rates of thawing in fine- and coarse-grained materials is more drastic for lower values of the incoming into permafrost heat flux. For the high heat flux, the difference between these rates almost disappears. As near-surface permafrost temperature increases towards 0C and the changes in the ground temperature become less evident, the future observation networks should try to incorporate measurements of the unfrozen liquid water content in the near-surface permafrost and heat flux into permafrost in addition to the existing temperature observations.
The friction and wear of carbon-carbon composites for aircraft brakes
NASA Astrophysics Data System (ADS)
Hutton, Toby
Many carbon-carbon composite aircraft brakes encounter high wear rates during low energy braking operations. The work presented in this thesis addresses this issue, but it also elucidates the microstructural changes and wear mechanisms that take place in these materials during all braking conditions encountered by aircraft brakes. A variety of investigations were conducted using friction and wear testing, as well as examination of wear surfaces and wear debris using OM, SEM, X-RD, TGA and Density Gradient Separation (DOS). Friction and wear tests were conducted on a PAN fibre/CVI matrix carbon-carbon composite (Dunlop) and a pitch fibre/Resin-CVI matrix carbon-carbon composite (Bendix). Extensive testing was undertaken on the Dunlop composites to asses the effects of composite architecture, fibre orientation and heat treatment temperatures on friction and wear. Other friction and wear tests, conducted on the base Dunlop composite, were used to investigate the relative influences of temperature and sliding speed. It was found that the effect of temperature was dominant over composite architecture, fibre orientation and sliding speed in governing the friction and wear performance of the Dunlop composites. The development of bulk temperatures in excess of 110 C by frictional heating resulted in smooth friction and a low wear rate. Reducing heat treatment temperature also reduced the thermal conductivity producing high interface temperatures, low smooth friction coefficients and low wear rates under low energy braking conditions. However, this was at the expense of high oxidative wear rates under higher energy braking conditions. The Bendix composites had lower thermal conductivities than the fully heat treated Dunlop composite and exhibited similar friction and wear behaviour to Dunlop composites heat treated to lower temperatures. Examination of the wear surfaces using OM and SEM revealed particulate or Type I surface debris on wear surfaces tested under low energy conditions. Type I debris was stable on the wear surfaces to a temperature of 110C, after which it was gradually converted to film material or Type II surface debris by the action of heat and shear. Type I debris was associated with high erratic friction coefficients (ja.=0.55- 0.65) and high wear rates (~ 8 mg/min), whereas. Type II debris was associated low smooth friction (|LI=0.35-0.45) and low wear rates (~ 4 mg/min). Analysis of the wear debris produced from testing on large dynamometers under the simulated conditions of taxiing and landing indicated that the structure of the wear debris became highly disordered as a result of the wear process. However, evidence from XRD, TGA and DGS suggested that, under very high energy conditions, such as those encountered in a rejected take off (RTO), the wear debris was partially regraphitised at the wear face by the action of heat and shear. The results from analysis of the wear surfaces and the wear debris supported the theory that a regenerative process or friction film formation, delamination and repair operated on the wear surfaces of these brake materials.
Thermal electron heating rate: A derivation
NASA Technical Reports Server (NTRS)
Hoegy, W. R.
1983-01-01
The thermal electron heating rate is an important heat source term in the ionospheric electron energy balance equation, representing heating by photoelectrons or by precipitating higher energy electrons. A formula for the thermal electron heating rate is derived from the kinetic equation using the electron-electron collision operator as given by the unified theory of Kihara and Aono. This collision operator includes collective interactions to produce a finite collision operator with an exact Coulomb logarithm term. The derived heating rate O(e) is the sum of three terms, O(e) = O(p) + S + O(int), which are respectively: (1) primary electron production term giving the heating from newly created electrons that have not yet suffered collisions with the ambient electrons; (2) a heating term evaluated on the energy surface m(e)/2 = E(T) at the transition between Maxwellian and tail electrons at E(T); and (3) the integral term representing heating of Maxwellian electrons by energetic tail electrons at energies ET. Published ionospheric electron temperature studies used only the integral term O(int) with differing lower integration limits. Use of the incomplete heating rate could lead to erroneous conclusions regarding electron heat balance, since O(e) is greater than O(int) by as much as a factor of two.
NASA Technical Reports Server (NTRS)
Olson, S. L.; Beeson, H. D.; Haas, J. P.; Baas, J. S.
2004-01-01
The standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) is modified to provide a bench-scale test environment that simulates the low velocity buoyant or ventilation flow generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire (stagnation flow) configuration. For a fixed radiant flux, ignition delay times for characterization material PMMA are shown to decrease by a factor of three at low stretch, demonstrating that ignition delay times determined from normal cone tests significantly underestimate the risk in microgravity. The critical heat flux for ignition is found to be lowered at low stretch as the convective cooling is reduced. At the limit of no stretch, any heat flux that exceeds the surface radiative loss at the surface ignition temperature is sufficient for ignition. Regression rates for PMMA increase with heat flux and stretch rate, but regression rates are much more sensitive to heat flux at the low stretch rates, where a modest increase in heat flux of 25 kW/m2 increases the burning rates by an order of magnitude. The global equivalence ratio of these flames is very fuel rich, and the quantity of CO produced in this configuration is significantly higher than standard cone tests. These results [2] demonstrate the ELSA apparatus allows us to conduct normal gravity experiments that accurately and quantifiably evaluate a material s flammability characteristics in the real-use environment of spacecraft or extra-terrestrial gravitational acceleration. These results also demonstrate that current NASA STD 6001 Test 2 (standard cone) is not conservative since it evaluates materials flammability with a much higher inherent buoyant convective flow.
Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.
2015-01-01
This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.
Heat removal using microclimate foot cooling: a thermal foot manikin study.
Castellani, John W; Demes, Robert; Endrusick, Thomas L; Cheuvront, Samuel N; Montain, Scott J
2014-04-01
It has been proposed that microclimate cooling systems exploit the peripheral extremities because of more efficient heat transfer. The purpose of this study was to quantify, using a patented microclimate cooling technique, the heat transfer from the plantar surface of the foot for comparison to other commonly cooled body regions. A military boot was fitted with an insole embedded with a coiled, 1.27 m length of hollow tubing terminating in inlet and outlet valves. A thermal foot manikin with a surface temperature of 34 degrees C was placed in the boot and the valves were connected to a system that circulated water through the insole at a temperature of 20 degrees C and flow rate of 120 ml x min(-1). The manikin foot served as a constant heat source to determine heat transfer provided by the insole. Testing was done with the foot model dry and sweating at a rate of 500 ml x h(- 1) x m(-2). Climatic chamber conditions were 30 degrees C with 30% RH. Heat loss was approximately 4.1 +/- 0.1 and approximately 7.7 +/- 0.3 W from the dry and sweating foot models, respectively. On a relative scale, the heat loss was 3.0 W and 5.5 W per 1% (unit) body surface area, respectively, for the dry and sweating conditions. The relative heat loss afforded by plantar foot cooling was similar compared to other body regions, but the absolute amount of heat removal is unlikely to make an impact on whole body heat balance.
Correlation parameters for the study of leeside heating on a lifting body at hypersonic speeds
NASA Technical Reports Server (NTRS)
Vidal, R. J.
1974-01-01
Leeside heating was studied with the aim of gaining some insight into: (1) the magnitude of the leeside heating rates and (2) the methods to be used to extrapolate wind tunnel leeside heating rates to the full scale flight condition. This study was based on existing experimental data obtained in a hypersonic shock tunnel on lifting body configurations that are typical of shuttle orbiter vehicles. Heat transfer was first measured on the windward side to determine the boundary layer type. Then the leeside heating was investigated with the classified boundary layer. Correlation data are given on the windward turbulent boundary layer, the windward laminar boundary layer, and the leeside surfaces.
Nanoengineered Surfaces for High Flux Thin Film Evaporation
2013-07-15
for a variety of heat transfer and resource conserving applications. References 1. Mudawar , I., Assessment of high-heat-flux thermal...M.B. and I. Mudawar , High-flux boiling in low-flow rate, low-pressure drop mini- channel and microchannel heat sinks. International Journal of Heat...pressure drop elements and fabricated nucleation sites. Journal of Heat Transfer, 2006. 128(4): p. 389-396. 7. Qu, W. and I. Mudawar , Measurement and
Forced convection in the wakes of impacting and sliding bubbles
NASA Astrophysics Data System (ADS)
O'Reilly Meehan, R.; Williams, N. P.; Donnelly, B.; Persoons, T.; Nolan, K.; Murray, D. B.
2017-09-01
Both vapour and gas bubbles are known to significantly increase heat transfer rates between a heated surface and the surrounding fluid, even with no phase change. The cooling structures observed are highly temporal, intricate and complex, with a full description of the surface cooling phenomena not yet available. The current study uses high speed infrared thermography to measure the surface temperature and determine the convective heat flux enhancement associated with the interaction of a single air bubble with a heated, inclined surface. This process can be discretised into the initial impact, in which enhancement levels in excess of 20 times natural convection are observed, and the subsequent sliding behaviour, with more moderate maximum enhancement levels of 8 times natural convection. In both cases, localised regions of suppressed heat transfer are also observed due to the recirculation of warm fluid displaced from the thermal boundary layer with the surface. The cooling patterns observed herein are consistent with the interaction between an undulating wake containing multiple hairpin vortex loops and the thermal boundary layer that exists under the surface, with the initial nature of this enhancement and suppression dependent on the particular point on its rising path at which the bubble impacts the surface.
NASA Technical Reports Server (NTRS)
Sharpe, L., Jr.
1987-01-01
A 12.5 degree half cone with tangential slot injection at Mach 6.95 was studied to determine the heating rates to the surface of the body near and far downstream of the slot. The cone had a zero degree angle of attack. The heating rates were obtained using a computer program that was developed at NASA-Langley Research Center. The concentration of nitrogen from the slot into the boundary layer was also determined. The ratio of slot to freestream was varied to determine its effect on heating. The numerical heating rates were compared to other correlations obtained from experimental studies as well as theoretical laminar and turbulent results.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Shah, Faisal; Khan, Muhammad Ijaz; Alsaedi, Ahmed
2018-03-01
Mixed convection stagnation point flow of nanofluid by a vertical permeable circular cylinder has been addressed. Water is treated as ordinary liquid while nanoparticles include aluminium oxide, copper and titanium dioxide. Homogeneous-heterogeneous reactions are considered. The nonlinear higher order expressions are changed into first ordinary differential equations and then solved by built-in-Shooting method in mathematica. The results of velocity, temperature, concentration, skin friction and local Nusselt number are discussed. Our results demonstrate that surface drag force and heat transfer rate are enhanced linearly for higher estimation of curvature parameter. Further surface drag force decays for aluminium oxide and it enhances for copper nanoparticle. Heat transfer rate enhances with increasing all three types of nanoparticles. In addition, the lowest heat transfer rate is obtained in case of titanium dioxide when compared with copper and aluminium oxide.
Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature.
Chen, Dengyu; Li, Yanjun; Cen, Kehui; Luo, Min; Li, Hongyan; Lu, Bin
2016-10-01
The pyrolysis of poplar wood were comprehensively investigated at different pyrolysis temperatures (400, 450, 500, 550, and 600°C) and at different heating rates (10, 30, and 50°C/min). The results showed that BET surface area of biochar, the HHV of non-condensable gas and bio-oil reached the maximum values of 411.06m(2)/g, 14.56MJ/m(3), and 14.39MJ/kg, under the condition of 600°C and 30°C/min, 600°C and 50°C/min, and 550°C and 50°C/min, respectively. It was conducive to obtain high mass and energy yield of bio-oil at 500°C and higher heating rate, while lower pyrolysis temperature and heating rate contributed towards obtaining both higher mass yield and energy yield of biochar. However, higher pyrolysis temperature and heating rate contributed to obtain both higher mass yield and energy yield of the non-condensable gas. In general, compared to the heating rate, the pyrolysis temperature had more effect on the product properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Faghri, Amir; Swanson, Theodore D.
1990-01-01
In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.
Wang, Gui-Lian; Yang, Da-Wei; Wang, Yan; Niu, Di; Zhao, Xiao-Lin; Ding, Gui-Fu
2015-04-22
This paper experimentally and numerically investigated the heat transfer and friction characteristics of microfluidic heat sinks with variously-shaped micro-ribs, i.e., rectangular, triangular and semicircular ribs. The micro-ribs were fabricated on the sidewalls of microfluidic channels by a surface-micromachining micro-electro-mechanical system (MEMS) process and used as turbulators to improve the heat transfer rate of the microfluidic heat sink. The results indicate that the utilizing of micro-ribs provides a better heat transfer rate, but also increases the pressure drop penalty for microchannels. Furthermore, the heat transfer and friction characteristics of the microchannels are strongly affected by the rib shape. In comparison, the triangular ribbed microchannel possesses the highest Nusselt number and friction factor among the three rib types.
Effects of Combined Surface and In-Depth Absorption on Ignition of PMMA
Gong, Junhui; Chen, Yixuan; Li, Jing; Jiang, Juncheng; Wang, Zhirong; Wang, Jinghong
2016-01-01
A one-dimensional numerical model and theoretical analysis involving both surface and in-depth radiative heat flux absorption are utilized to investigate the influence of their combination on ignition of PMMA (Polymethyl Methacrylate). Ignition time, transient temperature in a solid and optimized combination of these two absorption modes of black and clear PMMA are examined to understand the ignition mechanism. Based on the comparison, it is found that the selection of constant or variable thermal parameters of PMMA barely affects the ignition time of simulation results. The linearity between tig−0.5 and heat flux does not exist anymore for high heat flux. Both analytical and numerical models underestimate the surface temperature and overestimate the temperature in a solid beneath the heat penetration layer for pure in-depth absorption. Unlike surface absorption circumstances, the peak value of temperature is in the vicinity of the surface but not on the surface for in-depth absorption. The numerical model predicts the ignition time better than the analytical model due to the more reasonable ignition criterion selected. The surface temperature increases with increasing incident heat flux. Furthermore, it also increases with the fraction of surface absorption and the radiative extinction coefficient for fixed heat flux. Finally, the combination is optimized by ignition time, temperature distribution in a solid and mass loss rate. PMID:28773940
Effects of Combined Surface and In-Depth Absorption on Ignition of PMMA.
Gong, Junhui; Chen, Yixuan; Li, Jing; Jiang, Juncheng; Wang, Zhirong; Wang, Jinghong
2016-10-05
A one-dimensional numerical model and theoretical analysis involving both surface and in-depth radiative heat flux absorption are utilized to investigate the influence of their combination on ignition of PMMA (Polymethyl Methacrylate). Ignition time, transient temperature in a solid and optimized combination of these two absorption modes of black and clear PMMA are examined to understand the ignition mechanism. Based on the comparison, it is found that the selection of constant or variable thermal parameters of PMMA barely affects the ignition time of simulation results. The linearity between t ig -0.5 and heat flux does not exist anymore for high heat flux. Both analytical and numerical models underestimate the surface temperature and overestimate the temperature in a solid beneath the heat penetration layer for pure in-depth absorption. Unlike surface absorption circumstances, the peak value of temperature is in the vicinity of the surface but not on the surface for in-depth absorption. The numerical model predicts the ignition time better than the analytical model due to the more reasonable ignition criterion selected. The surface temperature increases with increasing incident heat flux. Furthermore, it also increases with the fraction of surface absorption and the radiative extinction coefficient for fixed heat flux. Finally, the combination is optimized by ignition time, temperature distribution in a solid and mass loss rate.
NASA Astrophysics Data System (ADS)
Pati, A. R.; Kumar, A.; Mohapatra, S. S.
2018-06-01
The objective of the current work is to enhance the spray cooling by changing the orientation of the nozzle with different additives (acetone, methanol, ethanol, benzene, n-hexane, tween 20 and salt) in water. The experiments are carried out by upward, downward and both upward and downward facing sprays. The optimization result depicts that the spray produced by upward facing spray gives higher heat flux than the downward facing spray and also cooling by both the upward and downward facing spray simultaneously produces better result than the individual. Further experiments with both upward and downward facing spray by using different coolants reveal that in case of cooling by ethanol (500 ppm) + water mixture, the maximum enhancement of surface heat flux ( 2.57 MW/m2) and cooling rate (204 °C/s) is observed. However, the minimum surface heat flux is achieved in case of methanol (100 ppm) + water due to higher contact angle (710) among all the considered coolants.
Nguyen, Duc; Zhu, Zhi-Guang; Pringle, Brian; Lyding, Joseph; Wang, Wei-Hua; Gruebele, Martin
2016-06-22
Glassy metallic alloys are richly tunable model systems for surface glassy dynamics. Here we study the correlation between atomic mobility, and the hopping rate of surface regions (clusters) that rearrange collectively on a minute to hour time scale. Increasing the proportion of low-mobility copper atoms in La-Ni-Al-Cu alloys reduces the cluster hopping rate, thus establishing a microscopic connection between atomic mobility and dynamics of collective rearrangements at a glass surface made from freshly exposed bulk glass. One composition, La60Ni15Al15Cu10, has a surface resistant to re-crystallization after three heating cycles. When thermally cycled, surface clusters grow in size from about 5 glass-forming units to about 8 glass-forming units, evidence of surface aging without crystal formation, although its bulk clearly forms larger crystalline domains. Such kinetically stable glass surfaces may be of use in applications where glassy coatings stable against heating are needed.
NASA Astrophysics Data System (ADS)
Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.
2013-12-01
Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.
Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower
NASA Astrophysics Data System (ADS)
Lee, Hyunsub; Son, Gihun
2017-11-01
Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.
Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite
Kuokkala, Veli-Tapani
2017-01-01
This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Morshed, A. K. M. Monjur, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com
2016-07-12
In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90more » K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250 K/130 K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×10{sup 9} K/s to 8×10{sup 9} K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.« less
High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks
NASA Technical Reports Server (NTRS)
Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan
2004-01-01
The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to atmosphere. We anticipate future improvements in the AIRS retrieval algorithm will lead to improved understanding of the exchange of sensible and latent heat from ocean to atmosphere, and more realistic near-surface lapse rates.
Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling.
Jiang, Pei-Xue; Huang, Gan; Zhu, Yinhai; Xu, Ruina; Liao, Zhiyuan; Lu, Taojie
2017-09-01
Transpiration cooling is an effective way to protect high heat flux walls. However, the pumps for the transpiration cooling system make the system more complex and increase the load, which is a huge challenge for practical applications. A biomimetic self-pumping transpiration cooling system was developed inspired by the process of trees transpiration that has no pumps. An experimental investigation showed that the water coolant automatically flowed from the water tank to the hot surface with a height difference of 80 mm without any pumps. A self-adaptive transpiration cooling system was then developed based on this mechanism. The system effectively cooled the hot surface with the surface temperature kept to about 373 K when the heating flame temperature was 1639 K and the heat flux was about 0.42 MW m -2 . The cooling efficiency reached 94.5%. The coolant mass flow rate adaptively increased with increasing flame heat flux from 0.24 MW m -2 to 0.42 MW m -2 while the cooled surface temperature stayed around 373 K. Schlieren pictures showed a protective steam layer on the hot surface which blocked the flame heat flux to the hot surface. The protective steam layer thickness also increased with increasing heat flux.
Heat exchanger for power generation equipment
Nirmalan, Nirm Velumylm; Bowman, Michael John
2005-06-14
A heat exchanger for a turbine is provided wherein the heat exchanger comprises a heat transfer cell comprising a sheet of material having two opposed ends and two opposed sides. In addition, a plurality of concavities are disposed on a surface portion of the sheet of material so as to cause hydrodynamic interactions and affect a heat transfer rate of the turbine between a fluid and the concavities when the fluid is disposed over the concavities.
NASA Astrophysics Data System (ADS)
Houpert, Loïc; Testor, Pierre; Durrieu de Madron, Xavier; Estournel, Claude; D'Ortenzio, Fabrizio
2013-04-01
Heat fluxes across the ocean-atmosphere interface play a crucial role in the upper turbulent mixing. The depth reached by this turbulent mixing is indicated by an homogenization of seawater properties in the surface layer, and is defined as the Mixed Layer Depth (MLD). The thickness of the mixed layer determines also the heat content of the layer that directly interacts with the atmosphere. The seasonal variability of these air-sea fluxes is crucial in the calculation of heat budget. An improvement in the estimate of these fluxes is needed for a better understanding of the Mediterranean ocean circulation and climate, in particular in Regional Climate Models. There are few estimations of surface heat fluxes based on oceanic observations in the Mediterranean, and none of them are based on mixed layer observations. So, we proposed here new estimations of these upper-ocean heat fluxes based on mixed layer. We present high resolution Mediterranean climatology (0.5°) of the mean MLD based on a comprehensive collection of temperature profiles of last 43 years (1969-2012). The database includes more than 150,000 profiles, merging CTD, XBT, ARGO Profiling floats, and gliders observations. This dataset is first used to describe the seasonal cycle of the mixed layer depth on the whole Mediterranean on a monthly climatological basis. Our analysis discriminates several regions with coherent behaviors, in particular the deep water formation sites, characterized by significant differences in the winter mixing intensity. Heat storage rates (HSR) were calculated as the time rate of change of the heat content integrated from the surface down to a specific depth that is defined as the MLD plus an integration constant. Monthly climatology of net heat flux (NHF) from ERA-Interim reanalysis was balanced by the 1°x1° resolution heat storage rate climatology. Local heat budget balance and seasonal variability in the horizontal heat flux are then discussed by taking into account uncertainties, due to errors in monthly value estimation and to intra-annual and inter-annual variability.
Franklin, Craig E; Seebacher, Frank
2003-04-01
The effect of heating and cooling on heart rate in the estuarine crocodile Crocodylus porosus was studied in response to different heat transfer mechanisms and heat loads. Three heating treatments were investigated. C. porosus were: (1) exposed to a radiant heat source under dry conditions; (2) heated via radiant energy while half-submerged in flowing water at 23 degrees C and (3) heated via convective transfer by increasing water temperature from 23 degrees C to 35 degrees C. Cooling was achieved in all treatments by removing the heat source and with C. porosus half-submerged in flowing water at 23 degrees C. In all treatments, the heart rate of C. porosus increased markedly in response to heating and decreased rapidly with the removal of the heat source. Heart rate during heating was significantly faster than during cooling at any given body temperature, i.e. there was a significant heart rate hysteresis. There were two identifiable responses to heating and cooling. During the initial stages of applying or removing the heat source, there was a dramatic increase or decrease in heart rate ('rapid response'), respectively, indicating a possible cardiac reflex. This rapid change in heart rate with only a small change or no change in body temperature (<0.5 degrees C) resulted in Q(10) values greater than 4000, calling into question the usefulness of this measure on heart rate during the initial stages of heating and cooling. In the later phases of heating and cooling, heart rate changed with body temperature, with Q(10) values of 2-3. The magnitude of the heart rate response differed between treatments, with radiant heating during submergence eliciting the smallest response. The heart rate of C. porosus outside of the 'rapid response' periods was found to be a function of the heat load experienced at the animal surface, as well as on the mode of heat transfer. Heart rate increased or decreased rapidly when C. porosus experienced large positive (above 25 W) or negative (below -15 W) heat loads, respectively, in all treatments. For heat loads between -15 W and 20 W, the increase in heart rate was smaller for the 'unnatural' heating by convection in water compared with either treatment using radiant heating. Our data indicate that changes in heart rate constitute a thermoregulatory mechanism that is modulated in response to the thermal environment occupied by the animal, but that heart rate during heating and cooling is, in part, controlled independently of body temperature.
Aerodynamic and base heating studies on space shuttle configurations
NASA Technical Reports Server (NTRS)
1974-01-01
Heating rate and pressure measurements were obtained on a 25-O space shuttle model in a vacuum chamber. Correlation data on windward laminar and turbulent boundary layers and leeside surfaces of the space shuttle orbiter are included.
NASA Astrophysics Data System (ADS)
Liu, Qiao; Liu, Yinghui; Chen, Zhaowei; Niu, Xinjian; Li, Hongfu; Xu, Jianhua
2018-04-01
The interaction cavity of a 140 GHz, 1 MW continuous wave gyrotron developed in UESTC will be loaded with a very large heat load in the inner surface during operation. In order to reduce the heat, the axial wedge grooves of the outside surface of the cavity are considered and employed as the heat radiation structure. Thermoanalysis and structural analysis were discussed in detail to obtain the effects of heat on the cavity. In thermoanalysis, the external coolant-flow rates ranging from 20 L/min to 50 L/min were considered, and the distribution of wall loading was loaded as the heat flux source. In structural analysis, the cavity's deformation caused by the loads of heat and pressure was calculated. Compared with a non-deformed cavity, the effects of deformation on the performance of a cavity were discussed. For a cold-cavity, the results show that the quality factor would be reduced by 72, 89, 99 and 171 at the flow rates of 50 L/min, 40 L/min, 30 L/min and 20 L/min, respectively. Correspondingly, the cold-cavity frequencies would be decreased by 0.13 GHz, 0.15 GHz, 0.19 GHz and 0.38 GHz, respectively. For a hot-cavity, the results demonstrate that the output port frequencies would be dropped down, but the offset would be gradually decreased with increasing coolant-flow rate. Meanwhile, the output powers would be reduced dramatically with decreasing coolant-flow rate. In addition, when the coolant-flow rate reaches 40 L/min, the output power and the frequency are just reduced by 30 kW and 0.151 GHz, respectively.
Hwang, Yong Seok; Levitas, Valery I
2015-12-21
An advanced continuum model for nanoscale melting and kinetic superheating of an aluminum nanolayer irradiated by a picosecond laser is formulated. Barrierless nucleation of surface premelting and melting occurs, followed by a propagation of two solid-melt interfaces toward each other and their collision. For a slow heating rate of Q = 0.015 K ps(-1) melting occurs at the equilibrium melting temperature under uniaxial strain conditions T = 898.1 K (i.e., below equilibrium melting temperature Teq = 933.67 K) and corresponding biaxial stresses, which relax during melting. For a high heating rate of Q = 0.99-84 K ps(-1), melting occurs significantly above Teq. Surprisingly, an increase in heating rate leads to temperature reduction at the 3 nm wide moving interfaces due to fast absorption of the heat of fusion. A significant, rapid temperature drop (100-500 K, even below melting temperature) at the very end of melting is revealed, which is caused by the collision of two finite-width interfaces and accelerated melting in about the 5 nm zone. For Q = 25-84 K ps(-1), standing elastic stress waves are observed in a solid with nodal points at the moving solid-melt interfaces, which, however, do not have a profound effect on melting time or temperatures. When surface melting is suppressed, barrierless bulk melting occurs in the entire sample, and elastodynamic effects are more important. Good correspondence with published, experimentally-determined melting time is found for a broad range of heating rates. Similar approaches can be applied to study various phase transformations in different materials and nanostructures under high heating rates.
Sterilization of space hardware.
NASA Technical Reports Server (NTRS)
Pflug, I. J.
1971-01-01
Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.
NASA Technical Reports Server (NTRS)
Spohn, T.; Schubert, G.
1982-01-01
Thinning of the Earth's lithosphere by heat advected to its base is a possible mechanism for continental rifting and continental and oceanic mid-plate volcanism. It might also account for continental rifting-like processes and volcanism on Venus and Mars. Earth's continental lithosphere can be thinned to the crust in a few tens of million years by heat advected at a rate of 5 to 10 times the normal basal heat flux. This much heat is easily carried to the lithosphere by mantle plumes. The continent is not required to rest over the mantle hot spot but may move at tens of millimeters per year. Because of the constant level of crustal radioactive heat production, the ratio of the final to the initial surface heat flow increases much less than the ratio of the final to initial basal heat flow. For large increases in asthenospheric heat flow, the lithosphere is almost thinned to the crust before any significant change in surface heat flow occurs. Uplift due to thermal expansion upon thinning is a few kilometers. The oceanic lithosphere can be thinned to the crust in less than 10 million years if the heat advection is at a rate around 5 or more times the basal heat flow into 100 Ma old lithosphere. Uplift upon thinning can compensate the subsidence of spreading and cooling lithosphere.
Radiogenic heat production in sedimentary rocks of the Gulf of Mexico Basin, south Texas
McKenna, T.E.; Sharp, J.M.
1998-01-01
Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we calculate radiogenic heat production for Stuart City (Lower Cretaceous) limestones, Wilcox (Eocene) sandstones and mudrocks, and Frio (Oligocene) sandstones and mudrocks from south Texas. Heat production rates range from a low of 0.07 ?? 0.01 ??W/m3 in clean Stuart City limestones to 2.21 ?? 0.24??W/m3 in Frio mudrocks. Mean heat production rates for Wilcox sandstones, Frio sandstones, Wilcox mudrocks, and Frio mudrocks are 0.88, 1.19, 1.50, and 1.72 ??W/m3, respectively. In general, the mudrocks produce about 30-40% more heat than stratigraphically equivalent sandstones. Frio rocks produce about 15% more heat than Wilcox rocks per unit volume of clastic rock (sandstone/mudrock). A one-dimensional heat-conduction model indicates that this radiogenic heat source has a significant effect on subsurface temperatures. If a thermal model were calibrated to observed temperatures by optimizing basal heat-flow density and ignoring sediment heat production, the extrapolated present-day temperature of a deeply buried source rock would be overestimated.Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we calculate radiogenic heat production for Stuart City (Lower Cretaceous) limestones, Wilcox (Eocene) sandstones and mudrocks, and Frio (Oligocene) sandstones and mudrocks from south Texas. Heat production rates range from a low of 0.07??0.01 ??W/m3 in clean Stuart City limestones to 2.21??0.24 ??W/m3 in Frio mudrocks. Mean heat production rates for Wilcox sandstones, Frio sandstones, Wilcox mudrocks, and Frio mudrocks are 0.88, 1.19, 1.50, and 1.72 ??W/m3, respectively. In general, the mudrocks produce about 30-40% more heat than stratigraphically equivalent sandstones. Frio rocks produce about 15% more heat than Wilcox rocks per unit volume of clastic rock (sandstone/mudrock). A one-dimensional heat-conduction model indicates that this radiogenic heat source has a significant effect on subsurface temperatures. If a thermal model were calibrated to observed temperatures by optimizing basal heat-flow density and ignoring sediment heat production, the extrapolated present-day temperature of a deeply buried source rock would be overestimated.
Heat transfer rate and film cooling effectiveness measurements in a transient cascade
NASA Astrophysics Data System (ADS)
Schultz, D. L.; Oldfield, M. L. G.; Jones, T. V.
1980-09-01
A transient cascade useful for heat transfer rate measurements is briefly described. The facility employs a free piston which compresses the test gas to temperatures around 450 K and pressures of about 3.5 to 7.5 Atm. The model is initially at room temperature and it is necessary to attain the correct gas to wall temperature ratio. The exit Mach number is set by the inlet total pressure and the pressure in the exit dump tank. Thin film heat transfer gauges are used for the measurement of heat transfer rate, deposited on machineable glass ceramic blades. The inherently fast response of these transducers makes them useful for the investigation of boundary layer transition on blade surfaces and some typical results are included.
Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery
NASA Astrophysics Data System (ADS)
Bandhauer, Todd M.; Garimella, Srinivas; Fuller, Thomas F.
2014-02-01
Lithium-ion batteries suffer from inherent thermal limitations (i.e., capacity fade and thermal runaway); thus, it is critical to understand heat generation experienced in the batteries under normal operation. In the current study, reversible and irreversible electrochemical heat generation rates were measured experimentally on a small commercially available C/LiFePO4 lithium-ion battery designed for high-rate applications. The battery was tested over a wide range of temperatures (10-60 °C) and discharge and charge rates (∼C/4-5C) to elucidate their effects. Two samples were tested in a specially designed wind tunnel to maintain constant battery surface temperature within a maximum variation of ±0.88 °C. A data normalization technique was employed to account for the observed capacity fade, which was largest at the highest rates. The heat rate was shown to increase with both increasing rate and decreasing temperature, and the reversible heat rate was shown to be significant even at the highest rate and temperature (7.4% at 5C and 55 °C). Results from cycling the battery using a dynamic power profile also showed that constant-current data predict the dynamic performance data well. In addition, the reversible heat rate in the dynamic simulation was shown to be significant, especially for charge-depleting HEV applications.
Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces
NASA Technical Reports Server (NTRS)
Dussinger, Peter M.; Lindemuth, James E.
1997-01-01
The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.
NASA Astrophysics Data System (ADS)
Zaigham Zia, Q. M.; Ullah, Ikram; Waqas, M.; Alsaedi, A.; Hayat, T.
2018-03-01
This research intends to elaborate Soret-Dufour characteristics in mixed convective radiated Casson liquid flow by exponentially heated surface. Novel features of exponential space dependent heat source are introduced. Appropriate variables are implemented for conversion of partial differential frameworks into a sets of ordinary differential expressions. Homotopic scheme is employed for construction of analytic solutions. Behavior of various embedding variables on velocity, temperature and concentration distributions are plotted graphically and analyzed in detail. Besides, skin friction coefficients and heat and mass transfer rates are also computed and interpreted. The results signify the pronounced characteristics of temperature corresponding to convective and radiation variables. Concentration bears opposite response for Soret and Dufour variables.
NASA Technical Reports Server (NTRS)
Rohde, J. E.
1982-01-01
Objectives and approaches to research in turbine heat transfer are discussed. Generally, improvements in the method of determining the hot gas flow through the turbine passage is one area of concern, as is the cooling air flow inside the airfoil, and the methods of predicting the heat transfer rates on the hot gas side and on the coolant side of the airfoil. More specific areas of research are: (1) local hot gas recovery temperatures along the airfoil surfaces; (2) local airfoil wall temperature; (3) local hot gas side heat transfer coefficients on the airfoil surfaces; (4) local coolant side heat transfer coefficients inside the airfoils; (5) local hot gas flow velocities and secondary flows at real engine conditions; and (6) local delta strain range of the airfoil walls.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2006-01-01
Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated radar. Error model modifications for nonraining situations will be required, however. Sampling error represents only a portion of the total error in monthly 2.5 -resolution TMI estimates; the remaining error is attributed to random and systematic algorithm errors arising from the physical inconsistency and/or nonrepresentativeness of cloud-resolving-model-simulated profiles that support the algorithm.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2004-01-01
Rainfall rate estimates from space-borne k&ents are generally accepted as reliable by a majority of the atmospheric science commu&y. One-of the Tropical Rainfall Measuring Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations fiom the TRMM Microwave Imager (TMI). Part I of this study describes improvements in the TMI algorithm that are required to introduce cloud latent heating and drying as additional algorithm products. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over forerunning algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm, and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly, 2.5 deg. -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data are limited, TMI estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with: (a) additional contextual information brought to the estimation problem, and/or; (b) physically-consistent and representative databases supporting the algorithm. A model of the random error in instantaneous, 0.5 deg-resolution rain rate estimates appears to be consistent with the levels of error determined from TMI comparisons to collocated radar. Error model modifications for non-raining situations will be required, however. Sampling error appears to represent only a fraction of the total error in monthly, 2S0-resolution TMI estimates; the remaining error is attributed to physical inconsistency or non-representativeness of cloud-resolving model simulated profiles supporting the algorithm.
Laser Inspection Or Soldered Connections
NASA Astrophysics Data System (ADS)
Alper, Richard I.; Traub, Alan C.
1986-07-01
A sensitive infrared detection system monitors the slight warming and cooling of a solder joint on a PWB in response to a focused laser beam pulse lasting for 30 milliseconds. Heating and cooling rates depend on the surface finish of the solder and also upon its interr.1 features. Joints which are alike show similar heating rates; defects behave differently and are flagged as showing abnormal thermal signatures Defects include surface voids, cold solder, insufficient or missing solder, residual solder flux, contamination and large subsurface voids. Solder bridges can usually be found by targeting at suspected bridge locations. Feed-through joints at DIPs and lap joints at flat-pack ICs are readily inspected by this method. By use of computer-controlled tiltable optics, access is had to the "harder to see" joints such as at leadless chip carriers and other surface mounts. Inspection rates can be up to 10 joints per second.
Convective cooling in a pool-type research reactor
NASA Astrophysics Data System (ADS)
Sipaun, Susan; Usman, Shoaib
2016-01-01
A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U3Si2Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system's performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm-3. An MSTR model consisting of 20% of MSTR's nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s-1 from the 4" pipe, and predicted pool surface temperature not exceeding 30°C.
Dropwise Condensation on Soft Hydrophobic Coatings.
Phadnis, Akshay; Rykaczewski, Konrad
2017-10-31
Promoting dropwise condensation (DWC) could improve the efficiency of many industrial systems. Consequently, a lot of effort has been dedicated to finding durable materials that could sustainably promote DWC as well as finding routes to enhance the heat transfer rate during this phase change process. Motivated by previous reports of substrate softening increasing droplet nucleation rate, here we investigated how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. Specifically, we experimentally quantified the effect of hydrophobic elastomer's shear modulus on droplet nucleation density and shedding radius. To quantify the impact of substrate softening on heat transfer through individual droplets, we combined analytical solution of elastomer deformation induced by droplets with finite element modeling of the heat transfer process. By substituting these experimentally and theoretically derived values into DWC heat transfer model, we quantified the compounding effect of the substrate's mechanical properties on the overall heat transfer rate. Our results show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate. This trend is primarily driven by additional thermal resistance of the liquid posed by depression of the soft substrate.
Electric field enhanced dropwise condensation on hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Baratian, Davood; Hoek, Harmen; van den Ende, Dirk; Mugele, Frieder; Physics of Complex Fluids Team
2016-11-01
Dropwise condensation occurs when vapor condenses on a low surface energy surface, and the substrate is just partially wetted by the condensate. Dropwise condensation has attracted significant attention due to its reported superior heat transfer performance compared to filmwise condensation. Extensive research efforts are focused on how to promote, and enhance dropwise condensation by considering both physical and chemical factors. We have studied electrowetting-actuated condensation on hydrophobic surfaces, aiming for enhancement of heat transfer in dropwise condensation. The idea is to use suitably structured patterns of micro-electrodes that generate a heterogeneous electric field at the interface and thereby promote both the condensation itself and the shedding of condensed drops. Comforting the shedding of droplets on electrowetting-functionalized surfaces allows more condensing surface area for re-nucleation of small droplets, leading to higher condensation rates. Possible applications of this innovative concept include heat pipes for (micro) coolers in electronics as well as in more efficient heat exchangers. We acknowledge financial support by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO), within the VICI program.
The surface latent heat flux anomalies related to major earthquake
NASA Astrophysics Data System (ADS)
Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying
2011-12-01
SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.
NASA Astrophysics Data System (ADS)
Karpov, P. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.
2017-10-01
Sprays with a periodic supply drop phase have great opportunities to control the processes of heat transfer. We can achieve optimal evaporative modes of cooling by changing the pulse duration and the repetition frequency while minimizing flow of the liquid phase. Experimental data of investigation of local heat transfer for poorly heated large surface obtained on the original stand with multi nozzle managed the irrigation system impact of the gas-droplet flow present in this work. Researches on the contribution to the intensification of spray options were conducted. Also the growth rate was integral and local heat. Information instantaneous distribution of the heat flux in the description of the processes have helped us. Managed to describe two basic modes of heat transfer: Mode “insular” foil cooling and thick foil with forming of streams. Capacitive sensors allow to monitor the dynamics of the foil thickness, the birth-belt flow, forming and the evolution of waves generated by “bombing” the surface with the droplets.
Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Al-Haidary, Ahmed A
2012-07-01
It was the aim of this study to investigate the regional variations in surface temperature and sweating rate and to visualize body thermal windows responsible for the dissipation of excess body heat in dromedary camels. This study was conducted on five dromedary camels with mean body weight of 450 ± 20.5 kg and 2 years of age. Sweating rate, skin and body surface temperature showed significant (P < 0.001) circadian variation together with the variation in ambient temperature. However, daily mean values of sweating rate, skin and body surface temperature measured on seven regions of the camel body did not significantly differ. The variation in body surface temperature compared to the variation in skin temperature was higher in the hump compared to the axillary and flank regions, indicating the significance of camel's fur in protecting the skin from daily variation in ambient temperature. Infrared thermography revealed that flank and axillary regions had lower thermal gradients at higher ambient temperature (T(a) ) and higher thermal gradients at lower T(a) , which might indicate the working of flank and axillary regions as thermal windows dissipating heat during the night. Sweating rate showed moderate correlation to skin and body surface temperatures, which might indicate their working as potential thermal drivers of sweating in camels. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.
Giant Enhancement in Radiative Heat Transfer in Sub-30 nm Gaps of Plane Parallel Surfaces.
Fiorino, Anthony; Thompson, Dakotah; Zhu, Linxiao; Song, Bai; Reddy, Pramod; Meyhofer, Edgar
2018-06-13
Radiative heat transfer rates that exceed the blackbody limit by several orders of magnitude are expected when the gap size between plane parallel surfaces is reduced to the nanoscale. To date, experiments have only realized enhancements of ∼100 fold as the smallest gap sizes in radiative heat transfer studies have been limited to ∼50 nm by device curvature and particle contamination. Here, we report a 1,200-fold enhancement with respect to the far-field value in the radiative heat flux between parallel planar silica surfaces separated by gaps as small as ∼25 nm. Achieving such small gap sizes and the resultant dramatic enhancement in near-field energy flux is critical to achieve a number of novel near-field based nanoscale energy conversion systems that have been theoretically predicted but remain experimentally unverified.
Method and system for optical figuring by imagewise heating of a solvent
Rushford, Michael C.
2005-08-30
A method and system of imagewise etching the surface of a substrate, such as thin glass, in a parallel process. The substrate surface is placed in contact with an etchant solution which increases in etch rate with temperature. A local thermal gradient is then generated in each of a plurality of selected local regions of a boundary layer of the etchant solution to imagewise etch the substrate surface in a parallel process. In one embodiment, the local thermal gradient is a local heating gradient produced at selected addresses chosen from an indexed array of addresses. The activation of each of the selected addresses is independently controlled by a computer processor so as to imagewise etch the substrate surface at region-specific etch rates. Moreover, etching progress is preferably concurrently monitored in real time over the entire surface area by an interferometer so as to deterministically control the computer processor to image-wise figure the substrate surface where needed.
Ballistic nanoindentation of polymers
NASA Astrophysics Data System (ADS)
Gotsmann, B.; Rothuizen, H.; Duerig, U.
2008-09-01
Indentation of a sharp (20 nm) cantilevered silicon tip into a polymer (SU8) surface is analyzed experimentally and through finite-element simulations. A rate effect on the microsecond scale that eases indentation is found, in contrast to the commonly observed hardening at high strain rates. The observed rate effect is discussed in terms of adiabatic heating and inertial force overshoot. The estimated magnitude of adiabatic heating is marginal, but the force overshoot itself is large enough to explain the data. The data imply that topographic patterning of a polymer at megahertz rates is feasible.
Method for the hydrogenation of poly-si
Wang, Qi
2013-11-12
A method for hydrogenating poly-si. Poly-si is placed into the interior of a chamber. A filament is placed into the interior of a chamber. The base pressure of the interior of the chamber is evacuated, preferably to 10.sup.-6 Torr or less. The poly-si is heated for a predetermined poly-si heating time. The filament is heated by providing an electrical power to the filament. Hydrogen is supplied into the pressurized interior of the chamber comprising the heated poly-si and the heated filament. Atomic hydrogen is produced by the filament at a rate whereby the atomic hydrogen surface density at the poly-si is less than the poly-si surface density. Preferably, the poly-si is covered from the atomic hydrogen produced by the heated filament for a first predetermined covering time. Preferably, the poly-si is then uncovered from the atomic hydrogen produced by the heated filament for a first hydrogenation time.
Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment
NASA Astrophysics Data System (ADS)
Majaron, Boris; Svaasand, Lars O.; Aguilar, Guillermo; Nelson, J. Stuart
2002-09-01
Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.
NASA Astrophysics Data System (ADS)
Khan, Masood; Ahmad, Latif; Gulzar, M. Mudassar
2018-03-01
The impact of temperature dependent thermal conductivity and convective surface conditions on unsteady 3D Sisko nanofluid flow over a stretching surface is studied in the presence of heat generation/absorption and magnetic field. The numerical solution of nonlinear coupled equations has been carried out to explore the properties of different physical profiles of the fluid flow with varying of parameters. Specifically, the application of generalized Biot numbers and heat generation/absorption parameter in the sketching of temperature and concentration profiles are explored. The effect of all three parameters is noticed in the increasing order for shear thinning (0 < n < 1) and for shear thickening (n > 1) fluids. Moreover, the influence of Biot number γ1 on heat and mass transfer rates, are found in the enhancement and diminishing conducts respectively, in both cases of shear thinning as well as shear thickening fluids and a reverse trend is observed with the variation of Biot number γ2 . Additionally, the present results are validated through skin friction, heat and mass transfer rate values with the comparable values in the existing previous values.
Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment.
Majaron, Boris; Svaasand, Lars O; Aguilar, Guillermo; Nelson, J Stuart
2002-09-21
Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.
Thermal resistance model for CSP central receivers
NASA Astrophysics Data System (ADS)
de Meyer, O. A. J.; Dinter, F.; Govender, S.
2016-05-01
The receiver design and heliostat field aiming strategy play a vital role in the heat transfer efficiency of the receiver. In molten salt external receivers, the common operating temperature of the heat transfer fluid or molten salt ranges between 285°C to 565°C. The optimum output temperature of 565°C is achieved by adjusting the mass flow rate of the molten salt through the receiver. The reflected solar radiation onto the receiver contributes to the temperature rise in the molten salt by means of heat transfer. By investigating published work on molten salt external receiver operating temperatures, corresponding receiver tube surface temperatures and heat losses, a model has been developed to obtain a detailed thermographic representation of the receiver. The steady state model uses a receiver flux map as input to determine: i) heat transfer fluid mass flow rate through the receiver to obtain the desired molten salt output temperature of 565°C, ii) receiver surface temperatures iii) receiver tube temperatures iv) receiver efficiency v) pressure drop across the receiver and vi) corresponding tube strain per panel.
An investigation of the heat induced during ultrasonic post removal.
Ettrich, Christopher A; Labossière, Paul E; Pitts, David L; Johnson, James D
2007-10-01
The purpose of this study was to investigate the potential for temperature increase along the external root surface during ultrasonic post removal in a simulated clinical environment. Thirty-seven extracted teeth were decoronated, instrumented, and then obturated with gutta-percha and sealer. Post spaces were prepared, followed by cementation of stainless steel posts. A simulated clinical environment was created by using a polymethylmethacrylate sheet with holes custom fitted for the extracted teeth and then suspended over a heated water bath. Two thermocouples were attached at 6 and 12 mm from the top of the post along the external root surface. Teeth were divided into 3 test groups, no coolant, air-cooled, and water-cooled. Temperature changes were recorded by using a Vishay 5000 Strain Smart system. Results demonstrated that a significant difference existed in the average heat rates between the upper and lower thermocouples for no coolant and water-cooled groups at the medium setting and the air-cooled group at the high setting. The average heat rates were significantly different between the 2 thermocouples for all 3 groups when comparing the 2 ultrasonic power settings. Results indicated that the average heat rate was less for the water-cooled group when using a medium power setting.
Register, Janna; Scaffidi, Jonathan; Angel, S Michael
2012-08-01
Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.
Older adults with type 2 diabetes store more heat during exercise.
Kenny, Glen P; Stapleton, Jill M; Yardley, Jane E; Boulay, Pierre; Sigal, Ronald J
2013-10-01
It is unknown if diabetes-related reductions in local skin blood flow (SkBF) and sweating (LSR) measured during passive heat stress translate into greater heat storage during exercise in the heat in individuals with type 2 diabetes (T2D) compared with nondiabetic control (CON) subjects. This study aimed to examine the effects of T2D on whole-body heat exchange during exercise in the heat. Ten adults (6 males and 4 females) with T2D and 10 adults (6 males and 4 females) without diabetes matched for age, sex, body surface area, and body surface area and aerobic fitness cycled continuously for 60 min at a fixed rate of metabolic heat production (∼370 W) in a whole-body direct calorimeter (30°C and 20% relative humidity). Upper back LSR, forearm SkBF, rectal temperature, and heart rate were measured continuously. Whole-body heat loss and changes in body heat content (ΔHb) were determined using simultaneous direct whole-body and indirect calorimetry. Whole-body heat loss was significantly attenuated from 15 min throughout the remaining exercise with the differences becoming more pronounced over time for T2D relative to CON (P = 0.004). This resulted in a significantly greater ΔHb in T2D (367 ± 35; CON, 238 ± 25 kJ, P = 0.002). No differences were measured during recovery (T2D, -79 ± 23; CON, -132 ± 23 kJ, P = 0.083). By the end of the 60-min recovery, the T2D group lost only 21% (79 kJ) of the total heat gained during exercise, whereas their nondiabetic counterparts lost in excess of 55% (131 kJ). No difference were observed in LSR, SkBF, rectal temperature or heart rate during exercise. Similarly, no differences were measured during recovery with the exception that heart rate was elevated in the T2D group relative to CON (p=0.004). Older adults with T2D have a reduced capacity to dissipate heat during exercise, resulting in a greater heat storage and therefore level of thermal strain.
NASA Technical Reports Server (NTRS)
Tauber, Michael E.
1986-01-01
A simple, approximate equation describing the velocity-density relationship (or velocity-altitude) has been derived from the flight of large ballistic coefficient projectiles launched at high speeds. The calculations obtained by using the approximate equation compared well with results for numerical integrations of the exact equations of motion. The flightpath equation was used to parametrically calculate maximum body decelerations and stagnation pressures for initial velocities from 2 to 6 km/s. Expressions were derived for the stagnation-point convective heating rates and total heat loads. The stagnation-point heating was parametrically calculated for a nonablating wall and an ablating carbon surface. Although the heating rates were very high, the pulse decayed quickly. The total nose-region heat shield weight was conservatively estimated to be only about 1 percent of the body mass.
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ames, Forrest; Kingery, Joseph E.
A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edgemore » test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs in these regions providing a useful set of data to ground the prediction of transition onset and length over a wide range of Reynolds numbers and turbulence intensity and scales.« less
Pan, Chang-Jiang; Hou, Yu; Wang, Ya-Nan; Gao, Fei; Liu, Tao; Hou, Yan-Hua; Zhu, Yu-Fu; Ye, Wei; Wang, Ling-Ren
2016-10-01
Magnesium based alloys are attracting tremendous interests as the novel biodegradable metallic biomaterials. However, the rapid in vivo degradation and the limited surface biocompatibility restrict their clinical applications. Surface modification represents one of the important approaches to control the corrosion rate of Mg based alloys and to enhance the biocompatibility. In the present study, in order to improve the corrosion resistance and surface biocompatibility, magnesium alloy (AZ31B) was modified by the alkali heating treatment followed by the self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane (APTMS) and dopamine, respectively. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) indicated that the molecules were successfully immobilized on the magnesium alloy surface by the self-assembly. An excellent hydrophilic surface was obtained after the alkali heating treatment and the water contact angle increased to some degree after the self-assembly of dopamine, APTMS and 3-phosphonopropionic acid, however, the hydrophilicity of the modified samples was better than that of the pristine magnesium substrate. Due to the formation of the passivation layer after the alkali heating treatment, the corrosion resistance of the magnesium alloy was obviously improved. The corrosion rate further decreased to varying degrees after the self-assembly surface modification. The blood compatibility of the pristine magnesium was significantly improved after the surface modification. The hemolysis rate was reduced from 56% of the blank magnesium alloy to 18% of the alkali heating treated sample and the values were further reduced to about 10% of dopamine-modified sample and 7% of APTMS-modified sample. The hemolysis rate was below 5% for the 3-phosphonopropionic acid modified sample. As compared to the pristine magnesium alloy, fewer platelets were attached and activated on the modified surfaces and the activated partial thromboplastin times (APTT) were prolonged to some degree. Furthermore, the modified samples showed good cytocompatibility. Endothelial cells exhibited the improved proliferative profiles in terms of CCK-8 assay as compared to those on the pristine magnesium alloy. The modified samples showed better endothelial cell adhesion and spreading than the pristine magnesium alloy. Taking all these results into consideration, the method of this study can be used to modify the magnesium alloy surface to improve the corrosion resistance and biocompatibility simultaneously. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of slip, slip rate, and shear heating on the friction of granite
Blanpied, M.L.; Tullis, T.E.; Weeks, J.D.
1998-01-01
The stability of fault slip is sensitive to the way in which frictional strength responds to changes in slip rate and in particular to the effective velocity dependence of steady state friction ????ss/?? ln V. This quantity can vary substantially with displacement, temperature and slip rate. To investigate the physical basis for this behavior and the possible influence of shear heating, we slid initially bare granite surfaces in unconfined rotary shear to displacements of hundreds of millimeters at normal stresses, ??n, of 10 and 25 MPa and at room temperature. We imposed step changes in slip rate within the range 10-2 to 103.5 ??m/s and also monitored frictional heating with thermistors embedded in the granite. The transient response of ?? to slip rate steps was fit to a rate- and state-dependent friction law using two state variables to estimate the values of several parameters in the constitutive law. The first 20 mm of slip shows rising friction and falling ????ss/?? ln V; further slip shows roughly constant friction, ????ss/?? ln V and parameter values, suggesting that a steady state condition is reached on the fault surface. At V ??? 10 ??m/s, ????ss/?? ln V = -0.004 ?? 0.001. At higher rates the response is sensitive to normal stress: At ??n = 25 MPa granite shows a transition to effective velocity strengthening (????ss/?? ln V = 0.008 ?? 0.004) at the highest slip rates tested. At 10 MPa granite shows a less dramatic change to ????ss/?? ln V ??? 0 at the highest rates. The maximum temperature measured in the granite is ???60??C at 25 MPa and 103.5 ??m/s. Temperatures are in general agreement with a numerical model of heat conduction which assumes spatially homogeneous frictional heating over the sliding surface. The simplest interpretation of our measurements of ????ss/?? ln V is that the granite is inherently veocity weakening (?????ss/??? In V 0 mimics velocity strengthening. These results have implications for the frictional behavior of faults during earthquakes. High slip rates may cause a switch to effective velocity strengthening which could limit peak coseismic slip rate and stress drop. For fluid-saturated faults, strengthening by this mechanism may be partly or fully offset by weakening due to thermal pressurization of a poorly drained pore fluid.
Metabolic rate M 0.75 in human beings
NASA Astrophysics Data System (ADS)
Agrawal, D. C.
2014-11-01
Human beings consume energy every day. Even at rest, energy is still needed for the working of the internal organs. This is achieved by the metabolism of consumed food in the presence of inhaled oxygen. During the resting state this is called the maintenance rate, and follows the mouse-to-elephant formula, Pmet = 70M0.75 kcal per day. Here, M is the body mass of the subject in kilograms. The heat generated in metabolism is lost through the body surface of the subject, so the metabolic rate should also be proportional to the body surface area. In other words, the body surface area in the case of a human being must also depend on M0.75. The present paper examines this issue by finding a relationship between human body surface area and its mass through a very simple model that can be easily understood and verified by physics students, who can also compare it with all the expressions for body surface area available in the literature. This will build confidence in the students that the heat generated from metabolism in fact dissipates through the surface of the body.
NASA Astrophysics Data System (ADS)
Moglestue, C.; Buot, F. A.; Anderson, W. T.
1995-08-01
The lattice heating rate has been calculated for GaAs field-effect transistors of different source-drain channel design by means of the ensemble Monte Carlo particle model. Transport of carriers in the substrate and the presence of free surface charges are also included in our simulation. The actual heat generation was obtained by accounting for the energy exchanged with the lattice of the semiconductor during phonon scattering. It was found that the maximum heating rate takes place below the surface near the drain end of the gate. The results correlate well with a previous hydrodynamic energy transport estimate of the electronic energy density, but shifted slightly more towards the drain. These results further emphasize the adverse effects of hot electrons on the Ohmic contacts.
Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James Edward; Sohal, Manohar Singh
2000-11-01
This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inversemore » heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.« less
NASA Technical Reports Server (NTRS)
Wheeler, Donald R.; Pepper, Stephen V.
1990-01-01
Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. A quantitative comparison of the radiation dose rate with that in other reported studies showed that, for a given total dose, the damage observed by XPS is greater for higher dose rates. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS that were associated with damage diminished, giving the appearance that the radiation damage annealed. The apparent annealing of the radiation damage was found to be due to the covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.
Distance scaling of electric-field noise in a surface-electrode ion trap
NASA Astrophysics Data System (ADS)
Sedlacek, J. A.; Greene, A.; Stuart, J.; McConnell, R.; Bruzewicz, C. D.; Sage, J. M.; Chiaverini, J.
2018-02-01
We investigate anomalous ion-motional heating, a limitation to multiqubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multizone surface-electrode trap in which ions can be held at five discrete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance d . We find a scaling of approximately d-4 regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using the application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure the frequency scaling of the inherent electric-field noise close to 1 /f at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a d-4 distance dependence, including several microscopic models of current interest.
Shull, James J.; Ernst, Robert R.
1962-01-01
The thermal death curve of dried spores of Bacillus stearothermophilus in saturated steam was characterized by three phases: (i) a sharp initial rise in viable count; (ii) a low rate of death which gradually increased; and (iii) logarithmic death at maximal rate. The first phase was a reflection of inadequate heat activation of the spore population. The second and third phases represented the characteristic thermal death curve of the spores in saturated steam. A jacketed steam sterilizer, equipped with a system for initial evacuation of the chamber, was examined for superheat during normal operation. Measurements of spore inactivation and temperature revealed superheat in surface layers of fabrics being processed in steam at 121 C. The high temperature of the fabric surfaces was attributed to absorption of excess heat energy from superheated steam. The superheated steam was produced at the beginning of the normal sterilizing cycle by transfer of heat from the steam-heated jacket to saturated steam entering the vessel. PMID:13988774
Energy balance studies and plasma catecholamine values for patients with healed burns.
Wallace, B H; Cone, J B; Caldwell, F T
1991-01-01
We report heat balance studies and plasma catecholamine values for 49 children and young adults with healed burn wounds (age range 0.6 to 31 years and burn range 1% to 82% body surface area burned; mean 41%). All measurements were made during the week of discharge. Heat production for patients with healed burns was not significantly different from predicted normal values. However, compartmented heat loss demonstrated a persistent increment in evaporative heat loss that was secondary to continued elevation of cutaneous water vapor loss immediately after wound closure. A reciprocal decrement in dry heat loss was demonstrated (as a result of a cooler average surface temperature, 0.84 degree C cooler than the average integrated skin temperature of five normal volunteers who were studied in our unit under similar environmental conditions). Mean values for plasma catecholamines were in the normal range: epinephrine = 56 +/- 37 pg/ml, norepinephrine = 385 +/- 220 pg/ml, and dopamine = 34 +/- 29 pg/ml. In conclusion, patients with freshly healed burn wounds have normal rates of heat production; however, there is a residual increment in transcutaneous water vapor loss, which produces surface cooling and decreased average surface temperature, which in turn lowers dry heat loss by an approximately equivalent amount.
The radiative heating response to climate change
NASA Astrophysics Data System (ADS)
Maycock, Amanda
2016-04-01
The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.
NASA Astrophysics Data System (ADS)
Tisha, Dixit; Indranil, Ghosh
2017-02-01
Passive cryogenic radiators work on the principle of dissipating heat to the outer space purely by radiation. High porosity open-cell metal foams are a relatively new class of extended surfaces. These possess the advantages of high surface area density and low weight, characteristics which the space industry looks for. In case of radiative heat transfer, the porous nature of metal foams permits a deeper penetration of the incident radiation. Consequently, the heat transfer area participating in radiative heat exchange increases thereby enhancing the heat transfer rate. However, effective heat conduction in between the foam struts reduces as a result of the void spaces. These two conflicting phenomenon for radiation heat transfer in metal foams have been studied in this work. Similar to the foam conduction-convection heat transfer analysis, a conduction-radiation heat transfer model has been developed for metal foams in analogy with the conventional solid fin theory. Metal foams have been theoretically represented as simple cubic structures. A comparison of the radiative heat transfer through metal foams and solid fins attached to a surface having constant temperature has been presented. Effect of changes in foam characteristic properties such as porosity and pore density have also been studied.
Magnonics: Selective heat production in nanocomposites with different magnetic nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Yu; Kornev, Konstantin G.
2016-03-07
We theoretically study Ferromagnetic Resonance (FMR) in nanocomposites focusing on the analysis of heat production. It is demonstrated that at the FMR frequency, the temperature of nanoparticles can be raised at the rate of a few degrees per second at the electromagnetic (EM) irradiation power equivalent to the sunlight power. Thus, using FMR, one can initiate either surface or bulk reaction in the vicinity of a particular magnetic inclusion by purposely delivering heat to the nanoscale at a sufficiently fast rate. We examined the FMR features in (a) the film with a mixture of nanoparticles made of different materials; (b)more » the laminated films where each layer is filled with a particular type of magnetic nanoparticles. It is shown that different nanoparticles can be selectively heated at the different bands of EM spectrum. This effect opens up new exciting opportunities to control the microwave assisted chemical reactions depending on the heating rate.« less
NASA Astrophysics Data System (ADS)
McDonald, Brian A.
A method for developing an erosive burning model for use in solid propellant design-and-analysis interior ballistics codes is described and evaluated. Using Direct Numerical Simulation, the primary mechanisms controlling erosive burning (turbulent heat transfer, and finite rate reactions) have been studied independently through the development of models using finite rate chemistry, and infinite rate chemistry. Both approaches are calibrated to strand burn rate data by modeling the propellant burning in an environment with no cross-flow, and adjusting thermophysical properties until the predicted regression rate matches test data. Subsequent runs are conducted where the cross-flow is increased from M = 0.0 up to M = 0.8. The resulting relationship of burn rate increase versus Mach Number is used in an interior ballistics analysis to compute the chamber pressure of an existing solid rocket motor. The resulting predictions are compared to static test data. Both the infinite rate model and the finite rate model show good agreement when compared to test data. The propellant considered is an AP/HTPB with an average AP particle size of 37 microns. The finite rate model shows that as the cross-flow increases, near wall vorticity increases due to the lifting of the boundary caused by the side injection of gases from the burning propellant surface. The point of maximum vorticity corresponds to the outer edge of the APd-binder flame. As the cross-flow increases, the APd-binder flame thickness becomes thinner; however, the point of highest reaction rate moves only slightly closer to the propellant surface. As such, the net increase of heat transfer to the propellant surface due to finite rate chemistry affects is small. This leads to the conclusion that augmentation of thermal transport properties and the resulting heat transfer increase due to turbulence dominates over combustion chemistry in the erosive burning problem. This conclusion is advantageous in the development of future models that can be calibrated to heat transfer conditions without the necessity for finite rate chemistry. These results are considered applicable for propellants with small, evenly distributed AP particles where the assumption of premixed APd-binder gases is reasonable.
NASA Astrophysics Data System (ADS)
Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg
2009-12-01
Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.
Double diffusive conjugate heat transfer: Part I
NASA Astrophysics Data System (ADS)
Azeem, Soudagar, Manzoor Elahi M.
2018-05-01
The present work is undertaken to investigate the effect of solid wall being placed at left of square cavity filled with porous medium. The presence of a solid wall in the porous medium turns the situation into a conjugate heat transfer problem. The boundary conditions are such that the left vertical surface is maintained at highest temperature and concentration whereas right vertical surface at lowest temperature and concentration in the medium. The top and bottom surfaces are adiabatic. The additional conduction equation along with the regular momentum and energy equations of porous medium are solved in an iterative manner with the help of finite element method. It is seen that the heat and mass transfer rate is lesser due to smaller thermal and concentration gradients.
Large-scale volcano-ground ice interactions on Mars
Squyres, S. W.; Wilhelms, D.E.; Moosman, A.C.
1987-01-01
The process of volcano-ground ice interaction on Mars is investigated by thermodynamic calculations and observations of Viking Orbiter images. We develop a numerical model of volcano-ground ice interaction that includes heat transport by conduction, radiation from the surface, heat transfer to the atmosphere, and H2O phase changes in an ice-rich permafrost. We consider eruption of lava flows over permafrost, and intrusion of sills into permafrost. For eruption of lava over permafrost, most of the heat in the flow is lost by radiation and atmospheric effects. The amount of H2O liquid and vapor produced is small, and its removal would not be sufficient to cause collapse that would lower the surface of the lava flow below the surrounding terrain. For intrusion of a sill, most of the heat in the sill eventually goes into H2O phase changes, producing much larger amounts of water that could have profound geomorphic and geochemical effects. Approximate meltwater discharge rates are calculated for both extrusive and intrusive interactions. We examine two large regions of large-scale volcano-ground ice interactions. Near Aeolis Mensae, intrusion of a complex of dikes and sills into ice-rich ground has produced substantial melting, with mobilization and flow of material. This interaction probably also produced large quantities of palagonite tuff and breccia. Morphologic evidence for progressive fluidization implies that meltwater was stored beneath the surface for some time, and that most of the release of water and volcanic mudflow took place late in the interaction. Northeast of Hellas, several large channels emanate from the area near the volcano Hadriaca Patera. If genetically related to the volcanic activity, large collapse features at the sources of some channels must have originated due to heat from large buried magma bodies. A channel emerging directly from the base of Hadriaca Patera may have originated from release of heat from thick extruded material. Other small channels in the region results from heat released from surface lava flows. Inferred channel discharges may be compared to discharge rates calculated for lava-ground ice interactions. Such comparisons show that meltwater probably accumulated beneath the surface and then was released rapidly, with a discharge rate limited by soil permeability. Volcano-ground ice interaction has been a widespread and important geologic process on Mars, and may be the primary source of palagonites making up the ubiquitous Martian dust. ?? 1987.
Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates
NASA Astrophysics Data System (ADS)
Li, Qibin; Wang, Meng; Liang, Yunpei; Lin, Liyang; Fu, Tao; Wei, Peitang; Peng, Tiefeng
2017-06-01
Molecular dynamics simulations were employed to investigate the heating rates' effect on aggregation of two copper nanoparticles. The aggregation can be distinguished into three distinct regimes by the contacting and melting of nanoparticles. The nanoparticles contacting at a lower temperature during the sintering with lower heating rate, meanwhile, some temporary stacking fault exists at the contacting neck. The aggregation properties of the system, i.e. neck diameter, shrinkage ratio, potential energy, mean square displacement (MSD) and relative gyration radius, experience drastic changes due to the free surface annihilation. After the nanoparticles coalesced for a stable period, the shrinkage ratio, MSD, relative gyration radius and neck diameter of the system are dramatically changed during the melting process. It is shown that the shrinkage ratio and MSD have relative larger increasing ratio for a lower heating rate. While the evolution of the relative gyration radius and neck diameter is only sensitive to the temperature.
An implicit-iterative solution of the heat conduction equation with a radiation boundary condition
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, D. M.
1977-01-01
For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.
Elibol, Oguz H; Reddy, Bobby; Nair, Pradeep R; Dorvel, Brian; Butler, Felice; Ahsan, Zahab S; Bergstrom, Donald E; Alam, Muhammad A; Bashir, Rashid
2009-10-07
We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications.
Mechanisms of Ocean Heat Uptake
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi
An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical diffusion takes over transport in the tropics; in the Atlantic, the MOC transports heat as deep 2000m in about 30 years. Redistributive surface heat uptake alters the total amount surface heat uptake among the basins. Compared to the passive-only heat uptake, which is about the same among the basins, redistribution nearly doubles the surface heat input into the Atlantic but makes smaller increases in the Indian and Pacific oceans for a net global increase of about 25%, in the perturbation experiment with winds unchanged. The passive and redistributive heat uptake components are further distributed among the basins through the global conveyor belt. The Pacific gains twice the surface heat input into it through lateral transport from the other two basins, as a result, the Atlantic and Pacific gain similar amounts of heat even though surface heat input is in the Atlantic is much bigger. Of this heat transport, most of the passive component comes from the Indian and the redistributive component comes from the Atlantic. Different surface forcing perturbation gives different circulation change pattern and as a result yield different redistributive uptake. Ocean heat uptake is more sensitive to wind forcing perturbation than to thermohaline forcing perturbation. About 2% reduction in subtropical cells transport and southern ocean transport, in the wind-change perturbation experiment, resulted in about 10% reduction in the global ocean heat uptake of wind-unchanged experiment. The AMOC weakened by about 35% and resulted in a 25% increase in passive heat uptake in the wind-unchanged experiment. Surface winds weakening reduces heat uptake by warming the reservoir surface temperatures, while MOC weakening increases heat input by a cooling reservoir surface temperatures. Thermohaline forcing perturbation is combination of salinity and temperature perturbations, both weaken the AMOC, however, they have opposite redistributive effects. Ocean surface freshening gives positive redistributive effect, while surface temperature increase gives negative redistributive effect on heat uptake. The salinity effect dominates the redistributive effect for thermohaline perturbation.
CFD and Thermo Mechanical Analysis on Effect of Curved vs Step Surface in IC Engine Cylinder Head
NASA Astrophysics Data System (ADS)
Balaji, S.; Ganesh, N.; Kumarasamy, A.
2017-05-01
Current research in IC engines mainly focus on various methods to achieve higher efficiency and high specific power. As a single design parameter, combustion chamber peak spring pressure has increased more than before. Apart from the structural aspects of withstanding these loads, designer faces challenges of resolving thermal aspects of cylinder head. Methods to enhance the heat transfer without compromising load withstanding capability are being constantly explored. Conventional cylinder heads have got sat inner surface. In this paper we have suggested a modification in inner surface to enhance the heat transfer capability. To increase the heat transfer rate, inner same deck surface is configured as a curved and stepped surface instead of sat. We have reported the effectiveness of extend of curvature in the inner same deck surface in a different technical paper. Here, we are making a direct comparison between stepped and curved surface only. From this analysis it has been observed that curved surface reduces the ame deck temperature considerably without compromising the structural strength factors compared to step and sat surface.
Zhang, Lin; Zhou, Wenchen; Yi, Allen Y
2017-04-01
In compression molding of polymer optical components with micro/nanoscale surface features, rapid heating of the mold surface is critical for the implementation of this technology for large-scale applications. In this Letter, a novel method of a localized rapid heating process is reported. This process is based on induction heating of a thin conductive coating deposited on a silicon mold. Since the graphene coating is very thin (∼45 nm), a high heating rate of 10∼20°C/s can be achieved by employing a 1200 W 30 kHz electrical power unit. Under this condition, the graphene-coated surface and the polymer substrate can be heated above the polymer's glass transition temperature within 30 s and subsequently cooled down to room temperature within several tens of seconds after molding, resulting in an overall thermal cycle of about 3 min or shorter. The feasibility of this process was validated by fabrication of optical gratings, micropillar matrices, and microlens arrays on polymethylmethacrylate (PMMA) substrates with very high precision. The uniformity and surface geometries of the replicated optical elements are evaluated using an optical profilometer, a diffraction test setup, and a Shack-Hartmann wavefront sensor built with a molded PMMA microlens array. Compared with the conventional bulk heating molding process, this novel rapid localized induction heating process could improve replication efficiency with better geometrical fidelity.
NASA Astrophysics Data System (ADS)
Cooper, Harry J.; Smith, Eric A.; Martsolf, J. David
1997-02-01
Observations taken by two surface radiation and energy budget stations deployed in the University of Florida/Institute for Food and Agricultural Service experimental citrus orchard in Gainesville, Florida, have been analyzed to identify the effects of sprayer irrigation on thermal stability and circulation processes within the orchard during three 1992 winter freeze episodes. Lapse rates of temperature observed from a micrometeorological tower near the center of the orchard were also recorded during periods of irrigation for incorporation into the analysis. Comparisons of the near-surface temperature lapse rates observed with the two energy budget stations show consistency between the two sites and with the tower-based lapse rates taken over a vertical layer from 1.5 to 15 m above ground level. A theoretical framework was developed that demonstrates that turbulent-scale processes originating within the canopy, driven by latent heat release associated with condensation and freezing processes from water vapor and liquid water released from sprayer nozzles, can destabilize lapse rates and promote warm air mixing above the orchard canopy. The orchard data were then analyzed in the context of the theory for evidence of local overturning and displacement of surface-layer air, with warmer air from aloft driven by locally buoyant plumes generated by water vapor injected into the orchard during the irrigation periods. It was found that surface-layer lapse rates were lower during irrigation periods than under similar conditions when irrigation was not occurring, indicating a greater degree of vertical mixing of surface-layer air with air from above treetops, as a result of local convective overturning induced by the condensation heating of water vapor released at the nozzles of the sprinklers. This provides an additional explanation to the well-accepted heat of fusion release effect, of how undertree irrigation of a citrus orchard during a freeze period helps protect crops against frost damage.
Dry and Semi-Dry Tropical Cyclones
NASA Astrophysics Data System (ADS)
Cronin, T.; Chavas, D. R.
2017-12-01
Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy fluxes, which suggest that wind-induced surface heat exchange may differ in its importance for dry and moist cyclones.
Influence of process fluids properties on component surface convective heat emission
NASA Astrophysics Data System (ADS)
Ivanova, T. N.; Korshunov, A. I.; Zavialov, P. M.
2018-03-01
When grinding with metal-working process fluid, a thin layer of inhibited liquid is formed between the component and the grinding wheel under the action of viscous forces. This can be defined as a hydrodynamic boundary layer or a thermal boundary layer. In this work, the thickness of the layers is studied depending on the viscosity of the fluid, inertia forces, velocity and pressure of the flow; also the causes of their occurrence are identified. It is established that under turbulent flow, the viscosity of the flow and the diffusion rate are much higher than in laminar flow, which also affects heat emission. Calculation of heat transfer in a single-phase chemically homogeneous medium of process liquids has shown that their properties, such as viscosity, thermal conductivity, density and heat capacity are of primary importance. The results of experimental studies of these characteristics are presented. When determining the heat transfer coefficient, functional correlations between the physical variables of the process fluid and the change in time and space have been established. As a result of the studies carried out to determine the heat transfer coefficient of a plate immersed in the process fluid, it is established that the intensification of the cooling process of the treated surface immersed in the coolant is more intense than with other methods of coolant supplying. An increase in the pulsation rate of the process liquid flow and the length of the flow displacement path leads to an increase in the heat transfer coefficient of the treated surface and a decrease in the temperature that arises during grinding.
NASA Astrophysics Data System (ADS)
Kawaguchi, Yusuke; Takeda, Hiroki
2017-04-01
This study focuses on the mixing processes in the vicinity of surface mixed layer (SML) of the Arctic Ocean. Turbulence activity and vertical heat transfer are quantitatively characterized in the Northwind Abyssal Plain, based on the RV Mirai Arctic cruise, during the transition from late summer to early winter 2014. During the cruise, noticeable storm events were observed, which came over the ship's location and contributed to the deepening of the SML. According to the ship-based microstructure observation, within the SML, the strong wind events produced enhanced dissipation rates of turbulent kinetic energy in the order of magnitude of ɛ = 10-6-10-4W kg-1. On thermal variance dissipation rate, χ increases toward the base of SML, reaching O(10-7) K2 s-1, resulting in vertical heat flux of O(10) W m-2. During the occasional energetic mixing events, the near-surface warm water was transferred downward and penetrated through the SML base, creating a cross-pycnocline high-temperature anomaly (CPHTA) at approximately 20-30 m depth. Near CPHTA, the vertical heat flux was anomalously magnified to O(10-100) W m-2. Following the fixed-point observation, in the regions of marginal and thick ice zones, the SML heat content was monitored using an autonomous drifting buoy, UpTempO. During most of the ice-covered period, the ocean-to-ice turbulent heat flux was dominant, rather than the diapycnal heat transfer across the SML bottom interface.
Formation, structure, and orientation of gold silicide on gold surfaces
NASA Technical Reports Server (NTRS)
Green, A. K.; Bauer, E.
1976-01-01
The formation of gold silicide on Au films evaporated onto Si(111) surfaces is studied by Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Surface condition, film thickness, deposition temperature, annealing temperature, and heating rate during annealing are varied. Several oriented crystalline silicide layers are observed.
Numerical simulation of calcium sulfate (CaSO4) fouling in the plate heat exchanger
NASA Astrophysics Data System (ADS)
Xu, Zhiming; Zhao, Yu; Han, Zhimin; Wang, Jingtao
2018-07-01
Plate heat exchanger is a widely used apparatus in the industrial production processes. Through a numerical simulation method, this paper calculates the deposition rate of CaSO4 fouling on heat transfer surfaces of the plate heat exchanger under saturation in the bulk. The effects of CaSO4 concentration in the range 0.7 kg/m3 to 1.5 kg/m3, inlet flow velocity under turbulent flow, and the fluid's inlet temperature from 288 K to 328 K on the deposition rate, removal mass rate and fouling resistance are investigated. The simulation results are compared with the experimental results showing similar trend. The simulation results show that the concentration and the flow velocity affect significantly the fouling characteristics in the plate heat exchanger. The deposition mass rate, removal mass rate, and asymptotic value of fouling resistance all increase with the increase in CaSO4 concentration and the inlet temperature of the hot fluid, while the asymptotic value of fouling resistance decreases with the increasing of inlet flow velocity. The influence of the inlet temperature of cold fluid may be negligible.
NASA Technical Reports Server (NTRS)
Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo
2009-01-01
In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2
Simulations of the general circulation of the Martian atmosphere. II - Seasonal pressure variations
NASA Technical Reports Server (NTRS)
Pollack, James B.; Haberle, Robert M.; Murphy, James R.; Schaeffer, James; Lee, Hilda
1993-01-01
The CO2 seasonal cycle of the Martian atmosphere and surface is simulated with a hybrid energy balance model that incorporates dynamical and radiation information from a large number of general circulation model runs. This information includes: heating due to atmospheric heat advection, the seasonally varying ratio of the surface pressure at the two Viking landing sites to the globally averaged pressure, the rate of CO2 condensation in the atmosphere, and solar heating of the atmosphere and surface. The predictions of the energy balance model are compared with the seasonal pressure variations measured at the two Viking landing sites and the springtime retreat of the seasonal polar cap boundaries. The following quantities are found to have a strong influence on the seasonal pressures at the Viking landing sites: albedo of the seasonal CO2 ice deposits, emissivity of this deposit, atmospheric heat advection, and the pressure ratio.
Temperature of ground water at Philadelphia, Pennsylvania, 1979- 1981
Paulachok, Gary N.
1986-01-01
Anthropogenic heat production has undoubtedly caused increased ground-water temperatures in many parts of Philadelphia, Pennsylvania, as shown by temperatures of 98 samples and logs of 40 wells measured during 1979-81. Most sample temperatures were higher than 12.6 degrees Celsius (the local mean annual air temperature), and many logs depict cooling trends with depth (anomalous gradients). Heating of surface and shallow-subsurface materials has likely caused the elevated temperatures and anomalous gradients. Solar radiation on widespread concrete and asphalt surfaces, fossil-fuel combustion, and radiant losses from buried pipelines containing steam and process chemicals are believed to be the chief sources of heat. Some heat from these and other sources is transferred to deeper zones, mainly by conduction. Temperatures in densely urbanized areas are commonly highest directly beneath the land surface and decrease progressively with depth. Temperatures in sparsely urbanized areas generally follow the natural geothermal gradient and increase downward at about that same rate.
NASA Astrophysics Data System (ADS)
Ikeda, H.; Sato, J.; Williams, F. A.
1995-03-01
Experimental studies of the combustion of premixed hydrogen-air mixtures impinging on the surface of a heated platinum plate at normal atmospheric pressure were performed and employed to draw inferences concerning surface reaction mechanisms and rate parameters applicable under practical conditions of catalytic combustion. Plate and gas temperatures were measured by thermocouples, and concentration profiles of major stable species in the gas were measured by gas-chromatographic analyses of samples withdrawn by quartz probes. In addition, ignition and extinction phenomena were recorded and interpreted with the aid of a heat balance at the surface and a previous flow-field analysis of the stagnation-point boundary layer. From the experimental and theoretical results, conclusions were drawn concerning the surface chemical-kinetic mechanisms and values of the elementary rate parameters that are consistent with the observations. In particular, the activation energy for the surface oxidation step H + OH → H 2O is found to be appreciably less at these high surface coverages than in the low-coverage limit.
NASA Technical Reports Server (NTRS)
Sulyma, P. R.; Mcanally, J. V.
1975-01-01
The streamline divergence program was developed to demonstrate the capability to trace inviscid surface streamlines and to calculate outflow-corrected laminar and turbulent convective heating rates on surfaces subjected to exhaust plume impingement. The analytical techniques used in formulating this program are discussed. A brief description of the streamline divergence program is given along with a user's guide. The program input and output for a sample case are also presented.
Changes in surface figure due to thermal hysteresis
NASA Astrophysics Data System (ADS)
Jacobs, S. F.; Johnston, S. C.; Sasian, J. M.; Watson, M.; Targove, J. D.
1987-01-01
Thermal cycling hysteresis affects surface figure in low-expansivity mirror substrates. Zerodur, ULE, and Cer-Vit 8-in.-diameter mirrors and dilatometer samples were thermally cycled at uniform rates of 6 K/hr and 60 K/hr, and somewhat faster for nonuniform heating. Figure distortions as large as lambda/10 were observed following nonuniform heating of standard Zerodur, which was the only material exhibiting thermal hysteresis. A new experimental Zerodur appears to be free of this problem.
Processing and properties of ceramic matrix-polymer composites for dental applications
NASA Astrophysics Data System (ADS)
Huang, Hsuan Yao
The basic composite structure of natural hard tissue was used to guide the design and processing of dental restorative materials. The design incorporates the methodology of using inorganic minerals as the main structural phase reinforced with a more ductile but tougher organic phase. Ceramic-polymer composites were prepared by slip casting a porous ceramic structure, heating and chemical treating the porous preform, infiltrating with monomer and then curing. The three factors that determined the mechanical properties of alumina-polymer composites were the type of polymer used, the method of silane treatments, and the type of bond between particles in the porous preforms. Without the use of silane coupling agents, the composites were measured to have a lower strength. The composite with a more "flexible" porous alumina network had a greater ability to plastically dissipate the energy of propagating cracks. However, the aggressive nature of the alumina particles on opposing enamel requires that these alumina-polymer composites have a wear compatible coating for practical application. A route to dense bioactive apatite wollastonite glass ceramics (AWGC)-polymer composites was developed. The problems associated with glass dissolution into the aqueous medium for slip casting were overcome with the use of silane. The role of heating rate and development of ceramic compact microstructure on composite properties was explored. In general, if isothermal heating was not applied, decreasing heating rate increased glass crystallinity and particle-particle fusion, but decreased pore volume. Also composite strength and fracture toughness decreased while modulus and hardness increased with decreasing heating rate. If isothermal heating was applied, glass crystallinity, pore content, and composite mechanical properties showed relatively little change regardless of the initial heating rate. The potential of AWGC-polymer composites for dental and implant applications was explored. Strengths and toughnesses were not severely degraded by immersion in simulated body fluids up to 30 days. The composite elastic modulus approached that of hard tissues and its wear behavior with opposing tooth was excellent. Growth of apatite over the entire composite surface was achieved in SBF. Growth of apatite in human whole saliva was achieved on the bioactive glass surface, but not on the composite surface.
Active Control of Engine Dynamics (Le controle actif pour la dynamique des moteurs)
2002-11-01
optimum operating conditions, avoiding, for example, inadvertent operation when the pulsations can cause unacceptable rates of surface heat transfer or...such as shipboard incineration, and power and heat generation in the field. Because the practical problem of suppressing combustion instabilities has...aforementioned physical processes are essentially completed prior to entering the combustor. One consequence of fuel-air premixing is that the heat
Enhanced Condensation Heat Transfer On Patterned Surfaces
NASA Astrophysics Data System (ADS)
Alizadeh-Birjandi, Elaheh; Kavehpour, H. Pirouz
2017-11-01
Transition from film to drop wise condensation can improve the efficiency of thermal management applications and result in considerable savings in investments and operating costs by millions of dollars every year. The current methods available are either hydrophobic coating or nanostructured surfaces. The former has little adhesion to the structure which tends to detach easily under working conditions, the fabrication techniques of the latter are neither cost-effective nor scalable, and both are made with low thermal conductivity materials that would negate the heat transfer enhancement by drop wise condensation. Therefore, the existing technologies have limitations in enhancing vapor-to-liquid condensation. This work focuses on development of surfaces with wettability contrast to boost drop wise condensation, which its overall heat transfer efficiency is 2-3 times film wise condensation, while maintaining high conduction rate through the surface at low manufacturing costs. The variation in interfacial energy is achieved through crafting hydrophobic patterns to the surface of the metal via scalable fabrication techniques. The results of experimental and surface optimization studies are also presented.
Thomas, Carole L.; Stewart, Amy E.; Constantz, Jim E.
2000-01-01
Two methods, one a surface-water method and the second a ground-water method, were used to determine infiltration and percolation rates along a 2.5-kilometer reach of the Santa Fe River near La Bajada, New Mexico. The surface-water method uses streamflow measurements and their differences along a stream reach, streamflow-loss rates, stream surface area, and evaporation rates to determine infiltration rates. The ground-water method uses heat as a tracer to monitor percolation through shallow streambed sediments. Data collection began in October 1996 and continued through December 1997. During that period the stream reach was instrumented with three streamflow gages, and temperature profiles were monitored from the stream-sediment interface to about 3 meters below the streambed at four sites along the reach. Infiltration is the downward flow of water through the stream- sediment interface. Infiltration rates ranged from 92 to 267 millimeters per day for an intense measurement period during June 26- 28, 1997, and from 69 to 256 millimeters per day during September 27-October 6, 1997. Investigators calculated infiltration rates from streamflow loss, stream surface-area measurements, and evaporation-rate estimates. Infiltration rates may be affected by unmeasured irrigation-return flow in the study reach. Although the amount of irrigation-return flow was none to very small, it may result in underestimation of infiltration rates. The infiltration portion of streamflow loss was much greater than the evaporation portion. Infiltration accounted for about 92 to 98 percent of streamflow loss. Evaporation-rate estimates ranged from 3.4 to 7.6 millimeters per day based on pan-evaporation data collected at Cochiti Dam, New Mexico, and accounted for about 2 to 8 percent of streamflow loss. Percolation is the movement of water through saturated or unsaturated sediments below the stream-sediment interface. Percolation rates ranged from 40 to 109 millimeters per day during June 26-28, 1997. Percolation rates were not calculated for the September 27-October 6, 1997, period because a late summer flood removed the temperature sensors from the streambed. Investigators used a heat-and-water flow model, VS2DH (variably saturated, two- dimensional heat), to calculate near-surface streambed infiltration and percolation rates from temperatures measured in the stream and streambed. Near the stream-sediment interface, infiltration and percolation rates are comparable. Comparison of infiltration and percolation rates showed that infiltration rates were greater than percolation rates. The method used to calculate infiltration rates accounted for net loss or gain over the entire stream reach, whereas the method used to calculate percolation was dependent on point measurements and, as applied in this study, neglected the nonvertical component of heat and water fluxes. In general, using the ground-water method was less labor intensive than making a series of streamflow measurements and relied on temperature, an easily measured property. The ground-water method also eliminated the difficulty of measuring or estimating evaporation from the water surface and was therefore more direct. Both methods are difficult to use during periods of flood flow. The ground-water method has problems with the thermocouple-wire temperature sensors washing out during flood events. The surface- water method often cannot be used because of safety concerns for personnel making wading streamflow measurements.
Convective cooling in a pool-type research reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sipaun, Susan, E-mail: susan@nm.gov.my; Usman, Shoaib, E-mail: usmans@mst.edu
2016-01-22
A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U{sub 3}Si{sub 2}Al) in the form of rectangular plates. Gaps between the plates allow coolant to passmore » through and carry away heat. A study was carried out to map out heat flow as well as to predict the system’s performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm{sup −3}. An MSTR model consisting of 20% of MSTR’s nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s{sup −1} from the 4” pipe, and predicted pool surface temperature not exceeding 30°C.« less
Ames Research Center Shear Tests of SLA-561V Heat Shield Material for Mars-Pathfinder
NASA Technical Reports Server (NTRS)
Tauber, Michael; Tran, Huy; Henline, William; Cartledge, Alan; Hui, Frank; Tran, Duoc; Zimmerman, Norm
1996-01-01
This report describes the results of arc-jet testing at Ames Research Center on behalf of Jet Propulsion Laboratory (JPL) for the development of the Mars-Pathfinder heat shield. The current test series evaluated the performance of the ablating SLA-561V heat shield material under shear conditions. In addition, the effectiveness of several methods of repairing damage to the heat shield were evaluated. A total of 26 tests were performed in March 1994 in the 2 in. X 9 in. arc-heated turbulent Duct Facility, including runs to calibrate the facility to obtain the desired shear stress conditions. A total of eleven models were tested. Three different conditions of shear and heating were used. The non-ablating surface shear stresses and the corresponding, approximate, non-ablating surface heating rates were as follows: Condition 1, 170 N/m(exp 2) and 22 W/cm(exp 2); Condition 2, 240 N/m(exp 2) and 40 W/cm(exp 2); Condition 3, 390 N/m(exp 2) and 51 W/cm(exp 2). The peak shear stress encountered in flight is represented approximately by Condition 1; however, the heating rate was much less than the peak flight value. The peak heating rate that was available in the facility (at Condition 3) was about 30 percent less than the maximum value encountered during flight. Seven standard ablation models were tested, of which three models were instrumented with thermocouples to obtain in-depth temperature profiles and temperature contours. An additional four models contained a variety of repair plugs, gaps, and seams. These models were used to evaluated different repair materials and techniques, and the effect of gaps and construction seams. Mass loss and surface recession measurements were made on all models. The models were visually inspected and photographed before and after each test. The SLA-561 V performed well; even at test Condition 3, the char remained intact. Most of the resins used for repairs and gap fillers performed poorly. However, repair plugs made of SLA-561V performed well. Approximately 70 percent of the thermocouples yielded good data.
Theoretical analysis of heat flow in horizontal ribbon growth from a melt. [silicon metal
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.
1978-01-01
A theoretical heat flow analysis for horizontalribbon growth is presented. Equations are derived relating pull speed, ribbon thickness, thermal gradient in the melt, and melt temperature for limiting cases of heat removal by radiation only and isothermal heat removal from the solid surface over the melt. Geometrical cross sections of the growth zone are shown to be triangular and nearly parabolic for the two respective cases. Theoretical pull speed for silicon ribbon 0.01 cm thick, where the loss of latent heat of fusion is by radiation to ambient temperature (300 K) only, is shown to be 1 cm/sec for horizontal growth extending 2 cm over the melt and with no heat conduction either to or from the melt. Further enhancement of ribbon growth rate by placing cooling blocks adjacent to the top surface is shown to be theoretically possible.
Vaporization characteristics of carbon heat shields under radiative heating.
NASA Technical Reports Server (NTRS)
Davy, W. C.; Bar-Nun, A.
1972-01-01
Study of the vaporization characteristics of samples of ATJ graphite, a material that has been considered for use on a Jovian probe. These samples were subjected to radiative heating loads of approximately 2 kW/sq cm in argon atmospheres of pressures from 0.00046 to 1 atm. Surface temperatures, mass loss rates, and spatially resolved emission spectral data were recorded. These data are analyzed to determine carbon vapor pressure as a function of temperature and are compared with current models for the vapor pressure of carbon. The effects of finite vaporization (i.e., nonequilibrium) rates are considered and compared with experiment. Estimates of the heat of vaporization from an energy balance are also presented.
Nucleate boiling performance evaluation of cavities at mesoscale level
Mu, Yu-Tong; Chen, Li; He, Ya-Ling; ...
2016-09-29
Nucleate boiling heat transfer (NBHT) from enhanced structures is an effective way to dissipate high heat flux. Here, a 3D multi-relaxation-time (MRT) phase-change lattice Boltzmann method in conjunction with conjugated heat transfer treatment is proposed and then applied to the study of cavities behaviours for nucleation on roughened surfaces for an entire ebullition cycle without introducing any artificial disturbance. The bubble departure diameter, departure frequency and total boiling heat transfer rate are also explored. We demonstrate that the cavity shapes show significant influence on the features of NBHT. The total heat transfer rate increases with the cavity mouth and cavitymore » base area while decreases with the increase in cavity bottom wall thickness. The cavity with low wetting can enhance the heat transfer and improve the bubble release frequency.« less
NASA Technical Reports Server (NTRS)
Olson, S. L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.
2013-01-01
The effect of low velocity forced flow on microgravity flame spread is examined using quantitative analysis of infrared video imaging. The objective of the quantitative analysis is to provide insight into the mechanisms of flame spread in microgravity where the flame is able to spread from a central location on the fuel surface, rather than from an edge. Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained along with a color video of the surface view and color images of the edge view using 35 mm color film at 2 Hz. The cellulose fuel samples were mounted in the center of a 12 cm wide by 16 cm tall flow duct and were ignited in microgravity using a straight hot wire across the center of the 7.5 cm wide by 14 cm long samples. Four cases, at 1 atm. 35%O2 in N2, at forced flows from 2 cm/s to 20 cm/s are presented here. This flow range captures flame spread from strictly upstream spread at low flows, to predominantly downstream spread at high flow. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths and pyrolysis lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel. Surface radiative loss and gas-phase radiation from soot are measured relative to the net heat feedback from the flame. At high surface heat loss relative to heat feedback, the downstream flame spread does not occur.
Constraints on Lunar Heat Flow Rates from Diviner Lunar Radiometer Polar Observations
NASA Astrophysics Data System (ADS)
Paige, D. A.; Siegler, M. A.; Vasavada, A. R.
2010-12-01
The heat flow rate from the lunar interior is a fundamental property of the moon that is related to its composition, interior structure and history. Lunar heat flow rates have been measured at the Apollo 15 and 17 landing sites [1], but it is widely believed that the measured values of 0.021 Wm-2 and 0.016 Wm-2 respectively may not be representative of the moon as a whole due to the presence of enhanced radiogenic elements at these landing sites [2]. The Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter [3] has acquired an extensive set of thermal emission from the lunar surface at infrared wavelengths, including the first radiometric measurements of surface temperatures at the lunar poles [4]. Due to its low obliquity and rough topography, the moon has extensive cryogenic regions at high latitudes that never receive direct sunlight. The temperatures of the coldest of these regions can be used to place upper limits on the heat flow rate from the lunar interior because if other heat sources are neglected, then surface thermal emission is balanced by heat flow from warmer lunar interior [5]. Diviner has mapped the north and south polar regions over a complete annual cycle and we have identified a 4 km2 area within Hermite Crater in the north polar region that has a winter season nighttime Channel 9 (100-400 micron) brightness temperatures in of less than 20K. These low temperatures would imply a lunar heat flow rate of less than 0.010 Wm-2, which may be consistent with expectations for regions of the moon that do not contain enhanced concentrations of radiogenic elements [2,6], as is the case for the north polar region of the moon [7]. [1] Langseth, M. G. et al, Proc. Lunar Sci. Conf, 7th, 3143-3171, 1976. [2] Warren, P. H. and K. K. L. Rasmussen, JGR 92, 3453-3465, 1987. [3] Paige, D. A. et al, Space Sci. Rev, 150:125-160, 2010. [4] Paige, D. A. et al., Science, in press, 2010. [5] Watson, K. JGR 72, 3301-3302, 1967. [6] Wieczorek, M. A. and R. J. Phillips, JGR 105, 20,417-20,430, 2000. [7] Lawrence, D. J. et al., Scence 281, 1484-1489, 1998.
Wettability Patterning for Enhanced Dropwise Condensation
NASA Astrophysics Data System (ADS)
Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine
2014-11-01
Dropwise condensation (DwC), in order to be sustainable, requires removal of the condensate droplets. This removal is frequently facilitated by gravity. The rate of DwC heat transfer depends strongly on the maximum departing droplet diameter. Based on wettability patterning, we present a facile technique designed to control the maximum droplet size in DwC within vapor/air atmospheres, and demonstrate how this approach can be used to enhance the corresponding heat transfer rate. We examine various hydrophilic-superhydrophilic patterns, which, respectively sustain DwC and filmwise (FwC) condensation on the substrate. The fabrication method does notemploy any hydrophobizing agent. By juxtaposing parallel lines of hydrophilic (CA ~ 78°) and superhydrophilic (CA ~ 0°) regions on the condensing surface, we create alternating domains of DwC and FwC. The average droplet size on the DwC domain is reduced by ~ 60% compared to the theoretical maximum, which corresponds to the line width. We compare heat transfer rate between unpatternend DwC surfaces and patterned DwC surfaces. Even after sacrificing 40% of condensing area, we achieve up to 20% improvement in condensate collection rate using an interdigitated superhydrophilic pattern, inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern, particularly under higher vapor loadings in an air/vapor ambient atmosphere. NSF STTR Grant 1331817 via NBD Nano.
BLIMPK/Streamline Surface Catalytic Heating Predictions on the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Marichalar, Jeremiah J.; Rochelle, William C.; Kirk, Benjamin S.; Campbell, Charles H.
2006-01-01
This paper describes the results of an analysis of localized catalytic heating effects to the U.S. Space Shuttle Orbiter Thermal Protection System (TPS). The analysis applies to the High-temperature Reusable Surface Insulation (HRSI) on the lower fuselage and wing acreage, as well as the critical Reinforced Carbon-Carbon on the nose cap, chin panel and the wing leading edge. The object of the analysis was to use a modified two-layer approach to predict the catalytic heating effects on the Orbiter windward HRSI tile acreage, nose cap, and wing leading edge assuming localized highly catalytic or fully catalytic surfaces. The method incorporated the Boundary Layer Integral Matrix Procedure Kinetic (BLIMPK) code with streamline inputs from viscous Navier-Stokes solutions to produce heating rates for localized fully catalytic and highly catalytic surfaces as well as for nominal partially catalytic surfaces (either Reinforced Carbon-Carbon or Reaction Cured Glass) with temperature-dependent recombination coefficients. The highly catalytic heating results showed very good correlation with Orbiter Experiments STS-2, -3, and -5 centerline and STS-5 wing flight data for the HRSI tiles. Recommended catalytic heating factors were generated for use in future Shuttle missions in the event of quick-time analysis of damaged or repaired TPS areas during atmospheric reentry. The catalytic factors are presented along the streamlines as well as a function of stagnation enthalpy so they can be used for arbitrary trajectories.
Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A
2007-09-04
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.
Loyd, S. J.; Becker, T. W.; Conrad, C. P.; Lithgow-Bertelloni, C.; Corsetti, F. A.
2007-01-01
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by ∼0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past. PMID:17720806
Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer
NASA Astrophysics Data System (ADS)
Schnieders, Jana; Garbe, Christoph
2014-05-01
The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale processes on interfacial transport and relate it to gas transfer. References [1] T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. Christensen, and E. S. Saltzman. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos. Chem. Phys. , 13:11073-11087, 2013. [2] J Schnieders, C. S. Garbe, W.L. Peirson, and C. J. Zappa. Analyzing the footprints of near surface aqueous turbulence - an image processing based approach. Journal of Geophysical Research-Oceans, 2013.
Numerical Simulations of the Boundary Layer Transition Flight Experiment
NASA Technical Reports Server (NTRS)
Tang, Chun Y.; Trumble, Kerry A.; Campbell, Charles H.; Lessard, Victor R.; Wood, William A.
2010-01-01
Computational Fluid Dynamics (CFD) simulations were used to study the possible effects that the Boundary Layer Transition (BLT) Flight Experiments may have on the heating environment of the Space Shuttle during its entry to Earth. To investigate this issue, hypersonic calculations using the Data-Parallel Line Relaxation (DPLR) and Langley Aerothermodynamic Upwind Relaxation (LAURA) CFD codes were computed for a 0.75 tall protuberance at flight conditions of Mach 15 and 18. These initial results showed high surface heating on the BLT trip and the areas surrounding the protuberance. Since the predicted peak heating rates would exceed the thermal limits of the materials selected to construct the BLT trip, many changes to the geometry were attempted in order to reduce the surface heat flux. The following paper describes the various geometry revisions and the resulting heating environments predicted by the CFD codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan
2014-02-18
Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath andmore » slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.« less
Heat Pipe Materials Compatibility
NASA Technical Reports Server (NTRS)
Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.
1976-01-01
An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.
Method of extracting heat from dry geothermal reservoirs
Potter, R.M.; Robinson, E.S.; Smith, M.C.
1974-01-22
Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)
NASA Astrophysics Data System (ADS)
Jha, Sourabh; Crittenden, Thomas; Glezer, Ari
2016-11-01
Heat transport within high aspect ratio, rectangular mm-scale channels that model segments of a high-performance, air-cooled heat sink is enhanced by the formation of unsteady small-scale vortical motions induced by autonomous, aeroelastic fluttering of cantilevered planar thin-film reeds. The flow mechanisms and scaling of the interactions between the reed and the channel flow are explored to overcome the limits of forced convection heat transport from air-side heat exchangers. High-resolution PIV measurements in a testbed model show that undulations of the reed's surface lead to formation and advection of vorticity concentrations, and to alternate shedding of spanwise CW and CCW vortices. These vortices scale with the reed motion amplitude, and ultimately result in motions of decreasing scales and enhanced dissipation that are reminiscent of a turbulent flow. The vorticity shedding lead to strong enhancement in heat transfer that increases with the Reynolds number of the base flow (e.g., the channel's thermal coefficient of performance is enhanced by 2.4-fold and 9-fold for base flow Re = 4,000 and 17,400, respectively, with corresponding decreases of 50 and 77% in the required channel flow rates). This is demonstrated in heat sinks for improving the thermal performance of low-Re thermoelectric power plant air-cooled condensers, where the global air-side pressure losses can be significantly reduced by lowering the required air volume flow rate at a given heat flux and surface temperature. AFOSR and NSF-EPRI.
Eisenberg, David P; Bischof, John C; Rabin, Yoed
2016-01-01
This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided-the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.
Sequential cryogen spraying for heat flux control at the skin surface
NASA Astrophysics Data System (ADS)
Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart
2001-05-01
Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.
Tridimensional Thermonuclear Instability in Subignited Plasmas and on the Surface of the Pulsars
NASA Astrophysics Data System (ADS)
Cardinali, A.; Coppi, B.
2017-10-01
Tridimensional modes involving an increase of the electron temperature can be excited as a result of alpha-particle heating in subignited D-T fusion burning plasmas when a nearly time- independent external source of heating is applied. The analyzed modes are shown to emerge from an axisymmetric toroidal configurations and are radially localized around rational magnetic surfaces corresponding to q(r =r0) =m0 /n0 where m0 and n0 are the relevant poloidal and toroidal mode numbers. The radial width of the mode is of the order of the thermal scale distance. The mode has a rather severe damping rate, that has to be overcome by the relevant heating rate. Thus the temperature range to be considered is that where the D-T plasma reactivity undergoes a relatively large increase as a function of temperature. This kind of theory has been applied to the plasmas that are envisioned to be associated with surface of pulsar and be subjects to (spatially) inhomogenous thermonuclear burning. Sponsored in part by the U.S. DoE.
NASA Astrophysics Data System (ADS)
Shuja, S. Z.; Yilbas, B. S.
2013-02-01
Jet emerging from a conical nozzle and impinging onto a tapered hole in relation to laser drilling is investigated and the influence taper location on the heat transfer and skin friction at the hole wall surface is examined. The study is extended to include four different gases as working fluid. The Reynolds stress model is incorporated to account for the turbulence effect in the flow field. The hole wall surface temperature is kept at 1500 K to resemble the laser drilled hole. It is found that the location of tapering in the hole influences the heat transfer rates and skin friction at the hole wall surface. The maximum skin friction coefficient increases for taper location of 0.25 H, where H is the thickness of the workpiece, while Nusselt number is higher in the hole for taper location of 0.75 H.
Elibol, Oguz H.; Reddy, Bobby; Nair, Pradeep R.; Dorvel, Brian; Butler, Felice; Ahsan, Zahab; Bergstrom, Donald E.; Alam, Muhammad A.; Bashir, Rashid
2010-01-01
We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications. PMID:19967115
A Nonequilibrium Finite-Rate Carbon Ablation Model for Radiating Earth Re-entry Flows
2015-09-17
model was a short half-cylinder made of isomolded graphite and was tested in 8.6 km/ s Earth entry ow. The model surface was heated within a temperature...capsule [98, 49, 112]. For the Star- dust return capsule that had an Earth entry velocity of 12 km/ s , equilibrium surface recession was over predicted...was tested at 8.6 km/ s Earth entry ow monitored by ultraviolet (UV) spec- trometry. The experiments pre-heated the model to high temperatures to
Influence of uranium hydride oxidation on uranium metal behaviour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.; Hambley, D.; Clarke, S.A.
2013-07-01
This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, ifmore » sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)« less
Sub-Scale Analysis of New Large Aircraft Pool Fire-Suppression
2016-01-01
discrete ordinates radiation and single step Khan and Greeves soot model provided radiation and soot interaction. Agent spray dynamics were...Notable differences observed showed a modeled increase in the mockup surface heat-up rate as well as a modeled decreased rate of soot production...488 K SUPPRESSION STARTED Large deviation between sensors due to sensor alignment challenges and asymmetric fuel surface ignition Unremarkable
Farrington, Robert B.; Anderson, Ren
2001-01-01
The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.
Lithium intercalation carbon and method for producing same
Even, Jr., William R.; Guidotti, Ronald A.
2001-01-01
Disordered carbons were synthesized at 700.degree. C. from methacrylonitrile-divinylbenzene precursors. The disorder, even at the free surface, was confirmed with TEM. These powdered carbons were subjected to rapid surface heating by a pulsed infrared laser (59 MW pulses). While the bulk structure remained essentially unchanged, there was substantial "surface reconstruction" to a depth of 0.25 .mu.m presumably due to ablation, re-deposition, and "recrystallization" of the surface carbon after heating by the laser. The surface ordering appears similar to the bulk microstructure of carbons isothermally annealed at 2,200.degree. C. (i.e., turbostatic). Improvements were observed in first cycle irreversible loss, rate capability, and coulombic efficiencies of the "reconstructed" carbons, relative to the untreated carbon.
Modes of mantle convection and the removal of heat from the earth's interior
NASA Technical Reports Server (NTRS)
Spohn, T.; Schubert, G.
1982-01-01
Thermal histories for two-layer and whole-mantle convection models are calculated and presented, based on a parameterization of convective heat transport. The model is composed of two concentric spherical shells surrounding a spherical core. The models were constrained to yield the observed present-day surface heat flow and mantle viscosity, in order to determine parameters. These parameters were varied to determine their effects on the results. Studies show that whole-mantle convection removes three times more primordial heat from the earth interior and six times more from the core than does two-layer convection (in 4.5 billion years). Mantle volumetric heat generation rates for both models are comparable to that of a potassium-depleted chondrite, and thus surface heat-flux balance does not require potassium in the core. Whole and two-layer mantle convection differences are primarily due to lower mantle thermal insulation and the lower heat removal efficiency of the upper mantle as compared with that of the whole mantle.
Holland, Marika M; Landrum, Laura
2015-07-13
We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Holland, Marika M.; Landrum, Laura
2015-01-01
We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. PMID:26032318
Rate limits in silicon sheet growth - The connections between vertical and horizontal methods
NASA Technical Reports Server (NTRS)
Thomas, Paul D.; Brown, Robert A.
1987-01-01
Meniscus-defined techniques for the growth of thin silicon sheets fall into two categories: vertical and horizontal growth. The interactions of the temperature field and the crystal shape are analyzed for both methods using two-dimensional finite-element models which include heat transfer and capillarity. Heat transfer in vertical growth systems is dominated by conduction in the melt and the crystal, with almost flat melt/crystal interfaces that are perpendicular to the direction of growth. The high axial temperature gradients characteristic of vertical growth lead to high thermal stresses. The maximum growth rate is also limited by capillarity which can restrict the conduction of heat from the melt into the crystal. In horizontal growth the melt/crystal interface stretches across the surface of the melt pool many times the crystal thickness, and low growth rates are achievable with careful temperature control. With a moderate axial temperature gradient in the sheet a substantial portion of the latent heat conducts along the sheet and the surface of the melt pool becomes supercooled, leading to dendritic growth. The thermal supercooling is surpressed by lowering the axial gradient in the crystal; this configuration is the most desirable for the growth of high quality crystals. An expression derived from scaling analysis relating the growth rate and the crucible temperature is shown to be reliable for horizontal growth.
Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity
NASA Technical Reports Server (NTRS)
Santa, K. J.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.
2007-01-01
Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops.
Mark A. Dietenberger; Johannes Welling; Ali Shalbafan
2014-01-01
Intumescent FRT Veneers adhered to the surface of foam core particleboard to provide adequate fire protection were evaluated by means of cone calorimeter tests (ASTM E1354). The foam core particleboards were prepared with variations in surface layer treatment, adhesives, surface layer thicknesses, and processing conditions. Ignitability, heat release rate profile, peak...
Closed loop oscillating heat pipe as heating device for copper plate
NASA Astrophysics Data System (ADS)
Kamonpet, Patrapon; Sangpen, Waranphop
2017-04-01
In manufacturing parts by molding method, temperature uniformity of the mold holds a very crucial aspect for the quality of the parts. Studies have been carried out in searching for effective method in controlling the mold temperature. Using of heat pipe is one of the many effective ways to control the temperature of the molding area to the right uniform level. Recently, there has been the development of oscillating heat pipe and its application is very promising. The semi-empirical correlation for closed-loop oscillating heat pipe (CLOHP) with the STD of ±30% was used in design of CLOHP in this study. By placing CLOHP in the copper plate at some distance from the plate surface and allow CLOHP to heat the plate up to the set surface temperature, the temperature of the plate was recorded. It is found that CLOHP can be effectively used as a heat source to transfer heat to copper plate with excellent temperature distribution. The STDs of heat rate of all experiments are well in the range of ±30% of the correlation used.
Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G
2016-05-15
Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Parmentier, E. M.; Hess, P. C.
1992-01-01
Chemically depleted mantle forming a buoyant, refractory layer at the top of the mantle can have important implications for the evolution of the interior and surface. On Venus, the large apparent depths of compensation for surface topographic features might be explained if surface topography were supported by variations in the thickness of a 100-200 km thick chemically buoyant mantle layer or by partial melting in the mantle at the base of such a layer. Long volcanic flows seen on the surface may be explained by deep melting that generates low-viscosity MgO-rich magmas. The presence of a shallow refractory mantle layer may also explain the lack of volcanism associated with rifting. As the depleted layer thickens and cools, it becomes denser than the convecting interior and the portion of it that is hot enough to flow can mix with the convecting mantle. Time dependence of the thickness of a depleted layer may create episodic resurfacing events as needed to explain the observed distribution of impact craters on the venusian surface. We consider a planetary structure consisting of a crust, depleted mantle layer, and a thermally and chemically well-mixed convecting mantle. The thermal evolution of the convecting spherical planetary interior is calculated using energy conservation: the time rate of change of thermal energy in the interior is equated to the difference in the rate of radioactive heat production and the rate of heat transfer across the thermal boundary layer. Heat transfer across the thermal boundary layer is parameterized using a standard Nusselt number-Rayleigh number relationship. The radioactive heat production decreases with time corresponding to decay times for the U, Th, and K. The planetary interior cools by the advection of hot mantle at temperature T interior into the thermal boundary layer where it cools conductively. The crust and depleted mantle layers do not convect in our model so that a linear conductive equilibrium temperature distribution is assumed. The rate of melt production is calculated as the product of the volume flux of mantle into the thermal boundary layer and the degree of melting that this mantle undergoes. The volume flux of mantle into the thermal boundary layer is simply the heat flux divided by amount of heat lost in cooling mantle to the average temperature in the thermal boundary layer. The degree of melting is calculated as the temperature difference above the solidus, divided by the latent heat of melting. A maximum degree of melting is prescribed corresponding to the maximum amount of basaltic melt that the mantle can initially generate. As the crust thickens, the pressure at the base of the crust becomes high enough and the temperature remains low enough for basalt to transform to dense eclogite.
NASA Astrophysics Data System (ADS)
Turner, J. S.; Veronis, G.
2004-03-01
This study has been motivated by two oceanographic observations: an increased rate of melting of sea ice in the Arctic Ocean, and the advance of an anomalously warm tongue of Atlantic water across the Arctic below the halocline over the last few decades. A series of laboratory experiments has been carried out in order to explore the physical principles underlying these phenomena, and the possibility that the extra heating at depth is responsible for the enhanced melting rate. A tank was filled with salt solution having various constant vertical density gradients. A block of ice one third of the length of the tank was floated on the surface at one end, and the rest of the surface and the walls of the tank were insulated. When no extra heat was supplied the melting rate (loss of weight of the ice in 1 h) systematically decreased as the stratification was changed from homogeneous fluid to increasingly large density gradients, while keeping the salinity of the solution in contact with the ice constant. An analogue of the intruding Atlantic water was produced by heating the lower portion of the vertical end wall at the end of the tank opposite to the ice end, keeping its temperature constant, and using the same range of salinity gradients as in the unheated experiments. Again the melting rate decreased as the density gradient was increased, but for low gradients it was larger than that in the unheated experiments. Above a certain intermediate gradient there was no significant difference in melting rate between the unheated and heated runs. The melting data were supplemented by photographs and vertical temperature and salinity profiles. The upward transfer of heat from the body of the fluid to melt the ice was clearly double-diffusive: overturning layers, separated by 'diffusive' interfaces, were visible on shadowgraphs, and the thickness of the layers decreased as the density gradient increased. The mean thickness of the layers through the depth of the tank also systematically decreased as the density gradient increased. With weak gradients an extra heat flux to the ice came from the intruding heated layer, but at large gradients this tongue of warm water at depth did not add to the flux near the surface. Though they were obtained in a simple, arbitrary and fixed geometry, we believe that the results of these experiments can be used as the basis for a better physical understanding of the melting rates of ice in the Arctic under various conditions.
Effects of Variable Surface Temperatures on the Dynamics of Convection within Enceladus' Ice Shell
NASA Astrophysics Data System (ADS)
Weller, M. B.; Fuchs, L.; Becker, T. W.; Soderlund, K. M.
2017-12-01
Despite Enceladus' relatively small size, observations reveal it as one of the more geologically active bodies in the solar system. Its surface is heavily deformed, including ridges, grooves, grabens, rifts, and folds that cover a significant fraction of the planet. Perhaps most notably, there is evidence of a hemispheric dichotomy between the south (the South Polar Terrain - SPT), and the remainder of the satellite. While the origin of the SPT has spurred much debate, ranging from oceans and tides to impacts, its existence suggests some form of localization process. Here, we use the mantle convection code CitcomS with temperature-dependent viscosity to address the effects of latitudinally variable surface temperature (due to differences in solar heating) for a range of internal heating rates (as proxy for tidal heating)on the convective vigor and planform within Enceladus' ice shell. Heterogeneous surface temperatures can produce a large, degree-1 upwelling with the other hemisphere fully dominated by a slower, colder downwelling. As internal heating decreases, the degree-1 upwelling forms and localizes, resulting in larger strain rates that arerestricted to 5-20% of the satellite. The remaining 80-95% of the surface remains cold and relatively quiescent, in general agreement with observations of Enceladus and the SPT today. These results show the initial degree-1 structure forms at a polar latitude, the region of greatest radial temperature contrast. This configuration is unstable, however, with the plume structure migrating towards a stable orientation at equatorial latitudes, the region of the highest absolute surface temperature. While an equatorial configuration is currently not witnessed on Enceladus,such a large and persistent dynamic structure could lead to reorientation of the satellite.
Estimating changes to groundwater discharge temperature under altered climate conditions
NASA Astrophysics Data System (ADS)
Manga, M.; Burns, E. R.; Zhu, Y.; Zhan, H.; Williams, C. F.; Ingebritsen, S.; Dunham, J.
2017-12-01
Changes in groundwater temperature resulting from climate-driven boundary conditions (recharge and land surface temperature) can be evaluated using new analytical solutions of the groundwater heat transport equation. These steady-state solutions account for land-surface boundary conditions, hydrology, and geothermal and viscous heating, and can be used to identify the key physical processes that control thermal responses of groundwater-fed ecosystems to climate change, in particular (1) groundwater recharge rate and temperature and (2) land-surface temperature transmitted through the vadose zone. Also, existing transient solutions of conduction are compared with a new solution for advective transport of heat to estimate the timing of groundwater-discharge response to changes in recharge and land surface temperature. As an example, the new solutions are applied to the volcanic Medicine Lake highlands, California, USA, and associated Fall River Springs complexes that host groundwater-dependent ecosystems. In this system, high-elevation groundwater temperatures are strongly affected only by recharge conditions, but as the vadose zone thins away from the highlands, changes to the average annual land surface temperature will also influence groundwater temperatures. Transient response to temperature change depends on both the conductive timescale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the lower-elevation Fall River Springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.
NASA Astrophysics Data System (ADS)
Bott, June; Yin, Hongbin; Sridhar, Seetharaman
2014-12-01
When high Al containing Fe alloys such as TRIP steels are exposed to atmospheres that contain N2 during re-heating, sub-surface nitrides form and these can be detrimental to mechanical properties. Nitride precipitation can be controlled by minimizing the access of the gaseous atmosphere to the metal surface, which can be achieved by a rapid growth of a continuous and adherent surface scale. This investigation utilizes a Au-image furnace attached to a confocal scanning microscope to simulate the annealing temperature vs time while Fe-Al alloys (with Al contents varying from 1 to 8 wt pct) are exposed to a O2-N2 atm with 10-6 atm O2. The heating times of 1, 10, and 100 minutes to the isothermal temperature of 1558 K (1285 °C) were used. It was found that fewer sub-surface nitride precipitates formed when the heating time was lowered and when Al content in the samples was increased. In the 8 wt pct samples, no internal nitride precipitates were present regardless of heating time. In the 3 and 5 wt pct samples, internal nitride precipitates were nearly more or less absent at heating times less than 10 minutes. The decrease in internal precipitates was governed by the evolving structure of the external oxide-scale. At low heating rates and/or low Al contents, significant Fe-oxide patches formed and these appeared to allow for ingress of gaseous N2. For the slow heating rates, ingress could have happened during the longer time spent in lower temperatures where non-protective alumina was present. As Al content in the alloy was increased, the external scale was Al2O3 and/or FeAl2O4 and more continuous and consequently hindered the N2 from accessing the metal surface. Increasing the Al content in the alloy had the effect of promoting the outward diffusion of Al in the alloy and thereby assisting the formation of the continuous external layer of Al2O3 and/or FeAl2O4.
CFD Analysis of Tile-Repair Augers for the Shuttle Orbiter Re-Entry Aeroheating
NASA Technical Reports Server (NTRS)
Mazaheri, Ali R.
2007-01-01
A three-dimensional aerothermodynamic model of the shuttle orbiter's tile overlay repair (TOR) sub-assembly is presented. This sub-assembly, which is an overlay that covers the damaged tiles, is modeled as a protuberance with a constant thickness. The washers and augers that serve as the overlay fasteners are modeled as cylindrical protuberances with constant thicknesses. Entry aerothermodynamic cases are studied to provide necessary inputs for future thermal analyses and to support the space-shuttle return-to-flight effort. The NASA Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is used to calculate heat transfer rate on the surfaces of the tile overlay repair and augers. Gas flow is modeled as non-equilibrium, five species air in thermal equilibrium. Heat transfer rate and surface temperatures are analyzed and studied for a shuttle orbiter trajectory point at Mach 17.85. Computational results show that the average heat transfer rate normalized with respect to its value at body point 1800 is about BF=1.9 for the auger head. It is also shown that the average BF for the auger and washer heads is about BF=2.0.
Heat Deposition and Heat Removal in the UCLA Continuous Current Tokamak
NASA Astrophysics Data System (ADS)
Brown, Michael Lee
1990-01-01
Energy transfer processes in a steady-state tokamak are examined both theoretically and experimentally in order to determine the patterns of plasma heat deposition to material surfaces and the methods of heat removal. Heat transfer experiments involving actively cooled limiters and heat flux probes were performed in the UCLA Continuous Current Tokamak (CCT). The simple exponential model of plasma power deposition was extended to describe the global heat deposition to the first wall of a steady-state tokamak. The heat flux distribution in CCT was determined from measurements of heat flow to 32 large-area water-cooled Faraday shield panels. Significant toroidal and poloidal asymmetries were observed, with the maximum heat fluxes tending to fall on the lower outside panels. Heat deposition to the water-cooled guard limiters of an ion Bernstein wave antenna in CCT was measured during steady-state operation. Very strong asymmetries were observed. The heat distribution varied greatly with magnetic field. Copper heat flux sensors incorporating internal thermocouples were developed to measure plasma power deposition to exterior probe surfaces and heat removal from water -cooled interior surfaces. The resulting inverse heat conduction problem was solved using the function specification method. Cooling by an impinging liquid jet was investigated. One end of a cylindrical copper heat flux sensor was heated by a DC electrical arc and the other end was cooled by a low velocity water jet at 1 atm. Critical heat flux (CHF) values for the 55-80 ^circC sub-cooled free jets were typically 2.5 times published values for saturated free jets. For constrained jets, CHF values were about 20% lower. Heat deposition and heat removal in thick (3/4 inch diameter) cylindrical metal probes (SS304 or copper) inserted into a steady-state tokamak plasma were measured for a broad range of heat loads. The probes were cooled internally by a constrained jet of either air or water. Steady -state heat removal rates of up to 400 W/cm^2 were attained at the water cooled surface, and conditions of CHF were experimentally identified. Heat transfer in a hemispherical limiter is discussed.
Initial evaluation of floor cooling on lactating sows under severe acute heat stress
USDA-ARS?s Scientific Manuscript database
The objectives were to evaluate an acute heat stress protocol for lactating sows and evaluate preliminary estimates of water flow rates required to cool sows. Twelve multiparous sows were provided with a cooling pad built with an aluminum plate surface, high-density polyethylene base and copper pipe...
NASA Technical Reports Server (NTRS)
Guy, R. W.; Mueller, J. N.; Pinckney, S. Z.; Lee, L. P.
1976-01-01
An aerodynamic model of a hydrogen burning, airframe integrated scramjet engine has been designed, fabricated, and instrumented. This model is to be tested in an electric arc heated wind tunnel at an altitude of 35.39 km (116,094 ft.) but with an inlet Mach number of 6 simulating precompression on an aircraft undersurface. The scramjet model is constructed from oxygen free, high conductivity copper and is a heat sink design except for water cooling in some critical locations. The model is instrumented for pressure, surface temperature, heat transfer rate, and thrust measurements. Calculated flow properties, heat transfer rates, and surface temperature distributions along the various engine components are included for the conditions stated above. For some components, estimates of thermal strain are presented which indicate significant reductions in plastic strain by selective cooling of the model. These results show that the 100 thermal cycle life of the engine was met with minimum distortion while staying within the 2669 N (600 lbf) engine weight limitation and while cooling the engine only in critical locations.
Engineering Aerothermal Analysis for X-34 Thermal Protection System Design
NASA Technical Reports Server (NTRS)
Wurster, Kathryn E.; Riley, Christopher J.; Zoby, E. Vincent
1998-01-01
Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier-Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented.
Engineering Aerothermal Analysis for X-34 Thermal Protection System Design
NASA Technical Reports Server (NTRS)
Wurster, Kathryn E.; Riley, Christopher J.; Zoby, E. Vincent
1998-01-01
Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier- Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented.
Mathematical Modeling of Dual Layer Shell Type Recuperation System for Biogas Dehumidification
NASA Astrophysics Data System (ADS)
Gendelis, S.; Timuhins, A.; Laizans, A.; Bandeniece, L.
2015-12-01
The main aim of the current paper is to create a mathematical model for dual layer shell type recuperation system, which allows reducing the heat losses from the biomass digester and water amount in the biogas without any additional mechanical or chemical components. The idea of this system is to reduce the temperature of the outflowing gas by creating two-layered counter-flow heat exchanger around the walls of biogas digester, thus increasing a thermal resistance and the gas temperature, resulting in a condensation on a colder surface. Complex mathematical model, including surface condensation, is developed for this type of biogas dehumidifier and the parameter study is carried out for a wide range of parameters. The model is reduced to 1D case to make numerical calculations faster. It is shown that latent heat of condensation is very important for the total heat balance and the condensation rate is highly dependent on insulation between layers and outside temperature. Modelling results allow finding optimal geometrical parameters for the known gas flow and predicting the condensation rate for different system setups and seasons.
[Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].
Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen
2017-05-01
The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Webb, Bryan T.
The electrodes are the attachment points for an electric arc where electrons and positive ions enter and leave the gas, creating a flow of current. Electrons enter the gas at the cathode and are removed at the anode. Electrons then flow out through the leads on the anode and are replenished from the power supply through the leads on the cathode. Electric arc attachment to the electrode surface causes intensive heating and subsequent melting and vaporization. At that point a multitude of factors can contribute to mass loss, to include vaporization (boiling), material removal via shear forces, chemical reactions, evaporation, and ejection of material in jets due to pressure effects. If these factors were more thoroughly understood and could be modeled, this knowledge would guide the development of an electrode design with minimal erosion. An analytic model was developed by a previous researcher that models mass loss by melting, evaporation and boiling with a moving arc attachment point. This pseudo one-dimensional model includes surface heat flux in periodic cycles of heating and cooling to model motion of a spinning arc in an annular electrode where the arc periodically returns to the same spot. This model, however, does not account for removal of material due to shear or pressure induced effects, or the effects of chemical reactions. As a result of this, the model under-predicts material removal by about 50%. High velocity air flowing over an electrode will result in a shear force which has the potential to remove molten material as the arc melts the surface on its path around the electrode. In order to study the effects of shear on mass loss rate, the model from this previous investigator has been altered to include this mass loss mechanism. The results of this study have shown that shear is a viable mechanism for mass loss in electrodes and can account for the mismatch between theoretical and experimental rates determined by previous investigators. The results of a parametric study of arc attachment factors - including spot size, fall voltage, arc spot rotation rate, ambient bore heat rate, and air mass flow rate - are presented. The parametric study resulted in improving estimates of both the arc spot size and electrode fall voltage, two critical factors affecting electrode heating. Little sensitivity of electrode erosion rate to ambient bore heat rate and rotation rate was found. The erosion rate is found to be sensitive to the mass flow rate of air injected in the arc heater and validation of the model by comparison with more run condition data should be carried out as the data become available.
Heat flow diagnostics for helicon plasmas.
Berisford, Daniel F; Bengtson, Roger D; Raja, Laxminarayan L; Cassady, Leonard D; Chancery, William J
2008-10-01
We present experimental studies of power balance in an argon helicon discharge. An infrared camera measures the heating of the dielectric tube containing a helicon discharge based on measurement of temperature profiles of the tube surface before and after a rf pulse. Using this diagnostic, we have measured surface heating trends at a variety of operating conditions on two helicon systems: the 10 kW VASIMR VX-50 experiment and the University of Texas at Austin 1 kW helicon experiment. Power losses downstream from the antenna are measured using thermocouples and probes. The heating of the dielectric tube increases with decreasing magnetic fields, higher gas flow rates, and higher molecular mass of the gas. These preliminary results suggest that cross-field particle diffusion contributes a significant proportion of the energy flux to the wall.
Evaporation for Lithium Bromide Aqueous Solution in a Falling Film Heater under Reduced Pressures
NASA Astrophysics Data System (ADS)
Matsuda, Akira; Ide, Tetsuo; Yukino, Keiji
Experiments on evaporation for water and lithium bromide (LiBr) aqueous solution were made in a externally heated wetted-wall column under reduced pressures. For water, evaporation rate increased slightly as feed rate decreased. The heat transfer coefficients of falling film agreed with those for filmwise condensation. For LiBr solution, evaporation rate decreased and outlet temperature of LiBr solution increased as feed rate decreased. The equations of continuity, diffusion and energy which assume that only water moves to the surface and LiBr doesn't move through falling film of LiBr solution were solved numerically. Calculated values of evaporation rate and outlet temperature of solution agreed with experimental results. The results of this work were compared with pool boiling data reported previously, and it was shown that falling film heater is superior to pool boiling heater concerning heat transfer.
NASA Astrophysics Data System (ADS)
Shean, D. E.; Christianson, K.; Larson, K. M.; Ligtenberg, S.; Joughin, I. R.; Smith, B.; Stevens, C.
2016-12-01
In recent decades, Pine Island Glacier (PIG) has experienced marked retreat, speedup and thinning due to ice-shelf basal melt, internal ice-stream instability and feedbacks between these processes. In an effort to constrain recent ice-stream dynamics and evaluate potential causes of retreat, we analyzed 2008-2010 and 2012-2014 GPS records for PIG. We computed time series of horizontal velocity, strain rate, multipath-based antenna height, surface elevation, and Lagrangian elevation change (Dh/Dt). These data provide validation for complementary high-resolution WorldView stereo digital elevation model (DEM) records, with sampled DEM vertical error of 0.7 m. The GPS antenna height time series document a relative surface elevation increase of 0.7-1.0 m/yr, which is consistent with estimated surface mass balance (SMB) of 0.7-0.9 m.w.e./yr from RACMO2.3 and firn compaction rates from the IMAU-FDM dynamic firn model. An abrupt 0.2-0.3 m surface elevation decrease due to surface melt and/or greater near-surface firn compaction is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed surface Dh/Dt for all PIG shelf sites is highly linear with trends of -1 to -4 m/yr and <0.4 m residuals. Similar Dh/Dt estimates with reduced variability are obtained after removing expected downward GPS pole base velocity from observed GPS antenna Dh/Dt. Estimated Dh/Dt basal melt rates are 10 to 40 m/yr for the outer PIG shelf and 4 m/yr for the South shelf. These melt rates are similar to those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo DEM records. The GPS/DEM records document higher melt rates within and near transverse surface depressions and rifts associated with longitudinal extension. Basal melt rates for the 2012-2014 period show limited temporal variability, despite significant change in ocean heat content. This suggests that sub-shelf melt rates are less sensitive to ocean heat content than previously reported, at least for these locations and time periods.
Increasing Boiling Heat Transfer using Low Conductivity Materials
Mahamudur Rahman, Md; Pollack, Jordan; McCarthy, Matthew
2015-01-01
We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches. PMID:26281890
Conjugate heat transfer analysis of an ultrasonic molten metal treatment system
NASA Astrophysics Data System (ADS)
Zhu, Youli; Bian, Feilong; Wang, Yanli; Zhao, Qian
2014-09-01
In piezoceramic ultrasonic devices, the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material. While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber, so that it is difficult to experimentally measure the temperature of the transducer and its variation with time, which bring heavy difficulty to the design of the ultrasonic molten metal treatment system. To find a way out, conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method. In modeling of the system, the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation. Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution. Numerical results show that, after about 350 s of working time, temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling. At 240 s, The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2, while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2, which indicates the effectiveness of heat insulation of the asbestos pad. Transient heat transfer film coefficient and its distribution, which are difficult to be measured experimentally are also obtained through numerical simulation. At 240 s, the heat transfer film coefficient in the surface of the transducer ranges from -17.86 to 20.17 W/(m2 · K). Compared with the trial and error method based on the test, the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.
NASA Astrophysics Data System (ADS)
Tomac, I.; Caulk, R.
2016-12-01
The current study explored the feasibility of heat recovery through the installation of heat exchangers in abandoned oil and gas wells. Finite Element Methods (FEM) were employed to determine the effects of various site specific parameters on production fluid temperature. Specifically, the study parameterized depth of well, subsurface temperature gradient, sedimentary rock conductivity, and flow rate. Results show that greater well depth is associated with greater heat flow, with the greatest returns occurring between depths of 1.5 km and 7 km. Beyond 7 km, the rate of return decreases due to a non-linear increase of heat flow combined with a continued linear increase of pumping cost. One cause for the drop of heat flow was the loss of heat as the fluid travels from depth to the surface. Further analyses demonstrated the benefit of an alternative heat exchanger configuration characterized by thermally insulated sections of the upward heat exchanger. These simulations predict production fluid temperature gains between 5 - 10 oC, which may be suitable for geothermal heat pump applications.
Characteristic Study of Shenmu Bituminous Coal Combustion with Online TG-MS-FTIR
NASA Astrophysics Data System (ADS)
Pan, Guanfu
2018-01-01
The combustion characteristics of Shenmu bituminous pulverized coal (SBC) were comprehensively investigated with a combined TG-MS-FTIR system by considering the effect of particle size, heating rate and total flowrate. The combustion products were accurately quantified by normalization and numerical analysis of MS results. The results indicate that the decrease of the particle size, heating rate and total flowrate result in lower ignition and burnout temperatures. The activation energy tends to be lower with smaller particle size, lower heating rate and total flowrate. The MS and FTIR results demonstrate that lower concentrations of different products, such as NO, NO2, HCN, CH4 and SO2 were produced with smaller particle size, slower heating rate and lower total flowrate. The decrease of particle size would lead to more contact area with oxygen and slower heating rate could provide more sufficient time for the diffusion. High total flowrate would reduce the oxygen adsorbability on the coal particle surface and shorten the residence time of oxygen, which makes the ignition difficult to occur. This work will guide to understand the combustion kinetics of pulverized coals and be beneficial to control the formation of pollutants.
Numerical prediction of the Mid-Atlantic states cyclone of 18-19 February 1979
NASA Technical Reports Server (NTRS)
Atlas, R.; Rosenberg, R.
1982-01-01
A series of forecast experiments was conducted to assess the accuracy of the GLAS model, and to determine the importance of large scale dynamical processes and diabatic heating to the cyclogenesis. The GLAS model correctly predicted intense coastal cyclogenesis and heavy precipitation. Repeated without surface heat and moisture fluxes, the model failed to predict any cyclone development. An extended range forecast, a forecast from the NMC analysis interpolated to the GLAS grid, and a forecast from the GLAS analysis with the surface moisture flux excluded predicted weak coastal low development. Diabatic heating resulting from oceanic fluxes significantly contributed to the generation of low level cyclonic vorticity and the intensification and slow rate of movement of an upper level ridge over the western Atlantic. As an upper level short wave trough approached this ridge, diabatic heating associated with the release of latent heat intensified, and the gradient of vorticity, vorticity advection and upper level divergence in advance of the trough were greatly increased, providing strong large scale forcing for the surface cyclogenesis.
Shuttle ascent and shock impingement aerodynamic heating studies
NASA Technical Reports Server (NTRS)
Lanning, W. D.; Hung, F. T.
1971-01-01
The collection and analysis of aerodynamic heating data obtained from shock impingement experimental investigation were completed. The data were categorized into four interference areas; fin leading edge, wing/fuselage fin/plate corners, and space shuttle configurations. The effects of shock impingement were found to increase the heating rates 10 to 40 times the undisturbed values. A test program was completed at NASA/Langley Research Center to investigate the magnitudes and surface patterns of the mated shock interference flowfield. A 0.0065 scale thin-skin model of the MDAC 256-20 space shuttle booster mated with a Stycast model of the MDAC Internal tank orbiter was tested in the 20-inch M=6 tunnel, the 31-inch M=10 tunnel, and the 48-inch Unitary Plan Tunnel. The gap region of the ascent configuration was the principal area of interest where both thermocouple and phase-change paint data were obtained. Pressure and heat transfer distributions data on the leeward surface of a 75-degree sweep slab delta wing are presented. The effects of surface roughness on boundary layer transition and aerodynamic heating were investigated.
NASA Technical Reports Server (NTRS)
Guillermo, P.
1975-01-01
A mathematical model of the aerothermochemical environment along the stagnation line of a planetary return spacecraft using an ablative thermal protection system was developed and solved for conditions typical of atmospheric entry from planetary missions. The model, implemented as a FORTRAN 4 computer program, was designed to predict viscous, reactive and radiative coupled shock layer structure and the resulting body heating rates. The analysis includes flow field coupling with the ablator surface, binary diffusion, coupled line and continuum radiative and equilibrium or finite rate chemistry effects. The gas model used includes thermodynamic, transport, kinetic and radiative properties of air and ablation product species, including 19 chemical species and 16 chemical reactions. Specifically, the impact of nonequilibrium chemistry effects upon stagnation line shock layer structure and body heating rates was investigated.
NASA Astrophysics Data System (ADS)
Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.
2018-05-01
The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.
NASA Astrophysics Data System (ADS)
Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.
2018-03-01
The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.
NASA Technical Reports Server (NTRS)
Zoby, E. V.
1981-01-01
An engineering method has been developed for computing the windward-symmetry plane convective heat-transfer rates on Shuttle-like vehicles at large angles of attack. The engineering code includes an approximate inviscid flowfield technique, laminar and turbulent heating-rate expressions, an approximation to account for the variable-entropy effects on the surface heating and the concept of an equivalent axisymmetric body to model the windward-ray flowfields of Shuttle-like vehicles at angles of attack from 25 to 45 degrees. The engineering method is validated by comparing computed heating results with corresponding experimental data measured on Shuttle and advanced transportation models over a wide range of flow conditions and angles of attack from 25 to 40 degrees and also with results of existing prediction techniques. The comparisons are in good agreement.
Limits on modes of lithospheric heat transport on Venus from impact crater density
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Solomon, Sean C.
1987-01-01
Based on the observed density of impact craters on the Venus surface obtained from Venera 15-16 radar images, a formalism to estimate the upper bounds on the contributions made to lithospheric heat transport by volcanism and lithospheric recycling is presented. The Venera 15-16 data, if representative of the entire planet, limit the average rate of volcanic resurfacing on Venus to less than 2 cu km/yr (corresponding to less than 1 percent of the global heat loss), and limit the rate of lithospheric recycling to less than 1.5 sq km/yr (and probably to less than 0.5 sq km/yr), corresponding to 25 percent (and to 9 percent) of the global heat loss. The present results indicate that heat loss at lithospheric levels in Venus is dominated by conduction.
NASA Astrophysics Data System (ADS)
Bunker, R. S.; Metzger, D. E.; Wittig, S.
1990-06-01
Detailed radial heat-transfer coefficient distributions applicable to the cooling of disk-cavity regions of gas turbines are obtained experimentally from local heat-transfer data on both the rotating and stationary surfaces of a parallel-geometry disk-cavity system. Attention is focused on the hub injection of a coolant over a wide range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. It is shown that rotor heat transfer exhibits regions of impingement and rotational domination with a transition region between, while stator heat transfer displays flow reattachment and convection regions with an inner recirculation zone.
NASA Astrophysics Data System (ADS)
Shoukat, Ahmad Adnan; Shaban, Muhammad; Israr, Asif; Shah, Owaisur Rahman; Khan, Muhammad Zubair; Anwar, Muhammad
2018-03-01
We investigate the heat transfer effect of different types of Nano-fluids on the pin fin heat sinks used in computer's microprocessor. Nano-particles of Aluminum oxide have been used with volumetric concentrations of 0.002% and Silver oxide with volumetric concentrations of 0.001% in the base fluid of deionized water. We have also used Aluminum oxide with ethylene glycol at volumetric concentrations of 0.002%. We report the cooling rates of Nano-fluids for pin-fin heat to cool the microprocessor and compare these with the cooling rate of pure water. We use a microprocessor heat generator in this investigation. The base temperature is obtained using surface heater of power 130 W. The main purpose of this work is to minimize the base temperature, and increase the heat transfer rate of the water block and radiator. The temperature of the heat sink is maintained at 110 °C which is nearly equal to the observed computer microprocessor temperature. We also provide the base temperature at different Reynolds's number using the above mention Nano-fluids with different volumetric concentrations.
Estimation of the dust production rate from the tungsten armour after repetitive ELM-like heat loads
NASA Astrophysics Data System (ADS)
Pestchanyi, S.; Garkusha, I.; Makhlaj, V.; Landman, I.
2011-12-01
Experimental simulations for the erosion rate of tungsten targets under ITER edge-localized mode (ELM)-like surface heat loads of 0.75 MJ m-2 causing surface melting and of 0.45 MJ m-2 without melting have been performed in the QSPA-Kh50 plasma accelerator. Analytical considerations allow us to conclude that for both energy deposition values the erosion mechanism is solid dust ejection during surface cracking under the action of thermo-stress. Tungsten influx into the ITER containment of NW~5×1018 W per medium size ELM of 0.75 MJ m-2 and 0.25 ms time duration has been estimated. The radiation cooling power of Prad=150-300 MW due to such influx of tungsten is intolerable: it should cool the ITER core to 1 keV within a few seconds.
Anderson, David M; Gupta, Maneesh K; Voevodin, Andrey A; Hunter, Chad N; Putnam, Shawn A; Tsukruk, Vladimir V; Fedorov, Andrei G
2012-04-24
Controlling coalescence events in a heterogeneous ensemble of condensing droplets on a surface is an outstanding fundamental challenge in surface and interfacial sciences, with a broad practical importance in applications ranging from thermal management of high-performance electronic devices to moisture management in high-humidity environments. Nature-inspired superhydrophobic surfaces have been actively explored to enhance heat and mass transfer rates by achieving favorable dynamics during dropwise condensation; however, the effectiveness of such chemically homogeneous surfaces has been limited because condensing droplets tend to form as pinned Wenzel drops rather than mobile Cassie ones. Here, we introduce an amphiphilic nanostructured surface, consisting of a hydrophilic base with hydrophobic tips, which promotes the periodic regeneration of nucleation sites for small droplets, thus rendering the surface self-rejuvenating. This unique amphiphilic nanointerface generates an arrangement of condensed Wenzel droplets that are fluidically linked by a wetted sublayer, promoting previously unobserved coalescence events where numerous droplets simultaneously merge, without direct contact. Such ensemble coalescences rapidly create fresh nucleation sites, thereby shifting the overall population toward smaller droplets and enhancing the rates of mass and heat transfer during condensation.
Extending the potential of evaporative cooling for heat-stress relief.
Berman, A
2006-10-01
Factors were analyzed that limit the range of environmental conditions in which stress from heat may be relieved by evaporative cooling in shaded animals. Evaporative cooling reduces air temperature (Ta), but increases humidity. Equations were developed to predict Ta reduction as a function of ambient temperature and humidity and of humidity in cooled air. Predictions indicated that a reduction of Ta becomes marginal at humidities beyond 45%. A reduction of Ta lessens with rising ambient Ta. The impact of increasing humidity on respiratory heat loss (Hre) was estimated from existing data published on Holstein cattle. Respiratory heat loss is reduced by increased humidity up to 45%, but is not affected by higher humidity. Skin evaporative and sensible heat losses are determined not only by the humidity and temperature gradient, but also by air velocity close to the body surface. At higher Ta, the reduction in sensible heat loss is compensated for by an increased demand for Hre. High Hre may become a stressor when panting interferes with resting and rumination. Effects of temperature, humidity, air velocity, and body surface exposure to free air on Hre were estimated by a thermal balance model for lactating Holstein cows yielding 35 kg/d. The predictions of the simulations were supported by respiratory rate observations. The Hre was assumed to act as a stressor when exceeding 50% of the maximal capacity. When the full body surface was exposed to a 1.5 m/s air velocity, humidity (15 to 75%) had no significant predicted effect on Hre. For an air velocity of 0.3 m/s, Hre at 50% of the maximum rate was predicted at 34, 32.5, and 31.5 degrees C for relative humidities of 55, 65, and 75%, respectively. Similar results were predicted for an animal with two-thirds of its body surface exposed to 1.5 m/s air velocity. If air velocity was reduced for such animals to 0.3 m/s, the rise in Hre was expected to occur at approximately 25 degrees C and 50% relative humidity. Maximal rates of Hre were estimated at 27 to 30 degrees C when ambient humidity was 55% relative humidity and higher. High humidity may stress animals in evaporative cooling systems. Humidity stress may be prevented by a higher air velocity on the body surface of the animal, particularly in sheltered areas in which the exposed body surface is reduced, such as mangers and stalls. This may extend the use of evaporative cooling to less dry environments.
A Burning Rate Emulator (BRE) for Study in Microgravity
NASA Technical Reports Server (NTRS)
Markan, A.; Sunderland, P. B.; Quintiere, J. G.; DeRis, J.; Stocker, D. P.
2015-01-01
A gas-fueled burner, the Burning Rate Emulator (BRE), is used to emulate condensed-phase fuel flames. The design has been validated to easily measure the burning behavior of condensed-phase fuels by igniting a controlled stream of gas fuel and diluent. Four properties, including the heat of combustion, the heat of gasification, the surface temperature, and the laminar smoke point, are assumed to be sufficient to define the steady burning rate of a condensed-phase fuel. The heat of gasification of the fuel is determined by measuring the heat flux and the fuel flow rate. Microgravity BRE tests in the NASA 5.2 s drop facility have examined the burning of pure methane and ethylene (pure and 50 in N2 balance). Fuel flow rates, chamber oxygen concentration and initial pressure have been varied. Two burner sizes, 25 and 50 mm respectively, are chosen to examine the nature of initial microgravity burning. The tests reveal bubble-like flames that increase within the 5.2s drop but the heat flux received from the flame appears to asymptotically approach steady state. Portions of the methane flames appear to locally detach and extinguish at center, while its shape remains fixed, but growing. The effective heat of gasification is computed from the final measured net heat flux and the fuel flow rate under the assumption of an achieved steady burning. Heat flux (or mass flux) and flame position are compared with stagnant layer burning theory. The analysis offers the prospect of more complete findings from future longer duration ISS experiments.
Desorption of SVOCs from Heated Surfaces in the Form of Ultrafine Particles.
Wallace, Lance A; Ott, Wayne R; Weschler, Charles J; Lai, Alvin C K
2017-02-07
Ultrafine particles (UFP) produced by electric heating of stoves and metal cooking pans, absent food, have been hypothesized to be created from a surface film of semivolatile organic compounds (SVOCs) sorbed from the surrounding air. This study tests that hypothesis by size-resolved measurements extending the lower range of the UFP studied from 10 to 2.3 nm, and including other surfaces (glass, aluminum, and porcelain). Heating glass Petri dishes or squares of aluminum foil to about 350-400 °C for 4-6 min removed all sorbed organic substances completely. Subsequent exposure of these "clean" Petri dishes and foil squares to indoor air in two different residences for successively longer periods (1 h to 281 days), followed by heating the materials for 4-6 min, indicated a strong relationship of the number, size distribution, and mass of the UFP to the time exposed. Estimates of the accumulation rate of SVOCs on surfaces were similar to those in studies of organic film buildup on indoor windows. Transfer of skin oils by touching the glass or foil surfaces, or after washing the glass surface with detergent and bare hands, was also observed, with measured particle production comparable with that produced by long-term exposure to indoor air.
Global surface temperature/heat transfer measurements using infrared imaging
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
1992-01-01
A series of studies were conducted to evaluate the use of scanning radiometric infrared imaging systems for providing global surface temperature/heat transfer measurements in support of hypersonic wind tunnel testing. The in situ precision of the technique with narrow temperature span setting over the temperature range of 20 to 200 C was investigated. The precision of the technique over wider temperature span settings was also determined. The accuracy of technique for providing aerodynamic heating rates was investigated by performing measurements on a 10.2-centimeter hemisphere model in the Langley 31-inch Mach 10 tunnel, and comparing the results with theoretical predictions. Data from tests conducted on a generic orbiter model in this tunnel are also presented.
NASA Technical Reports Server (NTRS)
Weilmuenster, K. J.; Gnoffo, Peter A.
1992-01-01
A procedure which reduces the memory requirements for computing the viscous flow over a modified Orbiter geometry at a hypersonic flight condition is presented. The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) code which incorporates a thermochemical nonequilibrium chemistry model, a finite rate catalytic wall boundary condition and wall temperature distribution based on radiation equilibrium is used in this study. In addition, the effect of choice of 'min mod' function, eigenvalue limiter and grid density on surface heating is investigated. The surface heating from a flowfield calculation at Mach number 22, altitude of 230,000 ft and 40 deg angle of attack is compared with flight data from three Orbiter flights.
NASA Technical Reports Server (NTRS)
Noffz, Gregory K.; Bowman, Michael P.
1996-01-01
Flight vehicles are typically instrumented with subsurface thermocouples to estimate heat transfer at the surface using inverse analysis procedures. If the vehicle has an ablating heat shield, however, temperature time histories from subsurface thermocouples no longer provide enough information to estimate heat flux at the surface. In this situation, the geometry changes and thermal energy leaves the surface in the form of ablation products. The ablation rate is required to estimate heat transfer to the surface. A new concept for a capacitive sensor has been developed to measure ablator depth using the ablator's dielectric effect on a capacitor's fringe region. Relying on the capacitor's fringe region enables the gage to be flush mounted in the vehicle's permanent structure and not intrude into the ablative heat shield applied over the gage. This sensor's design allows nonintrusive measurement of the thickness of dielectric materials, in particular, the recession rates of low-temperature ablators applied in thin (0.020 to 0.060 in. (0.05 to 0.15 mm)) layers. Twenty capacitive gages with 13 different sensing element geometries were designed, fabricated, and tested. A two-dimensional finite-element analysis was performed on several candidate geometries. Calibration procedures using ablator-simulating shims are described. A one-to-one correspondence between system output and dielectric material thickness was observed out to a thickness of 0.055 in. (1.4 mm) for a material with a permittivity about three times that of air or vacuum. A novel method of monitoring the change in sensor capacitance was developed. This technical memorandum suggests further improvements in gage design and fabrication techniques.
Near-Limit Flamelet Phenomena in Buoyant Low Stretch Diffusion Flames Beneath a Solid Fuel
NASA Technical Reports Server (NTRS)
Olson, S. L.; Tien, J. S.
2000-01-01
A unique near-limit low stretch multidimensional stable flamelet phenomena has been observed for the first time which extends the material flammability limit beyond the one-dimensional low stretch flammability limit to lower burning rates and higher relative heat losses than is possible with uniform flame coverage. During low stretch experiments burning the underside of very large radii (greater than or = 75 cm stretch rate less than or = 3/s) cylindrical cast PMMA samples, multidimensional flamelets were observed, in contrast with a one-dimensional flame that was found to blanket the surface for smaller radii samples ( higher stretch rate). Flamelets were observed by decreasing the stretch rate or by increasing the conductive heat loss from the flame. Flamelets are defined as flames that cover only part of the burning sample at any given time, but persist for many minutes. Flamelet phenomena is viewed as the flame's method of enhancing oxygen flow to the flame, through oxygen transport into the edges of the flamelet. Flamelets form as heat losses (surface radiation and solid-phase conduction) become large relative to the weakened heat release of the low stretch flame. While heat loss rates remain fairly constant, the limiting factor in the heat release of the flame is hypothesized to be the oxygen transport to the flame in this low stretch (low convective) environment. Flamelet extinction is frequently caused by encroachment of an adjacent flamelet. Large-scale whole-body flamelet oscillations at 1.2 - 1.95 Hz are noted prior to extinction of a flamelet. This oscillation is believed to be due a repeated process of excess fuel leakage through the dark channels between the flamelets, fuel premixing with slow incoming oxidizer, and subsequent rapid flame spread and retreat of the flamelet through the premixed layer. The oscillation frequency is driven by gas-phase diffusive time scales.
Recurrent filmwise and dropwise condensation on a beetle mimetic surface.
Hou, Youmin; Yu, Miao; Chen, Xuemei; Wang, Zuankai; Yao, Shuhuai
2015-01-27
Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine the thermal performances of condensation; however, these properties have conflicting requirements on the structural roughness and surface chemistry of the condensing surface or condensation modes (e.g., filmwise vs dropwise). Despite intensive efforts over the past few decades, almost all studies have focused on the dropwise condensation enabled by superhydrophobic surfaces. In this work, we report the development of a bioinspired hybrid surface with high wetting contrast that allows for seamless integration of filmwise and dropwise condensation modes. We show that the synergistic cooperation in the observed recurrent condensation modes leads to improvements in all aspects of heat transfer properties including droplet nucleation density, growth rate, and self-removal, as well as overall heat transfer coefficient. Moreover, we propose an analytical model to optimize the surface morphological features for dramatic heat transfer enhancement.
Thermophysical fundamentals of cyclonic recirculating heating devices
NASA Astrophysics Data System (ADS)
Karpov, S. V.; Zagoskin, A. A.
2017-10-01
This report presents the results of experimental and theoretical research of aerodynamics and convective heat transfer in cyclone devices with the new system of external recirculation of heating gas under the influence of radial pressure gradient in a heat carrier’s swirling turbulent flow. The dynamic problem of tangential velocity distribution in a clearance volume is solved at various re-circulation ratio values including limiting quantities (kr = 0; 1) and variations in cyclonic combustion chamber’s design parameters and operating conditions (Rer); the integrated calculation ratios for fundamental aerodynamic characteristics of a recirculation device are derived. The first experimental and numerical studies of convective heat transfer on internal and external surfaces of a hollow shaft in a swirling recirculation flow are derived through the instrumentality of OpenFOAM, these studies are also conducted for a setting of several cylindrical solid inserts. The external surface heat problem of a hollow cylindrical insert is solved with integral and digital methods; generalized similarity equations for the internal and external surfaces extended in range of Reynolds number are derived. The experimental data is in reasonable agreement with the derived curves and the results of mathematic modelling of convective heat transfer. Calculation recommendations for optimal selection of kr values at various ratios of their geometric characteristics and products utilization rate are obtained.
Kubota, H; Kuwabara, K; Hamada, Y
2014-08-01
This paper applies the heat balance equation (HBE) for clothed subjects as a linear function of mean skin temperature (t sk ) by a new sweating efficiency (η sw ) and an approximation for the thermoregulatory sweat rate. The equation predicting t sk in steady state conditions was derived as the solution of the HBE and used for a predictive heat strain scale. The heat loss from the wet clothing (WCL) area was identified with a new variable of 'virtual dripping sweat rate VDSR' (S wdr ). This is a subject's un-evaporated sweat rate in dry clothing from the regional sweat rate exceeding the maximum evaporative capacity, and adds the moisture to the clothing, reducing the intrinsic clothing insulation. The S wdr allowed a mass balance analysis of the wet clothing area identified as clothing wetness (w cl ). The w cl was derived by combining the HBE at the WCL surface from which the evaporation rate and skin heat loss from WCL region are given. Experimental results on eight young male subjects wearing typical summer clothing, T-shirt and trousers verified the model for predicting t sk with WCL thermal resistance (R cl,w ) identified as 25 % of dry clothing (R cl,d ).
NASA Astrophysics Data System (ADS)
Kubota, H.; Kuwabara, K.; Hamada, Y.
2014-08-01
This paper applies the heat balance equation (HBE) for clothed subjects as a linear function of mean skin temperature ( t sk ) by a new sweating efficiency ( η sw ) and an approximation for the thermoregulatory sweat rate. The equation predicting t sk in steady state conditions was derived as the solution of the HBE and used for a predictive heat strain scale. The heat loss from the wet clothing (WCL) area was identified with a new variable of `virtual dripping sweat rate VDSR' ( S wdr ). This is a subject's un-evaporated sweat rate in dry clothing from the regional sweat rate exceeding the maximum evaporative capacity, and adds the moisture to the clothing, reducing the intrinsic clothing insulation. The S wdr allowed a mass balance analysis of the wet clothing area identified as clothing wetness ( w cl ). The w cl was derived by combining the HBE at the WCL surface from which the evaporation rate and skin heat loss from WCL region are given. Experimental results on eight young male subjects wearing typical summer clothing, T-shirt and trousers verified the model for predicting t sk with WCL thermal resistance ( R cl,w ) identified as 25 % of dry clothing ( R cl,d ).
NASA Astrophysics Data System (ADS)
Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai
2018-02-01
Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.
Experiments on fuel heating for commercial aircraft
NASA Technical Reports Server (NTRS)
Friedman, R.; Stockemer, F. J.
1982-01-01
An experimental jet fuel with a -33 C freezing point was chilled in a wing tank simulator with superimposed fuel heating to improve low temperature flowability. Heating consisted of circulating a portion of the fuel to an external heat exchanger and returning the heated fuel to the tank. Flowability was determined by the mass percent of unpumpable fuel (holdup) left in the simulator upon withdrawal of fuel at the conclusion of testing. The study demonstrated that fuel heating is feasible and improves flowability as compared to that of baseline, unheated tests. Delayed heating with initiation when the fuel reaches a prescribed low temperature limit, showed promise of being more efficient than continuous heating. Regardless of the mode or rate of heating, complete flowability (zero holdup) could not be restored by fuel heating. The severe, extreme-day environment imposed by the test caused a very small amount of subfreezing fuel to be retained near the tank surfaces even at high rates of heating. Correlations of flowability established for unheated fuel tests also could be applied to the heated test results if based on boundary-layer temperature or a solid index (subfreezing point) characteristic of the fuel.
Heat transfer mechanisms in pulsating heat-pipes with nanofluid
NASA Astrophysics Data System (ADS)
Gonzalez, Miguel; Kelly, Brian; Hayashi, Yoshikazu; Kim, Yoon Jo
2015-01-01
In this study, the effect of silver nanofluid on a pulsating heat-pipe (PHP) thermal performance was experimentally investigated to figure out how nanofluid works with PHP. A closed loop PHP was built with 3 mm diameter tubes. Thermocouples and pressure transducers were installed for fluid and surface temperature and pressure measurements. The operating temperature of the PHP varied from 30-100 °C, with power rates of 61 W and 119 W. The fill ratio of 30%, 50%, and 70% were tested. The results showed that the evaporator heat transfer performance was degraded by the addition of nanoparticles due to increased viscosity at high power rate, while the positive effects of high thermal conductivity and enhanced nucleate boiling worked better at low power rate. In the condenser section, owing to the relatively high liquid content, nanofluid more effectively improved the heat transfer performance. However, since the PHP performance was dominantly affected by evaporator heat transfer performance, the overall benefit of enhanced condenser section performance was greatly limited. It was also observed that the poor heat transfer performance with nanofluid at the evaporator section led to lower operating pressure of PHP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isfahani, RN; Moghaddam, S
An experimental study on absorption characteristics of water vapor into a thin lithium bromide (LiBr) solution flow is presented. The LiBr solution flow is constrained between a superhydrophobic vapor permeable wall and a solid surface that removes the heat of absorption. As opposed to conventional falling film absorbers, in this configuration, the solution film thickness and velocity can be controlled independently to enhance the absorption rate. The effects of water vapor pressure, cooling surface temperature, solution film thickness, and solution flow velocity on the absorption rate are studied. An absorption rate of approximately 0.006 kg/m(2) s was measured at amore » LiBr solution channel thickness and flow velocity of 100 mu m and 5 mm/s, respectively. The absorption rate increased linearly with the water vapor driving potential at the test conditions of this study. It was demonstrated that decreasing the solution film thickness and increasing the solution velocity enhance the absorption rate. The high absorption rate and the inherently compact form of the proposed,absorber facilitate development of compact small-scale waste heat or solar-thermal driven cooling systems. Published by Elsevier Ltd.« less
Warren, David W.
1997-01-01
A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.
Crystal diffraction lens with variable focal length
Smither, R.K.
1991-04-02
A method and apparatus for altering the focal length of a focusing element of one of a plurality of pre-determined focal lengths by changing heat transfer within selected portions of the element by controlled quantities is disclosed. Control over heat transfer is accomplished by manipulating one or more of a number of variables, including: the amount of heat or cold applied to surfaces; type of fluids pumped through channels for heating and cooling; temperatures, directions of flow and rates of flow of fluids; and placement of channels. 19 figures.
NASA Technical Reports Server (NTRS)
Holden, Michael S.; Rodriguez, Kathleen M.
1992-01-01
A program of experimental research and analysis was conducted to examine the heat transfer and pressure distributions in regions of shock/shock interaction over smooth and transpiration-cooled hemispherical noseshapes. The objective of this investigation was to determine whether the large heat transfer generated in regions of shock/shock interaction can be reduced by transpiration cooling. The experimental program was conducted at Mach numbers of 12 to 16 in the Calspan 48-Inch Shock Tunnel. Type 3 and type 4 interaction regions were generated for a range of freestream unit Reynolds numbers to provide shear layer Reynolds numbers from 10 exp 4 to 10 exp 6 to enable laminar and turbulent interaction regions to be studied. Shock/shock interactions were investigated on a smooth hemispherical nosetip and a similar transpiration-cooled nosetip, with the latter configuration being examined for a range of surface blowing rates up to one-third of the freestream mass flux. While the heat transfer measurements on the smooth hemisphere without shock/shock interaction were in good agreement with Fay-Riddell predictions, those on the transpiration-cooled nosetip indicated that its intrinsic roughness caused heating-enhancement factors of over 1.5. In the shock/shock interaction studies on the smooth nosetip, detailed heat transfer and pressure measurements were obtained to map the variation of the distributions with shock-impingement position for a range of type 3 and type 4 interactions. Such sets of measurements were obtained for a range of unit Reynolds numbers and Mach numbers to obtain both laminar and turbulent interactions. The measurements indicated that shear layer transition has a significant influence on the heating rates for the type 4 interaction as well as the anticipated large effects on type 3 interaction heating. In the absence of blowing, the peak heating in the type 3 and type 4 interaction regions, over the transpiration-cooled model, did not appear to be influenced by the model's rough surface characteristics. The studies of the effects of the transpiration cooling on type 3 and type 4 shock/shock interaction regions demonstrated that large surface blowing rates had significant effect on the structure of the flowfield, enlarging the shock layer and moving the region of peak-heating interaction around the body.
49 CFR 178.348-4 - Pressure relief.
Code of Federal Regulations, 2013 CFR
2013-10-01
...+460)]; A = The exposed surface area of tank shell—square meters (square feet); L = The latent heat of... unloading rates must be included on the metal specification plate. (3) Cargo tanks used in dedicated service...), the ratio of specific heats of the vapor. If (K) is unknown, let C = 315. C = 520[K(2/(K+1))[(K+1)/(K...
49 CFR 178.348-4 - Pressure relief.
Code of Federal Regulations, 2012 CFR
2012-10-01
...+460)]; A = The exposed surface area of tank shell—square meters (square feet); L = The latent heat of... unloading rates must be included on the metal specification plate. (3) Cargo tanks used in dedicated service...), the ratio of specific heats of the vapor. If (K) is unknown, let C = 315. C = 520[K(2/(K+1))[(K+1)/(K...
49 CFR 178.348-4 - Pressure relief.
Code of Federal Regulations, 2011 CFR
2011-10-01
...+460)]; A = The exposed surface area of tank shell—square meters (square feet); L = The latent heat of... unloading rates must be included on the metal specification plate. (3) Cargo tanks used in dedicated service...), the ratio of specific heats of the vapor. If (K) is unknown, let C = 315. C = 520[K(2/(K+1))[(K+1)/(K...
49 CFR 178.348-4 - Pressure relief.
Code of Federal Regulations, 2014 CFR
2014-10-01
...+460)]; A = The exposed surface area of tank shell—square meters (square feet); L = The latent heat of... unloading rates must be included on the metal specification plate. (3) Cargo tanks used in dedicated service...), the ratio of specific heats of the vapor. If (K) is unknown, let C = 315. C = 520[K(2/(K+1))[(K+1)/(K...
Film condensation in a horizontal rectangular duct
NASA Technical Reports Server (NTRS)
Lu, Qing; Suryanarayana, N. V.
1992-01-01
Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.
NASA Astrophysics Data System (ADS)
Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad
2015-12-01
Novice efforts have been made in order to study the regional distribution of land surface heat fluxes on the southern side of the central Himalayas utilizing high-resolution remotely sensed products, but these have been on instantaneous scale. In this study the Surface Energy Balance System model is used to obtain annual averaged maps of the land surface heat fluxes for 11 years (2003-2013) and study their annual trends on the central Himalayan region. The maps were derived at 5 km resolution using monthly input products ranging from satellite derived to Global Land Data Assimilation System meteorological data. It was found that the net radiation flux is increasing as a result of decreasing precipitation (drier environment). The sensible heat flux did not change much except for the northwestern High Himalaya and High Mountains. In northwestern High Himalaya sensible heat flux is decreasing because of decrease in wind speed, ground-air temperature difference, and increase in winter precipitation, whereas in High Mountains it is increasing due to increase in ground-air temperature difference and high rate of deforestation. The latent heat flux has an overall increasing trend with increase more pronounced in the lower regions compared to high elevated regions. It has been reported that precipitation is decreasing with altitude in this region. Therefore, the increasing trend in latent heat flux can be attributed to increase in net radiation flux under persistent forest cover and irrigation land used for agriculture.
Heat and mass transfer models to understand the drying mechanisms of a porous substrate.
Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti
2016-02-01
While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.
Non-Intrusive Sensor for In-Situ Measurement of Recession Rate of Ablative and Eroding Materials
NASA Technical Reports Server (NTRS)
Papadopoulos, George (Inventor); Tiliakos, Nicholas (Inventor); Thomson, Clint (Inventor); Benel, Gabriel (Inventor)
2014-01-01
A non-intrusive sensor for in-situ measurement of recession rate of heat shield ablatives. An ultrasonic wave source is carried in the housing. A microphone is also carried in the housing, for collecting the reflected ultrasonic waves from an interface surface of the ablative material. A time phasing control circuit is also included for time-phasing the ultrasonic wave source so that the waves reflected from the interface surface of the ablative material focus on the microphone, to maximize the acoustic pressure detected by the microphone and to mitigate acoustic velocity variation effects through the material through a de-coupling process that involves a software algorithm. A software circuit for computing the location off of which the ultrasonic waves scattered to focus back at the microphone is also included, so that the recession rate of the heat shield ablative may be monitored in real-time through the scan-focus approach.
Vacuum boilers developed heating surfaces technic and economic efficiency evaluation
NASA Astrophysics Data System (ADS)
Slobodina, E. N.; Mikhailov, A. G.; Semenov, B. A.
2018-01-01
The vacuum boilers as manufacturing proto types application analysis was carried out, the possible directions for the heating surfaces development are identified with a view to improving the energy efficiency. Economic characteristics to evaluate the vacuum boilers application efficiency (Net Discounted Income (NDI), Internal Rate of Return (IRR), Profitability Index (PI) and Payback Period) are represented. The given type boilers application technic and economic efficiency criteria were established. NDI changing curves depending on the finning coefficient and operating pressure were obtained as a result of the conducted calculation studies.
NASA Astrophysics Data System (ADS)
Yang, Jun
Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface coatings by comparing the measurements with those for a plain vessel without coatings. An overall enhancement in nucleate boiling rates and CHF limits up to 100% were observed. Moreover, combination of data from quenching experiments and steady-state experiments produced new sets of boiling curves, which covered both the nucleate and transient boiling regimes with much greater accuracy. Beside the experimental work, a theoretical CHF model has also been developed by considering the vapor dynamics and the boiling-induced two-phase motions in three separate regions adjacent to the heating surface. The CHF model is capable of predicting the performance of micro-porous coatings with given particle diameter, porosity, media permeability and thickness. It is found that the present CHF model agrees favorably with the experimental data. Effects of an enhanced vessel/insulation structure on the local nucleate boiling rate and CHF limit have also been investigated experimentally. It is observed that the local two-phase flow quantities such as the local void fraction, quality, mean vapor velocity, mean liquid velocity, and mean vapor and liquid mass flow rates could have great impact on the local surface heat flux as boiling of water takes place on the vessel surface. An upward co-current two-phase flow model has been developed to predict the local two-phase flow behavior for different flow channel geometries, which are set by the design of insulation structures. It is found from the two-phase flow visualization experiments and the two-phase flow model calculations that the enhanced vessel/insulation structure greatly improved the steam venting process at the minimum gap location compared to the performance of thermal insulation structures without enhancement. Moveover, depending on the angular location, steady-state boiling experiments with the enhanced insulation design showed an enhancement of 1.8 to 3.0 times in the local critical heat flux. Finally, nucleate boiling and CHF correlations were developed based on the data obtained from various quenching and steady-state boiling experiments. Additionally, CHF enhancement factors were determined and examined to show the separate and integral effects of the two ERVC enhancement methods. When both vessel coating and insulation structure were used simultaneously, the integral effect on CHF enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.
Thermoneutral zone and scaling of metabolic rate on body mass in small mammals
NASA Technical Reports Server (NTRS)
Pace, N.; Rahlmann, D. F.
1983-01-01
A 4-species animal model suitable for experimental study of the effect of change in gravitational loading on the scale relationship between metabolic rate and total body mass is used to study the effect of temperature on metabolic rate in six male animals, 8-10 months of age, of each of the four species in the ambient temperature range 20-36 C. The measurements taken permitted partitioning of total body heat output into sensible heat loss by radiation, conduction and convection, and into latent heat loss by evaporation of water from the body surface. It is shown that the condition of thermoneutrality is important for metabolic scale effect studies, and that the thermoneutral zone for the species considered here is a narrow one.
Baroclinic instability in the interiors of the giant planets: A cooling history of Uranus?
NASA Technical Reports Server (NTRS)
Holme, Richard; Ingersoll, Andrew P.
1994-01-01
We propose a quasigeostrophic, baroclinic model for heat transport within the interior of a stably stratified Jovian planet, based on motion in thin cylindrical annuli. Density decreases from the center outward and is zero at the surface of the planet. In the homogeneous case (no core), we find instability for the poles hotter than the equator, but not for the reverse. If the motion is bounded by an impenetrable core, instability occurs for both cases. Much of the behavior can be explained by analogy to conventional baroclinic instability theory. Motivated by our results, we explore a possible connection between the highly inclined rotation axis of Uranus and its anomalously low surface heat flux. We assume that the planets formed hot. Our conjecture is that heat was efficiently convected outwards by baroclinic instability in Uranus (with the poles hotter than the equator), but not in the other three Jovian planets. The surface temperature was higher for the stably stratified case (Uranus), leading to a higher rate of infrared emission and faster cooling. Therefore, we propose that Uranus lost its internal heat sooner than Neptune because baroclinic motions, permitted by its inclination to the sun, were able to extract its internal heat while the surface was still warm.
Designing Energy-Efficient Heat Exchangers--- Creating Micro-Channels on the Aluminum Fin Surface
NASA Astrophysics Data System (ADS)
Ying, Jia; Sommers, Andrew; Eid, Khalid
2010-03-01
In this research, a method for patterning micro-channels on aluminum surfaces is described for the purpose of exploiting those features to affect the surface wettability. Minimizing water retention on aluminum is important in the design of energy-efficient heat exchangers because water retention can deteriorate the performance of such devices. It increases the air-side pressure drop and can decrease the sensible heat transfer coefficient thereby increasing energy consumption and contributing to higher pollution levels in the environment. Photolithography is used to create the micro-scale channels and a hydrophobic polymer is used to reduce the surface energy of the aluminum plates. Droplets are both injected on the surface using a micro-syringe and condensed on the surface using an environmentally-controlled chamber. A ram'e-hart goniometer is used to determine the advancing and receding contact angles of water droplets on these modified surfaces, and a tilt-table assembly is used to measure the critical inclination angle for sliding. Our results show that droplets placed on these patterned surfaces not only have significantly lower critical inclination angles for sliding but are easier to remove from the surface at low air flow rates. Efforts to model the onset of droplet movement on these surfaces using a simple force balance relationship are currently underway.
Analysis of the Hydrodynamics and Heat Transfer Aspects of Microgravity Two-Phase Flows
NASA Technical Reports Server (NTRS)
Rezkallah, Kamiel S.
1996-01-01
Experimental results for void fractions, flow regimes, and heat transfer rates in two-phase, liquid-gas flows are summarized in this paper. The data was collected on-board NASA's KC-135 reduced gravity aircraft in a 9.525 mm circular tube (i.d.), uniformly heated at the outer surface. Water and air flows were examined as well as three glycerol/water solutions and air. Results are reported for the water-air data.
2012-07-06
that: B = aM b . (15) The metabolic rate refers to the total utilization of chemical energy for the genera- tion of heat by the body of an animal and...AR was given by Sarrus and Rameaux.188 Schmidt–Nielsen195 records that this team of a mathematician and a physician reasoned that the heat gener- ated...by a warm blooded animal is proportional to the volume and the heat loss is proportional to the animal’s free surface. Experiments on dogs by
The Thermal Regime Around Buried Submarine High-Voltage Cables
NASA Astrophysics Data System (ADS)
Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.
2015-12-01
The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.
Three-dimensional Navier-Stokes analysis of turbine passage heat transfer
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Arnone, Andrea
1991-01-01
The three-dimensional Reynolds-averaged Navier-Stokes equations are numerically solved to obtain the pressure distribution and heat transfer rates on the endwalls and the blades of two linear turbine cascades. The TRAF3D code which has recently been developed in a joint project between researchers from the University of Florence and NASA Lewis Research Center is used. The effect of turbulence is taken into account by using the eddy viscosity hypothesis and the two-layer mixing length model of Baldwin and Lomax. Predictions of surface heat transfer are made for Langston's cascade and compared with the data obtained for that cascade by Graziani. The comparison was found to be favorable. The code is also applied to a linear transonic rotor cascade to predict the pressure distributions and heat transfer rates.
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
The results of a wind tunnel test program to determine aerodynamic heat transfer distributions on the McDonnell Douglas Booster configuration are presented. Heat-transfer rates were determined by the phase-change paint technique on 0.009-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, length Reynolds numbers 5 million and 7.3 million, and angles of attack of 40, 50, and 60 deg. At the higher Reynolds number, data were obtained with and without boundary layer trips. Model details, test conditions, and reduced heat-transfer data are presented. Data reduction of the phase-change paint photographs was performed by utilizing a new technique which is described.
NASA Astrophysics Data System (ADS)
Wallen, B.; Trautz, A.; Smits, K. M.
2014-12-01
The estimation of evaporation has important implications in modeling climate at the regional and global scale, the hydrological cycle and estimating environmental stress on agricultural systems. In field and laboratory studies, remote sensing and in-situ techniques are used to collect thermal and soil moisture data of the soil surface and subsurface which is then used to estimate evaporative fluxes, oftentimes using the sensible heat balance method. Nonetheless, few studies exist that compare the methods due to limited data availability and the complexity of many of the techniques, making it difficult to understand flux estimates. This work compares different methods used to quantify evaporative flux based on remotely sensed and in-situ temperature and soil moisture data. A series of four laboratory experiments were performed under ambient and elevated air temperature conditions with homogeneous and heterogeneous soil configurations in a small two-dimensional soil tank interfaced with a small wind tunnel apparatus. The soil tank and wind tunnel were outfitted with a suite of sensors that measured soil temperature (surface and subsurface), air temperature, soil moisture, and tank weight. Air and soil temperature measurements were obtained using infrared thermography, heat pulse sensors and thermistors. Spatial and temporal thermal data were numerically inverted to obtain the evaporative flux. These values were then compared with rates of mass loss from direct weighing of the samples. Results demonstrate the applicability of different methods under different surface boundary conditions; no one method was deemed most applicable under every condition. Infrared thermography combined with the sensible heat balance method was best able to determine evaporative fluxes under stage 1 conditions while distributed temperature sensing combined with the sensible heat balance method best determined stage 2 evaporation. The approaches that appear most promising for determining the surface energy balance incorporates soil moisture rate of change over time and atmospheric conditions immediately above the soil surface. An understanding of the fidelity regarding predicted evaporation rates based upon stages of evaporation enables a more deliberate selection of the suite of sensors required for data collection.
Surface-acoustic-wave (SAW) flow sensor
NASA Astrophysics Data System (ADS)
Joshi, Shrinivas G.
1991-03-01
The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.
Surface-acoustic-wave (SAW) flow sensor.
Joshi, S G
1991-01-01
The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 degrees rotated Y-cut lithium niobate substrate and heated to 55 degrees C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cm(3)/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves, propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.
Heat flow diagnostics for helicon plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berisford, Daniel F.; Bengtson, Roger D.; Raja, Laxminarayan L.
2008-10-15
We present experimental studies of power balance in an argon helicon discharge. An infrared camera measures the heating of the dielectric tube containing a helicon discharge based on measurement of temperature profiles of the tube surface before and after a rf pulse. Using this diagnostic, we have measured surface heating trends at a variety of operating conditions on two helicon systems: the 10 kW VASIMR VX-50 experiment and the University of Texas at Austin 1 kW helicon experiment. Power losses downstream from the antenna are measured using thermocouples and probes. The heating of the dielectric tube increases with decreasing magneticmore » fields, higher gas flow rates, and higher molecular mass of the gas. These preliminary results suggest that cross-field particle diffusion contributes a significant proportion of the energy flux to the wall.« less
The initial cooling of pahoehoe flow lobes
Keszthelyi, L.; Denlinger, R.
1996-01-01
In this paper we describe a new thermal model for the initial cooling of pahoehoe lava flows. The accurate modeling of this initial cooling is important for understanding the formation of the distinctive surface textures on pahoehoe lava flows as well as being the first step in modeling such key pahoehoe emplacement processes as lava flow inflation and lava tube formation. This model is constructed from the physical phenomena observed to control the initial cooling of pahoehoe flows and is not an empirical fit to field data. We find that the only significant processes are (a) heat loss by thermal radiation, (b) heat loss by atmospheric convection, (c) heat transport within the flow by conduction with temperature and porosity-dependent thermal properties, and (d) the release of latent heat during crystallization. The numerical model is better able to reproduce field measurements made in Hawai'i between 1989 and 1993 than other published thermal models. By adjusting one parameter at a time, the effect of each of the input parameters on the cooling rate was determined. We show that: (a) the surfaces of porous flows cool more quickly than the surfaces of dense flows, (b) the surface cooling is very sensitive to the efficiency of atmospheric convective cooling, and (c) changes in the glass forming tendency of the lava may have observable petrographic and thermal signatures. These model results provide a quantitative explanation for the recently observed relationship between the surface cooling rate of pahoehoe lobes and the porosity of those lobes (Jones 1992, 1993). The predicted sensitivity of cooling to atmospheric convection suggests a simple field experiment for verification, and the model provides a tool to begin studies of the dynamic crystallization of real lavas. Future versions of the model can also be made applicable to extraterrestrial, submarine, silicic, and pyroclastic flows.
Investigation of CaCO3 fouling in plate heat exchangers
NASA Astrophysics Data System (ADS)
Li, Wei; Zhou, Kan; Manglik, Raj M.; Li, Guan-Qiu; Bergles, Arthur E.
2016-11-01
An experimental investigation, coupled with theoretical modeling of CaCO3 fouling in plate-and-frame type heat exchangers (PHEs) have been conducted. Four different plates, made of SS-304, are used in two different surface patterns (chevron and zig-zag) of varying corrugation severity (waviness depth and pitch) and area enhancement. They were further characterized in clean, non-fouled convection by their measured heat transfer coefficients and friction factors in the Reynolds number range of 600-6000. The flow-fouling experiments delineate the effects of temperature and plate-surface geometry on growth rates and stabilization of fouling resistance, along with the anti-fouling behavior of plates coated with a hydrophobic PTFE (Teflon) film. Moreover, the microscopic structure of fouling deposits is mapped in a scanning-electron microscope. Corrugated plates with the largest height-to-pitch ratio and hydraulic diameter are found to have the lowest fouling growth rate and resistance; Teflon-film coating of plate surface is also found to mitigate fouling relative to the performance of bare stainless steel plates. Finally, a semi-empirical fouling model, based on the Prandtl-Taylor analogy, has been devised to describe the experimental data and provide a predictive tool.
Research methods of plasma stream interaction with heat-resistant materials
NASA Astrophysics Data System (ADS)
Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Chinnov, V. F.; Demirov, N. A.; Kavyrshin, D. I.; Ageev, A. G.; Khromov, M. A.
2016-11-01
An experimental automated system was designed and constructed for studying the parameters and characteristics of non-stationary interacting system high-enthalpy-plasma stream-investigated sample: enthalpy of plasma in the incident stream; speed and temperature of plasma stream; temperature of electrons and heavy particles, ionic composition and their spatial distribution; heat flux incident on the sample (kW/cm2); surface temperature of the sample; ablation of the sample material, and others. Measurements of achievable plasma heat flux levels are carried out by calorimetry of plasma streams incident on the surface of multisection copper calorimeter. Determination of acceleration characteristics for profiled plasma torch nozzle, as well as the gas flow rate is produced by measuring the total pressure using the Pitot tube. Video visualization of interacting system is carried out using synchronized high-speed cameras. Micropyrometry of the selected zone on the sample surface is carried out by high-speed, three-wavelength pyrometer. To measure the rate of mass loss of the sample, in addition to the weighing method of evaluation the methods of laser knife and two-position stereoscopy are used. Plasma and sample emission characteristics are performed with two separate spectrometers.
Tridimensional Thermonuclear Instability in Subignited Plasmas and on the Surface of the Pulsars
NASA Astrophysics Data System (ADS)
Cardinali, A.; Coppi, B.
2016-10-01
Tridimensional modes involving an increase of the electron temperature can be excited as a result of α-particle heating in subignited D-T fusion burning plasmas when a nearly time- independent external source of heating is applied. The analyzed modes are shown to emerge from an axisymmetric toroidal configurations and are radially localized around rational magnetic surfaces corresponding to q(r =r0) =m0 /n0 where m0 and n0 are the relevant poloidal and toroidal mode numbers. The radial width of the mode is of the order of the thermal scale distances δT =D⊥e th /D∥e th 1/4 (R0 /n0) 1/2(dlnq/dr)0-1/2. The mode has a rather severe damping rate, that has to be overcome by the relevant heating rate. Thus the temperature range to be considered is that where the D-T plasma reactivity undergoes a relatively large increase as a function of temperature. This kind of theory has been applied to the plasmas that are envisioned to be associated with surface of pulsar and be subjects to (spatially) inhomogenous thermonuclear burning. Sponsored in part by the US DOE.
Study of high altitude plume impingement
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.; Penny, M. M.; Prozan, R. J.; Seymour, D.; Greenwood, T. F.
1972-01-01
Computer program has been developed as analytical tool to predict severity of effects of exhaust of rocket engines on adjacent spacecraft surfaces. Program computes forces, moments, pressures, and heating rates on surfaces immersed in or subjected to exhaust plume environments. Predictions will be useful in design of systems where such problems are anticipated.
Sauropod necks: are they really for heat loss?
Henderson, Donald M
2013-01-01
Three-dimensional digital models of 16 different sauropods were used to examine the scaling relationship between metabolism and surface areas of the whole body, the neck, and the tail in an attempt to see if the necks could have functioned as radiators for the elimination of excess body heat. The sauropod taxa sample ranged in body mass from a 639 kg juvenile Camarasaurus to a 25 t adult Brachiosaurus. Metabolism was assumed to be directly proportional to body mass raised to the ¾ power, and estimates of body mass accounted for the presence of lungs and systems of air sacs in the trunk and neck. Surface areas were determined by decomposing the model surfaces into triangles and their areas being computed by vector methods. It was found that total body surface area was almost isometric with body mass, and that it showed negative allometry when plotted against metabolic rate. In contrast, neck area showed positive allometry when plotted against metabolic rate. Tail area show negative allometry with respect to metabolic rate. The many uncertainties about the biology of sauropods, and the variety of environmental conditions that different species experienced during the groups 150 million years of existence, make it difficult to be absolutely certain about the function of the neck as a radiator. However, the functional combination of the allometric increase of neck area, the systems of air sacs in the neck and trunk, the active control of blood flow between the core and surface of the body, changing skin color, and strategic orientation of the neck with respect to wind, make it plausible that the neck could have functioned as a radiator to avoid over-heating.
Sauropod Necks: Are They Really for Heat Loss?
Henderson, Donald M.
2013-01-01
Three-dimensional digital models of 16 different sauropods were used to examine the scaling relationship between metabolism and surface areas of the whole body, the neck, and the tail in an attempt to see if the necks could have functioned as radiators for the elimination of excess body heat. The sauropod taxa sample ranged in body mass from a 639 kg juvenile Camarasaurus to a 25 t adult Brachiosaurus. Metabolism was assumed to be directly proportional to body mass raised to the ¾ power, and estimates of body mass accounted for the presence of lungs and systems of air sacs in the trunk and neck. Surface areas were determined by decomposing the model surfaces into triangles and their areas being computed by vector methods. It was found that total body surface area was almost isometric with body mass, and that it showed negative allometry when plotted against metabolic rate. In contrast, neck area showed positive allometry when plotted against metabolic rate. Tail area show negative allometry with respect to metabolic rate. The many uncertainties about the biology of sauropods, and the variety of environmental conditions that different species experienced during the groups 150 million years of existence, make it difficult to be absolutely certain about the function of the neck as a radiator. However, the functional combination of the allometric increase of neck area, the systems of air sacs in the neck and trunk, the active control of blood flow between the core and surface of the body, changing skin color, and strategic orientation of the neck with respect to wind, make it plausible that the neck could have functioned as a radiator to avoid over-heating. PMID:24204747
Characterization of Thermo-Mechanical and Fracture Behaviors of Thermoplastic Polymers
Ghorbel, Elhem; Hadriche, Ismail; Casalino, Giuseppe; Masmoudi, Neila
2014-01-01
In this paper the effects of the strain rate on the inelastic behavior and the self-heating under load conditions are presented for polymeric materials, such as polymethyl methacrylate (PMMA), polycarbonate (PC), and polyamide (PA66). By a torsion test, it was established that the shear yield stress behavior of PMMA, PC, and PA66 is well-described by the Ree-Eyring theory in the range of the considered strain rates. During the investigation, the surface temperature was monitored using an infrared camera. The heat release appeared at the early stage of the deformation and increased with the strain and strain rate. This suggested that the external work of deformation was dissipated into heat so the torsion tests could not be considered isothermal. Eventually, the effect of the strain rate on the failure modes was analyzed by scanning electron microscopy. PMID:28788462
NASA Astrophysics Data System (ADS)
Salomatov, V. V.; Puzyrev, E. M.; Salomatov, A. V.
2018-05-01
A class of nonlinear problems of nonstationary radiative-convective heat transfer under the microwave action with a small penetration depth is considered in a stabilized coolant flow in a circular channel. The solutions to these problems are obtained, using asymptotic procedures at the stages of nonstationary and stationary convective heat transfer on the heat-radiating channel surface. The nonstationary and stationary stages of the solution are matched, using the "longitudinal coordinate-time" characteristic. The approximate solutions constructed on such principles correlate reliably with the exact ones at the limiting values of the operation parameters, as well as with numerical and experimental data of other researchers. An important advantage of these solutions is that they allow the determination of the main regularities of the microwave and thermal radiation influence on convective heat transfer in a channel even before performing cumbersome calculations. It is shown that, irrespective of the heat exchange regime (nonstationary or stationary), the Nusselt number decreases and the rate of the surface temperature change increases with increase in the intensity of thermal action.
NASA Astrophysics Data System (ADS)
Malinowski, Zbigniew; Cebo-Rudnicka, Agnieszka; Hadała, Beata; Szajding, Artur; Telejko, Tadeusz
2017-10-01
A cooling rate affects the mechanical properties of steel which strongly depend on microstructure evolution processes. The heat transfer boundary condition for the numerical simulation of steel cooling by water jets can be determined from the local one dimensional or from the three dimensional inverse solutions in space and time. In the present study the inconel plate has been heated to about 900 °C and then cooled by six circular water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient and the heat flux distributions at the plate surface have been determined in time and space. The one dimensional solutions have given a local error to the heat transfer coefficient of about 35%. The three dimensional inverse solution has allowed reducing the local error to about 20%. The uncertainty test has confirmed that a better approximation of the heat transfer coefficient distribution over the cooled surface can be obtained even for limited number of thermocouples. In such a case it was necessary to constrain the inverse solution with the interpolated temperature sensors.
Storage capacity in hot dry rock reservoirs
Brown, D.W.
1997-11-11
A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.
Storage capacity in hot dry rock reservoirs
Brown, Donald W.
1997-01-01
A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid
NASA Astrophysics Data System (ADS)
Dolinar, E. K.; Dong, X.; Xi, B.
2015-12-01
One-dimensional radiative transfer models (RTM) are a common tool used for calculating atmospheric heating rates and radiative fluxes. In the forward sense, RTMs use known (or observed) quantities of the atmospheric state and surface characteristics to determine the appropriate surface and top-of-atmosphere (TOA) radiative fluxes. The NASA CERES science team uses the modified Fu-Liou RTM to calculate atmospheric heating rates and surface and TOA fluxes using the CERES observed TOA shortwave (SW) and longwave (LW) fluxes as constraints to derive global surface and TOA radiation budgets using a reanalyzed atmospheric state (e.g. temperature and various greenhouse gases) from the newly developed MERRA-2. However, closure studies have shown that using the reanalyzed state as input to the RTM introduces some disparity between the RTM calculated fluxes and surface observed ones. The purpose of this study is to generate a database of observed atmospheric state profiles, from satellite and ground-based sources, at several permanent Atmospheric Radiation Measurement (ARM) Program sites, including the Southern Great Plains (SGP), Northern Slope of Alaska (NSA) and Tropical Western Pacific Nauru (TWP-C2), and Eastern North Atlantic (ENA) permanent facilities. Since clouds are a major modulator of radiative transfer within the Earth's atmosphere, we will focus on the clear-sky conditions in this study, which will set up the baseline for our cloudy studies in the future. Clear-sky flux profiles are calculated using the Edition 4 NASA LaRC modified Fu-Liou RTM. The aforementioned atmospheric profiles generated in-house are used as input into the RTM, as well as from reanalyses. The calculated surface and TOA fluxes are compared with ARM surface measured and CERES satellite observed SW and LW fluxes, respectively. Clear-sky cases are identified by the ARM radar-lidar observations, as well as satellite observations, at the select ARM sites.
Thermo-Mechanical Behavior of Textile Heating Fabric Based on Silver Coated Polymeric Yarn
Hamdani, Syed Talha Ali; Potluri, Prasad; Fernando, Anura
2013-01-01
This paper presents a study conducted on the thermo-mechanical properties of knitted structures, the methods of manufacture, effect of contact pressure at the structural binding points, on the degree of heating. The test results also present the level of heating produced as a function of the separation between the supply terminals. The study further investigates the rate of heating and cooling of the knitted structures. The work also presents the decay of heating properties of the yarn due to overheating. Thermal images were taken to study the heat distribution over the surface of the knitted fabric. A tensile tester having constant rate of extension was used to stretch the fabric. The behavior of temperature profile of stretched fabric was observed. A comparison of heat generation by plain, rib and interlock structures was studied. It was observed from the series of experiments that there is a minimum threshold force of contact at binding points of a knitted structure is required to pass the electricity. Once this force is achieved, stretching the fabric does not affect the amount of heat produced. PMID:28809358
Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate
NASA Astrophysics Data System (ADS)
Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.
2018-06-01
Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.
Comparison of Experimental and Computational Aerothermodynamics of a 70-deg Sphere-Cone
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Perkins, John N.
1996-01-01
Numerical solutions for hypersonic flows of carbon-dioxide and air around a 70-deg sphere-cone have been computed using an axisymmetric non-equilibrium Navier-Stokes solver. Freestream flow conditions for these computations were equivalent to those obtained in an experimental blunt-body heat-transfer study conducted in a high-enthalpy, hypervelocity expansion tube. Comparisons have been made between the computed and measured surface heat-transfer rates on the forebody and afterbody of the sphere-cone and on the sting which supported the test model. Computed forebody heating rates were within the estimated experimental uncertainties of 10% on the forebody and 15% in the wake except for within the recirculating flow region of the wake.
Kim, Kwan-Woo; Lee, Hye-Min; An, Jeong-Hun; Chung, Dong-Chul; An, Kay-Hyeok; Kim, Byung-Joo
2017-12-01
In order to manufacture high quality recycled carbon fibers (R-CFs), carbon fiber-reinforced composite wastes were pyrolysed with super-heated steam at 550 °C in a fixed bed reactor for varying reaction times. The mechanical and surface properties of the R-CFs were characterized with a single fiber tensile test, interface shear strength (IFSS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The surface analysis showed that there was no matrix char residue on the fiber surfaces. The tensile strength and IFSS values of the R-CFs were 90% and 115% compared to those of virgin carbon fibers (V-CFs), respectively. The recycling efficiency of the R-CFs from the composites were strongly dependent on the pyrolysis temperature, reaction time, and super-heated steam feeding rate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparative evaluation of surface and downhole steam-generation techniques
NASA Astrophysics Data System (ADS)
Hart, C.
The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.
Flight test of carbon-phenolic on a spacecraft launched by the pacemaker vehicle system
NASA Technical Reports Server (NTRS)
Walton, T. E., Jr.; Witte, W. G.
1972-01-01
Carbon-phenolic material consisting of 50 percent carbon fibers and 50 percent phenolic resin was flight tested on a recoverable spacecraft launched by the Pacemaker vehicle system. The heat shield of the spacecraft was fabricated so that the carbon fibers in the ablator material had different orientations over several areas of the spacecraft. The environment in which the spacecraft was tested produced heating rates on the hemispherical nose up to 13.6 MW/sq m (1200 Btu/sq ft/sec) and stagnation-point pressures up to 1.27 MN/sq m (12.5 atm). The experimental results are presented. Due to high heating rates and possible spallation and mechanical char removal the greatest mass loss occurred in the nose region. Essentially uniform surface recession and char thickness were observed on the conical section of the spacecraft. A comparison of measured heating rates with computed turbulent and laminar heating rates, as well as measurements of sound-pressure fluctuations in the boundary layer obtained with acoustic sensors, indicated that the boundary layer underwent transition. The acoustic sensor provides an interesting new data form for the general study of boundary-layer transition for free-flight investigations.
3D Material Response Analysis of PICA Pyrolysis Experiments
NASA Technical Reports Server (NTRS)
Oliver, A. Brandon
2017-01-01
The PICA decomposition experiments of Bessire and Minton are investigated using 3D material response analysis. The steady thermoelectric equations have been added to the CHAR code to enable analysis of the Joule-heated experiments and the DAKOTA optimization code is used to define the voltage boundary condition that yields the experimentally observed temperature response. This analysis has identified a potential spatial non-uniformity in the PICA sample temperature driven by the cooled copper electrodes and thermal radiation from the surface of the test article (Figure 1). The non-uniformity leads to a variable heating rate throughout the sample volume that has an effect on the quantitative results of the experiment. Averaging the results of integrating a kinetic reaction mechanism with the heating rates seen across the sample volume yield a shift of peak species production to lower temperatures that is more significant for higher heating rates (Figure 2) when compared to integrating the same mechanism at the reported heating rate. The analysis supporting these conclusions will be presented along with a proposed analysis procedure that permits quantitative use of the existing data. Time permitting, a status on the in-development kinetic decomposition mechanism based on this data will be presented as well.
Plume effects on the flow around a blunted cone at hypersonic speeds
NASA Technical Reports Server (NTRS)
Atcliffe, P.; Kumar, D.; Stollery, J. L.
1992-01-01
Tests at M = 8.2 show that a simulated rocket plume at the base of a blunted cone can cause large areas of separated flow, with dramatic effects on the heat transfer rate distribution. The plume was simulated by solid discs of varying sizes or by an annular jet of gas. Flow over the cone without a plume is fully laminar and attached. Using a large disc, the boundary layer is laminar at separation at the test Reynolds number. Transition occurs along the separated shear layer and the boundary layer quickly becomes turbulent. The reduction in heat transfer associated with a laminar separated region is followed by rising values as transition occurs and the heat transfer rates towards the rear of the cone substantially exceed the values obtained without a plume. With the annular jet or a small disc, separation occurs much further aft, so that heat transfer rates at the front of the cone are comparable with those found without a plume. Downstream of separation the shear layer now remains laminar and the heat transfer rates to the surface are significantly lower than the attached flow values.
Self-lubricating fluorine shaft seal material
NASA Technical Reports Server (NTRS)
Munk, W. R.
1970-01-01
Lubricating film is produced by a reaction of fluorine with a composite of aluminum oxide and nickel powder. The rate of nickel fluoride generation is proportional to the rate at which the fluoride is rubbed off the surface, allowing the seal to operate with the lowest possible heating.
Surface cleaning for negative electron affinity GaN photocathode
NASA Astrophysics Data System (ADS)
Qiao, Jianliang; Yin, Yingpeng; Gao, Youtang; Niu, Jun; Qian, Yunsheng; Chang, Benkang
2012-10-01
In the preparation process for negative electron affinity (NEA) GaN photocathode, the surface cleanness is very important to activation, it influences the sensitivity and stability of NEA GaN photocathode. The traditional corrosion methods based on oxidizing and dissolving can't remove oxygen (O) and carbon (C) on GaN surface effectively. How to get an ideal atom clean surface is still an important question at present. The cleaning techniques for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The experiment sample is p-type GaN doped with Mg, doped concentration is 1.37×1017 cm-3, the transfer rate is 3.08 cm2/V-S, and the thickness of activation layer is 0.51 μm, the substrate is 300 μm thick sapphire. The sample was dealed with chemical cleaning depuration at first. And to get the atom clean surface, the vacuum heat cleaning process was needed. The methods of chemical cleaning and the vacuum heating cleaning were given in detail. According to the X-ray photoelectron spectroscopy of GaN surface after chemical cleaning and the vacuum degree curve of the activation chamber during the heat cleaning, the cleaning effect and the cleaning mechanism were discussed. After the effective chemical cleaning and the heating of 700 Centigrade degree about 20 minutes in ultrahigh vacuum system, the oxides and carbon contaminants on cathode surface can be removed effectively, and the ideal atom clean surface can be obtained. The purpose of heating depuration process is that not only to get the atom clean GaN surface, but also to guarantee the contents of Ga, N on GaN surface stabilize and to keep the system ultra-high vacuum degree. Because of the volatilization of oxide and carbon impurity on the cathode surface, the vacuum degree curve drops with the rising of temperature on the whole.
NASA Technical Reports Server (NTRS)
Chou, S.-H.; Curran, R. J.; Ohring, G.
1981-01-01
The effects of two different evaporation parameterizations on the sensitivity of simulated climate to solar constant variations are investigated by using a zonally averaged climate model. One parameterization is a nonlinear formulation in which the evaporation is nonlinearly proportional to the sensible heat flux, with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface (model A). The other is the formulation of Saltzman (1968) with the evaporation linearly proportional to the sensible heat flux (model B). The computed climates of models A and B are in good agreement except for the energy partition between sensible and latent heat at the earth's surface. The difference in evaporation parameterizations causes a difference in the response of temperature lapse rate to solar constant variations and a difference in the sensitivity of longwave radiation to surface temperature which leads to a smaller sensitivity of surface temperature to solar constant variations in model A than in model B. The results of model A are qualitatively in agreement with those of the general circulation model calculations of Wetherald and Manabe (1975).
Rapid heat treatment for anatase conversion of titania nanotube orthopedic surfaces
NASA Astrophysics Data System (ADS)
Bhosle, Sachin M.; Friedrich, Craig R.
2017-10-01
The amorphous to anatase transformation of anodized nanotubular titania surfaces has been studied by x-ray diffraction and transmission electron microscopy (TEM). A more rapid heat treatment for conversion of amorphous to crystalline anatase favorable for orthopedic implant applications was demonstrated. Nanotube titania surfaces were fabricated by electrochemical anodization of Ti6Al4V in an electrolyte containing 0.2 wt% NH4F, 60% ethylene glycol and 40% deionized water. The resulting surfaces were systematically heat treated in air with isochronal and isothermal experiments to study the temperature and time dependent transformation respectively. Energy dispersive spectroscopy shows that the anatase phase transformation of TiO2 in the as-anodized amorphous nanotube layer can be achieved in as little as 5 min at 350 °C in contrast to reports of higher temperature and much longer time. Crystallinity analysis at different temperatures and times yield transformation rate coefficients and activation energy for crystalline anatase coalescence. TEM confirms the (101) TiO2 presence within the nanotubes. These results confirm that for applications where amorphous titania nanotube surfaces are converted to crystalline anatase, a 5 min production flow-through heating process could be used instead of a 3 h batch process, reducing time, cost, and complexity.
Aerothermodynamic heating and performance analysis of a high-lift aeromaneuvering AOTV concept
NASA Technical Reports Server (NTRS)
Menees, G. P.; Brown, K. G.; Wilson, J. F.; Davies, C. B.
1985-01-01
The thermal-control requirements for design-optimized aeromaneuvering performance are determined for space-based applications and low-earth orbit sorties involving large, multiple plane-inclination changes. The leading-edge heating analysis is the most advanced developed for hypersonic-rarefied flow over lifting surfaces at incidence. The effects of leading-edge bluntness, low-density viscous phenomena, and finite-rate flow-field chemistry and surface catalysis are accounted for. The predicted aerothermodynamic heating characteristics are correlated with thermal-control and flight-performance capabilities. The mission payload capability for delivery, retrieval, and combined operations is determined for round-trip sorties extending to polar orbits. Recommendations are given for future design refinements. The results help to identify technology issues required to develop prototype operational systems.
2012-01-01
in high-humidity environments. Nature-inspired superhydrophobic surfaces have been actively explored to enhance heat and mass transfer rates by...challenge with superhydrophobic surfaces, as observed in nature on the lotus leaf21 and on synthetic surfaces,22,23 is that they are often rendered...Dynamics. Rev. Mod. Phys. 1985, 57, 827–863. 2. Kim, S. H. Fabrication of Superhydrophobic Surfaces. J. Adhes. Sci. Technol. 2008, 22, 235–250. 3
NASA Astrophysics Data System (ADS)
Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.
2017-06-01
Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.
Study on hot melt pressure sensitive coil material for removing surface nuclear pollution dust
NASA Astrophysics Data System (ADS)
Wang, Jing; Li, Jiao; Wang, Jianhui; Zheng, Li; Li, Jian; Lv, Linmei
2018-02-01
A new method for removing surface nuclear pollution by using hot melt pressure sensitive membrane was presented. The hot melt pressure sensitive membrane was designed and prepared by screening hot melt pressure sensitive adhesive and substrate. The simulated decontamination test of the hot melt pressure sensitive membrane was performed by using 100 mesh and 20 mesh standard sieve dust for simulation of nuclear explosion fall ash and radioactive contaminated particles, respectively. It was found that the single decontamination rate of simulated fall ash and contaminated particles were both above 80% under pressure conditions of 25kPa or more at 140°C. And the maximum single decontamination rate was 92.5%. The influence of heating temperature and pressure on the decontamination rate of the membrane was investigated at the same time. The results showed that higher heating temperature could increase the decontamination rate by increasing the viscosity of the adhesive. When the adhesive amount of the adhesive layer reached saturation, a higher pressure could increase the single decontamination rate also.
NASA Technical Reports Server (NTRS)
Florschuetz, L. W.; Metzger, D. E.; Su, C. C.; Isoda, Y.; Tseng, H. H.
1982-01-01
Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated.
NASA Astrophysics Data System (ADS)
Waleed Ahmed Khan, M.; Ijaz Khan, M.; Hayat, T.; Alsaedi, A.
2018-04-01
Entropy generation minimization (EGM) and heat transport in nonlinear radiative flow of nanomaterials over a thin moving needle has been discussed. Nonlinear thermal radiation and viscous dissipation terms are merged in the energy expression. Water is treated as ordinary fluid while nanomaterials comprise titanium dioxide, copper and aluminum oxide. The nonlinear governing expressions of flow problems are transferred to ordinary ones and then tackled for numerical results by Built-in-shooting technique. In first section of this investigation, the entropy expression is derived as a function of temperature and velocity gradients. Geometrical and physical flow field variables are utilized to make it nondimensionalized. An entropy generation analysis is utilized through second law of thermodynamics. The results of temperature, velocity, concentration, surface drag force and heat transfer rate are explored. Our outcomes reveal that surface drag force and Nusselt number (heat transfer) enhanced linearly for higher nanoparticle volume fraction. Furthermore drag force decays for aluminum oxide and it enhances for copper nanoparticles. In addition, the lowest heat transfer rate is achieved for higher radiative parameter. Temperature field is enhanced with increase in temperature ratio parameter.
Use of a fluidized bed for the thermal and chemicothermal treatment of metals
NASA Astrophysics Data System (ADS)
Varygin, N. N.; Ol'shanov, E. Ya.
1971-06-01
An investigation of the heat processes in a fluidized bed shows that this unit has a high heating rate and cooling rate, and allows direct control in the process of heat treatment; chemicothermal processing is speeded up 3-5 times. Examples of experimental-industrial and industrial use show the advantages of using the fluidized bed for rapid nonoxidative heating for thermal processing and pressure processing, and also for replacing expensive salt and metal baths. The use of the fluidized bed is promising for heating temperature-sensitive aluminum and other nonferrous alloys, and for heat processing refractory metals, and alloys [45], etc. It is desirable to use the fluidized bed as the cooling medium to achieve optimum cooling with reduced stresses in components of especially complex configuration. It would be promising to use the fluidized bed for carrying out chemicothermal processing and for creating new processes (including surface saturation with rare metals), especially with the application of electrical, and possibly strong magnetic, fields.
Heat transfer of ascending cryomagma on Europa
NASA Astrophysics Data System (ADS)
Quick, Lynnae C.; Marsh, Bruce D.
2016-06-01
Jupiter's moon Europa has a relatively young surface (60-90 Myr on average), which may be due in part to cryovolcanic processes. Current models for both effusive and explosive cryovolcanism on Europa may be expanded and enhanced by linking the potential for cryovolcanism at the surface to subsurface cryomagmatism. The success of cryomagma transport through Europa's crust depends critically on the rate of ascent relative to the rate of solidification. The final transport distance of cryomagma is thus governed by initial melt volume, ascent rate, overall ascent distance, transport mechanism (i.e., diapirism, diking, or ascent in cylindrical conduits), and melt temperature and composition. The last two factors are especially critical in determining the budget of expendable energy before complete solidification. Here we use these factors as constraints to explore conditions under which cryomagma may arrive at Europa's surface to facilitate cryovolcanism. We find that 1-5 km radius warm ice diapirs ascending from the base of a 10 km thick stagnant lid can reach the shallow subsurface in a partially molten state. Cryomagma transport may be further facilitated if diapirs travel along pre-heated ascent paths. Under certain conditions, cryolava transported from 10 km depths in tabular dikes or pipe-like conduits may reach the surface at temperatures exceeding 250 K. Ascent rates for these geometries may be high enough that isothermal transport is approached. Cryomagmas containing significant amounts of low eutectic impurities can also be delivered to Europa's surface by propagating dikes or pipe-like conduits.
NASA Astrophysics Data System (ADS)
Thigpen, R.; Ashley, K. T.; Law, R. D.; Mako, C. A.
2017-12-01
In natural systems, two key observations indicate that major strain discontinuities such as faults and shear zones should play a fundamental role in orogenic thermal evolution: (1) Large faults and shear zones often separate components of the composite orogen that have experienced broadly different thermal and deformational histories, and (2) quantitative metamorphic and diffusional studies indicate that heating rates are much faster and the duration of peak conditions much shorter in natural collisional systems than those predicted by numerical continuum deformation models. Because heat transfer processes such as conduction usually operate at much slower time scales than rates of other tectonic processes, thermal evolution is often transient and thus can be strongly influenced by tectonic disturbances that occur at rates much faster than thermal relaxation. Here, we use coupled thermal-mechanical finite element models of thrust faults to explore how fault slip rate may fundamentally influence the thermal evolution of individual footwall and hanging wall thrust slices. The model geometry involves a single crustal-scale thrust with a dip of 25° that is translated up the ramp at average velocities of 20, 35, and 50 km Myr-1, interpreted to represent average to relatively high slip rates observed in many collisional systems. Boundary conditions include crustal radioactive heat production, basal mantle heat flow, and surface erosion rates that are a function of thrust rate and subsequent topography generation. In the models, translation of the hanging wall along the crustal-scale detachment results in erosion, exhumation, and retrograde metamorphism of the emerging hanging wall topography and coeval burial, `hot iron' heating, and prograde metamorphism of the thrust footwall. Thrust slip rates of 20, 35, and 50 km Myr-1 yield maximum footwall heating rates ranging from 55-90° C Myr-1 and maximum hanging wall cooling rates of 138-303° C Myr-1. These relatively rapid heating rates explain, in part, the presence of chemical diffusion profiles in metamorphic minerals that are indicative of high heating rates. Additionally, the relatively high cooling rates explain preservation of chemical zoning, as rapid cooling prevents diffusive profiles from being substantially modified during exhumation.
1988-03-01
response of the ocean and the seasonal changes in atmospheric forcing. The pattern of 20 DiSTPIBUTION/ AVAILABILIT Y OF aRS7RACT 21 ABSTRACT SECURITY...Speed with M LD .............................. 50 3.20 Time Rate of Change of Heat in the Water Column at 155 oE Contour Interval is 35W m 2...52 3.21 Dilerence of Net Surface Heating ad Heat .* the Water Column at 155 oE
Nondestructive corrosion detection in concrete through integrated heat induction and IR thermography
NASA Astrophysics Data System (ADS)
Kwon, Seung-Jun; Xue, Henry; Feng, Maria Q.; Baek, Seunghoon
2011-04-01
Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the steel rebar from concrete surface, which is integrated with an IR camera. Bare rebar and concrete samples with different cover depths are prepared. Each concrete sample is embedded with a single steel rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enables heat induction from one surface and IR thermogrphay from the other simultaneously. The impressed current method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during both heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded samples show higher rates of heating and cooling as well as a higher peak IR intensity than those of the non-corroded samples. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.
Finite Element Analysis of Three Methods for Microwave Heating of Planetary Surfaces
NASA Technical Reports Server (NTRS)
Ethridge, Edwin; Kaukler, William
2012-01-01
In-Situ Resource Utilization will be Ground Breaking technology for sustained exploration of space. Volatiles are present in planetary regolith, but water by far has the most potential for effective utilization. The presence of water at the lunar poles and Mars opens the possibility of using the hydrogen for propellant on missions beyond Earth orbit. Likewise, the oxygen could be used for in-space propulsion for lunar ascent/descent and for space tugs from low lunar orbit to low Earth orbit. Water is also an effective radiation shielding material as well as a valuable expendable (water and oxygen) required for habitation in space. Because of the strong function of water vapor pressure with temperature, heating regolith effectively liberates water vapor by sublimation. Microwave energy will penetrate soil and heat from within, much more efficiently than heating from the surface with radiant heat. This is especially true under vacuum conditions since the heat transfer rate is very low. The depth of microwave penetration is a strong function of the microwave frequency and to a lesser extent on regolith dielectric properties. New methods for delivery of microwaves into lunar and planetary surfaces is being prototyped with laboratory experiments and modeled with COMSOL MultiPhysics. Recent results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Wei; Faculty of Science, Kunming University of Science and Technology, Kunming 650093; Peng Jinhui
Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard ofmore » China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.« less
Design and performance of the University of Michigan 6.6-inch hypersonic wind tunnel
NASA Technical Reports Server (NTRS)
Amick, J. L.
1975-01-01
The tunnel described has several design features intended to maintain laminar flow in the boundary layer of its nozzle. Measurements show that transition to turbulence in the nozzle wall boundary layer begins at the throat and is sensitive to surface roughness, heat transfer rate, and longitudinal radius of curvature. The observed dependence of transition on heat transfer rate is the reverse of that predicted by stability theory for infinitesimal disturbances. Tests include boundary layer surveys of a contoured nozzle and a conical nozzle with four interchangeable throats.
Kadochová, Štěpánka; Frouz, Jan; Roces, Flavio
2017-01-01
In early spring, red wood ants Formica polyctena are often observed clustering on the nest surface in large numbers basking in the sun. It has been hypothesized that sun-basking behaviour may contribute to nest heating because of both heat carriage into the nest by sun-basking workers, and catabolic heat production from the mobilization of the workers’ lipid reserves. We investigated sun-basking behaviour in laboratory colonies of F. polyctena exposed to an artificial heat source. Observations on identified individuals revealed that not all ants bask in the sun. Sun-basking and non-sun-basking workers did not differ in body size nor in respiration rates. The number of sun-basking ants and the number of their visits to the hot spot depended on the temperature of both the air and the hot spot. To investigate whether sun basking leads to a physiological activation linked with increased lipolysis, we measured respiration rates of individual workers as a function of temperature, and compared respiration rates of sun-basking workers before and two days after they were allowed to expose themselves to a heat source over 10 days, at self-determined intervals. As expected for ectothermic animals, respiration rates increased with increasing temperatures in the range 5 to 35°C. However, the respiration rates of sun-basking workers measured two days after a long-term exposure to the heat source were similar to those before sun basking, providing no evidence for a sustained increase of the basal metabolic rates after prolonged sun basking. Based on our measurements, we argue that self-heating of the nest mound in early spring has therefore to rely on alternative heat sources, and speculate that physical transport of heat in the ant bodies may have a significant effect. PMID:28114396
Heat Transfer in Complex Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehrdad Massoudi
Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely themore » stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction rate is increased leading to an increase in the heat of the reaction. As a result the flow is chemically heated and its temperature increase. The results shown here indicate that for all values of {zeta} used the chemical effects are significant and the temperature is always higher than both the surface temperature and the free surface temperature. The heat transfer is always from the flow toward both the inclined surface and the free stream. It is also noticed that for all values of m chosen in this study, the temperature is higher than the surface and the free stream temperature. The heat transfer at the inclined surface and at the free stream increase slowly for negative values of m to about m=0.5, but it begins to significantly increase for m greater than 0.5.« less
Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, Wen-Jei
2002-01-01
Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a significant augmentation in nucleate boiling heat transfer on the composite surfaces. A physical model is developed to describe the phenomenon of bubble departure from the composite surface: The preferred site of bubble nucleation is the fiber tip because of higher tip temperature than the surrounding copper base and poor wettability of the graphite tip compared with that of the base material (copper). The high evaporation rate near the contact line produces the vapor cutback due to the vapor recoil pushing the three-phase line outwards from the fiber tip, and so a neck of the bubble is formed near the bubble bottom. Evaporation and surface tension accelerate the necking process and finally result in the bubble departure while a new small bubble is formed at the tip when the surface tension pushes the three-phase line back to the tip. The process is schematically shown. The proposed model is based on and confirmed by experimental results.
Experimental Optimisation of the Thermal Performance of Impinging Synthetic Jet Heat Sinks
NASA Astrophysics Data System (ADS)
Marron, Craig; Persoons, Tim
2014-07-01
Zero-net-mass flow synthetic jet devices offer a potential solution for energy- efficient cooling of medium power density electronic components. There remains an incomplete understanding of the interaction of these flows with extended surfaces, which prevents the wider implementation of these devices in the field. This study examines the effect of the main operating parameters on the heat transfer rate and electrical power consumption for a synthetic jet cooled heat sink. Three different heat sink geometries are tested. The results find that a modified sink with a 14 × 14 pin array with the central 6 × 6 pins removed provides superior cooling to either a fully pinned sink or flat plate. Furthermore each heat sink is found to have its own optimum jet orifice-to-sink spacing for heat transfer independent of flow conditions. The optimum heat transfer for the modified sink is H = 34 jet diameters. The effect of frequency on heat transfer is also studied. It is shown that heat transfer increases superlinearly with frequency at higher stroke lengths. The orientation of the impingement surface with respect to gravity has no effect on the heat transfer capabilities of the tested device. These tests are the starting point for further investigation into enhanced synthetic jet impingement surfaces. The equivalent axial fan cooled pinned heat sink (Malico Inc. MFP40- 18) has a thermal resistance of 1.93K/W at a fan power consumption of 0.12W. With the modified pinned heat sink, a synthetic jet at Re = 911, L0/D = 10, H/D = 30 provides a thermal resistance of 2.5K/W at the same power consumption.
Thermal Characterization of a Hall Effect Thruster
2008-03-01
View Factor A = Area θ = Angle R = Distance xiii J = Radiosity q = Heat Transfer Rate W = Radiated Power U = Voltage C...summation rule. 1 1 N ij j F = =∑ (18) Radiosity (Ji) takes into account both radiation emitted and reflected from a surface. Analyzing radiation...exchanges between two surfaces is made easier with a few assumptions. Each surface is assumed isothermal and characterized by a uniform radiosity
A simplified computational fluid-dynamic approach to the oxidizer injector design in hybrid rockets
NASA Astrophysics Data System (ADS)
Di Martino, Giuseppe D.; Malgieri, Paolo; Carmicino, Carmine; Savino, Raffaele
2016-12-01
Fuel regression rate in hybrid rockets is non-negligibly affected by the oxidizer injection pattern. In this paper a simplified computational approach developed in an attempt to optimize the oxidizer injector design is discussed. Numerical simulations of the thermo-fluid-dynamic field in a hybrid rocket are carried out, with a commercial solver, to investigate into several injection configurations with the aim of increasing the fuel regression rate and minimizing the consumption unevenness, but still favoring the establishment of flow recirculation at the motor head end, which is generated with an axial nozzle injector and has been demonstrated to promote combustion stability, and both larger efficiency and regression rate. All the computations have been performed on the configuration of a lab-scale hybrid rocket motor available at the propulsion laboratory of the University of Naples with typical operating conditions. After a preliminary comparison between the two baseline limiting cases of an axial subsonic nozzle injector and a uniform injection through the prechamber, a parametric analysis has been carried out by varying the oxidizer jet flow divergence angle, as well as the grain port diameter and the oxidizer mass flux to study the effect of the flow divergence on heat transfer distribution over the fuel surface. Some experimental firing test data are presented, and, under the hypothesis that fuel regression rate and surface heat flux are proportional, the measured fuel consumption axial profiles are compared with the predicted surface heat flux showing fairly good agreement, which allowed validating the employed design approach. Finally an optimized injector design is proposed.
NASA Astrophysics Data System (ADS)
Gottschalk, Matthias; Lauermann, Felix; Ehrlich, André; Siebert, Holger; Wendisch, Manfred
2017-04-01
Stratocumulus covers approximately 20 % (annually averaged) of the Earth's surface and thus strongly influences the atmospheric and surface radiative energy budget resulting in radiative cooling and heating effects. Globally, the solar cooling effect of the widespread sub-tropical stratocumulus dominates. However, in the Arctic the solar cloud albedo effect (cooling) is often smaller than the thermal-infrared greenhouse effect (warming), which is a result of the lower incoming solar radiation and the low cloud base height. Therefore, Arctic stratocumulus mostly warms the atmosphere and surface below the cloud. Additionally, different environmental conditions lead to differences between sub-tropical and Arctic stratocumulus. Broadband pyranometers and pyrgeometers will be used to measure heating and cooling rate profiles in and above stratocumulus. For this purpose two slowly moving platforms are used (helicopter and tethered balloon) in order to consider for the long response times of both broadband radiation sensors. Two new instrument packages are developed for the applied tethered balloon and helicopter platforms, which will be operated within Arctic and sub-tropical stratocumulus, respectively. In June 2017, the balloon will be launched from a sea ice floe north of 80 °N during the Arctic Balloon-borne profiling Experiment (ABEX) as part of (AC)3 (Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms) Transregional Collaborative Research Center. The helicopter will sample sub-tropical stratocumulus over the Azores in July 2017.
NASA Technical Reports Server (NTRS)
Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.
2004-01-01
Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30 x 30 x 10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/sq m. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.
NASA Technical Reports Server (NTRS)
Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.
2004-01-01
Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30x30x10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/m2. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.
Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Gati, Frank; Yuko, James R.; Motil, Brian J.; Lumpkin, Forrest E.
2009-01-01
The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module showed that thermal protection is necessary because of significant heating from the plume.
Internal stress-induced melting below melting temperature at high-rate laser heating
NASA Astrophysics Data System (ADS)
Hwang, Yong Seok; Levitas, Valery I.
2014-06-01
In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.
Advanced k-epsilon modeling of heat transfer
NASA Technical Reports Server (NTRS)
Kwon, Okey; Ames, Forrest E.
1995-01-01
This report describes two approaches to low Reynolds-number k-epsilon turbulence modeling which formulate the eddy viscosity on the wall-normal component of turbulence and a length scale. The wall-normal component of turbulence is computed via integration of the energy spectrum based on the local dissipation rate and is bounded by the isotropic condition. The models account for the anisotropy of the dissipation and the reduced mixing length due to the high strain rates present in the near-wall region. The turbulent kinetic energy and its dissipation rate were computed from the k and epsilon transport equations of Durbin. The models were tested for a wide range of turbulent flows and proved to be superior to other k-epsilon models, especially for nonequilibrium anisotropic flows. For the prediction of airfoil heat transfer, the models included a set of empirical correlations for predicting laminar-turbulent transition and laminar heat transfer augmentation due to the presence of freestream turbulence. The predictions of surface heat transfer were generally satisfactory.
Šálek, Miroslav E.; Zárybnická, Markéta
2015-01-01
Incubation is an energetically demanding process during which birds apply heat to their eggs to ensure embryonic development. Parent behaviours such as egg turning and exchanging the outer and central eggs in the nest cup affect the amount of heat lost to the environment from individual eggs. Little is known, however, about whether and how egg surface temperature and cooling rates vary among the different areas of an egg and how the arrangement of eggs within the clutch influences heat loss. We performed laboratory (using Japanese quail eggs) and field (with northern lapwing eggs) experiments using infrared imaging to assess the temperature and cooling patterns of heated eggs and clutches. We found that (i) the sharp poles of individual quail eggs warmed to a higher egg surface temperature than did the blunt poles, resulting in faster cooling at the sharp poles compared to the blunt poles; (ii) both quail and lapwing clutches with the sharp poles oriented towards the clutch centre (arranged clutches) maintained higher temperatures over the central part of the clutch than occurred in those clutches where most of the sharp egg poles were oriented towards the exterior (scattered clutches); and (iii) the arranged clutches of both quail and lapwing showed slower cooling rates at both the inner and outer clutch positions than did the respective parts of scattered clutches. Our results demonstrate that egg surface temperature and cooling rates differ between the sharp and blunt poles of the egg and that the orientation of individual eggs within the nest cup can significantly affect cooling of the clutch as a whole. We suggest that birds can arrange their eggs within the nest cup to optimise thermoregulation of the clutch. PMID:25658846
Šálek, Miroslav E; Zárybnická, Markéta
2015-01-01
Incubation is an energetically demanding process during which birds apply heat to their eggs to ensure embryonic development. Parent behaviours such as egg turning and exchanging the outer and central eggs in the nest cup affect the amount of heat lost to the environment from individual eggs. Little is known, however, about whether and how egg surface temperature and cooling rates vary among the different areas of an egg and how the arrangement of eggs within the clutch influences heat loss. We performed laboratory (using Japanese quail eggs) and field (with northern lapwing eggs) experiments using infrared imaging to assess the temperature and cooling patterns of heated eggs and clutches. We found that (i) the sharp poles of individual quail eggs warmed to a higher egg surface temperature than did the blunt poles, resulting in faster cooling at the sharp poles compared to the blunt poles; (ii) both quail and lapwing clutches with the sharp poles oriented towards the clutch centre (arranged clutches) maintained higher temperatures over the central part of the clutch than occurred in those clutches where most of the sharp egg poles were oriented towards the exterior (scattered clutches); and (iii) the arranged clutches of both quail and lapwing showed slower cooling rates at both the inner and outer clutch positions than did the respective parts of scattered clutches. Our results demonstrate that egg surface temperature and cooling rates differ between the sharp and blunt poles of the egg and that the orientation of individual eggs within the nest cup can significantly affect cooling of the clutch as a whole. We suggest that birds can arrange their eggs within the nest cup to optimise thermoregulation of the clutch.
NASA Technical Reports Server (NTRS)
Yang, R. J.; Weinberg, B. C.; Shamroth, S. J.; Mcdonald, H.
1985-01-01
The application of the time-dependent ensemble-averaged Navier-Stokes equations to transonic turbine cascade flow fields was examined. In particular, efforts focused on an assessment of the procedure in conjunction with a suitable turbulence model to calculate steady turbine flow fields using an O-type coordinate system. Three cascade configurations were considered. Comparisons were made between the predicted and measured surface pressures and heat transfer distributions wherever available. In general, the pressure predictions were in good agreement with the data. Heat transfer calculations also showed good agreement when an empirical transition model was used. However, further work in the development of laminar-turbulent transitional models is indicated. The calculations showed most of the known features associated with turbine cascade flow fields. These results indicate the ability of the Navier-Stokes analysis to predict, in reasonable amounts of computation time, the surface pressure distribution, heat transfer rates, and viscous flow development for turbine cascades operating at realistic conditions.
Numerical investigation on aluminum foam application in a tubular heat exchanger
NASA Astrophysics Data System (ADS)
Buonomo, Bernardo; di Pasqua, Anna; Ercole, Davide; Manca, Oronzio; Nardini, Sergio
2018-02-01
A numerical study has been conducted to examine the thermal and fluiddynamic behaviors of a tubular heat exchanger in aluminum foam. A plate in metal foam with a single array of five circular tubes is the geometrical domain under examination. Darcy-Forchheimer flow model and the thermal non-equilibrium energy model are used to execute two-dimensional simulations on metal foam heat exchanger. The foam is characterized by porosity and (number) pores per inch respectively equal to 0.935 and 20. Different air flow rates are imposed to the entrance of the heat exchanger with an assigned surface tube temperature. The results are provided in terms of local heat transfer coefficient and Nusselt number evaluated on the external surface of the tubes. Furthermore, local air temperature and velocity profiles in the smaller cross section, between two consecutive tubes are given. Finally, the Energy Performance Ratio (EPR) is evaluated in order to demonstrate the effectiveness of the metal foam.
Influence of hydrophobicity on ice accumulation process under sleet and wind conditions
NASA Astrophysics Data System (ADS)
Xu, Ke; Hu, Jianlin; Shu, Lichun; Jiang, Xingliang; Huang, Zhengyong
2018-03-01
Glaze, the most dangerous ice type in natural environment, forms during sleet weather, which is usually accompanied with wind. The icing performance of hydrophobic coatings under the impact of wind needs further research. This paper studies the influence of hydrophobicity on ice accumulation process under sleet and wind conditions by computer simulations and icing tests. The results indicate that the heat dissipation process of droplets on samples with various hydrophobicity will be accelerated by wind significantly and that a higher hydrophobicity cannot reduce the cooling rate effectively. However, on different hydrophobic surfaces, the ice accumulation process has different characteristics. On a hydrophilic surface, the falling droplets form continuously water film, which will be cooled fast. On superhydrophobic surface, the frozen droplets form ice bulges, which can shield from wind and slow down the heat dissipation process. These ice accumulation characteristics lead to the difference in ice morphology and make a higher hydrophobic surface to have a lower ice mass growth rate in long period icing tests. As a conclusion, superhydrophobic coating remain icephobic under wind and sleet conditions.
NASA Technical Reports Server (NTRS)
Kubota, H.
1976-01-01
A simplified analytical method for calculation of thermal response within a transpiration-cooled porous heat shield material in an intense radiative-convective heating environment is presented. The essential assumptions of the radiative and convective transfer processes in the heat shield matrix are the two-temperature approximation and the specified radiative-convective heatings of the front surface. Sample calculations for porous silica with CO2 injection are presented for some typical parameters of mass injection rate, porosity, and material thickness. The effect of these parameters on the cooling system is discussed.
NASA Technical Reports Server (NTRS)
Glass, Christopher E.
1990-01-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
NASA Astrophysics Data System (ADS)
Glass, Christopher E.
1990-08-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
Turbulent transports over tundra
NASA Technical Reports Server (NTRS)
Fitzjarrald, David R.; Moore, Kathleen E.
1992-01-01
An extensive period of eddy correlation surface flux measurements was conducted at a site distant from the coast on the western Alaskan tundra. The surface exchange of heat and moisture over tundra during the summer was limited by a strong resistance to transfer from the upper soil layer through the ground cover, with canopy resistances to evaporation observed to be approximately 200 s/m. Though July 1988 was anomalously warm and dry in the region and August was close to normal temperature and rainfall, there was no appreciable difference in the canopy resistance between the periods. During the dry sunny period at the end of July, the observed evaporation rate was 2 mm/d. High canopy resistance led to an approximate equipartition of net radiation between latent and sensible heat, each accounting for 40 percent of the available energy, with heat balance apparently going into soil heat flux.
Thermal investigation of an electrical high-current arc with porous gas-cooled anode
NASA Technical Reports Server (NTRS)
Eckert, E. R. G.; Schoeck, P. A.; Winter, E. R. F.
1984-01-01
The following guantities were measured on a high-intensity electric arc with tungsten cathode and transpiration-cooled graphite anode burning in argon: electric current and voltage, cooling gas flow rate (argon), surface temperature of the anode and of the anode holder, and temperature profile in three cross-sections of the arc are column. The last mentioned values were obtained from spectroscopic photographs. From the measured quantities, the following values were calculated: the heat flux into the anode surface, the heat loss of the anode by radiation and conduction, and the heat which was regeneratively transported by the cooling gas back into the arc space. Heat balances for the anode were also obtained. The anode losses (which are approximately 80% of the total arc power for free burning arcs) were reduced by transpiration cooling to 20%. The physical processes of the energy transfer from the arc to the anode are discussed qualitatively.
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Extraction and Capture of Water from Martian Regolith Experimental Proof-of-Concept
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Kleinhenz, Julie E.; Bauman, Steven W.; Johnson, Kyle A.
2016-01-01
A novel concept for extraction of water from the Mars soil in a real-time, open-air process was demonstrated in a Mars environment chamber. The concept breadboard uses radiative heating to bake off water from exposed soil contained in a bin. An enclosure, intended to mimic the bottom of a rover, covers the bin. A fan continuously blows the Mars atmospheric gases through the enclosure to collect the evolved water while a tiller was used to churn up moist subsurface soil. These initial tests verified concept feasibility. The sweep gas generated by commercially available muffin fans at 7 Torr was sufficient to transfer water vapor into a condenser flow loop. The radiative heating, while non-optimized, heated the soil surface to 60 C to generate water vapor. A rototiller working through the soil bin brought sufficient amounts of new moist soil to the heated surface to show an increase in rate of water extraction.
NASA Technical Reports Server (NTRS)
Jones, C. B.; Smetana, F. O.
1979-01-01
It was found that if the upper and lower ends of a collector were opened, large free convention currents may be set up between the collector surface and the cover glass(es) which can result in appreciable heat rejection. If the collector is so designed that both plates surfaces are exposed to convection currents when the upper and lower ends of the collector enclosure are opened, the heat rejection rate is 300 watts sq m when the plate is 13 C above ambient. This is sufficient to permit a collector array designed to provide 100 percent of the heating needs of a home to reject the accumulated daily air conditioning load during the course of a summer night. This also permits the overall energy requirements for cooling to be reduced by at least 15 percent and shift the load on the utility entirely to the nighttime hours.
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
A wind tunnel test program to determine aerodynamic interference heating on the North American Rockwell orbiter mated with the General Dynamics Convair booster is discussed. The tests were conducted at the Arnold Engineering Development Center (AEDC) in Tunnel B of the von Karman Gas Dynamics Facility (VKF). The test period was June 1971. Heat-transfer rates were determined by the phase-change paint technique on 0.013-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were: Mach 8, free-stream unit length Reynolds numbers of 1.25 x one million and 2.55 x one million angles of attack of -5, 0, +5 deg. Model details, test conditions, phase-change paint photographs and reduced heat-transfer coefficients are presented.
Vapor shielding models and the energy absorbed by divertor targets during transient events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skovorodin, D. I., E-mail: dskovorodin@gmail.com; Arakcheev, A. S.; Pshenov, A. A.
2016-02-15
The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shieldingmore » is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level E{sub max}. Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that E{sub max} depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the “strength” of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the E{sub max} is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective shielding to the target, and, therefore, strongly influence resulting erosion rate. Thus, E{sub max} cannot be used for validation of shielding models and codes, aimed at the target material erosion calculations.« less
Warren, D.W.
1997-04-15
A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.
Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar
Magnetocaloric refrigeration is an alternative refrigeration technology with significant potential energy savings compared to conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. In this paper, we propose an alternative mechanism for heat transfer between the AMR and the heat source/sink. High-conductivity moving rods/sheets (e.g. copper, brass, iron, graphite, aluminum or composite structures from these) are utilized instead of heat transfer fluid significantly enhancing the heatmore » transfer rate hence cooling/heating capacity. A one-dimensional model is developed to study the solid state AMR. In this model, the heat exchange between the solid-solid interfaces is modeled via a contact conductance, which depends on the interface apparent pressure, material hardness, thermal conductivity, surface roughness, surface slope between the interfaces, and material filled in the gap between the interfaces. Due to the tremendous impact of the heat exchange on the AMR cycle performance, a sensitivity analysis is conducted employing a response surface method, in which the apparent pressure, effective surface roughness and grease thermal conductivity are the uncertainty factors. COP and refrigeration capacity are presented as the response in the sensitivity analysis to reveal the important factors influencing the fully solid state AMR and optimize the solid state AMR efficiency. The performances of fully solid state AMR and traditional AMR are also compared and discussed in present work. The results of this study will provide general guidelines for designing high performance solid state AMR systems.« less
Role of entrapped vapor bubbles during microdroplet evaporation
NASA Astrophysics Data System (ADS)
Putnam, Shawn A.; Byrd, Larry W.; Briones, Alejandro M.; Hanchak, Michael S.; Ervin, Jamie S.; Jones, John G.
2012-08-01
On superheated surfaces, the air bubble trapped during impingement grows into a larger vapor bubble and oscillates at the frequency predicted for thermally induced capillary waves. In some cases, the entrapped vapor bubble penetrates the droplet interface, leaving a micron-sized coffee-ring pattern of pure fluid. Vapor bubble entrapment, however, does not influence the evaporation rate. This is also true on laser heated surfaces, where a laser can thermally excite capillary waves and induce bubble oscillations over a broad range of frequencies, suggesting that exciting perturbations in a pinned droplets interface is not an effective avenue for enhancing evaporative heat transfer.
Notley, Sean R; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu; Taylor, Nigel A S
2017-05-01
What is the central question of this study? Can sex-related differences in cutaneous vascular and sudomotor responses be explained primarily by variations in the ratio between body surface area and mass during compensable exercise that elicits equivalent heat-loss requirements and mean body temperature changes across participants? What is the main finding and its importance? Mass-specific surface area was a significant determinant of vasomotor and sudomotor responses in men and women, explaining 10-48% of the individual thermoeffector variance. Nonetheless, after accounting for changes in mean body temperature and morphological differences, sex explained only 5% of that inter-individual variability. It was concluded that sex differences in thermoeffector function are morphologically dependent, but not sex dependent. Sex is sometimes thought to be an independent modulator of cutaneous vasomotor and sudomotor function during heat exposure. Nevertheless, it was hypothesized that, when assessed during compensable exercise that evoked equal heat-loss requirements across participants, sex differences in those thermoeffectors would be explained by variations in the ratio between body surface area and mass (specific surface area). To evaluate that possibility, vasomotor and sudomotor functions were assessed in 60 individuals (36 men and 24 women) with widely varying (overlapping) specific surface areas (range, 232.3-292.7 and 241.2-303.1 cm 2 kg -1 , respectively). Subjects completed two trials in compensable conditions (28°C, 36% relative humidity) involving rest (20 min) and steady-state cycling (45 min) at fixed, area-specific metabolic heat-production rates (light, ∼135 W m -2 ; moderate, ∼200 W m -2 ). Equivalent heat-loss requirements and mean body temperature changes were evoked across participants. Forearm blood flow and vascular conductance were positively related to specific surface area during light work in men (r = 0.67 and r = 0.66, respectively; both P < 0.05) and during both exercise intensities in women (light, r = 0.57 and r = 0.69; and moderate, r = 0.64 and r = 0.68; all P < 0.05). Whole-body and local sweat rates were negatively related to that ratio (correlation coefficient range, -0.33 to -0.62; all P < 0.05) during both work rates in men and women. Those relationships accounted for 10-48% of inter-individual thermoeffector variance (P < 0.05). Furthermore, after accounting for morphological differences, sex explained no more than 5% of that variability (P < 0.05). It was concluded that, when assessed during compensable exercise, sex differences in thermoeffector function were largely determined morphologically, rather than being sex dependent. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
NASA Technical Reports Server (NTRS)
Mulholland, Donald R.; Perkins, Porter J.
1948-01-01
An investigation to determine the effectiveness of icing protection afforded by air-heating hollow steel unpartitioned propeller blades has been conducted In the NACA Cleveland icing research tunnel. The propeller used was a production model modified with blade shank and tip openings to permit internal passage of heated air. Blade-surface and heated-air temperatures were obtained and photographic observations of Ice formations were made with variations In icing intensity and heating rate to the blades. For the conditions of Icing to which the propeller was subjected, it was found that adequate ice protection was afforded with a heating rate of 40 1 000 Btu per hour per blade. With less than 40,000 Btu per hour per blade, ice protection failed because of significant ice accretions on the leading edge. The chordwise distribution of heat was unsatisfactory with most of the available heat dissipated well back of the leading edge on both the thrust and camber face's instead of at the leading edge where it was most needed. A low utilization of available heat for icing protection is indicated by a beat-exchanger effectiveness of approximately 47 percent.
Rapid control of mold temperature during injection molding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liparoti, Sara; Titomanlio, Giuseppe; Hunag, Tsang Min
2015-05-22
The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during themore » entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.« less
Surface Heat Flux and Pressure Distribution on a Hypersonic Blunt Body With DEAS
NASA Astrophysics Data System (ADS)
Salvador, I. I.; Minucci, M. A. S.; Toro, P. G. P.; Oliveira, A. C.; Channes, J. B.
2008-04-01
With the currently growing interest for advanced technologies to enable hypersonic flight comes the Direct Energy Air Spike concept, where pulsed beamed laser energy is focused upstream of a blunt flight vehicle to disrupt the flow structure creating a virtual, slender body geometry. This allies in the vehicle both advantages of a blunt body (lower thermal stresses) to that of a slender geometry (lower wave drag). The research conducted at the Henry T. Nagamatsu Laboratory for Aerodynamics and Hypersonics focused on the measurement of the surface pressure and heat transfer rates on a blunt model. The hypersonic flight conditions were simulated at the HTN Laboratory's 0.3 m T2 Hypersonic Shock Tunnel. During the tests, the laser energy was focused upstream the model by an infrared telescope to create the DEAS effect, which was supplied by a TEA CO2 laser. Piezoelectric pressure transducers were used for the pressure measurements and fast response coaxial thermocouples were used for the measurement of surface temperature, which was later used for the estimation of the wall heat transfer using the inverse heat conduction theory.
Flow field and thermal characteristics induced by a rotationally oscillating heated flat plate
NASA Astrophysics Data System (ADS)
Koffi, Moise
The objective of this dissertation is the study the flow and heat transfer in the vicinity of a rectangular flat heated plate of subject to rotational oscillations. Of interest is the effect of the flow field on the thermal characteristics of the plate's surface. A constant heat flux is applied to both sides while the plate is rotated about a fixed edge at a frequency of 2 rad/s in an infinite domain at atmospheric pressure. A computational simulation of the flow with FLUENT reveals a hooked-shape vortex tube around the free edges of the plate, which is confirmed by the flow visualization with smoke particles. During the flapping cycle, vortices form and grow progressively on one face while they shed from the opposite, until they are completely detached from both surfaces at stroke reversal. A data acquisition system uses a numerical computing and programming software (MATLAB) to track the surface temperature recorded by J- type thermocouples at desired locations on the plate. Both experimental and computational results agree with local surface temperature profiles characterized by a transient unsteady periodic variation followed by a steady periodic phase. These characteristics are symmetrical about the median plane of the plate, which is normal to its axis of rotation. The cooling rate of the surface, proportional to the frequency of rotation, depends on the angular position of the plate and the spatial location on the plate's surface. However, the highest heat transfer coefficient is recorded at free edges, especially in the corners swept by strong tip vortices shedding in two orthogonal directions. Conclusions of the present study are used to explain the role of ear flapping in the metabolic heat regulation of large mammals such as elephants. Flow visualization and surface temperature measurements of full size rigid and flexible elephant ear-shape models were carried out. Results indicate improved interaction between the shedding vortex and the model's boundary layer. Therefore the cooling is enhanced using flexible models by 30 percent. However, the huge size of the elephant pinna combined with its large surface to volume ratio and blood perfusion plays a key role in the enhancement of the animal's heat dissipation.
NASA Astrophysics Data System (ADS)
Litt, Maxime; Steiner, Jakob F.; Stigter, Emmy E.; Immerzeel, Walter; Shea, Joseph Michael
2017-04-01
Over debris-covered glaciers, water content variations in the debris layer can drive significant changes in its thermal conductivity and significantly impact melt rates. Since sublimation and evaporation are favoured in high-altitude conditions, e.g., low atmospheric pressure and high wind speeds, they are expected to strongly influence the water balance of the debris-layer. Dedicated latent heat fluxes measurements at the debris surface are essential to characterize the debris heat conductivity in order to assess underlying ice melt. Furthermore, the contribution of the turbulent fluxes in the surface energy balance over debris covered glacier remains uncertain since they are generally evaluated through similarity methods which might not be valid in complex terrain. We present the first results of a 15-day eddy-covariance experiment installed at the end of the monsoon (September-October) on a 3-m tower above the debris-covered Lirung glacier in Nepal. The tower also included measurements of the 4 radiation components. The eddy covariance measurements allowed for the characterization of the turbulence in the atmospheric surface layer, as well as the direct measurements of evaporation, sublimation and turbulent sensible heat fluxes. The experiment helps us to evaluate the contribution of turbulent fluxes to the surface energy balance over this debris-covered glacier, through a precise characterization of the overlying turbulent atmospheric surface layer. It also helps to study the role of the debris-layer water content changes through evaporation and sublimation and its feedback on heat conduction in this layer. The large observed turbulent fluxes play a significant role in the energy balance at the debris surface and significantly influence debris moisture, conductivity and subsequently underlying ice melt.
NASA Astrophysics Data System (ADS)
Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori
2016-07-01
The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR retrievals was compared with pyranometer measurement. The results showed good agreements: the columnar values of the SKYLIDAR retrievals agreed with reliable SKYRAD.PACK retrievals, and the SKYLIDAR retrievals were sufficiently accurate to evaluate the surface solar irradiance.
Crystallization of copper metaphosphate glass
NASA Technical Reports Server (NTRS)
Bae, Byeong-Soo; Weinberg, Michael C.
1993-01-01
The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.
Active heat exchange system development for latent heat thermal energy storage
NASA Technical Reports Server (NTRS)
Alario, J.; Kosson, R.; Haslett, R.
1980-01-01
Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.
NASA Astrophysics Data System (ADS)
Li, H.; Harvey, J. T.; Holland, T. J.; Kayhanian, M.
2013-03-01
To help address the built environmental issues of both heat island and stormwater runoff, strategies that make pavements cooler and permeable have been investigated through measurements and modeling of a set of pavement test sections. The investigation included the hydraulic and thermal performance of the pavements. The permeability results showed that permeable interlocking concrete pavers have the highest permeability (or infiltration rate, ˜0.5 cm s-1). The two permeable asphalt pavements showed the lowest permeability, but still had an infiltration rate of ˜0.1 cm s-1, which is adequate to drain rainwater without generating surface runoff during most typical rain events in central California. An increase in albedo can significantly reduce the daytime high surface temperature in summer. Permeable pavements under wet conditions could give lower surface temperatures than impermeable pavements. The cooling effect highly depends on the availability of moisture near the surface layer and the evaporation rate. The peak cooling effect of watering for the test sections was approximately 15-35 °C on the pavement surface temperature in the early afternoon during summer in central California. The evaporative cooling effect on the pavement surface temperature at 4:00 pm on the third day (25 h after watering) was still 2-7 °C lower compared to that on the second day, without considering the higher air temperature on the third day. A separate and related simulation study performed by UCPRC showed that full depth permeable pavements, if designed properly, can carry both light-duty traffic and certain heavy-duty vehicles while retaining the runoff volume captured from an average California storm event. These preliminarily results indicated the technical feasibility of combined reflective and permeable pavements for addressing the built environment issues related to both heat island mitigation and stormwater runoff management.
Arcjet exploratory tests of ARC optical window design for the AFE vehicle
NASA Technical Reports Server (NTRS)
Whiting, Ellis E.; Terrazas-Salinas, Imelda; Craig, Roger A.; Sobeck, Charles K.; Sarver, George L., III; Salerno, Louis J.; Love, Wendell; Maa, Scott; Covington, AL
1991-01-01
Tests were made in the 20 MW arc jet facility at the NASA ARC to determine the suitability of sapphire and fused silica as window materials for the Aeroassist Flight Experiment (AFE) entry vehicle. Twenty nine tests were made; 25 at a heating rate about 80 percent of that expected during the AFE entry and 4 at approximately the full, 100 percent AFE heating rate profile, that produces a temperature of about 2900 F on the surface of the tiles that protect the vehicle. These tests show that a conductively cooled window design using mechanical thermal contacts and sapphire is probably not practical. Cooling the window using mechanical thermal contacts produces thermal stresses in the sapphire that cause the window to crack. An insulated design using sapphire, that cools the window as little as possible, appears promising although some spectral data in the vacuum-ultra-violet (VUV) will be lost due to the high temperature reached by the sapphire. The surface of the insulated sapphire windows, tested at the 100 percent AFE heating rate, showed some slight ablation, and cracks appeared in two of three test windows. One small group of cracks were obviously caused by mechanical binding of the window in the assembly, which can be eliminated with improved design. Other cracks were long, straight, thin crystallographic cracks that have very little effect on the optical transmission of the window. Also, the windows did not fall apart along these crystallographic cracks when the windows were removed from their assemblies. Theoretical results from the thermal analysis computer program SINDA indicate that increasing the window thickness from 4 to 8 mm may enable surface ablation to be avoided. An insulated design using a fused silica window tested at the nominal AFE heating rate experienced severe ablation, thus fused silica is not considered to be an acceptable window material.
Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Miriam
2017-01-01
The accuracy of the direct and local measurements of the heat power dissipated by the surface of the human body, using a calorimetry minisensor, is directly related to the calibration rigor of the sensor and the correct interpretation of the experimental results. For this, it is necessary to know the characteristics of the body’s local heat dissipation. When the sensor is placed on the surface of the human body, the body reacts until a steady state is reached. We propose a mathematical model that represents the rate of heat flow at a given location on the surface of a human body by the sum of a series of exponentials: W(t) = A0 + ∑Aiexp(−t/τi). In this way, transient and steady states of heat dissipation can be interpreted. This hypothesis has been tested by simulating the operation of the sensor. At the steady state, the power detected in the measurement area (4 cm2) varies depending on the sensor’s thermostat temperature, as well as the physical state of the subject. For instance, for a thermostat temperature of 24 °C, this power can vary between 100–250 mW in a healthy adult. In the transient state, two exponentials are sufficient to represent this dissipation, with 3 and 70 s being the mean values of its time constants. PMID:29182567
Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Miriam; Rodríguez de Rivera, Manuel
2017-11-28
The accuracy of the direct and local measurements of the heat power dissipated by the surface of the human body, using a calorimetry minisensor, is directly related to the calibration rigor of the sensor and the correct interpretation of the experimental results. For this, it is necessary to know the characteristics of the body's local heat dissipation. When the sensor is placed on the surface of the human body, the body reacts until a steady state is reached. We propose a mathematical model that represents the rate of heat flow at a given location on the surface of a human body by the sum of a series of exponentials: W ( t ) = A ₀ + ∑A i exp( -t / τ i ). In this way, transient and steady states of heat dissipation can be interpreted. This hypothesis has been tested by simulating the operation of the sensor. At the steady state, the power detected in the measurement area (4 cm²) varies depending on the sensor's thermostat temperature, as well as the physical state of the subject. For instance, for a thermostat temperature of 24 °C, this power can vary between 100-250 mW in a healthy adult. In the transient state, two exponentials are sufficient to represent this dissipation, with 3 and 70 s being the mean values of its time constants.
Hom, Lindsay L; Lee, Elaine Choung-Hee; Apicella, Jenna M; Wallace, Sean D; Emmanuel, Holly; Klau, Jennifer F; Poh, Paula Y S; Marzano, Stefania; Armstrong, Lawrence E; Casa, Douglas J; Maresh, Carl M
2012-01-01
The purpose of this study was to assess whether a lymphocyte heat shock response and altered heat tolerance to ex vivo heat shock is evident during acclimation. We aimed to use flow cytometry to assess the CD3(+)CD4(+) T lymphocyte cell subset. We further aimed to induce acclimation using moderately stressful daily exercise-heat exposures to achieve acclimation. Eleven healthy males underwent 11 days of heat acclimation. Subjects walked for 90 min (50 ± 8% VO(2max)) on a treadmill (3.5 mph, 5% grade), in an environmental chamber (33°C, 30-50% relative humidity). Rectal temperature (°C), heart rate (in beats per minute), rating of perceived exertion , thermal ratings, hydration state, and sweat rate were measured during exercise and recovery. On days 1, 4, 7, 10, and 11, peripheral blood mononuclear cells were isolated from pre- and post-exercise blood samples. Intracellular and surface HSP70 (SPA-820PE, Stressgen, Assay Designs), and annexin V (ab14085, Abcam Inc.), as a marker of early apoptosis, were measured on CD3(+) and CD4(+) (sc-70624, sc-70670, Santa Cruz Biotechnology) gated lymphocytes. On day 10, subjects experienced 28 h of sleep loss. Heat acclimation was verified with decreased post-exercise rectal temperature, heart rate, and increased sweat rate on day 11, versus day 1. Heat acclimation was achieved in the absence of significant changes in intracellular HSP70 mean fluorescence intensity and percent of HSP70(+) lymphocytes during acclimation. Furthermore, there was no increased cellular heat tolerance during secondary ex vivo heat shock of the lymphocytes acquired from subjects during acclimation. There was no effect of a mild sleep loss on any variable. We conclude that our protocol successfully induced physiological acclimation without induction of cellular heat shock responses in lymphocytes and that added mild sleep loss is not sufficient to induce a heat shock response.
Investigation of nitrate salts for solar latent heat storage
NASA Astrophysics Data System (ADS)
Kamimoto, M.; Tanaka, T.; Tani, T.; Horigome, T.
1980-01-01
The properties of heat transfer in the discharging of a model solar latent heat storage unit based on various nitrate salts and salt mixtures are investigated. A shell-and-tube-type passive heat exchanger containing NaNO3 or eutectic or off-eutectic mixtures of NaNO3 with KNO3 and Ca(NO3)2 was heated to 40 K above the melting temperature of the salt, when air was made to flow through a heat transfer tube at a constant flow rate, and heat transfer material and air temperatures were monitored. Thermal conductivity and the apparent heat transfer coefficient are estimated from the heat extraction rate and temperature profiles, and it is found that although the thermal conductivities of the materials are similar, the off-eutectic salts exhibit higher heat transfer coefficients. Temperature distributions in the NaNO3-KNO3 mixtures are found to be in fairly good agreement with those predicted by numerical solutions of a one-dimensional finite difference equation, and with approximate analytical solutions. It is observed that the temperature of the heat transfer surface drops rapidly after the appearance of a solid phase, due to the low thermal conductivity of the salts, and means of avoiding this temperature drop are considered.
Computational/Experimental Aeroheating Predictions for X-33. Phase 2; Vehicle
NASA Technical Reports Server (NTRS)
Hamilton, H. Harris, II; Weilmuenster, K. James; Horvath, Thomas J.; Berry, Scott A.
1998-01-01
Laminar and turbulent heating-rate calculations from an "engineering" code and laminar calculations from a "benchmark" Navier-Stokes code are compared with experimental wind-tunnel data obtained on several candidate configurations for the X-33 Phase 2 flight vehicle. The experimental data were obtained at a Mach number of 6 and a freestream Reynolds number ranging from 1 to 8 x 10(exp 6)/ft. Comparisons are presented along the windward symmetry plane and in a circumferential direction around the body at several axial stations at angles of attack from 20 to 40 deg. The experimental results include both laminar and turbulent flow. For the highest angle of attack some of the measured heating data exhibited a "non-laminar" behavior which caused the heating to increase above the laminar level long before "classical" transition to turbulent flow was observed. This trend was not observed at the lower angles of attack. When the flow was laminar, both codes predicted the heating along the windward symmetry plane reasonably well but under-predicted the heating in the chine region. When the flow was turbulent the LATCH code accurately predicted the measured heating rates. Both codes were used to calculate heating rates over the X-33 vehicle at the peak heating point on the design trajectory and they were found to be in very good agreement over most of the vehicle windward surface.
Ice ages and the thermal equilibrium of the earth, II
Adam, D.P.
1975-01-01
The energy required to sustain midlatitude continental glaciations comes from solar radiation absorbed by the oceans. It is made available through changes in relative amounts of energy lost from the sea surface as net outgoing infrared radiation, sensible heat loss, and latent heat loss. Ice sheets form in response to the initial occurrence of a large perennial snowfield in the subarctic. When such a snowfield forms, it undergoes a drastic reduction in absorbed solar energy because of its high albedo. When the absorbed solar energy cannot supply local infrared radiation losses, the snowfield cools, thus increasing the energy gradient between itself and external, warmer areas that can act as energy sources. Cooling of the snowfield progresses until the energy gradients between the snowfield and external heat sources are sufficient to bring in enough (latent plus sensible) energy to balance the energy budget over the snowfield. Much of the energy is imported as latent heat. The snow that falls and nourishes the ice sheet is a by-product of the process used to satisfy the energy balance requirements of the snowfield. The oceans are the primary energy source for the ice sheet because only the ocean can supply large amounts of latent heat. At first, some of the energy extracted by the ice sheet from the ocean is stored heat, so the ocean cools. As it cools, less energy is lost as net outgoing infrared radiation, and the energy thus saved is then available to augment evaporation. The ratio between sensible and latent heat lost by the ocean is the Bowen ratio; it depends in part on the sea surface temperature. As the sea surface temperature falls during a glaciation, the Bowen ratio increases, until most of the available energy leaves the oceans as sensible, rather than latent heat. The ice sheet starves, and an interglacial period begins. The oscillations between stadial and interstadial intervals within a glaciation are caused by the effects of varying amounts of glacial meltwater entering the oceans as a surface layer that acts to reduce the amount of energy available for glacial nourishment. This causes the ice sheet to melt back, which continues the supply of meltwater until the ice sheet diminishes to a size consistent with the reduced rate of nourishment. The meltwater supply then decreases, the rate of nourishment increases, and a new stadial begins. ?? 1975.
Rambhatla, Shailaja; Pikal, Michael J
2003-01-01
The aim of this study is to determine whether radiation heat transfer is responsible for the position dependence of heat transfer known as the edge vial effect. Freeze drying was performed on a laboratory-scale freeze dryer using pure water with vials that were fully stoppered but had precision cut metal tubes inserted in them to ensure uniformity in resistance to vapor flow. Sublimation rates were determined gravimetrically. Vials were sputter-coated with gold and placed at selected positions on the shelf. Average sublimation rates were determined for vials located at the front, side, and center of an array of vials. Sublimation rates were also determined with and without the use of aluminum foil as a radiation shield. The effect of the guardrail material and its contribution to the edge vial effect by conduction heat transfer was studied by replacing the stainless steel band with a low-thermal conductivity material (styrofoam). The emissivities (epsilon) of relevant surfaces were measured using an infrared thermometer. Sublimation rate experiments were also conducted with vials suspended off the shelf to study the role of convection heat transfer. It was found that sublimation rates were significantly higher for vials located in the front compared to vials in the center. Additional radiation shields in the form of aluminum foil on the inside door resulted in a decrease in sublimation rates for the front vials and to a lesser extent, the center vials. There was a significant decrease in sublimation rate for gold-coated vials (epsilon approximately 0.4) placed at the front of an array when compared to that of clear vials (epsilon approximately 0.9). In the case of experiments with vials suspended off the shelf, the heat transfer coefficient was found to be independent of chamber pressure, indicating that pure convection plays no significant role in heat transfer. Higher sublimation rates were observed when the steel band was used instead of Styrofoam while the highest sublimation rates were obtained in the absence of the guardrail, indicating that the metal band can act as a thermal shield but also transmits some heat from the shelf via conduction and radiation. Atypical radiation heat transfer is responsible for higher sublimation rates for vials located at the front and side of an array. However, the guardrail contributes a little to heat transfer by conduction.
Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids
NASA Technical Reports Server (NTRS)
Mazaheri, Ali R.; Kleb, Bill
2007-01-01
Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.
NASA Astrophysics Data System (ADS)
Challa, Ravi Kumar
The US fuel ethanol demand was 50.3 billion liters (13.3 billion gallons) in 2012. Corn ethanol was produced primarily by dry grind process. Heat transfer equipment fouling occurs during corn ethanol production and increases the operating expenses of ethanol plants. Following ethanol distillation, unfermentables are centrifuged to separate solids as wet grains and liquid fraction as thin stillage. Evaporator fouling occurs during thin stillage concentration to syrup and decreases evaporator performance. Evaporators need to be shutdown to clean the deposits from the evaporator surfaces. Scheduled and unscheduled evaporator shutdowns decrease process throughput and results in production losses. This research were aimed at investigating thin stillage fouling characteristics using an annular probe at conditions similar to an evaporator in a corn ethanol production plant. Fouling characteristics of commercial thin stillage and model thin stillage were studied as a function of bulk fluid temperature and heat transfer surface temperature. Experiments were conducted by circulating thin stillage or carbohydrate mixtures in a loop through the test section which consisted of an annular fouling probe while maintaining a constant heat flux by electrical heating and fluid flow rate. The change in fouling resistance with time was measured. Fouling curves obtained for thin stillage and concentrated thin stillage were linear with time but no induction periods were observed. Fouling rates for concentrated thin stillage were higher compared to commercial thin stillage due to the increase in solid concentration. Fouling rates for oil skimmed and unskimmed concentrated thin stillage were similar but lower than concentrated thin stillage at 10% solids concentration. Addition of post fermentation corn oil to commercial thin stillage at 0.5% increments increased the fouling rates up to 1% concentration but decreased at 1.5%. As thin stillage is composed of carbohydrates, protein, lipid, fiber and minerals, simulated thin stillage was prepared with carbohydrate mixtures and tested for fouling rates. Induction period, maximum fouling resistance and mean fouling rates were determined. Two experiments were performed with two varieties of starch, waxy and high amylose and short chain carbohydrates, corn syrup solids and glucose. Interaction effects of glucose with starch varieties were studied. In the first experiment, short chain carbohydrates individual and interaction effects with starch were studied. For mixtures prepared from glucose and corn syrup solids, no fouling was observed. Mixtures prepared from starch, a long glucose polymer, showed marked fouling. Corn syrup solids and glucose addition to pure starch decreased the mean fouling rates and maximum fouling resistances. Between corn syrup solids and glucose, starch fouling rates were reduced with addition of glucose. Induction periods of pure mixtures of either glucose or corn syrup solids were longer than the test period (5 h). Pure starch mixture had no induction period. Maximum fouling resistance was higher for mixtures with higher concentration of longer polymers. Waxy starch had a longer induction period than high amylose starch. Maximum fouling resistance was higher for waxy than high amylose starch. Addition of glucose to waxy or high amylose starch increased induction period of mixtures longer than 5 h test period. It appears that the bulk fluid temperature plays an important role on carbohydrate mixture fouling rates. Higher bulk fluid temperatures increased the initial fouling rates of the carbohydrate mixtures. Carbohydrate type, depending on the polymer length, influenced the deposit formation. Longer chain carbohydrate, starch, had higher fouling rates compared to shorter carbohydrates such as glucose and corn syrup solids. For insoluble carbohydrate mixtures, fouling was severe. As carbohydrate solubility increased with bulk fluid temperature, surface reaction increased at probe surface and resulted in deposit formation. Higher surface temperatures eliminated induction periods for thin stillage and fouling was rapid on probe surface.
Seebacher, Frank; Franklin, Craig E
2007-11-01
Changes in blood flow are a principal mechanism of thermoregulation in vertebrates. Changes in heart rate will alter blood flow, although multiple demands for limited cardiac output may compromise effective thermoregulation. We tested the hypothesis that regional differences in blood flow during heating and cooling can occur independently from changes in heart rate. We measured heart rate and blood pressure concurrently with blood flow in the crocodile, Crocodylus porosus. We measured changes in blood flow by laser Doppler flowmetry, and by injecting coloured microspheres. All measurements were made under different heat loads, with and without blocking cholinergic and beta-adrenergic receptors (autonomic blockade). Heart rates were significantly faster during heating than cooling in the control animals, but not when autonomic receptors were blocked. There were no significant differences in blood flow distribution between the control and autonomic blockade treatments. In both treatments, blood flow was directed to the dorsal skin and muscle and away from the tail and duodenum during heating. When the heat source was switched off, there was a redistribution of blood from the dorsal surface to the duodenum. Blood flow to the leg skin and muscle, and to the liver did not change significantly with thermal state. Blood pressure was significantly higher during the autonomic blockade than during the control. Thermal time constants of heating and cooling were unaffected by the blockade of autonomic receptors. We concluded that animals partially compensated for a lack of differential heart rates during heating and cooling by redistributing blood within the body, and by increasing blood pressure to increase flow. Hence, measures of heart rate alone are insufficient to assess physiological thermoregulation in reptiles.
NASA Technical Reports Server (NTRS)
Hamilton, C. W.; Beggan, C. D.; Lopes, R.; Williams, D. A.; Radenbaugh, J.
2011-01-01
Io, the innermost of Jupiter's Galilean satellites, is the most volcanically active body in the Solar. System. Io's global mean heat flow is approximately 2 W/square m, which is approximately 20 times larger than on Earth. High surface temperatures concentrate within "hotspots" and, to date, 172 Ionian hotspots have been identified by spacecraft and Earth-based telescopes. The Laplace resonance between Io, Europa, and Ganymede maintains these satellites in noncircular orbits and causes displacement of their tidal bulges as the overhead position of Jupiter changes for each moon. Gravitational interactions between Jupiter and Io dominate the orbital evolution of the Laplacian system and generate enormous heat within to as tidal energy is dissipated. If this energy were transferred out of Io at the same rate as it is generated, then the associated surface heat flux would be 2.24 +/- 0.45 W/square m. This estimate is in good agreement with observed global heat flow, but to better constrain tidal dissipation mechanisms and infer how thermal energy is transferred to Io's surface, it is critical to closely examine the spatial distribution of volcanic features. End-member tidal dissipation models either consider that heating occurs completely in the mantle, or completely in the asthenosphere. Mixed models typically favor one-third mantle and two-thirds asthenosphere heating. Recent models also consider the effects of mantle-asthenosphere boundary permeability and asthenospheric instabilities. Deep-mantle heating models predict maximum surface heat flux near the poles, whereas asthenosphere heating models predict maxima near the equator-particularly in the Sub-Jovian and Anti-Jovian hemispheres, with smaller maxima occurring at orbit tangent longitudes. Previous studies have examined the global distribution of Ionian hotspots and patera (i.e., irregular or complex craters with scalloped edges that are generally interpreted to be volcanic calderas), but in this study, we combine a new geospatial analysis technique with an improved hotspot and paterae database .
NASA Technical Reports Server (NTRS)
Everhart, Joel L.
2008-01-01
Impact and debris damage to the Space Shuttle Orbiter Thermal Protection System tiles is a random phenomenon, occurring at random locations on the vehicle surface, resulting in random geometrical shapes that are exposed to a definable range of surface flow conditions. In response to the 2003 Final Report of the Columbia Accident Investigation Board, wind tunnel aeroheating experiments approximating a wide range of possible damage scenarios covering both open and closed cavity flow conditions were systematically tested in hypersonic ground based facilities. These data were analyzed and engineering assessment tools for damage-induced fully-laminar heating were developed and exercised on orbit. These tools provide bounding approximations for the damaged-surface heating environment. This paper presents a further analysis of the baseline, zero-pressure-gradient, idealized, rectangular-geometry cavity heating data, yielding new laminar correlations for the floor-averaged heating, peak cavity endwall heating, and the downstream decay rate. Correlation parameters are derived in terms of cavity geometry and local flow conditions. Prediction Limit Uncertainty values are provided at the 95%, 99% and 99.9% levels of significance. Non-baseline conditions, including non-rectangular geometries and flows with known pressure gradients, are used to assess the range of applicability of the new correlations. All data variations fall within the 99% Prediction Limit Uncertainty bounds. Importantly, both open-flow and closed-flow cavity heating are combined into a single-curve parameterization of the heating predictions, and provide a concise mathematical model of the laminar cavity heating flow field with known uncertainty.
NASA Astrophysics Data System (ADS)
Kononenko, Taras V.; Freitag, Christian; Sovyk, Dmitry N.; Lukhter, Alexander B.; Skvortsov, Konstantin V.; Konov, Vitaly I.
2018-04-01
Percussion drilling of a Ti-based alloy with 8 ps laser pulses was investigated with emphasis on the influence of the pulse repetition rate (1-300 kHz) on the drilling process. Heat accumulation is found to be responsible for simultaneous significant rise of the average drilling rate, the occurrence of a rim around the hole entrance, as well as noticeable surface oxidation. This can be observed as soon as the repetition rate exceeds a certain critical value, which depends on the pulse energy applied. Dramatic rise of the recast layer thickness inside the growing hole was revealed for the limited range of the repetition rates around the lower boundary of the heat accumulation regime. Possible origins of this phenomenon are discussed.
NASA Astrophysics Data System (ADS)
Bejarano, Roberto Villa
Cold-start performance enhancement of a pump-assisted, capillary-driven, two-phase cooling loop was attained using proportional integral and fuzzy logic controls to manage the boiling condition inside the evaporator. The surface tension of aqueous solutions of n-Pentanol, a self-rewetting fluid, was also investigated for enhancing heat transfer performance of capillary driven (passive) thermal devices was also studied. A proportional-integral control algorithm was used to regulate the boiling condition (from pool boiling to thin-film boiling) and backpressure in the evaporator during cold-start and low heat input conditions. Active flow control improved the thermal resistance at low heat inputs by 50% compared to the baseline (constant flow rate) case, while realizing a total pumping power savings of 56%. Temperature overshoot at start-up was mitigated combining fuzzy-logic with a proportional-integral controller. A constant evaporator surface temperature of 60°C with a variation of +/-8°C during start-up was attained with evaporator thermal resistances as low as 0.10 cm2--K/W. The surface tension of aqueous solutions of n-Pentanol, a self-rewetting working fluid, as a function of concentration and temperature were also investigated. Self-rewetting working fluids are promising in two-phase heat transfer applications because they have the ability to passively drive additional working fluid towards the heated surface; thereby increasing the dryout limitations of the thermal device. Very little data is available in literature regarding the surface tension of these fluids due to the complexity involved in fluid handling, heating, and experimentation. Careful experiments were performed to investigate the surface tension of n-Pentanol + water. The concentration and temperature range investigated were from 0.25%wt. to1.8%wt and 25°C to 85°C, respectively.
Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Cuda, Vincent; Gaffney, Richard L
2008-01-01
To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.
NASA Astrophysics Data System (ADS)
Santoso, Rio Pudjidarma; Riastuti, Rini
2018-05-01
The purpose of this research is to evaluate the corrosion process which occurs on the water side of Heat Recovery Steam Generator (HRSG) superheater tube. The tube was 13CrMo44 and divided into 3 types of specimen: new tube, used tube (with oxide layer on surface), cleaned-used tube (without oxide layer on surface). The evaluation of corrosion parameters wasperformed using deaerated ultra-high purity water (boiler feed water) in two methods of testing: Tafel polarization and Electrochemical Impedance Spectroscopy (EIS). Tafel polarization was excellent as its capability to show the value of corrosion current and the corrosion rate explicitly, on the other hand, EIS was excellent as its capability to explain for corrosion mechanism on metal interface in detail. Both methods showed that the increase of electrolyte temperature from 25°C to 55°C would increase the corrosion rate with the mechanism of decreasing polarization resistance due to thinning out the passive film thickness and enlarge the area of reduction reaction of cathode. Magnetite oxide scale which is laid on the surface of used tube specimen shows protective nature to reduce the corrosion rate, and clear up this oxide would increase the corrosion rate back as new tube.
Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air
NASA Astrophysics Data System (ADS)
Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.
2016-05-01
The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.
Negative-hydrogen-ion production from a nanoporous 12CaO • 7Al2O3 electride surface
NASA Astrophysics Data System (ADS)
Sasao, Mamiko; Moussaoui, Roba; Kogut, Dmitry; Ellis, James; Cartry, Gilles; Wada, Motoi; Tsumori, Katsuyoshi; Hosono, Hideo
2018-06-01
A high production rate of negative hydrogen ions (H‑) was observed from a nanoporous 12CaO • 7Al2O3 (C12A7) electride surface immersed in hydrogen/deuterium low-pressure plasmas. The target was negatively biased at 20–130 V, and the target surface was bombarded by H3 + ions from the plasma. The production rate was compared with that from a clean molybdenum surface. Using the pseudo-exponential work-function dependence of the H‑ production rate, the total H‑ yield from the C12A7 electride surface bombarded at 80 V was evaluated to be 25% of that from a cesiated molybdenum surface with the lowest work-function. The measured H‑ energy spectrum indicates that the major production mechanism is desorption by sputtering. This material has potential to be used as a production surface of cesium-free negative ion sources for accelerators, heating beams in nuclear fusion, and surface modification for industrial applications.
NASA Astrophysics Data System (ADS)
Malinowski, Z.; Telejko, T.; Cebo-Rudnicka, A.; Szajding, A.; Rywotycki, M.; Hadała, B.
2016-09-01
The industrial rolling mills are equipped with systems for controlled water cooling of hot steel products. A cooling rate affects the final mechanical properties of steel which are strongly dependent on microstructure evolution processes. In case of water jets cooling the heat transfer boundary condition can be defined by the heat transfer coefficient. In the present study one and three dimensional heat conduction models have been employed in the inverse solution to heat transfer coefficient. The inconel plate has been heated to about 900oC and then cooled by one, two and six water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient distributions at plate surface have been determined in time of cooling.
Arc Jet Facility Test Condition Predictions Using the ADSI Code
NASA Technical Reports Server (NTRS)
Palmer, Grant; Prabhu, Dinesh; Terrazas-Salinas, Imelda
2015-01-01
The Aerothermal Design Space Interpolation (ADSI) tool is used to interpolate databases of previously computed computational fluid dynamic solutions for test articles in a NASA Ames arc jet facility. The arc jet databases are generated using an Navier-Stokes flow solver using previously determined best practices. The arc jet mass flow rates and arc currents used to discretize the database are chosen to span the operating conditions possible in the arc jet, and are based on previous arc jet experimental conditions where possible. The ADSI code is a database interpolation, manipulation, and examination tool that can be used to estimate the stagnation point pressure and heating rate for user-specified values of arc jet mass flow rate and arc current. The interpolation is performed in the other direction (predicting mass flow and current to achieve a desired stagnation point pressure and heating rate). ADSI is also used to generate 2-D response surfaces of stagnation point pressure and heating rate as a function of mass flow rate and arc current (or vice versa). Arc jet test data is used to assess the predictive capability of the ADSI code.
Biophysical aspects of human thermoregulation during heat stress.
Cramer, Matthew N; Jay, Ollie
2016-04-01
Humans maintain a relatively constant core temperature through the dynamic balance between endogenous heat production and heat dissipation to the surrounding environment. In response to metabolic or environmental disturbances to heat balance, the autonomic nervous system initiates cutaneous vasodilation and eccrine sweating to facilitate higher rates of dry (primarily convection and radiation) and evaporative transfer from the body surface; however, absolute heat losses are ultimately governed by the properties of the skin and the environment. Over the duration of a heat exposure, the cumulative imbalance between heat production and heat dissipation leads to body heat storage, but the consequent change in core temperature, which has implications for health and safety in occupational and athletic settings particularly among certain clinical populations, involves a complex interaction between changes in body heat content and the body's morphological characteristics (mass, surface area, and tissue composition) that collectively determine the body's thermal inertia. The aim of this review is to highlight the biophysical aspects of human core temperature regulation by outlining the principles of human energy exchange and examining the influence of body morphology during exercise and environmental heat stress. An understanding of the biophysical factors influencing core temperature will enable researchers and practitioners to better identify and treat individuals/populations most vulnerable to heat illness and injury during exercise and extreme heat events. Further, appropriate guidelines may be developed to optimize health, safety, and work performance during heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jianqiang, Tu; Jinlong, Peng; Xianning, Yang; Lianzhong, Chen
2016-10-01
The active cooling thermal protection technology is the efficient method to resolve the long-duration work and reusable problems of hydrocarbon-fueled scramjet combustor, where worst thermo-mechanical loads occur. The fuel is passed through coolant channels adjacent to the heated surfaces to absorb heat from the heating exchanger panels, prior to injection into the combustor. The heating exchanger both cooled down the wall temperature of the combustor wall and heats and cracks the hydrocarbon fuel inside the panel to permit an easier combustion and satisfying combustion efficiency. The subscale active cooling metallic panels, with dimensions of 100×100 mm and different coolant channel sizes, have been tested under typical combustion thermal environment produced by arc heated Turbulent Flow Duct (TFD). The heat exchange ability of different coolant channel sizes has been obtained. The big-scale active cooling metallic panel, with dimensions of 100 × 750 mm and the coolant channel sizes of better heating exchange performance, has been made and tested in the big-scale arc heated TFD facility. The test results show that the local superheated ablation is easy to happen for the cooling fuel assigned asymmetrically in the bigscale active cooling metallic panel, and the cooling fuel rate can reduce 8%˜10% after spraying the Thermal Barrier Coating (TBC) in the heating surface.
Method and apparatus for heat extraction by controlled spray cooling
Edwards, Christopher Francis; Meeks, Ellen; Kee, Robert; McCarty, Kevin
1999-01-01
Two solutions to the problem of cooling a high temperature, high heat flux surface using controlled spray cooling are presented for use on a mandrel. In the first embodiment, spray cooling is used to provide a varying isothermal boundary layer on the side portions of a mandrel by providing that the spray can be moved axially along the mandrel. In the second embodiment, a spray of coolant is directed to the lower temperature surface of the mandrel. By taking advantage of super-Leidenfrost cooling, the temperature of the high temperature surface of the mandrel can be controlled by varying the mass flux rate of coolant droplets. The invention has particular applicability to the field of diamond synthesis using chemical vapor deposition techniques.