Sample records for surface high-voltage distribution

  1. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.

    2015-11-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.

  2. 30 CFR 77.807-3 - Movement of equipment; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... high-voltage lines. 77.807-3 Section 77.807-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-3 Movement of equipment; minimum distance from high-voltage lines. When any part of any equipment operated on the surface of any...

  3. 30 CFR 77.810 - High-voltage equipment; grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage equipment; grounding. 77.810... COAL MINES Surface High-Voltage Distribution § 77.810 High-voltage equipment; grounding. Frames, supporting structures, and enclosures of stationary, portable, or mobile high-voltage equipment shall be...

  4. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-voltage lines. 77.807-2 Section 77.807-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-2 Booms and masts; minimum distance from high-voltage lines. The booms and masts of equipment operated on the surface of any...

  5. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... devices to provide protection against under voltage, grounded phase, short circuit and overcurrent. High... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High...

  6. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be...

  7. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be...

  8. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be...

  9. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be...

  10. A multi-functional high voltage experiment apparatus for vacuum surface flashover switch research.

    PubMed

    Zeng, Bo; Su, Jian-cang; Cheng, Jie; Wu, Xiao-long; Li, Rui; Zhao, Liang; Fang, Jin-peng; Wang, Li-min

    2015-04-01

    A multifunctional high voltage apparatus for experimental researches on surface flashover switch and high voltage insulation in vacuum has been developed. The apparatus is composed of five parts: pulse generating unit, axial field unit, radial field unit, and two switch units. Microsecond damped ringing pulse with peak-to-peak voltage 800 kV or unipolar pulse with maximum voltage 830 kV is generated, forming transient axial or radial electrical field. Different pulse waveforms and field distributions make up six experimental configurations in all. Based on this apparatus, preliminary experiments on vacuum surface flashover switch with different flashover dielectric materials have been conducted in the axial field unit, and nanosecond pulse is generated in the radial field unit which makes a pulse transmission line in the experiment. Basic work parameters of this kind of switch such as lifetime, breakdown voltage are obtained.

  11. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fail safe ground check circuits on high-voltage... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803 Fail safe ground check..., resistance grounded systems shall include a fail safe ground check circuit or other no less effective device...

  12. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on high-voltage... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803 Fail safe ground check..., resistance grounded systems shall include a fail safe ground check circuit or other no less effective device...

  13. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fail safe ground check circuits on high-voltage... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803 Fail safe ground check..., resistance grounded systems shall include a fail safe ground check circuit or other no less effective device...

  14. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fail safe ground check circuits on high-voltage... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803 Fail safe ground check..., resistance grounded systems shall include a fail safe ground check circuit or other no less effective device...

  15. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits; maximum... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check circuits; maximum voltage. The maximum voltage used for ground check circuits under § 77.803 shall not...

  16. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fail safe ground check circuits; maximum... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check circuits; maximum voltage. The maximum voltage used for ground check circuits under § 77.803 shall not...

  17. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fail safe ground check circuits; maximum voltage. 77.803-1 Section 77.803-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check...

  18. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fail safe ground check circuits; maximum voltage. 77.803-1 Section 77.803-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check...

  19. 30 CFR 77.803-1 - Fail safe ground check circuits; maximum voltage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fail safe ground check circuits; maximum voltage. 77.803-1 Section 77.803-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803-1 Fail safe ground check...

  20. 30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Cable couplers and connection boxes; minimum... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.805 Cable couplers and connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power...

  1. 30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Cable couplers and connection boxes; minimum... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.805 Cable couplers and connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power...

  2. 30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Cable couplers and connection boxes; minimum... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.805 Cable couplers and connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power...

  3. Experimental investigation of SDBD plasma actuator driven by AC high voltage with a superimposed positive pulse bias voltage

    NASA Astrophysics Data System (ADS)

    Qi, Xiao-Hua; Yan, Hui-Jie; Yang, Liang; Hua, Yue; Ren, Chun-Sheng

    2017-08-01

    In this work, a driven voltage consisting of AC high voltage with a superimposed positive pulse bias voltage ("AC+ Positive pulse bias" voltage) is adopted to study the performance of a surface dielectric barrier discharge plasma actuator under atmospheric conditions. To compare the performance of the actuator driven by single-AC voltage and "AC+ Positive pulse bias" voltage, the actuator-induced thrust force and power consumption are measured as a function of the applied AC voltage, and the measured results indicate that the thrust force can be promoted significantly after superimposing the positive pulse bias voltage. The physical mechanism behind the thrust force changes is analyzed by measuring the optical properties, electrical characteristics, and surface potential distribution. Experimental results indicate that the glow-like discharge in the AC voltage half-cycle, next to the cycle where a bias voltage pulse has been applied, is enhanced after applying the positive pulse bias voltage, and this perhaps is the main reason for the thrust force increase. Moreover, surface potential measurement results reveal that the spatial electric field formed by the surface charge accumulation after positive pulse discharge can significantly affect the applied external electric field, and this perhaps can be responsible for the experimental phenomenon that the decrease of thrust force is delayed by pulse bias voltage action after the filament discharge occurs in the glow-like discharge region. The schlieren images further verify that the actuator-induced airflow velocity increases with the positive pulse voltage.

  4. 30 CFR 77.808 - Disconnecting devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.808 Disconnecting devices. Disconnecting devices shall be installed at the...

  5. Power management and control for space systems

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Myers, I. T.; Terdan, F. F.; Stevens, N. J.

    1978-01-01

    Power management and control technology for the large, high-power spacecraft of the 1980's is discussed. Systems weight optimization that indicate a need for higher bus voltages are shown. Environmental interactions that are practical limits for the maximum potential on exposed surfaces are shown. A dual-voltage system is proposed that would provide the weight savings of a high-voltage distribution system and take into account the potential environmental interactions. The technology development of new components and circuits is also discussed.

  6. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng

    2016-06-15

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under amore » higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.« less

  7. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    NASA Astrophysics Data System (ADS)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao; Zhang, Guan-Jun; Li, Feng; Wang, Meng

    2016-06-01

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.

  8. 30 CFR 75.705-2 - Repairs to energized surface high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repairs to energized surface high-voltage lines... Repairs to energized surface high-voltage lines. An energized high-voltage surface line may be repaired... on power circuits with a phase-to-phase nominal voltage no greater than 15,000 volts; (3) Such...

  9. Phosphorus Enrichment as a New Composition in the Solid Electrolyte Interphase of High-Voltage Cathodes and Its Effects on Battery Cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Pengfei; Zheng, Jianming; Kuppan, Saravanan

    2015-11-10

    Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, such a surface modification is termed as solid electrolyte interphase (SEI) layer, which has been perceived to play critical role for the stable operation of the batteries. However, the structure and chemical composition of SEI layer and its spatial distribution and dependence on the battery operating condition remain unclear. By using aberration corrected scanning transmission electron microscopy coupledmore » with ultra-high sensitive energy dispersive x-ray spectroscopy, we probed the structure and chemistry of SEI layer on several high voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut off voltage, can form a P-rich SEI layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate such cathode/Li-salt side reaction shows strong dependence on structure of the cathode materials, operating voltage and temperature, indicating the feasibility of SEI engineering. These findings provide us valuable insights into the complex interface between the high-voltage cathode and the electrolyte.« less

  10. Inner surface flash-over of insulator of low-inductance high-voltage self-breakdown gas switch and its application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong-bo, E-mail: walkman67@163.com; Liu, Jin-liang

    2014-04-15

    In this paper, the inner surface flash-over of high-voltage self-breakdown switch, which is used as a main switch of pulse modulator, is analyzed in theory by employing the method of distributed element equivalent circuit. Moreover, the field distortion of the switch is simulated by using software. The results of theoretical analysis and simulation by software show that the inner surface flash-over usually starts at the junction points among the stainless steel, insulator, and insulation gas in the switch. A switch with improved structure is designed and fabricated according to the theoretical analysis and simulation results. Several methods to avoid innermore » surface flash-over are used to improve the structure of switch. In experiment, the inductance of the switch is no more than 100 nH, the working voltage of the switch is about 600 kV, and the output voltage and current of the accelerator is about 500 kV and 50 kA, respectively. And the zero-to-peak rise time of output voltage at matched load is less than 30 ns due to the small inductance of switch. The original switch was broken-down after dozens of experiments, and the improved switch has been worked more than 200 times stably.« less

  11. 30 CFR 77.806 - Connection of single-phase loads.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COAL MINES Surface High-Voltage Distribution § 77.806 Connection of single-phase loads. Single-phase loads, such as transformer primaries, shall be connected phase to phase in resistance grounded systems. ...

  12. High Voltage Distribution System (HVDS) as a better system compared to Low Voltage Distribution System (LVDS) applied at Medan city power network

    NASA Astrophysics Data System (ADS)

    Dinzi, R.; Hamonangan, TS; Fahmi, F.

    2018-02-01

    In the current distribution system, a large-capacity distribution transformer supplies loads to remote locations. The use of 220/380 V network is nowadays less common compared to 20 kV network. This results in losses due to the non-optimal distribution transformer, which neglected the load location, poor consumer profile, and large power losses along the carrier. This paper discusses how high voltage distribution systems (HVDS) can be a better system used in distribution networks than the currently used distribution system (Low Voltage Distribution System, LVDS). The proposed change of the system into the new configuration is done by replacing a large-capacity distribution transformer with some smaller-capacity distribution transformers and installed them in positions that closest to the load. The use of high voltage distribution systems will result in better voltage profiles and fewer power losses. From the non-technical side, the annual savings and payback periods on high voltage distribution systems will also be the advantage.

  13. 30 CFR 75.705-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on energized high-voltage surface lines... Work on energized high-voltage surface lines; reporting. Any operator designating and assigning qualified persons to perform repairs on energized high-voltage surface lines under the provisions of § 75...

  14. Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose

    NASA Astrophysics Data System (ADS)

    Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom

    2013-06-01

    Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.

  15. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...

  16. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...

  17. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...

  18. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...

  19. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. [Statutory Provision] No electrical work shall be performed on low-, medium-, or high-voltage...

  20. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries

    DOE PAGES

    Lin, Feng; Xin, Huolin L.; Nordlund, Dennis; ...

    2016-01-11

    Controlling surface and interfacial properties of battery materials is key to improving performance in rechargeable Li-ion devices. Surface reconstruction from a layered to a rock salt structure in metal oxide cathode materials is commonly observed and results in poor high-voltage cycling performance, impeding attempts to improve energy density. Hierarchically structured LiNi 0.4Mn 0.4Co 0.2O 2 (NMC-442) spherical powders, made by spray pyrolysis, exhibit local elemental distribution gradients that deviate from the global NMC-442 composition; specifically, they are Ni-rich and Mn-poor at particle surfaces. These materials demonstrate improved Coulombic efficiencies, discharge capacities, and high-voltage capacity retention in lithium half-cell configurations. Themore » subject powders show superior resistance against surface reconstruction due to the tailored surface chemistry, compared to conventional NMC-442 materials. This paves the way towards the development of a new generation of robust and stable high-energy NMC cathodes for Li-ion batteries.« less

  1. Voltage regulation in distribution networks with distributed generation

    NASA Astrophysics Data System (ADS)

    Blažič, B.; Uljanić, B.; Papič, I.

    2012-11-01

    The paper deals with the topic of voltage regulation in distribution networks with relatively high distributed energy resources (DER) penetration. The problem of voltage rise is described and different options for voltage regulation are given. The influence of DER on voltage profile and the effectiveness of the investigated solutions are evaluated by means of simulation in DIgSILENT. The simulated network is an actual distribution network in Slovenia with a relatively high penetration of distributed generation. Recommendations for voltage control in networks with DER penetration are given at the end.

  2. A high-precision voltage source for EIT

    PubMed Central

    Saulnier, Gary J; Liu, Ning; Ross, Alexander S

    2006-01-01

    Electrical impedance tomography (EIT) utilizes electrodes placed on the surface of a body to determine the complex conductivity distribution within the body. EIT can be performed by applying currents through the electrodes and measuring the electrode voltages or by applying electrode voltages and measuring the currents. Techniques have also been developed for applying the desired currents using voltage sources. This paper describes a voltage source for use in applied-voltage EIT that includes the capability of measuring both the applied voltage and applied current. A calibration circuit and calibration algorithm are described which enables all voltage sources in an EIT system to be calibrated to a common standard. The calibration minimizes the impact of stray shunt impedance, passive component variability and active component non-ideality. Simulation data obtained using PSpice are used to demonstrate the effectiveness of the circuits and calibration algorithm. PMID:16636413

  3. 30 CFR 77.704-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on energized high-voltage surface lines... OF UNDERGROUND COAL MINES Grounding § 77.704-3 Work on energized high-voltage surface lines...-voltage surface lines under the provisions of § 77.704-2 shall maintain a record of such repairs. Such...

  4. Surface charge accumulation of solid insulator under nanosecond pulse in vacuum: 3D distribution features and mechanism

    NASA Astrophysics Data System (ADS)

    Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong

    2017-11-01

    Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.

  5. 30 CFR 75.154 - Repair of energized surface high voltage lines; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repair of energized surface high voltage lines... Certified Persons § 75.154 Repair of energized surface high voltage lines; qualified person. An individual... high voltage lines only if he has had at least 2 years experience in electrical maintenance, and at...

  6. 30 CFR 77.104 - Repair of energized surface high-voltage lines; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repair of energized surface high-voltage lines... high-voltage lines; qualified person. An individual is a qualified person within the meaning of § 77.704 of this part for the purpose of repairing energized surface high-voltage lines only if he has had...

  7. Mass analysis of neutral particles and ions released during electrical breakdowns on spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.

    1983-01-01

    A specialized spectrometer was designed and developed to measure the mass and velocity distributions of neutral particles (molecules and molecular clusters) released from metal-backed Teflon and Kapton films. Promising results were obtained with an insulation breakdown initiation system based on a moveable contact touching the insulated surfaces. A variable energy, high voltage pulse is applied to the contact. The resulting surface damage sites can be made similar in size and shape to those produced by a high voltage electron beam system operating at similar discharge energies. The point discharge apparatus was used for final development of several high speed recording systems and for measurements of the composition of the materials given off by the discharge. Results with this apparatus show evolution of large amounts of fluorocarbon fragments from discharge through Teflon FEP, while discharges through Kapton produce mainly very light hydrocarbon fragments at masses below about 80 a.m.u.

  8. High voltage systems (tube-type microwave)/low voltage system (solid-state microwave) power distribution

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.; Woodcock, G. R.

    1980-01-01

    SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.

  9. Effects of surface dielectric barrier discharge on aerodynamic characteristic of train

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Gao, Guoqiang; Peng, Kaisheng; Wei, Wenfu; Li, Chunmao; Wu, Guangning

    2017-07-01

    High-speed railway today has become an indispensable means of transportation due to its remarkable advantages, including comfortability, convenience and less pollution. The increase in velocity makes the air drag become the main source of energy consumption, leading to receiving more and more concerns. The surface dielectric barrier discharge has shown some unique characteristics in terms of active airflow control. In this paper, the influences of surface dielectric barrier discharge on the aerodynamic characteristics of a scaled train model have been studied. Aspects of the discharge power consumption, the temperature distribution, the velocity of induced flow and the airflow field around the train model were considered. The applied AC voltage was set in the range of 20 kV to 28 kV, with a fixed frequency of 9 kHz. Results indicated that the discharge power consumption, the maximum temperature and the induced flow velocity increased with increasing applied voltage. Mechanisms of applied voltage influencing these key parameters were discussed from the point of the equivalent circuit. The airflow field around the train model with different applied voltages was observed by the smoke visualization experiment. Finally, the effects of surface dielectric barrier discharge on the train drag reduction with different applied voltages were analyzed.

  10. Porosity characterization of biodegradable porous poly (L-lactic acid) electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Valipouri, Afsaneh; Gharehaghaji, Ali Akbar; Alirezazadeh, Azam; Ravandi, Seyed Abdolkarim Hosseini

    2017-12-01

    Poly-L lactic acid (PLLA) is one of the mostly used fibers in biomedical applications as a biodegradable and biocompatible material. Porosity and fiber diameter distribution are governing factors that determine the performance of nanofibers. Present work aims at investigating the process parameters that are affecting porosity and diameter distribution of PLLA nanofibers. PLLA nanofibers were fabricated through electrospinning method using the solution of PLLA polymer/dichloromethane (DCM). Nanofibers with various fiber diameter distribution and porosity were made by changing of process parameters such as spinning distance (5, 10 and 15 cm), voltage (11 and 15 kV), solution concentration (10, 11 and 12 wt%) and feeding rate (0.3, 0.4 and 0.7 ml h-1). Image processing techniques (with Matlab R2017), surface analysis (with Mountainsmap7) and diameter distribution analysis (with Measurement software) were used to examine surface morphology of samples. The results showed that the fiber diameter distribution becomes wider with increasing the applied voltage and reducing the spinning distance. In the other hand, coarse fibers possessed larger pores while having irregular and fewer pores in comparison to fine fibers. The most uniform nano-web with high porous nanofibers was attained by the choice of the process parameters at the voltage of 11 kV, spinning distance of 15 cm, feeding rate of 0.4 ml h-1 and solution concentration of 10 wt%.

  11. Hybrid electric vehicle power management system

    DOEpatents

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  12. Voltage stress effects on microcircuit accelerated life test failure rates

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.

  13. Optimal Operation and Dispatch of Voltage Regulation Devices Considering High Penetrations of Distributed Photovoltaic Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry A; Hodge, Brian S; Cho, Gyu-Jung

    Voltage regulation devices have been traditionally installed and utilized to support distribution voltages. Installations of distributed energy resources (DERs) in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile for a feeder; therefore, in the distribution system planning stage of the optimal operation and dispatch of voltage regulation devices, possible high penetrations of DERs should be considered. In this paper, we model the IEEE 34-bus test feeder, including all essential equipment. An optimization method is adopted to determine the optimal siting and operation ofmore » the voltage regulation devices in the presence of distributed solar power generation. Finally, we verify the optimal configuration of the entire system through the optimization and simulation results.« less

  14. Coordinative Voltage Control Strategy with Multiple Resources for Distribution Systems of High PV Penetration: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiangqi; Zhang, Yingchen

    This paper presents an optimal voltage control methodology with coordination among different voltage-regulating resources, including controllable loads, distributed energy resources such as energy storage and photovoltaics (PV), and utility voltage-regulating devices such as voltage regulators and capacitors. The proposed methodology could effectively tackle the overvoltage and voltage regulation device distortion problems brought by high penetrations of PV to improve grid operation reliability. A voltage-load sensitivity matrix and voltage-regulator sensitivity matrix are used to deploy the resources along the feeder to achieve the control objectives. Mixed-integer nonlinear programming is used to solve the formulated optimization control problem. The methodology has beenmore » tested on the IEEE 123-feeder test system, and the results demonstrate that the proposed approach could actively tackle the voltage problem brought about by high penetrations of PV and improve the reliability of distribution system operation.« less

  15. SEMICONDUCTOR INTEGRATED CIRCUITS: A quasi-3-dimensional simulation method for a high-voltage level-shifting circuit structure

    NASA Astrophysics Data System (ADS)

    Jizhi, Liu; Xingbi, Chen

    2009-12-01

    A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.

  16. Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability.

    PubMed

    Luo, Long; Holden, Deric A; White, Henry S

    2014-03-25

    A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (<2 mV) that depends on the nanopore geometry, electrolyte concentration, and nanopore surface charge density. Finite element simulations based on a simultaneous solution of the Navier-Stokes, Poisson, and Nernst-Planck equations demonstrate that NDR results from a positive feedback mechanism between the ion distributions and electroosmotic flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.

  17. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    NASA Technical Reports Server (NTRS)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  18. High concentration effects of neutral-potential-well interface traps on recombination dc current-voltage lineshape in metal-oxide-silicon transistors

    NASA Astrophysics Data System (ADS)

    Chen, Zuhui; Jie, Bin B.; Sah, Chih-Tang

    2008-11-01

    Steady-state Shockley-Read-Hall kinetics is employed to explore the high concentration effect of neutral-potential-well interface traps on the electron-hole recombination direct-current current-voltage (R-DCIV) properties in metal-oxide-silicon field-effect transistors. Extensive calculations include device parameter variations in neutral-trapping-potential-well electron interface-trap density NET (charge states 0 and -1), dopant impurity concentration PIM, oxide thickness Xox, forward source/drain junction bias VPN, and transistor temperature T. It shows significant distortion of the R-DCIV lineshape by the high concentrations of the interface traps. The result suggests that the lineshape distortion observed in past experiments, previously attributed to spatial variation in surface impurity concentration and energy distribution of interface traps in the silicon energy gap, can also arise from interface-trap concentration along surface channel region.

  19. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX

    2006-03-14

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  20. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  1. 30 CFR 75.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of high-voltage transmission...-Voltage Distribution § 75.807 Installation of high-voltage transmission cables. [Statutory Provisions] All underground high-voltage transmission cables shall be installed only in regularly inspected air courses and...

  2. Removal of phenol by activated alumina bed in pulsed high-voltage electric field.

    PubMed

    Zhu, Li-nan; Ma, Jun; Yang, Shi-dong

    2007-01-01

    A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.

  3. Current-voltage characteristics of dc corona discharges in air between coaxial cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yuesheng, E-mail: yueshengzheng@fzu.edu.cn; Zhang, Bo, E-mail: shizbcn@tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn

    This paper presents the experimental measurement and numerical analysis of the current-voltage characteristics of dc corona discharges in air between coaxial cylinders. The current-voltage characteristics for both positive and negative corona discharges were measured within a specially designed corona cage. Then the measured results were fitted by different empirical formulae and analyzed by the fluid model. The current-voltage characteristics between coaxial cylinders can be expressed as I = C(U − U{sub 0}){sup m}, where m is within the range 1.5–2.0, which is similar to the point-plane electrode system. The ionization region has no significant effect on the current-voltage characteristic under a low corona current,more » while it will affect the distribution for the negative corona under a high corona current. The surface onset fields and ion mobilities were emphatically discussed.« less

  4. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protection of high-voltage circuits extending...-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except as provided in paragraph (b) of this section, high-voltage circuits extending underground and supplying...

  5. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection of high-voltage circuits extending...-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except as provided in paragraph (b) of this section, high-voltage circuits extending underground and supplying...

  6. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protection of high-voltage circuits extending...-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except as provided in paragraph (b) of this section, high-voltage circuits extending underground and supplying...

  7. Surface interactions and high-voltage current collection

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Katz, I.

    1985-01-01

    Spacecraft of the future will be larger and have higher power requirements than any flown to date. For several reasons, it is desirable to operate a high power system at high voltage. While the optimal voltages for many future missions are in the range 500 to 5000 volts, the highest voltage yet flown is approximately 100 volts. The NASCAP/LEO code is being developed to embody the phenomenology needed to model the environmental interactions of high voltage spacecraft. Some plasma environment are discussed. The treatment of the surface conductivity associated with emitted electrons and some simulations by NASCAP/LEO of ground based high voltage interaction experiments are described.

  8. 30 CFR 75.813 - High-voltage longwalls; scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage longwalls; scope. 75.813 Section 75.813 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.813 High-voltage...

  9. 30 CFR 75.813 - High-voltage longwalls; scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage longwalls; scope. 75.813 Section 75.813 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.813 High-voltage...

  10. Design considerations for large space electric power systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.; Finke, R. C.; Stevens, N. J.; Triner, J. E.; Hansen, I. G.

    1983-01-01

    As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed.

  11. The effect of a defective BSF layer on solar cell open circuit voltage. [Back Surface Field

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1985-01-01

    A straightforward analysis of special limiting cases has permitted the determination of the range of possible open circuit voltage losses due to a defective BSF (back surface field) layer. An important result of the analysis is the finding that it is possible to have a fully effective BSF region, regardless of the spatial distribution of the defective areas, as long as the total defective area is reduced below certain limits. Distributed defects were found to be much more harmful than lumped defects.

  12. Voltage-Load Sensitivity Matrix Based Demand Response for Voltage Control in High Solar Penetration Distribution Feeders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiangqi; Wang, Jiyu; Mulcahy, David

    This paper presents a voltage-load sensitivity matrix (VLSM) based voltage control method to deploy demand response resources for controlling voltage in high solar penetration distribution feeders. The IEEE 123-bus system in OpenDSS is used for testing the performance of the preliminary VLSM-based voltage control approach. A load disaggregation process is applied to disaggregate the total load profile at the feeder head to each load nodes along the feeder so that loads are modeled at residential house level. Measured solar generation profiles are used in the simulation to model the impact of solar power on distribution feeder voltage profiles. Different casemore » studies involving various PV penetration levels and installation locations have been performed. Simulation results show that the VLSM algorithm performance meets the voltage control requirements and is an effective voltage control strategy.« less

  13. Terahertz modulation based on surface plasmon resonance by self-gated graphene

    NASA Astrophysics Data System (ADS)

    Qian, Zhenhai; Yang, Dongxiao; Wang, Wei

    2018-05-01

    We theoretically and numerically investigate the extraordinary optical transmission through a terahertz metamaterial composed of metallic ring aperture arrays. The physical mechanism of different transmission peaks is elucidated to be magnetic polaritons or propagation surface plasmons with the help of surface current and electromagnetic field distributions at respective resonance frequencies. Then, we propose a high performance terahertz modulator based on the unique PSP resonance and combined with the metallic ring aperture arrays and a self-gated parallel-plate graphene capacitor. Because, to date, few researches have exhibited gate-controlled graphene modulation in terahertz region with low insertion losses, high modulation depth and low control voltage at room temperature. Here, we propose a 96% amplitude modulation with 0.7 dB insertion losses and ∼5.5 V gate voltage. Besides, we further study the absorption spectra of the modulator. When the transmission of modulator is very low, a 91% absorption can be achieved for avoiding damaging the source devices.

  14. 30 CFR 75.705 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines; deenergizing and... Work on high-voltage lines; deenergizing and grounding. [Statutory Provisions] High-voltage lines, both..., except that repairs may be permitted, in the case of energized surface high-voltage lines, if such...

  15. Surface mapping of spike potential fields: experienced EEGers vs. computerized analysis.

    PubMed

    Koszer, S; Moshé, S L; Legatt, A D; Shinnar, S; Goldensohn, E S

    1996-03-01

    An EEG epileptiform spike focus recorded with scalp electrodes is clinically localized by visual estimation of the point of maximal voltage and the distribution of its surrounding voltages. We compared such estimated voltage maps, drawn by experienced electroencephalographers (EEGers), with a computerized spline interpolation technique employed in the commercially available software package FOCUS. Twenty-two spikes were recorded from 15 patients during long-term continuous EEG monitoring. Maps of voltage distribution from the 28 electrodes surrounding the points of maximum change in slope (the spike maximum) were constructed by the EEGer. The same points of maximum spike and voltage distributions at the 29 electrodes were mapped by computerized spline interpolation and a comparison between the two methods was made. The findings indicate that the computerized spline mapping techniques employed in FOCUS construct voltage maps with similar maxima and distributions as the maps created by experienced EEGers. The dynamics of spike activity, including correlations, are better visualized using the computerized technique than by manual interpretation alone. Its use as a technique for spike localization is accurate and adds information of potential clinical value.

  16. 30 CFR 75.816 - Guarding of cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.816 Guarding of cables. (a) High-voltage cables must be guarded at the following locations...

  17. 30 CFR 77.703 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding frames of stationary high-voltage..., SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.703 Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems. The frames of all stationary...

  18. Loss Reduction on Adoption of High Voltage LT Less Distribution

    NASA Astrophysics Data System (ADS)

    Tiwari, Deepika; Adhikari, Nikhileshwar Prasad; Gupta, Amit; Bajpai, Santosh Kumar

    2016-06-01

    In India there is a need to improve the quality of the electricity distribution process which has increased varying from year to year. In distribution networks, the limiting factor to load carrying capacity is generally the voltage reduction. High voltage distribution system (HVDS) is one of the steps to reduce line losses in electrical distribution network. It helps to reduce the length of low tension (LT) lines and makes the power available close to the users. The high voltage power distribution system reduces the probability of power theft by hooking HVDS suggests an increase in installation of small capacity single-phase transformers in the network which again save considerable energy. This paper is compared to existing conventional low tension distribution network with HVDS. The paper gives a clear picture of reduction in distribution losses with adoption of HVDS system. Losses Reduction of 11 kV Feeder in Nuniya (India) with adoption of HVDS have been worked out/ quantified and benefits thereby in generating capacity have discussed.

  19. Differential subcellular distribution of ion channels and the diversity of neuronal function.

    PubMed

    Nusser, Zoltan

    2012-06-01

    Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Current-voltage characteristics influenced by the nanochannel diameter and surface charge density in a fluidic field-effect-transistor.

    PubMed

    Singh, Kunwar Pal; Guo, Chunlei

    2017-06-21

    The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.

  1. Secondary ion collection and transport system for ion microprobe

    DOEpatents

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  2. 30 CFR 77.704-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK.... If the work of forming an additional circuit by tying into an energized high-voltage surface line is performed from the ground, any person performing such work must wear and employ all of the protective...

  3. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on high-voltage... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded... shall include a fail safe ground check circuit to monitor continuously the grounding circuit to assure...

  4. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fail safe ground check circuits on high-voltage... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded... shall include a fail safe ground check circuit to monitor continuously the grounding circuit to assure...

  5. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fail safe ground check circuits on high-voltage... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded... shall include a fail safe ground check circuit to monitor continuously the grounding circuit to assure...

  6. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fail safe ground check circuits on high-voltage... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded... shall include a fail safe ground check circuit to monitor continuously the grounding circuit to assure...

  7. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination...

  8. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination...

  9. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination...

  10. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination...

  11. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination...

  12. Investigation Of The High-Voltage Discharge On The Surface Of Gas-Liquid System

    NASA Astrophysics Data System (ADS)

    Nguyen-Kuok, Shi; Morgunov, Aleksandr; Malakhov, Yury; Korotkikh, Ivan

    2016-09-01

    This paper describes an experimental setup for study of physical processes in the high-voltage discharge on the surface of gas-liquid system at atmospheric pressure. Measurements of electrical and optical characteristics of the high-voltage discharge in gas, at the surface of the gas-liquid system and in the electrolyte are obtained. The parameters of the high-voltage discharge and the conditions for its stable operation are presented. Investigations with various electrolytes and cathode assemblies of various materials and sizes were carried out. The installation can be used for the processing and recycling of industrial and chemical liquid waste. Professor of Laboratory of Plasma Physics, National Research University MPEI, Krasnokazarmennya Str.14, 111250, Moscow, Russia.

  13. Surface voltage gradient role in high voltage solar array-plasma interaction: Center Director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1985-01-01

    A large amount of experimental and analytical effort has been directed toward understanding the plasma sheath growth and discharge phenomena which lead to high voltage solar array-space plasma interactions. An important question which has not been addressed is how the surface voltage gradient on such an array may affect these interactions. The results of this study indicate that under certain conditions, the voltage gradient should be taken into account when evaluating the effect on a solar array operating in a plasma environment.

  14. Visualization of Electrical Field of Electrode Using Voltage-Controlled Fluorescence Release

    PubMed Central

    Jia, Wenyan; Wu, Jiamin; Gao, Di; Wang, Hao; Sun, Mingui

    2016-01-01

    In this study we propose an approach to directly visualize electrical current distribution at the electrode-electrolyte interface of a biopotential electrode. High-speed fluorescent microscopic images are acquired when an electric potential is applied across the interface to trigger the release of fluorescent material from the surface of the electrode. These images are analyzed computationally to obtain the distribution of the electric field from the fluorescent intensity of each pixel. Our approach allows direct observation of microscopic electrical current distribution around the electrode. Experiments are conducted to validate the feasibility of the fluorescent imaging method. PMID:27253615

  15. Suppression of surface charge accumulation on Al{sub 2}O{sub 3}-filled epoxy resin insulator under dc voltage by direct fluorination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Boya; Zhang, Guixin, E-mail: guixin@mail.tsinghua.edu.cn; Li, Chuanyang

    2015-12-15

    Surface charge accumulation on insulators under high dc voltage is a major factor that may lead to the reduction of insulation levels in gas insulated devices. In this paper, disc insulators made of Al{sub 2}O{sub 3}-filled epoxy resin were surface fluorinated using a F{sub 2}/N{sub 2} mixture (12.5% F{sub 2}) at 50 °C and 0.1 MPa for different durations of 15 min, 30 min and 60 min. A dc voltage was applied to the insulator for 30 min and the charge density on its surface was measured by an electrostatic probe. The results revealed significant lower surface charge densities on themore » fluorinated insulators in comparison with the original one. Surface conductivity measurements indicated a higher surface conductivity by over three orders of magnitude after fluorination, which would allow the charges to transfer along the surface and thus may suppress their accumulation. Further, attenuated total reflection infrared analysis and surface morphology observations of the samples revealed that the introduction of fluoride groups altered the surface physicochemical properties. These structure changes, especially the physical defects reduced the depth of charge traps in the surface layer, which was verified by the measurement of energy distributions of the electron and hole traps based on the isothermal current theory. The results in this paper demonstrate that fluorination can be a promising and effective method to suppress surface charge accumulation on epoxy insulators in gas insulated devices.« less

  16. Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Myers, James L.; Yim, John T.; Neff, Gregory

    2015-01-01

    The thermal characterization test of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding has been completed. This thruster was developed to support a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of the preparation for this characterization test, an infrared-based, non-contact thermal imaging system was developed to measure the temperature of various thruster surfaces that are exposed to high voltage or plasma. An in-situ calibration array was incorporated into the setup to improve the accuracy of the temperature measurement. The key design parameters for the calibration array were determined in a separate pilot test. The raw data from the characterization test was analyzed though further work is needed to obtain accurate anode temperatures. Examination of the front pole and discharge channel temperatures showed that the thruster temperature was driven more by discharge voltage than by discharge power. Operation at lower discharge voltages also yielded more uniform temperature distributions than at higher discharge voltages. When operating at high discharge voltage, increasing the magnetic field strength appeared to have made the thermal loading azimuthally more uniform.

  17. Distribution of L-type calcium channels in rat thalamic neurones.

    PubMed

    Budde, T; Munsch, T; Pape, H C

    1998-02-01

    One major pathway for calcium entry into neurones is through voltage-activated calcium channels. The distribution of calcium channels over the membrane surface is important for their contribution to neuronal function. Electrophysiological recordings from thalamic cells in situ and after acute isolation demonstrated the presence of high-voltage activated calcium currents. The use of specific L-type calcium channel agonists and antagonists of the dihydropyridine type revealed an about 40% contribution of L-type channels to the total high-voltage-activated calcium current. In order to localize L-type calcium channels in thalamic neurones, fluorescent dihydropyridines were used. They were combined with the fluorescent dye RH414, which allowed the use of a ratio technique and thereby the determination of channel density. The distribution of L-type channels was analysed in the three main thalamic cell types: thalamocortical relay cells, local interneurones and reticular thalamic neurones. While channel density was highest in the soma and decreased significantly in the dendritic region, channels appeared to be clustered differentially in the three types of cells. In thalamocortical cells, L-type channels were clustered in high density around the base of dendrites, while they were more evenly distributed on the soma of interneurones. Reticular thalamic neurones exhibited high density of L-type channels in more central somatic regions. The differential localization of L-type calcium channels found in this study implies their predominate involvement in the regulation of somatic and proximal dendritic calcium-dependent processes, which may be of importance for specific thalamic functions, such as those mediating the transition from rhythmic burst activity during sleep to single spike activity during wakefulness or regulating the relay of visual information.

  18. Influence of the magnetic field profile on ITER conductor testing

    NASA Astrophysics Data System (ADS)

    Nijhuis, A.; Ilyin, Y.; ten Kate, H. H. J.

    2006-08-01

    We performed simulations with the numerical CUDI-CICC code on a typical short ITER (International Thermonuclear Experimental Reactor) conductor test sample of dual leg configuration, as usually tested in the SULTAN test facility, and made a comparison with the new EFDA-Dipole test facility offering a larger applied DC field region. The new EFDA-Dipole test facility, designed for short sample testing of conductors for ITER, has a homogeneous high field region of 1.2 m, while in the SULTAN facility this region is three times shorter. The inevitable non-uniformity of the current distribution in the cable, introduced by the joints at both ends, has a degrading effect on voltage-current (VI) and voltage-temperature (VT) characteristics, particularly for these short samples. This can easily result in an underestimation or overestimation of the actual conductor performance. A longer applied DC high field region along a conductor suppresses the current non-uniformity by increasing the overall longitudinal cable electric field when reaching the current sharing mode. The numerical interpretation study presented here gives a quantitative analysis for a relevant practical case of a test of a short sample poloidal field coil insert (PFCI) conductor in SULTAN. The simulation includes the results of current distribution analysis from self-field measurements with Hall sensor arrays, current sharing measurements and inter-petal resistance measurements. The outcome of the simulations confirms that the current uniformity improves with a longer high field region but the 'measured' VI transition is barely affected, though the local peak voltages become somewhat suppressed. It appears that the location of the high field region and voltage taps has practically no influence on the VI curve as long as the transverse voltage components are adequately cancelled. In particular, for a thin conduit wall, the voltage taps should be connected to the conduit in the form of an (open) azimuthally soldered wire, averaging the transverse conduit surface potentials initiated in the joints.

  19. An approach to the diagnosis of metabolic syndrome by the multi-electrode impedance method

    NASA Astrophysics Data System (ADS)

    Furuya, N.; Sakamoto, K.; Kanai, H.

    2010-04-01

    It is well known that metabolic syndrome can induce myocardial infarction and cerebral infarction. So, it is very important to measure the visceral fat volume. In the electric impedance method, information in the vicinity of the electrodes is strongly reflected. Therefore, we propose a new multi-electrode arrangement method based on the impedance sensitivity theorem to measure the visceral fat volume. This electrode arrangement is designed to enable high impedance sensitivity in the visceral and subcutaneous fat regions. Currents are simultaneously applied to several current electrodes on the body surface, and one voltage electrode pair is arranged on the body surface near the organ of interest to obtain the visceral fat information and another voltage electrode pair is arranged on the body surface near the current electrodes to obtain the subcutaneous fat information. A simulation study indicates that by weighting the impedance sensitivity distribution, as in our method, a high-sensitivity region in the visceral and the subcutaneous fat regions can be formed. In addition, it was confirmed that the visceral fat volume can be estimated by the measured impedance data.

  20. Effects of surface plasma treatment on threshold voltage hysteresis and instability in metal-insulator-semiconductor (MIS) AlGaN/GaN heterostructure HEMTs

    NASA Astrophysics Data System (ADS)

    Zaidi, Z. H.; Lee, K. B.; Roberts, J. W.; Guiney, I.; Qian, H.; Jiang, S.; Cheong, J. S.; Li, P.; Wallis, D. J.; Humphreys, C. J.; Chalker, P. R.; Houston, P. A.

    2018-05-01

    In a bid to understand the commonly observed hysteresis in the threshold voltage (VTH) in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors during forward gate bias stress, we have analyzed a series of measurements on devices with no surface treatment and with two different plasma treatments before the in-situ Al2O3 deposition. The observed changes between samples were quasi-equilibrium VTH, forward bias related VTH hysteresis, and electrical response to reverse bias stress. To explain these effects, a disorder induced gap state model, combined with a discrete level donor, at the dielectric/semiconductor interface was employed. Technology Computer-Aided Design modeling demonstrated the possible differences in the interface state distributions that could give a consistent explanation for the observations.

  1. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  2. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  3. Self-addressed diffractive lens schemes for the characterization of LCoS displays

    NASA Astrophysics Data System (ADS)

    Zhang, Haolin; Lizana, Angel; Iemmi, Claudio; Monroy-Ramírez, Freddy A.; Marquez, Andrés.; Moreno, Ignacio; Campos, Juan

    2018-02-01

    We proposed a self-calibration method to calibrate both the phase-voltage look-up table and the screen phase distribution of Liquid Crystal on Silicon (LCoS) displays by implementing different lens configurations on the studied device within a same optical scheme. On the one hand, the phase-voltage relation is determined from interferometric measurements, which are obtained by addressing split-lens phase distributions on the LCoS display. On the other hand, the surface profile is retrieved by self-addressing a diffractive micro-lens array to the LCoS display, in a way that we configure a Shack-Hartmann wavefront sensor that self-determines the screen spatial variations. Moreover, both the phase-voltage response and the surface phase inhomogeneity of the LCoS are measured within the same experimental set-up, without the necessity of further adjustments. Experimental results prove the usefulness of the above-mentioned technique for LCoS displays characterization.

  4. Large space system: Charged particle environment interaction technology

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Roche, J. C.; Grier, N. T.

    1979-01-01

    Large, high voltage space power systems are proposed for future space missions. These systems must operate in the charged-particle environment of space and interactions between this environment and the high voltage surfaces are possible. Ground simulation testing indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 volts, it has been found that the dielectrics contribute to the current collection area. For negative voltages greater than-500 volts, the data indicates that the dielectrics contribute to discharges. A large, high-voltage power system operating in geosynchronous orbit was analyzed. Results of this analysis indicate that very strong electric fields exist in these power systems.

  5. Lightning Overvoltage on Low-Voltage Distribution System

    NASA Astrophysics Data System (ADS)

    Michishita, Koji

    The portion of the faults of a medium-voltage line, cause by lightning, tends to increase with often reaching beyond 30%. However, due to the recent progress of the lightning protection design, the number of faults has decreased to 1/3 of that at 30 years ago. As for the low-voltage distribution line, the fault rate has been estimated primarily, although the details of the overvoltages have not been studied yet. For the further development of highly information-oriented society, improvement of reliability of electric power supply to the appliance in a low-voltage customer will be socially expected. Therefore, it is important to establish effective lightning protection design of the low-voltage distribution system, defined to be composed of lines having mutual interaction on the customers' electric circuits, such as a low-voltage distribution line, an antenna line and a telecommunication line. In this report, the author interprets the recent research on the lightning overvoltage on a low-voltage distribution system.

  6. 30 CFR 75.821 - Testing, examination and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.821 Testing, examination and maintenance. (a) At least once every 7 days, a... must test and examine each unit of high-voltage longwall equipment and circuits to determine that...

  7. 30 CFR 75.817 - Cable handling and support systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.817 Cable handling and support systems. Longwall mining equipment must be... the possibility of miners contacting the cables and to protect the high-voltage cables from damage. ...

  8. The Breakdown Characteristics of the Silicone Oil for Electric Power Apparatus

    NASA Astrophysics Data System (ADS)

    Yoshida, Hisashi; Yanabu, Satoru

    The basic breakdown characteristics of the silicone oil as an insulating medium was studied with aim of realization of electric power apparatus which may be considered to be SF6 free and flame-retarding. As the first step, the impulse breakdown characteristics was measured with three kinds of electrodes whose electric field distributions differed. The breakdown characteristics in silicone oil was explained in relation to stressed oil volume (SOV) and the breakdown stress. At the second step the surface breakdown characteristic for impulse voltage was measured with two kinds of insulators which was set to between plane electrodes. The surface breakdown characteristic for impulse voltage was explained in relation to the ratio of the relative permittivity of oil and insulator. And on the third step, the breakdown characteristics of oil gap after interrupting small capacitive current was studied. In this experiment, the disconnecting switch to interrupt capacitive current was simulated by oil gap after interrupting impulse current, and to measure breakdown characteristics the high impulse voltage was subsequently applied. The breakdown stress in silicone oil after application of impulse current was discussed for insulation recovery characteristics.

  9. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing techniquemore » commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (~11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Here, tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.« less

  10. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    DOE PAGES

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; ...

    2017-09-11

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing techniquemore » commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (~11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Here, tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.« less

  11. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.

    2017-09-01

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing technique commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.

  12. Special features of large-size resistors for high-voltage pulsed installations

    NASA Astrophysics Data System (ADS)

    Minakova, N. N.; Ushakov, V. Ya.

    2017-12-01

    Many structural materials in pulsed power engineering operate under extreme conditions. For example, in high-voltage electrophysical installations among which there are multistage high-voltage pulse generators (HVPG), rigid requirements are imposed on characteristics of solid-state resistors that are more promising in comparison with widely used liquid resistors. Materials of such resistors shall be able to withstand strong electric fields, operate at elevated temperatures, in transformer oil, etc. Effective charge of high-voltage capacitors distributed over the HVPG steps (levels) requires uniform voltage distribution along the steps of the installation that can be obtained using large-size resistors. For such applications, polymer composite materials are considered rather promising. They can work in transformer oil and have small mass in comparison with bulky resistors on inorganic basis. This allows technical solutions already developed and implemented in HVPG with liquid resistors to be employed. This paper is devoted to the solution of some tasks related to the application of filled polymers in high-voltage engineering.

  13. High voltage holding in the negative ion sources with cesium deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  14. Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Kjeer, Peter; Clarke, David R.

    2018-03-01

    When a voltage is applied to a percolative, mechanically compliant mat of carbon nanotubes (CNTs) on a smooth elastomer bilayer attached to an ITO coated glass substrate, the in-line optical transmittance decreases with increasing voltage. Two regimes of behavior have been identified based on optical scattering, bright field optical microscopy, and confocal optical microscopy. In the low field regime, the electric field produces a spatially inhomogeneous surface deformation of the elastomer that causes local variations in optical refraction and modulates the light transmittance. The spatial variation is associated with the distribution of the CNTs over the surface. At higher fields, above a threshold voltage, an array of pits in the surface form by a nucleation and growth mechanism and these also scatter light. The formation of pits, and creases, in the thickness of the elastomer, is due to a previously identified electro-mechanical surface instability. When the applied voltage is decreased from its maximum, the transmittance returns to its original value although there is a transmittance hysteresis and a complicated time response. When the applied voltage exceeds the threshold voltage, there can be remnant optical contrast associated with creasing of the elastomer and the recovery time appears to be dependent on local jamming of CNTs in areas where the pits formed. A potential application of this work as an electrically tunable privacy window or camouflaging devices is demonstrated.

  15. Electric power processing, distribution and control for advanced aerospace vehicles.

    NASA Technical Reports Server (NTRS)

    Krausz, A.; Felch, J. L.

    1972-01-01

    The results of a current study program to develop a rational basis for selection of power processing, distribution, and control configurations for future aerospace vehicles including the Space Station, Space Shuttle, and high-performance aircraft are presented. Within the constraints imposed by the characteristics of power generation subsystems and the load utilization equipment requirements, the power processing, distribution and control subsystem can be optimized by selection of the proper distribution voltage, frequency, and overload/fault protection method. It is shown that, for large space vehicles which rely on static energy conversion to provide electric power, high-voltage dc distribution (above 100 V dc) is preferable to conventional 28 V dc and 115 V ac distribution per MIL-STD-704A. High-voltage dc also has advantages over conventional constant frequency ac systems in many aircraft applications due to the elimination of speed control, wave shaping, and synchronization equipment.

  16. Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests

    NASA Astrophysics Data System (ADS)

    Kötz, R.; Ruch, P. W.; Cericola, D.

    Electrochemical double layer capacitors of the BCAP0350 type (Maxwell Technologies) were tested under constant load conditions at different voltages and temperatures. The aging of the capacitors was monitored during the test in terms of capacitance, internal resistance and leakage current. Aging was significantly accelerated by elevated temperature or increased voltage. Only for extreme conditions at voltages of 3.5 V or temperatures above 70 °C the capacitors failed due to internal pressure build-up. No other failure events such as open circuit or short circuit were detected. Impedance measurements after the tests showed increased high frequency resistance, an increased distributed resistance and most likely an increase in contact resistance between electrode and current collector together with a loss of capacitance. Capacitors aged at elevated voltages (3.3 V) exhibited a tilting of the low frequency component, which implies an increase in the heterogeneity of the electrode surface. This feature was not observed upon aging at elevated temperatures (70 °C).

  17. The Significance of Breakdown Voltages for Quality Assurance of Low-Voltage BME Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Application of thin dielectric, base metal electrode (BME) ceramic capacitors for high-reliability applications requires development of testing procedures that can assure high quality and reliability of the parts. In this work, distributions of breakdown voltages (VBR) in variety of low-voltage BME multilayer ceramic capacitors (MLCCs) have been measured and analyzed. It has been shown that analysis of the distributions can indicate the proportion of defective parts in the lot and significance of the defects. Variations of the distributions after solder dip testing allow for an assessment of the robustness of capacitors to soldering-related stresses. The drawbacks of the existing screening and qualification methods to reveal defects in high-value, low-voltage MLCCs and the importance of VBR measurements are discussed. Analysis has shown that due to a larger concentration of oxygen vacancies, defect-related degradation of the insulation resistance (IR) and failures are more likely in BME compared to the precious metal electrode (PME) capacitors.

  18. Voltage Support Study of Smart PV Inverters on a High-Photovoltaic Penetration Utility Distribution Feeder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Pratt, Annabelle; Bialek, Tom

    2016-11-21

    This paper reports on tools and methodologies developed to study the impact of adding rooftop photovoltaic (PV) systems, with and without the ability to provide voltage support, on the voltage profile of distribution feeders. Simulation results are provided from a study of a specific utility feeder. The simulation model of the utility distribution feeder was built in OpenDSS and verified by comparing the simulated voltages to field measurements. First, we set all PV systems to operate at unity power factor and analyzed the impact on feeder voltages. Then we conducted multiple simulations with voltage support activated for all the smartmore » PV inverters. These included different constant power factor settings and volt/VAR controls.« less

  19. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  20. Miniaturized ultrafine particle sizer and monitor

    NASA Technical Reports Server (NTRS)

    Qi, Chaolong (Inventor); Chen, Da-Ren (Inventor)

    2011-01-01

    An apparatus for measuring particle size distribution includes a charging device and a precipitator. The charging device includes a corona that generates charged ions in response to a first applied voltage, and a charger body that generates a low energy electrical field in response to a second applied voltage in order to channel the charged ions out of the charging device. The corona tip and the charger body are arranged relative to each other to direct a flow of particles through the low energy electrical field in a direction parallel to a direction in which the charged ions are channeled out of the charging device. The precipitator receives the plurality of particles from the charging device, and includes a disk having a top surface and an opposite bottom surface, wherein a predetermined voltage is applied to the top surface and the bottom surface to precipitate the plurality of particles.

  1. Pulsed electromagnetic gas acceleration. [magnetohydrodynamics, plasma power sources and plasma propulsion

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with various cathodes and anodes in a high power, quasi-steady magnetoplasmadynamic (MPD) are discussed. The magnitude of the current at the onset of voltage fluctuations is shown to be an increasing function of cathode area and a weaker decreasing function of anode area. Tests with a fluted cathode indicated that the fluctuations originate in the plasma adjacent to the cathode rather than at the cathode surface. Measurements of radiative output from an optical cavity aligned to examine the current-carrying portion of a two-dimensional, 56 kA magnetoplasmadynamic discharge reveal no lasing in that region, consistent with calculations of electron excitation and resonance radiation trapping. A voltage-swept double probe technique allows single-shot determination of electron temperature and electron number density in the recombining MPD exhaust flow. Current distributions within the cavity of MPD hollow cathodes for various static prefills with no injected mass flow are examined.

  2. Megawatt Space Power Conditioning, Distribution, and Control Study

    DTIC Science & Technology

    1988-03-01

    also must be given to the design of an ac transmission line for this relatively high frequency . 2.3.2 Medium High Voltage Systems. Figure 2-4 shows a...systems are designed to exploit the use of 2 MW klystrode tubes (see Section 3.1) which require a dc voltage of about 140 kV. This high voltage can be...the concerns is that to date there have been no three-phase high voltage, high frequency transmission lines designed . Figure 5-6. While the previous

  3. High ESD Breakdown-Voltage InP HBT Transimpedance Amplifier IC for Optical Video Distribution Systems

    NASA Astrophysics Data System (ADS)

    Sano, Kimikazu; Nagatani, Munehiko; Mutoh, Miwa; Murata, Koichi

    This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000V for power supply terminals, ±200V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7pA/√Hz averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.

  4. 30 CFR 77.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS... against damage. They shall be placed to prevent contact with low-voltage or communication circuits. ...

  5. Detection of High-impedance Arcing Faults in Radial Distribution DC Systems

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marcelo C.; Button, Robert M.

    2003-01-01

    High voltage, low current arcing faults in DC power systems have been researched at the NASA Glenn Research Center in order to develop a method for detecting these 'hidden faults', in-situ, before damage to cables and components from localized heating can occur. A simple arc generator was built and high-speed and low-speed monitoring of the voltage and current waveforms, respectively, has shown that these high impedance faults produce a significant increase in high frequency content in the DC bus voltage and low frequency content in the DC system current. Based on these observations, an algorithm was developed using a high-speed data acquisition system that was able to accurately detect high impedance arcing events induced in a single-line system based on the frequency content of the DC bus voltage or the system current. Next, a multi-line, radial distribution system was researched to see if the arc location could be determined through the voltage information when multiple 'detectors' are present in the system. It was shown that a small, passive LC filter was sufficient to reliably isolate the fault to a single line in a multi-line distribution system. Of course, no modification is necessary if only the current information is used to locate the arc. However, data shows that it might be necessary to monitor both the system current and bus voltage to improve the chances of detecting and locating high impedance arcing faults

  6. Decorating Graphene Oxide with Ionic Liquid Nanodroplets: An Approach Leading to Energy-Dense, High-Voltage Supercapacitors.

    PubMed

    She, Zimin; Ghosh, Debasis; Pope, Michael A

    2017-10-24

    A major stumbling block in the development of high energy density graphene-based supercapacitors has been maintaining high ion-accessible surface area combined with high electrode density. Herein, we develop an ionic liquid (IL)-surfactant microemulsion system that is found to facilitate the spontaneous adsorption of IL-filled micelles onto graphene oxide (GO). This adsorption distributes the IL over all available surface area and provides an aqueous formulation that can be slurry cast onto current collectors, leaving behind a dense nanocomposite film of GO/IL/surfactant. By removing the surfactant and reducing the GO through a low-temperature (360 °C) heat treatment, the IL plays a dual role of spacer and electrolyte. We study the effect of IL content and operating temperature on the performance, demonstrating a record high gravimetric capacitance (302 F/g at 1 A/g) for 80 wt % IL composites. At 60 wt % IL, combined high capacitance and bulk density (0.76 g/cm 3 ), yields one of the highest volumetric capacitances (218 F/cm 3 , at 1 A/g) ever reported for a high-voltage IL-based supercapacitor. While achieving promising rate performance and cycle-life, the approach also eliminates the long and costly electrolyte imbibition step of cell assembly as the electrolyte is cast directly with the electrode material.

  7. Electric field and space charge distribution measurement in transformer oil struck by impulsive high voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Guo, Hongda; Yang, Qing; Song, He; Yang, Ming; Yu, Fei

    2015-08-01

    Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.

  8. Fuzzy-driven energy storage system for mitigating voltage unbalance factor on distribution network with photovoltaic system

    NASA Astrophysics Data System (ADS)

    Wong, Jianhui; Lim, Yun Seng; Morris, Stella; Morris, Ezra; Chua, Kein Huat

    2017-04-01

    The amount of small-scaled renewable energy sources is anticipated to increase on the low-voltage distribution networks for the improvement of energy efficiency and reduction of greenhouse gas emission. The growth of the PV systems on the low-voltage distribution networks can create voltage unbalance, voltage rise, and reverse-power flow. Usually these issues happen with little fluctuation. However, it tends to fluctuate severely as Malaysia is a region with low clear sky index. A large amount of clouds often passes over the country, hence making the solar irradiance to be highly scattered. Therefore, the PV power output fluctuates substantially. These issues can lead to the malfunction of the electronic based equipment, reduction in the network efficiency and improper operation of the power protection system. At the current practice, the amount of PV system installed on the distribution network is constraint by the utility company. As a result, this can limit the reduction of carbon footprint. Therefore, energy storage system is proposed as a solution for these power quality issues. To ensure an effective operation of the distribution network with PV system, a fuzzy control system is developed and implemented to govern the operation of an energy storage system. The fuzzy driven energy storage system is able to mitigate the fluctuating voltage rise and voltage unbalance on the electrical grid by actively manipulates the flow of real power between the grid and the batteries. To verify the effectiveness of the proposed fuzzy driven energy storage system, an experimental network integrated with 7.2kWp PV system was setup. Several case studies are performed to evaluate the response of the proposed solution to mitigate voltage rises, voltage unbalance and reduce the amount of reverse power flow under highly intermittent PV power output.

  9. Laboratory demonstration of lightning strike pattern on different roof tops installed with Franklin Rods

    NASA Astrophysics Data System (ADS)

    Ullah, Irshad; Baharom, MNR; Ahmed, H.; Luqman, HM.; Zainal, Zainab

    2017-11-01

    Protection against lightning is always a challenging job for the researcher. The consequences due to lightning on different building shapes needs a comprehensive knowledge in order to provide the information to the common man. This paper is mainly concern with lightning pattern when it strikes on the building with different shape. The work is based on the practical experimental work in high voltage laboratory. Different shapes of the scaled structures have been selected in order to investigate the equal distribution of lightning voltage. The equal distribution of lightning voltage will provide the maximum probability of lightning strike on air terminal of the selected shapes. Building shapes have a very important role in lightning protection. The shapes of the roof tops have different geometry and the Franklin rod installation is also varies with changing the shape of the roof top. According to the ambient weather condition of Malaysia high voltage impulse is applied on the lightning rod installed on different geometrical shape. The equal distribution of high voltage impulse is obtained as the geometry of the scaled structure is identical and the air gap for all the tested object is kept the same. This equal distribution of the lightning voltage also proves that the probability of lightning strike is on the corner and the edges of the building structure.

  10. Simulator of Non-homogenous Alumina and Current Distribution in an Aluminum Electrolysis Cell to Predict Low-Voltage Anode Effects

    NASA Astrophysics Data System (ADS)

    Dion, Lukas; Kiss, László I.; Poncsák, Sándor; Lagacé, Charles-Luc

    2018-04-01

    Perfluorocarbons are important contributors to aluminum production greenhouse gas inventories. Tetrafluoromethane and hexafluoroethane are produced in the electrolysis process when a harmful event called anode effect occurs in the cell. This incident is strongly related to the lack of alumina and the current distribution in the cell and can be classified into two categories: high-voltage and low-voltage anode effects. The latter is hard to detect during the normal electrolysis process and, therefore, new tools are necessary to predict this event and minimize its occurrence. This paper discusses a new approach to model the alumina distribution behavior in an electrolysis cell by dividing the electrolytic bath into non-homogenous concentration zones using discrete elements. The different mechanisms related to the alumina distribution are discussed in detail. Moreover, with a detailed electrical model, it is possible to calculate the current distribution among the different anodic assemblies. With this information, the model can evaluate if low-voltage emissions are likely to be present under the simulated conditions. Using the simulator will help the understanding of the role of the alumina distribution which, in turn, will improve the cell energy consumption and stability while reducing the occurrence of high- and low-voltage anode effects.

  11. 30 CFR 75.808 - Disconnecting devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.808... branch lines in high-voltage circuits and equipped or designed in such a manner that it can be determined...

  12. Surface Flashover on Epoxy-Resin Printed Circuit Boards in Vacuum under Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Fujii, Haruhisa; Hasegawa, Taketoshi; Osuga, Hiroyuki; Matsui, Katsuaki

    This paper deals with the surface flashover characteristics of dielectric material in vacuum during electron beam irradiation in order to design adequately the conductive patterns on printed circuit boards used inside a spacecraft. The dielectric material, glass-fiber reinforced epoxy resin, and the electrodes printed on it were irradiated with electrons of the energy of 3-10 keV. DC high voltage was applied between the two electrodes during electron irradiation. The voltage was increased stepwise until the surface flashover occurred on the dielectric material. We obtained the results that the surface flashover voltage increased with the insulation distance between the electrodes but electron irradiation made the flashover voltage lower. The flashover voltage characteristics were obtained as parameters of the electrode distance and the energy of the electron beam.

  13. Medium Caliber Lead-Free Electric Primer. Version 2

    DTIC Science & Technology

    2012-09-01

    Toxic Substance Control Act TGA Thermogravimetric Analysis TNR Trinitroresorcinol V Voltage VDC Voltage Direct Current WSESRB Weapons System...variety of techniques including Thermogravimetric Analysis (TGA), base-hydrolysis, Surface Area Analysis using Brunauer, Emmett, Teller (BET...Distribution From Thermogravimetric Analysis Johnson, C. E.; Fallis, S.; Chafin, A. P.; Groshens, T. J.; Higa, K. T.; Ismail, I. M. K. and Hawkins, T. W

  14. 30 CFR 75.705-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....705-10 Tying into energized high-voltage surface circuits. If the work of forming an additional... performing such work must wear and employ all of the protective equipment and clothing required under the... designed for such purpose and must be adequately insulated and be maintained to protect such person from...

  15. An experimental investigation of electric flashover across solid insulators in vacuum

    NASA Technical Reports Server (NTRS)

    Vonbaeyer, H. C.

    1984-01-01

    The insulation of high voltage conductors often employs solid insulators for many applications. In such applications, an unexpected electric flashover may occur along the insulator surface. Under conditions of high vacuum, the flashover voltage across the insulator is observed to be lower compared with that of the same electrode separation without an insulator. The reason for such an extreme reduction of flashover voltage is not well understood. Several models based on the secondary electron emission, were proposed to explain the onset of the surface flashover. The starting point and the developing velocity of the surface flashover were determined. An intensified image converter camera was used to observe the initial stage of electrical flashover along the insulator surface parallel to the electric field. Several different insulator materials were used as test pieces to determine the effect of the dielectric constant on the flashover voltage characteristics.

  16. A ceramic radial insulation structure for a relativistic electron beam vacuum diode.

    PubMed

    Xun, Tao; Yang, Hanwu; Zhang, Jiande; Liu, Zhenxiang; Wang, Yong; Zhao, Yansong

    2008-06-01

    For one kind of a high current diode composed of a small disk-type alumina ceramic insulator water/vacuum interface, the insulation structure was designed and experimentally investigated. According to the theories of vacuum flashover and the rules for radial insulators, a "cone-column" anode outline and the cathode shielding rings were adopted. The electrostatic field along the insulator surface was obtained by finite element analysis simulating. By adjusting the outline of the anode and reshaping the shielding rings, the electric fields were well distributed and the field around the cathode triple junction was effectively controlled. Area weighted statistical method was applied to estimate the surface breakdown field. In addition, the operating process of an accelerator based on a spiral pulse forming line (PFL) was simulated through the PSPICE software to get the waveform of charging and diode voltage. The high voltage test was carried out on a water dielectric spiral PFL accelerator with long pulse duration, and results show that the diode can work stably in 420 kV, 200 ns conditions. The experimental results agree with the theoretical and simulated results.

  17. Optimization of the performance of a tandem microchannel plate detector as a function of interplate spacing and voltage

    NASA Technical Reports Server (NTRS)

    Rogers, D.; Malina, R. F.

    1982-01-01

    The effect of varying the size of the gap voltage and spacing on the performance of a tandem pair of microchannel plates (MCP) is investigated. Results show that increasing the voltage in the gap increases the gain of the pair and also produces a narrower Gaussian pulse-height distribution, although beyond a critical voltage the gain of the channel plate pair is found to plateau. A model is developed which explains the nonlinear gain behavior of individual microchannels and the behavior of the electron cloud emitted from the first MCP as it spreads out between the two MCPs and hits the surface of the second. The model calculates the plateau voltage as a function of the gap size, the gain of each MCP, and the diameter of the channels, and is found to show good agreement with the observed results. It is concluded that interplate gaps of up to several millimeters can be accommodated without a significant degradation in pulse-height distribution.

  18. Characterization of the NEXT Hollow Cathode Inserts After Long-Duration Testing

    NASA Technical Reports Server (NTRS)

    Mackey, J.; Shastry, R.; Soulas, G.

    2017-01-01

    Hollow dispenser cathode inserts are a critical element of electric propulsion systems, and should therefore be well understood during long term operation to ensure reliable system performance. This work destructively investigated cathode inserts from the NEXT long-duration test which demonstrated 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The characterization methods used include scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction. Microscopy analysis has been performed on fractured surfaces, emission surfaces, and metallographically polished cross-sections of post-test inserts and unused inserts. Impregnate distribution, etch region thickness, impregnate chemical content, emission surface topography, and emission surface phase identification are the primary factors investigated.

  19. An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Cheng; Zhang, Kai; Xiong, Jian

    Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less

  20. An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch

    DOE PAGES

    Wang, Cheng; Zhang, Kai; Xiong, Jian; ...

    2017-09-26

    Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less

  1. Statistical Evaluation of Voltage Variation of Power Distribution System with Clustered Home-Cogeneration Systems

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Minagata, Atsushi; Suzuoki, Yasuo

    This paper discusses the influence of mass installation of a home co-generation system (H-CGS) using a polymer electrolyte fuel cell (PEFC) on the voltage profile of power distribution system in residential area. The influence of H-CGS is compared with that of photovoltaic power generation systems (PV systems). The operation pattern of H-CGS is assumed based on the electricity and hot-water demand observed in 10 households for a year. The main results are as follows. With the clustered H-CGS, the voltage of each bus is higher by about 1-3% compared with the conventional system without any distributed generators. Because H-CGS tends to increase the output during the early evening, H-CGS contributes to recover the voltage drop during the early evening, resulting in smaller voltage variation of distribution system throughout a day. Because of small rated power output about 1kW, the influence on voltage profile by the clustered H-CGS is smaller than that by the clustered PV systems. The highest voltage during the day time is not so high as compared with the distribution system with the clustered PV systems, even if the reverse power flow from H-CGS is allowed.

  2. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  3. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  4. 30 CFR 75.800-3 - Testing, examination and maintenance of circuit breakers; procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... High-Voltage Distribution § 75.800-3 Testing, examination and maintenance of circuit breakers; procedures. (a) Circuit breakers and their auxiliary devices protecting underground high-voltage circuits...

  5. Electrostatic shielding of transformers

    DOEpatents

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  6. Voltage Based Detection Method for High Impedance Fault in a Distribution System

    NASA Astrophysics Data System (ADS)

    Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama

    2016-09-01

    High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.

  7. Development of Charge to Mass Ratio Microdetector for Future Mars Mission

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Lian Albert

    2003-01-01

    The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars are observed often from Earth. This environment provides an ideal condition for turboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If turboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface on Mars helps to prolong the charge decay on the dust particles and soil. To better understanding the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to measure the velocity distribution, charge distribution and mass distribution of Martian wed dust particles. These sensors are fabricated at NASA Kenney Space Center, Electrostatic and Surface Physics Laboratory. The sensors are calibrated. The momentum sensor is capable to measure 45 pan size particles. The designed detector is very simple, robust, without moving parts, and does not require a high voltage power supply. Two sensors are combined to form the Dust Microdetector - CHAL.

  8. Calculation of current collected in a dilute plasma through a pinhole in the insulation covering a high-voltage surface

    NASA Technical Reports Server (NTRS)

    Fralick, G. C.

    1975-01-01

    A procedure is described for calculating the current collected by a pinhole defect in the insulation covering a high voltage surface. The results apply to a satellite at geosynchronous altitude where the effects of satellite motion and collective plasma effects on the collected current may be ignored.

  9. Anode initiated surface flashover switch

    DOEpatents

    Brainard, John P.; Koss, Robert J.

    2003-04-29

    A high voltage surface flashover switch has a pair of electrodes spaced by an insulator. A high voltage is applied to an anode, which is smaller than the opposing, grounded, cathode. When a controllable source of electrons near the cathode is energized, the electrons are attracted to the anode where they reflect to the insulator and initiate anode to cathode breakdown.

  10. Observation of Dust Stream Formation Produced by Low Current, High Voltage Cathode Spots

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated. The phenomenon was observed to occur when nanometer and micrometer-sized particles in the presence of a discharge plasma were exposed to a high voltage pulse. The negative voltage pulse initiates the formation of multiple, high voltage, low current cathode spots which provides the mechanism of actual acceleration of the charged dust particles. Dust streams generated by this process were detected using laser scattering techniques. The particle impact craters observed at the surface of downstream witness badges were documented using SEM and light microscopy.

  11. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from E C-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement betweenmore » experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about E C-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.« less

  12. The interaction of spacecraft high voltage power systems with the space plasma environment

    NASA Technical Reports Server (NTRS)

    Domitz, S.; Grier, N. T.

    1974-01-01

    The development of spacecraft with electrical loads that require high voltage power is discussed. The high voltage solar array has been considered for supplying d.c. power directly to high voltage loads such as ion thrusters and communication tubes without intermediate power processing. Space power stations for transferring solar power to earth are being studied in the 40 kilovolt, multikilowatt regime. Analytical and experimental studies have determined that with the advent of high voltage power, new problems will arise through the interaction of the high voltage surfaces with the charged particle environment of space. The interactive environment has been identified and duplicated to some extent in simulation facilities at NASA-Lewis Research Center and at several contractor locations.

  13. Network-Cognizant Voltage Droop Control for Distribution Grids

    DOE PAGES

    Baker, Kyri; Bernstein, Andrey; Dall'Anese, Emiliano; ...

    2017-08-07

    Our paper examines distribution systems with a high integration of distributed energy resources (DERs) and addresses the design of local control methods for real-time voltage regulation. Particularly, the paper focuses on proportional control strategies where the active and reactive output-powers of DERs are adjusted in response to (and proportionally to) local changes in voltage levels. The design of the voltage-active power and voltage-reactive power characteristics leverages suitable linear approximation of the AC power-flow equations and is network-cognizant; that is, the coefficients of the controllers embed information on the location of the DERs and forecasted non-controllable loads/injections and, consequently, on themore » effect of DER power adjustments on the overall voltage profile. We pursued a robust approach to cope with uncertainty in the forecasted non-controllable loads/power injections. Stability of the proposed local controllers is analytically assessed and numerically corroborated.« less

  14. Network-Cognizant Voltage Droop Control for Distribution Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri; Bernstein, Andrey; Dall'Anese, Emiliano

    Our paper examines distribution systems with a high integration of distributed energy resources (DERs) and addresses the design of local control methods for real-time voltage regulation. Particularly, the paper focuses on proportional control strategies where the active and reactive output-powers of DERs are adjusted in response to (and proportionally to) local changes in voltage levels. The design of the voltage-active power and voltage-reactive power characteristics leverages suitable linear approximation of the AC power-flow equations and is network-cognizant; that is, the coefficients of the controllers embed information on the location of the DERs and forecasted non-controllable loads/injections and, consequently, on themore » effect of DER power adjustments on the overall voltage profile. We pursued a robust approach to cope with uncertainty in the forecasted non-controllable loads/power injections. Stability of the proposed local controllers is analytically assessed and numerically corroborated.« less

  15. Surface dynamics of amorphous polymers used for high-voltage insulators.

    PubMed

    Shemella, Philip T; Laino, Teodoro; Fritz, Oliver; Curioni, Alessandro

    2011-11-24

    Amorphous siloxane polymers are the backbone of high-voltage insulation materials. The natural hydrophobicity of their surface is a necessary property for avoiding leakage currents and dielectric breakdown. As these surfaces are exposed to the environment, electrical discharges or strong mechanical impact can temporarily destroy their water-repellent properties. After such events, however, a self-healing process sets in and restores the original hydrophobicity within some hours. In the present study, we investigate possible mechanisms of this restoration process. Using large-scale, all-atom molecular dynamics simulations, we show that molecules on the material surface have augmented motion that allows them to rearrange with a net polarization. The overall surface region has a net orientation that contributes to hydrophobicity, and charged groups that are placed at the surface migrate inward, away from the vacuum interface and into the bulk-like region. Our simulations provide insight into the mechanisms for hydrophobic self-recovery that repair material strength and functionality and suggest material compositions for future high-voltage insulators. © 2011 American Chemical Society

  16. High voltage power transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.

  17. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Huang, Jie; Li, Yejing; Wang, Yi; Qiu, Jiliang; Zhang, Jienan; Yu, Huigen; Yu, Xiqian; Li, Hong; Chen, Liquan

    2018-06-01

    Surface modification of LiCoO2 with the ultrathin film of solid state electrolyte of Li1.4Al0.4Ti1.6(PO4)3 (LATP) has been realized by a new and facile solution-based method. The coated LiCoO2 reveals enhanced structural and electrochemical stability at high voltage (4.5 V vs Li+/Li) in half-cell with liquid electrolyte. Transmission electron microscopy (TEM) images show that a dense LATP coating layer is covered on the surface of LiCoO2 uniformly with thickness of less than 20 nm. The LATP coating layer is proven to be able to prevent the direct contact between the cathode and the electrolyte effectively and thus to suppress the side reactions of liquid electrolyte with LiCoO2 surface at high charging voltage. As a result, dissolution of Co3+ has been largely suppressed over prolonged cycling as indicated by the X-ray photoelectron spectroscopy (XPS) measurements. Due to this surface passivating feature, the electrochemical performance of 0.5 wt% LATP modified LiCoO2 has also been evaluated in an all solid lithium battery with poly(ethylene oxide)-based polymer electrolyte. The cell exhibits 93% discharge capacity retention of the initial discharge capacity after 50 cycles at the charging cut-off voltage of 4.2 V, suggesting that the LATP coating layer is effective to suppress the oxidation of PEO at high voltage.

  18. Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography.

    PubMed

    Cheng, K S; Simske, S J; Isaacson, D; Newell, J C; Gisser, D G

    1990-01-01

    Electric current computed tomography is a process for determining the distribution of electrical conductivity inside a body based upon measurements of voltage or current made at the body's surface. Most such systems use different electrodes for the application of current and the measurement of voltage. This paper shows that when a multiplicity of electrodes are attached to a body's surface, the voltage data are most sensitive to changes in resistivity in the body's interior when voltages are measured from all electrodes, including those carrying current. This assertion is true despite the presence of significant levels of skin impedance at the electrodes. This conclusion is supported both theoretically and by experiment. Data were first taken using all electrodes for current and voltage. Then current was applied only at a pair of electrodes, with voltages measured on all other electrodes. We then constructed the second data set by calculation from the first. Targets could be detected with better signal-to-noise ratio by using the reconstructed data than by using the directly measured voltages on noncurrent-carrying electrodes. Images made from voltage data using only noncurrent-carrying electrodes had higher noise levels and were less able to accurately locate targets. We conclude that in multiple electrode systems for electric current computed tomography, current should be applied and voltage should be measured from all available electrodes.

  19. Investigation of high voltage spacecraft system interactions with plasma environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Berkopec, F. D.; Purvis, C. K.; Grier, N.; Staskus, J. V.

    1978-01-01

    An experimental investigation was undertaken for insulator and conductor test surfaces biased up to + or - 1kV in a simulated low earth orbit charged particle environment. It was found that these interactions are controlled by the insulator surfaces surrounding the biased conductors. For positive applied voltages the electron current collection can be enhanced by the insulators. For negative applied voltages the insulator surface confines the voltage to the conductor region. Understanding these interactions and the technology to control their impact on system operation is essential to the design of solar cell arrays for ion drive propulsion applications that use direct drive power processing.

  20. Silver nanoparticles as a key feature of a plasma polymer composite layer in mitigation of charge injection into polyethylene under dc stress

    NASA Astrophysics Data System (ADS)

    Milliere, L.; Maskasheva, K.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.

    2016-01-01

    The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm-1, 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm-1) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection mitigation effect.

  1. Multi-KW dc distribution system technology research study

    NASA Technical Reports Server (NTRS)

    Dawson, S. G.

    1978-01-01

    The Multi-KW DC Distribution System Technology Research Study is the third phase of the NASA/MSFC study program. The purpose of this contract was to complete the design of the integrated technology test facility, provide test planning, support test operations and evaluate test results. The subjet of this study is a continuation of this contract. The purpose of this continuation is to study and analyze high voltage system safety, to determine optimum voltage levels versus power, to identify power distribution system components which require development for higher voltage systems and finally to determine what modifications must be made to the Power Distribution System Simulator (PDSS) to demonstrate 300 Vdc distribution capability.

  2. 30 CFR 75.800-4 - Testing, examination, and maintenance of circuit breakers; record.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Underground High-Voltage Distribution § 75.800-4 Testing, examination, and maintenance of circuit breakers... adjustment of all circuit breakers protecting high-voltage circuits which enter any underground area of the...

  3. [Determination of electric field distribution in dielectric barrier surface glow discharge by spectroscopic method].

    PubMed

    Li, Xue-chen; Jia, Peng-ying; Liu, Zhi-hui; Li, Li-chun; Dong, Li-fang

    2008-12-01

    In the present paper, stable glow discharges were obtained in air at low pressure with a dielectric barrier surface discharge device. Light emission from the discharge was detected by photomultiplier tubes and the research results show that the light signal exhibited one discharge pulse per half cycle of the applied voltage. The light pulses were asymmetric between the positive half cycle and the negative one of the applied voltage. The images of the glow surface discharge were processed by Photoshop software and the results indicate that the emission intensity remained almost constant for different places with the same distance from the powered electrode, while the emission intensity decreased with the distance from the powered electrode increasing. In dielectric barrier discharge, net electric field is determined by the applied voltage and the wall charges accumulated on the dielectric layer during the discharge, and consequently, it is important to obtain information about the net electric field distribution. For this purpose, optical emission spectroscopy method was used. The distribution of the net electric field can be deduced from the intensity ratio of spectral line 391.4 nm emitted from the first negative system of N2+ (B 2sigma u+ -->X 2sigma g+) to 337.1 nm emitted from the second positive system of N2 (C 3IIu-B 3IIg). The research results show that the electric field near the powered electric field is higher than at the edge of the discharge. These experimental results are very important for numerical study and industrial application of the surface discharge.

  4. Stochastic many-particle model for LFP electrodes

    NASA Astrophysics Data System (ADS)

    Guhlke, Clemens; Gajewski, Paul; Maurelli, Mario; Friz, Peter K.; Dreyer, Wolfgang

    2018-02-01

    In the framework of non-equilibrium thermodynamics, we derive a new model for many-particle electrodes. The model is applied to LiFePO4 (LFP) electrodes consisting of many LFP particles of nanometer size. The phase transition from a lithium-poor to a lithium-rich phase within LFP electrodes is controlled by both different particle sizes and surface fluctuations leading to a system of stochastic differential equations. An explicit relation between battery voltage and current controlled by the thermodynamic state variables is derived. This voltage-current relation reveals that in thin LFP electrodes lithium intercalation from the particle surfaces into the LFP particles is the principal rate-limiting process. There are only two constant kinetic parameters in the model describing the intercalation rate and the fluctuation strength, respectively. The model correctly predicts several features of LFP electrodes, viz. the phase transition, the observed voltage plateaus, hysteresis and the rate-limiting capacity. Moreover we study the impact of both the particle size distribution and the active surface area on the voltage-charge characteristics of the electrode. Finally we carefully discuss the phase transition for varying charging/discharging rates.

  5. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpinemore » was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.« less

  6. Analysis of the grounding system for a mobile communication site placed on HV power line mast

    NASA Astrophysics Data System (ADS)

    Bîrsan, I.; Munteanu, C.; Horgoș, M.; Ilut, T.

    2016-08-01

    This paper aims to analyze the potential distribution on the soil surface or potential variation on the main directions inside computing mobile site. I want to study a system made the earth a mobile communications site, antennas operator and the system of which the earth is placed on a High Voltage Power Line Mast (LEA 110 KV). I made direct measurements and I use a 3D software for analyze the results and simulating some possible solutions.

  7. The behaviour of arcs in carbon mixed-mode high-power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tucker, M. D.; Putman, K. J.; Ganesan, R.; Lattemann, M.; Stueber, M.; Ulrich, S.; Bilek, M. M. M.; McKenzie, D. R.; Marks, N. A.

    2017-04-01

    Mixed-mode deposition of carbon is an extension of high-power impulse magnetron sputtering in which a short-lived arc is deliberately allowed to ignite on the target surface to increase the ionised fraction of carbon in the deposition flux. Here we investigate the ignition and evolution of these arcs and examine their behaviour for different conditions of argon pressure, power supply voltage, and current. We find that mixed-mode deposition is sensitive to the condition of the target surface, and changing the operating parameters causes changes in the target surface condition which themselves affect the discharge in a process of negative feedback. Initially the arcs are evenly distributed on the target racetrack, but after a long period of operation the mode of erosion changes and arcs become localised in a small region, resulting in a pronounced nodular structure. We also quantify macroparticle generation and observe a power-law size distribution typical of arc discharges. Fewer particles are generated for operation at lower Ar pressure when the arc spot velocity is higher.

  8. IEEE 342 Node Low Voltage Networked Test System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Kevin P.; Phanivong, Phillippe K.; Lacroix, Jean-Sebastian

    The IEEE Distribution Test Feeders provide a benchmark for new algorithms to the distribution analyses community. The low voltage network test feeder represents a moderate size urban system that is unbalanced and highly networked. This is the first distribution test feeder developed by the IEEE that contains unbalanced networked components. The 342 node Low Voltage Networked Test System includes many elements that may be found in a networked system: multiple 13.2kV primary feeders, network protectors, a 120/208V grid network, and multiple 277/480V spot networks. This paper presents a brief review of the history of low voltage networks and how theymore » evolved into the modern systems. This paper will then present a description of the 342 Node IEEE Low Voltage Network Test System and power flow results.« less

  9. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, G.J.; Sampayan, S.E.; Kirbie, H.C.

    1998-10-13

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 12 figs.

  10. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  11. Active Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Effinger, Robert T., IV; Aranda, Isaiah, Jr.; Copeland, Ben M.; Covington, Ed W., III

    2002-01-01

    Several active piezoelectric diaphragms were fabricated by placing unelectroded piezoelectric disks between copper clad films patterned with Inter-Circulating Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is radially distributed electric field that mechanically strains the piezo-ceramic along the Z-axis (perpendicular to the applied electric field), rather than the expected in-plane (XY-axis) direction. Unlike other out of plane piezoelectric actuators, which are benders, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements while maintaining a constant circumference. This paper covers the fabrication and characterization of these diaphragms as a function of poling field strength, ceramic diameter and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage ranging from DC to 10 Hz.

  12. Network topology and resilience analysis of South Korean power grid

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hwan; Eisenberg, Daniel A.; Chun, Yeong Han; Park, Jeryang

    2017-01-01

    In this work, we present topological and resilience analyses of the South Korean power grid (KPG) with a broad voltage level. While topological analysis of KPG only with high-voltage infrastructure shows an exponential degree distribution, providing another empirical evidence of power grid topology, the inclusion of low voltage components generates a distribution with a larger variance and a smaller average degree. This result suggests that the topology of a power grid may converge to a highly skewed degree distribution if more low-voltage data is considered. Moreover, when compared to ER random and BA scale-free networks, the KPG has a lower efficiency and a higher clustering coefficient, implying that highly clustered structure does not necessarily guarantee a functional efficiency of a network. Error and attack tolerance analysis, evaluated with efficiency, indicate that the KPG is more vulnerable to random or degree-based attacks than betweenness-based intentional attack. Cascading failure analysis with recovery mechanism demonstrates that resilience of the network depends on both tolerance capacity and recovery initiation time. Also, when the two factors are fixed, the KPG is most vulnerable among the three networks. Based on our analysis, we propose that the topology of power grids should be designed so the loads are homogeneously distributed, or functional hubs and their neighbors have high tolerance capacity to enhance resilience.

  13. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    NASA Astrophysics Data System (ADS)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  14. Space platform utilities distribution study

    NASA Technical Reports Server (NTRS)

    Lefever, A. E.

    1980-01-01

    Generic concepts for the installation of power data and thermal fluid distribution lines on large space platforms were discussed. Connections with central utility subsystem modules and pallet interfaces were also considered. Three system concept study platforms were used as basepoints for the detail development. The tradeoff of high voltage low voltage power distribution and the impact of fiber optics as a data distribution mechanism were analyzed. Thermal expansion and temperature control of utility lines and ducts were considered. Technology developments required for implementation of the generic distribution concepts were identified.

  15. The Thermal Regime Around Buried Submarine High-Voltage Cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  16. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  17. The Role of Additives in Improving Performance in High Voltage Lithium-Ion Batteries with Potentiostatic Holds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tornheim, Adam; He, Meinan; Su, Chi-Cheung

    In this work, various electrolyte additives designed for enhanced performance at high voltages were evaluated with elevated temperature potentiostatic holds with LiNi0.5Co0.2Mn0.3/Li4Ti5O12 full cells to determine their effect on the high voltage stability. Of the additives investigated, many showed increased oxidation current through the 60 hour potentiostatic holds test, and adversely affected both the capacity retention and interfacial impedance. Improved high voltage performance was observed with two additives, vinylene carbonate (VC) and 1,1,2,2- tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), which was attributed to two different mechanisms of improvement. This work challenges some conclusions in the available literature that an additive molecule that decomposesmore » on the charged cathode surface and passivates the surface against electrolyte oxidation.« less

  18. Supercapacitor Electrode Materials from Highly Porous Carbon Nanofibers with Tailored Pore Distributions

    NASA Astrophysics Data System (ADS)

    Chathurika Abeykoon, Nimali

    Environmental and human health risks associated with the traditional methods of energy production (e.g., oil and gas) and intermittency and uncertainty of renewable sources (e.g., solar and wind) have led to exploring effective and alternative energy sources to meet the growing energy demands. Electricity based on energy storage devices are the most promising solutions for realization of these objectives. Among the energy storage devices, electrochemical double layer capacitors (EDLCs) or supercapacitors have become an attractive research interest due to their outstanding performance, especially high power densities, long cycle life and rapid charge and discharge times, which enables them to utilize in many applications including consumer electronics and transportation, where high power is needed. However, low energy density of supercapacitors is a major obstacle to compete with the commercially existing high energy density energy storage device such as batteries. The fabrication of advanced electrodes materials with very high surface area from novel precursors and utilization of electrolytes with higher operating voltages are essential to enhance energy density of supercapacitors. In this work, carbon nanofibers (CNFs) from different polymer precursors with new fabrication techniques are explored to develop highly porous carbon with tailored pore distributions to match with employed ionic liquid electrolytes (which possess high working voltages), to realize high energy storage capability. Novel electrode materials derived from electrospun immiscible polymer blends and synthesized copolymers and terpolymers were described. Pore distributions of CNFs were tailored by varying the composition of polymers in immiscible blends or varying the monomer ratios of copolymer or terpolymers. Chapter 1 gives the detailed introduction of supercapacitors including history and storage principle of EDLCs, fabrication of carbon nanofiber based electrodes and electrolytes employed for EDLCs. It also explains the necessity and the advantages of tailored high surface area nanofibers as an electrode materials for supercapacitors. Chapter 2 describes the preparation of high surface area carbon nanofibers using polymer blends containing PAN and PMMA and introduces an effective and simple strategy to improve the surface area of CNFs by using a sacrificial polymer, PMMA. Chapter 3 describes blending of high fractional free volume polymer, 6FDA-DAM: DABA (3:2) into PBI to increase surface area and by using the higher etch rate of 6FDA-DAM: DABA in the blend to optimize pore distribution of CNFs. Chapter 4 introduces a novel approach to increase surface area of CNFs without any physical or chemical activation by using an in situ porogen containing copolymer P(AN-co-IA). The concept developed here avoids unnecessary and complex extra activation steps when fabricating carbon nanofibers which leads to lower char yield and uncontrollable pore sizes. Chapter 5 describes enhancement of surface area by using terpolymer P(AN-VIM-IA) to develop a new precursor. This approach is further advantageous since terpolymer can combine superior electrochemical properties of homopolymer, PAN and P(AN- co-IA) and P(AN-co-VIM). Chapter 6 describes the use of commercially available small molecule compatibilizer 2-MI to tailor pore architecture of carbon fiber derived from the immiscible blend of PBI/6FDD to match with the ion sizes of ionic liquid electrolytes thereby increasing the surface area of the CNFs that is accessible to electrolytes.

  19. Low Threshold Voltage Continuous Wave Vertical-Cavity Surface-Emitting Lasers

    DTIC Science & Technology

    1993-04-26

    Data are presented demonstrating a design and fabrication process for the realization of low- threshold , high-output vertical-cavity surface-emitting...layers), the low series resistance of the design results in a bias voltage on o 1.8 V at a threshold current of 1.9 mA for 10-micrometer-diam devices.... Vertical-cavity surface-emitting lasers.

  20. Data processing of high-rate low-voltage distribution grid recordings for smart grid monitoring and analysis

    NASA Astrophysics Data System (ADS)

    Maaß, Heiko; Cakmak, Hüseyin Kemal; Bach, Felix; Mikut, Ralf; Harrabi, Aymen; Süß, Wolfgang; Jakob, Wilfried; Stucky, Karl-Uwe; Kühnapfel, Uwe G.; Hagenmeyer, Veit

    2015-12-01

    Power networks will change from a rigid hierarchic architecture to dynamic interconnected smart grids. In traditional power grids, the frequency is the controlled quantity to maintain supply and load power balance. Thereby, high rotating mass inertia ensures for stability. In the future, system stability will have to rely more on real-time measurements and sophisticated control, especially when integrating fluctuating renewable power sources or high-load consumers like electrical vehicles to the low-voltage distribution grid.

  1. STM/STS Study of LixCoO2 Single Crystals

    NASA Astrophysics Data System (ADS)

    Iwaya, Katsuya; Minato, Taketoshi; Miyoshi, Kiyotaka; Takeuchi, Jun; Kim, Yousoo; Hitosugi, Taro

    2012-02-01

    We have performed low temperature scanning tunneling microscopy/spectroscopy (STM/STS) measurements on LixCoO2 (x=0.66) single crystal surfaces. A (1x1) hexagonal lattice was clearly observed and found to be moved by changing bias-voltage polarity, indicating that this could be associated with Li ions on the surface. Under the (1x1) hexagonal lattice, we imaged almost randomly distributed bright dots that were strongly dependent on bias-voltage, with insulating spectroscopic features. Different area on the surface showed a (2x2) hexagonal lattice that could be related to an ordering of Co^3+ and Co^4+ ions. These results suggest the electronic structure of LixCoO2 surface is inhomogeneous possibly due to segregation of Li ions.

  2. Excimer laser annealing for low-voltage power MOSFET

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim

    2016-08-01

    Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.

  3. High-frequency ac power distribution in Space Station

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C. Y.

    1990-01-01

    A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.

  4. Vacuum-surface flashover switch with cantilever conductors

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2001-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  5. Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes

    DOE PAGES

    Hu, E.; Lyu, Y.; Xin, H.; ...

    2016-09-26

    Li- and Mn-rich (LMR) cathode materials have been considered as promising candidates for energy storage applications due to high energy density. However, these materials suffer from a serious problem of voltage fade. Oxygen loss and the layer to spinel phase transition are two major contributors of such voltage fade. In this paper, using a combination of x-ray diffraction (XRD), pair distribution function (PDF), x-ray absorption (XAS) techniques and aberration-corrected scanning transmission electron microscopy (STEM), we studied the effects of micro structural defects, especially the grain boundaries on the oxygen loss and layered-to-spinel phase transition through prelithiation of a model compoundmore » Li2Ru0.5Mn0.5O3. It is found that the nano-sized micro structural defects, especially the large amount of grain boundaries created by the prelithiation can greatly accelerate the oxygen loss and voltage fade. Defects (such as nano-sized grain boundaries) and oxygen release form a positive feedback loop, promote each other during cycling, and accelerate the two major voltage fade contributors: the transition metal reduction and layered-to-spinel phase transition. These results clearly demonstrate the important relationships among the oxygen loss, microstructural defects and voltage fade. The importance of maintaining good crystallinity and protecting the surface of LMR material are also suggested.« less

  6. Single Crystal Diamond Needle as Point Electron Source.

    PubMed

    Kleshch, Victor I; Purcell, Stephen T; Obraztsov, Alexander N

    2016-10-12

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2-0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.

  7. Single Crystal Diamond Needle as Point Electron Source

    NASA Astrophysics Data System (ADS)

    Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2016-10-01

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2-0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.

  8. High voltage bushing having weathershed and surrounding stress relief collar

    DOEpatents

    Cookson, Alan H.

    1981-01-01

    A high voltage electric bushing comprises a hollow elongated dielectric weathershed which encloses a high voltage conductor. A collar formed of high voltage dielectric material is positioned over the weathershed and is bonded thereto by an interface material which precludes moisture-like contaminants from entering between the bonded portions. The collar is substantially thicker than the adjacent weathershed which it surrounds, providing relief of the electric stresses which would otherwise appear on the outer surface of the weathershed. The collar may include a conductive ring or capacitive foil to further relieve electric stresses experienced by the bushing.

  9. Proximity charge sensing for semiconductor detectors

    DOEpatents

    Luke, Paul N; Tindall, Craig S; Amman, Mark

    2013-10-08

    A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.

  10. 76 FR 72203 - Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-5-000] Voltage... currently coordinate the dispatch of reactive resources to support forecasted loads, generation and... reactive power needs of the distribution system or loads are coordinated or optimized. Panelists: Khaled...

  11. Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Pour, Maria Z. A.

    2016-01-01

    Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.

  12. Extraction of topographic and material contrasts on surfaces from SEM images obtained by energy filtering detection with low-energy primary electrons.

    PubMed

    Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru

    2013-01-01

    Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Directional mass transport in an atmospheric pressure surface barrier discharge.

    PubMed

    Dickenson, A; Morabit, Y; Hasan, M I; Walsh, J L

    2017-10-25

    In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow.

  14. A method for computing ion energy distributions for multifrequency capacitive discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Alan C. F.; Lieberman, M. A.; Verboncoeur, J. P.

    2007-03-01

    The ion energy distribution (IED) at a surface is an important parameter for processing in multiple radio frequency driven capacitive discharges. An analytical model is developed for the IED in a low pressure discharge based on a linear transfer function that relates the time-varying sheath voltage to the time-varying ion energy response at the surface. This model is in good agreement with particle-in-cell simulations over a wide range of single, dual, and triple frequency driven capacitive discharge excitations.

  15. Arc-textured high emittance radiator surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1991-01-01

    High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment.

  16. Correlations between the interfacial chemistry and current-voltage behavior of n-GaAs/liquid junctions

    NASA Technical Reports Server (NTRS)

    Tufts, Bruce J.; Casagrande, Louis G.; Lewis, Nathan S.; Grunthaner, Frank J.

    1990-01-01

    Correlations between the surface chemistry of etched, (100) oriented n-GaAs electrodes and their subsequent photoelectrochemical behavior have been probed by high-resolution X-ray photoelectron spectroscopy. GaAs photoanodes were chemically treated to prepare either an oxide-free near stoichiometric surface, a surface enriched in zero-valent arsenic or a substrate-oxide terminated surface. The current-voltage (I-V) behavior of each surface type was subsequently monitored in contact with several electrolytes.

  17. Two new families of high-gain dc-dc power electronic converters for dc-microgrids

    NASA Astrophysics Data System (ADS)

    Prabhala, Venkata Anand Kishore

    Distributing the electric power in dc form is an appealing solution in many applications such as telecommunications, data centers, commercial buildings, and microgrids. A high gain dc-dc power electronic converter can be used to individually link low-voltage elements such as solar panels, fuel cells, and batteries to the dc voltage bus which is usually 400 volts. This way, it is not required to put such elements in a series string to build up their voltages. Consequently, each element can function at it optimal operating point regardless of the other elements in the system. In this dissertation, first a comparative study of dc microgrid architectures and their advantages over their ac counterparts is presented. Voltage level selection of dc distribution systems is discussed from the cost, reliability, efficiency, and safety standpoints. Next, a new family of non-isolated high-voltage-gain dc-dc power electronic converters with unidirectional power flow is introduced. This family of converters benefits from a low voltage stress across its switches. The proposed topologies are versatile as they can be utilized as single-input or double-input power converters. In either case, they draw continuous currents from their sources. Lastly, a bidirectional high-voltage-gain dc-dc power electronic converter is proposed. This converter is comprised of a bidirectional boost converter which feeds a switched-capacitor architecture. The switched-capacitor stage suggested here has several advantages over the existing approaches. For example, it benefits from a higher voltage gain while it uses less number of capacitors. The proposed converters are highly efficient and modular. The operating modes, dc voltage gain, and design procedure for each converter are discussed in details. Hardware prototypes have been developed in the lab. The results obtained from the hardware agree with those of the simulation models.

  18. Does voltage predict return to work and neuropsychiatric sequelae following electrical burn injury?

    PubMed

    Chudasama, Shruti; Goverman, Jeremy; Donaldson, Jeffrey H; van Aalst, John; Cairns, Bruce A; Hultman, Charles Scott

    2010-05-01

    Voltage has historically guided the acute management and long-term prognosis of physical morbidity in electrical injury patients; however, few large studies exist that include neuropsychiatric morbidity in final outcome analysis. This review compares high (>1000 V) to low (<1000 V) voltage injuries, focusing on return to work and neuropsychiatric sequelae following electrical burn injury. Patients with electrical injuries admitted to the University of North Carolina Jaycee Burn Center between 2000 and 2005 were prospectively entered into a trauma database, then retrospectively reviewed. Patients were divided into 4 cohorts: high voltage (>1000 V), low voltage (<1000 V), flash arc, and lightning. Demographics, hospital course, and follow-up were recorded to determine physical and neuropsychiatric morbidity. Differences among cohorts were tested for statistical significance. Over 5 years, 2548 patients were admitted to the burn center, including 115 patients with electrical injuries. There were 110 males and 5 females, with a mean age of 35 years (range, 0.75-65 years). The cause of the electrical injury was high voltage in 60 cases, low voltage in 25 cases, flash arc in 29 cases and lightning in 1 case. The mean total body surface area burn was 8% (range, 0%-52%). The etiology was work-related electrical injury in 85 patients. Mean follow-up period was 352 days with 13 (11%) patients lost to follow-up. Patients with high voltage injuries had significantly larger total body surface area burn, longer ICU stays, longer hospitalizations, and significantly higher rates of fasciotomy, amputation, nerve decompression and outpatient reconstruction, with 4 cases of renal failure and 2 deaths. In spite of these differences, high and low voltage groups experienced similar rates of neuropsychiatric sequelae, limited return to work and delays in return to work. Final impairment ratings for the high and low voltage groups were 17.5% and 5.3%, respectively. Electrical injuries often incur severe morbidity despite relatively small burn size and/or low voltage. When comparing high and low voltage injuries, similarities in endpoints such as neuropsychiatric sequelae, the need for late reconstruction, and failure to return to work challenge previous notions that voltage predicts outcome.

  19. Effect of substrate bias voltage on tensile properties of single crystal silicon microstructure fully coated with plasma CVD diamond-like carbon film

    NASA Astrophysics Data System (ADS)

    Zhang, Wenlei; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2018-06-01

    Tensile strength and strength distribution in a microstructure of single crystal silicon (SCS) were improved significantly by coating the surface with a diamond-like carbon (DLC) film. To explore the influence of coating parameters and the mechanism of film fracture, SCS microstructure surfaces (120 × 4 × 5 μm3) were fully coated by plasma enhanced chemical vapor deposition (PECVD) of a DLC at five different bias voltages. After the depositions, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal desorption spectrometry (TDS), surface profilometry, atomic force microscope (AFM) measurement, and nanoindentation methods were used to study the chemical and mechanical properties of the deposited DLC films. Tensile test indicated that the average strength of coated samples was 13.2-29.6% higher than that of the SCS sample, and samples fabricated with a -400 V bias voltage were strongest. The fracture toughness of the DLC film was the dominant factor in the observed tensile strength. Deviations in strength were reduced with increasingly negative bias voltage. The effect of residual stress on the tensile properties is discussed in detail.

  20. Measurement System of Surface Electrostatic Potential on Insulation Board in Vacuum and its Application

    NASA Astrophysics Data System (ADS)

    Morita, Hiroshi; Hatanaka, Ayumu; Yokosuka, Toshiyuki; Seki, Yoshitaka; Tsumuraya, Yoshiaki; Doi, Motomichi

    The measurement system of the surface electrostatic potential on a solid insulation board in vacuum has been developed. We used this system to measure the electrostatic potential distribution of the surface of a borosilicate glass plate applied a high voltage. A local increase in the electric field was observed. It is considered that this phenomenon is caused by a positive electrostatic charge generated by a secondary emission of field emission electrons from an electrode. On the other hand, a local increase in the electric field was not observed on a glass plate coated with silica particles and a glass plate roughened by sandblast. We reasoned that this could be because the electrons were trapped by the roughness of the surface. It is considered that these phenomena make many types of equipment using the vacuum insulation more reliable.

  1. The harmonic impact of electric vehicle battery charging

    NASA Astrophysics Data System (ADS)

    Staats, Preston Trent

    The potential widespread introduction of the electric vehicle (EV) presents both opportunities and challenges to the power systems engineers who will be required to supply power to EV batteries. One of the challenges associated with EV battery charging comes from the potentially high harmonic currents associated with the conversion of ac power system voltages to dc EV battery voltages. Harmonic currents lead to increased losses in distribution circuits and reduced life expectancy of such power distribution components as capacitors and transformers. Harmonic current injections also cause harmonic voltages on power distribution networks. These distorted voltages can affect power system loads and specific standards exist regulating acceptable voltage distortion. This dissertation develops and presents the theory required to evaluate the electric vehicle battery charger as a harmonic distorting load and its possible harmonic impact on various aspects of power distribution systems. The work begins by developing a method for evaluating the net harmonic current injection of a large collection of EV battery chargers which accounts for variation in the start-time and initial battery state-of-charge between individual chargers. Next, this method is analyzed to evaluate the effect of input parameter variation on the net harmonic currents predicted by the model. We then turn to an evaluation of the impact of EV charger harmonic currents on power distribution systems, first evaluating the impact of these currents on a substation transformer and then on power distribution system harmonic voltages. The method presented accounts for the uncertainty in EV harmonic current injections by modeling the start-time and initial battery state-of-charge (SOC) of an individual EV battery charger as random variables. Thus, the net harmonic current, and distribution system harmonic voltages are formulated in a stochastic framework. Results indicate that considering variation in start-time and SOC leads to reduced estimates of harmonic current injection when compared to more traditional methods that do not account for variation. Evaluation of power distribution system harmonic voltages suggests that for any power distribution network there is a definite threshold penetration of EVs, below which the total harmonic distortion of voltage exceeds 5% at an insignificant number of buses. Thus, most existing distribution systems will probably be able to accommodate the early introduction of EV battery charging without widespread harmonic voltage problems.

  2. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    PubMed

    Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.

  3. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System

    PubMed Central

    Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556

  4. 30 CFR 75.823 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Scope. 75.823 Section 75.823 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.823 Scope...

  5. Nonequilibrium segregation and phase instability in alloy films during elevated-temperature irradiation in a high-voltage electron microscope

    NASA Astrophysics Data System (ADS)

    Lam, N. Q.; Okamoto, P. R.

    1984-05-01

    The effects of defect-production rate gradients, caused by the radial nonuniformity in the electron flux distribution, on solute segregation and phase stability in alloy films undergoing high-voltage electron-microscope (HVEM) irradiation at high temperatures are assessed. Two-dimensional (axially symmetric) compositional redistributions were calculated, taking into account both axial and transverse radial defect fluxes. It was found that when highly focused beams were employed radiation-induced segregation consisted of two stages: dominant axial segregation at the film surfaces at short irradiation times and competitive radial segregation at longer times. The average alloy composition within the irradiated region could differ greatly from that irradiated with a uniform beam, because of the additional atom transport from or to the region surrounding the irradiated zone under the influence of radial fluxes. Damage-rate gradient effects must be taken into account when interpreting in-situ HVEM observations of segregation-induced phase instabilities. The theoretical predictions are compared with experimental observations of the temporal and spatial dependence of segregation-induced precipitation in thin films of Ni-Al, Ni-Ge and Ni-Si solid solutions.

  6. Analysis of the silicone polymer surface aging profile with laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xilin; Hong, Xiao; Wang, Han; Chen, Can; Zhao, Chenlong; Jia, Zhidong; Wang, Liming; Zou, Lin

    2017-10-01

    Silicone rubber composite materials have been widely used in high voltage transmission lines for anti-pollution flashover. The aging surface of silicone rubber materials decreases service properties, causing loss of the anti-pollution ability. In this paper, as an analysis method requiring no sample preparation that is able to be conducted on site and suitable for nearly all types of materials, laser-induced breakdown spectroscopy (LIBS) was used for the analysis of newly prepared and aging (out of service) silicone rubber composites. With scanning electron microscopy (SEM) and hydrophobicity test, LIBS was proven to be nearly non-destructive for silicone rubber. Under the same LIBS testing parameters, a linear relationship was observed between ablation depth and laser pulses number. With the emission spectra, all types of elements and their distribution in samples along the depth direction from the surface to the inner part were acquired and verified with EDS results. This research showed that LIBS was suitable to detect the aging layer depth and element distribution of the silicone rubber surface.

  7. Surface Engineering of ITO Substrates to Improve the Memory Performance of an Asymmetric Conjugated Molecule with a Side Chain.

    PubMed

    Hou, Xiang; Cheng, Xue-Feng; Xiao, Xin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-09-05

    Organic multilevel random resistive access memory (RRAM) devices with an electrode/organic layer/electrode sandwich-like structure suffer from poor reproducibility, such as low effective ternary device yields and a wide threshold voltage distribution, and improvements through organic material renovation are rather limited. In contrast, engineering of the electrode surfaces rather than molecule design has been demonstrated to boost the performance of organic electronics effectively. Herein, we introduce surface engineering into organic multilevel RRAMs to enhance their ternary memory performance. A new asymmetric conjugated molecule composed of phenothiazine and malononitrile with a side chain (PTZ-PTZO-CN) was fabricated in an indium tin oxide (ITO)/PTZ-PTZO-CN/Al sandwich-like memory device. Modification of the ITO substrate with a phosphonic acid (PA) prior to device fabrication increased the ternary device yield (the ratio of effective ternary device) and narrowed the threshold voltage distribution. The crystallinity analysis revealed that PTZ-PTZO-CN grown on untreated ITO crystallized into two phases. After the surface engineering of ITO, this crystalline ambiguity was eliminated and a sole crystal phase was obtained that was the same as in the powder state. The unified crystal structure and improved grain mosaicity resulted in a lower threshold voltage and, therefore, a higher ternary device yield. Our result demonstrated that PA modification also improved the memory performance of an asymmetric conjugated molecule with a side chain. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. SDVSRM - a new SSRM based technique featuring dynamically adjusted, scanner synchronized sample voltages for measurement of actively operated devices.

    PubMed

    Doering, Stefan; Wachowiak, Andre; Roetz, Hagen; Eckl, Stefan; Mikolajick, Thomas

    2018-06-01

    Scanning spreading resistance microscopy (SSRM) with its high spatial resolution and high dynamic signal range is a powerful tool for two-dimensional characterization of semiconductor dopant areas. However, the application of the method is limited to devices in equilibrium condition, as the investigation of actively operated devices would imply potential differences within the device, whereas SSRM relies on a constant voltage difference between sample surface and probe tip. Furthermore, the standard preparation includes short circuiting of all device components, limiting applications to devices in equilibrium condition. In this work scanning dynamic voltage spreading resistance microscopy (SDVSRM), a new SSRM based two pass atomic force microscopy (AFM) technique is introduced, overcoming these limitations. Instead of short circuiting the samples during preparation, wire bond devices are used allowing for active control of the individual device components. SDVSRM consists of two passes. In the first pass the local sample surface voltage dependent on the dc biases applied to the components of the actively driven device is measured as in scanning voltage microscopy (SVM). The local spreading resistance is measured within the second pass, in which the afore obtained local surface voltage is used to dynamically adjust the terminal voltages of the device under test. This is done in a way that the local potential difference across the nano-electrical contact matches the software set SSRM measurement voltage, and at the same time, the internal voltage differences within the device under test are maintained. In this work the proof of the concept could be demonstrated by obtaining spreading resistance data of an actively driven photodiode test device. SDVSRM adds a higher level of flexibility in general to SSRM, as occurring differences in cross section surface voltage are taken into account. These differences are immanent for actively driven devices, but can also be present at standard, short circuited samples. Therefore, SDVSRM could improve the characterization under equilibrium conditions as well. Copyright © 2018. Published by Elsevier B.V.

  9. Discontinuous model with semi analytical sheath interface for radio frequency plasma

    NASA Astrophysics Data System (ADS)

    Miyashita, Masaru

    2016-09-01

    Sumitomo Heavy Industries, Ltd. provide many products utilizing plasma. In this study, we focus on the Radio Frequency (RF) plasma source by interior antenna. The plasma source is expected to be high density and low metal contamination. However, the sputtering the antenna cover by high energy ion from sheath voltage still have been problematic. We have developed the new model which can calculate sheath voltage wave form in the RF plasma source for realistic calculation time. This model is discontinuous that electronic fluid equation in plasma connect to usual passion equation in antenna cover and chamber with semi analytical sheath interface. We estimate the sputtering distribution based on calculated sheath voltage waveform by this model, sputtering yield and ion energy distribution function (IEDF) model. The estimated sputtering distribution reproduce the tendency of experimental results.

  10. Breakdown Conditioning Chacteristics of Precision-Surface-Treatment-Electrode in Vacuum

    NASA Astrophysics Data System (ADS)

    Kato, Kastumi; Fukuoka, Yuji; Inagawa, Yukihiko; Saitoh, Hitoshi; Sakaki, Masayuki; Okubo, Hitoshi

    Breakdown (BD) characteristics in vacuum are strongly dependent on the electrode surface condition, like the surface roughness etc. Therefore, in order to develop a high voltage vacuum circuit breaker, it is important to optimize the surface treatment process. This paper discusses about the effect of precision-surface-treatment of the electrode on breakdown conditioning characteristics under non-uniform electric field in vacuum. Experimental results reveal that the electrode surface treatment affects the conditioning process, especially the BD voltage and the BD field strength at the initial stage of the conditioning.

  11. High voltage insulation of bushing for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun

    2012-12-01

    For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.

  12. Modeling of surface flashover on spacecraft

    NASA Technical Reports Server (NTRS)

    Kushner, Mark J.

    1991-01-01

    A model for predicting the onset of surface flashover discharges (SFDs) in the context of high voltage pulse power modulators was developed and used to investigate mechanisms leading to the onset of SFDs. We demonstrated that it is possible to analyze surface discharges in a manner similar to gas phase discharges using transport coefficients such as the first Townsend coefficient. Our parameterization of various methods to prevent, or at least delay, the onset of SFDs was not particularly successful in that many of the strategies that we investigated do not yield significantly improved performance. The only safe strategy to reduce the occurrence of SFDs is to prevent the dielectric from being charged in the first place. This leads one to consider passive or active schemes which employ the low pressure of attaching gases which flood the surface prior or coincident to pulsing the high voltage apparatus. Our calculations indicate that only small amounts gas (10s Torr effective pressure at substrate) would be sufficient for many of the anticipated applications. If the surface is flooded only when high voltage is applied across the dielectric, the gas consumption would be nominal.

  13. Magnetic Helicity Injection and Thermal Transport

    NASA Astrophysics Data System (ADS)

    Moses, Ronald; Gerwin, Richard; Schoenberg, Kurt

    1999-11-01

    In magnetic helicity injection, a current is driven between electrodes, parallel to the magnetic field in the edge plasma of a machine.^1 Plasma instabilities distribute current throughout the plasma. To model the injection of magnetic helicity, K, into an arbitrary closed surface, K is defined as the volume integral of A^.B. To make K unique, a gauge is chosen where the tangential surface components of A are purely solenoidal. If magnetic fields within a plasma are time varying, yet undergo no macroscopic changes over an extended period, and if the plasma is subject to an Ohm’s law with Hall terms, then it is shown that no closed magnetic surfaces with sustained internal currents can exist continuously within the plasma.^2 It is also shown that parallel thermal transport connects all parts of the plasma to the helicity injection electrodes and requires the electrode voltage difference to be at least 2.5 to 3 times the peak plasma temperature. This ratio is almost independent of the length of the electron mean-free path. If magnetic helicity injection is to be used for fusion-grade plasmas, then high-voltage, high-impedance injection techniques must be developed. ^1T. R. Jarboe, Plasma Physics and Controlled Fusion, V36, 945-990 (June 1994). ^2R. W. Moses, 1991 Sherwood International Fusion Theory Conference, Seattle, WA (April 22-24, 1991).

  14. Voltage controlled Bi-mode resistive switching effects in MnO2 based devices

    NASA Astrophysics Data System (ADS)

    Hu, P.; Wu, S. X.; Wang, G. L.; Li, H. W.; Li, D.; Li, S. W.

    2018-01-01

    In this paper, the voltage induced bi-mode resistive switching behavior of an MnO2 thin film based device was studied. The device showed prominent bipolar resistive switching behavior with good reproducibility and high endurance. In addition, complementary resistive switching characteristics can be observed by extending the voltage bias during voltage sweep operations. The electrical measurement data and fitting results indicate that the oxygen vacancies act as defects to form a conductive path, which is connective or disrupted to realize a low resistive state or a high resistive state. Changing the sweep voltage can tune the oxygen vacancies distribution, which will achieve complementary resistive switching.

  15. Advanced Power Electronics and Smart Inverters | Grid Modernization | NREL

    Science.gov Websites

    provide grid services such as voltage and frequency regulation, ride-through, dynamic current injection impacts of smart inverters on distribution systems. These activities are focused on enabling high combines high-voltage silicon carbide with revolutionary concepts such as additive manufacturing and multi

  16. Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion

    DTIC Science & Technology

    2010-06-01

    surface equipotential and a correspondes to the model sphere radius. It can also see that the applied voltage is necessary to obtain the surface ...between the tip and extractor, the equipotential line whose angle relative to the x axis is approximately 49 degrees is selected as the Taylor cone surface ...model. Then the electric field on such equipotential line is found by equation 7.5 and used for the distribution along the cone surface . This

  17. Mixed Electronic and Ionic Conductor-Coated Cathode Material for High-Voltage Lithium Ion Battery.

    PubMed

    Shim, Jae-Hyun; Han, Jung-Min; Lee, Joon-Hyung; Lee, Sanghun

    2016-05-18

    A lithium ionic conductor, Li1.3Al0.3Ti1.7(PO4)3 (LATP), is introduced as a coating material on the surface of Mg-doped LiCoO2 to improve electrochemical performances for high-voltage (4.5 V) lithium ion batteries. Structure, morphology, elemental distribution, and electrical properties of the materials are thoroughly characterized by SEM, TEM, EELS, EDS, and C-AFM. The coating layer is electrically conductive with the aid of Mg ions which are used as a dopant for the active materials; therefore, this mixed electronic ionic conductor strongly enhances the electrochemical performances of initial capacity, cycling property, and rate capability. The LATP coating layer also demonstrates very promising applicability for 4.4 V prismatic full cells with graphite anode, which correspond to the 4.5 V half-cells with lithium anode. The 2900 mA h full cells show 85% of capacity retention after 500 cycles and more than 60% after 700 cycles.

  18. Copper pillar and memory characteristics using Al2O3 switching material for 3D architecture.

    PubMed

    Maikap, Siddheswar; Panja, Rajeswar; Jana, Debanjan

    2014-01-01

    A novel idea by using copper (Cu) pillar is proposed in this study, which can replace the through-silicon-vias (TSV) technique in future three-dimensional (3D) architecture. The Cu pillar formation under external bias in an Al/Cu/Al2O3/TiN structure is simple and low cost. The Cu pillar is formed in the Al2O3 film under a small operation voltage of <5 V and a high-current-carrying conductor of >70 mA is obtained. More than 100 devices have shown tight distribution of the Cu pillars in Al2O3 film for high current compliance (CC) of 70 mA. Robust read pulse endurances of >10(6) cycles are observed with read voltages of -1, 1, and 4 V. However, read endurance is failed with read voltages of -1.5, -2, and -4 V. By decreasing negative read voltage, the read endurance is getting worst, which is owing to ruptured Cu pillar. Surface roughness and TiO x N y on TiN bottom electrode are observed by atomic force microscope and transmission electron microscope, respectively. The Al/Cu/Al2O3/TiN memory device shows good bipolar resistive switching behavior at a CC of 500 μA under small operating voltage of ±1 V and good data retention characteristics of >10(3) s with acceptable resistance ratio of >10 is also obtained. This suggests that high-current operation will help to form Cu pillar and lower-current operation will have bipolar resistive switching memory. Therefore, this new Cu/Al2O3/TiN structure will be benefited for 3D architecture in the future.

  19. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE PAGES

    Li, Peng; Ji, Haoran; Wang, Chengshan; ...

    2017-03-22

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  20. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Ji, Haoran; Wang, Chengshan

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  1. A Double-Pole High Voltage High Current Switch

    DTIC Science & Technology

    2005-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited A DOUBLE- POLE HIGH...December 2005 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: A Double- Pole High Voltage High Current Switch 6. AUTHOR(S...to divert heavy charged particles, e.g. Cu+. 15. NUMBER OF PAGES 68 14. SUBJECT TERMS Double- Pole , Pulse Forming Inductive Network, PFIN

  2. Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications Rad-Hard, Miniaturized

    NASA Technical Reports Server (NTRS)

    Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.

    2011-01-01

    A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.

  3. Plasma Actuators for Turbomachinery Flow Control

    NASA Technical Reports Server (NTRS)

    Miles, Richard, B; Shneider, Mikhail, N.

    2012-01-01

    This report is Part I of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. The period of performance was January 1, 2007 to December 31, 2010. This report includes the project summary, a list of publications and reprints of the publications that appeared in archival journals. Part II of the final report includes a Ph.D. dissertation and is published separately as NASA/CR-2012-2172655. The research performed under this project was focused on the operation of surface dielectric barrier discharge (DBD) devices driven by high voltage, nanosecond scale pulses plus constant or time varying bias voltages. The main interest was in momentum production and the range of voltages applied eliminated significant heating effects. The approach was experimental supplemented by computational modeling. All the experiments were conducted at Princeton University. The project provided comprehensive understanding of the associated physical phenomena. Limitations on the performance of the devices for the generation of high velocity surface jets were established and various means for overcoming those limitations were proposed and tested. The major limitations included the maximum velocity limit of the jet due to electrical breakdown in air and across the dielectric, the occurrence of backward breakdown during the short pulse causing reverse thrust, the buildup of surface charge in the dielectric offsetting the forward driving potential of the bias voltage, and the interaction of the surface jet with the surface through viscous losses. It was also noted that the best performance occurred when the nanosecond pulse and the bias voltage were of opposite sign. Solutions include the development of partially conducting surface coatings, the development of a semiconductor diode inlaid surface material to suppress the backward breakdown. Extension to long discharge channels was studied and a new ozone imaging method developed for more quantitative determination of surface jet properties.

  4. A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors.

    PubMed

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  5. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    PubMed Central

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  6. Ion Voltage Diagnostics in the Far-Field Plume of a High-Specific Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Haas, James M.; Gallimore, Alec D.

    2003-01-01

    The effects of the magnetic field and discharge voltage on the far-field plume of the NASA 173Mv2 laboratory-model Hall thruster were investigated. A cylindrical Langmuir probe was used to measure the plasma potential and a retarding potential analyzer was employed to measure the ion voltage distribution. The plasma potential was affected by relatively small changes in the external magnetic field, which suggested a means to control the plasma surrounding the thruster. As the discharge voltage increased, the ion voltage distribution showed that the acceleration efficiency increased and the dispersion efficiency decreased. This implied that the ionization zone was growing axially and moving closer to the anode, which could have affected thruster efficiency and lifetime due to higher wall losses. However, wall losses may have been reduced by improved focusing efficiency since the total efficiency increased and the plume divergence decreased with discharge voltage.

  7. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer.

    PubMed

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-05-20

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.

  8. Unraveling surface and bulk trap states in lead halide perovskite solar cells using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Han, Changfeng; Wang, Kai; Zhu, Xixiang; Yu, Haomiao; Sun, Xiaojuan; Yang, Qin; Hu, Bin

    2018-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been widely recognized as an excellent candidate for next-generation photovoltaic materials because of their highly efficient power conversion. Acquiring a complete understanding of trap states and dielectric properties in OIHP-based solar cells at the steady state is highly desirable in order to further explore and improve their optoelectronic functionalities and properties. We report CH3NH3PbI3-x Cl x -based planar solar cells with a power conversion efficiency (PCE) of 15.8%. The illumination intensity dependence of the current density-voltage (J-V) revealed the presence of trap-assisted recombination at low fluences. Non-destructive ac impedance spectroscopy (ac-IS) was applied to characterize the device at the steady state. The capacitance-voltage (C-V) spectra exhibited some distinct variations at a wide range of ac modulation frequencies with and without photo-excitations. Since the frequency-dependent chemical capacitance ({{C}μ }) is concerned with the surface and bulk related density of states (DOS) in CH3NH3PbI3-x Cl x , we verified this by fitting the corresponding DOS by a Gaussian distribution function. We ascertained that the electronic sub-gap trap states present in the solution processed CH3NH3PbI3-x Cl x and their distribution differs from the surface to the bulk. In fact, we demonstrated that both surfaces that were adjacent to the electron and hole transport layers featured analogous DOS. Despite this, photo- and bias-induced giant dielectric responses (i.e. both real and imaginary parts) were detected. A remarkable reduction of {{C}μ } at higher frequencies (i.e. more than 100 kHz) was ascribed to the effect of dielectric loss in CH3NH3PbI3-x Cl x .

  9. The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption

    NASA Astrophysics Data System (ADS)

    Cheng, Xian; Duan, Xiongying; Liao, Minfu; Huang, Zhihui; Luo, Yan; Zou, Jiyan

    2013-08-01

    Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum interrupter has an excellent ability to deal with the steep rising part of the transient recovery voltage (TRV), while the SF6 interrupter can withstand the peak part of the voltage easily. An HCB can take advantage of the interrupters in the current interruption process. In this study, an HCB model based on the vacuum ion diffusion equations, ion density equation, and modified Cassie-Mayr arc equation is explored. A simulation platform is constructed by using a set of software called the alternative transient program (ATP). An HCB prototype is also designed, and the short circuit current is interrupted by the HCB under different action sequences of contacts. The voltage distribution of the HCB is analyzed through simulations and tests. The results demonstrate that if the vacuum interrupter withstands the initial TRV and interrupts the post-arc current first, then the recovery speed of the dielectric strength of the SF6 interrupter will be fast. The voltage distribution between two interrupters is determined by their post-arc resistance, which happens after current-zero, and subsequently, it is determined by the capacitive impedance after the post-arc current decays to zero.

  10. Particle flows to shape and voltage surface discontinuities in the electron sheath surrounding a high voltage solar array in LEO

    NASA Technical Reports Server (NTRS)

    Metz, Roger N.

    1991-01-01

    This paper discusses the numerical modeling of electron flows from the sheath surrounding high positively biased objects in LEO (Low Earth Orbit) to regions of voltage or shape discontinuity on the biased surfaces. The sheath equations are derived from the Two-fluid, Warm Plasma Model. An equipotential corner and a plane containing strips of alternating voltage bias are treated in two dimensions. A self-consistent field solution of the sheath equations is outlined and is pursued through one cycle. The electron density field is determined by numerical solution of Poisson's equation for the electrostatic potential in the sheath using the NASCAP-LEO relation between electrostatic potential and charge density. Electron flows are calculated numerically from the electron continuity equation. Magnetic field effects are not treated.

  11. High rate copper and energy recovery in microbial fuel cells

    PubMed Central

    Rodenas Motos, Pau; ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J. N.; Sleutels, Tom H. J. A.

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L-1 Cu2+) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m-2 in combination with a power density of 5.5 W m-2 was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery. PMID:26150802

  12. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.

    1998-09-22

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.

  13. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  14. A Comparison of Brayton and Stirling Space Nuclear Power Systems for Power Levels from 1 Kilowatt to 10 Megawatts

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2000-01-01

    An analytical study was conducted to assess the performance and mass of Brayton and Stirling nuclear power systems for a wide range of future NASA space exploration missions. The power levels and design concepts were based on three different mission classes. Isotope systems, with power levels from 1 to 10 kW, were considered for planetary surface rovers and robotic science. Reactor power systems for planetary surface outposts and bases were evaluated from 10 to 500 kW. Finally, reactor power systems in the range from 100 kW to 10 mW were assessed for advanced propulsion applications. The analysis also examined the effect of advanced component technology on system performance. The advanced technologies included high temperature materials, lightweight radiators, and high voltage power management and distribution.

  15. Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.

    PubMed

    Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan

    2017-08-13

    Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  16. Accelerated life testing and reliability of high K multilayer ceramic capacitors

    NASA Technical Reports Server (NTRS)

    Minford, W. J.

    1981-01-01

    The reliability of one lot of high K multilayer ceramic capacitors was evaluated using accelerated life testing. The degradation in insulation resistance was characterized as a function of voltage and temperature. The times to failure at a voltage-temperature stress conformed to a lognormal distribution with a standard deviation approximately 0.5.

  17. Surface insulating properties of titanium implanted alumina ceramics by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Zhu, Mingdong; Song, Falun; Li, Fei; Jin, Xiao; Wang, Xiaofeng; Wang, Langping

    2017-09-01

    The insulating property of the alumina ceramic in vacuum under high voltage is mainly limited by its surface properties. Plasma immersion ion implantation (PIII) is an effective method to modify the surface chemical and physical properties of the alumina ceramic. In order to improve the surface flashover voltage of the alumina ceramic in vacuum, titanium ions with an energy of about 20 keV were implanted into the surface of the alumina ceramic using the PIII method. The surface properties of the as-implanted samples, such as the chemical states of the titanium, morphology and surface resistivity, were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and electrometer, respectively. The surface flashover voltages of the as-implanted alumina samples were measured by a vacuum surface flashover experimental system. The XPS spectra revealed that a compound of Ti, TiO2 and Al2O3 was formed in the inner surface of the alumina sample. The electrometer results showed that the surface resistivity of the implanted alumina decreased with increased implantation time. In addition, after the titanium ion implantation, the maximum hold-off voltage of alumina was increased to 38.4 kV, which was 21.5% higher than that of the unimplanted alumina ceramic.

  18. Voltage-induced swelling and deswelling of weak polybase brushes.

    PubMed

    Weir, Michael P; Heriot, Sasha Y; Martin, Simon J; Parnell, Andrew J; Holt, Stephen A; Webster, John R P; Jones, Richard A L

    2011-09-06

    We have investigated a novel method of remotely switching the conformation of a weak polybase brush using an applied voltage. Surface-grafted polyelectrolyte brushes exhibit rich responsive behavior and show great promise as "smart surfaces", but existing switching methods involve physically or chemically changing the solution in contact with the brush. In this study, high grafting density poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes were grown from silicon surfaces using atom transfer radical polymerization. Optical ellipsometry and neutron reflectivity were used to measure changes in the profiles of the brushes in response to DC voltages applied between the brush substrate and a parallel electrode some distance away in the surrounding liquid (water or D(2)O). Positive voltages were shown to cause swelling, while negative voltages in some cases caused deswelling. Neutron reflectometry experiments were carried out on the INTER reflectometer (ISIS, Rutherford Appleton Laboratory, UK) allowing time-resolved measurements of polymer brush structure. The PDMAEMA brushes were shown to have a polymer volume fraction profile described by a Gaussian-terminated parabola both in the equilibrium and in the partially swollen states. At very high positive voltages (in this study, positive bias means positive voltage to the brush-bearing substrate), the brush chains were shown to be stretched to an extent comparable to their contour length, before being physically removed from the interface. Voltage-induced swelling was shown to exhibit a wider range of brush swelling states in comparison to pH switching, with the additional advantages that the stimulus is remotely controlled and may be fully automated. © 2011 American Chemical Society

  19. Test Results From a Simulated High-Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  20. Test Results from a Simulated High Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  1. Study on the streamer inception characteristics under positive lightning impulse voltage

    NASA Astrophysics Data System (ADS)

    Wang, Zezhong; Geng, Yinan

    2017-11-01

    The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  2. Optimal Operation and Management for Smart Grid Subsumed High Penetration of Renewable Energy, Electric Vehicle, and Battery Energy Storage System

    NASA Astrophysics Data System (ADS)

    Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu

    2016-04-01

    Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.

  3. [4,4‧-bi(1,3,2-dioxathiolane)] 2,2‧-dioxide: A novel cathode additive for high-voltage performance in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hyun; Yoon, Sukeun; Hwang, Eui-Hyung; Kwon, Young-Gil; Lee, Young-Gi; Cho, Kuk Young

    2018-02-01

    High-voltage operation of lithium-ion batteries (LIBs) is a facile approach to obtaining high specific energy density, especially for LiNi0·5Mn0·3Co0·2O2 (NMC532) cathodes currently used in mid- and large-sized energy storage devices. However, high-voltage charging (>4.3 V) is accompanied by a rapid capacity fade over long cycles due to severe continuous electrolyte decomposition and instability at the cathode surface. In this study, the sulfite-based compound, [4,4‧-bi(1,3,2-dioxathiolane)] 2,2‧-dioxide (BDTD) is introduced as a novel electrolyte additive to enhance electrochemical performances of alumina-coated NMC532 cathodes cycled in the voltage range of 3.0-4.6 V. X-ray photoelectron spectroscopy (XPS) and AC impedance of cells reveal that BDTD preferentially oxidizes prior to the electrolyte solvents and forms stable film layers on to the cathode surface, preventing increased impedance caused by repeated electrolyte solvent decomposition in high-voltage operation. The cycling performance of the Li/NMC532 half-cell using an electrolyte of 1.0 M LiPF6 in ethylene carbonate/ethyl methyl carbonate (3/7, in volume) can be improved by adding a small amount of BDTD into the electrolyte. BDTD enables the usage of sulfite-type additives for cathodes in high-voltage operation.

  4. Lockheed Martin T-Rex: Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-07-31

    T-Rex is a robot which may be used in toxic or flammable environments. The assessment of the T-Rex conducted at the Lockheed Martin facility was limited in its scope. The scope of the assessment was directed by the type of equipment being used and the amount of accessibility to the equipment. Due to severe time constraints--the assessment was conducted in one day--human factors interface activities were limited. This should be considered a preliminary assessment. This report covers aspects of the technology that were available to the assessment team. Recommendations for future evaluation of this technology are also included. The contentsmore » are as follows: Electrical Considerations; General Electrical Consideration; Trailing Cables; Grounding; Surface High Voltage Distribution; Low and Medium Voltage Alternating Current Circuits; Potential for Harmful Human Factor Incidents and Enterprise Disablement; Exclusion Zone Emergency Maintenance; and Recommendations.« less

  5. Experimental results on plasma interactions with large surfaces at high voltages

    NASA Technical Reports Server (NTRS)

    Grier, N. T.

    1980-01-01

    Multikilowatt power levels for future payloads can be more efficiently generated using solar arrays operating in the kilovolt range. This implies that large areas of the array at high operating voltages will be exposed to the space plasma environment. The resulting interactions of these high voltage surfaces with space plasma environments can seriously impact the performance of the satellite system. The plasma-surface interaction phenomena were studied in tests performed in two separate vacuum chambers, a 4.6 m diameter by 19.2 long chamber and a 20 m diameter by 27.4 m long chamber. The generated plasma density was approximately 1x10 to the 4th power/cu cm. Ten solar array panels, each with areas of 1400 sq cm were used in the tests. Nine of the solar panels were tested as a composite unit in the form of a 3x3 solar panel matrix. The results from all the tests confirmed small sample tests results: insulators were found to enhance the plasma coupling current for high positive bias and arcing was found to occur at high negative bias.

  6. Numerical Computation of Electric Field and Potential Along Silicone Rubber Insulators Under Contaminated and Dry Band Conditions

    NASA Astrophysics Data System (ADS)

    Arshad; Nekahi, A.; McMeekin, S. G.; Farzaneh, M.

    2016-09-01

    Electrical field distribution along the insulator surface is considered one of the important parameters for the performance evaluation of outdoor insulators. In this paper numerical simulations were carried out to investigate the electric field and potential distribution along silicone rubber insulators under various polluted and dry band conditions. Simulations were performed using commercially available simulation package Comsol Multiphysics based on the finite element method. Various pollution severity levels were simulated by changing the conductivity of pollution layer. Dry bands of 2 cm width were inserted at the high voltage end, ground end, middle part, shed, sheath, and at the junction of shed and sheath to investigate the effect of dry band location and width on electric field and potential distribution. Partial pollution conditions were simulated by applying pollution layer on the top and bottom surface respectively. It was observed from the simulation results that electric field intensity was higher at the metal electrode ends and at the junction of dry bands. Simulation results showed that potential distribution is nonlinear in the case of clean and partially polluted insulator and linear for uniform pollution layer. Dry band formation effect both potential and electric field distribution. Power dissipated along the insulator surface and the resultant heat generation was also studied. The results of this study could be useful in the selection of polymeric insulators for contaminated environments.

  7. Sessile multidroplets and salt droplets under high tangential electric fields

    PubMed Central

    Xie, Guoxin; He, Feng; Liu, Xiang; Si, Lina; Guo, Dan

    2016-01-01

    Understanding the interaction behaviors between sessile droplets under imposed high voltages is very important in many practical situations, e.g., microfluidic devices and the degradation/aging problems of outdoor high-power applications. In the present work, the droplet coalescence, the discharge activity and the surface thermal distribution response between sessile multidroplets and chloride salt droplets under high tangential electric fields have been investigated with infrared thermography, high-speed photography and pulse current measurement. Obvious polarity effects on the discharge path direction and the temperature change in the droplets in the initial stage after discharge initiation were observed due to the anodic dissolution of metal ions from the electrode. In the case of sessile aligned multidroplets, the discharge path direction could affect the location of initial droplet coalescence. The smaller unmerged droplet would be drained into the merged large droplet as a result from the pressure difference inside the droplets rather than the asymmetric temperature change due to discharge. The discharge inception voltages and the temperature variations for two salt droplets closely correlated with the ionization degree of the salt, as well as the interfacial electrochemical reactions near the electrodes. Mechanisms of these observed phenomena were discussed. PMID:27121926

  8. Single Crystal Diamond Needle as Point Electron Source

    PubMed Central

    Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2016-01-01

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2–0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics. PMID:27731379

  9. Current rectification for transport of room-temperature ionic liquids through conical nanopores

    DOE PAGES

    Jiang, Xikai; Liu, Ying; Qiao, Rui

    2016-02-09

    Here, we studied the transport of room-temperature ionic liquids (RTILs) through charged conical nanopores using a Landau-Ginzburg-type continuum model that takes steric effect and strong ion-ion correlations into account. When the surface charge is uniform on the pore wall, weak current rectification is observed. When the charge density near the pore base is removed, the ionic current is greatly suppressed under negative bias voltage while nearly unchanged under positive bias voltage, thereby leading to enhanced current rectification. These predictions agree qualitatively with prior experimental observations, and we elucidated them by analyzing the different components of the ionic current and themore » structural changes of electrical double layers (EDLs) at the pore tip under different bias voltages and surface charge patterns. These analyses reveal that the different modifications of the EDL structure near the pore tip by the positive and negative bias voltages cause the current rectification and the observed dependence on the distribution of surface charge on the pore wall. The fact that the current rectification phenomena are captured qualitatively by the simple model originally developed for describing EDLs at equilibrium conditions suggests that this model may be promising for understanding the ionic transport under nonequilibrium conditions when the EDL structure is strongly perturbed by external fields.« less

  10. The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems

    NASA Astrophysics Data System (ADS)

    Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.

    2018-02-01

    The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.

  11. Experimental Verification of Application of Looped System and Centralized Voltage Control in a Distribution System with Renewable Energy Sources

    NASA Astrophysics Data System (ADS)

    Hanai, Yuji; Hayashi, Yasuhiro; Matsuki, Junya

    The line voltage control in a distribution network is one of the most important issues for a penetration of Renewable Energy Sources (RES). A loop distribution network configuration is an effective solution to resolve voltage and distribution loss issues concerned about a penetration of RES. In this paper, for a loop distribution network, the authors propose a voltage control method based on tap change control of LRT and active/reactive power control of RES. The tap change control of LRT takes a major role of the proposed voltage control. Additionally the active/reactive power control of RES supports the voltage control when voltage deviation from the upper or lower voltage limit is unavoidable. The proposed method adopts SCADA system based on measured data from IT switches, which are sectionalizing switch with sensor installed in distribution feeder. In order to check the validity of the proposed voltage control method, experimental simulations using a distribution system analog simulator “ANSWER” are carried out. In the simulations, the voltage maintenance capability in the normal and the emergency is evaluated.

  12. Feasibility Study of a 400 Hz, 4160 Volt 3-Phase Electrical Power Distribution System

    DTIC Science & Technology

    1977-02-25

    accordance with HIL-E-917. 8. The primary insulation shall be adequate to withstand a high potential test of 60 Hz voltage windings to winding and to ground... withstand a short circuit current of 500 percent for 10 seconds without exceeding the voltage rating of any capacitors. They shall operate within...shaft. separation is required to withstand high voltages . The limited contact movement results in a very small contactor size be- cause it permits the use

  13. Electrostatic Discharge Properties of Irradiated Nanocomposites

    DTIC Science & Technology

    2009-03-01

    47 24. Example Plot of Mean Current vs . Voltage Difference Curves ..................................48 25...across dielectric surfaces and prevent ESD arcing to very high voltage differentials (Figure 2) [7]. All of these drastic alterations in material...structure currents (3) Area thickness and dielectric strength of the material (4) Total charge involved in the event (5) Breakdown voltage (6) Current

  14. Multipactor saturation in parallel-plate waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorolla, E.; Mattes, M.

    2012-07-15

    The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. Themore » impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.« less

  15. Effect of Morphology and Manganese Valence on the Voltage Fade and Capacity Retention of Li[Li 2/12Ni 3/12Mn 7/12]O 2

    DOE PAGES

    Verde, Michael G.; Liu, Haodong; Carroll, Kyler J.; ...

    2014-10-02

    We have determined the electrochemical characteristics of the high voltage, high capacity Li-ion battery cathode material Li[Li 2/12Ni 3/12Mn 7/12]O 2 prepared using three different synthesis routes: sol-gel, hydroxide co-precipitation, and carbonate co-precipitation. Each route leads to distinct morphologies and surface areas while maintaining the same crystal structures. X-ray photoelectron spectroscopy (XPS) measurements reveal differences in their surface chemistries upon cycling, which correlate with voltage fading. As expected, we observed the valence state of Mn on the surface to decrease upon lithiation, and this reduction is specifically correlated to discharging below 3.6V. Furthermore, the data shows a correlation of themore » formation of Li 2CO 3 with Mn oxidation state from the« less

  16. 30 CFR 75.705-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... power system, either the steel armor or conduit enclosing the system or a surface grounding field is a... supported by any pole or structure which also supports other high-voltage lines until: (1) All lines supported on the pole or structure are deenergized and grounded in accordance with all of the provisions of...

  17. 30 CFR 75.705-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... power system, either the steel armor or conduit enclosing the system or a surface grounding field is a... supported by any pole or structure which also supports other high-voltage lines until: (1) All lines supported on the pole or structure are deenergized and grounded in accordance with all of the provisions of...

  18. 30 CFR 75.705-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... power system, either the steel armor or conduit enclosing the system or a surface grounding field is a... supported by any pole or structure which also supports other high-voltage lines until: (1) All lines supported on the pole or structure are deenergized and grounded in accordance with all of the provisions of...

  19. 30 CFR 77.704-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ungrounded power system, either the steel armor or conduit enclosing the system or a surface grounding field... supported by any pole or structure which also supports other high-voltage lines until: (1) All lines supported on the pole or structure are deenergized and grounded in accordance with all of the provisions of...

  20. 30 CFR 77.704-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ungrounded power system, either the steel armor or conduit enclosing the system or a surface grounding field... supported by any pole or structure which also supports other high-voltage lines until: (1) All lines supported on the pole or structure are deenergized and grounded in accordance with all of the provisions of...

  1. 30 CFR 77.704-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ungrounded power system, either the steel armor or conduit enclosing the system or a surface grounding field... supported by any pole or structure which also supports other high-voltage lines until: (1) All lines supported on the pole or structure are deenergized and grounded in accordance with all of the provisions of...

  2. Studying the Impact of Distributed Solar PV on Power Systems using Integrated Transmission and Distribution Models: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Himanshu; Palmintier, Bryan S; Krad, Ibrahim

    This paper presents the results of a distributed solar PV impact assessment study that was performed using a synthetic integrated transmission (T) and distribution (D) model. The primary objective of the study was to present a new approach for distributed solar PV impact assessment, where along with detailed models of transmission and distribution networks, consumer loads were modeled using the physics of end-use equipment, and distributed solar PV was geographically dispersed and connected to the secondary distribution networks. The highlights of the study results were (i) increase in the Area Control Error (ACE) at high penetration levels of distributed solarmore » PV; and (ii) differences in distribution voltages profiles and voltage regulator operations between integrated T&D and distribution only simulations.« less

  3. Electron-beam-induced potentials in semiconductors: calculation and measurement with an SEM/SPM hybrid system

    NASA Astrophysics Data System (ADS)

    Thomas, Ch; Joachimsthaler, I.; Heiderhoff, R.; Balk, L. J.

    2004-10-01

    In this work electron-beam-induced potentials are analysed theoretically and experimentally for semiconductors. A theoretical model is developed to describe the surface potential distribution produced by an electron beam. The distribution of generated carriers is calculated using semiconductor equations. This distribution causes a local change in surface potential, which is derived with the help of quasi-Fermi energies. The potential distribution is simulated using the model developed and measured with a scanning probe microscope (SPM) built inside a scanning electron microscope (SEM), for different samples, for different beam excitations and for different cantilever voltages of SPM. In the end, some fields of application are shown where material properties can be determined using an SEM/SPM hybrid system.

  4. Three-phase short circuit calculation method based on pre-computed surface for doubly fed induction generator

    NASA Astrophysics Data System (ADS)

    Ma, J.; Liu, Q.

    2018-02-01

    This paper presents an improved short circuit calculation method, based on pre-computed surface to determine the short circuit current of a distribution system with multiple doubly fed induction generators (DFIGs). The short circuit current, injected into power grid by DFIG, is determined by low voltage ride through (LVRT) control and protection under grid fault. However, the existing methods are difficult to calculate the short circuit current of DFIG in engineering practice due to its complexity. A short circuit calculation method, based on pre-computed surface, was proposed by developing the surface of short circuit current changing with the calculating impedance and the open circuit voltage. And the short circuit currents were derived by taking into account the rotor excitation and crowbar activation time. Finally, the pre-computed surfaces of short circuit current at different time were established, and the procedure of DFIG short circuit calculation considering its LVRT was designed. The correctness of proposed method was verified by simulation.

  5. Electromagnetic and geometric characterization of accelerated ion beams by laser ablation

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Velardi, L.; Side, D. Delle

    2013-05-01

    Laser ion sources offer the possibility to get ion beam useful to improve particle accelerators. Pulsed lasers at intensities of the order of 108 W/cm2 and of ns pulse duration, interacting with solid matter in vacuum, produce plasma of high temperature and density. The charge state distribution of the plasma generates high electric fields which accelerate ions along the normal to the target surface. The energy of emitted ions has a Maxwell-Boltzmann distribution which depends on the ion charge state. To increase the ion energy, a post-acceleration system can be employed by means of high voltage power supplies of about 100 kV. The post acceleration system results to be a good method to obtain high ion currents by a not expensive system and the final ion beams find interesting applications in the field of the ion implantation, scientific applications and industrial use. In this work we compare the electromagnetic and geometric properties, like emittance, of the beams delivered by pure Cu, Y and Ag targets. The characterization of the plasma was performed by a Faraday cup for the electromagnetic characteristics, whereas a pepper pot system was used for the geometric ones. At 60 kV accelerating voltage the three examined ion bunches get a current peak of 5.5, 7.3 and 15 mA, with a normalized beam emittance of 0.22, 0.12 and 0.09 π mm mrad for the targets of Cu, Y, and Ag, respectively.

  6. Modular, Reconfigurable, High-Energy Systems Stepping Stones

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Mankins, John C.

    2005-01-01

    Modular, Reconfigurable, High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure strategically located in space to support a variety of exploration scenarios. Abundant renewable energy at lunar or L1 locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to flight-demonstrate a variety of payload experiments and to utilize electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100-kW satellite feasible for launch on one existing launch vehicle. Higher voltage arrays and power management and distribution (PMAD) systems reduce or eliminate the need for massive power converters, and could enable direct- drive of high-voltage solar electric thrusters.

  7. The thermal regime around buried submarine high-voltage cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-08-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine high-voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70 °C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near-surface sediments are poorly understood. We present temperature measurements from a 2-D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments—coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m2) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples to measure the time-dependent 2-D temperature distributions. The observed and corresponding Finite Element Method simulations of the steady state heat flow regimes and normalized radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10 °C up to 40 cm from the source of 60 °C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between cf. 20 and 36 °C above ambient, with >10 °C heat increases occurring over a metre from the source of 55 °C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (cf. 7 °C) operating temperatures and reaching temperatures of up to 18 °C above ambient at a metre from the source at surface temperatures of only 18 °C. These findings are important for the surrounding near-surface environments experiencing such high temperatures and may have significant implications for chemical and physical processes operating at the grain and subgrain scale; biological activity at both microfaunal and macrofaunal levels; and indeed the operational performance of the cables themselves, as convective heat transport would increase cable current ratings, something neglected in existing standards.

  8. The arcing rate for a High Voltage Solar Array - Theory, experiment and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces which can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays which ascribes the arcing to electric field runaway at the interface of the plasma, conductor and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array (HVSA) experiment which will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail to the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  9. Arcing rates for High Voltage Solar Arrays - Theory, experiment, and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces that can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative, then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays that ascribes the arcing to electric field runaway at the interface of the plasma, conductor, and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array experiment that will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail with the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  10. Low-voltage high-performance organic thin film transistors with a thermally annealed polystyrene/hafnium oxide dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Acton, Orb; Ting, Guy; Weidner, Tobias; Ma, Hong; Castner, David G.; Jen, Alex K.-Y.

    2009-12-01

    Low-voltage pentacene-based organic thin film transistors (OTFTs) are demonstrated with polystyrene (PS)/hafnium oxide (HfOx) hybrid dielectrics. Thermal annealing of PS films on HfOx at 120 °C (PS-120) induces a flatter orientation of the phenyl groups (tilt angle 65°) at the surface compared to PS films without annealing (PS-RT) (tilt angle 31°). The flatter phenyl group orientation leads to better matching of surface energy between pentacene and PS. Pentacene deposited on PS-120 display higher quality thin films with larger grain sizes and higher crystallinity. Pentacene OTFTs with PS-120/HfOx hybrid dielectrics can operate at low-voltage (<3 V) with high field-effect mobilities (1 cm2/V s), high on/off current ratios (106), and low subthreshold slopes (100 mV/dec).

  11. Rigid-body rotation of an electron cloud in divergent magnetic fields

    DOE PAGES

    Fruchtman, A.; Gueroult, R.; Fisch, N. J.

    2013-07-10

    For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions acceleratedmore » by the electric field. Furthermore, the focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.« less

  12. Rigid-body rotation of an electron cloud in divergent magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruchtman, A.; Gueroult, R.; Fisch, N. J.

    2013-07-15

    For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions acceleratedmore » by the electric field. The focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.« less

  13. Experimental Investigation – Magnetic Assisted Electro Discharge Machining

    NASA Astrophysics Data System (ADS)

    Kesava Reddy, Chirra; Manzoor Hussain, M.; Satyanarayana, S.; Krishna, M. V. S. Murali

    2018-04-01

    Emerging technology needs advanced machined parts with high strength and temperature resistance, high fatigue life at low production cost with good surface quality to fit into various industrial applications. Electro discharge machine is one of the extensively used machines to manufacture advanced machined parts which cannot be machined by other traditional machine with high precision and accuracy. Machining of DIN 17350-1.2080 (High Carbon High Chromium steel), using electro discharge machining has been discussed in this paper. In the present investigation an effort is made to use permanent magnet at various positions near the spark zone to improve surface quality of the machined surface. Taguchi methodology is used to obtain optimal choice for each machining parameter such as peak current, pulse duration, gap voltage and Servo reference voltage etc. Process parameters have significant influence on machining characteristics and surface finish. Improvement in surface finish is observed when process parameters are set at optimum condition under the influence of magnetic field at various positions.

  14. Current transport mechanisms in mercury cadmium telluride diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn; Li, Qing; He, Jiale

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation,more » flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.« less

  15. Mobile patient monitoring based on impedance-loaded SAW-sensors.

    PubMed

    Karilainen, Anna; Finnberg, Thomas; Uelzen, Thorsten; Dembowski, Klaus; Müller, Jörg

    2004-11-01

    A remotely requestable, passive, short-range sensor network for measuring small voltages is presented. The sensor system is able to simultaneously monitor six small voltages in millivolt-range, and it can be used for Holter-electrocardiogram (ECG) and other biopotential monitoring, or in industrial applications. The sensors are based on a surface acoustic wave (SAW) delay line with voltage-dependent, impedance loading on a reflector interdigital transducer (IDT). The load circuit impedance is varied by the capacitance of the voltage-controlled varactor. High resolution is achieved by developing a MOS-capacitor with a thin oxide, low flat-band voltage, and zero-voltage capacitance in the space-charge region, as well as a high-Q-microcoil by thick metal electroplating. Simultaneous monitoring of multiple potentials is realized by time-division-multiplexing of different sensor signals.

  16. High Voltage Design Considerations for the Electrostatic Septum for the Mu2e Beam Resonant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Matthew L.; Jensen, C.; Morris, D.

    aTwo electrostatic septa (ESS) are being designed for the slow extraction of 8GeV proton beam for the Mu2e experiment at Fermilab. Special attention is given to the high voltage components that affect the performance of the septa. The components under consideration are the high voltage (HV) feedthrough, cathode standoff (CS), and clearing electrode ceramic standoffs (CECS). Previous experience with similar HV systems at Fermilab was used to define the evaluation criteria of the design of the high voltage components. Using electric field simulation software, high E-field intensities on the components and integrated field strength along the surface of the dielectricmore » material were minimized. Here we discuss the limitations found and improvements made based on those studies.« less

  17. Switching behavior of resistive change memory using oxide nanowires

    NASA Astrophysics Data System (ADS)

    Aono, Takashige; Sugawa, Kosuke; Shimizu, Tomohiro; Shingubara, Shoso; Takase, Kouichi

    2018-06-01

    Resistive change random access memory (ReRAM), which is expected to be the next-generation nonvolatile memory, often has wide switching voltage distributions due to many kinds of conductive filaments. In this study, we have tried to suppress the distribution through the structural restriction of the filament-forming area using NiO nanowires. The capacitor with Ni metal nanowires whose surface is oxidized showed good switching behaviors with narrow distributions. The knowledge gained from our study will be very helpful in producing practical ReRAM devices.

  18. High-Voltage Isolation Transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P.

    1985-01-01

    Arcing and field-included surface erosion reduced by electrostatic shields around windings and ferromagnetic core of 80-kilovolt isolation transformer. Fabricated from high-resistivity polyurethane-based material brushed on critical surfaces, shields maintained at approximately half potential difference of windings.

  19. Enhanced High Performance Power Compensation Methodology by IPFC Using PIGBT-IDVR

    PubMed Central

    Arumugom, Subramanian; Rajaram, Marimuthu

    2015-01-01

    Currently, power systems are involuntarily controlled without high speed control and are frequently initiated, therefore resulting in a slow process when compared with static electronic devices. Among various power interruptions in power supply systems, voltage dips play a central role in causing disruption. The dynamic voltage restorer (DVR) is a process based on voltage control that compensates for line transients in the distributed system. To overcome these issues and to achieve a higher speed, a new methodology called the Parallel IGBT-Based Interline Dynamic Voltage Restorer (PIGBT-IDVR) method has been proposed, which mainly spotlights the dynamic processing of energy reloads in common dc-linked energy storage with less adaptive transition. The interline power flow controller (IPFC) scheme has been employed to manage the power transmission between the lines and the restorer method for controlling the reactive power in the individual lines. By employing the proposed methodology, the failure of a distributed system has been avoided and provides better performance than the existing methodologies. PMID:26613101

  20. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-09-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in LixNi0.8Co0.15Al0.05O2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  1. The effects of extraterrestrial environments on high voltage distribution

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.

    1990-01-01

    The problems encountered in the transmission of high-power (kilowatts to megawatts) in extraterrestrial environments are reviewed. A summary of the work at Auburn University in the study of these problems is presented. These studies include high-voltage breakdown in the space environment as influenced by gas contamination and thermal stress, the modeling of lunar transmission lines, particle contamination, and material degradation by the hypervelocity impact of microparticles.

  2. High voltage testing for the Majorana Demonstrator

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; ...

    2016-04-04

    The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the Majorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of themore » high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during the Majorana Demonstrator commissioning phase were studied. Furthermore, a stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.« less

  3. High voltage testing for the Majorana Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abgrall, N.; Arnquist, Isaac J.; Avignone, F. T.

    2016-07-01

    The Majorana Collaboration is constructing theMajorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of theMajorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path,more » including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during theMajorana Demonstrator commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.« less

  4. Time and voltage dependences of nanoscale dielectric constant modulation on indium tin oxide films

    NASA Astrophysics Data System (ADS)

    Li, Liang; Hao, Haoyue; Zhao, Hua

    2017-01-01

    The modulation of indium tin oxide (ITO) films through surface charge accumulation plays an important role in many different applications. In order to elaborately study the modulation, we measured the dielectric constant of the modulated layer through examining the excitation of surface plasmon polaritons. Charges were pumped on the surfaces of ITO films through applying high voltage in appropriate directions. Experiments unveiled that the dielectric constant of the modulated layer had large variation along with the nanoscale charge accumulation. Corresponding numerical results were worked out through combining Drude model and Mayadas-Shatzkes model. Based on the above results, we deduced the time and voltage dependences of accumulated charge density, which revealed a long-time charge accumulation process.

  5. Modeling secondary electron emission from nanostructured materials in helium ion microscope

    NASA Astrophysics Data System (ADS)

    Ohya, K.; Yamanaka, T.

    2013-11-01

    Charging of a SiO2 layer on a Si substrate during helium (He) beam irradiation is investigated at an energy range relevant to a He ion microscope (HIM). A self-consistent calculation is performed to model the transport of the ions and secondary electrons (SEs), the charge accumulation in the layer, and the electric field below and above the surface. The calculated results are compared with those for gallium (Ga) ions at the same energy and 1 keV electrons corresponding to a low-voltage scanning electron microscope (SEM). The charging of thin layers (<250 nm) is strongly suppressed due to wide depth and lateral distributions of the He ions in the layer, the voltage of which is much lower than that for the Ga ions and the electrons, where the distributions are much more localized. When the irradiation approaches the edge of a 100-nm-high SiO2 step formed on a Si substrate, a sharp increase in the number of SEs is observed, irrespective of whether a material is charged or not. When the He ions are incident on the bottom of the step, the re-entrance of SEs emitted from the substrate into the sidewall is clearly observed, but it causes the sidewall to be charged negatively. At the positions on the SiO2 layer away from the step edge, the charging voltage becomes positive with increasing number of Ga ions and electrons. However, He ions do not induce such a voltage due to strong relaxation of positive and negative charges in the Si substrate and their recombination in the SiO2 layer.

  6. The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.

  7. Fabrication of Schottky Junction Between Au and SrTiO3

    NASA Astrophysics Data System (ADS)

    Inoue, Akira; Izumisawa, Kei; Uwe, Hiromoto

    2001-05-01

    A Schottky junction with a high rectification ratio between Au and La-doped SrTiO3 has been fabricated using a simple surface treatment. Highly La-doped (5%) SrTiO3 single crystals are annealed in O2 atmosphere at about 1000°C for 1 h and etched in HNO3 for more than five min. The HNO3 etching is performed in a globe box containing N2 to prevent pollution from the air. After the treatment, Au is deposited on the SrTiO3 surface in a vacuum (˜ 10-7 Torr) with an e-gun evaporator. The current voltage characteristics of the junction have shown excellent rectification properties, although junctions using neither annealed nor etched SrTiO3 exhibit high leak current in reverse voltage. The rectification ratio of the junction at 1 V is more than six orders of magnitude and there is no hysteresis in the current voltage spectra. The logarithm of the current is linear with the forward bias voltage. The ideal factor of the junction is estimated to be about 1.68. These results suggest that, if prevented from being pollution by the air, a good Schottky junction can be obtained by easy processes such as annealing in oxygen atmosphere and surface etching with acid.

  8. Characterization of physical and biochemical changes in plasma treated spinach seed during germination

    NASA Astrophysics Data System (ADS)

    Hye Ji, Sang; Ki, Se Hoon; Kang, Min Ho; Choi, Jin Sung; Park, Yeunsoo; Oh, Jaesung; Kim, Seong Bong; Yoo, Suk Jae; Choi, Eun Ha; Park, Gyungsoon

    2018-04-01

    Despite the accumulating data on the effect of plasma on seed germination, mechanisms of plasma action need more extensive research. In a previous study, we observed that high voltage nanosecond pulsed plasma enhanced the germination of spinach seeds and subsequent seedling growth. As a follow-up study, we investigated the physico-chemical, biochemical, and molecular changes in seed after plasma treatment, focusing on the early germination stage, to elucidate mechanism(s) for the stimulating effects of plasma on seed germination. The primary radicle protruded from seeds exposed to high voltage nanosecond pulsed plasma (one shot) slightly faster than the control seeds. The hydrophilicity of the seed surface significantly increased after treatment with high voltage nanosecond pulsed plasma (one shot). However, a very subtle increase in water uptake by plasma treated seeds was observed. Raman and FTIR spectroscopy analyses on chloroform extract of seed coats demonstrated no significant chemical etching on the surface of plasma treated seeds. This may be related to no dramatic increase in water absorption by seeds. The level of GA hormone and starch hydrolysis inside the plasma treated seeds was significantly elevated within 24 h. Taken together, our results suggest that high voltage nanosecond pulsed plasma may not only enhance hydrophilicity of the seed surface but also stimulate biochemical and molecular processes inside seed, leading to enhanced embryonic development.

  9. Distributed Sensing and Shape Control of Piezoelectric Bimorph Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redmond, James M.; Barney, Patrick S.; Henson, Tammy D.

    1999-07-28

    As part of a collaborative effort between Sandia National Laboratories and the University of Kentucky to develop a deployable mirror for remote sensing applications, research in shape sensing and control algorithms that leverage the distributed nature of electron gun excitation for piezoelectric bimorph mirrors is summarized. A coarse shape sensing technique is developed that uses reflected light rays from the sample surface to provide discrete slope measurements. Estimates of surface profiles are obtained with a cubic spline curve fitting algorithm. Experiments on a PZT bimorph illustrate appropriate deformation trends as a function of excitation voltage. A parallel effort to effectmore » desired shape changes through electron gun excitation is also summarized. A one dimensional model-based algorithm is developed to correct profile errors in bimorph beams. A more useful two dimensional algorithm is also developed that relies on measured voltage-curvature sensitivities to provide corrective excitation profiles for the top and bottom surfaces of bimorph plates. The two algorithms are illustrated using finite element models of PZT bimorph structures subjected to arbitrary disturbances. Corrective excitation profiles that yield desired parabolic forms are computed, and are shown to provide the necessary corrective action.« less

  10. Ultra-compact Marx-type high-voltage generator

    DOEpatents

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  11. In Situ X-ray Diffraction Studies on the Mechanism of Capacity Retention Improvement by Coating at the Surface of Li CoO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung,K.; Yoon, W.; McBreen, J.

    2007-01-01

    Synchrotron based in situ X-ray diffraction technique has been used to study the mechanism of capacity fading of LiCoO2 cycled to a higher voltage above the normal 4.2 V limit and to investigate the mechanism of capacity retention improvement by ZrO2 surface coating on LiCoO2. It was found that the capacity fading of LiCoO2 cycled at higher voltage limit is closely related to the increased polarization rather than the bulk crystal structure damage. The capacity of uncoated LiCoO2 sample dropped to less than 70 mAh g-1 when charged to 4.8 V after high voltage cycling. However, when the voltage limitmore » was further increased to 8.35 V, the capacity was partially restored and the corresponding structural changes were recovered to the similar level as seen in fresh sample. This indicates that the integrity of the bulk crystal structure of LiCoO2 was not seriously damaged during cycling to 4.8 V. The increased polarization seems to be responsible for the fading capacity and the uncompleted phase transformation of LiCoO2. The polarization-induced capacity fading can be significantly improved by ZrO2 surface coating. It was proposed that the effect of ZrO2-coating layer on the capacity retention during high voltage cycling is through the formation of protection layer on the surface of LiCoO2 particles, which can reduce the decomposition of the electrolyte at higher voltages.« less

  12. Investigation of Voltage-Activated BAW Devices and Filters

    DTIC Science & Technology

    2016-09-04

    strontium titanate (STO) and barium-strontium titanate (BST), with the ultimate objective of creating high- performance, reconfigurable filters and...Distribution Unlimited UU UU UU UU 04-09-2016 1-Sep-2010 31-Aug-2014 Final Report: Investigation of Voltage-Activated BAW Devices and Filters The views...2016 Investigation of Voltage-Activated BAW Devices and Filters Final Report Award Information: Contract Number: W911NF1010286 Period of Work

  13. 30 CFR 75.819 - Motor-starter enclosures; barriers and interlocks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Motor-starter enclosures; barriers and...-Voltage Distribution High-Voltage Longwalls § 75.819 Motor-starter enclosures; barriers and interlocks. Compartment separation and cover interlock switches for motor-starter enclosures must be maintained in...

  14. Method for improving fuel cell performance

    DOEpatents

    Uribe, Francisco A.; Zawodzinski, Thomas

    2003-10-21

    A method is provided for operating a fuel cell at high voltage for sustained periods of time. The cathode is switched to an output load effective to reduce the cell voltage at a pulse width effective to reverse performance degradation from OH adsorption onto cathode catalyst surfaces. The voltage is stepped to a value of less than about 0.6 V to obtain the improved and sustained performance.

  15. Electrostatic accelerators with high energy resolution

    NASA Astrophysics Data System (ADS)

    Uchiyama, T.; Agawa, Y.; Nishihashi, T.; Takagi, K.; Yamakawa, H.; Isoya, A.; Takai, M.; Namba, S.

    1991-05-01

    Several models of electrostatic accelerators based on rotating disks (Disktron) have been manufactured for various ion beam applications like surface analyses and implantation. The high voltage terminal of the Disktron with a terminal voltage of up to 500 kV is open in air, while the generator part is enclosed in FRP (fiber reinforced plastics) or a ceramic vessel filled with sf 6 gas. The 1 MV model is completely enclosed in a steel vessel. A compact tandem accelerator of the pellet chain type with a terminal voltage of 1.5 MV has also been manufactured. The good energy stability of these accelerators, typically in the range of 10 -4, has proved to be quite favorable for applications in precise studies of material surfaces, including the use of microbeam techniques.

  16. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.

    2006-10-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  17. High voltage plasma sheath analysis related to TSS-1

    NASA Technical Reports Server (NTRS)

    Sheldon, John W.

    1991-01-01

    On the first mission of the Tethered Satellite System (TSS-1), a 1.8 m diameter spherical satellite will be deployed a distance of 20 km above the space shuttle Orbiter on an insulated conducting tether. The satellite will be held at electric potentials up to 5000 volts positive with respect to the ambient plasma. Due to the passage of the conducting tether through the Earth's magnetic field, an emf will be created, driving electrons down the tether to the orbiter, out through an electron gun into the ionosphere and back into the positive biased satellite. Instrumentation on the satellite will measure electron flow to the surface at several locations, but these detectors have a limited range of acceptance angle. The problem addressed herein is the determination of the electron current distribution over the satellite surface and the angle of incidence of the incoming electrons relative to the surface normal.

  18. Effect of gate bias sweep rate on the threshold voltage of in-plane gate nanowire transistor

    NASA Astrophysics Data System (ADS)

    Liu, H. X.; Li, J.; Tan, R. R.

    2018-01-01

    In2O3 nanowire electric-double-layer (EDL) transistors with in-plane gate gated by SiO2 solid-electrolyte are fabricated on transparent glass substrates. The gate voltage sweep rates can effectively modulate the threshold voltage (Vth) of nanowire device. Both depletion mode and enhancement mode are realized, and the Vth shift of the nanowire transistors is estimated to be 0.73V (without light). This phenomenon is due to increased adsorption of oxygen on the nanowire surface by the slower gate voltage sweep rates. Adsorbed oxygens capture electrons and cause a surface of nanowire channel was depleted. The operation voltage of transistor was 1.0 V, because the EDL gate dielectric can lead to high gate dielectric capacitance. These transparent in-plane gate nanowire transistors are promising for “see-through” nanoscale sensors.

  19. RTDS implementation of an improved sliding mode based inverter controller for PV system.

    PubMed

    Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M

    2016-05-01

    This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Improving off-state leakage characteristics for high voltage AlGaN/GaN-HFETs on Si substrates

    NASA Astrophysics Data System (ADS)

    Moon, Sung-Woon; Twynam, John; Lee, Jongsub; Seo, Deokwon; Jung, Sungdal; Choi, Hong Goo; Shim, Heejae; Yim, Jeong Soon; Roh, Sungwon D.

    2014-06-01

    We present a reliable process and design technique for realizing high voltage AlGaN/GaN hetero-junction field effect transistors (HFETs) on Si substrates with very low and stable off-state leakage current characteristics. In this work, we have investigated the effects of the surface passivation layer, prepared by low pressure chemical vapor deposition (LPCVD) of silicon nitride (SiNx), and gate bus isolation design on the off-state leakage characteristics of metal-oxide-semiconductor (MOS) gate structure-based GaN HFETs. The surface passivated devices with gate bus isolation fully surrounding the source and drain regions showed extremely low off-state leakage currents of less than 20 nA/mm at 600 V, with very small variation. These techniques were successfully applied to high-current devices with 80-mm gate width, yielding excellent off-state leakage characteristics within a drain voltage range 0-700 V.

  1. High-wafer-yield, high-performance vertical cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Li, Gabriel S.; Yuen, Wupen; Lim, Sui F.; Chang-Hasnain, Constance J.

    1996-04-01

    Vertical cavity surface emitting lasers (VCSELs) with very low threshold current and voltage of 340 (mu) A and 1.5 V is achieved. The molecular beam epitaxially grown wafers are grown with a highly accurate, low cost and versatile pre-growth calibration technique. One- hundred percent VCSEL wafer yield is obtained. Low threshold current is achieved with a native oxide confined structure with excellent current confinement. Single transverse mode with stable, predetermined polarization direction up to 18 times threshold is also achieved, due to stable index guiding provided by the structure. This is the highest value reported to data for VCSELs. We have established that p-contact annealing in these devices is crucial for low voltage operation, contrary to the general belief. Uniform doping in the mirrors also appears not to be inferior to complicated doping engineering. With these design rules, very low threshold voltage VCSELs are achieved with very simple growth and fabrication steps.

  2. p{sup +}-doping analysis of laser fired contacts for silicon solar cells by Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebser, J., E-mail: Jan.Ebser@uni-konstanz.de; Sommer, D.; Fritz, S.

    Local rear contacts for silicon passivated emitter and rear contact solar cells can be established by point-wise treating an Al layer with laser radiation and thereby establishing an electrical contact between Al and Si bulk through the dielectric passivation layer. In this laser fired contacts (LFC) process, Al can establish a few μm thick p{sup +}-doped Si region below the metal/Si interface and forms in this way a local back surface field which reduces carrier recombination at the contacts. In this work, the applicability of Kelvin probe force microscopy (KPFM) to the investigation of LFCs considering the p{sup +}-doping distributionmore » is demonstrated. The method is based on atomic force microscopy and enables the evaluation of the lateral 2D Fermi-level characteristics at sub-micrometer resolution. The distribution of the electrical potential and therefore the local hole concentration in and around the laser fired region can be measured. KPFM is performed on mechanically polished cross-sections of p{sup +}-doped Si regions formed by the LFC process. The sample preparation is of great importance because the KPFM signal is very surface sensitive. Furthermore, the measurement is responsive to sample illumination and the height of the applied voltage between tip and sample. With other measurement techniques like micro-Raman spectroscopy, electrochemical capacitance-voltage, and energy dispersive X-ray analysis, a high local hole concentration in the range of 10{sup 19 }cm{sup −3} is demonstrated in the laser fired region. This provides, in combination with the high spatial resolution of the doping distribution measured by KPFM, a promising approach for microscopic understanding and further optimization of the LFC process.« less

  3. Gigantic transverse voltage induced via off-diagonal thermoelectric effect in CaxCoO2 thin films

    NASA Astrophysics Data System (ADS)

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Adachi, Hideaki; Yamada, Yuka

    2010-07-01

    Gigantic transverse voltages exceeding several tens volt have been observed in CaxCoO2 thin films with tilted c-axis orientation upon illumination of nanosecond laser pulses. The voltage signals were highly anisotropic within the film surface showing close relation with the c-axis tilt direction. The magnitude and the decay time of the voltage strongly depended on the film thickness. These results confirm that the large laser-induced voltage originates from a phenomenon termed the off-diagonal thermoelectric effect, by which a film out-of-plane temperature gradient leads to generation of a film in-plane voltage.

  4. Impacts on the Voltage Profile of DC Distribution Network with DG Access

    NASA Astrophysics Data System (ADS)

    Tu, J. J.; Yin, Z. D.

    2017-07-01

    With the development of electronic, more and more distributed generations (DGs) access into grid and cause the research fever of direct current (DC) distribution network. Considering distributed generation (DG) location and capacity have great impacts on voltage profile, so use IEEE9 and IEEE33 typical circuit as examples, with DGs access in centralized and decentralized mode, to compare voltage profile in alternating and direct current (AC/DC) distribution network. Introducing the voltage change ratio as an evaluation index, so gets the general results on voltage profile of DC distributed network with DG access. Simulation shows that, in the premise of reasonable location and capacity, DC distribution network is more suitable for DG access.

  5. Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo

    2014-03-01

    The atmospheric-pressure helium plasma jet is of emerging interest as a cutting-edge biomedical device for cancer treatment, wound healing and sterilization. Reactive oxygen species such as OH and O radicals are considered to be major factors in the application of biological plasma. In this study, density distribution, temporal behaviour and flux of OH and O radicals on a surface are measured using laser-induced fluorescence. A helium plasma jet is generated by applying pulsed high voltage of 8 kV with 10 kHz using a quartz tube with an inner diameter of 4 mm. To evaluate the relation between the surface condition and active species production, three surfaces are used: dry, wet and rat skin. When the helium flow rate is 1.5 l min-1, radial distribution of OH density on the rat skin surface shows a maximum density of 1.2 × 1013 cm-3 at the centre of the plasma-mediated area, while O atom density shows a maximum of 1.0 × 1015 cm-3 at 2.0 mm radius from the centre of the plasma-mediated area. Their densities in the effluent of the plasma jet are almost constant during the intervals of the discharge pulses because their lifetimes are longer than the pulse interval. Their density distribution depends on the helium flow rate and the surface humidity. With these results, OH and O production mechanisms in the plasma jet and their flux onto the surface are discussed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiemann, H.; Bogus, K.P.

    The behavior of solar cell modules at high voltages in a surrounding simulated LEO plasma has been characterized over an applied voltage range from -700 to +500 V. Measurements were obtained in a large chamber under high vacuum using argon ions from a Kaufman source to generate a high-density plasma of up to 10 to the 6th/cu cm. The results suggest that secondary electrons contribute to the anomalous current increase noted at positive module voltages above 300 V. The surface potential on the coverglasses of the solar cells was shown to increase to high values only in the vicinity ofmore » the interconnectors. 27 references.« less

  7. The interaction of spacecraft high voltage power systems with the space plasma environment

    NASA Technical Reports Server (NTRS)

    Domitz, S.; Grier, N. T.

    1974-01-01

    Research work has shown that the interaction of a spacecraft and its high voltage power systems with the space plasma environment can result in harmful power loss and damage to insulators and metal surfaces. Insulator and solar panel tests were performed and flight tests are planned. High voltage power processing equipment was shown to be affected by power loss, and by transients due to plasma interactions. Power loss was determined to be roughly proportional to the square of the voltage and increases approximately as the square root of the area. Kapton, Teflon, and glass were found to be satisfactory insulating materials and it is concluded that for large space power stations should consider the effect of large pinhole currents.

  8. Optical and electrical properties of P3HT:graphene composite based devices

    NASA Astrophysics Data System (ADS)

    Yadav, Anjali; Verma, Ajay Singh; Gupta, Saral Kumar; Negi, Chandra Mohan Singh

    2018-04-01

    The polymer-carbon derivate composites are well known for their uses and performances in the photovoltaic and optoelectronic industries. In this paper, we synthesis P3HT:graphene composites and discuss their optical and electrical properties. The composites have been prepared by using spin-coating technique onto the glass substrates. It has been found that the incorporation of graphene reduces absorption intensity. However, absorption peak remain unchanged with addition of graphene. The surface morphology studies display homogeneous distribution of graphene with P3HT. Raman studies suggest that chemical structure was not affected by graphene doping. Devices having the structure of glass/ITO/P3HT/ Al and glass ITO/P3HT:graphene/Al were then fabricated. I-V behavior of the fabricated devices was found to be similar to the Schottky diode. ITO/P3HT:graphene/Al structure shows tremendous increase in current values as compared to the ITO/P3HT/Al. Furthermore, charge transport mechanism were studied by analyzing the double logarithmic J-V characteristics curve, which indicates that the current at low voltage follows Ohmic behavior, trap-charge limited conduction (TCLC) mechanism at an intermediate voltage and space charge limited conduction (SCLC) mechanism at sufficiently high voltages.

  9. Photoconducting positions monitor and imaging detector

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    2000-01-01

    A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.

  10. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu

    2016-12-01

    Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).

  11. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet.

    PubMed

    Ticoş, C M; Scurtu, A; Toader, D; Banu, N

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  12. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet

    NASA Astrophysics Data System (ADS)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  13. Low-high junction theory applied to solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1974-01-01

    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open-circuit voltage and improved radiation resistance. Several analytical models for open-circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero surface recombination velocity (SRV) case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells.

  14. 76 FR 61288 - Efficiency and Renewables Advisory Committee, Appliance Standards Subcommittee Negotiated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Medium- and Low-Voltage Dry-Type Distribution Transformers AGENCY: Department of Energy, Office of Energy... Dry-Type Distribution Transformers and the second addressing Low-Voltage Dry-Type Distribution Transformers. The Liquid Immersed and Medium-Voltage Dry-Type Group (MV Group) and the Low-Voltage Dry-Type...

  15. Analysis on Voltage Profile of Distribution Network with Distributed Generation

    NASA Astrophysics Data System (ADS)

    Shao, Hua; Shi, Yujie; Yuan, Jianpu; An, Jiakun; Yang, Jianhua

    2018-02-01

    Penetration of distributed generation has some impacts on a distribution network in load flow, voltage profile, reliability, power loss and so on. After the impacts and the typical structures of the grid-connected distributed generation are analyzed, the back/forward sweep method of the load flow calculation of the distribution network is modelled including distributed generation. The voltage profiles of the distribution network affected by the installation location and the capacity of distributed generation are thoroughly investigated and simulated. The impacts on the voltage profiles are summarized and some suggestions to the installation location and the capacity of distributed generation are given correspondingly.

  16. System And Method Of Applying Energetic Ions For Sterlization

    DOEpatents

    Schmidt, John A.

    2002-06-11

    A method of sterilization of a container is provided whereby a cold plasma is caused to be disposed near a surface to be sterilized, and the cold plasma is then subjected to a pulsed voltage differential for producing energized ions in the plasma. Those energized ions then operate to achieve spore destruction on the surface to be sterilized. Further, a system for sterilization of a container which includes a conductive or non-conductive container, a cold plasma in proximity to the container, and a high voltage source for delivering a pulsed voltage differential between an electrode and the container and across the cold plasma, is provided.

  17. Static charge outside chamber induces dielectric breakdown of solid-state nanopore membranes

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuma; Goto, Yusuke; Yanagi, Itaru; Yanagawa, Yoshimitsu; Ishige, Yu; Takeda, Ken-ichi

    2018-04-01

    Reducing device capacitance is effective for decreasing current noise observed in a solid-state nanopore-based DNA sequencer. On the other hand, we have recently found that voltage stress causes pinhole-like defects in such low-capacitance devices. The origin of voltage stress, however, has not been determined. In this research, we identified that a dominant origin is static charge on the outer surface of a flow cell. Even though the outer surface was not in direct contact with electrolytes in the flow cell, the charge induces high voltage stress on a membrane according to the capacitance coupling ratio of the flow cell to the membrane.

  18. Electric Field Distribution in High Voltage Power Modules Using Finite Element Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Liu, Yaoning

    2018-03-01

    With the development of the high voltage insulated gate bipolar transistor (IGBT) power module, it leads to serious problems concerning the electric field insulation. The electric field capabilities of the silicone gels used in the power module encapsulation directly affect the module insulation. Some solutions have been developed to optimize the electric field and reliability. In this letter, the finite element simulation was used to analyze and localize the maximum electric field position; solutions were proposed to improve the module insulation. It’s demonstrated that BaTiO3 silicone composite is a promising insulation material for high voltage power device.

  19. Surface Modification of Titanium Using Anodization to Enhance Antimicrobial Properties and Osseointegration

    NASA Astrophysics Data System (ADS)

    Jain, Sakshi

    Titanium and its alloys are frequently used in dental and orthopedic implants because they have good mechanical strength, chemical stability and biocompatibility. These properties can be further improved by surface treatments such as anodization that are able to grow thicker and produce crystalline oxide layers with controlled morphological and physico-chemical properties. Both anatase (A) and rutile (R) crystalline phases of titanium oxide have been shown to promote bioactivity and antimicrobial effects. In a previous study in our laboratories, four electrolyte mixtures were optimized to produce anodized layers on commercially pure titanium consisting of specific anatase and rutile oxide ratios at an endpoint forming voltage of 180 V. In the present study, changes that occurred in the anodized layers with increasing forming voltage including crystallinity, thickness, surface morphology, surface roughness, surface chemistry, fractal dimension, shear strength, and corrosion resistance were determined for each of these electrolytes. The results showed the crystallinity, thickness, surface pore sizes, and surface roughness increased with increasing forming voltage. Incorporation of phosphorus into the anodized layers was shown in phosphoric acid containing electrolytes at higher forming voltages. Decreases in corrosion resistance were also shown at higher forming voltages in each electrolyte due to increased pore interconnectivity within the anodized layers. In addition, the apatite inducing ability of anodized layers in SBF was examined for selected forming voltages in each electrolyte. Anodization in phosphoric acid containing electrolytes was shown to be more favorable for apatite formation. The streptococcal and MRSA bacterial attachment before and after UV treatments was determined for selected forming voltages in each electrolyte. Additionally, the killing efficacy after 10-minute pre-irradiation with UVA or UVC treatments was determined. UVA treatments showed trends of at least a 20% reduction in bacterial attachment regardless of the crystallinity within the oxide for S. sanguinis. The anodized layer with an approximately equal distribution of anatase and rutile phases showed bacterial killing efficacy over 50% for S. sanguinis and over 80% for MRSA after UVA or UVC treatments. Finally, two forming voltage sample groups in two of the electrolytes were examined for MC3T3E-1 cell attachment, proliferation, and differentiation. Total intracellular protein content, alkaline phosphatase (ALP) activity, osteocalcin (OCN) activity, and cellular mineralization were investigated for different time periods up to 21 days. All sample groups showed suitable cellular proliferation, differentiation, and maturation but those anodized in the phosphoric acid containing electrolyte showed delayed proliferation and early differentiation and maturation. Also, anodized samples containing at least 50% anatase were shown to produce higher osteoblast mineralization compared to majority rutile phase anodized layers.

  20. Deposition of SiC x H y O z thin film on epoxy resin by nanosecond pulsed APPJ for improving the surface insulating performance

    NASA Astrophysics Data System (ADS)

    Qing, XIE; Haofan, LIN; Shuai, ZHANG; Ruixue, WANG; Fei, KONG; Tao, SHAO

    2018-02-01

    Non-thermal plasma surface modification for epoxy resin (EP) to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulated transmission line. In this paper, a pulsed Ar dual dielectrics atmospheric-pressure plasma jet (APPJ) was used for SiC x H y O z thin film deposition on EP samples. The film deposition was optimized by varying the treatment time while other parameters were kept at constants (treatment distance: 10 mm, precursor flow rate: 0.6 l min-1, maximum instantaneous power: 3.08 kW and single pulse energy: 0.18 mJ). It was found that the maximum value of flashover voltages for negative and positive voltage were improved by 18% and 13% when the deposition time was 3 min, respectively. The flashover voltage reduced as treatment time increased. Moreover, all the surface conductivity, surface charge dissipation rate and surface trap level distribution reached an optimal value when thin film deposition time was 3 min. Other measurements, such as atomic force microscopy and scanning electron microscope for EP surface morphology, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy for EP surface compositions, optical emission spectra for APPJ deposition process were carried out to better understand the deposition processes and mechanisms. The results indicated that the original organic groups (C-H, C-C, C=O, C=C) were gradually replaced by the Si containing inorganic groups (Si-O-Si and Si-OH). The reduction of C=O in ester group and C=C in p-substituted benzene of the EP samples might be responsible for shallowing the trap level and then enhancing the flashover voltage. However, when the plasma treatment time was longer than 3 min, the significant increase of the surface roughness might increase the trap level depth and then deteriorate the flashover performance.

  1. Characteristics of corona impulses from insulated wires subjected to high ac voltages

    NASA Technical Reports Server (NTRS)

    Doreswamy, C. V.; Crowell, C. S.

    1976-01-01

    Corona discharges arise due to ionization of air or gas subject to high electric fields. The free electrons and ions contained in these discharges interact with molecules of insulating materials, resulting in chemical changes and destroying the electrical insulating properties. The paper describes some results of measurements aimed at determining corona pulse waveforms, their repetition rate, and amplitude distribution during various randomly-sampled identical time periods of a 60-Hz high-voltage wave. Described are properties of positive and negative corona impulses generated from typical conductors at various test high voltages. A possible method for calculating the energies, densities, and electromagnetic interferences by making use of these results is suggested.

  2. Statistical data of X-ray emission from laboratory sparks

    NASA Astrophysics Data System (ADS)

    Kochkin, P.; Deursen, D. V.

    2011-12-01

    In this study we present a summary of the data of 1331 long laboratory sparks in atmospheric pressure intended for a statistical analysis. A 2 MV, 17kJ Marx generator were used to generate 1.2/52μs shape pulses positive and negative polarity. The generator was connected to a spark gap with cone-shaped electrodes. The distance between high-voltage and grounded electrodes was 1.08 meters. Breakdown voltage between electrodes was about 1MV. X-rays have been detected during the development of the discharge channel. The currents through the grounded electrode and through the high-voltage electrode were recorded separately and simultaneously with the voltage and the X-ray signal. X-rays were registered by two LaBr3(Ce+) scintillation detectors in different positions with respect to the forming discharge channel. Detector D1 was placed immediately under the grounded electrode at 15cm distance. Detector D2 was placed at horizontal distances of 143cm and 210cm, at mid-gap height. We also used lead shields of 1.5, 3, and 4 mm thickness for radiation attenuation measurements. For detector collimation we used shields up to 2 cm thickness. Also no metallic objects with pointed surfaces were present within 2 m from the spark gap. Typical plot of positive discharge presented in Figure 1a. Table 1 shows the summary of the X-ray registrations. Signal detection occurred significantly more for positive polarity discharges than for negative. This dependence was observed for both detectors. For detector D2 the probability of X-ray registration decreased proportional to 1/d2 with increasing the distance d to the breakdown gap from 1m43 to 2m10. Detailed energy spectra and time distribution of X-ray emission were obtained; see for example Fig. 1b. For both polarities of the high voltage, the X-rays only occurred when there was a current at the cathode.

  3. Fabrication of (NH4)2S passivated GaAs metal-insulator-semiconductor devices using low-frequency plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jaouad, A.; Aimez, V.; Aktik, Ç.; Bellatreche, K.; Souifi, A.

    2004-05-01

    Metal-insulator-semiconductor (MIS) capacitors were fabricated on n-GaAs(100) substrate using (NH4)2S surface passivation and low-frequency plasma-enhanced chemical vapor deposited silicon nitride as gate insulators. The electrical properties of the fabricated MIS capacitors were analyzed using high-frequency capacitance-voltage and conductance-voltage measurements. The high concentration of hydrogen present during low-frequency plasma deposition of silicon nitride enhances the passivation of GaAs surface, leading to the unpinning of the Fermi level and to a good modulation of the surface potential by gate voltage. The electrical properties of the insulator-semiconductor interface are improved after annealing at 450 °C for 60 s, as a significant reduction of the interface fixed charges and of the interface states density is put into evidence. The minimum interface states density was found to be about 3×1011 cm-2 eV-1, as estimated by the Terman method. .

  4. A novel SOI LDMOS with substrate field plate and variable-k dielectric buried layer

    NASA Astrophysics Data System (ADS)

    Li, Qi; Wen, Yi; Zhang, Fabi; Li, Haiou; Xiao, Gongli; Chen, Yonghe; Fu, Tao

    2018-09-01

    A novel silicon-on-insulator (SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) structure has been proposed. The new structure features a substrate field plate (SFP) and a variable-k dielectric buried layer (VKBL). The SFP and VKBL improve the breakdown voltage by introducing new electric field peaks in the surface electric field distribution. Moreover, the SFP reduces the specific ON-resistance through an enhanced auxiliary depletion effect on the drift region. The simulation results indicate that compared to the conventional SOI LDMOS structure, the breakdown voltage is improved from 118 V to 221 V, the specific ON-resistance is decreased from 7.15 mΩ·cm2 to 3.81 mΩ·cm2, the peak value of surface temperature is declined by 38 K.

  5. Breast EIT using a new projected image reconstruction method with multi-frequency measurements.

    PubMed

    Lee, Eunjung; Ts, Munkh-Erdene; Seo, Jin Keun; Woo, Eung Je

    2012-05-01

    We propose a new method to produce admittivity images of the breast for the diagnosis of breast cancer using electrical impedance tomography(EIT). Considering the anatomical structure of the breast, we designed an electrode configuration where current-injection and voltage-sensing electrodes are separated in such a way that internal current pathways are approximately along the tangential direction of an array of voltage-sensing electrodes. Unlike conventional EIT imaging methods where the number of injected currents is maximized to increase the total amount of measured data, current is injected only twice between two pairs of current-injection electrodes attached along the circumferential side of the breast. For each current injection, the induced voltages are measured from the front surface of the breast using as many voltage-sensing electrodes as possible. Although this electrode configurational lows us to measure induced voltages only on the front surface of the breast,they are more sensitive to an anomaly inside the breast since such an injected current tends to produce a more uniform internal current density distribution. Furthermore, the sensitivity of a measured boundary voltage between two equipotential lines on the front surface of the breast is improved since those equipotential lines are perpendicular to the primary direction of internal current streamlines. One should note that this novel data collection method is different from those of other frontal plane techniques such as the x-ray projection and T-scan imaging methods because we do not get any data on the plane that is perpendicular to the current flow. To reconstruct admittivity images using two measured voltage data sets, a new projected image reconstruction algorithm is developed. Numerical simulations demonstrate the frequency-difference EIT imaging of the breast. The results show that the new method is promising to accurately detect and localize small anomalies inside the breast.

  6. Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdú-Andrés, S.; et al.

    Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting RF cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A Proof-of-Principle (PoP) DQW cavity was limited by quench at 4.6 MV. This paper describesmore » a new, highly optimized cavity, designated DQW SPS-series, which satisfies dimensional, cryogenic, manufacturing and impedance requirements for beam tests at SPS and operation in LHC. Two prototypes of this DQW SPS-series were fabricated by US industry and cold tested after following conventional SRF surface treatment. Both units outperformed the PoP cavity, reaching a deflecting voltage of 5.3-5.9 MV. This voltage - the highest reached by a DQW cavity - is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0MVwith sufficient margin. This paper covers fabrication, surface preparation and cryogenic RF test results and implications.« less

  7. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael J.; Go, David B., E-mail: dgo@nd.edu; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like dischargesmore » on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.« less

  8. Electrocution fatalities in military personnel in Ankara, Turkey

    PubMed Central

    Tugcu, Harun; Ozsoy, Sait; Balandiz, Huseyin

    2015-01-01

    Objectives: To investigate various cases of death caused by electrical injuries among Turkish military personnel. Methods: We retrospectively reviewed fatality cases of military personnel between 1994 and 2013 at the Department of Forensic Medicine, Gulhane Military Medical Academy, School of Medicine, Ankara, Turkey, the only forensic medicine center for the Turkish Armed Forces. Medical records and autopsy reports of cases of electrical fatalities were reviewed and analyzed in terms of age and gender-specific incidence, voltage, contact details, body region distribution, location, and season of incident, site, and severity of injuries sustained, and histopathological and toxicological findings. Results: Sixteen (3.5%) out of the 450 autopsy cases involved electrocution. All deaths were accidental and most frequently occurred outdoors (75%). Eight (50%) died due to high voltage while 6 (37.5%) died due to low voltage. The entry and exit lesions were determined most frequently in cases with high voltage injury. The low voltage deaths commonly occurred at the scene of the event (66.6%), while almost all high voltage deaths occurred in the hospital (87.5%, p=0.03). Electrical burns were most commonly detected in the upper extremities (32.6%, n=14). Conclusion: The present study shows that deaths due to high voltage electrocution are more frequent than low voltage electrocution among military personnel. PMID:25630009

  9. Interactions between surface discharges induced by volume discharges in a dielectric barrier discharge system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yenan; Dong, Lifang, E-mail: donglfhbu@163.com; Zhao, Longhu

    2014-10-15

    The interaction between micro-discharges involved in surface discharges (SDs) is studied in dielectric barrier discharge system. Instantaneous images taken by high speed cameras show that the SDs are induced by volume discharges (VDs). They cannot cross the midperpendicular of two neighbouring volume charges at low voltage while they stretch along it at high voltage, indicating that there is interaction between SDs. The differences of plasma parameters between SD and VD are studied by optical emission spectroscopy. The simulation of the electric fields of the wall charges accumulated by VD further confirms the existence of the interaction.

  10. End-boundary sheath potential, electron and ion energy distribution in the low-pressure non-ambipolar electron plasma

    NASA Astrophysics Data System (ADS)

    Chen, Lee; Chen, Zhiying; Funk, Merritt

    2013-12-01

    The end-boundary floating-surface sheath potential, electron and ion energy distribution functions (EEDf, IEDf) in the low-pressure non-ambipolar electron plasma (NEP) are investigated. The NEP is heated by an electron beam extracted from an inductively coupled electron-source plasma (ICP) through a dielectric injector by an accelerator located inside the NEP. This plasma's EEDf has a Maxwellian bulk followed by a broad energy continuum connecting to the most energetic group with energies around the beam energy. The NEP pressure is 1-3 mTorr of N2 and the ICP pressure is 5-15 mTorr of Ar. The accelerator is biased positively from 80 to 600 V and the ICP power range is 200-300 W. The NEP EEDf and IEDf are determined using a retarding field energy analyser. The EEDf and IEDf are measured at various NEP pressures, ICP pressures and powers as a function of accelerator voltage. The accelerator current and sheath potential are also measured. The IEDf reveals mono-energetic ions with adjustable energy and it is proportionally controlled by the sheath potential. The NEP end-boundary floating surface is bombarded by a mono-energetic, space-charge-neutral plasma beam. When the injected energetic electron beam is adequately damped by the NEP, the sheath potential is linearly controlled at almost a 1 : 1 ratio by the accelerator voltage. If the NEP parameters cannot damp the electron beam sufficiently, leaving an excess amount of electron-beam power deposited on the floating surface, the sheath potential will collapse and become unresponsive to the accelerator voltage.

  11. Current leakage for low altitude satellites - Modeling applications. [simulation of high voltage solar cell array in ionospheric plasma environment

    NASA Technical Reports Server (NTRS)

    Konradi, A.; Mccoy, J. E.; Garriott, O. K.

    1979-01-01

    To simulate the behavior of a high voltage solar cell array in the ionospheric plasma environment, the large (90 ft x 55 ft diameter) vacuum chamber was used to measure the high-voltage plasma interactions of a 3 ft x 30 ft conductive panel. The chamber was filled with Nitrogen and Argon plasma at electron densities of up to 1,000,000 per cu cm. Measurements of current flow to the plasma were made in three configurations: (a) with one end of the panel grounded, (b) with the whole panel floating while a high bias was applied between the ends of the panel, and (c) with the whole panel at high negative voltage with respect to the chamber walls. The results indicate that a simple model with a constant panel conductivity and plasma resistance can adequately describe the voltage distribution along the panel and the plasma current flow. As expected, when a high potential difference is applied to the panel ends more than 95% of the panel floats negative with respect to the plasma.

  12. About the contrast of δ' precipitates in bulk Al-Cu-Li alloys in reflection mode with a field-emission scanning electron microscope at low accelerating voltage.

    PubMed

    Brodusch, Nicolas; Voisard, Frédéric; Gauvin, Raynald

    2017-11-01

    Characterising the impact of lithium additions in the precipitation sequence in Al-Li-Cu alloys is important to control the strengthening of the final material. Since now, transmission electron microscopy (TEM) at high beam voltage has been the technique of choice to monitor the size and spatial distribution of δ' precipitates (Al 3 Li). Here we report on the imaging of the δ' phase in such alloys using backscattered electrons (BSE) and low accelerating voltage in a high-resolution field-emission scanning electron microscope. By applying low-energy Ar + ion milling to the surface after mechanical polishing (MP), the MP-induced corroded layers were efficiently removed and permitted the δ's to be visible with a limited impact on the observed microstructure. The resulting BSE contrast between the δ's and the Al matrix was compared with that obtained using Monte Carlo modelling. The artefacts possibly resulting from the sample preparation procedure were reviewed and discussed and permitted to confirm that these precipitates were effectively the metastable δ's. The method described in this report necessitates less intensive sample preparation than that required for TEM and provides a much larger field of view and an easily interpretable contrast compared to the transmission techniques. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  13. Investigation of Defect Distributions in SiO2/AlGaN/GaN High-Electron-Mobility Transistors by Using Capacitance-Voltage Measurement with Resonant Optical Excitation

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Soo; Lim, Seung-Young; Park, Yong-Keun; Jung, Gunwoo; Song, Jung-Hoon; Cha, Ho-Young; Han, Sang-Woo

    2018-06-01

    We investigated the distributions and the energy levels of defects in SiO2/AlGaN/GaN highelectron-mobility transistors (HEMTs) by using frequency-dependent ( F- D) capacitance-voltage ( C- V) measurements with resonant optical excitation. A Schottky barrier (SB) and a metal-oxidesemiconductor (MOS) HEMT were prepared to compare the effects of defects in their respective layers. We also investigated the effects of those layers on the threshold voltage ( V th ). A drastic voltage shift in the C- V curve at higher frequencies was caused by the large number of defect levels in the SiO2/GaN interface. A significant shift in V th with additional light illumination was observed due to a charging of the defect states in the SiO2/GaN interface. The voltage shifts were attributed to the detrapping of defect states at the SiO2/GaN interface.

  14. Transport of Sputtered Carbon During Ground-Based Life Testing of Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Marker, Colin L.; Clemons, Lucas A.; Banks, Bruce A.; Miller, Sharon; Snyder, Aaron; Hung, Ching-Cheh; Karniotis, Christina A.; Waters, Deborah L.

    2005-01-01

    High voltage, high power electron bombardment ion thrusters needed for deep space missions will be required to be operated for long durations in space as well as during ground laboratory life testing. Carbon based ion optics are being considered for such thrusters. The sputter deposition of carbon and arc vaporized carbon flakes from long duration operation of ion thrusters can result in deposition on insulating surfaces, causing them to become conducting. Because the sticking coefficient is less than one, secondary deposition needs to be considered to assure that shorting of critical components does not occur. The sticking coefficient for sputtered carbon and arc vaporized carbon is measured as well as directional ejection distribution data for carbon that does not stick upon first impact.

  15. Surface treatment of ceramic articles

    DOEpatents

    Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, C. Singh

    1998-01-01

    A process for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article.

  16. Processing Ti-25Ta-5Zr Bioalloy via Anodic Oxidation Procedure at High Voltage

    NASA Astrophysics Data System (ADS)

    Ionita, Daniela; Grecu, Mihaela; Dilea, Mirela; Cojocaru, Vasile Danut; Demetrescu, Ioana

    2011-12-01

    The current paper reports the processing of Ti-25Ta-5Zr bioalloy via anodic oxidation in NH4BF4 solution under constant potentiostatic conditions at high voltage to obtain more suitable properties for biomedical application. The maximum efficiency of the procedure is reached at highest applied voltage, when the corrosion rate in Hank's solution is decreased approxomately six times. The topography of the anodic layer has been studied using atomic force microscopy (AFM), and the results indicated that the anodic oxidation process increases the surface roughness. The AFM images indicated a different porosity for the anodized surfaces as well. After anodizing, the hydrophilic character of Ti-25Ta-5Zr samples has increased. A good correlation between corrosion rate obtained from potentiodynamic curves and corrosion rate from ions release analysis was obtained.

  17. A 700 V narrow channel nJFET with low pinch-off voltage and suppressed drain-induced barrier lowering effect

    NASA Astrophysics Data System (ADS)

    Mao, Kun; Qiao, Ming; Zhang, WenTong; Zhang, Bo; Li, Zhaoji

    2014-11-01

    This paper proposes a 700 V narrow channel region triple-RESURF (reduced surface field) n-type junction field-effect transistor (NCT-nJFET). Compared to traditional structures, low pinch-off voltage (VP) with unobvious drain-induced barrier lowering (DIBL) effect and large saturated current (IDsat) are achieved. This is because p-type buried layer (Pbury) and PWELL are introduced to shape narrow n-type channel in JFET channel region. DIBL sensitivity (SDIBL) is firstly introduced in this paper to analyze the DIBL effect of high-voltage long-channel JFET. Ultra-high breakdown voltage is obtained by triple RESURF technology. Experimental results show that proposed NCT-nJFET achieves 24-V VP, 3.5% SDIBL, 2.3-mA IDsat, 800-V OFF-state breakdown voltage (OFF-BV) and 650-V ON-state breakdown voltage when VGS equals 0 V (ON-BV).

  18. A facile approach for reducing the working voltage of Au/TiO2/Au nanostructured memristors by enhancing the local electric field

    NASA Astrophysics Data System (ADS)

    Arab Bafrani, Hamidreza; Ebrahimi, Mahdi; Bagheri Shouraki, Saeed; Moshfegh, Alireza Z.

    2018-01-01

    Memristor devices have attracted tremendous interest due to different applications ranging from nonvolatile data storage to neuromorphic computing units. Exploring the role of surface roughness of the bottom electrode (BE)/active layer interface provides useful guidelines for the optimization of the memristor switching performance. This study focuses on the effect of surface roughness of the BE electrode on the switching characteristics of Au/TiO2/Au three-layer memristor devices. An optimized wet-etching treatment condition was found to modify the surface roughness of the Au BE where the measurement results indicate that the roughness of the Au BE is affected by both duration time and solution concentrations of the wet-etching process. Then we fabricated arrays of TiO2-based nanostructured memristors sandwiched between two sets of cross-bar Au electrode lines (junction area 900 μm2). The results revealed a reduction in the working voltages in current-voltage characteristic of the device performance when increasing the surface roughness at the Au(BE)/TiO2 active layer interface. The set voltage of the device (Vset) significantly decreased from 2.26-1.93 V when we increased the interface roughness from 4.2-13.1 nm. The present work provides information for better understanding the switching mechanism of titanium-dioxide-based devices, and it can be inferred that enhancing the roughness of the Au BE/TiO2 active layer interface leads to a localized non-uniform electric field distribution that plays a vital role in reducing the energy consumption of the device.

  19. DC partial discharge/environmental test screening of space TWTS

    NASA Astrophysics Data System (ADS)

    Hai, F.; Paschen, K. W.

    Direct-current partial discharge/environmental tests are being conducted on traveling wave tubes (TWTs) designated for long-term space operation to screen out tubes with high voltage defects. Two types of TWTs with different external high-voltage insulation are being examined: (1) TWTs with polymeric potting, and (2) TWTs with ceramic feedthroughs. Detection of high voltage defects in the form of cracks and seprations in potted systems is enhanced by combining dc partial discharge testing with environmental (temperature and pressure) testing. These defects are usually caused by high stresses in the potting produced during temperature excursions by the difference in thermal expansion between the potting material and the confining ceramic-metal structure. Tests of all-ceramic-insulated TWTs indicate that the high voltage problem is internal to the vacuum envelope and requires both leakage and discharge measurements for diagnosis. This problem appears to be field emission from contaminated surfaces.

  20. High Efficient THz Emission From Unbiased and Biased Semiconductor Nanowires Fabricated Using Electron Beam Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balci, Soner; Czaplewski, David A.; Jung, Il Woong

    Besides having perfect control on structural features, such as vertical alignment and uniform distribution by fabricating the wires via e-beam lithography and etching process, we also investigated the THz emission from these fabricated nanowires when they are applied DC bias voltage. To be able to apply a voltage bias, an interdigitated gold (Au) electrode was patterned on the high-quality InGaAs epilayer grown on InP substrate bymolecular beam epitaxy. Afterwards, perfect vertically aligned and uniformly distributed nanowires were fabricated in between the electrodes of this interdigitated pattern so that we could apply voltage bias to improve the THz emission. As amore » result, we achieved enhancement in the emitted THz radiation by ~four times, about 12 dB increase in power ratio at 0.25 THz with a DC biased electric field compared with unbiased NWs.« less

  1. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  2. The inverse power law model for the lifetime of a mylar-polyurethane laminated dc hv insulating structure

    NASA Astrophysics Data System (ADS)

    Kalkanis, G.; Rosso, E.

    1989-09-01

    Results of an accelerated test on the lifetime of a mylar-polyurethane laminated dc high voltage insulating structure are reported. This structure consists of mylar ribbons placed side by side in a number of layers, staggered and glued together with a polyurethane adhesive. The lifetime until breakdown as a function of extremely high values of voltage stress is measured and represented by a mathematical model, the inverse power law model with a 2-parameter Weibull lifetime distribution. The statistical treatment of the data — either by graphical or by analytical methods — allowed us to estimate the lifetime distribution and confidence bounds for any required normal voltage stress. The laminated structure under consideration is, according to the analysis, a very reliable dc hv insulating material, with a very good life performance according to the inverse power law model, and with an exponent of voltage stress equal to 6. A large insulator of cylindrical shape with this kind of laminated structure can be constructed by winding helically a mylar ribbon in a number of layers.

  3. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    PubMed

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  4. Functional Carbon Materials for Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Huihui

    The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to create uniformly distributed nanopores with large surface area, leading to high-performance electrodes with high capacitance, excellent rate performance and stable cycling, even under a high working voltage of 1.6V. The second part of this dissertation work further improved the capacitance of the carbon electrodes by fluorine doping. This doping process enhances the affinity of the carbon surface with organic electrolytes, leading to further improved capacitance and energy density. In the third part, carbon materials were synthesized with high surface area, capacitance and working voltage of 4V in organic electrolyte, leading to the construction of prototyped devices with energy density comparable to those of the current lead-acid batteries. Besides the abovementioned research, hierarchical graphitic carbons were also explored for lithium ion batteries and supercapacitors. Overall, through rational design of carbons with optimized pore configuration and surface chemistry, carbon electrodes with improved energy density and rate performance were improved significantly. Collectively, this thesis work systematically unveils simple yet effective strategies to achieve high performance carbon-based supercapacitors with high power density and high energy density, including the following aspects: 1) Constructed electrodes with high capacitance through building favorable ion/electron transportation pathways, tuning pore structure and pore size. 2) Improved the capacitance through enhancing the affinity between the carbon electrodes and electrolytes by doping the carbons with heteroatoms. 3) Explored and understand the roles of heteroatom doping in the capacitive behavior by both experimental measurement and computational modeling. 4) Improved energy density of carbon electrodes by enlarging their working voltage in aqueous and organic electrolyte. 5) Scalable and effective production of hierarchically porous graphite particles through aerosol process for use as the anode materials of lithium ion batteries. These strategies can be extended as a general design platform for other high-performance energy storage materials such as fuel cells and lithium-ion batteries.

  5. Centralized vs decentralized lunar power system study

    NASA Astrophysics Data System (ADS)

    Metcalf, Kenneth; Harty, Richard B.; Perronne, Gerald E.

    1991-09-01

    Three power-system options are considered with respect to utilization on a lunar base: the fully centralized option, the fully decentralized option, and a hybrid comprising features of the first two options. Power source, power conditioning, and power transmission are considered separately, and each architecture option is examined with ac and dc distribution, high and low voltage transmission, and buried and suspended cables. Assessments are made on the basis of mass, technological complexity, cost, reliability, and installation complexity, however, a preferred power-system architecture is not proposed. Preferred options include transmission based on ac, transmission voltages of 2000-7000 V with buried high-voltage lines and suspended low-voltage lines. Assessments of the total cost associated with the installations are required to determine the most suitable power system.

  6. Optimal Capacitor Bank Capacity and Placement in Distribution Systems with High Distributed Solar Power Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Mather, Barry A; Cho, Gyu-Jung

    Capacitor banks have been generally installed and utilized to support distribution voltage during period of higher load or on longer, higher impedance, feeders. Installations of distributed energy resources in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile across a feeder, and therefore when a new capacitor bank is needed analysis of optimal capacity and location of the capacitor bank is required. In this paper, we model a particular distribution system including essential equipment. An optimization method is adopted to determine the best capacitymore » and location sets of the newly installed capacitor banks, in the presence of distributed solar power generation. Finally we analyze the optimal capacitor banks configuration through the optimization and simulation results.« less

  7. System and method of applying energetic ions for sterilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, John A.

    2003-12-23

    A method of sterilization of a container is provided whereby a cold plasma is caused to be disposed near a surface to be sterilized, and the cold plasma is then subjected to a pulsed voltage differential for producing energized ions in the plasma. Those energized ions then operate to achieve spore destruction on the surface to be sterilized. Further, a system for sterilization of a container which includes a conductive or non-conductive container, a cold plasma in proximity to the container, and a high voltage source for delivering a pulsed voltage differential between an electrode and the container and acrossmore » the cold plasma, is provided.« less

  8. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    PubMed

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed.

  9. Low-Voltage Continuous Electrospinning Patterning.

    PubMed

    Li, Xia; Li, Zhaoying; Wang, Liyun; Ma, Guokun; Meng, Fanlong; Pritchard, Robyn H; Gill, Elisabeth L; Liu, Ye; Huang, Yan Yan Shery

    2016-11-30

    Electrospinning is a versatile technique for the construction of microfibrous and nanofibrous structures with considerable potential in applications ranging from textile manufacturing to tissue engineering scaffolds. In the simplest form, electrospinning uses a high voltage of tens of thousands volts to draw out ultrafine polymer fibers over a large distance. However, the high voltage limits the flexible combination of material selection, deposition substrate, and control of patterns. Prior studies show that by performing electrospinning with a well-defined "near-field" condition, the operation voltage can be decreased to the kilovolt range, and further enable more precise patterning of fibril structures on a planar surface. In this work, by using solution dependent "initiators", we demonstrate a further lowering of voltage with an ultralow voltage continuous electrospinning patterning (LEP) technique, which reduces the applied voltage threshold to as low as 50 V, simultaneously permitting direct fiber patterning. The versatility of LEP is shown using a wide range of combination of polymer and solvent systems for thermoplastics and biopolymers. Novel functionalities are also incorporated when a low voltage mode is used in place of a high voltage mode, such as direct printing of living bacteria; the construction of suspended single fibers and membrane networks. The LEP technique reported here should open up new avenues in the patterning of bioelements and free-form nano- to microscale fibrous structures.

  10. Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxson, Jared; Bazarov, Ivan; Dunham, Bruce

    2014-09-15

    A new high voltage photoemission gun has been constructed at Cornell University which features a segmented insulator and a movable anode, allowing the cathode-anode gap to be adjusted. In this work, we describe the gun's overall mechanical and high voltage design, the surface preparation of components, as well as the clean construction methods. We present high voltage conditioning data using a 50 mm cathode-anode gap, in which the conditioning voltage exceeds 500 kV, as well as at smaller gaps. Finally, we present simulated emittance results obtained from a genetic optimization scheme using voltage values based on the conditioning data. Thesemore » results indicate that for charges up to 100 pC, a 30 mm gap at 400 kV has equal or smaller 100% emittance than a 50 mm gap at 450 kV, and also a smaller core emittance, when placed as the source for the Cornell energy recovery linac photoinjector with bunch length constrained to be <3 ps rms. For 100 pC up to 0.5 nC charges, the 50 mm gap has larger core emittance than the 30 mm gap, but conversely smaller 100% emittance.« less

  11. Voltage-programmable liquid optical interface

    NASA Astrophysics Data System (ADS)

    Brown, C. V.; Wells, G. G.; Newton, M. I.; McHale, G.

    2009-07-01

    Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices.

  12. Measured radial dependence of the peak sheath voltages present in very high frequency capacitive discharges

    DOE PAGES

    Barnat, E. V.; Miller, P. A.; Hebner, G. A.; ...

    2007-05-16

    In this paper, the radial distribution of the measured voltage drop across a sheath formed between a 300mm electrode and an argon plasma discharge is shown to depend on the excitation radio frequency, under constant power and pressure conditions. At a lower frequency of 13.56MHz, the voltage drop across the sheath is uniform across the 300mm electrode, while at higher frequencies of 60 and 162MHz the voltage drop becomes radially nonuniform. Finally, the magnitude and spatial extent of the nonuniformity become greater with increasing frequency.

  13. Push-pull with recovery stage high-voltage DC converter for PV solar generator

    NASA Astrophysics Data System (ADS)

    Nguyen, The Vinh; Aillerie, Michel; Petit, Pierre; Pham, Hong Thang; Vo, Thành Vinh

    2017-02-01

    A lot of systems are basically developed on DC-DC or DC-AC converters including electronic switches such as MOS or bipolar transistors. The limits of efficiency are quickly reached when high output voltages and high input currents are needed. This work presents a new high-efficiency-high-step-up based on push-pull DC-DC converter integrating recovery stages dedicated to smart HVDC distributed architecture in PV solar energy production systems. Appropriate duty cycle ratio assumes that the recovery stage work with parallel charge and discharge to achieve high step-up voltage gain. Besides, the voltage stress on the main switch is reduced with a passive clamp circuit and thus, low on-state resistance Rdson of the main switch can be adopted to reduce conduction losses. Thus, the efficiency of a basic DC-HVDC converter dedicated to renewable energy production can be further improved with such topology. A prototype converter is developed, and experimentally tested for validation.

  14. Unexpected Voltage Fade in LMR-NMC Oxides Cycled below the "Activation" Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Bareno, J.; Bettge, M.

    A common feature of lithium-excess layered oxides, nominally of composition xLi(2)MnO(3)center dot(1-x)LiMO2 (M = transition metal) is a high-voltage plateau (similar to 4.5 V vs. Li/Li+) in their capacity-voltage profile during the first delithiation cycle. This plateau is believed to result from activation of the Li2MnO3 component, which makes additional lithium available for electrochemical cycling. However, oxides cycled beyond this activation plateau are known to display voltage fade which is a continuous reduction in their equilibrium potential. In this article we show that these oxides display gradual voltage fade even on electrochemical cycling in voltage ranges well below the activationmore » plateau. The average fade is similar to 0.08 mV-cycle(-1) for Li(1.2)Ni(0.1)5Mn(0.5)5Co(0.1)O(2) vs. Li cells after 20 cycles in the 2-4.1 V range at 55 degrees C; a similar to 54 mV voltage hysteresis, expressed as the difference in average cell voltage between charge and discharge cycles, is also observed. The voltage fade results from a gradual accumulation of local spinel environments in the crystal structure. Some of these spinel sites result from lithium deficiencies during oxide synthesis and are likely to be at the particle surfaces; other sites result from the migration of transition metal atoms in the partially-delithiated LiMO2 component into the lithium planes during electrochemical cycling. The observed rate of voltage fade depends on a combination of factors that includes the phase equilibrium between the layered and spinel components and the kinetics of transition metal migration. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.« less

  15. GaN HEMTs with p-GaN gate: field- and time-dependent degradation

    NASA Astrophysics Data System (ADS)

    Meneghesso, G.; Meneghini, M.; Rossetto, I.; Canato, E.; Bartholomeus, J.; De Santi, C.; Trivellin, N.; Zanoni, E.

    2017-02-01

    GaN-HEMTs with p-GaN gate have recently demonstrated to be excellent normally-off devices for application in power conversion systems, thanks to the high and robust threshold voltage (VTH>1 V), the high breakdown voltage, and the low dynamic Ron increase. For this reason, studying the stability and reliability of these devices under high stress conditions is of high importance. This paper reports on our most recent results on the field- and time-dependent degradation of GaN-HEMTs with p-GaN gate submitted to stress with positive gate bias. Based on combined step-stress experiments, constant voltage stress and electroluminescence testing we demonstrated that: (i) when submitted to high/positive gate stress, the transistors may show a negative threshold voltage shift, that is ascribed to the injection of holes from the gate metal towards the p-GaN/AlGaN interface; (ii) in a step-stress experiment, the analyzed commercial devices fail at gate voltages higher than 9-10 V, due to the extremely high electric field over the p-GaN/AlGaN stack; (iii) constant voltage stress tests indicate that the failure is also time-dependent and Weibull distributed. The several processes that can explain the time-dependent failure are discussed in the following.

  16. Study of Stand-Alone Microgrid under Condition of Faults on Distribution Line

    NASA Astrophysics Data System (ADS)

    Malla, S. G.; Bhende, C. N.

    2014-10-01

    The behavior of stand-alone microgrid is analyzed under the condition of faults on distribution feeders. During fault since battery is not able to maintain dc-link voltage within limit, the resistive dump load control is presented to do so. An inverter control is proposed to maintain balanced voltages at PCC under the unbalanced load condition and to reduce voltage unbalance factor (VUF) at load points. The proposed inverter control also has facility to protect itself from high fault current. Existing maximum power point tracker (MPPT) algorithm is modified to limit the speed of generator during fault. Extensive simulation results using MATLAB/SIMULINK established that the performance of the controllers is quite satisfactory under different fault conditions as well as unbalanced load conditions.

  17. Electrical characteristics of TMAH-surface treated Ni/Au/Al2O3/GaN MIS Schottky structures

    NASA Astrophysics Data System (ADS)

    Reddy, M. Siva Pratap; Lee, Jung-Hee; Jang, Ja-Soon

    2014-03-01

    The electrical characteristics and reverse leakage mechanisms of tetramethylammonium hydroxide (TMAH) surface-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes were investigated by using the current-voltage ( I-V) and capacitance-voltage ( C-V) characteristics. The MIS diode was formed on n-GaN after etching the AlGaN in the AlGaN/GaN heterostructures. The TMAH-treated MIS diode showed better Schottky characteristics with a lower ideality factor, higher barrier height and lower reverse leakage current compared to the TMAH-free MIS diode. In addition, the TMAH-free MIS diodes exhibited a transition from Poole-Frenkel emission at low voltages to Schottky emission at high voltages, whereas the TMAH-treated MIS diodes showed Schottky emission over the entire voltage range. Reasonable mechanisms for the improved device-performance characteristics in the TMAH-treated MIS diode are discussed in terms of the decreased interface state density or traps associated with an oxide material and the reduced tunneling probability.

  18. Combined effect of CVR and penetration of DG in the voltage profile and losses of lowvoltage secondary distribution networks

    NASA Astrophysics Data System (ADS)

    Bokhari, Abdullah

    Demarcations between traditional distribution power systems and distributed generation (DG) architectures are increasingly evolving as higher DG penetration is introduced in the system. The concerns in existing electric power systems (EPSs) to accommodate less restrictive interconnection policies while maintaining reliability and performance of power delivery have been the major challenge for DG growth. In this dissertation, the work is aimed to study power quality, energy saving and losses in a low voltage distributed network under various DG penetration cases. Simulation platform suite that includes electric power system, distributed generation and ZIP load models is implemented to determine the impact of DGs on power system steady state performance and the voltage profile of the customers/loads in the network under the voltage reduction events. The investigation designed to test the DG impact on power system starting with one type of DG, then moves on multiple DG types distributed in a random case and realistic/balanced case. The functionality of the proposed DG interconnection is designed to meet the basic requirements imposed by the various interconnection standards, most notably IEEE 1547, public service commission, and local utility regulation. It is found that implementation of DGs on the low voltage secondary network would improve customer's voltage profile, system losses and significantly provide energy savings and economics for utilities. In a network populated with DGs, utility would have a uniform voltage profile at the customers end as the voltage profile becomes more concentrated around targeted voltage level. The study further reinforced the concept that the behavior of DG in distributed network would improve voltage regulation as certain percentage reduction on utility side would ensure uniform percentage reduction seen by all customers and reduce number of voltage violations.

  19. High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes

    PubMed Central

    Snyder, Jessica L.; Getpreecharsawas, Jirachai; Fang, David Z.; Gaborski, Thomas R.; Striemer, Christopher C.; Fauchet, Philippe M.; Borkholder, David A.; McGrath, James L.

    2013-01-01

    We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures. PMID:24167263

  20. 1,3,6-Hexanetricarbonitrile as electrolyte additive for enhancing electrochemical performance of high voltage Li-rich layered oxide cathode

    NASA Astrophysics Data System (ADS)

    Wang, Long; Ma, Yulin; Li, Qin; Zhou, Zhenxin; Cheng, Xinqun; Zuo, Pengjian; Du, Chunyu; Gao, Yunzhi; Yin, Geping

    2017-09-01

    1,3,6-Hexanetricarbonitrile (HTN) has been investigated as an electrolyte additive to improve the electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode at high operating voltage (4.8 V). Linear sweep voltammetry (LSV) results indicate that HTN can improve the oxidation potential of the electrolyte. The influences of HTN on the electrochemical behaviors and surface properties of the cathode at high voltage have been investigated by galvanostatic charge/discharge test, electrochemical impedance spectroscopy (EIS), and ex-situ physical characterizations. Charge-discharge results demonstrate that the capacity retention of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode in 1% HTN-containing electrolyte after 150 cycles at 0.5 C is improved to 92.3%, which is much higher than that in the standard electrolyte (ED). Combined with the theoretical calculation, ICP tests, XRD and XPS analysis, more stable and homogeneous interface film is confirmed to form on the cathode surface with incorporation of HTN, meanwhile, the electrolyte decomposition and the cathode structural destruction are restrained effectively upon cycling at high voltage, leading to improved electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode.

  1. Reduction technique of drop voltage and power losses to improve power quality using ETAP Power Station simulation model

    NASA Astrophysics Data System (ADS)

    Satrio, Reza Indra; Subiyanto

    2018-03-01

    The effect of electric loads growth emerged direct impact in power systems distribution. Drop voltage and power losses one of the important things in power systems distribution. This paper presents modelling approach used to restructrure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructrure electrical network was aimed to analyse and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP Power Station Software. Based on result of simulation and real measurement precentage of drop voltage and total power losses were mismatch with SPLN (Standard PLN) 72:1987. After added a new distribution transformer and restructrured electricity network configuration, the result of simulation could reduce drop voltage from 1.3 % - 31.3 % to 8.1 % - 9.6 % and power losses from 646.7 watt to 233.29 watt. Result showed, restructrure electricity network configuration and added new distribution transformer can be applied as an effective method to reduce drop voltage and reduce power losses.

  2. Electrochemical impedance spectroscopy for study of electronic structure in disordered organic semiconductors—Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Schauer, F.; Nádaždy, V.; Gmucová, K.

    2018-04-01

    There is potential in applying conjugated polymers in novel organic optoelectronic devices, where a comprehensive understanding of the fundamental processes and energetics involved during transport and recombination is still lacking, limiting further device optimization. The electronic transport modeling and its optimization need the energy distribution of transport and defect states, expressed by the energy distribution of the Density of States (DOS) function, as input/comparative parameters. We present the Energy Resolved-Electrochemical Impedance Spectroscopy (ER-EIS) method for the study of transport and defect electronic states in organic materials. The method allows mapping over unprecedentedly wide energy and DOS ranges. The ER-EIS spectroscopic method is based on the small signal interaction between the surface of the organic film and the liquid electrolyte containing reduction-oxidation (redox) species, which is similar to the extraction of an electron by an acceptor and capture of an electron by a donor at a semiconductor surface. The desired DOS of electronic transport and defect states can be derived directly from the measured redox response signal to the small voltage perturbation at the instantaneous position of the Fermi energy, given by the externally applied voltage. The theory of the ER-EIS method and conditions for its validity for solid polymers are presented in detail. We choose four case studies on poly(3-hexylthiophene-2,5-diyl) and poly[methyl(phenyl)silane] to show the possibilities of the method to investigate the electronic structure expressed by DOS of polymers with a high resolution of about 6 orders of magnitude and in a wide energy range of 6 eV.

  3. The investigation of a compact auto-connected wire-wrapped pulsed transformer

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Zhang, Tianyang

    2012-05-01

    For the power conditioning circuit used to deliver power efficiently from flux compression generator (FCG) to the load with high impedance, an air-cored and wire-wrapped transformer convenient in coaxial connection to the other parts is investigated. To reduce the size and enhance the performance, an auto-connection is adopted. A fast and simple model is used to calculate the electrical parameters of the transformer. To evaluate the high voltage capability, the voltages across turns and the electric field distribution in the transformer are investigated. The calculated and the measured electrical parameters of the transformer show good agreements. And the safe operating voltage is predicted to exceed 500 kV. In the preliminary experiments, the transformer is tested in a power conditioning circuit with a capacitive power supply. It is demonstrated that the output voltage of the transformer reaches -342 kV under the input voltage of -81 kV.

  4. The investigation of a compact auto-connected wire-wrapped pulsed transformer.

    PubMed

    Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Zhang, Tianyang

    2012-05-01

    For the power conditioning circuit used to deliver power efficiently from flux compression generator (FCG) to the load with high impedance, an air-cored and wire-wrapped transformer convenient in coaxial connection to the other parts is investigated. To reduce the size and enhance the performance, an auto-connection is adopted. A fast and simple model is used to calculate the electrical parameters of the transformer. To evaluate the high voltage capability, the voltages across turns and the electric field distribution in the transformer are investigated. The calculated and the measured electrical parameters of the transformer show good agreements. And the safe operating voltage is predicted to exceed 500 kV. In the preliminary experiments, the transformer is tested in a power conditioning circuit with a capacitive power supply. It is demonstrated that the output voltage of the transformer reaches -342 kV under the input voltage of -81 kV.

  5. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene.

    PubMed

    Chen, Hsiang-Yu; Lo, Michael K F; Yang, Guanwen; Monbouquette, Harold G; Yang, Yang

    2008-09-01

    Polymer-inorganic nanocrystal composites offer an attractive means to combine the merits of organic and inorganic materials into novel electronic and photonic systems. However, many applications of these composites are limited by the solubility and distribution of the nanocrystals in the polymer matrices. Here we show that blending CdTe nanoparticles into a polymer-fullerene matrix followed by solvent annealing can achieve high photoconductive gain under low applied voltages. The surface capping ligand renders the nanoparticles highly soluble in the polymer blend, thereby enabling high CdTe loadings. An external quantum efficiency as high as approximately 8,000% at 350 nm was achieved at -4.5 V. Hole-dominant devices coupled with atomic force microscopy images show a higher concentration of nanoparticles near the cathode-polymer interface. The nanoparticles and trapped electrons assist hole injection into the polymer under reverse bias, contributing to efficiency values in excess of 100%.

  6. Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems

    NASA Astrophysics Data System (ADS)

    Duclut, Charlie; Backhaus, Scott; Chertkov, Michael

    2013-06-01

    The majority of dynamical studies in power systems focus on the high-voltage transmission grids where models consider large generators interacting with crude aggregations of individual small loads. However, new phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1 (space+time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence and segregation of spatially extended phases defined by individual motor states, a “normal” state where the motors’ mechanical (rotation) frequency is slightly smaller than the nominal frequency of the basic ac flows and a “stalled” state where the mechanical frequency is small. Transitions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional model shows many other properties of a first-order phase transition with the spatial distribution of the motors’ mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the normal and stalled (or partially stalled) phases.

  7. Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems.

    PubMed

    Duclut, Charlie; Backhaus, Scott; Chertkov, Michael

    2013-06-01

    The majority of dynamical studies in power systems focus on the high-voltage transmission grids where models consider large generators interacting with crude aggregations of individual small loads. However, new phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1 (space+time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence and segregation of spatially extended phases defined by individual motor states, a "normal" state where the motors' mechanical (rotation) frequency is slightly smaller than the nominal frequency of the basic ac flows and a "stalled" state where the mechanical frequency is small. Transitions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional model shows many other properties of a first-order phase transition with the spatial distribution of the motors' mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the normal and stalled (or partially stalled) phases.

  8. Surface treatment of ceramic articles

    DOEpatents

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-12-22

    A process is disclosed for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article. 15 figs.

  9. A High-Voltage Integrated Circuit Engine for a Dielectrophoresis-based Programmable Micro-Fluidic Processor

    PubMed Central

    Current, K. Wayne; Yuk, Kelvin; McConaghy, Charles; Gascoyne, Peter R. C.; Schwartz, Jon A.; Vykoukal, Jody V.; Andrews, Craig

    2010-01-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport droplets on programmable paths across its coated surface. This chip is the engine for a dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip system. This chip creates DEP forces that move and help inject droplets. Electrode excitation voltage and frequency are variable. With the electrodes driven with a 100V peak-to-peak periodic waveform, the maximum high-voltage electrode waveform frequency is about 200Hz. Data communication rate is variable up to 250kHz. This demonstration chip has a 32×32 array of nominally 100V electrode drivers. It is fabricated in a 130V SOI CMOS fabrication technology, dissipates a maximum of 1.87W, and is about 10.4 mm × 8.2 mm. PMID:23989241

  10. Electrical distribution studies for the 200 Area tank farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisler, J.B.

    1994-08-26

    This is an engineering study providing reliability numbers for various design configurations as well as computer analyses (Captor/Dapper) of the existing distribution system to the 480V side of the unit substations. The objective of the study was to assure the adequacy of the existing electrical system components from the connection at the high voltage supply point through the transformation and distribution equipment to the point where it is reduced to its useful voltage level. It also was to evaluate the reasonableness of proposed solutions of identified deficiencies and recommendations of possible alternate solutions. The electrical utilities are normally considered themore » most vital of the utility systems on a site because all other utility systems depend on electrical power. The system accepts electric power from the external sources, reduces it to a lower voltage, and distributes it to end-use points throughout the site. By classic definition, all utility systems extend to a point 5 feet from the facility perimeter. An exception is made to this definition for the electric utilities at this site. The electrical Utility System ends at the low voltage section of the unit substation, which reduces the voltage from 13.8 kV to 2,400, 480, 277/480 or 120/208 volts. These transformers are located at various distances from existing facilities. The adequacy of the distribution system which transports the power from the main substation to the individual area substations and other load centers is evaluated and factored into the impact of the future load forecast.« less

  11. The polarized distribution of poly(A+)-mRNA-induced functional ion channels in the Xenopus oocyte plasma membrane is prevented by anticytoskeletal drugs.

    PubMed

    Peter, A B; Schittny, J C; Niggli, V; Reuter, H; Sigel, E

    1991-08-01

    Foreign mRNA was expressed in Xenopus laevis oocytes. Newly expressed ion currents localized in defined plasma membrane areas were measured using the two-electrode voltage clamp technique in combination with a specially designed chamber, that exposed only part of the surface on the oocytes to channel agonists or inhibitors. Newly expressed currents were found to be unequally distributed in the surface membrane of the oocyte. This asymmetry was most pronounced during the early phase of expression, when channels could almost exclusively be detected in the animal hemisphere of the oocyte. 4 d after injection of the mRNA, or later, channels could be found at a threefold higher density at the animal than at the vegetal pole area. The pattern of distribution was observed to be similar with various ion channels expressed from crude tissue mRNA and from cRNAs coding for rat GABAA receptor channel subunits. Electron microscopical analysis revealed very similar microvilli patterns at both oocyte pole areas. Thus, the asymmetric current distribution is not due to asymmetric surface structure. Upon incubation during the expression period in either colchicine or cytochalasin D, the current density was found to be equal in both pole areas. The inactive control substance beta-lumicolchicine had no effect on the asymmetry of distribution. Colchicine was without effect on the amplitude of the expressed whole cell current. Our measurements reveal a pathway for plasma membrane protein expression endogenous to the Xenopus oocyte, that may contribute to the formation and maintenance of polarity of this highly organized cell.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández-Rosales, E.; Cedeño, E.; Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF

    In this work a combined thermoacoustic and thermoreflectance set-up was designed for imaging biased microelectronic circuits. In particular, it was used with polycrystalline silicon resistive tracks grown on a monocrystalline Si substrate mounted on a test chip. Thermoreflectance images, obtained by scanning a probe laser beam on the sample surface, clearly show the regions periodically heated by Joule effect, which are associated to the electric current distribution in the circuit. The thermoacoustic signal, detected by a pyroelectric/piezoelectric sensor beneath the chip, also discloses the Joule contribution of the whole sample. However, additional information emerges when a non-modulated laser beam ismore » focused on the sample surface in a raster scan mode allowing imaging of the sample. The distribution of this supplementary signal is related to the voltage distribution along the circuit.« less

  13. Quasi-static time-series simulation using OpenDSS in IEEE distribution feeder model with high PV penetration and its impact on solar forecasting

    NASA Astrophysics Data System (ADS)

    Mohammed, Touseef Ahmed Faisal

    Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source Distribution System Simulator developed by Electric Power Research Institute, to simulate grid voltage profile with a large scale PV system under quasi-static time series considering variations of PV output in seconds, minutes, and the average daily load variations. A 13 bus IEEE distribution feeder model is utilized with distributed residential and commercial scale PV at different buses for simulation studies. Time series simulations are discussed for various modes of operation considering dynamic PV penetration at different time periods in a day. In addition, this thesis demonstrates simulations taking into account the presence of moving cloud for solar forecasting studies.

  14. Analysis of electric field distribution in GaAs metal-semiconductor field effect transistor with a field-modulating plate

    NASA Astrophysics Data System (ADS)

    Hori, Yasuko; Kuzuhara, Masaaki; Ando, Yuji; Mizuta, Masashi

    2000-04-01

    Electric field distribution in the channel of a field effect transistor (FET) with a field-modulating plate (FP) has been theoretically investigated using a two-dimensional ensemble Monte Carlo simulation. This analysis revealed that the introduction of FP is effective in canceling the influence of surface traps under forward bias conditions and in reducing the electric field intensity at the drain side of the gate edge under pinch-off bias conditions. This study also found that a partial overlap of the high-field region under the gate and that at the FP electrode is important for reducing the electric field intensity. The optimized metal-semiconductor FET with FP (FPFET) (LGF˜0.2 μm) exhibited a much lower peak electric field intensity than a conventional metal-semiconductor FET. Based on these numerically calculated results, we have proposed a design procedure to optimize the power FPFET structure with extremely high breakdown voltages while maintaining reasonable gain performance.

  15. Component technology for space power systems

    NASA Technical Reports Server (NTRS)

    Finke, R. C.

    1982-01-01

    Progress made by NASA toward implementation of equipment for the conversion, management, and distribution of voltage power in space applications are reviewed. Work has been carried forward on components such as bipolar transistors, deep impurity semiconductors, conductors, dielectrics, magnetic devices, and rotary power transfer. Specific programs for the high voltage systems have included research on lightweight, low-cost conductors featuring graphite fibers containing electron donor materials for wires and cables with reduced mass and the conductivity of copper. Attention has also been given p-n junction technology for high-speed, high-current, high-voltage materials and diamond-like dielectric films which are hard, have high dielectric strength, and can operate up to 300 C. A transistor has been fabricated with a voltage of 1200 V at 100 A, with a gain of 10 and a 0.5 microsec rise/fall time. A 25 kW transformer has also been built which performs at 20 kHz with an efficiency of 99.2%.

  16. Investigations into the structure of PEO-layers for understanding of layer formation

    NASA Astrophysics Data System (ADS)

    Friedemann, A. E. R.; Thiel, K.; Haßlinger, U.; Ritter, M.; Gesing, Th. M.; Plagemann, P.

    2018-06-01

    Plasma electrolytic oxidation (PEO) is a type of high-voltage anodic oxidation process capable of producing a thick oxide layer with a wide variety of structural and chemical properties influenced by the electrolytic system. This process enables the combined adjustment of various characteristics, i.e. the morphology and chemical composition. The procedure facilitates the possibility of generating an individual structure as well as forming a crystalline surface in a single step. A highly porous surface with a high crystalline content consisting of titanium dioxide phases is ensured through the process of plasma electrolytic oxidizing pure titanium. In the present study plasma electrolytic oxidized TiO2-layers were investigated regarding their crystallinity through the layer thickness. The layers were prepared with a high applied voltage of 280 V to obtain a PEO-layer with highly crystalline anatase and rutile amounts. Raman spectroscopy and electron backscatter diffraction (EBSD) were selected to clarify the structure of the oxide layer with regard to its crystallinity and phase composition. The composition of the TiO2-phases is more or less irregularly distributed as a result of the higher energy input on the uppermost side of the layer. Scanning transmission electron microscopy (STEM) provided a deeper understanding of the structure and the effects of plasma discharges on the layer. It was observed that the plasma discharges have a strong influence on crystallite formation on top of the oxide layer and also at the boundary layer to the titanium substrate. Therefore, small crystallites of TiO2 could be detected in these regions. In addition, it was shown that amorphous TiO2 phases are formed around the characteristic pore structures, which allows the conclusion to be drawn that a rapid cooling from the gas phase had to take place in these areas.

  17. Breath Figures under Electrowetting: Electrically Controlled Evolution of Drop Condensation Patterns

    NASA Astrophysics Data System (ADS)

    Baratian, Davood; Dey, Ranabir; Hoek, Harmen; van den Ende, Dirk; Mugele, Frieder

    2018-05-01

    We show that electrowetting (EW) with structured electrodes significantly modifies the distribution of drops condensing onto flat hydrophobic surfaces by aligning the drops and by enhancing coalescence. Numerical calculations demonstrate that drop alignment and coalescence are governed by the drop-size-dependent electrostatic energy landscape that is imposed by the electrode pattern and the applied voltage. Such EW-controlled migration and coalescence of condensate drops significantly alter the statistical characteristics of the ensemble of droplets. The evolution of the drop size distribution displays self-similar characteristics that significantly deviate from classical breath figures on homogeneous surfaces once the electrically induced coalescence cascades set in beyond a certain critical drop size. The resulting reduced surface coverage, coupled with earlier drop shedding under EW, enhances the net heat transfer.

  18. Characterization of Downstream Ion Energy Distributions From a High Current Hollow Cathode in a Ring Cusp Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2003-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 10 Angstroms) has been documented in the literature. As part of an ongoing effort to uncover the underlying physics of the formation of these ions, ion efflux from a high current hollow cathode operating in an ion thruster discharge chamber was investigated. Using a spherical sector electrostatic energy analyzer located downstream of the discharge cathode, the ion energy distribution over a 0 to 60 eV energy range was measured. The sensitivity of the ion energy distribution function to zenith angle was also assessed at 3 different positions: 0, 15, and 25 degrees. The measurements suggest that the majority of the ion current at the measuring point falls into the analyzer with an energy approximately equal to the discharge voltage. The ion distribution, however, was found to be quite broad. The high energy tail of the distribution function tended to grow with increasing discharge current. Sensitivity of the profiles to flow rate at fixed discharge current was also investigated. A simple model is presented that provides a potential mechanism for the production of ions with energies above the discharge voltage.

  19. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.

    PubMed

    Lan, Wen-Jie; Edwards, Martin A; Luo, Long; Perera, Rukshan T; Wu, Xiaojian; Martin, Charles R; White, Henry S

    2016-11-15

    Ion current rectification (ICR) refers to the asymmetric potential-dependent rate of the passage of solution ions through a nanopore, giving rise to electrical current-voltage characteristics that mimic those of a solid-state electrical diode. Since the discovery of ICR in quartz nanopipettes two decades ago, synthetic nanopores and nanochannels of various geometries, fabricated in membranes and on wafers, have been extensively investigated to understand fundamental aspects of ion transport in highly confined geometries. It is now generally accepted that ICR requires an asymmetric electrical double layer within the nanopore, producing an accumulation or depletion of charge-carrying ions at opposite voltage polarities. Our research groups have recently explored how the voltage-dependent ion distributions and ICR within nanopores can induce novel nanoscale flow phenomena that have applications in understanding ionics in porous materials used in energy storage devices, chemical sensing, and low-cost electrical pumping of fluids. In this Account, we review our most recent investigations on this topic, based on experiments using conical nanopores (10-300 nm tip opening) fabricated in thin glass, mica, and polymer membranes. Measurable fluid flow in nanopores can be induced either using external pressure forces, electrically via electroosmotic forces, or by a combination of these two forces. We demonstrate that pressure-driven flow can greatly alter the electrical properties of nanopores and, vice versa, that the nonlinear electrical properties of conical nanopores can impart novel and useful flow phenomena. Electroosmotic flow (EOF), which depends on the magnitude of the ion fluxes within the double layer of the nanopore, is strongly coupled to the accumulation/depletion of ions. Thus, the same underlying cause of ICR also leads to EOF rectification, i.e., unequal flows occurring for the same voltage but opposite polarities. EOF rectification can be used to electrically pump fluids with very precise control across membranes containing conical pores via the application of a symmetric sinusoidal voltage. The combination of pressure and asymmetric EOF can also provide a means to generate new nanopore electrical behaviors, including negative differential resistance (NDR), in which the current through a conical pore decreases with increasing driving force (applied voltage), similar to solid-state tunnel diodes. NDR results from a positive feedback mechanism between the ion distributions and EOF, yielding a true bistability in both fluid flow and electrical current at a critical applied voltage. Nanopore-based NDR is extremely sensitive to the surface charge near the nanopore opening, suggesting possible applications in chemical sensing.

  20. Experimental investigation of high temperature high voltage thermionic diode for the space power nuclear reactor

    NASA Astrophysics Data System (ADS)

    Onufriyev, Valery. V.

    2001-02-01

    It is well known that the rise of arc from the dense glow discharge is connected with the thermion and secondary processes on the cathode surface (Granovsky, 1971; Leob, 1953; Engel, 1935). First model of breakdown of the cathode layer is connected with the increase of the cathode temperature in consequence of the ion bombardment that leads to the grows its thermo-emissive current. Other model shows the main role of the secondary effects on the cathode surface-the increase of the secondary ion emission coefficient-γi with the grows of glow discharge voltage. But the author of this investigation work of breakdown in Cs vapor (a transmission the glow discharge into self-maintaining arc discharge) discovered the next peculiarity: the value of breakdown voltage is constant when the values of vapor temperature (its pressure pcs) and cathode temperature Tk is constant too (Ub=constant with Tk=constant and pcs=constant) and it is not a statistical value (Onufryev, Grishin, 1996) (that was observed in gas glow discharges other authors (Granovsky, 1971; Leob, 1953; Engel, 1935)). The investigations of thermion high voltage high temperature diode (its breakdown characteristics in closed state and voltage-current characteristics in disclosed state) showed that the value of the breakdown voltage is depended on the vapor pressure in inter-electrode gap (IEG)-pcs and cathode temperature-Tk and is independent on IEG length-Δieg. On this base it was settled that the main role in transition of glow discharge to self-maintaining arc discharge plays an ion cathode layer but more exactly-the region of excited atoms-``Aston glow.'' .

  1. Improved resistive switching characteristics of a Pt/HfO2/Pt resistor by controlling anode interface with forming and switching polarity

    NASA Astrophysics Data System (ADS)

    Jung, Yong Chan; Seong, Sejong; Lee, Taehoon; Kim, Seon Yong; Park, In-Sung; Ahn, Jinho

    2018-03-01

    The anode interface effects on the resistive switching characteristics of Pt/HfO2/Pt resistors are investigated by changing the forming and switching polarity. Resistive switching properties are evaluated and compared with the polarity operation procedures, such as the reset voltage (Vr), set voltage (Vs), and current levels at low and high resistance states. When the same forming and switching voltage polarity are applied to the resistor, their switching parameters are widely distributed. However, the opposite forming and switching voltage polarity procedures enhance the uniformity of the switching parameters. In particular, the Vs distribution is strongly affected by the voltage polarity variation. A model is proposed based on cone-shaped filament formation through the insulator and the cone diameter at the anode interface to explain the improved resistive switching characteristics under opposite polarity operation. The filament cone is thinner near the anode interface during the forming process; hence, the anode is altered by the application of a switching voltage with opposite polarity to the forming voltage polarity and the converted anode interface becomes the thicker part of the cone. The more uniform and stable switching behavior is attributed to control over the formation and rupture of the cone-shaped filaments at their thicker parts.

  2. Numerical simulation of operation modes in atmospheric pressure uniform barrier discharge excited by a saw-tooth voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xuechen; Niu Dongying; Yin Zengqian

    2012-08-15

    The characteristics of dielectric barrier discharge excited by a saw-tooth voltage are simulated in atmospheric pressure helium based on a one-dimensional fluid model. A stepped discharge is obtained per half voltage cycle with gas gap width less than 2 mm by the simulation, which is different to the pulsed discharge excited by a sinusoidal voltage. For the stepped discharge, the plateau duration increases with increasing the voltage amplitude and decreasing the gas gap. Therefore, uniform discharge with high temporal duty ratio can be realized with small gap through increasing the voltage amplitude. The maximal densities of both electron and ionmore » appear near the anode and the electric field is almost uniformly distributed along the gap, which indicates that the stepped discharge belongs to a Townsend mode. In contrast to the stepped discharge with small gas gap, a pulsed discharge can be obtained with large gas gap. Through analyzing the spatial density distributions of electron and ion and the electric field, the pulsed discharge is in a glow mode. The voltage-current (V-I) characteristics are analyzed for the above mentioned discharges under different gas gaps, from which the different discharge modes are verified.« less

  3. Study of the effects of impurities on the properties of silicon solar cell

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1981-01-01

    The effect of defects across the back-surface-field junction on the performance of high efficiency and thin solar cells, using a developed-perimeter device model for the three-dimensional defects is investigated. Significant degradation of open-circuit voltage can occur even if there are only a few defects distributed in the bulk of the solar cell. Two features in the thickness dependences of the fill factor and efficiency in impurity-doped back-surface-field solar cells are discovered in the exact numerical solution which are associated with the high injection level effect in the base and not predicted by the low-level analytical theory. What are believed to be the most accurate recombination parameters at the Ti center to date are also given and a theory is developed which is capable of distinguishing an acceptor-like deep level from a donor-like deep level using the measured values of the thermal emission and capture cross sections.

  4. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  5. Electrical insulation design requirements and reliability goals

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    1983-11-01

    The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.

  6. Porous Alumina Films with Width-Controllable Alumina Stripes

    PubMed Central

    2010-01-01

    Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface. PMID:21170406

  7. Optically triggered high voltage switch network and method for switching a high voltage

    DOEpatents

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  8. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

    PubMed Central

    Pan, Yunlu; Zhao, Xuezeng

    2014-01-01

    Summary The drag of fluid flow at the solid–liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found. PMID:25161839

  9. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.

    PubMed

    Pan, Yunlu; Bhushan, Bharat; Zhao, Xuezeng

    2014-01-01

    The drag of fluid flow at the solid-liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found.

  10. Through thick and thin: tuning the threshold voltage in organic field-effect transistors.

    PubMed

    Martínez Hardigree, Josué F; Katz, Howard E

    2014-04-15

    Organic semiconductors (OSCs) constitute a class of organic materials containing densely packed, overlapping conjugated molecular moieties that enable charge carrier transport. Their unique optical, electrical, and magnetic properties have been investigated for use in next-generation electronic devices, from roll-up displays and radiofrequency identification (RFID) to biological sensors. The organic field-effect transistor (OFET) is the key active element for many of these applications, but the high values, poor definition, and long-term instability of the threshold voltage (V(T)) in OFETs remain barriers to realization of their full potential because the power and control circuitry necessary to compensate for overvoltages and drifting set points decrease OFET practicality. The drifting phenomenon has been widely observed and generally termed "bias stress." Research on the mechanisms responsible for this poor V(T) control has revealed a strong dependence on the physical order and chemical makeup of the interfaces between OSCs and adjacent materials in the OFET architecture. In this Account, we review the state of the art for tuning OFET performance via chemical designs and physical processes that manipulate V(T). This parameter gets to the heart of OFET operation, as it determines the voltage regimes where OFETs are either ON or OFF, the basis for the logical function of the devices. One obvious way to decrease the magnitude and variability of V(T) is to work with thinner and higher permittivity gate dielectrics. From the perspective of interfacial engineering, we evaluate various methods that we and others have developed, from electrostatic poling of gate dielectrics to molecular design of substituted alkyl chains. Corona charging of dielectric surfaces, a method for charging the surface of an insulating material using a constant high-voltage field, is a brute force means of shifting the effective gate voltage applied to a gate dielectric. A gentler and more direct method is to apply surface voltage to dielectric interfaces by direct contact or postprocess biasing; these methods could also be adapted for high throughput printing sequences. Dielectric hydrophobicity is an important chemical property determining the stability of the surface charges. Functional organic monolayers applied to dielectrics, using the surface attachment chemistry made available from "self-assembled" monolayer chemistry, provide local electric fields without any biasing process at all. To the extent that the monolayer molecules can be printed, these are also suitable for high throughput processes. Finally, we briefly consider V(T) control in the context of device integration and reliability, such as the role of contact resistance in affecting this parameter.

  11. Small Cold Temperature Instrument Packages

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  12. Electrical properties study under radiation of the 3D-open-shell-electrode detector

    NASA Astrophysics Data System (ADS)

    Liu, Manwen; Li, Zheng

    2018-05-01

    Since the 3D-Open-Shell-Electrode Detector (3DOSED) is proposed and the structure is optimized, it is important to study 3DOSED's electrical properties to determine the detector's working performance, especially in the heavy radiation environments, like the Large Hadron Collider (LHC) and it's upgrade, the High Luminosity (HL-LHC) at CERN. In this work, full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Simulated detector properties include the electric field distribution, the electric potential distribution, current-voltage (I-V) characteristics, capacitance-voltage (C-V) characteristics, charge collection property, and full depletion voltage. Through the analysis of calculations and simulation results, we find that the 3DOSED's electric field and potential distributions are very uniform, even in the tiny region near the shell openings with little perturbations. The novel detector fits the designing purpose of collecting charges generated by particle/light in a good fashion with a well defined funnel shape of electric potential distribution that makes these charges drifting towards the center collection electrode. Furthermore, by analyzing the I-V, C-V, charge collection property and full depletion voltage, we can expect that the novel detector will perform well, even in the heavy radiation environments.

  13. Regulating Charge and Exciton Distribution in High-Performance Hybrid White Organic Light-Emitting Diodes with n-Type Interlayer Switch

    NASA Astrophysics Data System (ADS)

    Luo, Dongxiang; Yang, Yanfeng; Xiao, Ye; Zhao, Yu; Yang, Yibin; Liu, Baiquan

    2017-10-01

    The interlayer (IL) plays a vital role in hybrid white organic light-emitting diodes (WOLEDs); however, only a negligible amount of attention has been given to n-type ILs. Herein, the n-type IL, for the first time, has been demonstrated to achieve a high efficiency, high color rendering index (CRI), and low voltage trade-off. The device exhibits a maximum total efficiency of 41.5 lm W-1, the highest among hybrid WOLEDs with n-type ILs. In addition, high CRIs (80-88) at practical luminances (≥1000 cd m-2) have been obtained, satisfying the demand for indoor lighting. Remarkably, a CRI of 88 is the highest among hybrid WOLEDs. Moreover, the device exhibits low voltages, with a turn-on voltage of only 2.5 V (>1 cd m-2), which is the lowest among hybrid WOLEDs. The intrinsic working mechanism of the device has also been explored; in particular, the role of n-type ILs in regulating the distribution of charges and excitons has been unveiled. The findings demonstrate that the introduction of n-type ILs is effective in developing high-performance hybrid WOLEDs. [Figure not available: see fulltext.

  14. Radial Field Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  15. The effect of target materials on the propagation of atmospheric-pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Ji, Longfei; Yan, Wen; Xia, Yang; Liu, Dongping

    2018-05-01

    The current study is focused on the effect of target materials (quartz plate, copper sheet, and quartz plate with a grounded copper sheet on the back) on the propagation of atmospheric-pressure helium plasma jets. The dynamics of ionization waves (IWs) and the relative amount of reactive oxygen species (OH and O) in the IW front were compared by using spatial and temporal images and relative optical emission spectroscopy. Our measurements show that the targets can significantly affect the propagation and intensity of the IWs. In addition, strong OH emission lines were detected when the IWs impinged upon the damp surface. Numerical simulations have been carried out to explain the experimental observation. The propagation velocity of IWs predicted by the simulation was in good agreement with the experimental results. Simulation results suggest that the density and velocity of IWs mainly depend on the electric field between the high voltage electrode tip and the target. Analysis indicates that the targets could change the electric field distribution between the high voltage electrode and targets and thus affect the dynamics and the density of the IWs, the generation of reactive oxygen species, and the corresponding sterilization efficiency.

  16. Comparative lifetesting results for microchannel plates in windowless EUV photon detectors

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Coburn, K. R.

    1984-01-01

    Microchannel plates (MCPs) from seven manufacturers were subjected to a series of tests to determine their suitability for the Extreme Ultraviolet Explorer satellite. Comparative data are presented for sixteen MCP tandem pairs with channel length to diameter ratios (l/d) ranging from 40:1 to 60:1 and for two saturable (curved channel) MCPs with l/d's of 80:1. Results for MCPs with funnelled channel throats are also discussed. Properties of the MCPs which were monitored include: background count rate, output charge pulse height distribution (PHD), modal gain, PHD full width half maximum (FWHM), and extreme ultraviolet (EUV) photon quantum efficiency. Five detectors were chosen for further lifetime testing consisting of a mild bake to 100 C, and charge extraction to 0.01 coulombs, repeated high voltage cycling and reexposure to one atmosphere conditions. The results of these tests and their implications for the flight detectors are discussed. Erratic events in the detector background were recorded, probably due to field emission from high voltage surfaces or the absorption of water vapor into the electrode following exposure to air. The steps taken to control the detector background are discussed.

  17. Micro arc oxidized HAp-TiO 2 nanostructured hybrid layers-part I: Effect of voltage and growth time

    NASA Astrophysics Data System (ADS)

    Abbasi, S.; Bayati, M. R.; Golestani-Fard, F.; Rezaei, H. R.; Zargar, H. R.; Samanipour, F.; Shoaei-Rad, V.

    2011-05-01

    Micro arc oxidation was employed to grow hydroxyapatite-TiO 2 nanostructured porous composite layers. The layers were synthesized on the titanium substrates in the electrolytes consisting of calcium acetate and sodium β-glycerophosphate salts under different applied voltages for various times. SEM and AFM investigations revealed a porous structure and rough surface where the pores size and the surface roughness were respectively determined as 70-650 nm and 9.8-12.7 nm depending on the voltage and time. Chemical composition and phase structure of the layers were evaluated using EDX, XPS, and XRD methods. The layers consisted of the hydroxyapatite, anatase, α-TCP, and calcium titanatephases with a varying fraction depending on the growth conditions. The hydroxyapatite crystalline size was also determined as ˜42 nm. The sample fabricated under the voltage of 350 V for 3 min exhibited the most appropriate Ca/P ratio (˜1.60) as well as the highest amount of the hydroxyapatite phase. This sample had a fine surface morphology and a high pores density.

  18. Facile and Nonradiation Pretreated Membrane as a High Conductive Separator for Li-Ion Batteries.

    PubMed

    Li, Bao; Li, Yongjun; Dai, Dongmei; Chang, Kun; Tang, Hongwei; Chang, Zhaorong; Wang, Chunru; Yuan, Xiao-Zi; Wang, Haijiang

    2015-09-16

    Polyolefin membranes are widely used as separators in commercialized Li-ion batteries. They have less polarized surfaces compared with polarized molecules of electrolyte, leading to a poor wetting state for separators. Radiation pretreatments are often adopted to solve such a problem. Unfortunately, they can only activate several nanometers deep from the surface, which limits the performance improvement. Here we report a facile and scalable method to polarize polyolefin membranes via a chemical oxidation route. On the surfaces of pretreated membrane, layers of poly(ethylene oxide) and poly(acrylic acid) can easily be coated, thus resulting in a high Li-ion conductivity of the membrane. Assembled with this decorated separator in button cells, both high-voltage (Li1.2Mn0.54Co0.13Ni0.13O2) and moderate-voltage (LiFePO4) cathode materials show better electrochemical performances than those assembled with pristine polyolefin separators.

  19. Low-voltage operating flexible ferroelectric organic field-effect transistor nonvolatile memory with a vertical phase separation P(VDF-TrFE-CTFE)/PS dielectric

    NASA Astrophysics Data System (ADS)

    Xu, Meili; Xiang, Lanyi; Xu, Ting; Wang, Wei; Xie, Wenfa; Zhou, Dayu

    2017-10-01

    Future flexible electronic systems require memory devices combining low-power operation and mechanical bendability. However, high programming/erasing voltages, which are universally needed to switch the storage states in previously reported ferroelectric organic field-effect transistor (Fe-OFET) nonvolatile memories (NVMs), severely prevent their practical applications. In this work, we develop a route to achieve a low-voltage operating flexible Fe-OFET NVM. Utilizing vertical phase separation, an ultrathin self-organized poly(styrene) (PS) buffering layer covers the surface of the ferroelectric polymer layer by one-step spin-coating from their blending solution. The ferroelectric polymer with a low coercive field contributes to low-voltage operation in the Fe-OFET NVM. The polymer PS contributes to the improvement of mobility, attributing to screening the charge scattering and decreasing the surface roughness. As a result, a high performance flexible Fe-OFET NVM is achieved at the low P/E voltages of ±10 V, with a mobility larger than 0.2 cm2 V-1 s-1, a reliable P/E endurance over 150 cycles, stable data storage retention capability over 104 s, and excellent mechanical bending durability with a slight performance degradation after 1000 repetitive tensile bending cycles at a curvature radius of 5.5 mm.

  20. The influence of pore size and surface area of activated carbons on the performance of ionic liquid based supercapacitors.

    PubMed

    Pohlmann, Sebastian; Lobato, Belén; Centeno, Teresa A; Balducci, Andrea

    2013-10-28

    This study analyses and compares the behaviour of 5 commercial porous carbons in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) and its mixture with propylene carbonate (PC) as electrolytes. The results of this investigation show that the existence of a distribution of pore sizes and/or constrictions at the entrance of the pores leads to significant changes in the specific capacitance of the investigated materials. The use of PYR14TFSI as an electrolyte has a positive effect on the EDLC energy storage, but its high viscosity limits the power density. The mixture 50 : 50 wt% propylene carbonate-PYR14TFSI provides high operative voltage as well as low viscosity and thus notably enhances EDLC operation.

  1. Stability of Li- and Mn-Rich Layered-Oxide Cathodes within the First-Charge Voltage Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iddir, Hakim; Bareño, Javier; Benedek, Roy

    Li and Mn rich layered oxides xLi 2MnO 3•(1-x)LiMO 2 enable high capacity and energy density Li-ion batteries, but undergo structural transformations during the first charge that degrade their performance, and result in Voltage Fade upon cycling. First-principles density-functional-theory simulations reveal atomic transformations that occur in the bulk during the first charge. The simulations and experiment (particularly XRD) show that the O and Mn sublattices remain intact during the early part of the voltage plateau, and significant transformations occur only well into the voltage plateau, with perhaps close to half of the Li in the Li 2MnO 3 domains removed.more » That Voltage Fade is actually observed experimentally for a first charge with only minimal activation (extending only slightly beyond the onset of the voltage plateau) may be a consequence of surface and interface instabilities. Implications for the achievement of high energy-density, low-fade battery operation are discussed.« less

  2. Combinatorial approach toward high-throughput analysis of direct methanol fuel cells.

    PubMed

    Jiang, Rongzhong; Rong, Charles; Chu, Deryn

    2005-01-01

    A 40-member array of direct methanol fuel cells (with stationary fuel and convective air supplies) was generated by electrically connecting the fuel cells in series. High-throughput analysis of these fuel cells was realized by fast screening of voltages between the two terminals of a fuel cell at constant current discharge. A large number of voltage-current curves (200) were obtained by screening the voltages through multiple small-current steps. Gaussian distribution was used to statistically analyze the large number of experimental data. The standard deviation (sigma) of voltages of these fuel cells increased linearly with discharge current. The voltage-current curves at various fuel concentrations were simulated with an empirical equation of voltage versus current and a linear equation of sigma versus current. The simulated voltage-current curves fitted the experimental data well. With increasing methanol concentration from 0.5 to 4.0 M, the Tafel slope of the voltage-current curves (at sigma=0.0), changed from 28 to 91 mV.dec-1, the cell resistance from 2.91 to 0.18 Omega, and the power output from 3 to 18 mW.cm-2.

  3. Long-term hypoxia increases calcium affinity of BK channels in ovine fetal and adult cerebral artery smooth muscle

    PubMed Central

    Tao, Xiaoxiao; Lin, Mike T.; Thorington, Glyne U.; Wilson, Sean M.; Longo, Lawrence D.

    2015-01-01

    Acclimatization to high-altitude, long-term hypoxia (LTH) reportedly alters cerebral artery contraction-relaxation responses associated with changes in K+ channel activity. We hypothesized that to maintain oxygenation during LTH, basilar arteries (BA) in the ovine adult and near-term fetus would show increased large-conductance Ca2+ activated potassium (BK) channel activity. We measured BK channel activity, expression, and cell surface distribution by use of patch-clamp electrophysiology, flow cytometry, and confocal microscopy, respectively, in myocytes from normoxic control and LTH adult and near-term fetus BA. Electrophysiological data showed that BK channels in LTH myocytes exhibited 1) lowered Ca2+ set points, 2) left-shifted activation voltages, and 3) longer dwell times. BK channels in LTH myocytes also appeared to be more dephosphorylated. These differences collectively make LTH BK channels more sensitive to activation. Studies using flow cytometry showed that the LTH fetus exhibited increased BK β1 subunit surface expression. In addition, in both fetal groups confocal microscopy revealed increased BK channel clustering and colocalization to myocyte lipid rafts. We conclude that increased BK channel activity in LTH BA occurred in association with increased channel affinity for Ca2+ and left-shifted voltage activation. Increased cerebrovascular BK channel activity may be a mechanism by which LTH adult and near-term fetal sheep can acclimatize to long-term high altitude hypoxia. Our findings suggest that increasing BK channel activity in cerebral myocytes may be a therapeutic target to ameliorate the adverse effects of high altitude in adults or of intrauterine hypoxia in the fetus. PMID:25599571

  4. Three-dimensional ceramic molding process based on microstereolithography for the production of piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Maruo, Shoji; Sugiyama, Kenji; Daicho, Yuya; Monri, Kensaku

    2014-03-01

    A three-dimensional (3-D) molding process using a master polymer mold produced by microstereolithography has been developed for the production of piezoelectric ceramic elements. In this method, ceramic slurry is injected into a 3-D polymer mold via a centrifugal casting process. The polymer master mold is thermally decomposed so that complex 3-D piezoelectric ceramic elements can be produced. As an example of 3-D piezoelectric ceramic elements, we produced a spiral piezoelectric element that can convert multidirectional loads into a voltage. It was confirmed that a prototype of the spiral piezoelectric element could generate a voltage by applying a load in both parallel and lateral directions in relation to the helical axis. The power output of 123 pW was obtained by applying the maximum load of 2.8N at 2 Hz along the helical axis. In addition, to improve the performance of power generation, we utilized a two-step sintering process to obtain dense piezoelectric elements. As a result, we obtained a sintering body with relative density of 92.8%. Piezoelectric constant d31 of the sintered body attained to -40.0 pC/N. Furthermore we analyzed the open-circuit voltage of the spiral piezoelectric element using COMSOL multiphysics. As a result, it was found that use of patterned electrodes according to the surface potential distribution of the spiral piezoelectric element had a potential to provide high output voltage that was 20 times larger than that of uniform electrodes.

  5. Transient, polarity-dependent dielectric response in a twisted nematic liquid crystal under very low frequency excitation.

    PubMed

    Krishnamurthy, K S

    2015-09-01

    The electric Freedericksz transition is a second-order quadratic effect, which, in a planarly aligned nematic liquid crystal layer, manifests above a threshold field as a homogeneous symmetric distortion with maximum director-tilt in the midplane. We find that, upon excitation by a low frequency (<0.2Hz) square-wave field, the instability becomes spatially and temporally varying. This is demonstrated using calamitic liquid crystals, initially in the 90°-twisted planar configuration. The distortion occurs close to the negative electrode following each polarity switch and, for low-voltage amplitudes, decays completely in time. We use the elastically favorable geometry of Brochard-Leger walls to establish the location of maximum distortion. Thus, at successive polarity changes, the direction of extension of both annular and open walls switches between the alignment directions at the two substrates. For high voltages, this direction is largely along the midplane director, while remaining marginally oscillatory. These results are broadly understood by taking into account the time-varying and inhomogeneous field conditions that prevail soon after the polarity reverses. Polarity dependence of the instability is traced to the formation of intrinsic double layers that lead to an asymmetry in field distribution in the presence of an external bias. Momentary field elevation near the negative electrode following a voltage sign reversal leads to locally enhanced dielectric and gradient flexoelectric torques, which accounts for the surface-like phenomenon observed at low voltages. These spatiotemporal effects, also found earlier for other instabilities, are generic in nature.

  6. Influence of Distributed Residential Energy Storage on Voltage in Rural Distribution Network and Capacity Configuration

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Tong, Yibin; Zhao, Zhigang; Zhang, Xuefen

    2018-03-01

    Large-scale access of distributed residential photovoltaic (PV) in rural areas has solved the voltage problem to a certain extent. However, due to the intermittency of PV and the particularity of rural residents’ power load, the problem of low voltage in the evening peak remains to be resolved. This paper proposes to solve the problem by accessing residential energy storage. Firstly, the influence of access location and capacity of energy storage on voltage distribution in rural distribution network is analyzed. Secondly, the relation between the storage capacity and load capacity is deduced for four typical load and energy storage cases when the voltage deviation meets the demand. Finally, the optimal storage position and capacity are obtained by using PSO and power flow simulation.

  7. Low-tube-voltage selection for non-contrast-enhanced CT: Comparison of the radiation dose in pediatric and adult phantoms.

    PubMed

    Shimonobo, Toshiaki; Funama, Yoshinori; Utsunomiya, Daisuke; Nakaura, Takeshi; Oda, Seitaro; Kiguchi, Masao; Masuda, Takanori; Sakabe, Daisuke; Yamashita, Yasuyuki; Awai, Kazuo

    2016-01-01

    We used pediatric and adult anthropomorphic phantoms to compare the radiation dose of low- and standard tube voltage chest and abdominal non-contrast-enhanced computed tomography (CT) scans. We also discuss the optimal low tube voltage for non-contrast-enhanced CT. Using a female adult- and three differently-sized pediatric anthropomorphic phantoms we acquired chest and abdominal non-contrast-enhanced scans on a 320-multidetector CT volume scanner. The tube voltage was set at 80-, 100-, and 120 kVp. The tube current was automatically assigned on the CT scanner in response to the set image noise level. On each phantom and at each tube voltage we measured the surface and center dose using high-sensitivity metal-oxide-semiconductor field-effect transistor detectors. The mean surface dose of chest and abdominal CT scans in 5-year olds was 4.4 and 5.3 mGy at 80 kVp, 4.5 and 5.4 mGy at 100 kV, and 4.0 and 5.0 mGy at 120 kVp, respectively. These values were similar in our 3-pediatric phantoms (p > 0.05). The mean surface dose in the adult phantom increased from 14.7 to 19.4 mGy for chest- and from 18.7 to 24.8 mGy for abdominal CT as the tube voltage decreased from 120 to 80 kVp (p < 0.01). Compared to adults, the surface and center dose for pediatric patients is almost the same despite a decrease in the tube voltage and the low tube voltage technique can be used for non-contrast-enhanced chest- and abdominal scanning. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Effect of the charge surface distribution on the flow field induced by a dielectric barrier discharge actuator

    NASA Astrophysics Data System (ADS)

    Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.

    2013-08-01

    The Electro-Hydro-Dynamics (EHD) interaction induced by a surface dielectric barrier discharge in the aerodynamic boundary layer at one atmosphere still air has been investigated. Three different geometrical configurations of the actuator have been utilized. In the first configuration, an electrode pair separated by a 2 mm dielectric sheet has been used. The second and the third configurations have been obtained by adding a third electrode on the upper side of the dielectric surface. This electrode has been placed downstream of the upper electrode and has been connected to ground or has been left floating. Three different dielectric materials have been utilized. The high voltage upper electrode was fed by an a.c. electric tension. Measurements of the dielectric surface potential generated by the charge deposition have been done. The discharge has been switched off after positive and negative phases of the plasma current (the current phase was characterized by a positive or a negative value, respectively). The measurements have been carried out after both phases. The charge distribution strongly depended on the switching off phase and was heavily affected by the geometrical configuration. A remarkable decrease of the charge deposited on the dielectric surface has been detected when the third electrode was connected to ground. Velocity profiles were obtained by using a Pitot probe. They showed that the presence of the third electrode limits the fluid dynamics performance of the actuator. A relation between the charge surface distribution and the EHD interaction phenomenon has been found. Imaging of the plasma has been done to evaluate the discharge structure and the extension of the plasma in the configurations investigated.

  9. Low voltage operation of IGZO thin film transistors enabled by ultrathin Al2O3 gate dielectric

    NASA Astrophysics Data System (ADS)

    Ma, Pengfei; Du, Lulu; Wang, Yiming; Jiang, Ran; Xin, Qian; Li, Yuxiang; Song, Aimin

    2018-01-01

    An ultrathin, 5 nm, Al2O3 film grown by atomic-layer deposition was used as a gate dielectric for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). The Al2O3 layer showed a low surface roughness of 0.15 nm, a low leakage current, and a high breakdown voltage of 6 V. In particular, a very high gate capacitance of 720 nF/cm2 was achieved, making it possible for the a-IGZO TFTs to not only operate at a low voltage of 1 V but also exhibit desirable properties including a low threshold voltage of 0.3 V, a small subthreshold swing of 100 mV/decade, and a high on/off current ratio of 1.2 × 107. Furthermore, even under an ultralow operation voltage of 0.6 V, well-behaved transistor characteristics were still observed with an on/off ratio as high as 3 × 106. The electron transport through the Al2O3 layer has also been analyzed, indicating the Fowler-Nordheim tunneling mechanism.

  10. High-intensity pulsed beam source with tunable operation mode

    NASA Astrophysics Data System (ADS)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  11. Flexible Power Distribution Based on Point of Load Converters

    NASA Astrophysics Data System (ADS)

    Dhallewin, G.; Galiana, D.; Mollard, J. M.; Schaper, W.; Strixner, E.; Tonicello, F.; Triggianese, M.

    2014-08-01

    Present digital electronic loads require low voltages and suffer from high currents. In addition, they need several different voltage levels to supply the different parts of digital devices like the core, the input/output I/F, etc. Distributed Power Architectures (DPA) with point-of- load (POL) converters (synchronous buck type) offer excellent performance in term of efficiency and load step behaviour. They occupy little PCB area and are well suited for very low voltage (VLV) DC conversion (1V to 3.3V). The paper presents approaches to architectural design of POL based supplies including redundancy and protection as well as the requirements on a European hardware implementation. The main driver of the analysis is the flexibility of each element (DC/DC converter, protection, POL core) to cover a wide range of space applications.

  12. Nanoscale morphological and chemical changes of high voltage lithium-manganese rich NMC composite cathodes with cycling.

    PubMed

    Yang, Feifei; Liu, Yijin; Martha, Surendra K; Wu, Ziyu; Andrews, Joy C; Ice, Gene E; Pianetta, Piero; Nanda, Jagjit

    2014-08-13

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium-manganese rich cathode material of composition Li(1 + x)M(1 - x)O2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼ 30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface.

  13. Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling

    PubMed Central

    2015-01-01

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium–manganese rich cathode material of composition Li1 + xM1 – xO2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface. PMID:25054780

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babadi, A. S., E-mail: aein.shiri-babadi@eit.lth.se; Lind, E.; Wernersson, L. E.

    A qualitative analysis on capacitance-voltage and conductance data for high-κ/InAs capacitors is presented. Our measured data were evaluated with a full equivalent circuit model, including both majority and minority carriers, as well as interface and border traps, formulated for narrow band gap metal-oxide-semiconductor capacitors. By careful determination of interface trap densities, distribution of border traps across the oxide thickness, and taking into account the bulk semiconductor response, it is shown that the trap response has a strong effect on the measured capacitances. Due to the narrow bandgap of InAs, there can be a large surface concentration of electrons and holesmore » even in depletion, so a full charge treatment is necessary.« less

  15. Temperature and Voltage Offsets in High- ZT Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Levy, George S.

    2018-06-01

    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high- ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/ n + and p/ p + junctions, selecting appropriate dimensions, doping, and loading.

  16. Temperature and Voltage Offsets in High-ZT Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Levy, George S.

    2017-10-01

    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high-ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/n + and p/p + junctions, selecting appropriate dimensions, doping, and loading.

  17. Brillouin distributed temperature sensing system for monitoring of submarine export cables of off-shore wind farms

    NASA Astrophysics Data System (ADS)

    Marx, Benjamin; Rath, Alexander; Kolm, Frederick; Schröder, Andreas; Buntebarth, Christian; Dreß, Albrecht; Hill, Wieland

    2016-05-01

    For high-voltage cables, the maximum temperature of the insulation must never be exceeded at any location and at any load condition. The local temperatures depend not only on the cable design and load history, but also on the local thermal environment of the cable. Therefore, distributed temperature monitoring of high-voltage cables is essential to ensure the integrity of the cable at high load. Especially, the load of the export cables of wind farms varies strongly in dependence on weather conditions. In this field study, we demonstrate the measurement performance of a new, robust Brillouin distributed temperature sensing system (Brillouin-DTS). The system is based on spontaneous Brillouin scattering and does not require a fibre loop. This is essential for long submarine high-voltage cables, where normally no loop can be formed in the seabed. It is completely passively cooled and does not contain any moving or wearing parts. The instrument is dedicated for use in industrial and other rough environments. With a measuring time below 10 min, the temperature resolution is better than 1 °C for distances up to 50 km. In the field study, the submarine export cable of an off-shore wind farm has been monitored. The temperature profile of the export cable shows several hot spots, mostly located at cable joints, and also several cold spots.

  18. Spatial nonuniformity of current flow and its consideration in determination of characteristics of surface illuminated InAsSbP/InAs-based photodiodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zotova, N. V.; Karandashev, S. A.; Matveev, B. A., E-mail: Bmat@iropt3.ioffe.ru

    Current-voltage characteristics of surface-irradiated photodiodes based on the InAsSbP/InAs structures are analyzed using experimental data on the distribution of electroluminescence intensity over the diode surface and taking into account thickening the current streamlines near the contacts. The influence of the potential barrier associated with the N-InAsSbP/n-InAs junction in double heterostructures on the differential resistance of diodes under zero bias, the value of the reverse current, and spreading of the forward current is discussed.

  19. Investigation of Ion-Implanted Photosensitive Silicon Structures by Electrochemical Capacitance–Voltage Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakovlev, G. E., E-mail: geyakovlev@etu.ru; Frolov, D. S.; Zubkova, A. V.

    2016-03-15

    The method of electrochemical capacitance–voltage profiling is used to study boron-implanted silicon structures for CCD matrices with backside illumination. A series of specially prepared structures with different energies and doses of ion implantation and also with various materials used for the coating layers (aluminum, silicon oxide, and their combinations) is studied. The profiles of the depth distribution of majority charge carriers of the studied structures are obtained experimentally. Also, using the Poisson equation and the Fredholm equation of the first kind, the distributions of the charge-carrier concentration and of the electric field in the structures are calculated. On the basismore » of the analysis and comparison of theoretical and experimental concentration profiles, recommendations concerning optimization of the structures’ parameters in order to increase the value of the pulling field and decrease the effect of the surface potential on the transport of charge carriers are suggested.« less

  20. Modular High-Energy Systems for Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  1. Planar multijunction high voltage solar cells

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Chai, A. T.; Goradia, C.

    1980-01-01

    Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.

  2. Complex interaction of subsequent surface streamers via deposited charge: a high-resolution experimental study

    NASA Astrophysics Data System (ADS)

    Hoder, T.; Synek, P.; Chorvát, D.; Ráhel', J.; Brandenburg, R.; Černák, M.

    2017-07-01

    The coplanar barrier discharge in synthetic air at 30 kPa pressure was studied by time-correlated single photon counting enhanced optical emission spectroscopy, far-field microscopy enhanced intensified CCD camera and sensitive current measurements. The discharge operated in a regime where two subsequent microdischarges appeared within the same voltage half-period. The electrical analysis of the barrier discharge setup enabled us to quantify charge transfer and the effective electric field development. During the second microdischarge the positive surface streamers follow the interface (triple-line) between the area of deposited charge from the previous one and the area of uncharged dielectric surface. It is shown that additional branching and flashes of surface streamers are responsible for the increased spatial complexity of the deposited surface charges at high overvoltage. A suppressed streamer propagating over the area of deposited surface charge was tracked and the evidence of surface streamer reconnection is presented. A spatiotemporal distribution (resolution of 120 ps and 100 μm) of the reduced electric field strength was obtained for both microdischarges from the recorded luminosities of the molecular nitrogen. The reduced electric field of positive streamers in the first microdischarge reached 1200 Td. For the second one, the electric field values for the streamer at the triple-line are slightly lower than that, while for the suppressed streamers are even higher.

  3. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.

    PubMed

    Chen, Bingyan; Zhang, Panpan; Ding, Li; Han, Jie; Qiu, Song; Li, Qingwen; Zhang, Zhiyong; Peng, Lian-Mao

    2016-08-10

    Top-gated p-type field-effect transistors (FETs) have been fabricated in batch based on carbon nanotube (CNT) network thin films prepared from CNT solution and present high yield and highly uniform performance with small threshold voltage distribution with standard deviation of 34 mV. According to the property of FETs, various logical and arithmetical gates, shifters, and d-latch circuits were designed and demonstrated with rail-to-rail output. In particular, a 4-bit adder consisting of 140 p-type CNT FETs was demonstrated with higher packing density and lower supply voltage than other published integrated circuits based on CNT films, which indicates that CNT based integrated circuits can reach to medium scale. In addition, a 2-bit multiplier has been realized for the first time. Benefitted from the high uniformity and suitable threshold voltage of CNT FETs, all of the fabricated circuits based on CNT FETs can be driven by a single voltage as small as 2 V.

  4. Oxygen Displacement in Cuprates under Ionic Liquid Field-Effect Gating

    PubMed Central

    Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; He, Xi; Bollinger, Anthony T.; Pavuna, Davor; Pindak, Ron; Božović, Ivan

    2016-01-01

    We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film (ground) and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and equatorial oxygen atoms were displaced towards the surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of equatorial oxygen atoms. PMID:27578237

  5. On the mechanism of pattern formation in glow dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Yajun; Li, Ben; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn

    2016-01-15

    The formation mechanism of pattern in glow dielectric barrier discharge is investigated by two-dimensional fluid modeling. Experimental results are shown for comparison. The simulation results show that the non-uniform distribution of space charges makes the discharge be enhanced in the high-density region but weakened in its neighborhood, which is considered as an activation-inhibition effect. This effect shows through during a current pulse (one discharge event) but also in a certain period of time after discharge that determines a driving frequency range for the non-uniformity of space charges to be enhanced. The effects of applied voltage, surface charge, electrode boundary, andmore » external field are also discussed. All these factors affect the formation of dielectric-barrier-discharge pattern by changing the distribution or the dynamics of space charges and hence the activation-inhibition effect of non-uniform space charges.« less

  6. Experimental evaluation of the sensitivity to fuel utilization and air management on a 100 kW SOFC system

    NASA Astrophysics Data System (ADS)

    Santarelli, M.; Leone, P.; Calì, M.; Orsello, G.

    The tubular SOFC generator CHP-100, built by Siemens Power Generation (SPG) Stationary Fuel Cells (SFC), is running at the Gas Turbine Technologies (GTT) in Torino (Italy), in the framework of the EOS Project. The nominal load of the generator ensures a produced electric power of around 105 kW e ac and around 60 kW t of thermal power at 250 °C to be used for the custom tailored HVAC system. Several experimental sessions have been scheduled on the generator; the aim is to characterize the operation through the analysis of some global performance index and the detailed control of the operation of the different bundles of the whole stack. All the scheduled tests have been performed by applying the methodology of design of experiment; the main obtained results show the effect of the change of the analysed operating factors in terms of distribution of voltage and temperature over the stack. Fuel consumption tests give information about the sensitivity of the voltage and temperature distribution along the single bundles. On the other hand, since the generator is an air cooled system, the results of the tests on the air stoichs have been used to analyze the generator thermal management (temperature distribution and profiles) and its effect on the polarization. The sensitivity analysis of the local voltage to the overall fuel consumption modifications can be used as a powerful procedure to deduce the local distribution of fuel utilization (FU) along the single bundles: in fact, through a model obtained by deriving the polarization curve respect to FU, it is possible to link the distribution of voltage sensitivities to FC to the distribution of the local FU. The FU distribution will be shown as non-uniform, and this affects the local voltage and temperatures, causing a high warming effect in some rows of the generator. Therefore, a discussion around the effectiveness of the thermal regulation made by the air stoichs, in order to reduce the non-uniform distribution of temperature and the overheating (increasing therefore the voltage behavior along the generator) has been performed. It is demonstrated that the utilization of one air plenum is not effective in the thermal regulation of the whole generator, in particular in the reduction of the temperature gradients linked to the non-uniform fuel distribution.

  7. A hybrid model of biased inductively coupled discharges1

    NASA Astrophysics Data System (ADS)

    Wen, Deqi; Lieberman, Michael A.; Zhang, Quanzhi; Liu, Yongxin; Wang, Younian

    2016-09-01

    A hybrid model, i.e. a global model coupled bidirectionally with a parallel Monte-Carlo collision (MCC) sheath model, is developed to investigate an inductively coupled discharge with a bias source. To validate this model, both bulk plasma density and ion energy distribution functions (IEDFs) are compared with experimental measurements in an argon discharge, and a good agreement is obtained. On this basis, the model is extended to weakly electronegative Ar/O2 plasma. The ion energy and angular distribution functions versus bias voltage amplitude are examined. The different ion species (Ar+, O2+,O+) have various behaviors because of the different masses. A low bias voltage, Ar+ has a single energy peak distribution and O+ has a bimodal distribution. At high bias voltage, the energy peak separation of O+ is wider than Ar+. 1This work has been supported by the National Nature Science Foundation of China (Grant No. 11335004) and Specific project (Grant No 2011X02403-001) and partially supported by Department of Energy Office of Fusion Energy Science Contract DE-SC000193 and a gift from the Lam Research Corporation.

  8. Preliminary Chaotic Model of Snapover on High Voltage Solar Cells

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    1995-01-01

    High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, Snapover, is characterized by a sudden enlargement of the electron current collection area across normally insulating surfaces. A power drain on solar array power systems will results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between bia potential and surface glow area. This paper shall explore the potential benefits of modeling the relation between current and bia potential as an aspect of bifurcation analysis in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.

  9. Capacitors in Series: A Laboratory Activity to Promote Critical Thinking.

    ERIC Educational Resources Information Center

    Noll, Ellis D.; Kowalski, Ludwik

    1996-01-01

    Describes experiments designed to explore the distribution of potential difference between two uncharged capacitors when they are suddenly connected to a source of constant voltage. Enables students to explore the evolution of a system in which initial voltage distribution depends on capacitor values, and the final voltage distribution depends on…

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdellahi, Aziz; Urban, Alexander; Dacek, Stephen

    Cation disorder is a phenomenon that is becoming increasingly important for the design of high-energy lithium transition metal oxide cathodes (LiMO 2) for Li-ion batteries. Disordered Li-excess rocksalts have recently been shown to achieve high reversible capacity, while in operando cation disorder has been observed in a large class of ordered compounds. The voltage slope (dV/dx u )is a critical quantity for the design of cation-disordered rocksalts, as it controls the Li capacity accessible at voltages below the stability limit of the electrolyte (~4.5-4.7 V). In this study, we develop a lattice model based on first principles to understand andmore » quantify the voltage slope of cation-disordered LiMO 2. We show that cation disorder increases the voltage slope of Li transition metal oxides by creating a statistical distribution of transition metal environments around Li sites, as well as by allowing Li occupation of highvoltage tetrahedral sites. We further demonstrate that the voltage slope increase upon disorder is generally smaller for highvoltage transition metals than for low-voltage transition metals due to a more effective screening of Li-M interactions by oxygen electrons. Short-range order in practical disordered compounds is found to further mitigate the voltage slope increase upon disorder. In conclusion, our analysis shows that the additional high-voltage tetrahedral capacity induced by disorder is smaller in Liexcess compounds than in stoichiometric LiMO 2 compounds.« less

  11. Association of EEG alpha variants and alpha power with alcohol dependence in Mexican American young adults.

    PubMed

    Ehlers, Cindy L; Phillips, Evelyn

    2007-02-01

    Several studies support an association between electroencephalogram (EEG) voltage and alcohol dependence. However, the distribution of EEG variants also appears to differ depending on an individual's ethnic heritage, suggesting significant genetic stratification of this EEG phenotype. The present study's aims were to investigate the incidence of EEG alpha variants and spectral power in the alpha frequency range in Mexican American young adults based on gender, and personal and family history of alcohol dependence. Clinical ratings (high-, medium-, and low alpha voltage variants) and spectral characteristics of the EEG in the alpha frequency range (7.5-12 Hz) were investigated in young adult (age 18-25 years) Mexican American men (n=98) and women (n=138) who were recruited from the community. Nineteen percent (n=45) of the participants had a low-voltage alpha EEG variant, 18% had a high-voltage variant, and 63% had a medium-voltage variant. There were no significant differences in the distribution of the EEG variants based on family history of alcohol dependence. There was a significant relationship between gender and the three alpha variants (chi2=9.7; df=2; P<.008), and there were no male participants with alcohol dependence with high alpha variants (chi2=5.8; df=2; P<.056). Alcohol dependence, but not a family history of alcohol dependence, was associated with lower spectral power in the alpha frequency range in the right (F=4.4; df=1,96; P<.04) and left (F=5.3; df=1.96; P<.02) occipital areas in the men but not in the women. In conclusion, in this select population of Mexican American young adults, male gender and alcohol dependence are associated with an absence of high-voltage alpha variants and lower alpha power in the EEG. These data suggest that EEG low voltage, a highly heritable trait, may represent an important endophenotype in male Mexican Americans that may aid in linking brain function with genetic factors underlying alcohol dependence in this ethnic group.

  12. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid

    NASA Technical Reports Server (NTRS)

    Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick

    2015-01-01

    The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.

  13. Interaction of ICRF Fields with the Plasma Boundary in AUG and JET and Guidelines for Antenna Optimization

    NASA Astrophysics Data System (ADS)

    Bobkov, V.; Bilato, R.; Braun, F.; Colas, L.; Dux, R.; Van Eester, D.; Giannone, L.; Goniche, M.; Herrmann, A.; Jacquet, P.; Kallenbach, A.; Krivska, A.; Lerche, E.; Mayoral, M.-L.; Milanesio, D.; Monakhov, I.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.

    2009-11-01

    W sputtering during ICRF on ASDEX Upgrade (AUG) and temperature rise on JET A2 antenna septa are considered in connection with plasma conditions at the antenna plasma facing components and E‖ near-fields. Large antenna-plasma clearance, high gas puff and low light impurity content are favorable to reduce W sputtering in AUG. The spatial distribution of spectroscopically measured effective W sputtering yields clearly points to the existence of strong E‖ fields at the antenna box ("feeder fields") which dominate over the fields in front of the antenna straps. The picture of E‖ fields, obtained by HFSS code, corroborates the dominant role of E‖ at the antenna box on the formation of sheath-driving RF voltages for AUG. Large antenna-plasma clearance and low gas puff are favorable to reduce septum temperature of JET A2 antennas. Assuming a linear relation between the septum temperature and the sheath driving RF voltage calculated by HFSS, the changes of the temperature with dipole phasing (00ππ, 0ππ0 or 0π0π) are well described by the related changes of the RF voltages. Similarly to the AUG antenna, the strongest E‖ are found at the limiters of the JET A2 antenna for all used dipole phasings and at the septum for the phasings different from 0π0π. A simple general rule can be used to minimize E‖ at the antenna: image currents can be allowed only at the surfaces which do not intersect magnetic field lines at large angles of incidence. Possible antenna modifications generally rely either on a reduction of the image currents, on their short-circuiting by introducing additional conducting surfaces or on imposing the E‖ = 0 boundary condition. On the example of AUG antenna, possible options to minimize the sheath driving voltages are presented.

  14. Aspects on HTS applications in confined power grids

    NASA Astrophysics Data System (ADS)

    Arndt, T.; Grundmann, J.; Kuhnert, A.; Kummeth, P.; Nick, W.; Oomen, M.; Schacherer, C.; Schmidt, W.

    2014-12-01

    In an increasing number of electric power grids the share of distributed energy generation is also increasing. The grids have to cope with a considerable change of power flow, which has an impact on the optimum topology of the grids and sub-grids (high-voltage, medium-voltage and low-voltage sub-grids) and the size of quasi-autonomous grid sections. Furthermore the stability of grids is influenced by its size. Thus special benefits of HTS applications in the power grid might become most visible in confined power grids.

  15. Module Hipot and ground continuity test results

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1984-01-01

    Hipot (high voltage potential) and module frame continuity tests of solar energy conversion modules intended for deployment into large arrays are discussed. The purpose of the tests is to reveal potentially hazardous voltage conditions in installed modules, and leakage currents that may result in loss of power or cause ground fault system problems, i.e., current leakage potential and leakage voltage distribution. The tests show a combined failure rate of 36% (69% when environmental testing is included). These failure rates are believed easily corrected by greater care in fabrication.

  16. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    PubMed

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  17. Evaluation of a “Field Cage” for Electric Field Control in GaN-Based HEMTs That Extends the Scalability of Breakdown Into the kV Regime

    DOE PAGES

    Tierney, Brian D.; Choi, Sukwon; DasGupta, Sandeepan; ...

    2017-08-16

    A distributed impedance “field cage” structure is proposed and evaluated for electric field control in GaN-based, lateral high electron mobility transistors (HEMTs) operating as kilovolt-range power devices. In this structure, a resistive voltage divider is used to control the electric field throughout the active region. The structure complements earlier proposals utilizing floating field plates that did not employ resistively connected elements. Transient results, not previously reported for field plate schemes using either floating or resistively connected field plates, are presented for ramps of dV ds /dt = 100 V/ns. For both DC and transient results, the voltage between the gatemore » and drain is laterally distributed, ensuring the electric field profile between the gate and drain remains below the critical breakdown field as the source-to-drain voltage is increased. Our scheme indicates promise for achieving breakdown voltage scalability to a few kV.« less

  18. Single phase inverter for a three phase power generation and distribution system

    NASA Technical Reports Server (NTRS)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  19. Evaluation of a “Field Cage” for Electric Field Control in GaN-Based HEMTs That Extends the Scalability of Breakdown Into the kV Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierney, Brian D.; Choi, Sukwon; DasGupta, Sandeepan

    A distributed impedance “field cage” structure is proposed and evaluated for electric field control in GaN-based, lateral high electron mobility transistors (HEMTs) operating as kilovolt-range power devices. In this structure, a resistive voltage divider is used to control the electric field throughout the active region. The structure complements earlier proposals utilizing floating field plates that did not employ resistively connected elements. Transient results, not previously reported for field plate schemes using either floating or resistively connected field plates, are presented for ramps of dV ds /dt = 100 V/ns. For both DC and transient results, the voltage between the gatemore » and drain is laterally distributed, ensuring the electric field profile between the gate and drain remains below the critical breakdown field as the source-to-drain voltage is increased. Our scheme indicates promise for achieving breakdown voltage scalability to a few kV.« less

  20. Laminar Instability and Transition on the X-51A

    DTIC Science & Technology

    2009-08-01

    AIM15 controller. Surface thermocouples are affixed to the contraction by hose clamps and are used by the controllers to determine when each heater...installed in the model. One 20- gauge, braided , high-voltage wire is soldered to the inner electrode. This wire then passes through the model, angle...and another 20-gauge, braided , high-voltage wire leading from the sting to the ground of the glow electronics. From the back of the sting to the glow

  1. High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate

    NASA Astrophysics Data System (ADS)

    Bae, Jinho; Kim, Hyoung Woo; Kang, In Ho; Yang, Gwangseok; Kim, Jihyun

    2018-03-01

    We have demonstrated a β-Ga2O3 metal-semiconductor field-effect transistor (MESFET) with a high off-state breakdown voltage (344 V), based on a quasi-two-dimensional β-Ga2O3 field-plated with hexagonal boron nitride (h-BN). Both the β-Ga2O3 and h-BN were mechanically exfoliated from their respective crystal substrates, followed by dry-transfer onto a SiO2/Si substrate for integration into a high breakdown voltage quasi-two-dimensional β-Ga2O3 MESFETs. N-type conducting behavior was observed in the fabricated β-Ga2O3 MESFETs, along with a high on/off current ratio (>106) and excellent current saturation. A three-terminal off-state breakdown voltage of 344 V was obtained, with a threshold voltage of -7.3 V and a subthreshold swing of 84.6 mV/dec. The distribution of electric fields in the quasi-two-dimensional β-Ga2O3 MESFETs was simulated to analyze the role of the dielectric h-BN field plate in improving the off-state breakdown voltage. The stability of the field-plated β-Ga2O3 MESFET in air was confirmed after storing the MESFET in ambient air for one month. Our results pave the way for unlocking the full potential of β-Ga2O3 for use in a high-power nano-device with an ultrahigh breakdown voltage.

  2. Experimental validation of prototype high voltage bushing

    NASA Astrophysics Data System (ADS)

    Shah, Sejal; Tyagi, H.; Sharma, D.; Parmar, D.; M. N., Vishnudev; Joshi, K.; Patel, K.; Yadav, A.; Patel, R.; Bandyopadhyay, M.; Rotti, C.; Chakraborty, A.

    2017-08-01

    Prototype High voltage bushing (PHVB) is a scaled down configuration of DNB High Voltage Bushing (HVB) of ITER. It is designed for operation at 50 kV DC to ensure operational performance and thereby confirming the design configuration of DNB HVB. Two concentric insulators viz. Ceramic and Fiber reinforced polymer (FRP) rings are used as double layered vacuum boundary for 50 kV isolation between grounded and high voltage flanges. Stress shields are designed for smooth electric field distribution. During ceramic to Kovar brazing, spilling cannot be controlled which may lead to high localized electrostatic stress. To understand spilling phenomenon and precise stress calculation, quantitative analysis was performed using Scanning Electron Microscopy (SEM) of brazed sample and similar configuration modeled while performing the Finite Element (FE) analysis. FE analysis of PHVB is performed to find out electrical stresses on different areas of PHVB and are maintained similar to DNB HV Bushing. With this configuration, the experiment is performed considering ITER like vacuum and electrical parameters. Initial HV test is performed by temporary vacuum sealing arrangements using gaskets/O-rings at both ends in order to achieve desired vacuum and keep the system maintainable. During validation test, 50 kV voltage withstand is performed for one hour. Voltage withstand test for 60 kV DC (20% higher rated voltage) have also been performed without any breakdown. Successful operation of PHVB confirms the design of DNB HV Bushing. In this paper, configuration of PHVB with experimental validation data is presented.

  3. Understanding the Effect of Cation Disorder on the Voltage Profile of Lithium Transition-Metal Oxides

    DOE PAGES

    Abdellahi, Aziz; Urban, Alexander; Dacek, Stephen; ...

    2016-07-13

    Cation disorder is a phenomenon that is becoming increasingly important for the design of high-energy lithium transition metal oxide cathodes (LiMO 2) for Li-ion batteries. Disordered Li-excess rocksalts have recently been shown to achieve high reversible capacity, while in operando cation disorder has been observed in a large class of ordered compounds. The voltage slope (dV/dx u )is a critical quantity for the design of cation-disordered rocksalts, as it controls the Li capacity accessible at voltages below the stability limit of the electrolyte (~4.5-4.7 V). In this study, we develop a lattice model based on first principles to understand andmore » quantify the voltage slope of cation-disordered LiMO 2. We show that cation disorder increases the voltage slope of Li transition metal oxides by creating a statistical distribution of transition metal environments around Li sites, as well as by allowing Li occupation of highvoltage tetrahedral sites. We further demonstrate that the voltage slope increase upon disorder is generally smaller for highvoltage transition metals than for low-voltage transition metals due to a more effective screening of Li-M interactions by oxygen electrons. Short-range order in practical disordered compounds is found to further mitigate the voltage slope increase upon disorder. In conclusion, our analysis shows that the additional high-voltage tetrahedral capacity induced by disorder is smaller in Liexcess compounds than in stoichiometric LiMO 2 compounds.« less

  4. Transdermal transport pathway creation: Electroporation pulse order.

    PubMed

    Becker, Sid; Zorec, Barbara; Miklavčič, Damijan; Pavšelj, Nataša

    2014-11-01

    In this study we consider the physics underlying electroporation which is administered to skin in order to radically increase transdermal drug delivery. The method involves the application of intense electric fields to alter the structure of the impermeable outer layer, the stratum corneum. A generally held view in the field of skin electroporation is that the skin's drop in resistance (to transport) is proportional to the total power of the pulses (which may be inferred by the number of pulses administered). Contrary to this belief, experiments conducted in this study show that the application of high voltage pulses prior to the application of low voltage pulses result in lower transport than when low voltage pulses alone are applied (when less total pulse power is administered). In order to reconcile these unexpected experimental results, a computational model is used to conduct an analysis which shows that the high density distribution of very small aqueous pathways through the stratum corneum associated with high voltage pulses is detrimental to the evolution of larger pathways that are associated with low voltage pulses. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, J.R.

    1988-08-16

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner. 7 figs.

  6. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, John R.

    1988-01-01

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner.

  7. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    NASA Astrophysics Data System (ADS)

    Young, Sun Mok; Hyun, Tae Ahn; Joeng, Tai Kim

    2007-02-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.

  8. Application of nanostructured biochips for efficient cell transfection microarrays

    NASA Astrophysics Data System (ADS)

    Akkamsetty, Yamini; Hook, Andrew L.; Thissen, Helmut; Hayes, Jason P.; Voelcker, Nicolas H.

    2007-01-01

    Microarrays, high-throughput devices for genomic analysis, can be further improved by developing materials that are able to manipulate the interfacial behaviour of biomolecules. This is achieved both spatially and temporally by smart materials possessing both switchable and patterned surface properties. A system had been developed to spatially manipulate both DNA and cell growth based upon the surface modification of highly doped silicon by plasma polymerisation and polyethylene grafting followed by masked laser ablation for formation of a pattered surface with both bioactive and non-fouling regions. This platform has been successfully applied to transfected cell microarray applications with the parallel expression of genes by utilising its ability to direct and limit both DNA and cell attachment to specific sites. One of the greatest advantages of this system is its application to reverse transfection, whereupon by utilising the switchable adsorption and desorption of DNA using a voltage bias, the efficiency of cell transfection can be enhanced. However, it was shown that application of a voltage also reduces the viability of neuroblastoma cells grown on a plasma polymer surface, but not human embryonic kidney cells. This suggests that the application of a voltage may not only result in the desorption of bound DNA but may also affect attached cells. The characterisation of a DNA microarray by contact printing has also been investigated.

  9. Control of Gastric H,K-ATPase Activity by Cations, Voltage and Intracellular pH Analyzed by Voltage Clamp Fluorometry in Xenopus Oocytes

    PubMed Central

    Dürr, Katharina L.; Tavraz, Neslihan N.; Friedrich, Thomas

    2012-01-01

    Whereas electrogenic partial reactions of the Na,K-ATPase have been studied in depth, much less is known about the influence of the membrane potential on the electroneutrally operating gastric H,K-ATPase. In this work, we investigated site-specifically fluorescence-labeled H,K-ATPase expressed in Xenopus oocytes by voltage clamp fluorometry to monitor the voltage-dependent distribution between E1P and E2P states and measured Rb+ uptake under various ionic and pH conditions. The steady-state E1P/E2P distribution, as indicated by the voltage-dependent fluorescence amplitudes and the Rb+ uptake activity were highly sensitive to small changes in intracellular pH, whereas even large extracellular pH changes affected neither the E1P/E2P distribution nor transport activity. Notably, intracellular acidification by approximately 0.5 pH units shifted V0.5, the voltage, at which the E1P/E2P ratio is 50∶50, by −100 mV. This was paralleled by an approximately two-fold acceleration of the forward rate constant of the E1P→E2P transition and a similar increase in the rate of steady-state cation transport. The temperature dependence of Rb+ uptake yielded an activation energy of ∼90 kJ/mol, suggesting that ion transport is rate-limited by a major conformational transition. The pronounced sensitivity towards intracellular pH suggests that proton uptake from the cytoplasmic side controls the level of phosphoenzyme entering the E1P→E2P conformational transition, thus limiting ion transport of the gastric H,K-ATPase. These findings highlight the significance of cellular mechanisms contributing to increased proton availability in the cytoplasm of gastric parietal cells. Furthermore, we show that extracellular Na+ profoundly alters the voltage-dependent E1P/E2P distribution indicating that Na+ ions can act as surrogates for protons regarding the E2P→E1P transition. The complexity of the intra- and extracellular cation effects can be rationalized by a kinetic model suggesting that cations reach the binding sites through a rather high-field intra- and a rather low-field extracellular access channel, with fractional electrical distances of ∼0.5 and ∼0.2, respectively. PMID:22448261

  10. Nanofabrication and ion milling introduced effects on magnetic properties in magnetic recording

    NASA Astrophysics Data System (ADS)

    Sun, Zhenzhong

    Perpendicular magnetic nanostructures have played an important role in magnetic recording technologies. In this dissertation, a systematic study on the CoPt magnetic nanostructures from fabrication, characterization to computer simulation has been performed. During the fabrication process, ion irradiation/bombardment in ion mill can cause physical damage to the magnetic nanostructures and degrade their magnetic properties. To study the effect of ion damage on CoPt nanostructures, different degrees of ion damage are introduced into CoPt nanopillars by varying the accelerating voltage in ion mill. The results demonstrate that the ion damage can reduce the coercivity by softening circumferential edge, and therefore changes the switching mechanism from coherent rotation to nucleation followed by rapid domain wall propagation. The SFD of CoPt nanostructures is independent of ion damage and is mainly determined by the intrinsic anisotropy distribution of the film rather than the nanostructure size distribution. Anisotropy-graded bit-patterned media are fabricated and studied based on high anisotropy L10-FePt material system. L10-FePt thin films with linearly and quadratically distributed anisotropy are achieved by varying substrate temperature during film growth. After patterning, the anisotropy-graded L10-FePt nanopillars display a reduced switching field and maintain a good thermal stability compared to the non-graded one. Experimental investigation and comparison further prove the concept of "anisotropy-graded" bit-patterned media and their potential application in the future magnetic recording. During magnetic write head fabrication, ion-beam damage may degrade the performance of the magnetic write pole. A surface sensitive MOKE is used to characterize the magnetic properties of these etched FeCo films. MOKE measurement shows a hard axis hysteresis loop with a high Mr in the high power etched film due to the ion beam introduced defects. The high power etched film also shows the highest RMS by AFM measurement. The geometric peaks at the top surface may have shape anisotropy and serve as the pinning sites. These magnetic pinning sites can prevent the nucleation center forming at the top surface during the switching process and lead to a high Mr in the top surface region.

  11. Microwave Driven Actuators Power Allocation and Distribution

    NASA Technical Reports Server (NTRS)

    Forbes, Timothy; Song, Kyo D.

    2000-01-01

    Design, fabrication and test of a power allocation and distribution (PAD) network for microwave driven actuators is presented in this paper. Development of a circuit that would collect power from a rectenna array amplify and distribute the power to actuators was designed and fabricated for space application in an actuator array driven by a microwave. A P-SPICE model was constructed initially for data reduction purposes, and was followed by a working real-world model. A voltage up - converter (VUC) is used to amplify the voltage from the individual rectenna. The testing yielded a 26:1 voltage amplification ratio with input voltage at 9 volts and a measured output voltage 230VDC. Future work includes the miniaturization of the circuitry, the use of microwave remote control, and voltage amplification technology for each voltage source. The objective of this work is to develop a model system that will collect DC voltage from an array of rectenna and propagate the voltage to an array of actuators.

  12. Spectroscopic method to study low charge state ion and cold electron population in ECRIS plasma

    NASA Astrophysics Data System (ADS)

    Kronholm, R.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2018-04-01

    The results of optical emission spectroscopy experiments probing the cold electron population of a 14 GHz Electron Cyclotron Resonance Ion Source (ECRIS) are reported. The study has been conducted with a high resolution spectrometer and data acquisition setup developed specifically for the diagnostics of weak emission line characteristic to ECRIS plasmas. The optical emission lines of low charge state ions and neutral atoms of neon have been measured and analyzed with the line-ratio method. The aforementioned electron population temperature of the cold electron population (Te < 100 eV) is determined for Maxwell-Boltzmann and Druyvesteyn energy distributions to demonstrate the applicability of the method. The temperature was found to change significantly when the extraction voltage of the ion source is turned on/off. In the case of the Maxwellian distribution, the temperature of the cold electron population is 20 ± 10 eV when the extraction voltage is off and 40 ± 10 eV when it is on. The optical emission measurements revealed that the extraction voltage also affects both neutral and ion densities. Based on the rate coefficient analysis with the aforementioned temperatures, switching the extraction voltage off decreases the rate coefficient of neutral to 1+ ionization to 42% and 1+ to 2+ ionization to 24% of the original. This suggests that switching the extraction voltage on favors ionization to charge states ≥2+ and, thus, the charge state distributions of ECRIS plasmas are probably different with the extraction voltage on/off. It is therefore concluded that diagnostics results of ECRIS plasmas obtained without the extraction voltage are not depicting the plasma conditions in normal ECRIS operation.

  13. Voltage assisted asymmetric nanoscale wear on ultra-smooth diamond like carbon thin films at high sliding speeds

    PubMed Central

    Rajauria, Sukumar; Schreck, Erhard; Marchon, Bruno

    2016-01-01

    The understanding of tribo- and electro-chemical phenomenons on the molecular level at a sliding interface is a field of growing interest. Fundamental chemical and physical insights of sliding surfaces are crucial for understanding wear at an interface, particularly for nano or micro scale devices operating at high sliding speeds. A complete investigation of the electrochemical effects on high sliding speed interfaces requires a precise monitoring of both the associated wear and surface chemical reactions at the interface. Here, we demonstrate that head-disk interface inside a commercial magnetic storage hard disk drive provides a unique system for such studies. The results obtained shows that the voltage assisted electrochemical wear lead to asymmetric wear on either side of sliding interface. PMID:27150446

  14. Voltage assisted asymmetric nanoscale wear on ultra-smooth diamond like carbon thin films at high sliding speeds

    NASA Astrophysics Data System (ADS)

    Rajauria, Sukumar; Schreck, Erhard; Marchon, Bruno

    2016-05-01

    The understanding of tribo- and electro-chemical phenomenons on the molecular level at a sliding interface is a field of growing interest. Fundamental chemical and physical insights of sliding surfaces are crucial for understanding wear at an interface, particularly for nano or micro scale devices operating at high sliding speeds. A complete investigation of the electrochemical effects on high sliding speed interfaces requires a precise monitoring of both the associated wear and surface chemical reactions at the interface. Here, we demonstrate that head-disk interface inside a commercial magnetic storage hard disk drive provides a unique system for such studies. The results obtained shows that the voltage assisted electrochemical wear lead to asymmetric wear on either side of sliding interface.

  15. Study of electric field distorted by space charges under positive lightning impulse voltage

    NASA Astrophysics Data System (ADS)

    Wang, Zezhong; Geng, Yinan

    2018-03-01

    Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.

  16. Document for 270 Voltage Direct Current (270 V dc) System

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The paper presents the technical design and application information established by the SAE Aerospace Recommended Practice concerning the generation, distribution, control, and utilization of aircraft 270 V dc electrical power systems and support equipment. Also presented are references and definitions making it possible to compare various electrical systems and components. A diagram of the generic 270 V Direct Current High-Voltage Direct System is included.

  17. Optimal coordinated voltage control in active distribution networks using backtracking search algorithm

    PubMed Central

    Tengku Hashim, Tengku Juhana; Mohamed, Azah

    2017-01-01

    The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate. PMID:28991919

  18. Optimal coordinated voltage control in active distribution networks using backtracking search algorithm.

    PubMed

    Tengku Hashim, Tengku Juhana; Mohamed, Azah

    2017-01-01

    The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate.

  19. Vertical GaN power diodes with a bilayer edge termination

    DOE PAGES

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; ...

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (10 4 - 10 5 cm -2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 10 15 cm -3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p)more » layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.« less

  20. Laser-initiated explosive electron emission from flat germanium crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porshyn, V., E-mail: porshyn@uni-wuppertal.de; Mingels, S.; Lützenkirchen-Hecht, D.

    2016-07-28

    Flat Sb-doped germanium (100) crystals were investigated in the triode configuration under pulsed tunable laser illumination (pulse duration t{sub laser} = 3.5 ns and photon energy hν = 0.54–5.90 eV) and under DC voltages <10{sup 4} V. Large bunch charges up to ∼1 μC were extracted from the cathodes for laser pulses >1 MW/cm{sup 2} corresponding to a high quantum efficiency up to 3.3% and cathode currents up to 417 A. This laser-induced explosive electron emission (EEE) from Ge was characterized by its voltage-, laser power- and hν-sensitivity. The analysis of the macroscopic surface damage caused by the EEE is included as well. Moreover, we have carried out firstmore » direct measurements of electron energy distributions produced during the EEE from the Ge samples. The measured electron spectra hint for electron excitations to the vacuum level of the bulk and emission from the plasma plume with an average kinetic energy of ∼0.8 eV.« less

  1. Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors

    NASA Astrophysics Data System (ADS)

    Held, Martin; Schießl, Stefan P.; Miehler, Dominik; Gannott, Florentina; Zaumseil, Jana

    2015-08-01

    Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfOx) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100-300 nF/cm2) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfOx dielectrics.

  2. Sliding-mode control of single input multiple output DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  3. Sliding-mode control of single input multiple output DC-DC converter.

    PubMed

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  4. A 2.5 kW cascaded Schwarz converter for 20 kHz power distribution

    NASA Technical Reports Server (NTRS)

    Shetler, Russell E.; Stuart, Thomas A.

    1989-01-01

    Because it avoids the high currents in a parallel loaded capacitor, the cascaded Schwarz converter should offer better component utilization than converters with sinusoidal output voltages. The circuit is relatively easy to protect, and it provides a predictable trapezoidal voltage waveform that should be satisfactory for 20-kHz distribution systems. Analysis of the system is enhanced by plotting curves of normalized variables vs. gamma(1), where gamma(1) is proportional to the variable frequency of the first stage. Light-load operation is greatly improved by the addition of a power recycling rectifier bridge that is back biased at medium to heavy loads. Operation has been verified on a 2.5-kW circuit that uses input and output voltages in the same range as those anticipated for certain future spacecraft power systems.

  5. Solution-processable alumina: PVP nanocomposite dielectric layer for high-performance organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Kong, Xiao; Li, Yiran; Kuang, Peng; Tao, Silu

    2018-03-01

    In this article, we have investigated the effect of nanocomposite gate dielectric layer built by alumina (Al2O3) and poly(4-vinyphenol) (PVP) with solution method which could enhance the dielectric capability and decrease the surface polarity. Then, we used modify layer to optimize the surface morphology of dielectric layer to further improve the insulation capability, and finally we fabricated the high-performance and low-voltage organic thin-film transistors by using this nanocomposite dielectric layer. The result shows that the devices with Al2O3:10%PVP dielectric layer with a modified layer exhibited a mobility of 0.49 cm2/Vs, I on/Ioff ratio of 7.8 × 104, threshold voltage of - 1.2 V, sub-threshold swing of 0.3 V/dec, and operating voltage as low as - 4 V. The improvement of devices performance was owing to the good insulation capability, appropriate capacitance of dielectric layer, and preferable interface contact, smaller crystalline size of active layer.

  6. Easily disassembled electrical connector for high voltage, high frequency connections

    DOEpatents

    Milner, Joseph R.

    1994-01-01

    An easily accessible electrical connector capable of rapid assembly and disassembly wherein a wide metal conductor sheet may be evenly contacted over the entire width of the conductor sheet by opposing surfaces on the connector which provide an even clamping pressure against opposite surfaces of the metal conductor sheet using a single threaded actuating screw.

  7. Structural characterization of the voltage sensor domain and voltage-gated K+- channel proteins vectorially-oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry

    PubMed Central

    Gupta, S.; Dura, J.A.; Freites, J.A.; Tobias, D.J.; Blasie, J. K.

    2012-01-01

    The voltage-sensor domain (VSD) is a modular 4-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of x-ray crystal structures for a few voltage-gated potassium (Kv-) channels and a voltage-gate sodium (Nav-) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e. non-conducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially-oriented within a single phospholipid (POPC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane investigated by x-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces thus achieving partial to full hydration, respectively (Gupta et. al. Phys. Rev E. 2011, 84). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the sub-molecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected sub-molecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and exchangeable hydrogen throughout the profile structure of both the VSD itself and the VSD:POPC membrane. These two experimentally-determined water and exchangeable hydrogen distribution profiles are in good agreement with molecular dynamics simulations of the VSD protein vectorially-oriented within a fully hydrated POPC bilayer membrane, supporting the existence of the VSD’s water pore. This approach was extended to the full-length Kv-channel (KvAP) at solid/liquid interface, providing the separate profile structures of the KvAP protein and the POPC bilayer within the reconstituted KvAP:POPC membrane. PMID:22686684

  8. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    NASA Astrophysics Data System (ADS)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  9. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.

    PubMed

    Gysin, Urs; Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst

    2015-01-01

    The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip-sample interface for optically excited measurements such as local surface photo voltage detection. We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  10. High voltage threshold for stable operation in a dc electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Masahiro, E-mail: masahiro@post.kek.jp; Nishimori, Nobuyuki, E-mail: n-nishim@tagen.tohoku.ac.jp

    We report clear observation of a high voltage (HV) threshold for stable operation in a dc electron gun. The HV hold-off time without any discharge is longer than many hours for operation below the threshold, while it is roughly 10 min above the threshold. The HV threshold corresponds to the minimum voltage where discharge ceases. The threshold increases with the number of discharges during HV conditioning of the gun. Above the threshold, the amount of gas desorption per discharge increases linearly with the voltage difference from the threshold. The present experimental observations can be explained by an avalanche discharge modelmore » based on the interplay between electron stimulated desorption (ESD) from the anode surface and subsequent secondary electron emission from the cathode by the impact of ionic components of the ESD molecules or atoms.« less

  11. Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter

    NASA Astrophysics Data System (ADS)

    Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun

    2018-03-01

    The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.

  12. Multifunctional Hybrid Multilayer Gate Dielectrics with Tunable Surface Energy for Ultralow-Power Organic and Amorphous Oxide Thin-Film Transistors.

    PubMed

    Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun

    2017-03-01

    For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm 2 ), insulating property (leakage current densities <10 -7 A/cm 2 ), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.

  13. A uniform doping ultra-thin SOI LDMOS with accumulation-mode extended gate and back-side etching technology

    NASA Astrophysics Data System (ADS)

    Yan-Hui, Zhang; Jie, Wei; Chao, Yin; Qiao, Tan; Jian-Ping, Liu; Peng-Cheng, Li; Xiao-Rong, Luo

    2016-02-01

    A uniform doping ultra-thin silicon-on-insulator (SOI) lateral-double-diffused metal-oxide-semiconductor (LDMOS) with low specific on-resistance (Ron,sp) and high breakdown voltage (BV) is proposed and its mechanism is investigated. The proposed LDMOS features an accumulation-mode extended gate (AG) and back-side etching (BE). The extended gate consists of a P- region and two diodes in series. In the on-state with VGD > 0, an electron accumulation layer is formed along the drift region surface under the AG. It provides an ultra-low resistance current path along the whole drift region surface and thus the novel device obtains a low temperature distribution. The Ron,sp is nearly independent of the doping concentration of the drift region. In the off-state, the AG not only modulates the surface electric field distribution and improves the BV, but also brings in a charge compensation effect to further reduce the Ron,sp. Moreover, the BE avoids vertical premature breakdown to obtain high BV and allows a uniform doping in the drift region, which avoids the variable lateral doping (VLD) and the “hot-spot” caused by the VLD. Compared with the VLD SOI LDMOS, the proposed device simultaneously reduces the Ron,sp by 70.2% and increases the BV from 776 V to 818 V. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176069 and 61376079).

  14. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    NASA Astrophysics Data System (ADS)

    Chuan, Lee Te; Rathi, Muhammad Fareez Mohamad; Abidin, Muhamad Yusuf Zainal; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana

    2015-07-01

    Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm-2) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.

  15. The effects of ion gun beam voltage on the electrical characteristics of NbCN/PbBi edge junctions

    NASA Technical Reports Server (NTRS)

    Lichtenberger, A. W.; Feldman, M. J.; Mattauch, R. J.; Cukauskas, E. J.

    1989-01-01

    The authors have succeeded in fabricating high-quality submicron NbCN edge junctions using a technique which is commonly used to make Nb edge junctions. A modified commercial ion gun was used to cut an edge in SiO2/NbCN films partially covered with photoresist. An insulating barrier was then formed on the exposed edge by reactive ion beam oxidation, and a counterelectrode of PbBi was deposited. The electrical quality of the resulting junctions was found to be strongly influenced by the ion beam acceleration voltages used to cut the edge and to oxidize it. For low ion beam voltages, the junction quality parameter was as high as Vm = 55 mV (measured at 3 mV), but higher ion beam voltages yielded strikingly poorer quality junctions. In light of the small coherence length of NbN, the dependence of the electrical characteristics on ion beam voltage is presumably due to mechanical damage of the NbCN surface. In contrast, for similar ion beam voltages, no such dependence was found for Nb edge junctions.

  16. Selective scanning tunnelling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface.

    PubMed

    Riedel, Damien; Bocquet, Marie-Laure; Lesnard, Hervé; Lastapis, Mathieu; Lorente, Nicolas; Sonnet, Philippe; Dujardin, Gérald

    2009-06-03

    Selective electron-induced reactions of individual biphenyl molecules adsorbed in their weakly chemisorbed configuration on a Si(100) surface are investigated by using the tip of a low-temperature (5 K) scanning tunnelling microscope (STM) as an atomic size source of electrons. Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. At negative surface voltages, the biphenyl molecule diffuses across the surface in its weakly chemisorbed configuration. At positive surface voltages, different types of molecular reactions are activated, which involve the change of adsorption configuration from the weakly chemisorbed to the strongly chemisorbed bistable and quadristable configurations. Calculated reaction pathways of the molecular reactions on the silicon surface, using the nudge elastic band method, provide evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies. These results, together with the measured threshold surface voltages and the calculated molecular electronic structures via density functional theory, suggest that the electron-induced molecular reactions are driven by selective electron detachment (oxidation) or attachment (reduction) processes.

  17. Enhanced flashover strength in polyethylene nanodielectrics by secondary electron emission modification

    NASA Astrophysics Data System (ADS)

    Wang, Weiwang; Li, Shengtao; Min, Daomin

    2016-04-01

    This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.

  18. A Study of Economical Incentives for Voltage Profile Control Method in Future Distribution Network

    NASA Astrophysics Data System (ADS)

    Tsuji, Takao; Sato, Noriyuki; Hashiguchi, Takuhei; Goda, Tadahiro; Tange, Seiji; Nomura, Toshio

    In a future distribution network, it is difficult to maintain system voltage because a large number of distributed generators are introduced to the system. The authors have proposed “voltage profile control method” using power factor control of distributed generators in the previous work. However, the economical disbenefit is caused by the active power decrease when the power factor is controlled in order to increase the reactive power. Therefore, proper incentives must be given to the customers that corporate to the voltage profile control method. Thus, in this paper, we develop a new rules which can decide the economical incentives to the customers. The method is tested in one feeder distribution network model and its effectiveness is shown.

  19. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  20. Thermoreflectance microscopy measurements of the Joule heating characteristics of high- Tc superconducting terahertz emitters

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Takanari; Tanaka, Taiga; Watanabe, Chiharu; Kubo, Hiroyuki; Komori, Yuki; Yuasa, Takumi; Tanabe, Yuki; Ota, Ryusei; Kuwano, Genki; Nakamura, Kento; Tsujimoto, Manabu; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo

    2017-12-01

    Joule heating is the central issue in order to develop high-power and high-performance terahertz (THz) emission from mesa devices employing the intrinsic Josephson junctions in a layered high transition-temperature Tc superconductor. Here, we describe a convenient local thermal measurement technique using charge-coupled-device-based thermoreflectance microscopy, with the highest spatial resolution to date. This technique clearly proves that the relative temperature changes of the mesa devices between different bias points on the current-voltage characteristics can be measured very sensitively. In addition, the heating characteristics on the surface of the mesa devices can be detected more directly without any special treatment of the mesa surface such as previous coatings with SiC micro-powders. The results shown here clearly indicate that the contact resistance strongly affects the formation of an inhomogeneous temperature distribution on the mesa structures. Since the temperature and sample dependencies of the Joule heating characteristics can be measured quickly, this simple thermal evaluation technique is a useful tool to check the quality of the electrical contacts, electrical wiring, and sample defects. Thus, this technique could help to reduce the heating problems and to improve the performance of superconducting THz emitter devices.

  1. Short-Term State Forecasting-Based Optimal Voltage Regulation in Distribution Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Jiang, Huaiguang; Zhang, Yingchen

    2017-05-17

    A novel short-term state forecasting-based optimal power flow (OPF) approach for distribution system voltage regulation is proposed in this paper. An extreme learning machine (ELM) based state forecaster is developed to accurately predict system states (voltage magnitudes and angles) in the near future. Based on the forecast system states, a dynamically weighted three-phase AC OPF problem is formulated to minimize the voltage violations with higher penalization on buses which are forecast to have higher voltage violations in the near future. By solving the proposed OPF problem, the controllable resources in the system are optimally coordinated to alleviate the potential severemore » voltage violations and improve the overall voltage profile. The proposed approach has been tested in a 12-bus distribution system and simulation results are presented to demonstrate the performance of the proposed approach.« less

  2. Effect of the change in the load resistance on the high voltage pulse transformer of the intense electron-beam accelerators.

    PubMed

    Cheng, Xin-bing; Liu, Jin-liang; Qian, Bao-liang; Zhang, Yu; Zhang, Hong-bo

    2009-11-01

    A high voltage pulse transformer (HVPT) is usually used as a charging device for the pulse forming line (PFL) of intense electron-beam accelerators (IEBAs). Insulation of the HVPT is one of the important factors that restrict the development of the HVPT. Until now, considerable effort has been focused on minimizing high field regions to avoid insulation breakdown between windings. Characteristics of the HVPT have been widely discussed to achieve these goals, but the effects of the PFL and load resistance on HVPT are usually neglected. In this paper, a HVPT is used as a charging device for the PFL of an IEBA and the effect of the change in the load resistance on the HVPT of the IEBA is presented. When the load resistance does not match the wave impedance of the PFL, a high-frequency bipolar oscillating voltage will occur, and the amplitude of the oscillating voltage will increase with the decrease in the load resistance. The load resistance approximates to zero and the amplitude of the oscillating voltage is much higher. This makes it easier for surface flashover along the insulation materials to form and decrease the lifetime of the HVPT.

  3. Spectral Induced Polarization of Low-pH Concrete. Influence of the Electrical Double Layer and Pore Size

    NASA Astrophysics Data System (ADS)

    Leroy, P. G.; Gaboreau, S.; Zimmermann, E.; Hoerdt, A.; Claret, F.; Huisman, J. A.; Tournassat, C.

    2017-12-01

    Low-pH concretes are foreseen to be used in nuclear waste disposal. Understanding their reactivity upon the considered host-rock is a key point. Evolution of mineralogy, porosity, pore size distribution and connectivity can be monitored in situ using geophysical methods such as induced polarization (IP). This electrical method consists of injecting an alternating current and measuring the resulting voltage in the porous medium. Spectral IP (SIP) measurements in the 10 mHz to 10 kHz frequency range were carried out on low-pH concrete and cement paste first in equilibrium and then in contact with a CO2 enriched and diluted water. We observed a very high resistivity of the materials (> 10 kOhm m) and a strong phase shift between injected current and measured voltage (superior to 40 mrad and above 100 mrad for frequencies > 100 Hz). These observations were modelled by considering membrane polarization with ion exclusion in nanopores whose surface electrical properties were computed using a basic Stern model of the cement/water interface. Pore size distribution was deduced from SIP and was compared to the measured ones. In addition, we observed a decrease of the material resistivity due to the dissolution of cement in contact with external water. Our results show that SIP may be a valuable method to monitor the mineralogy and the petrophysical and transport properties of cements.

  4. Aluminum surface modification by a non-mass-analyzed nitrogen ion beam

    NASA Astrophysics Data System (ADS)

    Ohira, Shigeo; Iwaki, Masaya

    Non-mass-analyzed nitrogen ion implantation into polycrystal and single crystal aluminum sheets has been carried out at an accelerating voltage of 90 kV and a dose of 1 × 10 18 N ions/cm 2 using a Zymet implanter model Z-100. The pressure during implantation rose to 10 -3 Pa due to the influence of N gas feeding into the ion source. The characteristics of the surface layers were investigated by means of Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission electron diffraction (TED), and microscopy (TEM). The AES depth profiling shows a rectangular-like distribution of N atoms and little migration of O atoms near the surface. The high dose N-implantation forms c-axis oriented aluminum nitride (AIN) crystallines, and especially irradiation of Al single crystals with N ions leads to the formation of a hcp AlN single crystal. It is concluded that the high dose N-implantation in Al can result in the formation of AlN at room temperature without any thermal annealing. Furthermore, non-mass-analyzed N-implantation at a pressure of 10 -3 Pa of the nitrogen atmosphere causes the formation of pure AlN single crystals in the Al surface layer and consequently it can be practically used for AlN production.

  5. A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic Processor System.

    PubMed

    Current, K W; Yuk, K; McConaghy, C; Gascoyne, P R C; Schwartz, J A; Vykoukal, J V; Andrews, C

    2007-06-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport fluidic droplet samples on programmable paths across the array of driving electrodes on its hydrophobically coated surface. This exciter chip is the engine for dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip systems, creating field excitations that inject and move fluidic droplets onto and about the manipulation surface. The architecture of this chip is expandable to arrays of N X N identical HV electrode driver circuits and electrodes. The exciter chip is programmable in several senses. The routes of multiple droplets may be set arbitrarily within the bounds of the electrode array. The electrode excitation waveform voltage amplitude, phase, and frequency may be adjusted based on the system configuration and the signal required to manipulate a particular fluid droplet composition. The voltage amplitude of the electrode excitation waveform can be set from the minimum logic level up to the maximum limit of the breakdown voltage of the fabrication technology. The frequency of the electrode excitation waveform can also be set independently of its voltage, up to a maximum depending upon the type of droplets that must be driven. The exciter chip can be coated and its oxide surface used as the droplet manipulation surface or it can be used with a top-mounted, enclosed fluidic chamber consisting of a variety of materials. The HV capability of the exciter chip allows the generated DEP forces to penetrate into the enclosed chamber region and an adjustable voltage amplitude can accommodate a variety of chamber floor thicknesses. This demonstration exciter chip has a 32 x 32 array of nominally 100 V electrode drivers that are individually programmable at each time point in the procedure to either of two phases: 0deg and 180deg with respect to the reference clock. For this demonstration chip, while operating the electrodes with a 100-V peak-to-peak periodic waveform, the maximum HV electrode waveform frequency is about 200 Hz; and standard 5-V CMOS logic data communication rate is variable up to 250 kHz. This HV demonstration chip is fabricated in a 130-V 1.0-mum SOI CMOS fabrication technology, dissipates a maximum of 1.87 W, and is about 10.4 mm x 8.2 mm.

  6. The Na conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers

    PubMed Central

    DiFranco, Marino

    2011-01-01

    Na (and Li) currents and fluorescence transients were recorded simultaneously under voltage-clamp conditions from mouse flexor digitorum brevis fibers stained with the potentiometric dye di-8-ANEPPS to investigate the distribution of Na channels between the surface and transverse tubular system (TTS) membranes. In fibers rendered electrically passive, voltage pulses resulted in step-like fluorescence changes that were used to calibrate the dye response. The effects of Na channel activation on the TTS voltage were investigated using Li, instead of Na, because di-8-ANEPPS transients show anomalies in the presence of the latter. Na and Li inward currents (INa, ILi; using half of the physiological ion concentration) showed very steep voltage dependences, with no reversal for depolarizations beyond the calculated equilibrium potential, suggesting that most of the current originates from a noncontrolled membrane compartment. Maximum peak ILi was ∼30% smaller than for INa, suggesting a Li-blocking effect. ILi activation resulted in the appearance of overshoots in otherwise step-like di-8-ANEPPS transients. Overshoots had comparable durations and voltage dependence as those of ILi. Simultaneously measured maximal overshoot and peak ILi were 54 ± 5% and 773 ± 53 µA/cm2, respectively. Radial cable model simulations predicted the properties of ILi and di-8-ANEPPS transients when TTS access resistances of 10–20 Ωcm2, and TTS-to-surface Na permeability density ratios in the range of 40:60 to 70:30, were used. Formamide-based osmotic shock resulted in incomplete detubulation. However, results from a subpopulation of treated fibers (low capacitance) provide confirmatory evidence that a significant proportion of ILi, and the overshoot in the optical signals, arises from the TTS in normal fibers. The quantitative evaluation of the distribution of Na channels between the sarcolemma and the TTS membranes, as provided here, is crucial for the understanding of the radial and longitudinal propagation of the action potential, which ultimately govern the mechanical activation of muscle in normal and diseased conditions. PMID:21948948

  7. Oxygen Displacement in Cuprates under IonicLiquid Field-Effect Gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua

    We studied structural changes in a 5 unit cell thick La 1.96Sr 0.04CuO 4 film, epitaxially grown on a LaSrAlO 4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were:more » (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and planar oxygen atoms were displaced towards the sample surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of planar oxygen atoms.« less

  8. Oxygen Displacement in Cuprates under IonicLiquid Field-Effect Gating

    DOE PAGES

    Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; ...

    2016-08-15

    We studied structural changes in a 5 unit cell thick La 1.96Sr 0.04CuO 4 film, epitaxially grown on a LaSrAlO 4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were:more » (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and planar oxygen atoms were displaced towards the sample surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of planar oxygen atoms.« less

  9. Power system voltage stability and agent based distribution automation in smart grid

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong Phuc

    2011-12-01

    Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and negotiation. Communication latency is modeled using a user-defined probability density function. Failure-tolerant communication strategies are developed for agent communications. Major elements of advanced DA are developed in a completely distributed way and successfully tested for several IEEE standard systems, including: Fault Detection, Location, Isolation, and Service Restoration (FLISR); Coordination of Distributed Energy Storage Systems (DES); Distributed Power Flow (DPF); Volt-VAR Control (VVC); and Loss Reduction (LR).

  10. Electrical properties of fluorine-doped ZnO nanowires formed by biased plasma treatment

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Chen, Yicong; Song, Xiaomeng; Zhang, Zhipeng; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-05-01

    Doping is an effective method for tuning electrical properties of zinc oxide nanowires, which are used in nanoelectronic devices. Here, ZnO nanowires were prepared by a thermal oxidation method. Fluorine doping was achieved by a biased plasma treatment, with bias voltages of 100, 200, and 300 V. Transmission electron microscopy indicated that the nanowires treated at bias voltages of 100 and 200 V featured low crystallinity. When the bias voltage was 300 V, the nanowires showed single crystalline structures. Photoluminescence measurements revealed that concentrations of oxygen and surface defects decreased at high bias voltage. X-ray photoelectron spectroscopy suggested that the F content increased as the bias voltage was increased. The conductivity of the as-grown nanowires was less than 103 S/m; the conductivity of the treated nanowires ranged from 1 × 104-5 × 104, 1 × 104-1 × 105, and 1 × 103-2 × 104 S/m for bias voltage treatments at 100, 200, and 300 V, respectively. The conductivity improvements of nanowires formed at bias voltages of 100 and 200 V, were attributed to F-doping, defects and surface states. The conductivity of nanowires treated at 300 V was attributed to the presence of F ions. Thus, we provide a method of improving electrical properties of ZnO nanowires without altering their crystal structure.

  11. Miscibility Gap Closure, Interface Morphology, and Phase Microstructure of 3D Li xFePO 4 Nanoparticles from Surface Wetting and Coherency Strain

    DOE PAGES

    Welland, Michael J.; Karpeyev, Dmitry; O’Connor, Devin T.; ...

    2015-09-10

    We study the mesoscopic effects which suppress phase-segregation in Li xFePO 4 nanoparticles using a multiphysics phase-field model implement on a high performance cluster. We simulate 3D spherical particles of radii from 3nm to 40nm and examine the equilibrium microstructure and voltage profiles as a they depend on size and overall lithiation. The model includes anisotropic, concentration-dependent elastic moduli, misfit strain, and facet dependent surface wetting within a Cahn-Hilliard formulation. Here, we find that the miscibility gap vanishes for particles of radius ~ 5 nm, and the solubility limits change with overall particle lithiation. The corresponding voltage plateau, indicative ofmore » phase-segregation, changes in extent and also vanishes. Surface wetting is found to have a strong effect on stabilizing a variety of microstructures, exaggerating the shifting of solubility limits, and shortening the voltage plateau.« less

  12. Measurement of relative depth-dose distribution in radiochromic film dosimeters irradiated with 43-70 keV electron beam for industrial application

    NASA Astrophysics Data System (ADS)

    Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka

    2018-05-01

    The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.

  13. Electrocatalysis paradigm for protection of cathode materials in high-voltage lithium-ion batteries

    DOE PAGES

    Shkrob, Ilya A.; Abraham, Daniel P.

    2016-07-06

    A new mechanistic framework is suggested to account for the protective action of certain electrolyte additives on high-voltage positive electrode (cathode) materials. The mechanism involves inactivation of catalytically active centers on the electrode active materials through fragmentation reactions involving molecules at its surface. The cathode protection additives oxidize before the solvent and serve as sacrificial inhibitors of the catalytic centers. Without the additive, the surface oxidation of the solvent (like solvent oxidation in the bulk) yields H loss radicals and releases the proton that can combine with anions forming corrosive acids. This proton-release reaction is demonstrated experimentally for boronate additives.more » Specific radical reactions for the latter additives on the electrode surface are suggested. Furthermore, the same approach can be used to rationalize the protective action of other additives and account for various observations regarding their performance.« less

  14. Electrocatalysis paradigm for protection of cathode materials in high-voltage lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkrob, Ilya A.; Abraham, Daniel P.

    A new mechanistic framework is suggested to account for the protective action of certain electrolyte additives on high-voltage positive electrode (cathode) materials. The mechanism involves inactivation of catalytically active centers on the electrode active materials through fragmentation reactions involving molecules at its surface. The cathode protection additives oxidize before the solvent and serve as sacrificial inhibitors of the catalytic centers. Without the additive, the surface oxidation of the solvent (like solvent oxidation in the bulk) yields H loss radicals and releases the proton that can combine with anions forming corrosive acids. This proton-release reaction is demonstrated experimentally for boronate additives.more » Specific radical reactions for the latter additives on the electrode surface are suggested. Furthermore, the same approach can be used to rationalize the protective action of other additives and account for various observations regarding their performance.« less

  15. Enhancement of reverse transfection efficiency by combining stimulated DNA surface desorption and electroporation

    NASA Astrophysics Data System (ADS)

    Creasey, Rhiannon; Hook, Andrew; Thissen, Helmut; Voelcker, Nicolas H.

    2007-12-01

    Transfection cell microarrays (TCMs) are a high-throughput, miniaturised cell-culture system utilising reverse transfection, in which cells are seeded onto a DNA array resulting in localised regions of transfected cells. TCMs are useful for the analysis of gene expression, and can be used to identify genes involved in many cellular processes. This is of significant interest in fields such as tissue engineering, diagnostic screening, and drug testing [1, 2]. Low transfection efficiency has so far limited the application and utility of this technique. Recently, the transfection efficiency of TCMs was improved by an application of a high voltage for a short period of time to the DNA array resulting in the electroporation of cells attached to the surface [3, 4]. Furthermore, application of a low voltage for a longer period of time to the DNA array was shown to improve the transfection efficiency by stimulating the desorption of attached DNA, increasing the concentration of DNA available for cellular uptake [5]. In the present study, the optimisation of the uptake of adsorbed DNA vectors by adherent cells, utilising a voltage bias without compromising cell viability was investigated. This was achieved by depositing negatively charged DNA plasmids onto a positively charged allylamine plasma polymer (ALAPP) layer deposited on highly doped p-type silicon wafers either using a pipettor or a microarray contact printer. Surface-dependant human embryonic kidney (HEK 293 line) cells were cultured onto the DNA vector loaded ALAPP spots and the plasmid transfection events were detected by fluorescence microscopy. Cell viability assays, including fluorescein diacetate (FDA) / Hoechst DNA labelling, were carried out to determine the number of live adherent cells before and after application of a voltage. A protocol was developed to screen for voltage biases and exposure times in order to optimise transfection efficiency and cell viability. Cross-contamination between the microarray spots carrying different DNA vectors was also investigated. By application of a voltage of 286 V/cm for 10 ms, transfection efficiency was doubled compared to using only transfection reagent, whilst maintaining a cell viability of 60-70% of the positive control.

  16. Three Dimensional Neuronal Cell Cultures More Accurately Model Voltage Gated Calcium Channel Functionality in Freshly Dissected Nerve Tissue

    PubMed Central

    Kisaalita, William

    2012-01-01

    It has been demonstrated that neuronal cells cultured on traditional flat surfaces may exhibit exaggerated voltage gated calcium channel (VGCC) functionality. To gain a better understanding of this phenomenon, primary neuronal cells harvested from mice superior cervical ganglion (SCG) were cultured on two dimensional (2D) flat surfaces and in three dimensional (3D) synthetic poly-L-lactic acid (PLLA) and polystyrene (PS) polymer scaffolds. These 2D- and 3D-cultured cells were compared to cells in freshly dissected SCG tissues, with respect to intracellular calcium increase in response to high K+ depolarization. The calcium increases were identical for 3D-cultured and freshly dissected, but significantly higher for 2D-cultured cells. This finding established the physiological relevance of 3D-cultured cells. To shed light on the mechanism behind the exaggerated 2D-cultured cells’ functionality, transcriptase expression and related membrane protein distributions (caveolin-1) were obtained. Our results support the view that exaggerated VGCC functionality from 2D cultured SCG cells is possibly due to differences in membrane architecture, characterized by uniquely organized caveolar lipid rafts. The practical implication of use of 3D-cultured cells in preclinical drug discovery studies is that such platforms would be more effective in eliminating false positive hits and as such improve the overall yield from screening campaigns. PMID:23049767

  17. Bivariate quadratic method in quantifying the differential capacitance and energy capacity of supercapacitors under high current operation

    NASA Astrophysics Data System (ADS)

    Goh, Chin-Teng; Cruden, Andrew

    2014-11-01

    Capacitance and resistance are the fundamental electrical parameters used to evaluate the electrical characteristics of a supercapacitor, namely the dynamic voltage response, energy capacity, state of charge and health condition. In the British Standards EN62391 and EN62576, the constant capacitance method can be further improved with a differential capacitance that more accurately describes the dynamic voltage response of supercapacitors. This paper presents a novel bivariate quadratic based method to model the dynamic voltage response of supercapacitors under high current charge-discharge cycling, and to enable the derivation of the differential capacitance and energy capacity directly from terminal measurements, i.e. voltage and current, rather than from multiple pulsed-current or excitation signal tests across different bias levels. The estimation results the author achieves are in close agreement with experimental measurements, within a relative error of 0.2%, at various high current levels (25-200 A), more accurate than the constant capacitance method (4-7%). The archival value of this paper is the introduction of an improved quantification method for the electrical characteristics of supercapacitors, and the disclosure of the distinct properties of supercapacitors: the nonlinear capacitance-voltage characteristic, capacitance variation between charging and discharging, and distribution of energy capacity across the operating voltage window.

  18. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, Richard D.; Olivares, Jose A.

    1989-01-01

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit.

  19. Powerplexer

    NASA Technical Reports Server (NTRS)

    Woods, J. M. (Inventor)

    1973-01-01

    An electrical power distribution system is described for use in providing different dc voltage levels. A circuit is supplied with DC voltage levels and commutates pulses for timed intervals onto a pair of distribution wires. The circuit is driven by a command generator which places pulses on the wires in a timed sequence. The pair of wires extend to voltage strippers connected to the various loads. The voltage strippers each respond to the pulse dc levels on the pair of wires and form different output voltages communicated to each load.

  20. Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage

    NASA Astrophysics Data System (ADS)

    Manthiram, Arumugam

    2011-03-01

    Electrical energy storage has emerged as a topic of national and global importance with respect to establishing a cleaner environment and reducing the dependence on foreign oil. Batteries are the prime candidates for electrical energy storage. They are the most viable near-term option for vehicle applications and the efficient utilization of intermittent energy sources like solar and wind. Lithium-ion batteries are attractive for these applications as they offer much higher energy density than other rechargeable battery systems. However, the adoption of lithium-ion battery technology for vehicle and stationary storage applications is hampered by high cost, safety concerns, and limitations in energy, power, and cycle life, which are in turn linked to severe materials challenges. This presentation, after providing an overview of the current status, will focus on the physics and chemistry of new materials that can address these challenges. Specifically, it will focus on the design and development of (i) high-capacity, high-voltage layered oxide cathodes, (ii) high-voltage, high-power spinel oxide cathodes, (iii) high-capacity silicate cathodes, and (iv) nano-engineered, high-capacity alloy anodes. With high-voltage cathodes, a critical issue is the instability of the electrolyte in contact with the highly oxidized cathode surface and the formation of solid-electrolyte interfacial (SEI) layers that degrade the performance. Accordingly, surface modification of cathodes with nanostructured materials and self-surface segregation during the synthesis process to suppress SEI layer formation and enhance the energy, power, and cycle life will be emphasized. With the high-capacity alloy anodes, a critical issue is the huge volume change occurring during the charge-discharge process and the consequent poor cycle life. Dispersion of the active alloy nanoparticles in an inactive metal oxide-carbon matrix to mitigate this problem and realize long cycle life will be presented.

Top