Sample records for surface inspection system

  1. An intelligent system for real time automatic defect inspection on specular coated surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Parker, Johné M.; Hou, Zhen

    2005-07-01

    Product visual inspection is still performed manually or semi automatically in most industries from simple ceramic tile grading to complex automotive body panel paint defect and surface quality inspection. Moreover, specular surfaces present additional challenge to conventional vision systems due to specular reflections, which may mask the true location of objects and lead to incorrect measurements. There are some sophisticated visual inspection methods developed in recent years. Unfortunately, most of them are highly computational. Systems built on those methods are either inapplicable or very costly to achieve real time inspection. In this paper, we describe an integrated low-cost intelligent system developed to automatically capture, extract, and segment defects on specular surfaces with uniform color coatings. The system inspects and locates regular surface defects with lateral dimensions as small as a millimeter. The proposed system is implemented on a group of smart cameras using its on-board processing ability to achieve real time inspection. The experimental results on real test panels demonstrate the effectiveness and robustness of proposed system.

  2. A Graphical Operator Interface for a Telerobotic Inspection System

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Tso, K. S.; Hayati, S.

    1993-01-01

    Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  3. Robotic NDE inspection of advanced solid rocket motor casings

    NASA Technical Reports Server (NTRS)

    Mcneelege, Glenn E.; Sarantos, Chris

    1994-01-01

    The Advanced Solid Rocket Motor program determined the need to inspect ASRM forgings and segments for potentially catastrophic defects. To minimize costs, an automated eddy current inspection system was designed and manufactured for inspection of ASRM forgings in the initial phases of production. This system utilizes custom manipulators and motion control algorithms and integrated six channel eddy current data acquisition and analysis hardware and software. Total system integration is through a personal computer based workcell controller. Segment inspection demands the use of a gantry robot for the EMAT/ET inspection system. The EMAT/ET system utilized similar mechanical compliancy and software logic to accommodate complex part geometries. EMAT provides volumetric inspection capability while eddy current is limited to surface and near surface inspection. Each aspect of the systems are applicable to other industries, such as, inspection of pressure vessels, weld inspection, and traditional ultrasonic inspection applications.

  4. Automated inspection of solder joints for surface mount technology

    NASA Technical Reports Server (NTRS)

    Savage, Robert M.; Park, Hyun Soo; Fan, Mark S.

    1993-01-01

    Researchers at NASA/GSFC evaluated various automated inspection systems (AIS) technologies using test boards with known defects in surface mount solder joints. These boards were complex and included almost every type of surface mount device typical of critical assemblies used for space flight applications: X-ray radiography; X-ray laminography; Ultrasonic Imaging; Optical Imaging; Laser Imaging; and Infrared Inspection. Vendors, representative of the different technologies, inspected the test boards with their particular machine. The results of the evaluation showed limitations of AIS. Furthermore, none of the AIS technologies evaluated proved to meet all of the inspection criteria for use in high-reliability applications. It was found that certain inspection systems could supplement but not replace manual inspection for low-volume, high-reliability, surface mount solder joints.

  5. Inspection of the interior surface of cylindrical vessels using optic fiber shearography

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wei, Quan; Tu, Jun; Arola, Dwayne D.; Zhang, Dongsheng

    2017-09-01

    In this study, a shearography system integrated with a coherent fiber-optic illumination and a fiber-optic imaging bundle is presented to inspect the quality of the interior surface of a cylindrical vessel for safety purposes. The specific optical arrangement is designed for the inspection of a certain area at a small working distance. The optical arrangement of the system was assembled and an aluminum honeycomb sample was evaluated to demonstrate the capability of the system. The important relationship between the image quality and the working distance, as well as the field of view, is discussed. The system has been applied for the inspection of the interior surface of a cylindrical vessel. The experimental results suggest that the shearography system integrated with optical and image fibers can effectively minimize the size of the inspection device and be capable of evaluating the interior surface of cylindrical structures.

  6. Remote surface inspection system

    NASA Astrophysics Data System (ADS)

    Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.

    1993-02-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  7. Remote surface inspection system

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.

    1993-01-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  8. Automated surface quality inspection with ARGOS: a case study

    NASA Astrophysics Data System (ADS)

    Kiefhaber, Daniel; Etzold, Fabian; Warken, Arno F.; Asfour, Jean-Michel

    2017-06-01

    The commercial availability of automated inspection systems for optical surfaces specified according to ISO 10110-7 promises unsupervised and automated quality control with reproducible results. In this study, the classification results of the ARGOS inspection system are compared to the decisions by well-trained inspectors based on manual-visual inspection. Both are found to agree in 93.6% of the studied cases. Exemplary cases with differing results are studied, and shown to be partly caused by shortcomings of the ISO 10110-7 standard, which was written for the industry standard manual-visual inspection. Applying it to high resolution images of the whole surface of objective machine vision systems brings with it a few challenges which are discussed.

  9. A real-time surface inspection system for precision steel balls based on machine vision

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  10. Remote surface inspection system. [of large space platforms

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Balaram, J.; Seraji, Homayoun; Kim, Won S.; Tso, Kam S.

    1993-01-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  11. 3D surface scan of biological samples with a Push-broom Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Kincaid, Russell; Hruska, Zuzana; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2013-08-01

    The food industry is always on the lookout for sensing technologies for rapid and nondestructive inspection of food products. Hyperspectral imaging technology integrates both imaging and spectroscopy into unique imaging sensors. Its application for food safety and quality inspection has made significant progress in recent years. Specifically, hyperspectral imaging has shown its potential for surface contamination detection in many food related applications. Most existing hyperspectral imaging systems use pushbroom scanning which is generally used for flat surface inspection. In some applications it is desirable to be able to acquire hyperspectral images on circular objects such as corn ears, apples, and cucumbers. Past research describes inspection systems that examine all surfaces of individual objects. Most of these systems did not employ hyperspectral imaging. These systems typically utilized a roller to rotate an object, such as an apple. During apple rotation, the camera took multiple images in order to cover the complete surface of the apple. The acquired image data lacked the spectral component present in a hyperspectral image. This paper discusses the development of a hyperspectral imaging system for a 3-D surface scan of biological samples. The new instrument is based on a pushbroom hyperspectral line scanner using a rotational stage to turn the sample. The system is suitable for whole surface hyperspectral imaging of circular objects. In addition to its value to the food industry, the system could be useful for other applications involving 3-D surface inspection.

  12. Machine vision method for online surface inspection of easy open can ends

    NASA Astrophysics Data System (ADS)

    Mariño, Perfecto; Pastoriza, Vicente; Santamaría, Miguel

    2006-10-01

    Easy open can end manufacturing process in the food canning sector currently makes use of a manual, non-destructive testing procedure to guarantee can end repair coating quality. This surface inspection is based on a visual inspection made by human inspectors. Due to the high production rate (100 to 500 ends per minute) only a small part of each lot is verified (statistical sampling), then an automatic, online, inspection system, based on machine vision, has been developed to improve this quality control. The inspection system uses a fuzzy model to make the acceptance/rejection decision for each can end from the information obtained by the vision sensor. In this work, the inspection method is presented. This surface inspection system checks the total production, classifies the ends in agreement with an expert human inspector, supplies interpretability to the operators in order to find out the failure causes and reduce mean time to repair during failures, and allows to modify the minimum can end repair coating quality.

  13. A highly redundant robot system for inspection

    NASA Technical Reports Server (NTRS)

    Lee, Thomas S.; Ohms, Tim; Hayati, Samad

    1994-01-01

    The work on the serpentine inspection system at JPL is described. The configuration of the inspection system consists of 20 degrees of freedom in total. In particular, the design and development of the serpentine micromanipulator end-effector tool which has 12 degrees of freedom is described. The inspection system is used for application in JPL's Remote Surface Inspection project and as a research tool in redundant manipulator control.

  14. Unmanned surface vessel (USV) systems for bridge inspection : [summary].

    DOT National Transportation Integrated Search

    2016-08-01

    Florida Atlantic University researchers studied the : use of unmanned surface vessels (USVs) for bridge : inspection. The general concept is that a bridge : inspection team would use an USV to perform an : initial survey of structures underwater and ...

  15. Unmanned surface vessel (USV) systems for bridge inspection : final report.

    DOT National Transportation Integrated Search

    2016-08-01

    The use of unmanned surface vehicles (USVs) for bridge inspection has been explored. The following issues were considered: (1) the requirements of and : current techniques utilized in on-water bridge inspection; (2) USV design and configuration consi...

  16. Surface contamination analysis technology team overview

    NASA Astrophysics Data System (ADS)

    Burns, H. Dewitt, Jr.

    1996-11-01

    The surface contamination analysis technology (SCAT) team was originated as a working roup of NASA civil service, Space Shuttle contractor, and university groups. Participating members of the SCAT Team have included personnel from NASA Marshall Space Flight Center's Materials and Processes Laboratory and Langley Research Center's Instrument Development Group; contractors-Thiokol Corporation's Inspection Technology Group, AC Engineering support contractor, Aerojet, SAIC, and Lockheed MArtin/Oak Ridge Y-12 support contractor and Shuttle External Tank prime contractor; and the University of Alabama in Huntsville's Center for Robotics and Automation. The goal of the SCAT team as originally defined was to develop and integrate a multi-purpose inspection head for robotic application to in-process inspection of contamination sensitive surfaces. One area of interest was replacement of ozone depleting solvents currently used for surface cleanliness verification. The team approach brought together the appropriate personnel to determine what surface inspection techniques were applicable to multi-program surface cleanliness inspection. Major substrates of interest were chosen to simulate space shuttle critical bonding surface or surfaces sensitive to contamination such as fuel system component surfaces. Inspection techniques evaluated include optically stimulated electron emission or photoelectron emission; Fourier transform infrared spectroscopy; near infrared fiber optic spectroscopy; and, ultraviolet fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992. Instrumentation specifications and designs developed under this effort include a portable diffuse reflectance FTIR system built by Surface Optics Corporation and a third generation optically stimulated electron emission system built by LaRC. This paper will discuss the evaluation of the various techniques on a number of substrate materials contaminated with hydrocarbons, silicones, and fluorocarbons. Discussion will also include standards development for instrument calibration and testing.

  17. An operator interface design for a telerobotic inspection system

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tso, Kam S.; Hayati, Samad

    1993-01-01

    The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  18. Ultrasonic inspection and deployment apparatus

    DOEpatents

    Michaels, Jennifer E.; Michaels, Thomas E.; Mech, Jr., Stephen J.

    1984-01-01

    An ultrasonic inspection apparatus for the inspection of metal structures, especially installed pipes. The apparatus combines a specimen inspection element, an acoustical velocity sensing element, and a surface profiling element, all in one scanning head. A scanning head bellows contains a volume of oil above the pipe surface, serving as acoustical couplant between the scanning head and the pipe. The scanning head is mounted on a scanning truck which is mobile around a circular track surrounding the pipe. The scanning truck has sufficient motors, gears, and position encoders to allow the scanning head six degrees of motion freedom. A computer system continually monitors acoustical velocity, and uses that parameter to process surface profiling and inspection data. The profiling data is used to automatically control scanning head position and alignment and to define a coordinate system used to identify and interpret inspection data. The apparatus is suitable for highly automated, remote application in hostile environments, particularly high temperature and radiation areas.

  19. Inspection Tools

    NASA Astrophysics Data System (ADS)

    1989-01-01

    A "NASA Tech Briefs" article describing an inspection tool and technique known as Optically Stimulated Electron Emission (OSEE) led to the formation of Photo Acoustic Technology, Inc. (PAT). PAT produces sensors and scanning systems which assure surface cleanliness prior to bonding, coating, painting, etc. The company's OP1000 series realtime pre-processing detection capability assures 100 percent surface quality testing. The technique involves brief exposure of the inspection surface to ultraviolet radiation. The energy interacts with the surface layer, causing free electrons to be emitted from the surface to be picked up by the detector. When contamination is present, it interferes with the electron flow in proportion to the thickness of the contaminant layer enabling measurement by system signal output. OP1000 systems operate in conventional atmospheres on all types of material and detect both organic and inorganic contamination.

  20. A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology.

    PubMed

    Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang

    2016-08-25

    Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40-50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production.

  1. Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao

    2016-09-01

    To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.

  2. Image formation simulation for computer-aided inspection planning of machine vision systems

    NASA Astrophysics Data System (ADS)

    Irgenfried, Stephan; Bergmann, Stephan; Mohammadikaji, Mahsa; Beyerer, Jürgen; Dachsbacher, Carsten; Wörn, Heinz

    2017-06-01

    In this work, a simulation toolset for Computer Aided Inspection Planning (CAIP) of systems for automated optical inspection (AOI) is presented along with a versatile two-robot-setup for verification of simulation and system planning results. The toolset helps to narrow down the large design space of optical inspection systems in interaction with a system expert. The image formation taking place in optical inspection systems is simulated using GPU-based real time graphics and high quality off-line-rendering. The simulation pipeline allows a stepwise optimization of the system, from fast evaluation of surface patch visibility based on real time graphics up to evaluation of image processing results based on off-line global illumination calculation. A focus of this work is on the dependency of simulation quality on measuring, modeling and parameterizing the optical surface properties of the object to be inspected. The applicability to real world problems is demonstrated by taking the example of planning a 3D laser scanner application. Qualitative and quantitative comparison results of synthetic and real images are presented.

  3. Defect detection and classification of machined surfaces under multiple illuminant directions

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Weng, Xin; Swonger, C. W.; Ni, Jun

    2010-08-01

    Continuous improvement of product quality is crucial to the successful and competitive automotive manufacturing industry in the 21st century. The presence of surface porosity located on flat machined surfaces such as cylinder heads/blocks and transmission cases may allow leaks of coolant, oil, or combustion gas between critical mating surfaces, thus causing damage to the engine or transmission. Therefore 100% inline inspection plays an important role for improving product quality. Although the techniques of image processing and machine vision have been applied to machined surface inspection and well improved in the past 20 years, in today's automotive industry, surface porosity inspection is still done by skilled humans, which is costly, tedious, time consuming and not capable of reliably detecting small defects. In our study, an automated defect detection and classification system for flat machined surfaces has been designed and constructed. In this paper, the importance of the illuminant direction in a machine vision system was first emphasized and then the surface defect inspection system under multiple directional illuminations was designed and constructed. After that, image processing algorithms were developed to realize 5 types of 2D or 3D surface defects (pore, 2D blemish, residue dirt, scratch, and gouge) detection and classification. The steps of image processing include: (1) image acquisition and contrast enhancement (2) defect segmentation and feature extraction (3) defect classification. An artificial machined surface and an actual automotive part: cylinder head surface were tested and, as a result, microscopic surface defects can be accurately detected and assigned to a surface defect class. The cycle time of this system can be sufficiently fast that implementation of 100% inline inspection is feasible. The field of view of this system is 150mm×225mm and the surfaces larger than the field of view can be stitched together in software.

  4. Surface and subsurface inspection of food safety and quality using a line-scan Raman system

    USDA-ARS?s Scientific Manuscript database

    This paper presents a line-scan Raman platform for food safety and quality research, which can be configured for Raman chemical imaging (RCI) mode for surface inspection and spatially offset Raman spectroscopy (SORS) mode for subsurface inspection. In the RCI mode, macro-scale imaging was achieved u...

  5. Automated Eddy Current Inspection on Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Hartmann, John; Felker, Jeremy

    2007-01-01

    Over the life time of the Space Shuttle program, metal parts used for the Reusable Solid Rocket Motors (RSRMs) have been nondestructively inspected for cracks and surface breaking discontinuities using magnetic particle (steel) and penetrant methods. Although these inspections adequately screened for critical sized cracks in most regions of the hardware, it became apparent after detection of several sub-critical flaws that the processes were very dependent on operator attentiveness and training. Throughout the 1990's, eddy current inspections were added to areas that had either limited visual access or were more fracture critical. In the late 1990's. a project was initiated to upgrade NDE inspections with the overall objective of improving inspection reliability and control. An automated eddy current inspection system was installed in 2001. A figure shows one of the inspection bays with the robotic axis of the system highlighted. The system was programmed to inspect the various case, nozzle, and igniter metal components that make up an RSRM. both steel and aluminum. For the past few years, the automated inspection system has been a part of the baseline inspection process for steel components. Although the majority of the RSRM metal part inventory ts free of detectable surface flaws, a few small, sub-critical manufacturing defects have been detected with the automated system. This paper will summarize the benefits that have been realized with the current automated eddy current system, as well as the flaws that have been detected.

  6. Eddy current system for inspection of train hollow axles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chady, Tomasz; Psuj, Grzegorz; Sikora, Ryszard

    2014-02-18

    The structural integrity of wheelsets used in rolling stock is of great importance to the safety. In this paper, electromagnetic system with an eddy current transducer suitable for the inspection of hollow axles have been presented. The transducer was developed to detect surface braking defects having depth not smaller than 0.5 mm. Ultrasound technique can be utilized to inspect the whole axle, but it is not sufficiently sensitive to shallow defects located close to the surface. Therefore, the electromagnetic technique is proposed to detect surface breaking cracks that cannot be detected by ultrasonic technique.

  7. Plasma etched surface scanning inspection recipe creation based on bidirectional reflectance distribution function and polystyrene latex spheres

    NASA Astrophysics Data System (ADS)

    Saldana, Tiffany; McGarvey, Steve; Ayres, Steve

    2014-04-01

    The continual increasing demands upon Plasma Etching systems to self-clean and continue Plasma Etching with minimal downtime allows for the examination of SiCN, SiO2 and SiN defectivity based upon Surface Scanning Inspection Systems (SSIS) wafer scan results. Historically all Surface Scanning Inspection System wafer scanning recipes have been based upon Polystyrene Spheres wafer deposition for each film stack and the subsequent creation of light scattering sizing response curves. This paper explores the feasibility of the elimination of Polystyrene Latex Sphere (PSL) and/or process particle deposition on both filmed and bare Silicon wafers prior to Surface Scanning Inspection System recipe creation. The study will explore the theoretical maximal Surface Scanning Inspection System sensitivity based on PSL recipe creation in conjunction with the maximal sensitivity derived from Bidirectional Reflectance Distribution Function (BRDF) maximal sensitivity modeling recipe creation. The surface roughness (Root Mean Square) of plasma etched wafers varies dependent upon the process film stack. Decrease of the root mean square value of the wafer sample surface equates to higher surface scanning inspection system sensitivity. Maximal sensitivity SSIS scan results from bare and filmed wafers inspected with recipes created based upon Polystyrene/Particle Deposition and recipes created based upon BRDF modeling will be overlaid against each other to determine maximal sensitivity and capture rate for each type of recipe that was created with differing recipe creation modes. A statistically valid sample of defects from each Surface Scanning Inspection system recipe creation mode and each bare wafer/filmed substrate will be reviewed post SSIS System processing on a Defect Review Scanning Electron Microscope (DRSEM). Native defects, Polystyrene Latex Spheres will be collected from each statistically valid defect bin category/size. The data collected from the DRSEM will be utilized to determine the maximum sensitivity capture rate for each recipe creation mode. Emphasis will be placed upon the sizing accuracy of PSL versus BRDF modeling results based upon automated DRSEM defect sizing. An examination the scattering response for both Mie and Rayleigh will be explored in relationship to the reported sizing variance of the SSIS to make a determination of the absolute sizing accuracy of the recipes there were generated based upon BRDF modeling. This paper explores both the commercial and technical considerations of the elimination of PSL deposition as a precursor to SSIS recipe creation. Successful integration of BRDF modeling into the technical aspect of SSIS recipe creation process has the potential to dramatically reduce the recipe creation timeline and vetting period. Integration of BRDF modeling has the potential to greatly reduce the overhead operation costs for High Volume Manufacturing sites by eliminating the associated costs of third party PSL deposition.

  8. Contoured Surface Eddy Current Inspection System

    DOEpatents

    Batzinger, Thomas James; Fulton, James Paul; Rose, Curtis Wayne; Perocchi, Lee Cranford

    2003-04-08

    Eddy current inspection of a contoured surface of a workpiece is performed by forming a backing piece of flexible, resiliently yieldable material with a contoured exterior surface conforming in shape to the workpiece contoured surface. The backing piece is preferably cast in place so as to conform to the workpiece contoured surface. A flexible eddy current array probe is attached to the contoured exterior surface of the backing piece such that the probe faces the contoured surface of the workpiece to be inspected when the backing piece is disposed adjacent to the workpiece. The backing piece is then expanded volumetrically by inserting at least one shim into a slot in the backing piece to provide sufficient contact pressure between the probe and the workpiece contoured surface to enable the inspection of the workpiece contoured surface to be performed.

  9. A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology

    PubMed Central

    Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang

    2016-01-01

    Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40–50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production. PMID:27571078

  10. Vision inspection system and method

    NASA Technical Reports Server (NTRS)

    Huber, Edward D. (Inventor); Williams, Rick A. (Inventor)

    1997-01-01

    An optical vision inspection system (4) and method for multiplexed illuminating, viewing, analyzing and recording a range of characteristically different kinds of defects, depressions, and ridges in a selected material surface (7) with first and second alternating optical subsystems (20, 21) illuminating and sensing successive frames of the same material surface patch. To detect the different kinds of surface features including abrupt as well as gradual surface variations, correspondingly different kinds of lighting are applied in time-multiplexed fashion to the common surface area patches under observation.

  11. Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection.

    PubMed

    Zhang, Huayu; Zhong, Mingming; Xie, Fengqin; Cao, Maoyong

    2017-12-05

    Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball's outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified.

  12. Frame Shift/warp Compensation for the ARID Robot System

    NASA Technical Reports Server (NTRS)

    Latino, Carl D.

    1991-01-01

    The Automatic Radiator Inspection Device (ARID) is a system aimed at automating the tedious task of inspecting orbiter radiator panels. The ARID must have the ability to aim a camera accurately at the desired inspection points, which are in the order of 13,000. The ideal inspection points are known; however, the panel may be relocated due to inaccurate parking and warpage. A method of determining the mathematical description of a translated as well as a warped surface by accurate measurement of only a few points on this surface is developed here. The method uses a linear warp model whose effect is superimposed on the rigid body translation. Due to the angles involved, small angle approximations are possible, which greatly reduces the computational complexity. Given an accurate linear warp model, all the desired translation and warp parameters can be obtained by knowledge of the ideal locations of four fiducial points and the corresponding measurements of these points on the actual radiator surface. The method uses three of the fiducials to define a plane and the fourth to define the warp. Given this information, it is possible to determine a transformation that will enable the ARID system to translate any desired inspection point on the ideal surface to its corresponding value on the actual surface.

  13. Development of an optical inspection platform for surface defect detection in touch panel glass

    NASA Astrophysics Data System (ADS)

    Chang, Ming; Chen, Bo-Cheng; Gabayno, Jacque Lynn; Chen, Ming-Fu

    2016-04-01

    An optical inspection platform combining parallel image processing with high resolution opto-mechanical module was developed for defect inspection of touch panel glass. Dark field images were acquired using a 12288-pixel line CCD camera with 3.5 µm per pixel resolution and 12 kHz line rate. Key features of the glass surface were analyzed by parallel image processing on combined CPU and GPU platforms. Defect inspection of touch panel glass, which provided 386 megapixel image data per sample, was completed in roughly 5 seconds. High detection rate of surface scratches on the touch panel glass was realized with minimum defects size of about 10 µm after inspection. The implementation of a custom illumination source significantly improved the scattering efficiency on the surface, therefore enhancing the contrast in the acquired images and overall performance of the inspection system.

  14. Plane development of lateral surfaces for inspection systems

    NASA Astrophysics Data System (ADS)

    Francini, F.; Fontani, D.; Jafrancesco, D.; Mercatelli, L.; Sansoni, P.

    2006-08-01

    The problem of developing the lateral surfaces of a 3D object can arise in item inspection using automated imaging systems. In an industrial environment, these control systems typically work at high rate and they have to assure a reliable inspection of the single item. For compactness requirements it is not convenient to utilise three or four CCD cameras to control all the lateral surfaces of an object. Moreover it is impossible to mount optical components near the object if it is placed on a conveyor belt. The paper presents a system that integrates on a single CCD picture the images of both the frontal surface and the lateral surface of an object. It consists of a freeform lens mounted in front of a CCD camera with a commercial lens. The aim is to have a good magnification of the lateral surface, maintaining a low aberration level for exploiting the pictures in an image processing software. The freeform lens, made in plastics, redirects the light coming from the object to the camera lens. The final result is to obtain on the CCD: - the frontal and lateral surface images, with a selected magnification (even with two different values for the two images); - a gap between these two images, so an automatic method to analyse the images can be easily applied. A simple method to design the freeform lens is illustrated. The procedure also allows to obtain the imaging system modifying a current inspection system reducing the cost.

  15. Scanning moiré and spatial-offset phase-stepping for surface inspection of structures

    NASA Astrophysics Data System (ADS)

    Yoneyama, S.; Morimoto, Y.; Fujigaki, M.; Ikeda, Y.

    2005-06-01

    In order to develop a high-speed and accurate surface inspection system of structures such as tunnels, a new surface profile measurement method using linear array sensors is studied. The sinusoidal grating is projected on a structure surface. Then, the deformed grating is scanned by linear array sensors that move together with the grating projector. The phase of the grating is analyzed by a spatial offset phase-stepping method to perform accurate measurement. The surface profile measurements of the wall with bricks and the concrete surface of a structure are demonstrated using the proposed method. The change of geometry or fabric of structures and the defects on structure surfaces can be detected by the proposed method. It is expected that the surface profile inspection system of tunnels measuring from a running train can be constructed based on the proposed method.

  16. Evaluation Model for Pavement Surface Distress on 3d Point Clouds from Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Yamamoto, K.; Shimamura, H.

    2012-07-01

    This paper proposes a methodology to evaluate the pavement surface distress for maintenance planning of road pavement using 3D point clouds from Mobile Mapping System (MMS). The issue on maintenance planning of road pavement requires scheduled rehabilitation activities for damaged pavement sections to keep high level of services. The importance of this performance-based infrastructure asset management on actual inspection data is globally recognized. Inspection methodology of road pavement surface, a semi-automatic measurement system utilizing inspection vehicles for measuring surface deterioration indexes, such as cracking, rutting and IRI, have already been introduced and capable of continuously archiving the pavement performance data. However, any scheduled inspection using automatic measurement vehicle needs much cost according to the instruments' specification or inspection interval. Therefore, implementation of road maintenance work, especially for the local government, is difficult considering costeffectiveness. Based on this background, in this research, the methodologies for a simplified evaluation for pavement surface and assessment of damaged pavement section are proposed using 3D point clouds data to build urban 3D modelling. The simplified evaluation results of road surface were able to provide useful information for road administrator to find out the pavement section for a detailed examination and for an immediate repair work. In particular, the regularity of enumeration of 3D point clouds was evaluated using Chow-test and F-test model by extracting the section where the structural change of a coordinate value was remarkably achieved. Finally, the validity of the current methodology was investigated by conducting a case study dealing with the actual inspection data of the local roads.

  17. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  18. Small business initiative -- Surface inspection machine infrared (SIMIR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G.L.; Beecroft, M.

    This Cooperative Research and Development Agreement was a one year effort to make the surface inspection machine based on diffuse reflectance infrared spectroscopy (Surface Inspection Machine-Infrared, SIMIR), being developed by Surface Optics Corporation, perform to its highest potential as a practical, portable surface inspection machine. A secondary purpose was to evaluate applications that would serve both the private and the public sector. The design function of the SIMIR is to inspect sandblasted metal surfaces for cleanliness (stains). The system is also capable of evaluating graphite-resin systems for cure and heat damage, and for measuring the effects of moisture exposure onmore » lithium hydride, corrosion on uranium metal, and the constituents of and contamination on wood, paper, and fabrics. Surface Optics Corporation supplied LMES-Y12 with a prototype SOC-400 that was evaluated by LMES-Y12 and rebuilt by Surface Optics to achieve the desired performance. LMES-Y12 subsequently evaluated the instrument against numerous applications including determining part cleanliness at the Corpus Christi Army Depot, demonstrating the ability to detect plasticizers and other organic contaminants on metals to Pantex and LANL personnel, analyzed sandblasted metal contamination standards supplied by NASA-MSFC, and demonstrated to Lockheed Martin Tactical Aircraft, marietta, GA, for analyzing the paint applied to the F-22 Fighter. The instrument also demonstrated the analysis of yarn, fabric, and finish on the textiles.« less

  19. Inspection of defects of composite materials in inner cylindrical surfaces using endoscopic shearography

    NASA Astrophysics Data System (ADS)

    Macedo, Fabiano Jorge; Benedet, Mauro Eduardo; Fantin, Analucia Vieira; Willemann, Daniel Pedro; da Silva, Fábio Aparecido Alves; Albertazzi, Armando

    2018-05-01

    This work presents the development of a special shearography system with radial sensitivity and explores its applicability for detecting adhesion flaws on internal surfaces of flanged joints of composite material pipes. The inspection is performed from the inner surface of the tube where the flange is adhered. The system uses two conical mirrors to achieve radial sensitivity. A primary 45° conical mirror is responsible for promoting the inspection of the internal tubular surface on its 360° A special Michelson interferometer is formed replacing one of the plane mirrors by a conical mirror. The image reflected by this conical mirror is shifted away from the image center in a radial way and a radial shear is produced on the images. The concept was developed and a prototype built and tested. First, two tubular steel specimens internally coated with composite material and having known artificial defects were analyzed to test the ability of the system to detect the flaws. After the principle validation, two flanged joints were then analyzed: (a) a reference one, without any artificial defects and (b) a test one with known artificial defects, simulating adhesion failures with different dimensions and locations. In all cases, thermal loading was applied through a hot air blower on the outer surface of the joint. The system presented very good results on all inspected specimens, being able to detect adhesion flaws present in the flanged joints. The experimental results obtained in this work are promising and open a new front for inspections of inner surfaces of pipes with shearography.

  20. Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection

    PubMed Central

    Zhong, Mingming; Xie, Fengqin; Cao, Maoyong

    2017-01-01

    Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball’s outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified. PMID:29206154

  1. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.

    1991-01-01

    An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

  2. Surface contamination analysis technology team overview

    NASA Technical Reports Server (NTRS)

    Burns, H. Dewitt

    1995-01-01

    A team was established which consisted of representatives from NASA (Marshall Space Flight Center and Langley Research Center), Thiokol Corporation, the University of Alabama in Huntsville, AC Engineering, SAIC, Martin Marietta, and Aerojet. The team's purpose was to bring together the appropriate personnel to determine what surface inspection techniques were applicable to multiprogram bonding surface cleanliness inspection. In order to identify appropriate techniques and their sensitivity to various contaminant families, calibration standards were developed. Producing standards included development of consistent low level contamination application techniques. Oxidation was also considered for effect on inspection equipment response. Ellipsometry was used for oxidation characterization. Verification testing was then accomplished to show that selected inspection techniques could detect subject contaminants at levels found to be detrimental to critical bond systems of interest. Once feasibility of identified techniques was shown, selected techniques and instrumentation could then be incorporated into a multipurpose inspection head and integrated with a robot for critical surface inspection. Inspection techniques currently being evaluated include optically stimulated electron emission (OSEE); near infrared (NIR) spectroscopy utilizing fiber optics; Fourier transform infrared (FTIR) spectroscopy; and ultraviolet (UV) fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992 assuming appropriate funding levels are maintained. This paper gives an overview of work accomplished by the team and future plans.

  3. Electrostatic Evaluation of the SRB Velostat(Trademark) Pads

    NASA Technical Reports Server (NTRS)

    Buhler, Charles R.; Calle, Carlos I.

    2007-01-01

    During RSRM Grain inspection, pads constructed of Velostat are grounded and installed in the RSRM bore enabling inspectors to move throughout the bore during the inspection. Velostat pads are installed by grounding the first pad installed and subsequent pads are installed overlapping the previously installed pad maintaining a conductive path to facility ground. Pads are removed upon completion of the inspection in a reverse fashion. As the pads are removed scanning of propellant surfaces is performed per OMRS. During PPICI Audit of B5308.006 (Forward Segment Grain Inspection) in October 07 one audit finding noted that electrostatic scanning of propellant surfaces was being performed during removal of conductive pads following grain inspection. ATK does not perform electrostatic scanning of propellant surfaces during pad removal following final inspection at the plant. The integrated team consisting of NASA SE, USA SE, USA QE, ATK LSS, ATK Systems Safety and ATK DE concurred that electrostatic scanning of propellant surfaces was unnecessary as the conductive pads are grounded. Additional time spent in bore performing scanning presents itself as additional risk. Technicians reported that they have never seen any voltage readings while scanning propellant surfaces during pad removal. USA Systems engineering has written KB 17530 in response to the finding which will delete the requirement (item 2 B47GEN.ll0) to scan propellant surfaces during pad removal. As a result of an E3 panel discussion on December 13, 2007, it was decided that verification of the electrical grounding of the Velostat pads be verified.

  4. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  5. Whole surface image reconstruction for machine vision inspection of fruit

    NASA Astrophysics Data System (ADS)

    Reese, D. Y.; Lefcourt, A. M.; Kim, M. S.; Lo, Y. M.

    2007-09-01

    Automated imaging systems offer the potential to inspect the quality and safety of fruits and vegetables consumed by the public. Current automated inspection systems allow fruit such as apples to be sorted for quality issues including color and size by looking at a portion of the surface of each fruit. However, to inspect for defects and contamination, the whole surface of each fruit must be imaged. The goal of this project was to develop an effective and economical method for whole surface imaging of apples using mirrors and a single camera. Challenges include mapping the concave stem and calyx regions. To allow the entire surface of an apple to be imaged, apples were suspended or rolled above the mirrors using two parallel music wires. A camera above the apples captured 90 images per sec (640 by 480 pixels). Single or multiple flat or concave mirrors were mounted around the apple in various configurations to maximize surface imaging. Data suggest that the use of two flat mirrors provides inadequate coverage of a fruit but using two parabolic concave mirrors allows the entire surface to be mapped. Parabolic concave mirrors magnify images, which results in greater pixel resolution and reduced distortion. This result suggests that a single camera with two parabolic concave mirrors can be a cost-effective method for whole surface imaging.

  6. Apparatus for inspecting piping

    DOEpatents

    Zollingger, W. Thor; Appel, D. Keith; Park, Larry R.

    1995-01-01

    An inspection rabbit for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON.RTM.). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system.

  7. Surface Inspection Machine Infrared (SIMIR). Final CRADA report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G.L.; Neu, J.T.; Beecroft, M.

    This Cooperative Research and Development Agreement was a one year effort to make the surface inspection machine based on diffuse reflectance infrared spectroscopy (Surface Inspection Machine-Infrared, SIMIR), being developed by Surface Optics Corporation, perform to its highest potential as a practical, portable surface inspection machine. The design function of the SIMIR is to inspect metal surfaces for cleanliness (stains). The system is also capable of evaluating graphite-resin systems for cure and heat damage, and for measuring the effects of moisture exposure on lithium hydride, corrosion on uranium metal, and the constituents of and contamination on wood, paper, and fabrics. Overmore » the period of the CRADA, extensive experience with the use of the SIMIR for surface cleanliness measurements have been achieved through collaborations with NASA and the Army. The SIMIR was made available to the AMTEX CRADA for Finish on Yarn where it made a very significant contribution. The SIMIR was the foundation of a Forest Products CRADA that was developed over the time interval of this CRADA. Surface Optics Corporation and the SIMIR have been introduced to the chemical spectroscopy on-line analysis market and have made staffing additions and arrangements for international marketing of the SIMIR as an on-line surface inspection device. LMES has been introduced to a wide range of aerospace applications, the research and fabrication skills of Surface Optics Corporation, has gained extensive experience in the areas of surface cleanliness from collaborations with NASA and the Army, and an extensive introduction to the textile and forest products industries. The SIMIR, marketed as the SOC-400, has filled an important new technology need in the DOE-DP Enhanced Surveillance Program with instruments delivered to or on order by LMES, LANL, LLNL, and Pantex, where extensive collaborations are underway to implement and improve this technology.« less

  8. 40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...

  9. 40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...

  10. 40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...

  11. 40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...

  12. Surface cleanliness of fluid systems, specification for

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This specification establishes surface cleanliness levels, test methods, cleaning and packaging requirements, and protection and inspection procedures for determining surface cleanliness. These surfaces pertain to aerospace parts, components, assemblies, subsystems, and systems in contact with any fluid medium.

  13. Automatic optical inspection system design for golf ball

    NASA Astrophysics Data System (ADS)

    Wu, Hsien-Huang; Su, Jyun-Wei; Chen, Chih-Lin

    2016-09-01

    ith the growing popularity of golf sport all over the world, the quantities of relevant products are increasing year by year. To create innovation and improvement in quality while reducing production cost, automation of manufacturing become a necessary and important issue. This paper reflect the trend of this production automa- tion. It uses the AOI (Automated Optical Inspection) technology to develop a system which can automatically detect defects on the golf ball. The current manual quality-inspection is not only error-prone but also very man- power demanding. Taking into consideration the competition of this industry in the near future, the development of related AOI equipment must be conducted as soon as possible. Due to the strong reflective property of the ball surface, as well as its surface dimples and subtle flaws, it is very difficult to take good quality image for automatic inspection. Based on the surface properties and shape of the ball, lighting has been properly design for image-taking environment and structure. Area-scan cameras have been used to acquire images with good contrast between defects and background to assure the achievement of the goal of automatic defect detection on the golf ball. The result obtained is that more than 973 of the NG balls have be detected, and system maintains less than 103 false alarm rate. The balls which are determined by the system to be NG will be inspected by human eye again. Therefore, the manpower spent in the inspection has been reduced by 903.

  14. 3D surface coordinate inspection of formed sheet material parts using optical measurement systems and virtual distortion compensation

    NASA Astrophysics Data System (ADS)

    Weckenmann, Albert A.; Gall, P.; Gabbia, A.

    2005-02-01

    Modern forming technology allows the production of highly sophisticated free form sheet material components, affording great flexibility to the design and manufacturing processes across a wide range of industries. This increased design and manufacturing potential places an ever growing demand on the accompanying inspection metrology. As a consequence of their surface shape, these parts underlie a reversible geometrical deformation caused by variations of the material and the manufacturing process, as well as by gravity. This distortion is removed during the assembly process, usually performed in automated robotic processes. For this reason, the part's tolerated parameters have to be inspected in a defined state, simulating the assembly process' boundary conditions. Thus, the inspection process chain consists of six steps: picking the workpiece up, manual fixation of the workpiece, tactile measurement of the surface's coordinates using a defined measurement strategy, manual removal of the fixation and removal of the workpiece from the inspection area. These steps are both laborious and time consuming (for example, the inspection of a car door can take up to a working day to complete). Using optical measuring systems and virtual distortion compensation, this process chain can be dramatically shortened. Optical measuring systems provide as a measurement result a point cloud representing a sample of all nearest surfaces in the measuring range containing the measurand. From this data, a surface model of the measurand can be determined, independent of its position in the measuring range. For thin sheet material parts an approximating finite element model can be deduced from such a surface model. By means of pattern recognition, assembly relevant features of the measurand can be identified and located on this model. Together with the boundary conditions given by the assembly process, the shape of the surface in its assembled state can be calculated using the finite elements method. In application these methods culminate in a shortened inspection process chain (which can now also be automated): picking the workpiece up, placing it in the measuring range, optical measurement, virtual distortion compensation and removal of the workpiece from the inspection area. This work discusses the methodology of our approach in detail and also provides and analyses experimental results. The underlying research was greatfully funded by the German Research Foundation (DFG).

  15. Pipeline inspection using an autonomous underwater vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egeskov, P.; Bech, M.; Bowley, R.

    1995-12-31

    Pipeline inspection can be carried out by means of small Autonomous Underwater Vehicles (AUVs), operating either with a control link to a surface vessel, or totally independently. The AUV offers an attractive alternative to conventional inspection methods where Remotely Operated Vehicles (ROVs) or paravanes are used. A flatfish type AUV ``MARTIN`` (Marine Tool for Inspection) has been developed for this purpose. The paper describes the proposed types of inspection jobs to be carried out by ``MARTIN``. The design and construction of the vessel, its hydrodynamic properties, its propulsion and control systems are discussed. The pipeline tracking and survey systems, asmore » well as the launch and recovery systems are described.« less

  16. Apparatus for inspecting piping

    DOEpatents

    Zollingger, W.T.; Appel, D.K.; Park, L.R.

    1995-03-21

    An inspection rabbit is described for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON{trademark}). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system. 6 figures.

  17. Freeform surface measurement and characterisation using a toolmakers microscope

    NASA Astrophysics Data System (ADS)

    Seung-yin Wong, Francis; Chauh, Kong-Bieng; Venuvinod, Patri K.

    2014-03-01

    Current freeform surface (FFS) characterization systems mainly cover aspects related to computer-aided design/manufacture (CAD/CAM). This paper describes a new approach that extends into computer-aided inspection (CAI).The following novel features are addressed: blacksquare Feature recognition and extraction from surface data blacksquare Characterisation of properties of the surface's M and N vectors at individual vertex blacksquare Development of a measuring plan using a toolmakers microscope for the inspection of the FFS blacksquare Inspection of the actual FFS produced by CNC milling blacksquare Verification of the measurement results and comparison with the CAD design data Tests have shown that the deviations between the CAI and CAD data were within the estimated uncertainty limits.

  18. Damage Detection and Verification System (DDVS) for In-Situ Health Monitoring

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Lewis, Mark; Szafran, J.; Shelton, C.; Ludwig, L.; Gibson, T.; Lane, J.; Trautwein, T.

    2015-01-01

    Project presentation for Game Changing Program Smart Book Release. Detection and Verification System (DDVS) expands the Flat Surface Damage Detection System (FSDDS) sensory panels damage detection capabilities and includes an autonomous inspection capability utilizing cameras and dynamic computer vision algorithms to verify system health. Objectives of this formulation task are to establish the concept of operations, formulate the system requirements for a potential ISS flight experiment, and develop a preliminary design of an autonomous inspection capability system that will be demonstrated as a proof-of-concept ground based damage detection and inspection system.

  19. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  20. Subsurface damage detection in non-ferrous systems using 3D synchronous magnetic inspection

    NASA Astrophysics Data System (ADS)

    Gray, David; Berry, David

    2018-04-01

    Prime Photonics is developing a non-destructive inspection (NDI) technology, 3-D synchronous magnetic imaging system (3-D SMIS), that uses synchronous detection of magnetic signatures resulting from ultrasonic excitation to measure both surface and subsurface flaws in conductive structures. 3-D SMIS is showing promise in a wide range of NDI/NDE uses including characterizing surface-breaking cracks in ferrous and non-ferrous materials, locating and characterizing subsurface cracks within nonferrous conductive materials (Ti 6-4 and carbon fiber composites), and characterization of subsurface residual stresses. The technology offers a non-contact, high resolution inspection technique that does not require austere environments, and can accommodate non-planar specimen geometries.

  1. Real-Time Curvature Defect Detection on Outer Surfaces Using Best-Fit Polynomial Interpolation

    PubMed Central

    Golkar, Ehsan; Prabuwono, Anton Satria; Patel, Ahmed

    2012-01-01

    This paper presents a novel, real-time defect detection system, based on a best-fit polynomial interpolation, that inspects the conditions of outer surfaces. The defect detection system is an enhanced feature extraction method that employs this technique to inspect the flatness, waviness, blob, and curvature faults of these surfaces. The proposed method has been performed, tested, and validated on numerous pipes and ceramic tiles. The results illustrate that the physical defects such as abnormal, popped-up blobs are recognized completely, and that flames, waviness, and curvature faults are detected simultaneously. PMID:23202186

  2. Development of high sensitivity and high speed large size blank inspection system LBIS

    NASA Astrophysics Data System (ADS)

    Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko

    2017-07-01

    The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.

  3. 3D model generation using an airborne swarm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R. A.; Punzo, G.; Macdonald, M.

    2015-03-31

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing throughmore » photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.« less

  4. 3D model generation using an airborne swarm

    NASA Astrophysics Data System (ADS)

    Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.

    2015-03-01

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  5. Optical surface contouring for non-destructive inspection of turbomachinery

    NASA Astrophysics Data System (ADS)

    Modarress, Dariush; Schaack, David F.

    1994-03-01

    Detection of stress cracks and other surface defects during maintenance and in-service inspection of propulsion system components, including turbine blades and combustion compartments, is presently performed visually. There is a need for a non-contact, miniaturized, and fully fieldable instrument that may be used as an automated inspection tool for inspection of aircraft engines. During this SBIR Phase 1 program, the feasibility of a ruggedized optical probe for automatic and nondestructive inspection of complex shaped objects will be established. Through a careful analysis of the measurement requirements, geometrical and optical constraints, and consideration of issues such as manufacturability, compactness, simplicity, and cost, one or more conceptual optical designs will be developed. The proposed concept will be further developed and a prototype will be fabricated during Phase 2.

  6. Optical surface contouring for non-destructive inspection of turbomachinery

    NASA Technical Reports Server (NTRS)

    Modarress, Dariush; Schaack, David F.

    1994-01-01

    Detection of stress cracks and other surface defects during maintenance and in-service inspection of propulsion system components, including turbine blades and combustion compartments, is presently performed visually. There is a need for a non-contact, miniaturized, and fully fieldable instrument that may be used as an automated inspection tool for inspection of aircraft engines. During this SBIR Phase 1 program, the feasibility of a ruggedized optical probe for automatic and nondestructive inspection of complex shaped objects will be established. Through a careful analysis of the measurement requirements, geometrical and optical constraints, and consideration of issues such as manufacturability, compactness, simplicity, and cost, one or more conceptual optical designs will be developed. The proposed concept will be further developed and a prototype will be fabricated during Phase 2.

  7. Scaled multisensor inspection of extended surfaces for industrial quality control

    NASA Astrophysics Data System (ADS)

    Kayser, Daniel; Bothe, Thorsten; Osten, Wolfgang

    2002-06-01

    Reliable real-time surface inspection of extended surfaces with high resolution is needed in several industrial applications. With respect to an efficient application to extended technical components such as aircraft or automotive parts, the inspection system has to perform a robust measurement with a ratio of less then 10-6 between depth resolution and lateral extension. This ratio is at least one order beyond the solutions that are offered by existing technologies. The concept of scaled topometry consists of arranging different optical measurement techniques with overlapping ranges of resolution systematically in order to receive characteristic surface information with the required accuracy. In such a surface inspection system, an active algorithm combines measurements on several scales of resolution and distinguishes between local fault indicating structures with different extensions and global geometric properties. The first part of this active algorithm finds indications of critical surface areas in the data of every measurement and separates them into different categories. The second part analyses the detected structures in the data with respect to their resolution and decides whether a further local measurement with a higher resolution has to be performed. The third part positions the sensors and starts the refined measurements. The fourth part finally integrates the measured local data set into the overall data mesh. We have constructed a laboratory setup capable of measuring surfaces with extensions up to 1500mm x 1000mm x 500mm (in x-, y- and z-direction respectively). Using this measurement system we will be able to separate the fault indicating structures on the surface from the global shape and to classify the detected structures according to their extensions and characteristic shapes simultaneously. The level of fault detection probability will be applicable by input parameter control.

  8. Design of noise barrier inspection system for high-speed railway

    NASA Astrophysics Data System (ADS)

    Liu, Bingqian; Shao, Shuangyun; Feng, Qibo; Ma, Le; Cholryong, Kim

    2016-10-01

    The damage of noise barriers will highly reduce the transportation safety of the high-speed railway. In this paper, an online inspection system of noise barrier based on laser vision for the safety of high-speed railway is proposed. The inspection system, mainly consisted of a fast camera and a line laser, installed in the first carriage of the high-speed CIT(Composited Inspection Train).A Laser line was projected on the surface of the noise barriers and the images of the light line were received by the camera while the train is running at high speed. The distance between the inspection system and the noise barrier can be obtained based on laser triangulation principle. The results of field tests show that the proposed system can meet the need of high speed and high accuracy to get the contour distortion of the noise barriers.

  9. Surface defects evaluation system based on electromagnetic model simulation and inverse-recognition calibration method

    NASA Astrophysics Data System (ADS)

    Yang, Yongying; Chai, Huiting; Li, Chen; Zhang, Yihui; Wu, Fan; Bai, Jian; Shen, Yibing

    2017-05-01

    Digitized evaluation of micro sparse defects on large fine optical surfaces is one of the challenges in the field of optical manufacturing and inspection. The surface defects evaluation system (SDES) for large fine optical surfaces is developed based on our previously reported work. In this paper, the electromagnetic simulation model based on Finite-Difference Time-Domain (FDTD) for vector diffraction theory is firstly established to study the law of microscopic scattering dark-field imaging. Given the aberration in actual optical systems, point spread function (PSF) approximated by a Gaussian function is introduced in the extrapolation from the near field to the far field and the scatter intensity distribution in the image plane is deduced. Analysis shows that both diffraction-broadening imaging and geometrical imaging should be considered in precise size evaluation of defects. Thus, a novel inverse-recognition calibration method is put forward to avoid confusion caused by diffraction-broadening effect. The evaluation method is applied to quantitative evaluation of defects information. The evaluation results of samples of many materials by SDES are compared with those by OLYMPUS microscope to verify the micron-scale resolution and precision. The established system has been applied to inspect defects on large fine optical surfaces and can achieve defects inspection of surfaces as large as 850 mm×500 mm with the resolution of 0.5 μm.

  10. Defect detection in slab surface: a novel dual Charge-coupled Device imaging-based fuzzy connectedness strategy.

    PubMed

    Zhao, Liming; Ouyang, Qi; Chen, Dengfu; Udupa, Jayaram K; Wang, Huiqian; Zeng, Yuebin

    2014-11-01

    To provide an accurate surface defects inspection system and make the automation of robust image segmentation method a reality in routine production line, a general approach is presented for continuous casting slab (CC-slab) surface defects extraction and delineation. The applicability of the system is not tied to CC-slab exclusively. We combined the line array CCD (Charge-coupled Device) traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging) strategies in designing the system. Its aim is to suppress the respective imaging system's limitations. In the system, the images acquired from the two CCD sensors are carefully aligned in space and in time by maximum mutual information-based full-fledged registration schema. Subsequently, the image information is fused from these two subsystems such as the unbroken 2D information in LS-imaging and 3D depressed information in AL-imaging. Finally, on the basis of the established dual scanning imaging system the region of interest (ROI) localization by seed specification was designed, and the delineation for ROI by iterative relative fuzzy connectedness (IRFC) algorithm was utilized to get a precise inspection result. Our method takes into account the complementary advantages in the two common machine vision (MV) systems and it performs competitively with the state-of-the-art as seen from the comparison of experimental results. For the first time, a joint imaging scanning strategy is proposed for CC-slab surface defect inspection that allows a feasible way of powerful ROI delineation strategies to be applied to the MV inspection field. Multi-ROI delineation by using IRFC in this research field may further improve the results.

  11. Online aptitude automatic surface quality inspection system for hot rolled strips steel

    NASA Astrophysics Data System (ADS)

    Lin, Jin; Xie, Zhi-jiang; Wang, Xue; Sun, Nan-Nan

    2005-12-01

    Defects on the surface of hot rolled steel strips are main factors to evaluate quality of steel strips, an improved image recognition algorithm are used to extract the feature of Defects on the surface of steel strips. Base on the Machine vision and Artificial Neural Networks, establish a defect recognition method to select defect on the surface of steel strips. Base on these research. A surface inspection system and advanced algorithms for image processing to hot rolled strips is developed. Preparing two different fashion to lighting, adopting line blast vidicon of CCD on the surface steel strips on-line. Opening up capacity-diagnose-system with level the surface of steel strips on line, toward the above and undersurface of steel strips with ferric oxide, injure, stamp etc of defects on the surface to analyze and estimate. Miscarriage of justice and alternate of justice rate not preponderate over 5%.Geting hold of applications on some big enterprises of steel at home. Experiment proved that this measure is feasible and effective.

  12. Automated Infrared Inspection Of Jet Engine Turbine Blades

    NASA Astrophysics Data System (ADS)

    Bantel, T.; Bowman, D.; Halase, J.; Kenue, S.; Krisher, R.; Sippel, T.

    1986-03-01

    The detection of blocked surface cooling holes in hollow jet engine turbine blades and vanes during either manufacture or overhaul can be crucial to the integrity and longevity of the parts when in service. A fully automated infrared inspection system is being established under a tri-service's Manufacturing Technology (ManTech) contract administered by the Air Force to inspect these surface cooling holes for blockages. The method consists of viewing the surface holes of the blade with a scanning infrared radiometer when heated air is flushed through the blade. As the airfoil heats up, the resultant infrared images are written directly into computer memory where image analysis is performed. The computer then makes a determination of whether or not the holes are open from the inner plenum to the exterior surface and ultimately makes an accept/reject decision based on previously programmed criteria. A semiautomatic version has already been implemented and is more cost effective and more reliable than the previous manual inspection methods.

  13. Terahertz NDE for Metallic Surface Roughness Evaluation

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.

    2006-01-01

    Metallic surface roughness in a nominally smooth surface is a potential indication of material degradation or damage. When the surface is coated or covered with an opaque dielectric material, such as paint or insulation, then inspecting for surface changes becomes almost impossible. Terahertz NDE is a method capable of penetrating the coating and inspecting the metallic surface. The terahertz frequency regime is between 100 GHz and 10 THz and has a free space wavelength of 300 micrometers at 1 THz. Pulsed terahertz radiation, can be generated and detected using optical excitation of biased semiconductors with femtosecond laser pulses. The resulting time domain signal is 320 picoseconds in duration. In this application, samples are inspected with a commercial terahertz NDE system that scans the sample and generates a set of time-domain signals that are a function of the backscatter from the metallic surface. Post processing is then performed in the time and frequency domains to generate C-scan type images that show scattering effects due to surface non-uniformity.

  14. Device Rotates Bearing Balls For Inspection

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1988-01-01

    Entire surface of ball inspected automatically and quickly. Device holds and rotates bearing ball for inspection by optical or mechanical surface-quality probe, eddy-current probe for detection of surface or subsurface defects, or circumference-measuring tool. Ensures entire surface of ball moves past inspection head quickly. New device saves time and increases reliability of inspections of spherical surfaces. Simple to operate and provides quick and easy access for loading and unloading of balls during inspection.

  15. Benefits And Humanisation Of The Working Environment By Using Laser Inspection Systems In The Industry

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Pietzsch, Karl; Feige, Christian

    1989-02-01

    At a time of rapid development, introduction of new technologies, and increasing world-wide competition, the quality specifications for products and materials becoming even more demanding. This also applies with regard to the avoidance of defects in the surfaces of materials. Consequently there is a need for systems which allow 100% in-line testing of materials and surfaces during the production of, e.g. textiles, data storage media, papers, films and metals. Thanks to its optical and electronical precision, its unlimited applications - even under the most severe conditions-and its absolutely constant acuity, compared with visual inspection, the Sick-Scan-System is an excellent means for improving quality and profits in industrial manufacture, reducing rejects production and thus providing even more customer satisfaction. Here we describe briefly our laser scanner technology. It will set new standards in the area of automatic inspection, and the term laser tested will stablish itself as a mark of quality. In the last few years laser scanning inspection systems have been further developed in collaboration with a large number of materials manufacturers. These systems have been adopted in modern production lines and demonstrate their economy.

  16. Measuring Weld Profiles By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Noncontacting, nondestructive computer tomography system determines internal and external contours of welded objects. System makes it unnecessary to take metallurgical sections (destructive technique) or to take silicone impressions of hidden surfaces (technique that contaminates) to inspect them. Measurements of contours via tomography performed 10 times as fast as measurements via impression molds, and tomography does not contaminate inspected parts.

  17. Study of the ink-paper interaction by image analysis: surface and bulk inspection

    NASA Astrophysics Data System (ADS)

    Fiadeiro, Paulo T.; de O. Mendes, António; M. Ramos, Ana M.; L. de Sousa, Sónia C.

    2013-11-01

    In this work, two optical systems previously designed and implemented by our research team, were used to enable the surface and bulk inspection of the ink-paper interaction by image analysis. Basically, the first system works by ejecting micro-liter ink drops onto the papers surface while monitoring the event under three different views over time. The second system is used for sectioning the paper samples through their thickness and to simultaneously acquire images of the ink penetration of each section cut. In the performed experiments, three black inks of different brands and a common copy paper were chosen, used, and tested with the two developed optical systems. Both qualitative and quantitative analyses were carried out at the surface level and in the bulk of the paper. In terms of conclusions, it was shown that the three tested ink-paper combinations revealed very distinct characteristics.

  18. Lamb wave tomographic imaging system for aircraft structural health assessment

    NASA Astrophysics Data System (ADS)

    Schwarz, Willi G.; Read, Michael E.; Kremer, Matthew J.; Hinders, Mark K.; Smith, Barry T.

    1999-01-01

    A tomographic imaging system using ultrasonic Lamb waves for the nondestructive inspection of aircraft components such as wings and fuselage is being developed. The computer-based system provides large-area inspection capability by electronically scanning an array of transducers that can be easily attached to flat and curved surface without moving parts. Images of the inspected area are produced in near real time employing a tomographic reconstruction method adapted from seismological applications. Changes in material properties caused by structural flaws such as disbonds, corrosion, and fatigue cracks can be effectively detected and characterized utilizing this fast NDE technique.

  19. On-line surface inspection using cylindrical lens-based spectral domain low-coherence interferometry.

    PubMed

    Tang, Dawei; Gao, Feng; Jiang, X

    2014-08-20

    We present a spectral domain low-coherence interferometry (SD-LCI) method that is effective for applications in on-line surface inspection because it can obtain a surface profile in a single shot. It has an advantage over existing spectral interferometry techniques by using cylindrical lenses as the objective lenses in a Michelson interferometric configuration to enable the measurement of long profiles. Combined with a modern high-speed CCD camera, general-purpose graphics processing unit, and multicore processors computing technology, fast measurement can be achieved. By translating the tested sample during the measurement procedure, real-time surface inspection was implemented, which is proved by the large-scale 3D surface measurement in this paper. ZEMAX software is used to simulate the SD-LCI system and analyze the alignment errors. Two step height surfaces were measured, and the captured interferograms were analyzed using a fast Fourier transform algorithm. Both 2D profile results and 3D surface maps closely align with the calibrated specifications given by the manufacturer.

  20. Development of an ultrasonic inspection robot using an electromagnetic acoustic transducer for a Lamb wave and an SH-plate wave.

    PubMed

    Murayama, Riichi; Makiyama, Shunnichi; Kodama, Mitutoshi; Taniguchi, Yasutoshi

    2004-04-01

    For inspection of a storage tank and pipeline in service, the application of an automatic inspection system (nondestructive inspection robot) is desirable, because manual inspection is difficult to perfectly and exactly perform due to the enormous amount of inspection needed. However, an ultrasonic nondestructive inspection robot with a piezoelectric oscillator needs to touch only the material surface to be directly inspected using a coupling medium. That is, the material surface and the sensor must always be held by constant pressure in the vertical direction on the material side. Actually, it is difficult to overcome these problems; thus an ultrasonic inspection robot could not be widely applied. We then tried to develop an ultrasonic inspection robot with an electromagnetic acoustic transducer (EMAT) which did not require a coupling medium to inspect the circumferential pipe parts. We developed a special EMAT that could transmit and receive alternately a Lamb wave with high sensitivity and a SH-plate wave without influence by the welded part. The method by which the inspection robot turned around the direction of the steel pipe surroundings was executed by observing the tape pasted in the direction of the steel pipe surroundings with an installed CCD camera. In this report, the basic mechanism of this inspection robot and an examination of results are described.

  1. Optical stent inspection of surface texture and coating thickness

    NASA Astrophysics Data System (ADS)

    Bermudez, Carlos; Laguarta, Ferran; Cadevall, Cristina; Matilla, Aitor; Ibañez, Sergi; Artigas, Roger

    2017-02-01

    Stent quality control is a critical process. Coronary stents have to be inspected 100% so no defective stent is implanted into a human body. We have developed a high numerical aperture optical stent inspection system able to acquire both 2D and 3D images. Combining a rotational stage, an area camera with line-scan capability and a triple illumination arrangement, unrolled sections of the outer, inner, and sidewalls surfaces are obtained with high resolution. During stent inspection, surface roughness and coating thickness uniformity is of high interest. Due to the non-planar shape of the surface of the stents, the thickness values of the coating need to be corrected with the 3D surface local slopes. A theoretical model and a simulation are proposed, and a measurement with white light interferometry is shown. Confocal and spectroscopic reflectometry showed to be limited in this application due to stent surface roughness. Due to the high numerical aperture of the optical system, only certain parts of the stent are in focus, which is a problem for defect detection, specifically on the sidewalls. In order to obtain fully focused 2D images, an extended depth of field algorithm has been implemented. A comparison between pixel variance and Laplacian filtering is shown. To recover the stack image, two different methods are proposed: maximum projection and weighted intensity. Finally, we also discuss the implementation of the processing algorithms in both the CPU and GPU, targeting real-time 2-Million pixel image acquisition at 50 frames per second.

  2. Department of Defense counterdrug technology development of non-intrusive inspection systems

    NASA Astrophysics Data System (ADS)

    Pennella, John J.

    1997-02-01

    The Naval Surface Warfare Center Dahlgren Division serves as the executive agent for the DoD's Contraband Detection and Cargo Container Inspection Technology Development Program. The goal of the DoD non-intrusive inspection (NII) program is to develop prototype equipment that can be used to inspect containers and vehicles, quickly and in large numbers without unnecessary delays in the movement of legitimate cargo. This paper summaries the past accomplishments of the program, current status, and future plans.

  3. Laser Scanning In Inspection

    NASA Astrophysics Data System (ADS)

    West, Patricia; Baker, Lionel R.

    1989-03-01

    This paper is a review of the applications of laser scanning in inspection. The reasons for the choice of a laser in flying spot scanning and the optical properties of a laser beam which are of value in a scanning instrument will be given. The many methods of scanning laser beams in both one and two dimensions will be described. The use of one dimensional laser scanners for automatic surface inspection for transmitting and reflective products will be covered in detail, with particular emphasis on light collection techniques. On-line inspection applications which will be mentioned include: photographic film web, metal strip products, paper web, glass sheet, car body paint surfaces and internal cylinder bores. Two dimensional laser scanning is employed in applications where increased resolution, increased depth of focus, and better contrast are required compared with conventional vidicon TV or solid state array cameras. Such examples as special microscope laser scanning systems and a TV compatible system for use in restricted areas of a nuclear reactor will be described. The technical and economic benefits and limitations of laser scanning video systems will be compared with conventional TV and CCD array devices.

  4. A Computer-Controlled Laser Bore Scanner

    NASA Astrophysics Data System (ADS)

    Cheng, Charles C.

    1980-08-01

    This paper describes the design and engineering of a laser scanning system for production applications. The laser scanning techniques, the timing control, the logic design of the pattern recognition subsystem, the digital computer servo control for the loading and un-loading of parts, and the laser probe rotation and its synchronization will be discussed. The laser inspection machine is designed to automatically inspect the surface of precision-bored holes, such as those in automobile master cylinders, without contacting the machined surface. Although the controls are relatively sophisticated, operation of the laser inspection machine is simple. A laser light beam from a commercially available gas laser, directed through a probe, scans the entire surface of the bore. Reflected light, picked up through optics by photoelectric sensors, generates signals that are fed to a mini-computer for processing. A pattern recognition techniques program in the computer determines acceptance or rejection of the part being inspected. The system's acceptance specifications are adjustable and are set to the user's established tolerances. However, the computer-controlled laser system is capable of defining from 10 to 75 rms surface finish, and voids or flaws from 0.0005 to 0.020 inch. Following the successful demonstration with an engineering prototype, the described laser machine has proved its capability to consistently ensure high-quality master brake cylinders. It thus provides a safety improvement for the automotive braking system. Flawless, smooth cylinder bores eliminate premature wearing of the rubber seals, resulting in a longer-lasting master brake cylinder and a safer and more reliable automobile. The results obtained from use of this system, which has been in operation about a year for replacement of a tedious, manual operation on one of the high-volume lines at the Bendix Hydraulics Division, have been very satisfactory.

  5. Automated Telerobotic Inspection Of Surfaces

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Prasad, K. Venkatesh

    1996-01-01

    Method of automated telerobotic inspection of surfaces undergoing development. Apparatus implementing method includes video camera that scans over surfaces to be inspected, in manner of mine detector. Images of surfaces compared with reference images to detect flaws. Developed for inspecting external structures of Space Station Freedom for damage from micrometeorites and debris from prior artificial satellites. On Earth, applied to inspection for damage, missing parts, contamination, and/or corrosion on interior surfaces of pipes or exterior surfaces of bridges, towers, aircraft, and ships.

  6. Flaw detection and evaluation

    DOEpatents

    Wilks, Robert S.; Sturges, Jr., Robert H.

    1983-01-01

    The invention provides a method of and apparatus for optically inspecting nuclear fuel pellets for surface flaws. The inspection system includes a prism and lens arrangement for scanning the surface of each pellet as the same is rotated. The resulting scan produces data indicative of the extent and shape of each flaw which is employed to generate a flaw quality index for each detected flaw. The flaw quality indexes from all flaws are summed and compared with an acceptable surface quality index. The result of the comparison is utilized to control the acceptance or rejection of the pellet.

  7. Surface inspection system for industrial components based on shape from shading minimization approach

    NASA Astrophysics Data System (ADS)

    Kotan, Muhammed; Öz, Cemil

    2017-12-01

    An inspection system using estimated three-dimensional (3-D) surface characteristics information to detect and classify the faults to increase the quality control on the frequently used industrial components is proposed. Shape from shading (SFS) is one of the basic and classic 3-D shape recovery problems in computer vision. In our application, we developed a system using Frankot and Chellappa SFS method based on the minimization of the selected basis function. First, the specialized image acquisition system captured the images of the component. To eliminate noise, wavelet transform is applied to the taken images. Then, estimated gradients were used to obtain depth and surface profiles. Depth information was used to determine and classify the surface defects. Also, a comparison made with some linearization-based SFS algorithms was discussed. The developed system was applied to real products and the results indicated that using SFS approaches is useful and various types of defects can easily be detected in a short period of time.

  8. A novel visual pipework inspection system

    NASA Astrophysics Data System (ADS)

    Summan, Rahul; Jackson, William; Dobie, Gordon; MacLeod, Charles; Mineo, Carmelo; West, Graeme; Offin, Douglas; Bolton, Gary; Marshall, Stephen; Lille, Alexandre

    2018-04-01

    The interior visual inspection of pipelines in the nuclear industry is a safety critical activity conducted during outages to ensure the continued safe and reliable operation of plant. Typically, the video output by a manually deployed probe is viewed by an operator looking to identify and localize surface defects such as corrosion, erosion and pitting. However, it is very challenging to estimate the nature and extent of defects by viewing a large structure through a relatively small field of view. This work describes a new visual inspection system employing photogrammetry using a fisheye camera and a structured light system to map the internal geometry of pipelines by generating a photorealistic, geometrically accurate surface model. The error of the system output was evaluated through comparison to a ground truth laser scan (ATOS GOM Triple Scan) of a nuclear grade split pipe sample (stainless steel 304L, 80mm internal diameter) containing defects representative of the application - the error was found to be submillimeter across the sample.

  9. 3-ω damage threshold evaluation of final optics components using Beamlet Mule and off-line testing

    NASA Astrophysics Data System (ADS)

    Kozlowski, Mark R.; Maricle, Stephen M.; Mouser, Ron P.; Schwartz, Sheldon; Wegner, Paul J.; Weiland, Timothy L.

    1999-07-01

    A statistics-based model is being develop to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the mode, laser damage experiments were performed on the Beamlet laser system at LLNL. An early protoype NIF focus lens was exposed to twenty 351 nm pulses at an average fluence of 5 J/cm2, 3ns. Using a high resolution optic inspection inspection system a total of 353 damage sites was detected within the 1160 cm2 beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse to pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 micrometers /pulse were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both on the surface and at bulk inclusions. Growth rates as high as 79 micrometers /pulse were observed for damage initiating at per- existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately 10(Mu) m/pulse.

  10. Eddy Current System and Method for Crack Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)

    2012-01-01

    An eddy current system and method enables detection of sub-surface damage in a cylindrical object. The invention incorporates a dual frequency, orthogonally wound eddy current probe mounted on a stepper motor-controlled scanning system. The system is designed to inspect for outer surface damage from the interior of the cylindrical object.

  11. Phased Array Probe Optimization for the Inspection of Titanium Billets

    NASA Astrophysics Data System (ADS)

    Rasselkorde, E.; Cooper, I.; Wallace, P.; Lupien, V.

    2010-02-01

    The manufacturing process of titanium billets can produce multiple sub-surface defects that are particularly difficult to detect during the early stages of production. Failure to detect these defects can lead to subsequent in-service failure. A new and novel automated quality control system is being developed for the inspection of titanium billets destined for use in aerospace applications. The sensors will be deployed by an automated system to minimise the use of manual inspections, which should improve the quality and reliability of these critical inspections early on in the manufacturing process. This paper presents the first part of the work, which is the design and the simulation of the phased array ultrasonic inspection of the billets. A series of phased array transducers were designed to optimise the ultrasonic inspection of a ten inch diameter billet made from Titanium 6Al-4V. A comparison was performed between different probes including a 2D annular sectorial array.

  12. Development and applications of nondestructive evaluation at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.

    1990-01-01

    A brief description of facility design and equipment, facility usage, and typical investigations are presented for the following: Surface Inspection Facility; Advanced Computer Tomography Inspection Station (ACTIS); NDE Data Evaluation Facility; Thermographic Test Development Facility; Radiographic Test Facility; Realtime Radiographic Test Facility; Eddy Current Research Facility; Acoustic Emission Monitoring System; Advanced Ultrasonic Test Station (AUTS); Ultrasonic Test Facility; and Computer Controlled Scanning (CONSCAN) System.

  13. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    NASA Astrophysics Data System (ADS)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments and industrial environments are presented. The paper concludes by summarizing results achieved in industrial environments and gives a short outlook to future work.

  14. Algorithms and applications of aberration correction and American standard-based digital evaluation in surface defects evaluating system

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cao, Pin; Yang, Yongying; Li, Chen; Chai, Huiting; Zhang, Yihui; Xiong, Haoliang; Xu, Wenlin; Yan, Kai; Zhou, Lin; Liu, Dong; Bai, Jian; Shen, Yibing

    2016-11-01

    The inspection of surface defects is one of significant sections of optical surface quality evaluation. Based on microscopic scattering dark-field imaging, sub-aperture scanning and stitching, the Surface Defects Evaluating System (SDES) can acquire full-aperture image of defects on optical elements surface and then extract geometric size and position information of defects with image processing such as feature recognization. However, optical distortion existing in the SDES badly affects the inspection precision of surface defects. In this paper, a distortion correction algorithm based on standard lattice pattern is proposed. Feature extraction, polynomial fitting and bilinear interpolation techniques in combination with adjacent sub-aperture stitching are employed to correct the optical distortion of the SDES automatically in high accuracy. Subsequently, in order to digitally evaluate surface defects with American standard by using American military standards MIL-PRF-13830B to judge the surface defects information obtained from the SDES, an American standard-based digital evaluation algorithm is proposed, which mainly includes a judgment method of surface defects concentration. The judgment method establishes weight region for each defect and adopts the method of overlap of weight region to calculate defects concentration. This algorithm takes full advantage of convenience of matrix operations and has merits of low complexity and fast in running, which makes itself suitable very well for highefficiency inspection of surface defects. Finally, various experiments are conducted and the correctness of these algorithms are verified. At present, these algorithms have been used in SDES.

  15. In Situ Guided Wave Structural Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Zhao, George; Tittmann, Bernhard R.

    2011-01-01

    Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.

  16. Nondestructive inspection of aerospace composites by a fiber-coupled laser ultrasonics system

    NASA Astrophysics Data System (ADS)

    Vandenrijt, J.-F.; Languy, F.; Thizy, C.; Georges, M. P.

    2017-06-01

    Laser ultrasonics is a technique currently studied for nondestructive inspection of aerospace composite structures based on carbon fibers. It combines a pulsed laser impacting the surface generates an ultrasound inside the material, through the nondestructive thermoelastic effect. Second a detection interferometer probes the impacted point in order to measure the displacement of the surface resulting from the emitted ultrasound wave and the echo coming back from the different interfaces of the structure. Laser ultrasonics is of interest for inspecting complex shaped composites. We have studied the possibility of using frequency doubled YAG laser for the generation and which is fiber-coupled, together with a fibercoupled interferometric probe using a YAG laser in the NIR. Our final system is a lightweight probe attached to a robot arm and which is able to scan complex shapes. The performances of the system are compared for different wavelengths of generations. Also we have studied some experimental parameters of interest such as tolerance to angle and focus distance, and different geometries of generation beams. We show some examples of inspection of reference parts with known defects. In particular C-scans of curved composites structures are presented.

  17. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... Documents Access and Management System (ADAMS): You may access publicly available documents online in the... protection system piping, (d) revisions to the scope and inspection recommendations of the GALL Report AMP XI... NUCLEAR REGULATORY COMMISSION [NRC-2013-0068] Aging Management of Internal Surfaces, Fire Water...

  18. A New Tool for Quality Control

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Diffracto, Ltd. is now offering a new product inspection system that allows detection of minute flaws previously difficult or impossible to observe. Called D-Sight, it represents a revolutionary technique for inspection of flat or curved surfaces to find such imperfections as dings, dents and waviness. System amplifies defects, making them highly visible to simplify decision making as to corrective measures or to identify areas that need further study. CVA 3000 employs a camera, high intensity lamps and a special reflective screen to produce a D- Sight image of light reflected from a surface. Image is captured and stored in a computerized vision system then analyzed by a computer program. A live image of surface is projected onto a video display and compared with a stored master image to identify imperfections. Localized defects measuring less than 1/1000 of an inch are readily detected.

  19. Thermographic Imaging of Defects in Anisotropic Composites

    NASA Technical Reports Server (NTRS)

    Plotnikov, Y. A.; Winfree, W. P.

    2000-01-01

    Composite materials are of increasing interest to the aerospace industry as a result of their weight versus performance characteristics. One of the disadvantages of composites is the high cost of fabrication and post inspection with conventional ultrasonic scanning systems. The high cost of inspection is driven by the need for scanning systems which can follow large curve surfaces. Additionally, either large water tanks or water squirters are required to couple the ultrasonics into the part. Thermographic techniques offer significant advantages over conventional ultrasonics by not requiring physical coupling between the part and sensor. The thermographic system can easily inspect large curved surface without requiring a surface following scanner. However, implementation of Thermal Nondestructive Evaluations (TNDE) for flaw detection in composite materials and structures requires determining its limit. Advanced algorithms have been developed to enable locating and sizing defects in carbon fiber reinforced plastic (CFRP). Thermal Tomography is a very promising method for visualizing the size and location of defects in materials such as CFRP. However, further investigations are required to determine its capabilities for inspection of thick composites. In present work we have studied influence of the anisotropy on the reconstructed image of a defect generated by an inversion technique. The composite material is considered as homogeneous with macro properties: thermal conductivity K, specific heat c, and density rho. The simulation process involves two sequential steps: solving the three dimensional transient heat diffusion equation for a sample with a defect, then estimating the defect location and size from the surface spatial and temporal thermal distributions (inverse problem), calculated from the simulations.

  20. Advances in In-Situ Inspection of Automated Fiber Placement Systems

    NASA Technical Reports Server (NTRS)

    Juarez, Peter D.; Cramer, K. Elliott; Seebo, Jeffrey P.

    2016-01-01

    The advent of Automated Fiber Placement (AFP) systems have aided the rapid manufacturing of composite aerospace structures. One of the challenges that AFP systems present is the uniformity of the deposited prepreg tape layers, which are prone to laps, gaps, overlaps and twists. The current detection modus operandi involves halting fabrication and performing a time consuming visual inspection of each tape layer. Typical AFP systems use a quartz lamp to heat the base layer to make the surface tacky as it deposits another tape layer. The idea was proposed to use the preheated base layer as a through transmission heat source and to inspect the newly added tape layer using a thermographic camera. As a preliminary study of this concept a laboratory proof of concept device was designed and constructed to simulate the through transmission heat source. Using the proof of concept device, we inspected an AFP-built uncured composite specimen with artificial manufacturing defects. This paper will discuss the results of this preliminary study and the implications involved with deploying a full-scale AFP inspection system.

  1. Resonant frequency method for bearing ball inspection

    DOEpatents

    Khuri-Yakub, B. T.; Hsieh, Chung-Kao

    1993-01-01

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection.

  2. Resonant frequency method for bearing ball inspection

    DOEpatents

    Khuri-Yakub, B.T.; Chungkao Hsieh.

    1993-11-02

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection. 5 figures.

  3. System and method for online inspection of turbines using an optical tube with broadspectrum mirrors

    DOEpatents

    Baleine, Erwan

    2015-12-22

    An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 .mu.m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 .mu.m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 .mu.m wavelength).

  4. Automatic inspection system for nuclear fuel pellets or rods

    DOEpatents

    Miller, Jr., William H.; Sease, John D.; Hamel, William R.; Bradley, Ronnie A.

    1978-01-01

    An automatic inspection system is provided for determining surface defects on cylindrical objects such as nuclear fuel pellets or rods. The active element of the system is a compound ring having a plurality of pneumatic jet units directed into a central bore. These jet units are connected to provide multiple circuits, each circuit being provided with a pressure sensor. The outputs of the sensors are fed to a comparator circuit whereby a signal is generated when the difference of pressure between pneumatic circuits, caused by a defect, exceeds a pre-set amount. This signal may be used to divert the piece being inspected into a "reject" storage bin or the like.

  5. Ultrasonic probe system for the bore-side inspection of tubes and welds therein

    DOEpatents

    Cook, K. Von; Koerner, Dan W.; Cunningham, Jr., Robert A.; Murrin, Jr., Horace T.

    1977-07-26

    A probe system is provided for the bore-side inspection of tube-to-header welds and the like for small diameter tubes. The probe head of the system includes an ultrasonic transmitter-receiver transducer, a separate ultrasonic receiver, a reflector associated with the transducer to properly orient the ultrasonic signal with respect to a tube wall, a baffle to isolate the receiver from the transducer, and means for maintaining the probe head against the tube wall under investigation. Since the probe head must rotate to inspect along a helical path, special ultrasonic signal connections are employed. Through the use of the probe, flaws at either the inner or outer surfaces may be detected.

  6. Component with inspection-facilitating features

    DOEpatents

    Marra, John J; Zombo, Paul J

    2014-02-11

    A turbine airfoil can be formed with features to facilitate measurement of its wall thickness. An outer wall of the airfoil can include an outer surface and an inner surface. The outer surface of the airfoil can have an outer inspection target surface, and the inner surface of the airfoil can have an inner inspection target surface. The inner and outer target surfaces can define substantially flat regions in surfaces that are otherwise highly contoured. The inner and outer inspection target surfaces can be substantially aligned with each other. The inner and outer target surfaces can be substantially parallel to each other. As a result of these arrangements, a highly accurate measurement of wall thickness can be obtained. In one embodiment, the outer inspection target surface can be defined by an innermost surface of a groove formed in the outer surface of the outer wall of the airfoil.

  7. Preliminary results for mask metrology using spatial heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Bingham, Philip R.; Tobin, Kenneth; Bennett, Marylyn H.; Marmillion, Pat

    2003-12-01

    Spatial heterodyne interferometry (SHI) is an imaging technique that captures both the phase and amplitude of a complex wavefront in a single high-speed image. This technology was developed at the Oak Ridge National Laboratory (ORNL) and is currently being implemented for semiconductor wafer inspection by nLine Corporation. As with any system that measures phase, metrology and inspection of surface structures is possible by capturing a wavefront reflected from the surface. The interpretation of surface structure heights for metrology applications can become very difficult with the many layers of various materials used on semiconductor wafers, so inspection (defect detection) has been the primary focus for semiconductor wafers. However, masks used for photolithography typically only contain a couple well-defined materials opening the doors to high-speed mask metrology in 3 dimensions in addition to inspection. Phase shift masks often contain structures etched out of the transparent substrate material for phase shifting. While these structures are difficult to inspect using only intensity, the phase and amplitude images captured with SHI can produce very good resolution of these structures. The phase images also provide depth information that is crucial for these phase shift regions. Preliminary testing has been performed to determine the feasibility of SHI for high-speed non-contact mask metrology using a prototype SHI system with 532 nm wavelength illumination named the Visible Alpha Tool (VAT). These results show that prototype SHI system is capable of performing critical dimension measurements on 400nm lines with a repeatability of 1.4nm and line height measurements with a repeatability of 0.26nm. Additionally initial imaging of an alternating aperture phase shift mask has shown the ability of SHI to discriminate between typical phase shift heights.

  8. Thermographic Inspections Save Skins and Prevent Blackouts

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Scanning thermography involves heating a component s surface and subsequently measuring the surface temperature, using an infrared camera to identify structural defects such as corrosion and disbonding. It is a completely noninvasive and noncontacting process. Scans can detect defects in conventional metals and plastics, as well as in bonded aluminum composites, plastic- and resinbased composites, and laminated structures. The apparatus used for scanning is highly portable and can cover the surface of a test material up to six times faster than conventional thermography. NASA scientists affirm that the technology is an invaluable asset to the airlines, detecting potential defects that can cause structural failure.In 1996, ThermTech Services, Inc., of Stuart, Florida, approached NASA in an effort to evaluate the technology for application in the power and process industries, where corrosion is of serious concern. ThermTech Services proceeded to develop the application for inspecting boiler waterwall tubing at fossil-fueled electric-generating stations. In 1999, ThermTech purchased the rights to NASA s patented technology and developed the specialized equipment required to apply the inspecting method to power plant components. The ThermTech robotic system using NASA technology has proved to be extremely successful and cost effective in performing detailed inspections of large structures such as boiler waterwalls and aboveground chemical storage tanks. It is capable of inspecting a waterwall, tank-wall, or other large surfaces at a rate of approximately 10 square feet per minute or faster.

  9. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing.

    PubMed

    Zhang, Juwei; Tan, Xiaojiang

    2016-08-25

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.

  10. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    PubMed Central

    Zhang, Juwei; Tan, Xiaojiang

    2016-01-01

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision. PMID:27571077

  11. High throughput web inspection system using time-stretch real-time imaging

    NASA Astrophysics Data System (ADS)

    Kim, Chanju

    Photonic time-stretch is a novel technology that enables capturing of fast, rare and non-repetitive events. Therefore, it operates in real-time with ability to record over long period of time while having fine temporal resolution. The powerful property of photonic time-stretch has already been employed in various fields of application such as analog-to-digital conversion, spectroscopy, laser scanner and microscopy. Further expanding the scope, we fully exploit the time-stretch technology to demonstrate a high throughput web inspection system. Web inspection, namely surface inspection is a nondestructive evaluation method which is crucial for semiconductor wafer and thin film production. We successfully report a dark-field web inspection system with line scan speed of 90.9 MHz which is up to 1000 times faster than conventional inspection instruments. The manufacturing of high quality semiconductor wafer and thin film may directly benefit from this technology as it can easily locate defects with area of less than 10 microm x 10 microm where it allows maximum web flow speed of 1.8 km/s. The thesis provides an overview of our web inspection technique, followed by description of the photonic time-stretch technique which is the keystone in our system. A detailed explanation of each component is covered to provide quantitative understanding of the system. Finally, imaging results from a hard-disk sample and flexible films are presented along with performance analysis of the system. This project was the first application of time-stretch to industrial inspection, and was conducted under financial support and with close involvement by Hitachi, Ltd.

  12. Automated Inspection And Precise Grinding Of Gears

    NASA Technical Reports Server (NTRS)

    Frint, Harold; Glasow, Warren

    1995-01-01

    Method of precise grinding of spiral bevel gears involves automated inspection of gear-tooth surfaces followed by adjustments of machine-tool settings to minimize differences between actual and nominal surfaces. Similar to method described in "Computerized Inspection of Gear-Tooth Surfaces" (LEW-15736). Yields gears of higher quality, with significant reduction in manufacturing and inspection time.

  13. Laser Inspection Or Soldered Connections

    NASA Astrophysics Data System (ADS)

    Alper, Richard I.; Traub, Alan C.

    1986-07-01

    A sensitive infrared detection system monitors the slight warming and cooling of a solder joint on a PWB in response to a focused laser beam pulse lasting for 30 milliseconds. Heating and cooling rates depend on the surface finish of the solder and also upon its interr.1 features. Joints which are alike show similar heating rates; defects behave differently and are flagged as showing abnormal thermal signatures Defects include surface voids, cold solder, insufficient or missing solder, residual solder flux, contamination and large subsurface voids. Solder bridges can usually be found by targeting at suspected bridge locations. Feed-through joints at DIPs and lap joints at flat-pack ICs are readily inspected by this method. By use of computer-controlled tiltable optics, access is had to the "harder to see" joints such as at leadless chip carriers and other surface mounts. Inspection rates can be up to 10 joints per second.

  14. An automated miniature robotic vehicle inspection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3Dmore » model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.« less

  15. GIS-based automated management of highway surface crack inspection system

    NASA Astrophysics Data System (ADS)

    Chung, Hung-Chi; Shinozuka, Masanobu; Soeller, Tony; Girardello, Roberto

    2004-07-01

    An automated in-situ road surface distress surveying and management system, AMPIS, has been developed on the basis of video images within the framework of GIS software. Video image processing techniques are introduced to acquire, process and analyze the road surface images obtained from a moving vehicle. ArcGIS platform is used to integrate the routines of image processing and spatial analysis in handling the full-scale metropolitan highway surface distress detection and data fusion/management. This makes it possible to present user-friendly interfaces in GIS and to provide efficient visualizations of surveyed results not only for the use of transportation engineers to manage road surveying documentations, data acquisition, analysis and management, but also for financial officials to plan maintenance and repair programs and further evaluate the socio-economic impacts of highway degradation and deterioration. A review performed in this study on fundamental principle of Pavement Management System (PMS) and its implementation indicates that the proposed approach of using GIS concept and its tools for PMS application will reshape PMS into a new information technology-based system that can provide convenient and efficient pavement inspection and management.

  16. Defect inspection of actuator lenses using swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Jaeyul; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun

    2017-12-01

    Actuator lens industries have gained an enormous interest with the enhancement of various latest communication devices, such as mobile phone and notebooks. The quality of the aforementioned devices can be degraded due to the internal defects of actuator lenses. Therefore, in this study, we implemented swept-source optical coherence tomography (SS-OCT) system to inspect defects of actuator lenses. Owing to the high-resolution of the SS-OCT system, defected foreign substances between the actuator lenses, defective regions of lenses and surface stains were more clearly distinguished through three-dimensional (3D) and two-dimensional (2D) cross-sectional OCT images. Therefore, the implemented SS-OCT system can be considered as a potential application to defect inspection of actuator lens.

  17. Whole-surface round object imaging method using line-scan hyperspectral imaging system

    USDA-ARS?s Scientific Manuscript database

    To achieve comprehensive online quality and safety inspection of fruits, whole-surface sample presentation and imaging regimes must be considered. Specifically, a round object sample presentation method is under development to achieve effective whole-surface sample evaluation based on the use of a s...

  18. Inline inspection of textured plastics surfaces

    NASA Astrophysics Data System (ADS)

    Michaeli, Walter; Berdel, Klaus

    2011-02-01

    This article focuses on the inspection of plastics web materials exhibiting irregular textures such as imitation wood or leather. They are produced in a continuous process at high speed. In this process, various defects occur sporadically. However, current inspection systems for plastics surfaces are able to inspect unstructured products or products with regular, i.e., highly periodic, textures, only. The proposed inspection algorithm uses the local binary pattern operator for texture feature extraction. For classification, semisupervised as well as supervised approaches are used. A simple concept for semisupervised classification is presented and applied for defect detection. The resulting defect-maps are presented to the operator. He assigns class labels that are used to train the supervised classifier in order to distinguish between different defect types. A concept for parallelization is presented allowing the efficient use of standard multicore processor PC hardware. Experiments with images of a typical product acquired in an industrial setting show a detection rate of 97% while achieving a false alarm rate below 1%. Real-time tests show that defects can be reliably detected even at haul-off speeds of 30 m/min. Further applications of the presented concept can be found in the inspection of other materials.

  19. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple mockups of the DSTs being used to develop the sensor system.

  20. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOEpatents

    DiMambro, Joseph; Roach, Dennis P; Rackow, Kirk A; Nelson, Ciji L; Dasch, Cameron J; Moore, David G

    2013-02-12

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  1. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOEpatents

    DiMambro, Joseph [Placitas, NM; Roach, Dennis P [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Nelson, Ciji L [Albuquerque, NM; Dasch, Cameron J [Boomfield Hills, MI; Moore, David G [Albuquerque, NM

    2012-01-03

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  2. 40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...

  3. 40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 14 2013-07-01 2013-07-01 false What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...

  4. 40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 14 2014-07-01 2014-07-01 false What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...

  5. 40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 14 2012-07-01 2011-07-01 true What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...

  6. 40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...

  7. Automated eddy current inspection of Space Shuttle APU turbine wheel blades

    NASA Technical Reports Server (NTRS)

    Fisher, Jay L.; Rowland, Stephen N.; Stolte, Jeffrey S.; Salkowski, Charles

    1991-01-01

    An automated inspection system based on eddy current testing (ET) techniques has been developed to inspect turbine wheel blades on the APU used in NASA's Space Transportation system. The APU is a hydrazine-powered gas turbine with a 15-cm diameter Rene 41 turbine wheel, which has 123 first-stage blades and 123 second-stage blades. The flaw detection capability of the ET system is verified through comparison with fluorescent penetrant test results. Results of the comparison indicate that ET is capable of inspecting surfaces with very restrictive geometries. The ET capability requires development of probes with extremely small coils to allow inspection within 0.4 mm of the blade root and the leading and trailing edges of the blade and within a height restriction of less than 1 mm. The color 2D presentation of the ET data provided crack-growth pattern and length information similar to those found with visual techniques. It also provided visual clues to minimize geometry effects such as generated from blade edges, a neighoring blade, and changes in the blade thickness.

  8. Line Scanning Thermography for Rapid Nondestructive Inspection of Large Scale Composites

    NASA Astrophysics Data System (ADS)

    Chung, S.; Ley, O.; Godinez, V.; Bandos, B.

    2011-06-01

    As next generation structures are utilizing larger amounts of composite materials, a rigorous and reliable method is needed to inspect these structures in order to prevent catastrophic failure and extend service life. Current inspection methods, such as ultrasonic, generally require extended down time and man hours as they are typically carried out via point-by-point measurements. A novel Line Scanning Thermography (LST) System has been developed for the non-contact, large-scale field inspection of composite structures with faster scanning times than conventional thermography systems. LST is a patented dynamic thermography technique where the heat source and thermal camera move in tandem, which allows the continuous scan of long surfaces without the loss of resolution. The current system can inspect an area of 10 in2 per 1 second, and has a resolution of 0.05×0.03 in2. Advanced data gathering protocols have been implemented for near-real time damage visualization and post-analysis algorithms for damage interpretation. The system has been used to successfully detect defects (delamination, dry areas) in fiber-reinforced composite sandwich panels for Navy applications, as well as impact damage in composite missile cases and armor ceramic panels.

  9. Pool-site fuel inspection and examination techniques applied by the Kraftwerk Union Aktiengesellschaft Fuel Service. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knaab, H.; Knecht, K.

    The need for pool-site inspection and examination of fuel assemblies was recognized by Kraftwerk Union Aktiengesellschaft with the commissioning of the first nuclear power stations. A wet sipping method has demonstrated high reliability in detection of leaking fuel assemblies. The visual inspection system is a versatile tool. It can be supplemented by attaching devices for oxide thickness measurement or surface replication. Repair of leaking pressurized water reactor fuel assemblies has improved fuel utilization. Applied methods and typical results are described.

  10. Robotic Inspection System for Non-Destructive Evaluation (nde) of Pipes

    NASA Astrophysics Data System (ADS)

    Mackenzie, L. D.; Pierce, S. G.; Hayward, G.

    2009-03-01

    The demand for remote inspection of pipework in the processing cells of nuclear plant provides significant challenges of access, navigation, inspection technique and data communication. Such processing cells typically contain several kilometres of densely packed pipework whose actual physical layout may be poorly documented. Access to these pipes is typically afforded through the radiation shield via a small removable concrete plug which may be several meters from the actual inspection site, thus considerably complicating practical inspection. The current research focuses on the robotic deployment of multiple NDE payloads for weld inspection along non-ferritic steel pipework (thus precluding use of magnetic traction options). A fully wireless robotic inspection platform has been developed that is capable of travelling along the outside of a pipe at any orientation, while avoiding obstacles such as pipe hangers and delivering a variety of NDE payloads. An eddy current array system provides rapid imaging capabilities for surface breaking defects while an on-board camera, in addition to assisting with navigation tasks, also allows real time image processing to identify potential defects. All sensor data can be processed by the embedded microcontroller or transmitted wirelessly back to the point of access for post-processing analysis.

  11. Pattern Inspection of EUV Masks Using DUV Light

    NASA Astrophysics Data System (ADS)

    Liang, Ted; Tejnil, Edita; Stivers, Alan R.

    2002-12-01

    Inspection of extreme ultraviolet (EUV) lithography masks requires reflected light and this poses special challenges for inspection tool suppliers as well as for mask makers. Inspection must detect all the printable defects in the absorber pattern as well as printable process-related defects. Progress has been made under the NIST ATP project on "Intelligent Mask Inspection Systems for Next Generation Lithography" in assessing the factors that impact the inspection tool sensitivity. We report in this paper the inspection of EUV masks with programmed absorber defects using 257nm light. All the materials of interests for masks are highly absorptive to EUV light as compared to deep ultraviolet (DUV) light. Residues and contamination from mask fabrication process and handling are prone to be printable. Therefore, it is critical to understand their EUV printability and optical inspectability. Process related defects may include residual buffer layer such as oxide, organic contaminants and possible over-etch to the multilayer surface. Both simulation and experimental results will be presented in this paper.

  12. Multi-function optical characterization and inspection of MEMS components using stroboscopic coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Tapilouw, Abraham Mario; Chen, Liang-Chia; Xuan-Loc, Nguyen; Chen, Jin-Liang

    2014-08-01

    A Micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive industries. However, effective inspection systems are also needed to ensure the functional reliability of MEMS. This study developed a stroboscopic coherence scanning Interferometry (SCSI) technique for measuring key characteristics typically used as criteria in MEMS inspections. Surface profiles of MEMS both static and dynamic conditions were measured by means of coherence scanning Interferometry (CSI). Resonant frequencies of vibrating MEMS were measured by deformation of interferogram fringes for out-of-plane vibration and by image correlation for in-plane vibration. The measurement bandwidth of the developed system can be tuned up to three megahertz or higher for both in-plane and out-of-plane measurement of MEMS.

  13. Device for inspecting vessel surfaces

    DOEpatents

    Appel, D. Keith

    1995-01-01

    A portable, remotely-controlled inspection crawler for use along the walls of tanks, vessels, piping and the like. The crawler can be configured to use a vacuum chamber for supporting itself on the inspected surface by suction or a plurality of magnetic wheels for moving the crawler along the inspected surface. The crawler is adapted to be equipped with an ultrasonic probe for mapping the structural integrity or other characteristics of the surface being inspected. Navigation of the crawler is achieved by triangulation techniques between a signal transmitter on the crawler and a pair of microphones attached to a fixed, remote location, such as the crawler's deployment unit. The necessary communications are established between the crawler and computers external to the inspection environment for position control and storage and/or monitoring of data acquisition.

  14. Automated visual inspection for polished stone manufacture

    NASA Astrophysics Data System (ADS)

    Smith, Melvyn L.; Smith, Lyndon N.

    2003-05-01

    Increased globalisation of the ornamental stone market has lead to increased competition and more rigorous product quality requirements. As such, there are strong motivators to introduce new, more effective, inspection technologies that will help enable stone processors to reduce costs, improve quality and improve productivity. Natural stone surfaces may contain a mixture of complex two-dimensional (2D) patterns and three-dimensional (3D) features. The challenge in terms of automated inspection is to develop systems able to reliably identify 3D topographic defects, either naturally occurring or resulting from polishing, in the presence of concomitant complex 2D stochastic colour patterns. The resulting real-time analysis of the defects may be used in adaptive process control, in order to avoid the wasteful production of defective product. An innovative approach, using structured light and based upon an adaptation of the photometric stereo method, has been pioneered and developed at UWE to isolate and characterize mixed 2D and 3D surface features. The method is able to undertake tasks considered beyond the capabilities of existing surface inspection techniques. The approach has been successfully applied to real stone samples, and a selection of experimental results is presented.

  15. Optic for industrial endoscope/borescope with narrow field of view and low distortion

    DOEpatents

    Stone, Gary F.; Trebes, James E.

    2005-08-16

    An optic for the imaging optics on the distal end of a flexible fiberoptic endoscope or rigid borescope inspection tool. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion), compared to the typical <20% distortion. The optic will permit non-contact surface roughness measurements using optical techniques. This optic will permit simultaneous collection of selected image plane data, which data can then be subsequently optically processed. The image analysis will yield non-contact surface topology data for inspection where access to the surface does not permit a mechanical styles profilometer verification of surface topology. The optic allows a very broad spectral band or range of optical inspection. It is capable of spectroscopic imaging and fluorescence induced imaging when a scanning illumination source is used. The total viewing angle for this optic is 10 degrees for the full field of view of 10 degrees, compared to 40-70 degrees full angle field of view of the conventional gradient index or GRIN's lens systems.

  16. Infrared microscope inspection apparatus

    DOEpatents

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  17. Infrared microscope inspection apparatus

    DOEpatents

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  18. Detection of microbial biofilms on food processing surfaces: hyperspectral fluorescence imaging study

    NASA Astrophysics Data System (ADS)

    Jun, Won; Kim, Moon S.; Chao, Kaunglin; Lefcourt, Alan M.; Roberts, Michael S.; McNaughton, James L.

    2009-05-01

    We used a portable hyperspectral fluorescence imaging system to evaluate biofilm formations on four types of food processing surface materials including stainless steel, polypropylene used for cutting boards, and household counter top materials such as formica and granite. The objective of this investigation was to determine a minimal number of spectral bands suitable to differentiate microbial biofilm formation from the four background materials typically used during food processing. Ultimately, the resultant spectral information will be used in development of handheld portable imaging devices that can be used as visual aid tools for sanitation and safety inspection (microbial contamination) of the food processing surfaces. Pathogenic E. coli O157:H7 and Salmonella cells were grown in low strength M9 minimal medium on various surfaces at 22 +/- 2 °C for 2 days for biofilm formation. Biofilm autofluorescence under UV excitation (320 to 400 nm) obtained by hyperspectral fluorescence imaging system showed broad emissions in the blue-green regions of the spectrum with emission maxima at approximately 480 nm for both E. coli O157:H7 and Salmonella biofilms. Fluorescence images at 480 nm revealed that for background materials with near-uniform fluorescence responses such as stainless steel and formica cutting board, regardless of the background intensity, biofilm formation can be distinguished. This suggested that a broad spectral band in the blue-green regions can be used for handheld imaging devices for sanitation inspection of stainless, cutting board, and formica surfaces. The non-uniform fluorescence responses of granite make distinctions between biofilm and background difficult. To further investigate potential detection of the biofilm formations on granite surfaces with multispectral approaches, principal component analysis (PCA) was performed using the hyperspectral fluorescence image data. The resultant PCA score images revealed distinct contrast between biofilms and granite surfaces. This investigation demonstrated that biofilm formations on food processing surfaces, even for background materials with heterogeneous fluorescence responses, can be detected. Furthermore, a multispectral approach in developing handheld inspection devices may be needed to inspect surface materials that exhibit non-uniform fluorescence.

  19. Guided Wave Sensing In a Carbon Steel Pipe Using a Laser Vibrometer System

    NASA Astrophysics Data System (ADS)

    Ruíz Toledo, Abelardo; Salazar Soler, Jordi; Chávez Domínguez, Juan Antonio; García Hernández, Miguel Jesús; Turó Peroy, Antoni

    2010-05-01

    Non-Destructive Evaluation (NDE) techniques have achieved a great development during the last decades as a valuable tool for material characterization, manufacturing control and structural integrity tests. Among these tools, the guided wave technology has been rapidly extended because it reduces inspection time and costs compared to the ordinary point by point testing in large structures, as well as because of the possibility of inspecting under insulation and coating conditions. This fast development has motivated the creation of several inspection and material characterization systems including different technologies which can be combined with this technique. Different measurements systems based on laser techniques have been presented in order to inspect pipes, plates and diverse structures. Many of them are experimental systems of high cost and complexity which combine the employment of a laser for generation of waves in the structure and an interferometer for detection. Some of them employ air-coupled ultrasound generation transducers, with high losses in air and which demand high energy for exciting waves in materials of high stiffness. The combined employment of a commercial vibrometer system for Lamb wave sensing in plates has been successfully shown in the literature. In this paper we present a measurement system based on the combined employment of a piezoelectric wedge transducer and a laser vibrometer to sense guided acoustic waves in carbon steel pipes. The measurement system here presented is mainly compounded of an angular wedge transducer, employed to generate the guided wave and a commercial laser vibrometer used in the detection process. The wedge transducer is excited by means of a signal function generator whose output signal has been amplified with a power signal amplifier. A high precision positioning system is employed to place the laser beam at different points through the pipe surface. The signal detected by the laser vibrometer system is amplified with a signal amplifier and then it is displayed in a digital storage oscilloscope. This set-up offers the possibility of analyzing in a simpler way the wave propagation and the material evaluation in pipes of certain wall thickness. The material characterization considering distinct wave propagation modes can be easily achieved, changing the different incident angles of the wedge piezoelectric probe and their combined employment with several driving signals. Moreover, this experimental sensing system offers other possibilities of inspecting and analyzing the wave propagation in some features (bends, flange joints, welds,…) of the pipe surface which cause very large reflections and mode conversions and which in practice limits the inspection range when are inspected with conventional receiving transducer arrangements.

  20. Automated surface inspection for steel products using computer vision approach.

    PubMed

    Xi, Jiaqi; Shentu, Lifeng; Hu, Jikang; Li, Mian

    2017-01-10

    Surface inspection is a critical step in ensuring the product quality in the steel-making industry. In order to relieve inspectors of laborious work and improve the consistency of inspection, much effort has been dedicated to the automated inspection using computer vision approaches over the past decades. However, due to non-uniform illumination conditions and similarity between the surface textures and defects, the present methods are usually applicable to very specific cases. In this paper a new framework for surface inspection has been proposed to overcome these limitations. By investigating the image formation process, a quantitative model characterizing the impact of illumination on the image quality is developed, based on which the non-uniform brightness in the image can be effectively removed. Then a simple classifier is designed to identify the defects among the surface textures. The significance of this approach lies in its robustness to illumination changes and wide applicability to different inspection scenarios. The proposed approach has been successfully applied to the real-time surface inspection of round billets in real manufacturing. Implemented on a conventional industrial PC, the algorithm can proceed at 12.5 frames per second with the successful detection rate being over 90% for turned and skinned billets.

  1. 30 CFR 840.11 - Inspections by State regulatory authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... complete inspection per calendar quarter of each active or inactive surface coal mining and reclamation... authority shall conduct an average of at least one partial inspection per month of each active surface coal... each inactive surface coal mining and reclamation operation under its jurisdiction as are necessary to...

  2. 30 CFR 840.11 - Inspections by State regulatory authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... complete inspection per calendar quarter of each active or inactive surface coal mining and reclamation... authority shall conduct an average of at least one partial inspection per month of each active surface coal... each inactive surface coal mining and reclamation operation under its jurisdiction as are necessary to...

  3. 30 CFR 840.11 - Inspections by State regulatory authority.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... complete inspection per calendar quarter of each active or inactive surface coal mining and reclamation... authority shall conduct an average of at least one partial inspection per month of each active surface coal... each inactive surface coal mining and reclamation operation under its jurisdiction as are necessary to...

  4. 30 CFR 840.11 - Inspections by State regulatory authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... complete inspection per calendar quarter of each active or inactive surface coal mining and reclamation... authority shall conduct an average of at least one partial inspection per month of each active surface coal... each inactive surface coal mining and reclamation operation under its jurisdiction as are necessary to...

  5. 30 CFR 840.11 - Inspections by State regulatory authority.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... complete inspection per calendar quarter of each active or inactive surface coal mining and reclamation... authority shall conduct an average of at least one partial inspection per month of each active surface coal... each inactive surface coal mining and reclamation operation under its jurisdiction as are necessary to...

  6. Imaging laser radar for high-speed monitoring of the environment

    NASA Astrophysics Data System (ADS)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1998-01-01

    In order to establish mobile robot operations and to realize survey and inspection tasks, robust and precise measurements of the geometry of the 3D environment is the basis sensor technology. For visual inspection, surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent range and reflectance images. The laser radar developed at Zoller + Froehlich (ZF) is an optical-wavelength system measuring the range between sensor and target surface as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to other range sensing devices, the ZF system is designed for high-speed and high- performance operation in real indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a single-point laser measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports details of the laser radar which is designed to cover requirements with medium range applications. It outlines the performance requirements and introduces the two-frequency phase-shift measurement principle. The hardware design of the single-point laser measurement system, including the main modulates, such as the laser head, the high frequency unit and the signal processing unit are discussed in detail. The paper focuses on performance data of the laser radar, including noise, drift over time, precision, and accuracy with measurements. It discusses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of tunnels, buildings, monuments and industrial environments are presented. The paper concludes by summarizing results and gives a short outlook to future work.

  7. Optical inspection system for cylindrical objects

    DOEpatents

    Brenden, Byron B.; Peters, Timothy J.

    1989-01-01

    In the inspection of cylindrical objects, particularly O-rings, the object is translated through a field of view and a linear light trace is projected on its surface. An image of the light trace is projected on a mask, which has a size and shape corresponding to the size and shape which the image would have if the surface of the object were perfect. If there is a defect, light will pass the mask and be sensed by a detector positioned behind the mask. Preferably, two masks and associated detectors are used, one mask being convex to pass light when the light trace falls on a projection from the surface and the other concave, to pass light when the light trace falls on a depression in the surface. The light trace may be either dynamic, formed by a scanned laser beam, or static, formed by such a beam focussed by a cylindrical lens. Means are provided to automatically keep the illuminating receiving systems properly aligned.

  8. A noncontacting scanning photoelectron emission technique for bonding surface cleanliness inspection

    NASA Technical Reports Server (NTRS)

    Gause, Raymond L.

    1989-01-01

    Molecular contamination of bonding surfaces can drastically affect the bond strength that can be achieved and therefore the structural integrity and reliability of the bonded part. The presence of thin contaminant films on bonding surfaces can result from inadequate or incomplete cleaning methods, from oxide growth during the time between cleaning (such as grit blasting) and bonding, or from failure to properly protect cleaned surfaces from oils, greases, fingerprints, release agents, or deposition of facility airborne molecules generated by adjacent manufacturing or processing operations. Required cleanliness levels for desired bond performance can be determined by testing to correlate bond strength with contaminant type and quantity, thereby establishing the degree of contamination that can be tolerated based on the strength that is needed. Once the maximum acceptable contaminant level is defined, a method is needed to quantitatively measure the contaminant level on the bonding surface prior to bonding to verify that the surface meets the established cleanliness requirement. A photoelectron emission technique for the nondestructive inspection of various bonding surfaces, both metallic and nonmetallic, to provide quantitative data on residual contaminant levels is described. The technique can be used to scan surfaces at speeds of at least 30 ft/min using a servo system to maintain required sensor to surface spacing. The fundamental operation of the photoelectron emission sensor system is explained and the automated scanning system and computer data acquisition hardware and software are described.

  9. Device for inspecting vessel surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, D.K.

    1995-12-12

    A portable, remotely-controlled inspection crawler is described for use along the walls of tanks, vessels, piping and the like. The crawler can be configured to use a vacuum chamber for supporting itself on the inspected surface by suction or a plurality of magnetic wheels for moving the crawler along the inspected surface. The crawler is adapted to be equipped with an ultrasonic probe for mapping the structural integrity or other characteristics of the surface being inspected. Navigation of the crawler is achieved by triangulation techniques between a signal transmitter on the crawler and a pair of microphones attached to amore » fixed, remote location, such as the crawler`s deployment unit. The necessary communications are established between the crawler and computers external to the inspection environment for position control and storage and/or monitoring of data acquisition. 5 figs.« less

  10. 30 CFR 77.1713 - Daily inspection of surface coal mine; certified person; reports of inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... more often if necessary for safety, each active working area and each active surface installation shall...; certified person; reports of inspection. 77.1713 Section 77.1713 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES...

  11. Three-dimensional shape measurement system applied to superficial inspection of non-metallic pipes for the hydrocarbons transport

    NASA Astrophysics Data System (ADS)

    Arciniegas, Javier R.; González, Andrés. L.; Quintero, L. A.; Contreras, Carlos R.; Meneses, Jaime E.

    2014-05-01

    Three-dimensional shape measurement is a subject that consistently produces high scientific interest and provides information for medical, industrial and investigative applications, among others. In this paper, it is proposed to implement a three-dimensional (3D) reconstruction system for applications in superficial inspection of non-metallic pipes for the hydrocarbons transport. The system is formed by a CCD camera, a video-projector and a laptop and it is based on fringe projection technique. System functionality is evidenced by evaluating the quality of three-dimensional reconstructions obtained, which allow observing the failures and defects on the study object surface.

  12. Automated management for pavement inspection system (AMPIS)

    NASA Astrophysics Data System (ADS)

    Chung, Hung Chi; Girardello, Roberto; Soeller, Tony; Shinozuka, Masanobu

    2003-08-01

    An automated in-situ road surface distress surveying and management system, AMPIS, has been developed on the basis of video images within the framework of GIS software. Video image processing techniques are introduced to acquire, process and analyze the road surface images obtained from a moving vehicle. ArcGIS platform is used to integrate the routines of image processing and spatial analysis in handling the full-scale metropolitan highway surface distress detection and data fusion/management. This makes it possible to present user-friendly interfaces in GIS and to provide efficient visualizations of surveyed results not only for the use of transportation engineers to manage road surveying documentations, data acquisition, analysis and management, but also for financial officials to plan maintenance and repair programs and further evaluate the socio-economic impacts of highway degradation and deterioration. A review performed in this study on fundamental principle of Pavement Management System (PMS) and its implementation indicates that the proposed approach of using GIS concept and its tools for PMS application will reshape PMS into a new information technology-based system providing a convenient and efficient pavement inspection and management.

  13. An automatic chip structure optical inspection system for electronic components

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  14. Rotating optical geometry sensor for inner pipe-surface reconstruction

    NASA Astrophysics Data System (ADS)

    Ritter, Moritz; Frey, Christan W.

    2010-01-01

    The inspection of sewer or fresh water pipes is usually carried out by a remotely controlled inspection vehicle equipped with a high resolution camera and a lightning system. This operator-oriented approach based on offline analysis of the recorded images is highly subjective and prone to errors. Beside the subjective classification of pipe defects through the operator standard closed circuit television (CCTV) technology is not suitable for detecting geometrical deformations resulting from e.g. structural mechanical weakness of the pipe, corrosion of e.g. cast-iron material or sedimentations. At Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany, a new Rotating Optical Geometry Sensor (ROGS) for pipe inspection has been developed which is capable of measuring the inner pipe geometry very precisely over the whole pipe length. This paper describes the developed ROGS system and the online adaption strategy for choosing the optimal system parameters. These parameters are the rotation and traveling speed dependent from the pipe diameter. Furthermore, a practicable calibration methodology is presented which guarantees an identification of the several internal sensor parameters. ROGS has been integrated in two different systems: A rod based system for small fresh water pipes and a standard inspection vehicle based system for large sewer Pipes. These systems have been successfully applied to different pipe systems. With this measurement method the geometric information can be used efficiently for an objective repeatable quality evaluation. Results and experiences in the area of fresh water pipe inspection will be presented.

  15. On Machine Capacitance Dimensional and Surface Profile Measurement System

    NASA Technical Reports Server (NTRS)

    Resnick, Ralph

    1993-01-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  16. Technology Insertion for Recapitalization of Legacy Systems

    DTIC Science & Technology

    2017-09-28

    Inspection Two methods of thermal wave inspection were investigated. In one method, an electric current was run through the torsion bar to heat the...Material Properties and the Controlled Shot Peening of Turbine Blades ". Metal Behaviour and Surface Engineering, IIIT-lnternational I 989 18 Richard...the presence of a singularity, direct control of the mesh size was used to set the element dimensions over several runs of the analysis. The element

  17. Integrated testing system FiTest for diagnosis of PCBA

    NASA Astrophysics Data System (ADS)

    Bogdan, Arkadiusz; Lesniak, Adam

    2016-12-01

    This article presents the innovative integrated testing system FiTest for automatic, quick inspection of printed circuit board assemblies (PCBA) manufactured in Surface Mount Technology (SMT). Integration of Automatic Optical Inspection (AOI), In-Circuit Tests (ICT) and Functional Circuit Tests (FCT) resulted in universal hardware platform for testing variety of electronic circuits. The platform provides increased test coverage, decreased level of false calls and optimization of test duration. The platform is equipped with powerful algorithms performing tests in a stable and repetitive way and providing effective management of diagnosis.

  18. Automated stent defect detection and classification with a high numerical aperture optical system

    NASA Astrophysics Data System (ADS)

    Bermudez, Carlos; Laguarta, Ferran; Cadevall, Cristina; Matilla, Aitor; Ibañez, Sergi; Artigas, Roger

    2017-06-01

    Stent quality control is a highly critical process. Cardiovascular stents have to be inspected 100% so as no defective stent is implanted in a human body. However, this visual control is currently performed manually and every stent could need tenths of minutes to be inspected. In this paper, a novel optical inspection system is presented. By the combination of a high numerical aperture (NA) optical system, a rotational stage and a line-scan camera, unrolled sections of the outer and inner surfaces of the stent are obtained and image-processed at high speed. Defects appearing in those surfaces and also in the edges are extremely contrasted due to the shadowing effect of the high NA illumination and acquisition approach. Therefore by means of morphological operations and a sensitivity parameter, defects are detected. Based on a trained defect library, a binary classifier sorts each kind of defect through a set of scoring vectors, providing the quality operator with all the required information to finally take a decision. We expect this new approach to make defect detection completely objective and to dramatically reduce the time and cost of stent quality control stage.

  19. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design.

    PubMed

    Rifai, Damhuji; Abdalla, Ahmed N; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A

    2017-03-13

    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.

  20. Underwater cleaning techniqued used for removal of zebra mussels at the FitzPatrick Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, B.; Kahabka, J.

    1995-06-01

    This paper discusses the use of a mechanical brush cleaning technology recently used to remove biofouling from the Circulating Water (CW) System at New York Power Authority`s James A. FitzPatrick Nuclear Power Plant. The FitzPatrick plant had previously used chemical molluscicide to treat zebra mussels in the CW system. Full system treatment was performed in 1992 with limited forebay/screenwell treatment in 1993. The New York Power Authority (NYPA) decided to conduct a mechanical cleaning of the intake system in 1994. Specific project objectives included: (1) Achieve a level of surface cleaniness greater than 98%; (2) Remove 100% of debris, bothmore » existing sediment and debris generated as a result of cleaning; (3) Inspect all surfaces and components, identifying any problem areas; (4) Complete the task in a time frame within the 1994-95 refueling outage schedule window, and; (5) Determine if underwater mechanical cleaning is a cost-effective zebra mussel control method suitable for future application at FitzPatrick. A pre-cleaning inspection, including underwater video photography, was conducted of each area. Cleaning was accomplished using diver-controlled, multi-brush equipment included the electro-hydraulic powered Submersible Cleaning and Maintenance Platform (SCAMP), and several designs of hand-held machines. The brushes swept all zebra mussels off surfaces, restoring concrete and metal substrates to their original condition. Sensitive areas including pump housings, standpipes, sensor piping and chlorine injection tubing, were cleaned without degradation. Submersible vortex vacuum pumps were used to remove debris from the cavity. More than 46,000 ft{sup 2} of surface area was cleaned and over 460 cubic yards of dewatered debris were removed. As each area was completed, a post-clean inspection with photos and video was performed.« less

  1. Development and Application of the Key Technologies for the Quality Control and Inspection of National Geographical Conditions Survey Products

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, L.; Ma, W.; Zhang, P.; Zhao, T.

    2018-04-01

    The First National Geographical Condition Survey is a predecessor task to dynamically master basic situations of the nature, ecology and human activities on the earth's surface and it is the brand-new mapping geographic information engineering. In order to ensure comprehensive, real and accurate survey results and achieve the quality management target which the qualified rate is 100 % and the yield is more than 80 %, it is necessary to carry out the quality control and result inspection for national geographical conditions survey on a national scale. To ensure that achievement quality meets quality target requirements, this paper develops the key technology method of "five-in-one" quality control that is constituted by "quality control system of national geographical condition survey, quality inspection technology system, quality evaluation system, quality inspection information management system and national linked quality control institutions" by aiming at large scale, wide coverage range, more undertaking units, more management levels, technical updating, more production process and obvious regional differences in the national geographical condition survey and combining with novel achievement manifestation, complicated dependency, more special reference data, and large data size. This project fully considering the domestic and foreign related research results and production practice experience, combined with the technology development and the needs of the production, it stipulates the inspection methods and technical requirements of each stage in the quality inspection of the geographical condition survey results, and extends the traditional inspection and acceptance technology, and solves the key technologies that are badly needed in the first national geographic survey.

  2. An improved segmentation method for defects inspection on steel roller surface

    NASA Astrophysics Data System (ADS)

    Xu, Jirui; Li, Xuekun; Cao, Yuzhong; Shi, Depeng; Yang, Jun; Jiang, Sheng; Rong, Yiming

    2018-05-01

    In the field of metal rolling, the quality of the steel roller's surface is significant for the final rolling products, e.g. metal sheets or foils. Besides the dimensional accuracy and surface roughness, the optical uniformity of the roller surface is also required for high quality rolling application. The typical optical defects of rollers after finish grinding include speckles, chatter marks, feed traces, and combination of all above. Unlike surface roughness, the optical defects can hardly be characterized by the topography or scanning electrical microscope measurement. Only the inspection by bared eyes of experienced engineers appears to be the effective manner for surface optical defects examination for large steel rollers. In this paper, an on-site machine vision system is designed to add on to the roller grinding machine to capture the surface image, and then an improved optical defects segmentation algorithm is developed based on the active contour model. Finally, experiments are carried out to verify the efficacy of the improved model.

  3. Generation de chemins de couverture pour des operations automatisees de controle non destructif appliquees dans l'industrie aerospatiale

    NASA Astrophysics Data System (ADS)

    Olivieri, Pierre

    Non destructive testing (NDT) plays an important role in the aerospace industry during the fabrication and maintenance of the structures built and is used, among other useful applications, to detect flaws such as cracks at an early stage. However, NDT techniques are still mainly done manually, especially on complex aeronautical structures, which then results in several drawbacks. In addition to be difficult and time-consuming, reliability and repeatability of inspection results are likely to be affected, since they rely on each operator's experience and dexterity. The present thesis is part of a larger project (MANU-418) of the Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ). In this project, it has been proposed to develop a system using a 6-DOF manipulator arm to automate three particular NDT techniques often needed in the aerospace industry: eddy current testing (ECT), fluorescent penetrant inspection (FPI), and infrared thermography (IRT). The main objective of the MANU-418 project is to demonstrate the efficiency of the developed system and provide inspection results of surface and near surface flaws (cracks usually) at least as reliably and repeatably as inspection results from a human operator. One specific objective stemming from the main objective of the project is to develop a methodology and a software tool to generate covering paths adapted for the three aforementioned NDT techniques to inspect the complex surfaces of aerospace structures. The present thesis aims at reaching this specific objective. At first, geometrical and topological properties of the surfaces considered in this project are defined (flat surfaces, round and straight edges, cylindrical or near cylindrical surfaces, holes). It is also assumed that the 3D model of the surface to inspect is known in advance. Moreover, it has been decided within the framework of the MANU-418 project to give priority to the automation of ECT compared with the other techniques (FPI and IRT). As a result, the methodology developed to generate inspection paths is more closely focused on path constraints relative to the manual operations of ECT using a differential eddy current probe (named here EC probe), but it is developed to be flexible enough to be used with the other techniques as well. Common inspection paths for ECT are usually defined by a sweeping motion using a zigzag pattern with the EC probe in mild contact with the inspected surface. Moreover, the main axis of the probe must keep a normal orientation with the surface, and the alignment of its two coils must always be oriented along the direction of its motion. A first methodology is then proposed to generate covering paths on the whole surface of interest while meeting all EC probe motion constraints. First, the surface is meshed with triangular facets, and then it is subdivided into several patches such that their geometry and topology are simpler than the whole surface. Paths are then generated on each patch by intersecting their facets with offset section planes defined along a sweeping direction. Furthermore, another methodology is developed to generate paths around an indication (namely a small area where the presence of a flaw is suspected) whose position and orientation are assumed to be known a priori.. Then, a software tool with a graphical user interface has been developed in the MATLAB environment to generate inspection paths based on these methodologies. A set of path parameters can be changed by the user to get desired paths (distance between passes, sweep direction, etc.). Once paths are computed, an ordered list of coordinates (positions and orientations) of the tool is exported in an EXCEL spreadsheet so that it could be used with a real robot. In this research, these data are then used to perform simulations of trajectories (path described as a function of the time) with a MotoMan robot (model SV3XL) using the MotoSim software. After validation of these trajectories in this software (absence of collisions, positions are all reachable, etc.), they are finally converted into instructions for the real MotoMan robot to proceed with experimental tests. These first simulations and experimentations on a MotoMan robot of the generated paths have given results close to the expected inspection trajectories used manually in the NDT techniques considered, especially for the ECT technique. Nevertheless, it is strongly recommended to validate this path generation method with more experimental tests. For instance, a "test" tool could be manufactured to measure errors of position and orientation of this tool with respect to expected trajectories on a typical complex aeronautical structure. (Abstract shortened by UMI.).

  4. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H. (Inventor); Zalameda, Joseph N. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  5. KSC-04PD-1088

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- A Rudder Speed Brake Actuator is being removed from the orbiter Atlantis for shipment to the vendor for inspection. An actuator is a motor that moves the tail rudder back and forth to help steer it during landing and brake its speed. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. Atlantis is undergoing maintenance and inspection in the Orbiter Processing Facility for a future mission.

  6. KSC-04PD-1089

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- A Rudder Speed Brake Actuator is being removed from the orbiter Atlantis for shipment to the vendor for inspection. An actuator is a motor that moves the tail rudder back and forth to help steer it during landing and brake its speed. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. Atlantis is undergoing maintenance and inspection in the Orbiter Processing Facility for a future mission.

  7. Fabrication of ф 160 mm convex hyperbolic mirror for remote sensing instrument

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Hsiang; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2012-10-01

    In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the Fabrication of ф160 mm Convex Hyperbolic Mirror for Remote Sensing Instrument160 mm convex hyperbolic mirror is 0.15 μm PV and 17.9 nm RMS.160 mm convex hyperbolic mirror is 0.15 μm PV and 17.9 nm RMS.

  8. System and process for detecting and monitoring surface defects

    NASA Technical Reports Server (NTRS)

    Mueller, Mark K. (Inventor)

    1994-01-01

    A system and process for detecting and monitoring defects in large surfaces such as the field joints of the container segments of a space shuttle booster motor. Beams of semi-collimated light from three non-parallel fiber optic light panels are directed at a region of the surface at non-normal angles of expected incidence. A video camera gathers some portion of the light that is reflected at an angle other than the angle of expected reflectance, and generates signals which are analyzed to discern defects in the surface. The analysis may be performed by visual inspection of an image on a video monitor, or by inspection of filtered or otherwise processed images. In one alternative embodiment, successive predetermined regions of the surface are aligned with the light source before illumination, thereby permitting efficient detection of defects in a large surface. Such alignment is performed by using a line scan gauge to sense the light which passes through an aperture in the surface. In another embodiment a digital map of the surface is created, thereby permitting the maintenance of records detailing changes in the location or size of defects as the container segment is refurbished and re-used. The defect detection apparatus may also be advantageously mounted on a fixture which engages the edge of a container segment.

  9. Pellet inspection apparatus

    DOEpatents

    Wilks, Robert S.; Taleff, Alexander; Sturges, Jr., Robert H.

    1982-01-01

    Apparatus for inspecting nuclear fuel pellets in a sealed container for diameter, flaws, length and weight. The apparatus includes, in an array, a pellet pick-up station, four pellet inspection stations and a pellet sorting station. The pellets are delivered one at a time to the pick-up station by a vibrating bowl through a vibrating linear conveyor. Grippers each associated with a successive pair of the stations are reciprocable together to pick up a pellet at the upstream station of each pair and to deposit the pellet at the corresponding downstream station. The gripper jaws are opened selectively depending on the state of the pellets at the stations and the particular cycle in which the apparatus is operating. Inspection for diameter, flaws and length is effected in each case by a laser beam projected on the pellets by a precise optical system while each pellet is rotated by rollers. Each laser and its optical system are mounted in a container which is free standing on a precise surface and is provided with locating buttons which engage locating holes in the surface so that each laser and its optical system is precisely set. The roller stands are likewise free standing and are similarly precisely positioned. The diameter optical system projects a thin beam of light which scans across the top of each pellet and is projected on a diode array. The fl GOVERNMENT CONTRACT CLAUSE The invention herein described was made in the course of or under a contract or subcontract thereunder with the Department of Energy bearing No. EY-67-14-C-2170.

  10. Inspection and characterization of flexo-printing plates

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius; Pescoller, Lukas; Zhao, Wenjing

    2013-09-01

    In continuation of last year's paper on distorting optics for inspection of 2 1/2D surfaces with convex or elevated elements - like braille paper and other special printing products - the present paper is dedicated to the quality control and characterization of flexo-printing plates. The need for high optical resolution contradicts the need for depth of field. A rugged optical system for gathering a series of microscopic images at various planes of focus is discussed.

  11. 77 FR 57534 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... turbocharger (uncoupled) for cracks, distortion, and evidence indicative of improper surface mating. (3) Inspect the three exhaust system slip joints between each turbocharger and its closest riser for seizure...

  12. Verification of surface preparation for adhesive bonding

    NASA Technical Reports Server (NTRS)

    Myers, Rodney S.

    1995-01-01

    A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.

  13. Thermal Excitation System for Shearography (TESS)

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Bullock, Michael W.

    1996-01-01

    One of the most convenient and effective methods of stressing a part or structure for shearographic evaluation is thermal excitation. This technique involves heating the part, often convectively with a heat gun, and then monitoring with a shearography device the deformation during cooling. For a composite specimen, unbonds, delaminations, inclusions, or matrix cracking will deform during cooling differently than other more structurally sound regions and thus will appear as anomalies in the deformation field. However, one of the difficulties that cause this inspection to be dependent on the operator experience is the conventional heating process. Fanning the part with a heat gun by hand introduces a wide range of variability from person to person and from one inspection to the next. The goal of this research effort was to conduct research in the methods of thermal excitation for shearography inspection. A computerized heating system was developed for inspection of 0.61 m (24 in.) square panels. The Thermal Excitation System for Shearography (TESS) provides radiant heating with continuous digital measurement of the surface temperature profile to ensure repeatability. The TESS device functions as an accessory to any electronic shearography device.

  14. Inspection of lithographic mask blanks for defects

    DOEpatents

    Sommargren, Gary E.

    2001-01-01

    A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.

  15. Exploring combined dark and bright field illumination to improve the detection of defects on specular surfaces

    NASA Astrophysics Data System (ADS)

    Forte, Paulo M. F.; Felgueiras, P. E. R.; Ferreira, Flávio P.; Sousa, M. A.; Nunes-Pereira, Eduardo J.; Bret, Boris P. J.; Belsley, Michael S.

    2017-01-01

    An automatic optical inspection system for detecting local defects on specular surfaces is presented. The system uses an image display to produce a sequence of structured diffuse illumination patterns and a digital camera to acquire the corresponding sequence of images. An image enhancement algorithm, which measures the local intensity variations between bright- and dark-field illumination conditions, yields a final image in which the defects are revealed with a high contrast. Subsequently, an image segmentation algorithm, which compares statistically the enhanced image of the inspected surface with the corresponding image for a defect-free template, allows separating defects from non-defects with an adjusting decision threshold. The method can be applied to shiny surfaces of any material including metal, plastic and glass. The described method was tested on the plastic surface of a car dashboard system. We were able to detect not only scratches but also dust and fingerprints. In our experiment we observed a detection contrast increase from about 40%, when using an extended light source, to more than 90% when using a structured light source. The presented method is simple, robust and can be carried out with short cycle times, making it appropriate for applications in industrial environments.

  16. A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.

    PubMed

    Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming

    2017-07-01

    To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.

  17. Surface inspection: Research and development

    NASA Technical Reports Server (NTRS)

    Batchelder, J. S.

    1987-01-01

    Surface inspection techniques are used for process learning, quality verification, and postmortem analysis in manufacturing for a spectrum of disciplines. First, trends in surface analysis are summarized for integrated circuits, high density interconnection boards, and magnetic disks, emphasizing on-line applications as opposed to off-line or development techniques. Then, a closer look is taken at microcontamination detection from both a patterned defect and a particulate inspection point of view.

  18. The Orion Exploration Flight Test Post Flight Solid Particle Flight Environment Inspection and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, Joshua E.

    2016-01-01

    Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.

  19. Surface inspection of flat products by means of texture analysis: on-line implementation using neural networks

    NASA Astrophysics Data System (ADS)

    Fernandez, Carlos; Platero, Carlos; Campoy, Pascual; Aracil, Rafael

    1994-11-01

    This paper describes some texture-based techniques that can be applied to quality assessment of flat products continuously produced (metal strips, wooden surfaces, cork, textile products, ...). Since the most difficult task is that of inspecting for product appearance, human-like inspection ability is required. A common feature to all these products is the presence of non- deterministic texture on their surfaces. Two main subjects are discussed: statistical techniques for both surface finishing determination and surface defect analysis as well as real-time implementation for on-line inspection in high-speed applications. For surface finishing determination a Gray Level Difference technique is presented to perform over low resolution images, that is, no-zoomed images. Defect analysis is performed by means of statistical texture analysis over defective portions of the surface. On-line implementation is accomplished by means of neural networks. When a defect arises, textural analysis is applied which result in a data-vector, acting as input of a neural net, previously trained in a supervised way. This approach tries to reach on-line performance in automated visual inspection applications when texture is presented in flat product surfaces.

  20. Vision-based surface defect inspection for thick steel plates

    NASA Astrophysics Data System (ADS)

    Yun, Jong Pil; Kim, Dongseob; Kim, KyuHwan; Lee, Sang Jun; Park, Chang Hyun; Kim, Sang Woo

    2017-05-01

    There are several types of steel products, such as wire rods, cold-rolled coils, hot-rolled coils, thick plates, and electrical sheets. Surface stains on cold-rolled coils are considered defects. However, surface stains on thick plates are not considered defects. A conventional optical structure is composed of a camera and lighting module. A defect inspection system that uses a dual lighting structure to distinguish uneven defects and color changes by surface noise is proposed. In addition, an image processing algorithm that can be used to detect defects is presented in this paper. The algorithm consists of a Gabor filter that detects the switching pattern and employs the binarization method to extract the shape of the defect. The optics module and detection algorithm optimized using a simulator were installed at a real plant, and the experimental results conducted on thick steel plate images obtained from the steel production line show the effectiveness of the proposed method.

  1. Robotic inspection of fiber reinforced composites using phased array UT

    NASA Astrophysics Data System (ADS)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  2. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

    PubMed Central

    Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.

    2017-01-01

    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399

  3. Shipshape: sanitation inspections on cruise ships, 1990-2005, Vessel Sanitation Program, Centers for Disease Control and Prevention.

    PubMed

    Cramer, Elaine H; Blanton, Curtis J; Otto, Charles

    2008-03-01

    In the course of a successful collaboration between the Centers for Disease Control and Prevention (CDC) and the cruise ship industry on reducing common-source outbreaks, CDC's Vessel Sanitation Program (VSP) has expanded its training, education, and cruise ship inspection programs. The study reported here evaluated 15 years of ship sanitation inspection data from the National Center for Environmental Health and assessed performance in specific sanitation categories from 1996 to 2005. During the period 1990-2005, scores from cruise ship environmental sanitation inspections steadily improved. The percentage of inspections with violations decreased among five of nine categories. Those five categories were Washing Facilities, Contact Surfaces, Facility Maintenance, Food Handling, and Communicable Disease Practices. Inspection violations increased proportionally in the categories of Swimming Pools and Water System Protection/Chart Recording. Overall continued good performance in most sanitation categories is likely attributable to on-site training during inspections, improvements in ship construction, and a switch from hot-holding temperatures to time limits as a public health control for foods on display.

  4. Thermographic Imaging of Material Loss in Boiler Water-Wall Tubing by Application of Scanning Line Source

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proven to be very manpower and time intensive. This has resulted in a spot check approach to inspections, documenting thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed for large structures such as boiler water-walls. A theoretical basis for the technique will be presented which explains the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of applying this technology to actual water-wall tubing samples and in situ inspections will be presented.

  5. Developing a more useful surface quality metric for laser optics

    NASA Astrophysics Data System (ADS)

    Turchette, Quentin; Turner, Trey

    2011-02-01

    Light scatter due to surface defects on laser resonator optics produces losses which lower system efficiency and output power. The traditional methodology for surface quality inspection involves visual comparison of a component to scratch and dig (SAD) standards under controlled lighting and viewing conditions. Unfortunately, this process is subjective and operator dependent. Also, there is no clear correlation between inspection results and the actual performance impact of the optic in a laser resonator. As a result, laser manufacturers often overspecify surface quality in order to ensure that optics will not degrade laser performance due to scatter. This can drive up component costs and lengthen lead times. Alternatively, an objective test system for measuring optical scatter from defects can be constructed with a microscope, calibrated lighting, a CCD detector and image processing software. This approach is quantitative, highly repeatable and totally operator independent. Furthermore, it is flexible, allowing the user to set threshold levels as to what will or will not constitute a defect. This paper details how this automated, quantitative type of surface quality measurement can be constructed, and shows how its results correlate against conventional loss measurement techniques such as cavity ringdown times.

  6. Dynamic deformation inspection of a human arm by using a line-scan imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Eryi

    2009-11-01

    A line-scan imaging system is used in the dynamic deformation measurement of a human arm when the muscle is contracting and relaxing. The measurement principle is based on the projection grating profilometry, and the measuring system is consisted of a line-scan CCD camera, a projector, optical lens and a personal computer. The detected human arm is put upon a reference plane, and a sinusoidal grating is projected onto the object surface and reference plane at an incidence angle, respectively. The deformed fringe pattern in the same line of the dynamic detected arm is captured by the line-scan CCD camera with free trigger model, and the deformed fringe pattern is recorded in the personal computer for processing. A fast Fourier transform combining with a filtering and spectrum shifting method is used to extract the phase information caused by the profile of the detected object. Thus, the object surface profile can be obtained following the geometric relationship between the fringe deformation and the object surface height. Furthermore, the deformation procedure can be obtained line by line. Some experimental results are presented to prove the feasibility of the inspection system.

  7. Automatic detection system of shaft part surface defect based on machine vision

    NASA Astrophysics Data System (ADS)

    Jiang, Lixing; Sun, Kuoyuan; Zhao, Fulai; Hao, Xiangyang

    2015-05-01

    Surface physical damage detection is an important part of the shaft parts quality inspection and the traditional detecting methods are mostly human eye identification which has many disadvantages such as low efficiency, bad reliability. In order to improve the automation level of the quality detection of shaft parts and establish its relevant industry quality standard, a machine vision inspection system connected with MCU was designed to realize the surface detection of shaft parts. The system adopt the monochrome line-scan digital camera and use the dark-field and forward illumination technology to acquire images with high contrast; the images were segmented to Bi-value images through maximum between-cluster variance method after image filtering and image enhancing algorithms; then the mainly contours were extracted based on the evaluation criterion of the aspect ratio and the area; then calculate the coordinates of the centre of gravity of defects area, namely locating point coordinates; At last, location of the defects area were marked by the coding pen communicated with MCU. Experiment show that no defect was omitted and false alarm error rate was lower than 5%, which showed that the designed system met the demand of shaft part on-line real-time detection.

  8. Inspecting rapidly moving surfaces for small defects using CNN cameras

    NASA Astrophysics Data System (ADS)

    Blug, Andreas; Carl, Daniel; Höfler, Heinrich

    2013-04-01

    A continuous increase in production speed and manufacturing precision raises a demand for the automated detection of small image features on rapidly moving surfaces. An example are wire drawing processes where kilometers of cylindrical metal surfaces moving with 10 m/s have to be inspected for defects such as scratches, dents, grooves, or chatter marks with a lateral size of 100 μm in real time. Up to now, complex eddy current systems are used for quality control instead of line cameras, because the ratio between lateral feature size and surface speed is limited by the data transport between camera and computer. This bottleneck is avoided by "cellular neural network" (CNN) cameras which enable image processing directly on the camera chip. This article reports results achieved with a demonstrator based on this novel analogue camera - computer system. The results show that computational speed and accuracy of the analogue computer system are sufficient to detect and discriminate the different types of defects. Area images with 176 x 144 pixels are acquired and evaluated in real time with frame rates of 4 to 10 kHz - depending on the number of defects to be detected. These frame rates correspond to equivalent line rates on line cameras between 360 and 880 kHz, a number far beyond the available features. Using the relation between lateral feature size and surface speed as a figure of merit, the CNN based system outperforms conventional image processing systems by an order of magnitude.

  9. KSC-04PD-1091

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Workers attach a crane to one of the Rudder Speed Brake Actuators that are being removed from the orbiter Atlantis for shipment to the vendor for inspection. An actuator is a motor that moves the tail rudder back and forth to help steer it during landing and brake its speed. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. Atlantis is undergoing maintenance and inspection in the Orbiter Processing Facility for a future mission.

  10. KSC-04PD-1092

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Workers attach a crane to one of the Rudder Speed Brake Actuators that are being removed from the orbiter Atlantis for shipment to the vendor for inspection. An actuator is a motor that moves the tail rudder back and forth to help steer it during landing and brake its speed. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. Atlantis is undergoing maintenance and inspection in the Orbiter Processing Facility for a future mission.

  11. KSC-04PD-1094

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Workers ensure the safe removal of a Rudder Speed Brake Actuator from the orbiter Atlantis. This and three other actuators are being shipped to the vendor for inspection. An actuator is a motor that moves the tail rudder back and forth to help steer it during landing and brake its speed. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. Atlantis is undergoing maintenance and inspection in the Orbiter Processing Facility for a future mission.

  12. KSC-04PD-1090

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- This is a closeup of one of the Rudder Speed Brake Actuators that are being removed from the orbiter Atlantis for shipment to the vendor for inspection. An actuator is a motor that moves the tail rudder back and forth to help steer it during landing and brake its speed. The vertical tail consists of a structural fin surface made of aluminum, the Rudder Speed Brake surface, a tip and a lower trailing edge. The rudder splits into two halves to serve as a speed brake. The vertical tail and Rudder Speed Brake are covered with a reusable thermal protection system. Atlantis is undergoing maintenance and inspection in the Orbiter Processing Facility for a future mission.

  13. Development of a pseudo phased array technique using EMATs for DM weld testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobb, Adam C., E-mail: adam.cobb@swri.org; Fisher, Jay L., E-mail: adam.cobb@swri.org; Shiokawa, Nobuyuki

    2015-03-31

    Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS materialmore » in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.« less

  14. Cable and Line Inspection Mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  15. Cable and line inspection mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  16. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

    PubMed

    Blasco, José; Munera, Sandra; Aleixos, Nuria; Cubero, Sergio; Molto, Enrique

    Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

  17. Apparatus and method for inspecting a bearing ball

    NASA Technical Reports Server (NTRS)

    Bankston, B. F. (Inventor)

    1985-01-01

    A method and apparatus for inspecting the surface of a ball bearing is disclosed which includes a base having a high friction non-abrasive base scanning surface. A holding device includes a cone-shaped cup recess in which a ball element is received. Air is introduced through a passage to relieve friction between the wall of the recess and the ball element and facilitate rolling of the ball over the high friction base surface. The holding device is moved over the base scanning surface in a predetermined pattern such that the entire surface of the ball element is inspected byan eddy current probe which detects any surface defects.

  18. Optical microtopographic inspection of asphalt pavement surfaces

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.; Freitas, E. F.; Torres, H.; Cerezo, V.

    2017-08-01

    Microtopographic and rugometric characterization of surfaces is routinely and effectively performed non-invasively by a number of different optical methods. Rough surfaces are also inspected using optical profilometers and microtopographer. The characterization of road asphalt pavement surfaces produced in different ways and compositions is fundamental for economical and safety reasons. Having complex structures, including topographically with different ranges of form error and roughness, the inspection of asphalt pavement surfaces is difficult to perform non-invasively. In this communication we will report on the optical non-contact rugometric characterization of the surface of different types of road pavements performed at the Microtopography Laboratory of the Physics Department of the University of Minho.

  19. Northeast Inspection Services, Inc. boresonic inspection system evaluation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nottingham, L.D.; Sabourin, P.F.; Presson, J.H.

    1993-04-01

    Turbine rotor reliability and remaining life assessment are continuing concerns to electric utilities. Over the years, boresonic inspection and evaluation have served as primary components in rotor remaining life assessment. Beginning with an evaluation of TREES by EPRI in 1982, a series of reports that document the detection and sizing capabilities of several boresonic systems have been made available. These studies should provide utilities with a better understanding of system performance and lead to improved reliability when predicting rotor remaining life. In 1990, the procedures followed for evaluating rotor boresonic performance capabilities were changed to transfer a greater portion ofmore » the data analysis function to the participating vendor. This change from previous policy was instituted so that the evaluation results would better reflect the ``final answer`` that a vendor would provide in a real rotor inspection and also to reduce the cost of an evaluation. Among the first vendors to participate in the new performance demonstration was Northeast Inspection Services, Inc. (NISI). The tests reported herein were conducted by NISI personnel under the guidelines of the new plan. Details of the new evaluation plan are also presented. Rotor bore blocks containing surface-connected fatigue cracks, embedded glass beads, and embedded radial-axial oriented disks were used in the evaluation. Data were collected during twenty-five independent passes through the blocks. The evaluation consisted of statistical characterization of the detection capabilities, flaw sizing and location accuracy, and repeatability of the inspection system. The results of the evaluation are included in this report.« less

  20. 40 CFR 265.444 - Inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and run-off control systems; (2) The presence of leakage in and proper functioning of leakage detection system. (3) Deterioration or cracking of the drip pad surface. Note: See § 265.443(m) for remedial action required if deterioration or leakage is -detected. [55 FR 50486, Dec. 6, 1990, as amended at 71 FR...

  1. Fast in-situ tool inspection based on inverse fringe projection and compact sensor heads

    NASA Astrophysics Data System (ADS)

    Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard

    2016-11-01

    Inspection of machine elements is an important task in production processes in order to ensure the quality of produced parts and to gather feedback for the continuous improvement process. A new measuring system is presented, which is capable of performing the inspection of critical tool geometries, such as gearing elements, inside the forming machine. To meet the constraints on sensor head size and inspection time imposed by the limited space inside the machine and the cycle time of the process, the measuring device employs a combination of endoscopy techniques with the fringe projection principle. Compact gradient index lenses enable a compact design of the sensor head, which is connected to a CMOS camera and a flexible micro-mirror based projector via flexible fiber bundles. Using common fringe projection patterns, the system achieves measuring times of less than five seconds. To further reduce the time required for inspection, the generation of inverse fringe projection patterns has been implemented for the system. Inverse fringe projection speeds up the inspection process by employing object-adapted patterns, which enable the detection of geometry deviations in a single image. Two different approaches to generate object adapted patterns are presented. The first approach uses a reference measurement of a manufactured tool master to generate the inverse pattern. The second approach is based on a virtual master geometry in the form of a CAD file and a ray-tracing model of the measuring system. Virtual modeling of the measuring device and inspection setup allows for geometric tolerancing for free-form surfaces by the tool designer in the CAD-file. A new approach is presented, which uses virtual tolerance specifications and additional simulation steps to enable fast checking of metric tolerances. Following the description of the pattern generation process, the image processing steps required for inspection are demonstrated on captures of gearing geometries.

  2. Vehicle Emission Inspection and Maintenance (I/M) Provision in the Fixing America’s Surface Transportation (FAST) Act

    EPA Pesticide Factsheets

    This document is a memorandum regarding Vehicle Emission Inspection and Maintenance (I/M) Provision in Fixing America's Surface Transportation (FAST) Act, which provides long-term funding certainty for surface transportation infrastructure planning

  3. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight.

  4. Verification of cleaning efficiency and its possible role in programmed hygiene inspections of food businesses undertaken by local authority officers.

    PubMed

    Tebbutt, G; Bell, V; Aislabie, J

    2007-04-01

    The aim of this study was to determine whether or not the assessment of surface cleanliness could make a contribution to visual inspections of food premises. Forty-five premises were studied with both rapid (ATP) and traditional microbiological swabbing being used to test surfaces that either come into direct contact with prepared foods or were likely to be touched by hands during food preparation. A significant link was found between aerobic colony counts and ATP measurements. In most cases, the visual appearance of surfaces could not be used to accurately predict either microbial or ATP results. This study suggests that ATP testing is a useful indicator of surface cleanliness and could be helpful to local authority officers as part of risk assessment inspections. This study provides further evidence that visual inspection alone may not always be adequate to assess surface cleanliness. In high-risk premises, ATP could, if appropriately targeted, help identify potential problem areas. The results are available at the time of the inspection and can be used as an on-the-spot teaching aid.

  5. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  6. Real-time defect detection on highly reflective curved surfaces

    NASA Astrophysics Data System (ADS)

    Rosati, G.; Boschetti, G.; Biondi, A.; Rossi, A.

    2009-03-01

    This paper presents an automated defect detection system for coated plastic components for the automotive industry. This research activity came up as an evolution of a previous study which employed a non-flat mirror to illuminate and inspect high reflective curved surfaces. According to this method, the rays emitted from a light source are conveyed on the surface under investigation by means of a suitably curved mirror. After the reflection on the surface, the light rays are collected by a CCD camera, in which the coating defects appear as shadows of various shapes and dimensions. In this paper we present an evolution of the above-mentioned method, introducing a simplified mirror set-up in order to reduce the costs and the complexity of the defect detection system. In fact, a set of plane mirrors is employed instead of the curved one. Moreover, the inspection of multiple bend radius parts is investigated. A prototype of the machine vision system has been developed in order to test this simplified method. This device is made up of a light projector, a set of plane mirrors for light rays reflection, a conveyor belt for handling components, a CCD camera and a desktop PC which performs image acquisition and processing. Like in the previous system, the defects are identified as shadows inside a high brightness image. At the end of the paper, first experimental results are presented.

  7. Inspection of arterial-induced skin vibration by Moire fringe with two-dimensional continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Hsiung; Chiu, Shih-Yung; Hsu, Yu-Hsiang; Lee, Shu-Sheng; Lee, Chih-Kung

    2017-06-01

    A non-contact arterial-induced skin vibration inspection system is implemented. This optical metrology system is constructed with shadow Moiré configuration and the fringe analysis algorithm. Developed with the Region of Interested (ROI) capturing technique and the Two-dimensional Wavelet Transform (2D-CWT) method, this algorithm is able to retrieve the height-correlated phase information from the shadow Moiré fringe patterns. Using a commercial video camera or a CMOS image sensor, this system could monitor the skin-vibration induced by the cyclic deformation of inner layered artery. The cross-sectional variation and the rhythm of heart cycle could be continuously measured for health monitoring purposes. The average vibration amplitude of the artery at the wrist ranges between 20 μm and 50 μm, which is quite subtle comparing with the skin surface structure. Having the non-stationary motion of human body, the traditional phase shifting (PS) technique can be very unstable due to the requirement of several frames of images, especially for case that artery is continuously pumping. To bypass this fundamental issue, the shadow Moiré technique is introduced to enhance the surface deformation characteristic. And the phase information is retrieved by the means of spectrum filtering instead of PS technique, which the phase is calculated from intensity maps of multiple images. The instantaneous surface can therefore be reconstructed individually from each frame, enabling the subtle arterial-induced skin vibration measurement. The comparative results of phase reconstruction between different fringe analysis algorithms will be demonstrated numerically and experimentally. And the electrocardiography (ECG) results will used as the reference for the validity of health monitoring potential of the non-contact arterial-induced skin vibration inspection system.

  8. Flight set 360H005 (STS-28) seals, volume 4

    NASA Technical Reports Server (NTRS)

    Curry, Jeffrey T.

    1990-01-01

    The performance is assessed of the 360H005, Fifth flight, Redesigned Solid Rocket Motors (RSMR) in respect to joint sealing issues as seen from post flight inspection of the seals and sealing surfaces. The factory joint disassembly inspections have resumed for 360H005. The new factory joint grease application is in effect and now can be assessed during the disassembly process. The RSRM is illustrated consisting of capture feature field joints as is the J-joint insulation configuration. The nozzle-to-case joint design is also illustrated, which includes 100, 7/8 inch radial bolts in conjunction with a wiper O-ring and modified insulation design. The ignition system seals and a cross section of the igniter are illustrated. The configuration of all the internal nozzle joints are also shown. The postflight inspection of both motors showed the seal components to be in excellent condition except for the indentation found on the inner primary seal of the right hand inner igniter gasket, aft face. Detailed inspection results, and inspections performed by the O-ring Inspection Team are presented.

  9. Boiler Tube Corrosion Characterization with a Scanning Thermal Line

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Jacobstein, Ronald; Reilly, Thomas

    2001-01-01

    Wall thinning due to corrosion in utility boiler water wall tubing is a significant operational concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. Unfortunately, ultrasonic inspection is very manpower intense and slow. Therefore, thickness measurements are typically taken over a relatively small percentage of the total boiler wall and statistical analysis is used to determine the overall condition of the boiler tubing. Other inspection techniques, such as electromagnetic acoustic transducer (EMAT), have recently been evaluated, however they provide only a qualitative evaluation - identifying areas or spots where corrosion has significantly reduced the wall thickness. NASA Langley Research Center, in cooperation with ThermTech Services, has developed a thermal NDE technique designed to quantitatively measure the wall thickness and thus determine the amount of material thinning present in steel boiler tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed and accuracy for large structures such as boiler water walls. A theoretical basis for the technique will be presented to establish the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of the application of this technology to actual water wall tubing samples and in-situ inspections will be presented.

  10. Development of a lightweight portable optical measurement system for the print-through phenomenon of fiber-reinforced plastics

    NASA Astrophysics Data System (ADS)

    Shiou, Fang-Jung; Lai, Yao-Zih; Tsai, Min-Long

    2011-12-01

    Due to the volumetric shrinkage of the resin and the induced residual stress during the curing process, the reflection on the gel-coating layer surface will be imperfect if twists and wrinkles exist on the gel-coating surface. This phenomenon is denoted as print-through phenomenon (PTP). Currently, the detection of PTP for most of the yacht industry using the composite materials is performed mainly by visual inspection, and its quality is needed to be quantified to determine their grades. Therefore, there is a need to develop a lightweight portable optical measurement system that can be applied quickly to inspect different levels of PTP for the fiber-reinforced plastics (FRP) of the yacht body. The measurement system was developed based on the scattering principle of a reflected laser fringe projected on to the workpiece surface. Two indexes, namely the profile peak-valley height and wave-height of the Fast-Fourier Transform based on the centerline of the extracted image profile, were proposed to quantify the PTP of a test specimen. The mean line width of the extracted image was applied to evaluate the surface roughness of the test specimen, based on the scattering theorem. A set of software programmed with Borland C++ Builder language was developed to calculate the proposed indexes and the mean line width. The developed measurement system has been taken to some yacht factories to do the on-site measurements. The measurement results were, in general, consistent with the surface conditions of the polished surfaces.

  11. Broadband surface plasmon jets: direct observation of plasmon propagation for application to sensors and optical communications in microscale and nanoscale circuitry

    DOEpatents

    Bouhelier, Alexandre [Westmont, IL; Wiederrecht, Gary P [Elmhurst, IL

    2008-02-19

    A system and method for generating and using broadband surface plasmons in a metal film for characterization of analyte on or near the metal film. The surface plasmons interact with the analyte and generate leakage radiation which has spectral features which can be used to inspect, identify and characterize the analyte. The broadband plasmon excitation enables high-bandwidth photonic applications.

  12. Filter Enhances Fluorescent-Penetrant-Inspecting Borescope

    NASA Technical Reports Server (NTRS)

    Molina, Orlando G.

    1990-01-01

    Slip-on eyepiece for commercial ultraviolet-light borescope reduces both amount of short-wave ultraviolet light that reaches viewer's eye and apparent intensity of unwanted reflections of white light from surfaces undergoing inspection. Fits on stock eyepiece of borescope, which illuminates surface inspected with intense ultraviolet light. Surface, which is treated with fluorescent dye, emits bright-green visible light wherever dye penetrates - in cracks and voids. Eyepiece contains deep-yellow Wratten 15 (G) filter, which attenuates unwanted light strongly but passes yellow-green fluorescence so defects seen clearly.

  13. Defect Detection of Steel Surfaces with Global Adaptive Percentile Thresholding of Gradient Image

    NASA Astrophysics Data System (ADS)

    Neogi, Nirbhar; Mohanta, Dusmanta K.; Dutta, Pranab K.

    2017-12-01

    Steel strips are used extensively for white goods, auto bodies and other purposes where surface defects are not acceptable. On-line surface inspection systems can effectively detect and classify defects and help in taking corrective actions. For detection of defects use of gradients is very popular in highlighting and subsequently segmenting areas of interest in a surface inspection system. Most of the time, segmentation by a fixed value threshold leads to unsatisfactory results. As defects can be both very small and large in size, segmentation of a gradient image based on percentile thresholding can lead to inadequate or excessive segmentation of defective regions. A global adaptive percentile thresholding of gradient image has been formulated for blister defect and water-deposit (a pseudo defect) in steel strips. The developed method adaptively changes the percentile value used for thresholding depending on the number of pixels above some specific values of gray level of the gradient image. The method is able to segment defective regions selectively preserving the characteristics of defects irrespective of the size of the defects. The developed method performs better than Otsu method of thresholding and an adaptive thresholding method based on local properties.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlowski, M.F.; Maricle, S.; Mouser, R.

    A statistics-based model is being developed to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the model, laser damage experiments were performed on the Beamlet laser system at LLNL. An early prototype NIF focus lens was exposed to twenty 35 1 nm pulses at an average fluence of 5 J/cm{sup 2}, 3ns. Using a high resolution optic inspection system a total of 353 damage sites was detected within the 1160 cm{sup 2} beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse tomore » pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 {micro}m/pulse (surface diameter) were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately l0{micro}m/pulse. The lens was also used in Beamlet for a subsequent 1053 {micro}m/526 {micro}m campaign. The 352 {micro}m-initiated damage continued to grow during that campaign although at generally lower growth rate.« less

  15. Application of laser-based profilometry to tubing in power generating utilities

    NASA Astrophysics Data System (ADS)

    Doyle, James L.

    1995-05-01

    Over the past several years lasers have been employed in an ever widening number of applications in an incredibly diverse set of markets. In the area of nondestructive testing, however, laser-based systems have only recently made inroads into the commercial markets. About ten years ago QUEST Integrated, Inc., began working with the U.S. Navy to adapt the principal of laser triangulation to solve a serious maintenance related problem. The internal surfaces of marine boiler tubes were experiencing pitting and corrosion which had resulted in catastrophic shipboard failures. At that time, conventional visual methods only allowed operators to inspect the first eighteen inches of the tube using a rigid borescope. If any pits were located, a mechanical stylus mechanism was used to obtain an approximate depth measurement of the pit. The condition of the balance of the tube was then extrapolated based on this extremely limited amount of information. Often the worst pitting was found in the bends of the tube, which could not be inspected by the visual method. Finally, a catastrophic boiler failure on an aircraft carrier resulted in the initiation of a search by the U.S. Navy for a better solution. Quest was contracted to develop an articulated probe which could negotiate the full length of a boiler tube with multiple bends, and generate a complete digital map of the inside surface. A key requirement of this probe would be rapid and quantitative measurement of internal features such as ID pits and corrosion. In 1987 QUEST delivered the first laser- optic tube inspection system to the U.S. Navy for use in marine boiler tubes. The Laser Optic Tube Inspection System (LOTISTM) was immediately put to use and paid for itself many times over in reduced maintenance costs. Over the next six years several generations of LOTIS were developed for the U.S. Navy, each one providing more capabilities, improved inspection speeds, and more user friendly operator interface. Today, LOTIS is used for routine inspections on marine boiler tubes by the U.S. Navy, with units located in several parts of the United States and overseas. In 1993 QUEST began exploring the possibility of extending this technology to the inspection of commercial tubes used in power generation and chemical processing. The following is an overview of the use of laser profilometry for nondestructive testing.

  16. Development of a High Level Waste Tank Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, D.K.; Loibl, M.W.; Meese, D.C.

    1995-03-21

    The Westinghouse Savannah River Technology Center was requested by it`s sister site, West Valley Nuclear Service (WVNS), to develop a remote inspection system to gather wall thickness readings of their High Level Waste Tanks. WVNS management chose to take a proactive approach to gain current information on two tanks t hat had been in service since the early 70`s. The tanks contain high level waste, are buried underground, and have only two access ports to an annular space between the tank and the secondary concrete vault. A specialized remote system was proposed to provide both a visual surveillance and ultrasonicmore » thickness measurements of the tank walls. A magnetic wheeled crawler was the basis for the remote delivery system integrated with an off-the-shelf Ultrasonic Data Acquisition System. A development program was initiated for Savannah River Technology Center (SRTC) to design, fabricate, and test a remote system based on the Crawler. The system was completed and involved three crawlers to perform the needed tasks, an Ultrasonic Crawler, a Camera Crawler, and a Surface Prep Crawler. The crawlers were computer controlled so that their operation could be done remotely and their position on the wall could be tracked. The Ultrasonic Crawler controls were interfaced with ABB Amdata`s I-PC, Ultrasonic Data Acquisition System so that thickness mapping of the wall could be obtained. A second system was requested by Westinghouse Savannah River Company (WSRC), to perform just ultrasonic mapping on their similar Waste Storage Tanks; however, the system needed to be interfaced with the P-scan Ultrasonic Data Acquisition System. Both remote inspection systems were completed 9/94. Qualifications tests were conducted by WVNS prior to implementation on the actual tank and tank development was achieved 10/94. The second inspection system was deployed at WSRC 11/94 with success, and the system is now in continuous service inspecting the remaining high level waste tanks at WSRC.« less

  17. 77 FR 49708 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... done in accordance with Figure 24, Steel Part Surface Inspection (Impedance Plane Display), Subject 51... 30, 2012. (ii) Figure 24, Steel Part Surface Inspection (Impedance Plane Display), Subject 51-00-00...

  18. Surface inspection system for carriage parts

    NASA Astrophysics Data System (ADS)

    Denkena, Berend; Acker, Wolfram

    2006-04-01

    Quality standards are very high in carriage manufacturing, due to the fact, that the visual quality impression is highly relevant for the purchase decision for the customer. In carriage parts even very small dents can be visible on the varnished and polished surface by observing reflections. The industrial demands are to detect these form errors on the unvarnished part. In order to meet the requirements, a stripe projection system for automatic recognition of waviness and form errors is introduced1. It bases on a modified stripe projection method using a high resolution line scan camera. Particular emphasis is put on achieving a short measuring time and a high resolution in depth, aiming at a reliable automatic recognition of dents and waviness of 10 μm on large curved surfaces of approximately 1 m width. The resulting point cloud needs to be filtered in order to detect dents. Therefore a spatial filtering technique is used. This works well on smoothly curved surfaces, if frequency parameters are well defined. On more complex parts like mudguards the method is restricted by the fact that frequencies near the define dent frequencies occur within the surface as well. To allow analysis of complex parts, the system is currently extended by including 3D CAD models into the process of inspection. For smoothly curved surfaces, the measuring speed of the prototype is mainly limited by the amount of light produced by the stripe projector. For complex surfaces the measuring speed is limited by the time consuming matching process. Currently, the development focuses on the improvement of the measuring speed.

  19. Using Optically Stimulated Electron Emission as an Inspection Method to Monitor Surface Contamination

    NASA Technical Reports Server (NTRS)

    Lingbloom, Mike S.

    2008-01-01

    During redesign of the Space Shuttle reusable solid rocket motor (RSRM), NASA amended the contract with ATK Launch Systems (then Morton Thiokol Inc.) with Change Order 966 to implement a contamination control and cleanliness verification method. The change order required: (1) A quantitative inspection method (2) A written record of actual contamination levels versus a known reject level (3) A method that is more sensitive than existing methods of visual and black light inspection. Black light inspection is only useful for inspection of contaminants that fluoresce near the 365 nm spectral line and is not useful for inspection of most silicones that will not produce strong fluorescence. Black light inspection conducted by a qualified inspector under controlled light is capable of detecting Conoco HD-2 grease in gross amounts and is very subjective due to operator sensitivity. Optically stimulated electron emission (OSEE), developed at the Materials and Process Laboratory at Marshall Space Flight Center (MSFC), was selected to satisfy Change Order 966. OSEE offers several important advantages over existing laboratory methods with similar sensitivity, e.g., spectroscopy and nonvolatile residue sampling, which provide turn around time, real time capability, and full coverage inspection capability. Laboratory methods require sample gathering and in-lab analysis, which sometimes takes several days to get results. This is not practical in a production environment. In addition, these methods do not offer full coverage inspection of the large components

  20. Application of X-ray television image system to observation in solid rocket motor

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Ito, K.; Tanemura, T.; Shimizu, M.; Godai, T.

    The X-ray television image system is used to observe the solid propellant burning surface during rocket motor operation as well as to inspect defects in solid rocket motors in a real time manner. This system can test 200 mm diameter dummy propellant rocket motors with under 2 percent discriminative capacity. Viewing of a 50 mm diameter internal-burning rocket motor, propellant burning surface time transition and propellant burning process of the surroundings of artificial defects were satisfactorily observed. The system was demonstrated to be effective for nondestructive testing and combustion research of solid rocket motors.

  1. Infrared thermographic evaluation of marine composite structures

    NASA Astrophysics Data System (ADS)

    Jones, Thomas S.

    1995-06-01

    Glass fiber composite materials have been used for many years in the construction of pleasure, cruising, and racing marine vessels. These vessels have demonstrated excellent performance characteristics and have been reliable in service. Even so, as with all material systems, they are subject to damage from accident, neglect, and abuse. Traditional nondestructive inspection approaches are not always fully effective for examining composite marine structures. Infrared imaging offers a particularly attractive approach for the inspection of composite material structures. Glass fiber composites frequently possess a combination of thermal properties that make them good candidates for infrared thermographic evaluation while other nondestructive evaluation approaches provide limited success. Infrared thermography combines the advantages of being nondestructive with the capability of rapidly inspecting wide surface areas.

  2. Machine vision systems using machine learning for industrial product inspection

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony

    2002-02-01

    Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.

  3. Development of online lines-scan imaging system for chicken inspection and differentiation

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Chan, Diane E.; Chao, Kuanglin; Chen, Yud-Ren; Kim, Moon S.

    2006-10-01

    An online line-scan imaging system was developed for differentiation of wholesome and systemically diseased chickens. The hyperspectral imaging system used in this research can be directly converted to multispectral operation and would provide the ideal implementation of essential features for data-efficient high-speed multispectral classification algorithms. The imaging system consisted of an electron-multiplying charge-coupled-device (EMCCD) camera and an imaging spectrograph for line-scan images. The system scanned the surfaces of chicken carcasses on an eviscerating line at a poultry processing plant in December 2005. A method was created to recognize birds entering and exiting the field of view, and to locate a Region of Interest on the chicken images from which useful spectra were extracted for analysis. From analysis of the difference spectra between wholesome and systemically diseased chickens, four wavelengths of 468 nm, 501 nm, 582 nm and 629 nm were selected as key wavelengths for differentiation. The method of locating the Region of Interest will also have practical application in multispectral operation of the line-scan imaging system for online chicken inspection. This line-scan imaging system makes possible the implementation of multispectral inspection using the key wavelengths determined in this study with minimal software adaptations and without the need for cross-system calibration.

  4. 77 FR 31762 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ..., Steel Part Surface Inspection (Impedance Plane Display), of Part 6, Eddy Current, of the Boeing 707, 720... Subject 51-00-00 Figure 24, Steel Part Surface Inspection (Impedance Plane Display), of Part 6, Eddy...

  5. A Novel Active Imaging Model to Design Visual Systems: A Case of Inspection System for Specular Surfaces

    PubMed Central

    Azorin-Lopez, Jorge; Fuster-Guillo, Andres; Saval-Calvo, Marcelo; Mora-Mora, Higinio; Garcia-Chamizo, Juan Manuel

    2017-01-01

    The use of visual information is a very well known input from different kinds of sensors. However, most of the perception problems are individually modeled and tackled. It is necessary to provide a general imaging model that allows us to parametrize different input systems as well as their problems and possible solutions. In this paper, we present an active vision model considering the imaging system as a whole (including camera, lighting system, object to be perceived) in order to propose solutions to automated visual systems that present problems that we perceive. As a concrete case study, we instantiate the model in a real application and still challenging problem: automated visual inspection. It is one of the most used quality control systems to detect defects on manufactured objects. However, it presents problems for specular products. We model these perception problems taking into account environmental conditions and camera parameters that allow a system to properly perceive the specific object characteristics to determine defects on surfaces. The validation of the model has been carried out using simulations providing an efficient way to perform a large set of tests (different environment conditions and camera parameters) as a previous step of experimentation in real manufacturing environments, which more complex in terms of instrumentation and more expensive. Results prove the success of the model application adjusting scale, viewpoint and lighting conditions to detect structural and color defects on specular surfaces. PMID:28640211

  6. Thin Wall Pipe Ultrasonic Inspection through Paint Coating

    NASA Astrophysics Data System (ADS)

    Predoi, Mihai Valentin; Petre, Cristian Cătălin

    Classical ultrasonic inspection of welds is currently done for plates thicker than 8 mm. The inspection of but welds in thin walled pipes has considerable implementation difficulties, due to guided waves dominating ultrasonic pulses propagation. Generation of purely symmetric modes, either torsional or longitudinal, requires a circumferential uniform distribution of transducers and dedicated inspection equipment, which are increasing the inspection costs. Moreover, if the surface is paint coated, the received signals are close to the detection level. The present work implies a single transducer, coupled to the painted surface. The proper choice of the guided mode and frequency range, allows the detection of a standard, small diameter through thickness hole. In this way, the inspection of pipe welds can use the same equipment as for thick materials, with only wedge adaptation.

  7. Apparatus for inspecting a group of containers and method of using same

    DOEpatents

    Lee, Jr., James H.; Salton, Jonathan R [Albuquerque, NM; Spletzer, Barry L [Albuquerque, NM

    2012-02-28

    An apparatus and method for inspecting a plurality of containers are provided. Each container has an outer surface for housing at least one material therein. The techniques provided involve at least one inspection vehicle and at least one detector. Each inspection vehicle has a plurality of wheels for movably positioning about the plurality of containers. The wheels may have at least one magnet for selectively adhering to the outer surface of at least one of the containers whereby the inspection vehicle traverses the container(s). The detector is positionable proximate at least one of the containers. The detector may be deployable from the inspection vehicle to a position adjacent the container(s). The detector has at least one sensor for measuring at least one characteristic of the plurality of containers. At least one base station may be provided for communicating with the inspection vehicle(s) and/or detector(s).

  8. Analysis and 3D inspection system of drill holes in aeronautical surfaces

    NASA Astrophysics Data System (ADS)

    Rubio, R.; Granero, L.; Sanz, M.; García, J.; Micó, V.

    2017-06-01

    In aerospace industry, the structure of the aircraft is assembled using small parts or a combination of them that are made with different materials, such as for instance aluminium, titanium, composites or even 3D printed parts. The union between these small parts is a critical point for the integrity of the aircraft. The quality of this union will decide the fatigue of adjacent components and therefore the useful life of them. For the union process the most extended method is the rivets, mainly because their low cost and easy manufacturing. For this purpose it is necessary to made drill holes in the aeronautical surface to insert the rivets. In this contribution, we present the preliminary results of a 3D inspection system [1] for drill holes analysis in aeronautical surfaces. The system, based in optical triangulation, was developed by the Group of Optoelectronic Image Processing from the University of Valencia in the framework of the Airbus Defence and Space (AD&S), MINERVA project (Manufacturing industrial - means emerging from validated automation). The capabilities of the system permits to generate a point cloud with 3D information and GD&T (geometrical dimensions and tolerances) characteristics of the drill hole. For the inner surface defects detection, the system can generate an inner image of the drill hole with a scaled axis to obtain the defect position. In addition, we present the analysis performed for the drills in the wing station of the A-400 M. In this analysis the system was tested for diameters in the range of [10 - 15.96] mm, and for Carbon Fibre.

  9. Applied algorithm in the liner inspection of solid rocket motors

    NASA Astrophysics Data System (ADS)

    Hoffmann, Luiz Felipe Simões; Bizarria, Francisco Carlos Parquet; Bizarria, José Walter Parquet

    2018-03-01

    In rocket motors, the bonding between the solid propellant and thermal insulation is accomplished by a thin adhesive layer, known as liner. The liner application method involves a complex sequence of tasks, which includes in its final stage, the surface integrity inspection. Nowadays in Brazil, an expert carries out a thorough visual inspection to detect defects on the liner surface that may compromise the propellant interface bonding. Therefore, this paper proposes an algorithm that uses the photometric stereo technique and the K-nearest neighbor (KNN) classifier to assist the expert in the surface inspection. Photometric stereo allows the surface information recovery of the test images, while the KNN method enables image pixels classification into two classes: non-defect and defect. Tests performed on a computer vision based prototype validate the algorithm. The positive results suggest that the algorithm is feasible and when implemented in a real scenario, will be able to help the expert in detecting defective areas on the liner surface.

  10. 40 CFR 265.1089 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Inspection and monitoring requirements..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1089 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor...

  11. 40 CFR 265.1089 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Inspection and monitoring requirements..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1089 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor...

  12. 40 CFR 265.1089 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Inspection and monitoring requirements..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1089 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor...

  13. 40 CFR 265.1089 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Inspection and monitoring requirements..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1089 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor...

  14. 40 CFR 265.1089 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Inspection and monitoring requirements..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1089 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor...

  15. Evaluation of fiber reinforced polymers using active infrared thermography system with thermoelectric cooling modules

    NASA Astrophysics Data System (ADS)

    Chady, Tomasz; Gorący, Krzysztof

    2018-04-01

    Active infrared thermography is increasingly used for nondestructive testing of various materials. Properties of this method are creating a unique possibility to utilize it for inspection of composites. In the case of active thermography, an external energy source is usually used to induce a thermal contrast inside tested objects. The conventional heating methods (like halogen lamps or flash lamps) are utilized for this purpose. In this study, we propose to use a cooling unit. The proposed system consists of a thermal imaging infrared camera, which is used to observe the surface of the inspected specimen and a specially designed cooling unit with thermoelectric modules (the Peltier modules).

  16. Ultrasonic angle beam standard reflector. [ultrasonic nondestructive inspection

    NASA Technical Reports Server (NTRS)

    Berry, R. F., Jr. (Inventor)

    1985-01-01

    A method that provides an impression profile in a reference standard material utilized in inspecting critically stressed components with pulsed ultrasound is described. A die stamp having an I letter is used to impress the surface of a reference material. The die stamp is placed against the surface and struck with an inertia imparting member to impress the I in the reference standard material. Upset may appear on the surface as a result of the impression and is removed to form a smooth surface. The stamping and upset removal is repeated until the entire surface area of a depth control platform on the die stamp uniformly contacts the material surface. The I impression profile in the reference standard material is utilized for reflecting pulsed ultrasonic beams for inspection purposes.

  17. 30 CFR 56.4201 - Inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...

  18. 30 CFR 56.4201 - Inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...

  19. 30 CFR 56.4201 - Inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...

  20. 30 CFR 56.4201 - Inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...

  1. Textural analyses of carbon fiber materials by 2D-FFT of complex images obtained by high frequency eddy current imaging (HF-ECI)

    NASA Astrophysics Data System (ADS)

    Schulze, Martin H.; Heuer, Henning

    2012-04-01

    Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.

  2. Search for life on Mars.

    PubMed

    Brack, A; Clancy, P; Fitton, B; Hoffmann, B; Horneck, G; Kurat, G; Maxwell, J; Ori, G; Pillinger, C; Raulin, F; Thomas, N; Westall, F

    1998-06-01

    A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes: -Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. -Subsurface sample acquisition by core drilling -Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyse the mineralogy of subsurface aliquots, to analyse the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). -Macroscopic and microscopic inspection of subsurface aliquots to search for life's indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate.

  3. 40 CFR 264.1088 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Inspection and monitoring requirements... FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1088 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor air emission control equipment...

  4. 40 CFR 264.1088 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Inspection and monitoring requirements... FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1088 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor air emission control equipment...

  5. 40 CFR 264.1088 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Inspection and monitoring requirements... FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1088 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor air emission control equipment...

  6. 40 CFR 264.1088 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Inspection and monitoring requirements... FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1088 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor air emission control equipment...

  7. 40 CFR 264.1088 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Inspection and monitoring requirements... FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1088 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor air emission control equipment...

  8. 30 CFR 912.842 - Federal inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.842 Federal inspections... regarding inspections conducted pursuant to this section to the Office of the Idaho Attornery General upon...

  9. Electromagnetic Acoustic Transducers for Robotic Nondestructive Inspection in Harsh Environments.

    PubMed

    Choi, Sungho; Cho, Hwanjeong; Lindsey, Matthew S; Lissenden, Cliff J

    2018-01-11

    Elevated temperature, gamma radiation, and geometric constraints inside dry storage casks for spent nuclear fuel represent a harsh environment for nondestructive inspection of the cask and require that the inspection be conducted with a robotic system. Electromagnetic acoustic transducers (EMATs) using non-contact ultrasonic transduction based on the Lorentz force to excite/receive ultrasonic waves are suited for use in the robotic inspection. Periodic permanent magnet EMATs that actuate/receive shear horizontal guided waves are developed for application to robotic nondestructive inspection of stress corrosion cracks in the heat affected zone of welds in stainless steel dry storage canisters. The EMAT's components are carefully selected in consideration of the inspection environment, and tested under elevated temperature and gamma radiation doses up to 177 °C and 5920 krad, respectively, to evaluate the performance of the EMATs under realistic environmental conditions. The effect of gamma radiation is minimal, but the EMAT's performance is affected by temperatures above 121 °C due to the low Curie temperature of the magnets. Different magnets are needed to operate at 177 °C. The EMAT's capability to detect notches is also evaluated from B-scan measurements on 304 stainless steel welded plate containing surface-breaking notches.

  10. A vision-based weld quality evaluation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, R.J.; Cook, G.E.; Strauss, A.M.

    1996-12-31

    Inspection of the appearance of weld beads is an integral part of the overall welding process. Lack of satisfactory appearance in itself may be sufficient grounds for part rejection or the lack of satisfactory appearance may be used as an indirect indicator of more substantive problems such as poor fusion or subsurface cracks. In all cases the inspection process tends to be both time and labor intensive. The present research uses a video system and appropriate image capture and processing to determine the quality of the weld based upon surface appearance. This relative quality rating was compared to similar ratingsmore » performed by human inspectors and was found to give very good correlation. The system was implemented for the Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes.« less

  11. 30 CFR 56.7003 - Drill area inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill area inspection. 56.7003 Section 56.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7003 Drill area inspection. The drilling area shall be inspected for hazards before...

  12. 30 CFR 56.7003 - Drill area inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill area inspection. 56.7003 Section 56.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7003 Drill area inspection. The drilling area shall be inspected for hazards before...

  13. 30 CFR 56.7003 - Drill area inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill area inspection. 56.7003 Section 56.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7003 Drill area inspection. The drilling area shall be inspected for hazards before...

  14. 30 CFR 56.7003 - Drill area inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill area inspection. 56.7003 Section 56.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7003 Drill area inspection. The drilling area shall be inspected for hazards before...

  15. 30 CFR 56.7003 - Drill area inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill area inspection. 56.7003 Section 56.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7003 Drill area inspection. The drilling area shall be inspected for hazards before...

  16. Evolutionary Design of a Robotic Material Defect Detection System

    NASA Technical Reports Server (NTRS)

    Ballard, Gary; Howsman, Tom; Craft, Mike; ONeil, Daniel; Steincamp, Jim; Howell, Joe T. (Technical Monitor)

    2002-01-01

    During the post-flight inspection of SSME engines, several inaccessible regions must be disassembled to inspect for defects such as cracks, scratches, gouges, etc. An improvement to the inspection process would be the design and development of very small robots capable of penetrating these inaccessible regions and detecting the defects. The goal of this research was to utilize an evolutionary design approach for the robotic detection of these types of defects. A simulation and visualization tool was developed prior to receiving the hardware as a development test bed. A small, commercial off-the-shelf (COTS) robot was selected from several candidates as the proof of concept robot. The basic approach to detect the defects was to utilize Cadmium Sulfide (CdS) sensors to detect changes in contrast of an illuminated surface. A neural network, optimally designed utilizing a genetic algorithm, was employed to detect the presence of the defects (cracks). By utilization of the COTS robot and US sensors, the research successfully demonstrated that an evolutionarily designed neural network can detect the presence of surface defects.

  17. Portable sandblaster cleans small areas

    NASA Technical Reports Server (NTRS)

    Severin, H. J.

    1966-01-01

    Portable sandblasting unit rapidly and effectively cleans localized areas on a metal surface. The unit incorporates a bellows enclosure, masking plate, sand container, and used sand accummulator connected to a vacuum system. The bellows is equipped with an inspection window and light for observation of the sanding operation.

  18. Advanced road scene image segmentation and pavement evaluation using neural networks.

    DOT National Transportation Integrated Search

    2010-01-01

    The current project, funded by MIOH-UTC for the period 9/1/2009-8/31/2010, continues our : efforts in designing an image processing based pavement inspection system for the : assessment of highway surface conditions. One of the most important tasks i...

  19. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  20. Development of standardized inspections in restaurants using visual assessments and microbiological sampling to quantify the risks.

    PubMed Central

    Tebbutt, G. M.

    1991-01-01

    The relationship between visual inspections carried out by environmental health officers and microbiological examination was studied in 89 restaurants. Using 30 variables a standardized inspection procedure was developed and each of the premises was assessed in six main areas-structure and design, cleaning and cleanliness, personal hygiene, risk of contamination, temperature control, and training and knowledge about food hygiene. Selected foods and specimens from hands, surfaces, and wiping cloths were examined. There were significant associations between all six areas of the inspections. The structure and design were significantly related to the combined score from all the other areas (P less than 0.001). There were no highly significant associations between microbiological examination and visual assessments. The microbial contamination of wiping cloths, however, was related to the cleaning and cleanliness (P = 0.005). Microbial sampling provided additional information to inspections and was a valuable aid. Further development of this risk-assessment approach could provide an effective system for monitoring potential health risks in high-risk food premises. PMID:1936161

  1. KSC-99pd-812-03

    NASA Image and Video Library

    1999-08-01

    KENNEDY SPACE CENTER, FLA. -- KSC workers stand inside the payload bay of the orbiter Columbia following completion of electrical wiring inspections. In the background is the open cable tray with the wiring. During launch of Columbia on mission STS-93, a damaged wire caused a short circuit in two separate main engine controllers. As a result of the findings, Shuttle program managers decided to conduct inspections of the wiring in Endeavour's payload bay before its next mission, STS-99. The inspection and possible repair work will lead to a delayed launch date no earlier than Oct.7. The primary payload of the mission is the Shuttle Radar Topography Mission, a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled

  2. KSC-99pd-812-01

    NASA Image and Video Library

    1999-08-01

    KENNEDY SPACE CENTER, FLA. -- KSC workers stand inside the payload bay of the orbiter Columbia following completion of electrical wiring inspections. At right, behind and below them is the cable tray with the wiring. During launch of Columbia on mission STS-93, a damaged wire caused a short circuit in two separate main engine controllers. As a result of the findings, Shuttle program managers decided to conduct inspections of the wiring in Endeavour's payload bay before its next mission, STS-99. The inspection and possible repair work will lead to a delayed launch date no earlier than Oct.7. The primary payload of the mission is the Shuttle Radar Topography Mission, a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled

  3. Enhanced automated spiral bevel gear inspection

    NASA Technical Reports Server (NTRS)

    Frint, Harold K.; Glasow, Warren

    1992-01-01

    Presented here are the results of a manufacturing and technology program to define, develop, and evaluate an enhanced inspection system for spiral bevel gears. The method uses a multi-axis coordinate measuring machine which maps the working surface of the tooth and compares it with nominal reference values stored in the machine's computer. The enhanced technique features a means for automatically calculating corrective grinding machine settings, involving both first and second order changes, to control the tooth profile to within specified tolerance limits. This enhanced method eliminates the subjective decision making involved in the tooth patterning method, still in use today, which compares contract patterns obtained when the gear is set to run under light load in a rolling test machine. It produces a higher quality gear with significant inspection time and cost savings.

  4. Surface quality and topographic inspection of variable compliance part after precise turning

    NASA Astrophysics Data System (ADS)

    Nieslony, P.; Krolczyk, G. M.; Wojciechowski, S.; Chudy, R.; Zak, K.; Maruda, R. W.

    2018-03-01

    The paper presents the problem of precise turning of the mould parts with variable compliance and demonstrates a topographic inspection of the machined surface quality. The study was conducted for the cutting tools made of cemented carbide with coatings, in a range of variable cutting parameters. The long shaft with special axial hole, made of hardened 55NiCrMoV6 steel was selected as a workpiece. The carried out study included the stiffness measurement of the machining system, as well as the investigation of cutting force components. In this context, the surface topography parameters were evaluated using the stylus profile meter and analysed. The research revealed that the surface topography, alongside the 3D functional parameters, and PSD influences the performance of the machined surface. The lowest surface roughness parameters values, equalled to Sa = 1 μm and Sz = 4.3 μm have been obtained during turning with cutting speed vc = 90 m/min. The stable turning of variable compliance part affects the surface texture formation with a unidirectional perpendicular, anisotropic structure. Nevertheless, in case of unstable turning, the characteristic chatter marks are observed, and process dynamics has greater contribution in formation of surface finish than turning kinematics and elastic plastic deformation of workpiece.

  5. Infrared deflectometry for the inspection of diffusely specular surfaces

    NASA Astrophysics Data System (ADS)

    Höfer, Sebastian; Burke, Jan; Heizmann, Michael

    2016-12-01

    Deflectometry is a full-field gradient technique that lends itself very well to testing specular surfaces. It uses the geometry of specular reflection to determine the gradient of the surface under inspection. In consequence, a necessary precondition to apply deflectometry is the presence of at least partially specular reflection. Surfaces with larger roughness have increasingly diffuse reflection characteristics, making them inaccessible to usual deflectometry. However, many industrially relevant surfaces exist that change their reflection characteristic during production and processing. An example is metal sheets that are used as car body parts. Whereas the molded but otherwise raw metal sheets show a mostly diffuse reflection without sufficient specular reflection, the final car body panels have a high specular reflectance due to the lacquering. In consequence, it would be advantageous to apply the same inspection approach both for the raw material and for the final product. To solve this challenge, specular reflection from rough surfaces can be achieved using light with a larger wavelength, as the specular reflectivity of a surface depends on the ratio of the surface roughness and the wavelength of the light applied. Wavelengths in the thermal infrared range create enough specular reflection to apply deflectometry on many visually rough metal surfaces. This contribution presents the principles of thermal deflectometry, its special challenges, and illustrates its use with examples from the inspection of industrially produced surfaces.

  6. 9 CFR 381.76 - Post-mortem inspection, when required; extent; traditional, Streamlined Inspection System (SIS...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Post-mortem inspection, when required... INSPECTION REGULATIONS Post Mortem Inspection; Disposition of Carcasses and Parts § 381.76 Post-mortem...) Inspection System and the New Turkey Inspection (NTI) System; rate of inspection. (a) A post-mortem...

  7. 9 CFR 381.76 - Post-mortem inspection, when required; extent; traditional, Streamlined Inspection System (SIS...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Post-mortem inspection, when required... INSPECTION REGULATIONS Post Mortem Inspection; Disposition of Carcasses and Parts § 381.76 Post-mortem...) Inspection System and the New Turkey Inspection (NTI) System; rate of inspection. (a) A post-mortem...

  8. 9 CFR 381.76 - Post-mortem inspection, when required; extent; traditional, Streamlined Inspection System (SIS...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Post-mortem inspection, when required... INSPECTION REGULATIONS Post Mortem Inspection; Disposition of Carcasses and Parts § 381.76 Post-mortem...) Inspection System and the New Turkey Inspection (NTI) System; rate of inspection. (a) A post-mortem...

  9. 9 CFR 381.76 - Post-mortem inspection, when required; extent; traditional, Streamlined Inspection System (SIS...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Post-mortem inspection, when required... INSPECTION REGULATIONS Post Mortem Inspection; Disposition of Carcasses and Parts § 381.76 Post-mortem...) Inspection System and the New Turkey Inspection (NTI) System; rate of inspection. (a) A post-mortem...

  10. 40 CFR 63.4567 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hazardous Air Pollutants for Surface Coating of Plastic Parts and Products Compliance Requirements for the... procedures. If problems are found during the catalyst activity test, you must replace the catalyst bed or... inspection of the catalytic oxidizer system, including the burner assembly and fuel supply lines for problems...

  11. 40 CFR 63.4567 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Hazardous Air Pollutants for Surface Coating of Plastic Parts and Products Compliance Requirements for the... procedures. If problems are found during the catalyst activity test, you must replace the catalyst bed or... inspection of the catalytic oxidizer system, including the burner assembly and fuel supply lines for problems...

  12. IR-based spot weld NDT in automotive applications

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that utilizes the relative IR intensity change, so that the influence of surface reflection and environment interference can be reduced. Second, for the post-processing inspection, a special induction heater is used to replace the flash lamp, resulting in temperature changes on the order of 10°C. As a result, the signal-to-noise ratio increased by several orders of magnitudes with no surface painting needed, and the inspection results are more accurate and reliable. For real-time inspection, the heat from welding (with temperature exceeding 1000°C) was utilized. Third, "thermal signatures" were identified to uniquely correlate to different weld quality attributes through computational modeling of heat transfer and extensive testing of specially designed ranges of welding conditions. Novel IR image analysis algorithms that automatically and intelligently identify the "thermal signatures" from the IR images and positively determine the weld quality in less than a second were developed.

  13. Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators

    NASA Technical Reports Server (NTRS)

    Trolinger, James; Lal, Amit; Jo, Joshua; Kupiec, Stephen

    2012-01-01

    For many aspheric and freeform optical components, existing interferometric solutions require a custom computer-generated hologram (CGH) to characterize the part. The overall objective of this research is to develop hardware and a procedure to produce a combined, dynamic, Hartmann/ Digital Holographic interferometry inspection system for a wide range of advanced optical components, including aspheric and freeform optics. This new instrument would have greater versatility and dynamic range than currently available measurement systems. The method uses a spatial light modulator to pre-condition wavefronts for imaging, interferometry, and data processing to improve the resolution and versatility of an optical inspection instrument. Existing interferometers and Hartmann inspection systems have either too small a dynamic range or insufficient resolution to characterize conveniently unusual optical surfaces like aspherical and freeform optics. For interferometers, a specially produced, computer-generated holographic optical element is needed to transform the wavefront to within the range of the interferometer. A new hybrid wavefront sensor employs newly available spatial light modulators (SLMs) as programmable holographic optical elements (HOEs). The HOE is programmed to enable the same instrument to inspect an optical element in stages, first by a Hartmann measurement, which has a very large dynamic range but less resolution. The first measurement provides the information required to precondition a reference wave that avails the measurement process to the more precise phase shifting interferometry. The SLM preconditions a wavefront before it is used to inspect an optical component. This adds important features to an optical inspection system, enabling not just wavefront conditioning for null testing and dynamic range extension, but also the creation of hybrid measurement procedures. This, for example, allows the combination of dynamic digital holography and Hartmann sensing procedures to cover a virtually unlimited dynamic range with high resolution. Digital holography technology brings all of the power and benefits of digital holographic interferometry to the requirement, while Hartmann-type wavefront sensors bring deflectometry technologies to the solution. The SLM can be used to generate arbitrary wavefronts in one leg of the interferometer, thereby greatly simplifying its use and extending its range. The SLM can also be used to modify the system into a dynamic Shack-Hartmann system, which is useful for optical components with large amounts of slope. By integrating these capabilities into a single instrument, the system will have tremendous flexibility to measure a variety of optical shapes accurately.

  14. [Nondestructive Evaluation (NDE) Capabilities

    NASA Technical Reports Server (NTRS)

    Born, Martin

    2010-01-01

    These poster boards display the United Space Alliance's (USA) systems and equipment used for Nondestructive Evaluation. These include: (1) the Robotic Inspection Facility, (2) CAT-Scan and Laminography, (3) Laser Surface Profilometry, (4) Remote Eddy Current, (5) Ultrasonic Phased Array, (7) Infrared Flash Thermography, and (8) Backscatter X-Ray (BSX)

  15. Panoramic optical-servoing for industrial inspection and repair

    NASA Astrophysics Data System (ADS)

    Sallinger, Christian; O'Leary, Paul; Retschnig, Alexander; Kammerhofer, Martin

    2004-05-01

    Recently specialized robots were introduced to perform the task of inspection and repair in large cylindrical structures such as ladles, melting furnaces and converters. This paper reports on the image processing system and optical servoing for one such a robot. A panoramic image of the vessels inner surface is produced by performing a coordinated robot motion and image acquisition. The level of projective distortion is minimized by acquiring a high density of images. Normalized phase correlation calculated via the 2D Fourier transform is used to calculate the shift between the single images. The narrow strips from the dense image map are then stitched together to build the panorama. The mapping between the panoramic image and the positioning of the robot is established during the stitching of the images. This enables optical feedback. The robots operator can locate a defect on the surface by selecting the area of the image. Calculation of the forward and inverse kinematics enable the robot to automatically move to the location on the surface requiring repair. Experimental results using a standard 6R industrial robot have shown the full functionality of the system concept. Finally, were test measurements carried out successfully, in a ladle at a temperature of 1100° C.

  16. A portable inspection system to estimate direct glare of various LED modules

    NASA Astrophysics Data System (ADS)

    Chen, Po-Li; Liao, Chun-Hsiang; Li, Hung-Chung; Jou, Shyh-Jye; Chen, Han-Ting; Lin, Yu-Hsin; Tang, Yu-Hsiang; Peng, Wei-Jei; Kuo, Hui-Jean; Sun, Pei-Li; Lee, Tsung-Xian

    2015-07-01

    Glare is caused by both direct and indirect light sources and discomfort glare produces visual discomfort, annoyance, or loss in visual performance and visibility. Direct glare is caused by light sources in the field of view whereas reflected glare is caused by bright reflections from polished or glossy surfaces that are reflected toward an individual. To improve visual comfort of our living environment, a portable inspection system to estimate direct glare of various commercial LED modules with the range of color temperature from 3100 K to 5300 K was developed in this study. The system utilized HDR images to obtain the illumination distribution of LED modules and was first calibrated for brightness and chromaticity and corrected with flat field, dark-corner and curvature by the installed algorithm. The index of direct glare was then automatically estimated after image capturing, and the operator can recognize the performance of LED modules and the possible effects on human being once the index was out of expecting range. In the future, we expect that the quick-response smart inspection system can be applied in several new fields and market, such as home energy diagnostics, environmental lighting and UGR monitoring and popularize it in several new fields.

  17. Measuring Thicknesses of Coatings on Metals

    NASA Technical Reports Server (NTRS)

    Cotty, Glenn M., Jr.

    1986-01-01

    Digital light sensor and eddy-current sensor measure thickness without contact. Surface of Coating reflects laser beam to optical sensor. Position of reflected spot on sensor used by microcomputer to calculate coating thickness. Eddy-current sensor maintains constant distance between optical sensor and metal substrate. When capabilities of available components fully exploited, instrument measures coatings from 0.001 to 6 in. (0.0025 to 15 cm) thick with accuracy of 1 part in 4,000. Instrument readily incorporated in automatic production and inspection systems. Used to inspect thermal-insulation layers, paint, and protective coatings. Also used to control application of coatings to preset thicknesses.

  18. Applicability of a Crack-Detection System for Use in Rotor Disk Spin Test Experiments Being Evaluated

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Roth, Don J.

    2004-01-01

    Engine makers and aviation safety government institutions continue to have a strong interest in monitoring the health of rotating components in aircraft engines to improve safety and to lower maintenance costs. To prevent catastrophic failure (burst) of the engine, they use nondestructive evaluation (NDE) and major overhauls for periodic inspections to discover any cracks that might have formed. The lowest cost fluorescent penetrant inspection NDE technique can fail to disclose cracks that are tightly closed during rest or that are below the surface. The NDE eddy current system is more effective at detecting both crack types, but it requires careful setup and operation and only a small portion of the disk can be practically inspected. So that sensor systems can sustain normal function in a severe environment, health-monitoring systems require the sensor system to transmit a signal if a crack detected in the component is above a predetermined length (but below the length that would lead to failure) and lastly to act neutrally upon the overall performance of the engine system and not interfere with engine maintenance operations. Therefore, more reliable diagnostic tools and high-level techniques for detecting damage and monitoring the health of rotating components are very essential in maintaining engine safety and reliability and in assessing life.

  19. High resolution non-contact interior profilometer

    DOEpatents

    Piltch, Martin S.; Patterson, R. Alan; Leeches, Gerald W.; Nierop, John Van; Teti, John J.

    2001-01-01

    Apparatus and method for inspecting the interior surfaces of devices such as vessels having a single entry port. Laser energy is launched into the vessel, and the light reflected from the interior surfaces is interfered with reference laser energy to produce an interference pattern. This interference pattern is analyzed to reveal information about the condition of the interior surfaces of the device inspected.

  20. Thermal Inspection of a Composite Fuselage Section Using a Fixed Eigenvector Principal Component Analysis Method

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Bolduc, Sean; Harman, Rebecca

    2017-01-01

    A composite fuselage aircraft forward section was inspected with flash thermography. The fuselage section is 24 feet long and approximately 8 feet in diameter. The structure is primarily configured with a composite sandwich structure of carbon fiber face sheets with a Nomex(Trademark) honeycomb core. The outer surface area was inspected. The thermal data consisted of 477 data sets totaling in size of over 227 Gigabytes. Principal component analysis (PCA) was used to process the data sets for substructure and defect detection. A fixed eigenvector approach using a global covariance matrix was used and compared to a varying eigenvector approach. The fixed eigenvector approach was demonstrated to be a practical analysis method for the detection and interpretation of various defects such as paint thickness variation, possible water intrusion damage, and delamination damage. In addition, inspection considerations are discussed including coordinate system layout, manipulation of the fuselage section, and the manual scanning technique used for full coverage.

  1. Progress in Hanford's Double-Shell Tank Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, D.C.; Washenfelder, D.J.; Boomer, K.D.

    2008-07-01

    The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Panel led by Brookhaven National Laboratory during the late 1990's. These guidelinesmore » established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the thermally hot and radioactive environment. Also extensions were developed to allow inspection of the tank's curve upper (haunch) and lower (knuckle) surfaces. CH2M HILL primarily maintains chemistry control of the DST by ensuring that the concentrations of hydroxide and nitrite ions are favorable with respect to the nitrate ion concentration in the waste. This control program is supported by an extensive sampling program that obtains samples from the supernatant and solid layers in the tank to ensure compliance with the chemical specification. At DOE direction, CH2M HILL has embarked on a waste chemistry optimization program to enhance the protection of the tank surface and the understanding of the parameters that affect general and localized corrosion in the tanks. Over the past decade, DOE has deployed Electrochemical Noise corrosion probes in the DST to monitor localized corrosion. From the information gathered as part of the chemistry control, new information has been identified about the parameters requiring control to ensure tank integrity. CH2M HILL is deploying a series of corrosion probes to test and employ these parameters to provide real time corrosion monitoring of the DSTs. (authors)« less

  2. Assembly line inspection using neural networks

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.; Danset, Paul; Wicker, Devert W.

    1990-09-01

    A user friendly flexible system for assembly line part inspection which learns good and bad parts is described. The system detects missing rivets and springs in clutch drivers. The system extracts features in a circular region of interest from a video image processes these using a Fast Fourier Transform for rotation invariance and uses this as inputs to a neural network trained with back-propagation. The advantage of a learning system is that expensive reprogramming and delays are avoided when a part is modified. Two cases were considered. The first one could use back lighting in that surface effects could be ignored. The second case required front lighting because the part had a cover which prevented light from passing through the parts. 100 percent classification of good and bad parts was achieved for both back-lit and front-lit cases with a limited number of training parts available. 1. BACKGROUND A vision system to inspect clutch drivers for missing rivets and springs at the Harrison Radiator Plant of General Motors (GM) works only on parts without covers Fig. 1 and is expensive. The system does not work when there are cover plates Fig. 2 that rule out back light passing through the area of missing rivets and springs. Also the system like all such systems must be reprogrammed at significant time and cost when the system needs to classify a different fault or a

  3. Localization of a Robotic Crawler for CANDU Fuel Channel Inspection

    NASA Astrophysics Data System (ADS)

    Manning, Mark

    This thesis discusses the design and development of a pipe crawling robot for the purpose of CANDU fuel channel inspection. The pipe crawling robot shall be capable of deploying the existing CIGAR (Channel Inspection and Gauging Apparatus for Reactors) sensor head. The main focus of this thesis is the design of the localization system for this robot and the many tests that were completed to demonstrate its accuracy. The proposed localization system consists of three redundant resolver wheels mounted to the robot's frame and two resolvers that are mounted inside a custom made cable drum. This cable drum shall be referred to in this thesis as the emergency retrieval device. This device serves the dual-purpose of providing absolute position measurements (via the cable that is tethered to the robot) as well as retrieving the robot if it is inoperable. The estimated accuracy of the proposed design is demonstrated with the use of a proof-of-concept prototype and a custom made test bench that uses a vision system to provide a more accurate estimate of the robot's position. The only major difference between the proof-of-concept prototype and the proposed solution is that the more expensive radiation hardened components were not used in the proof-of-concept prototype design. For example, the proposed solution shall use radiation hardened resolver wheels, whereas the proof-of-concept prototype used encoder wheels. These encoder wheels provide the same specified accuracy as the radiation hardened resolvers for the most realistic results possible. The rationale behind the design of the proof-of-concept prototype, the proposed final design, the design of the localization system test bench, and the test plan for developing all of the components of the design related to the robot's localization system are discussed in the thesis. The test plan provides a step by step guide to the configuration and optimization of an Unscented Kalman Filter (UKF). The UKF was selected as the ideal sensor fusion algorithm for use in this application. Benchmarking was completed to compare the accuracy achieved by the UKF algorithm to other data fusion algorithms. When compared to other algorithms, the UKF demonstrated the best accuracy when considering all likely sources of error such as sensor failure and surface unevenness. The test results show that the localization system is able to achieve a worst case positional accuracy of +/- 3.6 mm for the robot crawler over the full 6350 mm distance that the robot travels inside the pressure tube. This is extrapolated from the test results completed over the shorter length test bench with simulated surface unevenness. The key benefits of the pipe crawling robot when compared to the current system include: reduced dosage to workers and the reduced outage time. The advantages are due to the fact that the robot can be automated and multiple inspection robots can be deployed simultaneously. The current inspection system is only able to complete one inspection at a time.

  4. Anisotropic modeling and joint-MAP stitching for improved ultrasound model-based iterative reconstruction of large and thick specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almansouri, Hani; Venkatakrishnan, Singanallur V.; Clayton, Dwight A.

    One-sided non-destructive evaluation (NDE) is widely used to inspect materials, such as concrete structures in nuclear power plants (NPP). A widely used method for one-sided NDE is the synthetic aperture focusing technique (SAFT). The SAFT algorithm produces reasonable results when inspecting simple structures. However, for complex structures, such as heavily reinforced thick concrete structures, SAFT results in artifacts and hence there is a need for a more sophisticated inversion technique. Model-based iterative reconstruction (MBIR) algorithms, which are typically equivalent to regularized inversion techniques, offer a powerful framework to incorporate complex models for the physics, detector miscalibrations and the materials beingmore » imaged to obtain high quality reconstructions. Previously, we have proposed an ultrasonic MBIR method that signifcantly improves reconstruction quality compared to SAFT. However, the method made some simplifying assumptions on the propagation model and did not disucss ways to handle data that is obtained by raster scanning a system over a surface to inspect large regions. In this paper, we propose a novel MBIR algorithm that incorporates an anisotropic forward model and allows for the joint processing of data obtained from a system that raster scans a large surface. We demonstrate that the new MBIR method can produce dramatic improvements in reconstruction quality compared to SAFT and suppresses articfacts compared to the perviously presented MBIR approach.« less

  5. Anisotropic modeling and joint-MAP stitching for improved ultrasound model-based iterative reconstruction of large and thick specimens

    NASA Astrophysics Data System (ADS)

    Almansouri, Hani; Venkatakrishnan, Singanallur; Clayton, Dwight; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2018-04-01

    One-sided non-destructive evaluation (NDE) is widely used to inspect materials, such as concrete structures in nuclear power plants (NPP). A widely used method for one-sided NDE is the synthetic aperture focusing technique (SAFT). The SAFT algorithm produces reasonable results when inspecting simple structures. However, for complex structures, such as heavily reinforced thick concrete structures, SAFT results in artifacts and hence there is a need for a more sophisticated inversion technique. Model-based iterative reconstruction (MBIR) algorithms, which are typically equivalent to regularized inversion techniques, offer a powerful framework to incorporate complex models for the physics, detector miscalibrations and the materials being imaged to obtain high quality reconstructions. Previously, we have proposed an ultrasonic MBIR method that signifcantly improves reconstruction quality compared to SAFT. However, the method made some simplifying assumptions on the propagation model and did not disucss ways to handle data that is obtained by raster scanning a system over a surface to inspect large regions. In this paper, we propose a novel MBIR algorithm that incorporates an anisotropic forward model and allows for the joint processing of data obtained from a system that raster scans a large surface. We demonstrate that the new MBIR method can produce dramatic improvements in reconstruction quality compared to SAFT and suppresses articfacts compared to the perviously presented MBIR approach.

  6. Thermal Nondestructive Characterization of Corrosion in Boiler Tubes by Application fo a Moving Line Heat Source

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Wall thinning in utility boiler waterwall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used lor inspection of these tubes. This technique has proved to be very labor intensive and slow. This has resulted in a "spot check" approach to inspections, making thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source, coupled with this analysis technique, represents a significant improvement in the inspection speed for large structures such as boiler waterwalls while still providing high-resolution thickness measurements. A theoretical basis for the technique will be presented thus demonstrating the quantitative nature of the technique. Further, results of laboratory experiments on flat Panel specimens with fabricated material loss regions will be presented.

  7. System for evaluating weld quality using eddy currents

    DOEpatents

    Todorov, Evgueni I.; Hay, Jacob

    2017-12-12

    Electromagnetic and eddy current techniques for fast automated real-time and near real-time inspection and monitoring systems for high production rate joining processes. An eddy current system, array and method for the fast examination of welds to detect anomalies such as missed seam (MS) and lack of penetration (LOP) the system, array and methods capable of detecting and sizing surface and slightly subsurface flaws at various orientations in connection with at least the first and second weld pass.

  8. A ceramic matrix composite thermal protection system for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Pitts, William C.

    1993-01-01

    The next generation of hypersonic vehicles (NASP, SSTO) that require reusable thermal protection systems will experience acreage surface temperatures in excess of 1100 C. More important, they will experience a more severe physical environment than the Space Shuttle due to non-pristine launching and landing conditions. As a result, maintenance, inspection, and replacement factors must be more thoroughly incorporated into the design of the TPS. To meet these requirements, an advanced thermal protection system was conceived, designated 'TOPHAT'. This system consists of a toughened outer ceramic matrix composite (CMC) attached to a rigid reusable surface insulator (RSI) which is directly bonded to the surface. The objective of this effort was to evaluate this concept in an aeroconvective environment, to determine the effect of impacts to the CMC material, and to compare the results with existing thermal protection systems.

  9. Electromagnetic Acoustic Transducers for Robotic Nondestructive Inspection in Harsh Environments

    PubMed Central

    Choi, Sungho; Cho, Hwanjeong; Lindsey, Matthew S.; Lissenden, Cliff J.

    2018-01-01

    Elevated temperature, gamma radiation, and geometric constraints inside dry storage casks for spent nuclear fuel represent a harsh environment for nondestructive inspection of the cask and require that the inspection be conducted with a robotic system. Electromagnetic acoustic transducers (EMATs) using non-contact ultrasonic transduction based on the Lorentz force to excite/receive ultrasonic waves are suited for use in the robotic inspection. Periodic permanent magnet EMATs that actuate/receive shear horizontal guided waves are developed for application to robotic nondestructive inspection of stress corrosion cracks in the heat affected zone of welds in stainless steel dry storage canisters. The EMAT’s components are carefully selected in consideration of the inspection environment, and tested under elevated temperature and gamma radiation doses up to 177 °C and 5920 krad, respectively, to evaluate the performance of the EMATs under realistic environmental conditions. The effect of gamma radiation is minimal, but the EMAT’s performance is affected by temperatures above 121 °C due to the low Curie temperature of the magnets. Different magnets are needed to operate at 177 °C. The EMAT’s capability to detect notches is also evaluated from B-scan measurements on 304 stainless steel welded plate containing surface-breaking notches. PMID:29324721

  10. Inspection of float glass using a novel retroreflective laser scanning system

    NASA Astrophysics Data System (ADS)

    Holmes, Jonathan D.

    1997-07-01

    Since 1988, Image Automation has marketed a float glass inspection system using a novel retro-reflective laser scanning system. The (patented) instrument scans a laser beam by use of a polygon through the glass onto a retro-reflective screen, and collects the retro-reflected light off the polygon, such that a stationary image of the moving spot on the screen is produced. The spot image is then analyzed for optical effects introduced by defects within the glass, which typically distort and attenuate the scanned laser beam, by use of suitable detectors. The inspection system processing provides output of defect size, shape and severity, to the factory network for use in rejection or sorting of glass plates to the end customer. This paper briefly describes the principles of operation, the system architecture, and limitations to sensitivity and measurement repeatability. New instruments based on the retro-reflective scanning method have recently been developed. The principles and implementation are described. They include: (1) Simultaneous detection of defects within the glass and defects in a mirror coating on the glass surface using polarized light. (2) A novel distortion detector for very dark glass. (3) Measurement of optical quality (flatness/refractive homogeneity) of the glass using a position sensitive detector.

  11. 77 FR 4407 - Modernization of Poultry Slaughter Inspection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ...The Food Safety and Inspection Service (FSIS) is proposing a new inspection system for young chicken and turkey slaughter establishments that would replace the current Streamlined Inspection System (SIS), the New Line Speed Inspection System (NELS), and the New Turkey Inspection System (NTIS). The Agency is also proposing several changes that would affect all establishments that slaughter poultry other than ratites, regardless of the inspection system under which they operate. This proposed rule is a result of the Agency's 2011 regulatory review efforts conducted under Executive Order 13563 on Improving Regulation and Regulatory Review.

  12. Remotely deployable aerial inspection using tactile sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment,more » resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.« less

  13. 40 CFR Table 7 to Subpart Ggg of... - Wastewater-Inspection and Monitoring Requirements for Waste Management Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or monitoring Method TANKS: 63.1256(b)(3)(i) Inspect fixed roof and all openings for leaks Initially... openings for leaks Initially Semiannually Visual. 63.1256(c)(2) Inspect surface impoundment for control....1256(d)(1)(ii) Inspect cover and all openings for leaks Initially Semiannually Visual. 63.1256(d)(3)(i...

  14. 40 CFR Table 11 to Subpart G of... - Wastewater-Inspection and Monitoring Requirements for Waste Management Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... openings for leaks Initially Semi-annually Visual. 63.133(c) Inspect floating roof in accordance with §§ 63.... Surface impoundments: 63.134(b)(1) Inspect cover and all openings for leaks Initially Semi-annually Visual... for leaks Initially Semi-annually Visual. 63.135(d)(1) Inspect enclosure and all openings for leaks...

  15. An Optical Sensor for Measuring the Position and Slanting Direction of Flat Surfaces

    PubMed Central

    Chen, Yu-Ta; Huang, Yen-Sheng; Liu, Chien-Sheng

    2016-01-01

    Automated optical inspection is a very important technique. For this reason, this study proposes an optical non-contact slanting surface measuring system. The essential features of the measurement system are obtained through simulations using the optical design software Zemax. The actual propagation of laser beams within the measurement system is traced by using a homogeneous transformation matrix (HTM), the skew-ray tracing method, and a first-order Taylor series expansion. Additionally, a complete mathematical model that describes the variations in light spots on photoelectric sensors and the corresponding changes in the sample orientation and distance was established. Finally, a laboratory prototype system was constructed on an optical bench to verify experimentally the proposed system. This measurement system can simultaneously detect the slanting angles (x, z) in the x and z directions of the sample and the distance (y) between the biconvex lens and the flat sample surface. PMID:27409619

  16. An Optical Sensor for Measuring the Position and Slanting Direction of Flat Surfaces.

    PubMed

    Chen, Yu-Ta; Huang, Yen-Sheng; Liu, Chien-Sheng

    2016-07-09

    Automated optical inspection is a very important technique. For this reason, this study proposes an optical non-contact slanting surface measuring system. The essential features of the measurement system are obtained through simulations using the optical design software Zemax. The actual propagation of laser beams within the measurement system is traced by using a homogeneous transformation matrix (HTM), the skew-ray tracing method, and a first-order Taylor series expansion. Additionally, a complete mathematical model that describes the variations in light spots on photoelectric sensors and the corresponding changes in the sample orientation and distance was established. Finally, a laboratory prototype system was constructed on an optical bench to verify experimentally the proposed system. This measurement system can simultaneously detect the slanting angles (x, z) in the x and z directions of the sample and the distance (y) between the biconvex lens and the flat sample surface.

  17. 30 CFR 250.516 - Blowout preventer system tests, inspections, and maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... inspection, whichever is longer. (2) You must visually inspect your BOP system and marine riser at least once.... The District Manager may approve alternate methods and frequencies to inspect a marine riser. (h) BOP... drills, and inspections of the BOP system, system components, and marine riser in the driller's report...

  18. A novel serrated columnar phased array ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  19. 78 FR 16198 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... determine if wires touch the upper surface of the center upper auxiliary fuel tank, and marking the location, as necessary; inspecting all wire bundles above the center upper auxiliary fuel tank for splices and... requires inspecting to determine if wires touch the upper surface of the center upper auxiliary fuel tank...

  20. 75 FR 74668 - Airworthiness Directives; The Boeing Company Model 777-200, -200LR, -300, and -300ER Series...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... investigative actions include a surface high- frequency eddy current inspection for cracking of the inner.... The related investigative actions include a surface high-frequency eddy current inspection for... total flight hours and 5,335 total flight cycles. Analysis by the manufacturer revealed that the broken...

  1. Automatic 3D power line reconstruction of multi-angular imaging power line inspection system

    NASA Astrophysics Data System (ADS)

    Zhang, Wuming; Yan, Guangjian; Wang, Ning; Li, Qiaozhi; Zhao, Wei

    2007-06-01

    We develop a multi-angular imaging power line inspection system. Its main objective is to monitor the relative distance between high voltage power line and around objects, and alert if the warning threshold is exceeded. Our multi-angular imaging power line inspection system generates DSM of the power line passage, which comprises ground surface and ground objects, for example trees and houses, etc. For the purpose of revealing the dangerous regions, where ground objects are too close to the power line, 3D power line information should be extracted at the same time. In order to improve the automation level of extraction, reduce labour costs and human errors, an automatic 3D power line reconstruction method is proposed and implemented. It can be achieved by using epipolar constraint and prior knowledge of pole tower's height. After that, the proper 3D power line information can be obtained by space intersection using found homologous projections. The flight experiment result shows that the proposed method can successfully reconstruct 3D power line, and the measurement accuracy of the relative distance satisfies the user requirement of 0.5m.

  2. The JPL/KSC telerobotic inspection demonstration

    NASA Technical Reports Server (NTRS)

    Mittman, David; Bon, Bruce; Collins, Carol; Fleischer, Gerry; Litwin, Todd; Morrison, Jack; Omeara, Jacquie; Peters, Stephen; Brogdon, John; Humeniuk, Bob

    1990-01-01

    An ASEA IRB90 robotic manipulator with attached inspection cameras was moved through a Space Shuttle Payload Assist Module (PAM) Cradle under computer control. The Operator and Operator Control Station, including graphics simulation, gross-motion spatial planning, and machine vision processing, were located at JPL. The Safety and Support personnel, PAM Cradle, IRB90, and image acquisition system, were stationed at the Kennedy Space Center (KSC). Images captured at KSC were used both for processing by a machine vision system at JPL, and for inspection by the JPL Operator. The system found collision-free paths through the PAM Cradle, demonstrated accurate knowledge of the location of both objects of interest and obstacles, and operated with a communication delay of two seconds. Safe operation of the IRB90 near Shuttle flight hardware was obtained both through the use of a gross-motion spatial planner developed at JPL using artificial intelligence techniques, and infrared beams and pressure sensitive strips mounted to the critical surfaces of the flight hardward at KSC. The Demonstration showed that telerobotics is effective for real tasks, safe for personnel and hardware, and highly productive and reliable for Shuttle payload operations and Space Station external operations.

  3. Nondestructive Crack Detection in a Fuel System Component

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Ruffino, Norman; Wincheski, Russell; Prosser, William; Winfree, William; Russell, Richard; Bryson, Craig; Devries, Robert; Engel, James; Landy, James

    2010-01-01

    The presentation examines the background and objective of nondestructive crack detection, flow control valve assembly and poppet post flight evaluation, poppet properties. magnetic property characterization of lab data, NDE, eddy current inspection, simulation, eddy current criteria, poppet cycle testing and NDE criteria, and the use of ultrasonic surface wave for crack detection.

  4. Surface electrical properties experiment study phase, volume 3

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The reliability and quality assurance system and procedures used in developing test equipment for the Lunar Experiment projects are described. The subjects discussed include the following: (1) documentation control, (2) design review, (3) parts and materials selection, (4) material procurement, (5) inspection procedures, (6) qualification and special testing, and failure modes and effects analysis.

  5. Optical surface properties and their RF limitations of European XFEL cavities

    NASA Astrophysics Data System (ADS)

    Wenskat, Marc

    2017-10-01

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. The industrial fabrication of cavities for the European X-ray Free Electron Laser and the International Linear Collider HiGrade Research Project allowed for an investigation of this interplay. For the serial inspection of the inner surface, the optical inspection robot ’optical bench for automated cavity inspection with high resolution on short timescales’ OBACHT was constructed and to analyze the large amount of data, represented in the images of the inner surface, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. This quantitative analysis identified vendor-specific surface properties which allow the performance of quality control and assurance during production. In addition, a strong negative correlation of ρ =-0.93 with a significance of 6 σ of the integrated grain boundary area \\sum {A} versus the maximal achievable accelerating field {{E}}{acc,\\max } has been found.

  6. Viewing Welds By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  7. 9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...

  8. 9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...

  9. 9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...

  10. 9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...

  11. 9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...

  12. A ceramic matrix composite thermal protection system for hypersonic vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccitiello, S.R.; Love, W.L.; Pitts, W.C.

    1993-07-01

    The next generation of hypersonic vehicles (NASP, SSTO) that require reusable thermal protection systems will experience acreage surface temperatures in excess of 1100 C. More important, they will experience a more severe physical environment than the Space Shuttle due to non-pristine launching and landing conditions. As a result, maintenance, inspection, and replacement factors must be more thoroughly incorporated into the design of the TPS. To meet these requirements, an advanced thermal protection system was conceived, designated 'TOPHAT'. This system consists of a toughened outer ceramic matrix composite (CMC) attached to a rigid reusable surface insulator (RSI) which is directly bondedmore » to the surface. The objective of this effort was to evaluate this concept in an aeroconvective environment, to determine the effect of impacts to the CMC material, and to compare the results with existing thermal protection systems. 10 refs.« less

  13. Electro-Optical Inspection For Tolerance Control As An Integral Part Of A Flexible Machining Cell

    NASA Astrophysics Data System (ADS)

    Renaud, Blaise

    1986-11-01

    Institut CERAC has been involved in optical metrology and 3-dimensional surface control for the last couple of years. Among the industrial applications considered is the on-line shape evaluation of machined parts within the manufacturing cell. The specific objective is to measure the machining errors and to compare them with the tolerances set by designers. An electro-optical sensing technique has been developed which relies on a projection Moire contouring optical method. A prototype inspection system has been designed, making use of video detection and computer image processing. Moire interferograms are interpreted, and the metrological information automatically retrieved. A structured database can be generated for subsequent data analysis and for real-time closed-loop corrective actions. A real-time kernel embedded into a synchronisation network (Petri-net) for the control of concurrent processes in the Electra-Optical Inspection (E0I) station was realised and implemented in a MODULA-2 program DIN01. The prototype system for on-line automatic tolerance control taking place within a flexible machining cell is described in this paper, together with the fast-prototype synchronisation program.

  14. 30 CFR 57.7003 - Drill area inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill area inspection. 57.7003 Section 57.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7003 Drill area inspection. The drilling area shall be...

  15. 30 CFR 57.7003 - Drill area inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill area inspection. 57.7003 Section 57.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7003 Drill area inspection. The drilling area shall be...

  16. 30 CFR 57.7003 - Drill area inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill area inspection. 57.7003 Section 57.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7003 Drill area inspection. The drilling area shall be...

  17. 30 CFR 57.7003 - Drill area inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill area inspection. 57.7003 Section 57.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7003 Drill area inspection. The drilling area shall be...

  18. 30 CFR 57.7003 - Drill area inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill area inspection. 57.7003 Section 57.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7003 Drill area inspection. The drilling area shall be...

  19. Micro-Inspector Spacecraft Testbed: Breadboard Subsystem Demonstrations

    NASA Astrophysics Data System (ADS)

    Mueller, Juergen; Goldberg, Hannah; Alkalai, Leon

    2007-01-01

    Micro-inspector is a 5-kg inspection platform designed to operate autonomously following operator up-linked command sequences around a host spacecraft to perform safety inspections, anomaly inspections, or imaging of large in-space assemblies as envisioned for future NASA exploration missions. Similarly, such an inspection platform may be adapted to military space missions. Micro-inspector relies on solar power and using celestial sensors for navigation, giving the system large flexibility in the missions and applications it may serve, including those beyond Earth orbit. Micro-Inspector, through its small size and low weight, poses minimal design impacts to the host. Its small size and weight also affords micro-inspector to be disposable, allowing multiple inspectors to be used by a single host for different inspection routines or as emergency back-up. Its low-pressure butane propulsion system combines safety and compactness through liquid propellant storage with an adequate performance of up to 30 m/s for inspection maneuvers around the host. Micro-inspector, since power limited through a body mounted solar array, thus avoiding the complexities of deployable structures, relies on many advanced, ultra-low power micro-technologies, such as a novel microvalve by VACCO Industries in its propulsion system, electrochromic surface modulating heat transfer from the spacecraft using no moving parts, low power dual processor and FPGA-based reconfigurable and SEU mitigating avionics, a low power RF telecom link based on the Mars Micro Transceiver, and micro attitude control sensors, such as commercial micro IMUs and a JPL developed micro sun sensor. Host safety is a key concern, and multiple safety features are employed by micro-inspector to prevent any accidental impact onto the host. Among these is an active, laser-based range-finding collision avoidance system, which constantly monitors the distance to the host and via the micro-inspector's control system maintains a safe distance. Micro-Inspector design, through funding from the NASA Explorations Systems Mission Directorate, has significantly advanced over the past year and is currently at PDR level and beyond. Special emphasis was placed on retiring risk in various subsystem areas through the use of advanced technologies. To this end, a micro-inspector test bed was set up to critically assess the readiness of component technologies and subsystems. Breadboard subsystem demonstrations and system integration were performed to place future design efforts on a solid basis.

  20. Integrating aerodynamic surface modeling for computational fluid dynamics with computer aided structural analysis, design, and manufacturing

    NASA Technical Reports Server (NTRS)

    Thorp, Scott A.

    1992-01-01

    This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.

  1. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    NASA Astrophysics Data System (ADS)

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-06-01

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  2. Visual Inspection of Surfaces

    NASA Technical Reports Server (NTRS)

    Hughes, David; Perez, Xavier

    2007-01-01

    This presentation evaluates the parameters that affect visual inspection of cleanliness. Factors tested include surface reflectance, surface roughness, size of the largest particle, exposure time, inspector and distance from sample surface. It is concluded that distance predictions were not great, particularly because the distance at which contamination is seen may depend on more variables than those tested. Most parameters estimates had confidence of 95% or better, except for exposure and reflectance. Additionally, the distance at which surface is visibly contaminated decreases with increasing reflectance, roughness, and exposure. The distance at which the surface is visually contaminated increased with the largest particle size. These variables were only slightly affected the observer.

  3. Automatic 3D inspection metrology for high-temperature objects

    NASA Astrophysics Data System (ADS)

    Han, Liya; Li, Zhongwei; Zhong, Kai; Yi, Jie; Shi, Yusheng; Cheng, Xu; Zhan, Guomin; Chen, Ran

    2017-06-01

    3D Visual Inspection for high-temperature objects has attracted more and more attention in the industrial and manufacture field. Until now it is still difficult to measure the shape of high-temperature objects due to the following problems: 1) the radiation and heat transfer through the air seriously affect both human and measurement equipment, so the manual measurement is not capable in this situation. 2) Because of the difficulties to handle the surfaces of the hot objects, it is hard to use artificial markers to align different pieces of data. In order to solve these problems, an automatic 3D shape measurement system for high-temperature objects is proposed by combing an industrial robot with a structured blue light 3D scanner. In this system, the route for inspection is planned with the cooled object and then executed automatically with the same object in hot state to avoid artificial operations. The route is carefully planned to reduce the exposure time of the measurement equipment under the high-temperature situation. Then different pieces of data are premapped during the planning procedure. In the executing procedure, they can be aligned accurately thanks to the good repeatability of the industrial robot. Finally, different pieces of data are merged without artificial markers and the results are better than methods with traditional hand-eye calibration. Experiments verify that the proposed system can conduct the inspection of forging parts under the temperature of 900°C and the alignment precision is 0.0013rad and 0.28mm.

  4. Recipe creation for automated defect classification with a 450mm surface scanning inspection system based on the bidirectional reflectance distribution function of native defects

    NASA Astrophysics Data System (ADS)

    Yathapu, Nithin; McGarvey, Steve; Brown, Justin; Zhivotovsky, Alexander

    2016-03-01

    This study explores the feasibility of Automated Defect Classification (ADC) with a Surface Scanning Inspection System (SSIS). The defect classification was based upon scattering sensitivity sizing curves created via modeling of the Bidirectional Reflectance Distribution Function (BRDF). The BRDF allowed for the creation of SSIS sensitivity/sizing curves based upon the optical properties of both the filmed wafer samples and the optical architecture of the SSIS. The elimination of Polystyrene Latex Sphere (PSL) and Silica deposition on both filmed and bare Silicon wafers prior to SSIS recipe creation and ADC creates a challenge for light scattering surface intensity based defect binning. This study explored the theoretical maximal SSIS sensitivity based on native defect recipe creation in conjunction with the maximal sensitivity derived from BRDF modeling recipe creation. Single film and film stack wafers were inspected with recipes based upon BRDF modeling. Following SSIS recipe creation, initially targeting maximal sensitivity, selected recipes were optimized to classify defects commonly found on non-patterned wafers. The results were utilized to determine the ADC binning accuracy of the native defects and evaluate the SSIS recipe creation methodology. A statistically valid sample of defects from the final inspection results of each SSIS recipe and filmed substrate were reviewed post SSIS ADC processing on a Defect Review Scanning Electron Microscope (SEM). Native defect images were collected from each statistically valid defect bin category/size for SEM Review. The data collected from the Defect Review SEM was utilized to determine the statistical purity and accuracy of each SSIS defect classification bin. This paper explores both, commercial and technical, considerations of the elimination of PSL and Silica deposition as a precursor to SSIS recipe creation targeted towards ADC. Successful integration of SSIS ADC in conjunction with recipes created via BRDF modeling has the potential to dramatically reduce the workload requirements of a Defect Review SEM and save a significant amount of capital expenditure for 450mm SSIS recipe creation.

  5. 49 CFR 1242.59 - Train inspection and lubrication (account XX-51-62).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Train inspection and lubrication (account XX-51-62). 1242.59 Section 1242.59 Transportation Other Regulations Relating to Transportation (Continued) SURFACE...-Transportation § 1242.59 Train inspection and lubrication (account XX-51-62). Separate common expenses on basis...

  6. Progress in Developing Transfer Functions for Surface Scanning Eddy Current Inspections

    NASA Astrophysics Data System (ADS)

    Shearer, J.; Heebl, J.; Brausch, J.; Lindgren, E.

    2009-03-01

    As US Air Force (USAF) aircraft continue to age, additional inspections are required for structural components. The validation of new inspections typically requires a capability demonstration of the method using representative structure with representative damage. To minimize the time and cost required to prepare such samples, Electric Discharge machined (EDM) notches are commonly used to represent fatigue cracks in validation studies. However, the sensitivity to damage typically changes as a function of damage type. This requires a mathematical relationship to be developed between the responses from the two different flaw types to enable the use of EDM notched samples to validate new inspections. This paper reviews progress to develop transfer functions for surface scanning eddy current inspections of aluminum and titanium alloys found in structural aircraft components. Multiple samples with well characterized grown fatigue cracks and master gages with EDM notches, both with a range of flaw sizes, were used to collect flaw signals with USAF field inspection equipment. Analysis of this empirical data was used to develop a transfer function between the response from the EDM notches and grown fatigue cracks.

  7. Industrial applications of shearography for inspection of aircraft components

    NASA Astrophysics Data System (ADS)

    Krupka, Rene; Walz, Thomas; Ettemeyer, Andreas

    2005-04-01

    Shearography has been validated as fast and reliable inspection technique for aerospace components. Following several years phase of evaluation of the technique, meanwhile, shearography has entered the industrial production inspection. The applications basically range from serial inspection in the production line to field inspection in assembly and to applications in the maintenance and repair area. In all applications, the main advantages of shearography, as very fast and full field insection and high sensitivity even on very complex on composite materials have led to the decision for laser shearography as inspection tool. In this paper, we present some highlights of industrial shearography inspection. One of the first industrial installations of laser shearography in Europe was a fully automatic inspection system for helicopter rotorblades. Complete rotor blades are inspected within 10 minutes on delaminations and debondingg in the composite structure. In case of more complex components, robotic manipulation of the shearography camera has proven to be the optimal solution. An industry 6-axis robot give utmost flexibility to position the camera in any angle and distance. Automatic defect marking systems have also been introduced to indicate the exact position of the defect directly on the inspected component. Other applications are shearography inspection systems for abradable seals in jet engines and portable shearography inspection systems for maintenance and repair inspection in the field. In this paper, recent installations of automatice inspection systems in aerospace industries are presented.

  8. Innovative use of global navigation satellite systems for flight inspection

    NASA Astrophysics Data System (ADS)

    Kim, Eui-Ho

    The International Civil Aviation Organization (ICAO) mandates flight inspection in every country to provide safety during flight operations. Among many criteria of flight inspection, airborne inspection of Instrument Landing Systems (ILS) is very important because the ILS is the primary landing guidance system worldwide. During flight inspection of the ILS, accuracy in ILS landing guidance is checked by using a Flight Inspection System (FIS). Therefore, a flight inspection system must have high accuracy in its positioning capability to detect any deviation so that accurate guidance of the ILS can be maintained. Currently, there are two Automated Flight Inspection Systems (AFIS). One is called Inertial-based AFIS, and the other one is called Differential GPS-based (DGPS-based) AFIS. The Inertial-based AFIS enables efficient flight inspection procedures, but its drawback is high cost because it requires a navigation-grade Inertial Navigation System (INS). On the other hand, the DGPS-based AFIS has relatively low cost, but flight inspection procedures require landing and setting up a reference receiver. Most countries use either one of the systems based on their own preferences. There are around 1200 ILS in the U.S., and each ILS must be inspected every 6 to 9 months. Therefore, it is important to manage the airborne inspection of the ILS in a very efficient manner. For this reason, the Federal Aviation Administration (FAA) mainly uses the Inertial-based AFIS, which has better efficiency than the DGPS-based AFIS in spite of its high cost. Obviously, the FAA spends tremendous resources on flight inspection. This thesis investigates the value of GPS and the FAA's augmentation to GPS for civil aviation called the Wide Area Augmentation System (or WAAS) for flight inspection. Because standard GPS or WAAS position outputs cannot meet the required accuracy for flight inspection, in this thesis, various algorithms are developed to improve the positioning ability of Flight Inspection Systems (FIS) by using GPS and WAAS in novel manners. The algorithms include Adaptive Carrier Smoothing (ACS), optimizing WAAS accuracy and stability, and reference point-based precise relative positioning for real-time and near-real-time applications. The developed systems are WAAS-aided FIS, WAAS-based FIS, and stand-alone GPS-based FIS. These systems offer both high efficiency and low cost, and they have different advantages over one another in terms of accuracy, integrity, and worldwide availability. The performance of each system is tested with experimental flight test data and shown to have accuracy that is sufficient for flight inspection and superior to the current Inertial-based AFIS.

  9. Blind Leak Detection for Closed Systems

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter; Johnson, Ricky; Todd, Douglas; Russell, Samuel; Walker, James

    2003-01-01

    The current inspection technique for locating interstitial leaking in the Space Shuttle Main Engine nozzles is the application of a liquid leak check solution in the openings where the interstitials space between the tubing and the structural jacket vent out the aft end of the nozzle, while its cooling tubes are pressurized to 25 psig with Helium. When a leak is found, it is classified, and if the leak is severe enough the suspect tube is cut open so that a boroscope can be inserted to find the leak point. Since the boroscope can only cover a finite tube length and since it is impossible to identify which tube (to the right or left of the identified interstitial) is leaking, many extra and undesired repairs have been made to fix just one leak. In certain instances when the interstitials are interlinked by poor braze bonding, many interstitials will show indications of leaking from a single source. What is desired is a technique that can identify the leak source so that a single repair can be performed. Dr, Samuel Russell and James Walker, both with NASA/MSFC have developed a thermographic inspection system that addresses a single repair approach. They have teamed with Boeing/Rocketdyne to repackage the inspection processes to be suitable to address full scale Shuttle development and flight hardware and implement the process at NASA centers. The methods and results presented address the thermographic identification of interstitial leaks in the Space Shuttle Main Engine nozzles. A highly sensitive digital infrared camera (capable of detecting a delta temperature difference of 0.025 C) is used to record the cooling effects associated with a leak source, such as a crack or pinhole, hidden within the nozzle wall by observing the inner hot wall surface as the nozzle is pressurized, These images are enhanced by digitally subtracting a thermal reference image taken before pressurization. The method provides a non-intrusive way of locating the tube that is leaking and the exact leak source position to within a very small axial distance. Many of the factors that influence the inspectability of the nozzle are addressed; including pressure rate, peak pressure, gas type, ambient temperature and surface preparation. Other applications for this thermographic inspection system are the Reinforced-Carbon-Carbon (RCC) leading edge of the Space Shuttle orbiter and braze joint integrity.

  10. National Dam Safety Program. Potters Falls Dam (Inventory Number N.Y. 378), Oswego River Basin, Tompkins County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-09-23

    dolonsireJm -aee near wai-’e- supply pipe.- (4) Surface Cracks or Movement at Toe noi vis,𔄀le due to isa;//ly disca,’,e and -b; wace ,- (5) Seepage auri areas on...bw NV 378 3 HYDROMETEROLOG ICAL GAGES: Type : tnOn Location: Records: Date - Max. Reading - FLOOD WATER CONTROL SYSTEM: Warning System: rlorf Method

  11. Experience with chemical system decontamination by the CORD process and electrochemical decontamination of pipe ends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wille, H.; Bertholdt, H.O.; Operschall, H.

    Efforts to reduce occupational radiation exposure during inspection and repair work in nuclear power plants turns steadily increasing attention to the decontamination of systems and components. Due to the advanced age of nuclear power plants resulting in increasing dose rates, the decontamination of components, or rather of complete systems, or loops to protect operating and inspection personnel becomes demanding. Besides, decontaminating complete primary loops is in many cases less difficult than cleaning large components. Based on experience gained in nuclear power plants, an outline of two different decontamination methods performed recently are given. For the decontamination of complete systems ormore » loops, Kraftwerk Union AG has developed CORD, a low-concentration process. For the decontamination performance of a subsystem, such as the steam generator (SG) channel heads of a pressurized water reactor or the recirculation loops of a boiling water reactor the automated mobile decontamination appliance is used. The electrochemical decontamination process is primarily applicable for the treatment of specially limited surface areas.« less

  12. An OSEE Based Portable Surface Contamination Monitor

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.

    1997-01-01

    Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique based on the principle of Optically Stimulated Electron Emission (OSEE) has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it's non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be output to an external computer for archiving or analysis.

  13. Evaluation of nondestructive testing techniques for the space shuttle nonmetallic thermal protection system

    NASA Technical Reports Server (NTRS)

    Tiede, D. A.

    1972-01-01

    A program was conducted to evaluate nondestructive analysis techniques for the detection of defects in rigidized surface insulation (a candidate material for the Space Shuttle thermal protection system). Uncoated, coated, and coated and bonded samples with internal defects (voids, cracks, delaminations, density variations, and moisture content), coating defects (holes, cracks, thickness variations, and loss of adhesion), and bondline defects (voids and unbonds) were inspected by X-ray radiography, acoustic, microwave, high-frequency ultrasonic, beta backscatter, thermal, holographic, and visual techniques. The detectability of each type of defect was determined for each technique (when applicable). A possible relationship between microwave reflection measurements (or X-ray-radiography density measurements) and the tensile strength was established. A possible approach for in-process inspection using a combination of X-ray radiography, acoustic, microwave, and holographic techniques was recommended.

  14. Testing and inspecting lens by holographic means

    DOEpatents

    Hildebrand, Bernard P.

    1976-01-01

    Processes for the accurate, rapid and inexpensive testing and inspecting of oncave and convex lens surfaces through holographic means requiring no beamsplitters, mirrors or overpower optics, and wherein a hologram formed in accordance with one aspect of the invention contains the entire interferometer and serves as both a master and illuminating source for both concave and said convex surfaces to be so tested.

  15. 30 CFR 937.842 - Federal inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.842 Federal... inspections conducted pursuant to this subpart to the Oregon Department of Geology and Mineral Industries. ...

  16. 30 CFR 937.842 - Federal inspections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.842 Federal... inspections conducted pursuant to this subpart to the Oregon Department of Geology and Mineral Industries. ...

  17. 30 CFR 937.842 - Federal inspections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.842 Federal... inspections conducted pursuant to this subpart to the Oregon Department of Geology and Mineral Industries. ...

  18. 30 CFR 937.842 - Federal inspections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.842 Federal... inspections conducted pursuant to this subpart to the Oregon Department of Geology and Mineral Industries. ...

  19. Mechanical Attachment of Reusable Surface Insulation to Space Shuttle Primary Structure

    NASA Technical Reports Server (NTRS)

    Fleck, R. W.; Lehman, J. K.

    1973-01-01

    Three methods of attaching surface insulation tiles to shuttle primary structure have been proposed: direct bond, mechanical attachment, and subpanels with standoffs. The direct bond approach is lightweight but is difficult to refurbish and inspect. The subpanel approach is heavier but allows for easy refurbishment since subpanels are easily removed and replaced. The mechanical attachment approach allows easy refurbishment and inspection and is lightweight when an efficient insulator is used between surface insulation tiles and primary structure.

  20. [«All of a sudden…» preventability and priorities of construction fatalities: an experience in Piedmont].

    PubMed

    Pasqualini, Osvaldo; Libener, Marcello; Farina, Elena; Bena, Antonella

    2011-01-01

    To examine the usefulness for prevention of the National Surveillance System on occupational fatalities, which is based on the narrative description of the work accident collected by OSH inspectors and on the subsequent classification of the injury dynamics by means of a standardized model of analysis. The system ability of providing useful recommendations for prevention was evaluated on one hand by analyzing the effectiveness of inspections in preventing fatalities, on the other hand by identifying the most frequent accident mechanisms. Data analyzed consisted of investigation reports of construction fatalities occurred during 2002-2008 in the Piedmont Region, collected by surveillance system. The injury narrative description was used to assess whether the fatality would have been preventable by an inspection hypothetically conducted the day before the event; injuries were classified as probably preventable, probably not preventable, and uncertain. A standardized model of classification of injury dynamics was employed to identify mechanisms and circumstances related to the construction fatalities, and particularly those caused by falls from height. Among 122 construction fatalities occurred, 25%were considered probably preventable and 60%probably not preventable. Half of the construction fatalities was caused by fall from height, most of which were caused by sudden breaking of a surface walkway, and almost 20% by fall of objects, including burial. The analysis of the preventability of construction fatalities in Piedmont seems partly to rebut the assumption that more inspections are necessarily associated with a reduction in fatalities. The interpretation of the injury narrative descriptions, which are implemented by OHS inspectors as part of their usual activity, through a standardized model of analysis allows to identify the breaking of surface walkways as the most important mechanism of fatality among falls from height.

  1. 30 CFR 250.517 - Blowout preventer system tests, inspections, and maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... on a daily basis. You must visually inspect your subsea BOP system and marine riser at least once... equipment. The BSEE District Manager may approve alternate methods and frequencies to inspect a marine riser..., actuations, crew drills, and inspections of the BOP system, system components, and marine riser in the...

  2. 30 CFR 250.517 - Blowout preventer system tests, inspections, and maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... on a daily basis. You must visually inspect your subsea BOP system and marine riser at least once... equipment. The BSEE District Manager may approve alternate methods and frequencies to inspect a marine riser..., actuations, crew drills, and inspections of the BOP system, system components, and marine riser in the...

  3. Optical Inspection In Hostile Industrial Environments: Single-Sensor VS. Imaging Methods

    NASA Astrophysics Data System (ADS)

    Cielo, P.; Dufour, M.; Sokalski, A.

    1988-11-01

    On-line and unsupervised industrial inspection for quality control and process monitoring is increasingly required in the modern automated factory. Optical techniques are particularly well suited to industrial inspection in hostile environments because of their noncontact nature, fast response time and imaging capabilities. Optical sensors can be used for remote inspection of high temperature products or otherwise inaccessible parts, provided they are in a line-of-sight relation with the sensor. Moreover, optical sensors are much easier to adapt to a variety of part shapes, position or orientation and conveyor speeds as compared to contact-based sensors. This is an important requirement in a flexible automation environment. A number of choices are possible in the design of optical inspection systems. General-purpose two-dimensional (2-D) or three-dimensional (3-D) imaging techniques have advanced very rapidly in the last years thanks to a substantial research effort as well as to the availability of increasingly powerful and affordable hardware and software. Imaging can be realized using 2-D arrays or simpler one-dimensional (1-D) line-array detectors. Alternatively, dedicated single-spot sensors require a smaller amount of data processing and often lead to robust sensors which are particularly appropriate to on-line operation in hostile industrial environments. Many specialists now feel that dedicated sensors or clusters of sensors are often more effective for specific industrial automation and control tasks, at least in the short run. This paper will discuss optomechanical and electro-optical choices with reference to the design of a number of on-line inspection sensors which have been recently developed at our institute. Case studies will include real-time surface roughness evaluation on polymer cables extruded at high speed, surface characterization of hot-rolled or galvanized-steel sheets, temperature evaluation and pinhole detection in aluminum foil, multi-wavelength polymer sheet thickness gauging and thermographic imaging, 3-D lumber profiling, line-array inspection of textiles and glassware, as well as on-line optical inspection for the control of automated arc welding. In each case the design choices between single or multiple-element detectors, mechanical vs. electronic scanning, laser vs. incoherent illumination, etc. will be discussed in terms of industrial constraints such as speed requirements, protection against the environment or reliability of the sensor output.

  4. Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Thadd

    1994-01-04

    This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled datamore » acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.« less

  5. Rugometric and microtopographic inspection of teeth enamel

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F.; Pereira, Pedro B.

    2013-06-01

    The roughness of teeth' enamel is an important parameter in orthodontics. One example is the application in the process of decreasing tooth-size by reducing the interproximal enamel surfaces (stripping) of teeth. In order to achieve smooth surfaces clinicians have been testing various methods and progressively improved this therapeutic technique. The evaluation the surface roughness following teeth interproximal reduction is fundamental in the process. In general tooth' surface is not flat presenting a variety of complex geometries. In this communication we will report on the metrological procedure employed on the rugometric and microtopographic inspection by optical active triangulation of raw and processed (interproximal stripping) tooth surfaces.

  6. Inspection of imprint lithography patterns for semiconductor and patterned media

    NASA Astrophysics Data System (ADS)

    Resnick, Douglas J.; Haase, Gaddi; Singh, Lovejeet; Curran, David; Schmid, Gerard M.; Luo, Kang; Brooks, Cindy; Selinidis, Kosta; Fretwell, John; Sreenivasan, S. V.

    2010-03-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the requirements of cost-effective device production. This work summarizes the results of defect inspections of semiconductor masks, wafers and hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical and e-beam based automated inspection tools. For the semiconductor market, a test mask was designed which included dense features (with half pitches ranging between 32 nm and 48 nm) containing an extensive array of programmed defects. For this work, both e-beam inspection and optical inspection were used to detect both random defects and the programmed defects. Analytical SEMs were then used to review the defects detected by the inspection. Defect trends over the course of many wafers were observed with another test mask using a KLA-T 2132 optical inspection tool. The primary source of defects over 2000 imprints were particle related. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity, scattered light, phase shift, etc. Defects that have been identified in this manner are further characterized according to the morphology

  7. Extraction and analysis of the image in the sight field of comparison goniometer to measure IR mirrors assembly

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-shan; Zhao, Yue-jin; Li, Zhuo; Dong, Liquan; Chu, Xuhong; Li, Ping

    2010-11-01

    The comparison goniometer is widely used to measure and inspect small angle, angle difference, and parallelism of two surfaces. However, the common manner to read a comparison goniometer is to inspect the ocular of the goniometer by one eye of the operator. To read an old goniometer that just equips with one adjustable ocular is a difficult work. In the fabrication of an IR reflecting mirrors assembly, a common comparison goniometer is used to measure the angle errors between two neighbor assembled mirrors. In this paper, a quick reading technique image-based for the comparison goniometer used to inspect the parallelism of mirrors in a mirrors assembly is proposed. One digital camera, one comparison goniometer and one set of computer are used to construct a reading system, the image of the sight field in the comparison goniometer will be extracted and recognized to get the angle positions of the reflection surfaces to be measured. In order to obtain the interval distance between the scale lines, a particular technique, left peak first method, based on the local peak values of intensity in the true color image is proposed. A program written in VC++6.0 has been developed to perform the color digital image processing.

  8. Timber bridge evaluation : a global nondestructive approach using impact generated FRFs

    Treesearch

    Angus Morison; C.D. Van Karsen; H.A. Evensen; J.B. Ligon; J.R. Erickson; R.J. Ross; J.W. Forsman

    2002-01-01

    Bridges require periodic inspections to ensure the safety of those using the structure. A visual inspection has historically been the most common form of investigation for timber bridges. This poses many problems when inspecting bridge timbers since often the damage is internal, leaving no visible signs of decay on the surface. Localized nondestructive evaluation (NDE...

  9. Design and implementation for integrated UAV multi-spectral inspection system

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Li, X.; Yan, F.

    2018-04-01

    In order to improve the working efficiency of the transmission line inspection and reduce the labour intensity of the inspectors, this paper presents an Unmanned Aerial Vehicle (UAV) inspection system architecture for the transmission line inspection. In this document, the light-duty design for different inspection equipment and processing terminals is completed. It presents the reference design for the information-processing terminal, supporting the inspection and interactive equipment accessing, and obtains all performance indicators of the inspection information processing through the tests. Practical application shows that the UAV inspection system supports access and management of different types of mainstream fault detection equipment, and can implement the independent diagnosis of the detected information to generate inspection reports in line with industry norms, which can meet the fast, timely, and efficient requirements for the power line inspection work.

  10. Sensor Fusion Techniques for Phased-Array Eddy Current and Phased-Array Ultrasound Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrowood, Lloyd F.

    Sensor (or Data) fusion is the process of integrating multiple data sources to produce more consistent, accurate and comprehensive information than is provided by a single data source. Sensor fusion may also be used to combine multiple signals from a single modality to improve the performance of a particular inspection technique. Industrial nondestructive testing may utilize multiple sensors to acquire inspection data depending upon the object under inspection and the anticipated types of defects that can be identified. Sensor fusion can be performed at various levels of signal abstraction with each having its strengths and weaknesses. A multimodal data fusionmore » strategy first proposed by Heideklang and Shokouhi that combines spatially scattered detection locations to improve detection performance of surface-breaking and near-surface cracks in ferromagnetic metals is shown using a surface inspection example and is then extended for volumetric inspections. Utilizing data acquired from an Olympus Omniscan MX2 from both phased array eddy current and ultrasound probes on test phantoms, single and multilevel fusion techniques are employed to integrate signals from the two modalities. Preliminary results demonstrate how confidence in defect identification and interpretation benefit from sensor fusion techniques. Lastly, techniques for integrating data into radiographic and volumetric imagery from computed tomography are described and results are presented.« less

  11. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is lowered toward a transporter. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is lowered toward a transporter. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

  12. KENNEDY SPACE CENTER, FLA. - Technicians in the Orbiter Processing Facility oversee removal of one of two orbital maneuvering system (OMS) pods from Endeavour. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - Technicians in the Orbiter Processing Facility oversee removal of one of two orbital maneuvering system (OMS) pods from Endeavour. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

  13. KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to remove one of two orbital maneuvering system (OMS) pods from Endeavour. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to remove one of two orbital maneuvering system (OMS) pods from Endeavour. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

  14. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is suspended overhead. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is suspended overhead. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

  15. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is lowered onto a transporter. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is lowered onto a transporter. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

  16. Process Specification for Eddy Current Inspection

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2011-01-01

    This process specification establishes the minimum requirements for eddy current inspection of flat surfaces, fastener holes, threaded fasteners and seamless and welded tubular products made from nonmagnetic alloys such as aluminum and stainless steel.

  17. Recent progress in the NDE of cast ship propulsion components

    NASA Astrophysics Data System (ADS)

    Spies, Martin; Rieder, Hans; Dillhöfer, Alexander; Rauhut, Markus; Taeubner, Kai; Kreier, Peter

    2014-02-01

    The failure of propulsion components of ships and ferries can lead to serious environmental and economic damage or even the loss of lives. For ultrasonic inspection of such large components we employ mechanized scanning and defect reconstruction using the Synthetic Aperture Focusing Technique (SAFT). We report on results obtained in view of the detection of defects with different inspection techniques. Also, we address the issue of Probability of Detection by reporting results obtained in POD and MAPOD-studies (Model-Assisted POD) using experimental and simulated data. Finally, we show recent results of surface and sub-surface inspection using optical and eddy current techniques.

  18. National Dam Inspection Program. Ingham Creek (Aquetong Lake) Dam (NDI ID PA 00224, PA DER 9-49) Delaware River Basin, Ingham Creek, Pennsylvania. Phase I Inspection Report,

    DTIC Science & Technology

    1981-04-01

    Delaware River Basing Ingham Justif icaticn--- L Creek, Pennsylvania. Phase I Inspection Do DEL-AWARE RIVER BASIN Availabilit T Co~es Avail and/or D...about 1.5H:IV and an unknown upstream slope below the water surface. The dam impounds a reservoir with a normal pool surface area of 12.4 acres and a...deep. It was once used to direct water to a mill downstream of the dam and is now in poor condition. The spillway Design Flood (SDF) chosen for this

  19. System Enhancements for Mechanical Inspection Processes

    NASA Technical Reports Server (NTRS)

    Hawkins, Myers IV

    2011-01-01

    Quality inspection of parts is a major component to any project that requires hardware implementation. Keeping track of all of the inspection jobs is essential to having a smooth running process. By using HTML, the programming language ColdFusion, and the MySQL database, I created a web-based job management system for the 170 Mechanical Inspection Group that will replace the Microsoft Access based management system. This will improve the ways inspectors and the people awaiting inspection view and keep track of hardware as it is in the inspection process. In the end, the management system should be able to insert jobs into a queue, place jobs in and out of a bonded state, pre-release bonded jobs, and close out inspection jobs.

  20. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-06

    A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

  1. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  2. 29 CFR 1910.124 - General requirements for dipping and coating operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... below 25% of its LFL. (2) When a liquid in a dip tank creates an exposure hazard covered by a standard... may use a tank cover or material that floats on the surface of the liquid in a dip tank to replace or... must: (1) Inspect the hoods and ductwork of the ventilation system for corrosion or damage: (i) At...

  3. Industrial applications of shearography for inspections of aircraft components

    NASA Astrophysics Data System (ADS)

    Krupka, Rene; Waltz, T.; Ettemeyer, Andreas

    2003-05-01

    Shearography has been validated as fast and reliable inspection technique for aerospace components. Following several years phase of evaluation of the technique, meanwhile, shearography has entered the industrial production inspection. The applications basically range from serial inspection in the production line to field inspection in assembly and to applications in the maintenance and repair area. In all applications, the main advantages of shearography, as very fast and full field inspection and high sensitivity even on very complex composite materials have led to the decision for laser shearography as inspection tool. In this paper, we present examples of recent industrial shearography inspection systems in the field of aerospace. One of the first industrial installations of laser shearography in Europe was a fully automatic inspection system for helicopter rotorblades. Complete rotor blades are inspected within 10 minutes on delaminations and debondings in the composite structure. In case of more complex components, robotic manipulation of the shearography camera has proven to be the optimum solution. An industry 6-axis robot gives utmost flexibility to position the camera in any angle and distance. Automatic defect marking systems have also been introduced to indicate the exact position of the defect directly on the inspected component. Other applications cover the inspection of abradable seals in jet engines and portable shearography inspection systems for maintenance and repair inspection in the field.

  4. Optical surface analysis: a new technique for the inspection and metrology of optoelectronic films and wafers

    NASA Astrophysics Data System (ADS)

    Bechtler, Laurie; Velidandla, Vamsi

    2003-04-01

    In response to demand for higher volumes and greater product capability, integrated optoelectronic device processing is rapidly increasing in complexity, benefiting from techniques developed for conventional silicon integrated circuit processing. The needs for high product yield and low manufacturing cost are also similar to the silicon wafer processing industry. This paper discusses the design and use of an automated inspection instrument called the Optical Surface Analyzer (OSA) to evaluate two critical production issues in optoelectronic device manufacturing: (1) film thickness uniformity, and (2) defectivity at various process steps. The OSA measurement instrument is better suited to photonics process development than most equipment developed for conventional silicon wafer processing in two important ways: it can handle both transparent and opaque substrates (unlike most inspection and metrology tools), and it is a full-wafer inspection method that captures defects and film variations over the entire substrate surface (unlike most film thickness measurement tools). Measurement examples will be provided in the paper for a variety of films and substrates used for optoelectronics manufacturing.

  5. Rail inspection system based on iGPS

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoyan; Wang, Mulan; Wen, Xiuping

    2018-05-01

    Track parameters include gauge, super elevation, cross level and so on, which could be calculated through the three-dimensional coordinates of the track. The rail inspection system based on iGPS (indoor/infrared GPS) was composed of base station, receiver, rail inspection frame, wireless communication unit, display and control unit and data processing unit. With the continuous movement of the inspection frame, the system could accurately inspect the coordinates of rail; realize the intelligent detection and precision measurement. According to principle of angle intersection measurement, the inspection model was structured, and detection process was given.

  6. Fiber-optic fringe projection with crosstalk reduction by adaptive pattern masking

    NASA Astrophysics Data System (ADS)

    Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard

    2017-02-01

    To enable in-process inspection of industrial manufacturing processes, measuring devices need to fulfill time and space constraints, while also being robust to environmental conditions, such as high temperatures and electromagnetic fields. A new fringe projection profilometry system is being developed, which is capable of performing the inspection of filigree tool geometries, e.g. gearing elements with tip radii of 0.2 mm, inside forming machines of the sheet-bulk metal forming process. Compact gradient-index rod lenses with a diameter of 2 mm allow for a compact design of the sensor head, which is connected to a base unit via flexible high-resolution image fibers with a diameter of 1.7 mm. The base unit houses a flexible DMD based LED projector optimized for fiber coupling and a CMOS camera sensor. The system is capable of capturing up to 150 gray-scale patterns per second as well as high dynamic range images from multiple exposures. Owing to fiber crosstalk and light leakage in the image fiber, signal quality suffers especially when capturing 3-D data of technical surfaces with highly varying reflectance or surface angles. An algorithm is presented, which adaptively masks parts of the pattern to reduce these effects via multiple exposures. The masks for valid surface areas are automatically defined according to different parameters from an initial capture, such as intensity and surface gradient. In a second step, the masks are re-projected to projector coordinates using the mathematical model of the system. This approach is capable of reducing both inter-pixel crosstalk and inter-object reflections on concave objects while maintaining measurement durations of less than 5 s.

  7. High-Resolution Ultrasound Imaging Using Model-Bases Iterative Reconstruction For Canister Degradation Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzidakis, Stylianos; Jarrell, Joshua J; Scaglione, John M

    The inspection of the dry storage canisters that house spent nuclear fuel is an important issue facing the nuclear industry; currently, there are limited options available to provide for even minimal inspections. An issue of concern is stress corrosion cracking (SCC) in austenitic stainless steel canisters. SCC is difficult to predict and exhibits small crack opening displacements on the order of 15 30 m. Nondestructive examination (NDE) of such microscopic cracks is especially challenging, and it may be possible to miss SCC during inspections. The coarse grain microstructure at the heat affected zone reduces the achievable sensitivity of conventional ultrasoundmore » techniques. At Oak Ridge National Laboratory, a tomographic approach is under development to improve SCC detection using ultrasound guided waves and model-based iterative reconstruction (MBIR). Ultrasound-guided waves propagate parallel to the physical boundaries of the surface and allow for rapid inspection of a large area from a single probe location. MBIR is a novel, effective probabilistic imaging tool that offers higher precision and better image quality than current reconstruction techniques. This paper analyzes the canister environment, stainless steel microstructure, and SCC characteristics. The end goal is to demonstrate the feasibility of an NDE system based on ultrasonic guided waves and MBIR for canister degradation and to produce radar-like images of the canister surface with significantly improved image quality. The proposed methodology can potentially reduce human radiation exposure, result in lower operational costs, and provide a methodology that can be used to verify canister integrity in-situ during extended storage« less

  8. Development of the Macro Command Editing Executive System for Factory Workers-Oriented Programless Visual Inspection System

    NASA Astrophysics Data System (ADS)

    Anezaki, Takashi; Wakitani, Kouichi; Nakamura, Masatoshi; Kubo, Hiroyasu

    Because visual inspection systems are difficult to tune, they create many problems for the kaizen process. This results in increased development costs and time to assure that the inspection systems function properly. In order to improve inspection system development, we designed an easy-tuning system called a “Program-less” visual inspection system. The ROI macro command which consisted of eight kinds of shape recognition macro commands and decision, operation, control commands was built. Furthermore, the macro command editing executive system was developed by the operation of only the GUI without editing source program. The validity of the ROI macro command was proved by the application of 488 places.

  9. Method and system for gas flow mitigation of molecular contamination of optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, Gildardo; Johnson, Terry; Arienti, Marco

    A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and amore » purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.« less

  10. Classification of underground pipe scanned images using feature extraction and neuro-fuzzy algorithm.

    PubMed

    Sinha, S K; Karray, F

    2002-01-01

    Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.

  11. Survey of the home sewage disposal systems in northeast Ohio.

    PubMed

    Tumeo, Mark A; Newland, Juliet

    2009-09-01

    This article reports on failure rates in onsite sewage treatment systems (STS) that were found as part of a comprehensive seven-county survey that was performed under the auspices of the Northeast Ohio Areawide Coordinating Agency (NOACA) during the summer of 2000. The goal was to determine the percentage of onsite, individual home wastewater systems that were "failing." A system was identified as "failing" if, upon inspection, it had observable surfacing of effluent from the treatment system. A certified soil scientist conducted each on-site investigation to ensure consistency in methodology and to provide verification of soil types for each installation. The survey revealed that between 12.7% and 19.7% of the onsite wastewater treatment systems are allowing wastewater to surface as opposed to infiltrate (at the 95% confidence interval). The rate of failure does not vary significantly between aerobic and septic systems or between systems with or without filters.

  12. Arctic Undersea Inspection of Pipelines and Structures.

    DTIC Science & Technology

    1983-06-01

    approaches . Inspection Requirements ’.5 Underwater inspection requirements for Arctic structures and pipelines *can be met by present techniques with two...look for surface evidence of leakage. An .ce cover negates this approach . The second exception is the requirement to regularly monitor the cathodic...training, payload, transiting capability, depth capability and an unknown degree of judgement degradation brought about by the psychological aspects of

  13. Oblique Aerial Photography Tool for Building Inspection and Damage Assessment

    NASA Astrophysics Data System (ADS)

    Murtiyoso, A.; Remondino, F.; Rupnik, E.; Nex, F.; Grussenmeyer, P.

    2014-11-01

    Aerial photography has a long history of being employed for mapping purposes due to some of its main advantages, including large area imaging from above and minimization of field work. Since few years multi-camera aerial systems are becoming a practical sensor technology across a growing geospatial market, as complementary to the traditional vertical views. Multi-camera aerial systems capture not only the conventional nadir views, but also tilted images at the same time. In this paper, a particular use of such imagery in the field of building inspection as well as disaster assessment is addressed. The main idea is to inspect a building from four cardinal directions by using monoplotting functionalities. The developed application allows to measure building height and distances and to digitize man-made structures, creating 3D surfaces and building models. The realized GUI is capable of identifying a building from several oblique points of views, as well as calculates the approximate height of buildings, ground distances and basic vectorization. The geometric accuracy of the results remains a function of several parameters, namely image resolution, quality of available parameters (DEM, calibration and orientation values), user expertise and measuring capability.

  14. Distributed heterogeneous inspecting system and its middleware-based solution.

    PubMed

    Huang, Li-can; Wu, Zhao-hui; Pan, Yun-he

    2003-01-01

    There are many cases when an organization needs to monitor the data and operations of its supervised departments, especially those departments which are not owned by this organization and are managed by their own information systems. Distributed Heterogeneous Inspecting System (DHIS) is the system an organization uses to monitor its supervised departments by inspecting their information systems. In DHIS, the inspected systems are generally distributed, heterogeneous, and constructed by different companies. DHIS has three key processes-abstracting core data sets and core operation sets, collecting these sets, and inspecting these collected sets. In this paper, we present the concept and mathematical definition of DHIS, a metadata method for solving the interoperability, a security strategy for data transferring, and a middleware-based solution of DHIS. We also describe an example of the inspecting system at WENZHOU custom.

  15. Cross correlation anomaly detection system

    NASA Technical Reports Server (NTRS)

    Micka, E. Z. (Inventor)

    1975-01-01

    This invention provides a method for automatically inspecting the surface of an object, such as an integrated circuit chip, whereby the data obtained by the light reflected from the surface, caused by a scanning light beam, is automatically compared with data representing acceptable values for each unique surface. A signal output provided indicated of acceptance or rejection of the chip. Acceptance is based on predetermined statistical confidence intervals calculated from known good regions of the object being tested, or their representative values. The method can utilize a known good chip, a photographic mask from which the I.C. was fabricated, or a computer stored replica of each pattern being tested.

  16. Far-infrared and 3D imaging for doneness assessment in chicken breast

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Ibarra, Juan G.

    2001-03-01

    Sensor fusion of infrared imaging and range imaging was proposed to estimate internal temperature on just cooked chicken breasts. An infrared camera operating at 8-12 microns registered surface temperature of cooked meat samples, while a single line structured light system located the thickest region of the meat target. In this region of interest, a combined time series/neural network method is applied to correlate the internal and external temperatures during the cool-down process. Experimental verification in a pilot plant oven is presented. To ensure food safety, a mandatory regulation requires all poultry processors in the U.S.A to verify that all ready-to-eat products reach a minimum endpoint temperature (71¦C for chicken breast), but no current assay can do a non-invasively inspection of all the samples. The proposed system has the potential for on-line inspection of ready-to-eat meat for food quality and safety.

  17. The challenges encountered in the integration of an early test wafer surface scanning inspection system into a 450mm manufacturing line

    NASA Astrophysics Data System (ADS)

    Lee, Jeffrey; McGarvey, Steve

    2013-04-01

    The introduction of early test wafer (ETW) 450mm Surface Scanning Inspection Systems (SSIS) into Si manufacturing has brought with it numerous technical, commercial, and logistical challenges on the path to rapid recipe development and subsequent qualification of other 450mm wafer processing equipment. This paper will explore the feasibility of eliminating the Polystyrene Latex Sphere deposition process step and the subsequent creation of SSIS recipes based upon the theoretical optical properties of both the SSIS and the process film stack(s). The process of Polystyrene Latex Sphere deposition for SSIS recipe generation and development is generally accepted on the previous technology nodes for 150/200/300mm wafers. PSL is deposited with a commercially available deposition system onto a non-patterned bare Si or non-patterned filmed Si wafer. After deposition of multiple PSL spots, located in different positions on a wafer, the wafer is inspected on a SSIS and a response curve is generated. The response curve is based on the the light scattering intensity of the NIST certified PSL that was deposited on the wafer. As the initial 450mm Si wafer manufacturing began, there were no inspection systems with sub-90nm sensitivities available for defect and haze level verification. The introduction of a 450mm sub-30nm inspection system into the manufacturing line generated instant challenges. Whereas the 450mm wafers were relatively defect free at 90nm, at 40nm the wafers contained several hundred thousand defects. When PSL was deposited onto wafers with these kinds of defect levels, PSL with signals less than the sub-90nm defects were difficult to extract. As the defectivity level of the wafers from the Si suppliers rapidly improves the challenges of SSIS recipe creation with high defectivity decreases while at the same time the cost of PSL deposition increases. The current cost per wafer is fifteen thousand dollars for a 450mm PSL deposition service. When viewed from the standpoint of the generations of hundreds of SSIS recipes for the global member companies of ISMI, it is simply not economically viable to create all recipes based on PSL based light scattering response curves. This paper will explore the challenges/end results encountered with the PSL based SSIS recipe generation and compare those against the challenges/end results of SSIS recipes generated based strictly upon theoretical Bidirectional reflectance distribution function (BRDF) light scattering modeling. The BRDF modeling will allow for the creation of SSIS recipes without PSL deposition, which is greatly appealing for a multitude of both technical and commercial considerations. This paper will also explore the technical challenges of SSIS recipe generation based strictly upon BRDF modeling.

  18. Physical and mechanical properties of spinach for whole-surface online imaging inspection

    NASA Astrophysics Data System (ADS)

    Tang, Xiuying; Mo, Chang Y.; Chan, Diane E.; Peng, Yankun; Qin, Jianwei; Yang, Chun-Chieh; Kim, Moon S.; Chao, Kuanglin

    2011-06-01

    The physical and mechanical properties of baby spinach were investigated, including density, Young's modulus, fracture strength, and friction coefficient. The average apparent density of baby spinach leaves was 0.5666 g/mm3. The tensile tests were performed using parallel, perpendicular, and diagonal directions with respect to the midrib of each leaf. The test results showed that the mechanical properties of spinach are anisotropic. For the parallel, diagonal, and perpendicular test directions, the average values for the Young's modulus values were found to be 2.137MPa, 1.0841 MPa, and 0.3914 MPa, respectively, and the average fracture strength values were 0.2429 MPa, 0.1396 MPa, and 0.1113 MPa, respectively. The static and kinetic friction coefficient between the baby spinach and conveyor belt were researched, whose test results showed that the average coefficients of kinetic and maximum static friction between the adaxial (front side) spinach leaf surface and conveyor belt were 1.2737 and 1.3635, respectively, and between the abaxial (back side) spinach leaf surface and conveyor belt were 1.1780 and 1.2451 respectively. These works provide the basis for future development of a whole-surface online imaging inspection system that can be used by the commercial vegetable processing industry to reduce food safety risks.

  19. Speech input system for meat inspection and pathological coding used thereby

    NASA Astrophysics Data System (ADS)

    Abe, Shozo

    Meat inspection is one of exclusive and important jobs of veterinarians though it is not well known in general. As the inspection should be conducted skillfully during a series of continuous operations in a slaughter house, development of automatic inspecting systems has been required for a long time. We employed a hand-free speech input system to record the inspecting data because inspecters have to use their both hands to treat the internals of catles and check their health conditions by necked eyes. The data collected by the inspectors are transfered to a speech recognizer and then stored as controlable data of each catle inspected. Control of terms such as pathological conditions to be input and their coding are also important in this speech input system and practical examples are shown.

  20. Industrial inspection of specular surfaces using a new calibration procedure

    NASA Astrophysics Data System (ADS)

    Aswendt, Petra; Hofling, Roland; Gartner, Soren

    2005-06-01

    The methodology of phase encoded reflection measurements has become a valuable tool for the industrial inspection of components with glossy surfaces. The measuring principle provides outstanding sensitivity for tiny variations of surface curvature so that sub-micron waviness and flaws are reliably detected. Quantitative curvature measurements can be obtained from a simple approach if the object is almost flat. 3D-objects with a high aspect ratio require more effort to determine both coordinates and normal direction of a surface point unambiguously. Stereoscopic solutions have been reported using more than one camera for a certain surface area. This paper will describe the combined double camera steady surface approach (DCSS) that is well suited for the implementation in industrial testing stations

  1. Precision machining of optical surfaces with subaperture correction technologies MRF and IBF

    NASA Astrophysics Data System (ADS)

    Schmelzer, Olaf; Feldkamp, Roman

    2015-10-01

    Precision optical elements are used in a wide range of technical instrumentations. Many optical systems e.g. semiconductor inspection modules, laser heads for laser material processing or high end movie cameras, contain precision optics even aspherical or freeform surfaces. Critical parameters for such systems are wavefront error, image field curvature or scattered light. Following these demands the lens parameters are also critical concerning power and RMSi of the surface form error and micro roughness. How can we reach these requirements? The emphasis of this discussion is set on the application of subaperture correction technologies in the fabrication of high-end aspheres and free-forms. The presentation focuses on the technology chain necessary for the production of high-precision aspherical optical components and the characterization of the applied subaperture finishing tools MRF (magneto-rheological finishing) and IBF (ion beam figuring). These technologies open up the possibility of improving the performance of optical systems.

  2. Portable wireless ultrasonic systems for remote inspection

    NASA Astrophysics Data System (ADS)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2015-03-01

    The weight and power storage of conventional wire and active wireless systems limit their applications to composite structures such as wind turbines and aerospace structures. In this paper, a structurally-integrated, inert, wireless guided wave system for rapid composite inspection is demonstrated. The wireless interface is based on electromagnetic coupling between three coils, one of which is physically connected to an ultrasonic piezoelectric transducer and embedded in the structure, while the other two are in a separate probing unit. Compact encapsulated sensor units are designed, built and successfully embedded into carbon fibre composite panel at manufacture. Chirp-based excitation is used to enable single-shot measurements with high signal-to-noise ratios to be obtained. Results from sensors embedded in carbon fibre reinforced composite panel show that signal amplitude obtained by embedding the sensor into composite is almost twice that of a surface-bonded sensor. The promising results indicate that the developed sensor can be potentially used for impact damage in a large composite structure.

  3. Comparison of Cornea Module and DermaInspect for noninvasive imaging of ocular surface pathologies

    NASA Astrophysics Data System (ADS)

    Steven, Philipp; Müller, Maya; Koop, Norbert; Rose, Christian; Hüttmann, Gereon

    2009-11-01

    Minimally invasive imaging of ocular surface pathologies aims at securing clinical diagnosis without actual tissue probing. For this matter, confocal microscopy (Cornea Module) is in daily use in ophthalmic practice. Multiphoton microscopy is a new optical technique that enables high-resolution imaging and functional analysis of living tissues based on tissue autofluorescence. This study was set up to compare the potential of a multiphoton microscope (DermaInspect) to the Cornea Module. Ocular surface pathologies such as pterygia, papillomae, and nevi were investigated in vivo using the Cornea Module and imaged immediately after excision by DermaInspect. Two excitation wavelengths, fluorescence lifetime imaging and second-harmonic generation (SHG), were used to discriminate different tissue structures. Images were compared with the histopathological assessment of the samples. At wavelengths of 730 nm, multiphoton microscopy exclusively revealed cellular structures. Collagen fibrils were specifically demonstrated by second-harmonic generation. Measurements of fluorescent lifetimes enabled the highly specific detection of goblet cells, erythrocytes, and nevus-cell clusters. At the settings used, DermaInspect reaches higher resolutions than the Cornea Module and obtains additional structural information. The parallel detection of multiphoton excited autofluorescence and confocal imaging could expand the possibilities of minimally invasive investigation of the ocular surface toward functional analysis at higher resolutions.

  4. X-ray cargo container inspection system with few-view projection imaging

    NASA Astrophysics Data System (ADS)

    Duan, Xinhui; Cheng, Jianping; Zhang, Li; Xing, Yuxiang; Chen, Zhiqiang; Zhao, Ziran

    2009-01-01

    An X-ray cargo inspection system with few-view projection imaging is developed for detecting contraband in air containers. This paper describes this developing inspection system, including its configuration and the process of inspection using three imaging modalities: digital radiography (DR), few view imaging and computed tomography (CT). The few-view imaging can provide 3D images with much faster scanning speed than CT and do great help to quickly locate suspicious cargo in a container. An algorithm to reconstruct tomographic images from severely sparse projection data of few-view imaging is discussed. A cooperative work manner of the three modalities is presented to make the inspection more convenient and effective. Numerous experiments of performance tests and modality comparison are performed on our system for inspecting air containers. Results demonstrate the effectiveness of our methods and implementation of few-view imaging in practical inspection systems.

  5. A Portable Surface Contamination Monitor Based on the Principle of Optically Stimulated Electron Emission (OSEE)

    NASA Technical Reports Server (NTRS)

    Perey, D. F.

    1996-01-01

    Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique, based on the principle of Optically Stimulated Electron Emission (OSEE), has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it is non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be sent to an external computer for archiving or analysis.

  6. Pixel-wise deblurring imaging system based on active vision for structural health monitoring at a speed of 100 km/h

    NASA Astrophysics Data System (ADS)

    Hayakawa, Tomohiko; Moko, Yushi; Morishita, Kenta; Ishikawa, Masatoshi

    2018-04-01

    In this paper, we propose a pixel-wise deblurring imaging (PDI) system based on active vision for compensation of the blur caused by high-speed one-dimensional motion between a camera and a target. The optical axis is controlled by back-and-forth motion of a galvanometer mirror to compensate the motion. High-spatial-resolution image captured by our system in high-speed motion is useful for efficient and precise visual inspection, such as visually judging abnormal parts of a tunnel surface to prevent accidents; hence, we applied the PDI system for structural health monitoring. By mounting the system onto a vehicle in a tunnel, we confirmed significant improvement in image quality for submillimeter black-and-white stripes and real tunnel-surface cracks at a speed of 100 km/h.

  7. Optical probe for porosity defect detection on inner diameter surfaces of machined bores

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ojas P.; Islam, Mohammed N.; Terry, Fred L.

    2010-12-01

    We demonstrate an optical probe for detection of porosity inside spool bores of a transmission valve body with diameters down to 5 mm. The probe consists of a graded-index relay rod that focuses a laser beam spot onto the inner surface of the bore. Detectors, placed in the specular and grazing directions with respect to the incident beam, measure the change in scattered intensity when a surface defect is encountered. Based on the scattering signatures in the two directions, the system can also validate the depth of the defect and distinguish porosity from bump-type defects coming out of the metal surface. The system can detect porosity down to a 50-μm lateral dimension and ~40 μm in depth with >3-dB contrast over the background intensity fluctuations. Porosity detection systems currently use manual inspection techniques on the plant floor, and the demonstrated probe provides a noncontact technique that can help automotive manufacturers meet high-quality standards during production.

  8. Shell-NASA Vibration-Based Damage Characterization

    NASA Technical Reports Server (NTRS)

    Rollins, John M.

    2014-01-01

    This article describes collaborative research between Shell International Exploration and Production (IE&P) scientists and ISAG personnel to investigate the feasibility of ultrasonic-based characterization of spacecraft tile damage for in-space inspection applications. The approach was proposed by Shell personnel in a Shell-NASA "speed-matching" session in early 2011 after ISAG personnel described challenges inherent in the inspection of MMOD damage deep within spacecraft thermal protection system (TPS) tiles. The approach leveraged Shell's relevant sensor and analytical expertise. The research addressed the difficulties associated with producing 3D models of MMOD damage cavities under the surface of a TPS tile, given that simple image-based sensing is constrained by line of sight through entry holes that have diameters considerably smaller than the underlying damage cavities. Damage cavity characterization is needed as part of a vehicle inspection and risk reduction capability for long-duration, human-flown space missions. It was hoped that cavity characterization could be accomplished through the use of ultrasonic techniques that allow for signal penetration through solid material.

  9. Proposal of an innovative benchmark for comparison of the performance of contactless digitizers

    NASA Astrophysics Data System (ADS)

    Iuliano, Luca; Minetola, Paolo; Salmi, Alessandro

    2010-10-01

    Thanks to the improving performances of 3D optical scanners, in terms of accuracy and repeatability, reverse engineering applications have extended from CAD model design or reconstruction to quality control. Today, contactless digitizing devices constitute a good alternative to coordinate measuring machines (CMMs) for the inspection of certain parts. The German guideline VDI/VDE 2634 is the only reference to evaluate whether 3D optical measuring systems comply with the declared or required performance specifications. Nevertheless it is difficult to compare the performance of different scanners referring to such a guideline. An adequate novel benchmark is proposed in this paper: focusing on the inspection of production tools (moulds), the innovative test piece was designed using common geometries and free-form surfaces. The reference part is intended to be employed for the evaluation of the performance of several contactless digitizing devices in computer-aided inspection, considering dimensional and geometrical tolerances as well as other quantitative and qualitative criteria.

  10. Portable Handheld Optical Window Inspection Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis; Dokos, Adam; Burns, Bradley

    2010-01-01

    The Portable Handheld Optical Window Inspection Device (PHOWID) is a measurement system for imaging small defects (scratches, pits, micrometeor impacts, and the like) in the field. Designed primarily for window inspection, PHOWID attaches to a smooth surface with suction cups, and raster scans a small area with an optical pen in order to provide a three-dimensional image of the defect. PHOWID consists of a graphical user interface, motor control subsystem, scanning head, and interface electronics, as well as an integrated camera and user display that allows a user to locate minute defects before scanning. Noise levels are on the order of 60 in. (1.5 m). PHOWID allows field measurement of defects that are usually done in the lab. It is small, light, and attaches directly to the test article in any orientation up to vertical. An operator can scan a defect and get useful engineering data in a matter of minutes. There is no need to make a mold impression for later lab analysis.

  11. Thermal Protection System of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Cleland, John; Iannetti, Francesco

    1989-01-01

    The Thermal Protection System (TPS), introduced by NASA, continues to incorporate many of the advances in materials over the past two decades. A comprehensive, single-volume summary of the TPS, including system design rationales, key design features, and broad descriptions of the subsystems of TPS (E.g., reusable surface insulation, leading edge structural, and penetration subsystems) is provided. Details of all elements of TPS development and application are covered (materials properties, manufacturing, modeling, testing, installation, and inspection). Disclosures and inventions are listed and potential commercial application of TPS-related technology is discussed.

  12. 33 CFR 157.146 - Similar tank design: Inspections on U.S. tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Inspections... Officer in Charge, Marine Inspection, of the zone in which the COW system is inspected, for only one of...

  13. Detecting nuclear materials smuggling: performance evaluation of container inspection policies.

    PubMed

    Gaukler, Gary M; Li, Chenhua; Ding, Yu; Chirayath, Sunil S

    2012-03-01

    In recent years, the United States, along with many other countries, has significantly increased its detection and defense mechanisms against terrorist attacks. A potential attack with a nuclear weapon, using nuclear materials smuggled into the country, has been identified as a particularly grave threat. The system for detecting illicit nuclear materials that is currently in place at U.S. ports of entry relies heavily on passive radiation detectors and a risk-scoring approach using the automated targeting system (ATS). In this article we analyze this existing inspection system and demonstrate its performance for several smuggling scenarios. We provide evidence that the current inspection system is inherently incapable of reliably detecting sophisticated smuggling attempts that use small quantities of well-shielded nuclear material. To counter the weaknesses of the current ATS-based inspection system, we propose two new inspection systems: the hardness control system (HCS) and the hybrid inspection system (HYB). The HCS uses radiography information to classify incoming containers based on their cargo content into "hard" or "soft" containers, which then go through different inspection treatment. The HYB combines the radiography information with the intelligence information from the ATS. We compare and contrast the relative performance of these two new inspection systems with the existing ATS-based system. Our studies indicate that the HCS and HYB policies outperform the ATS-based policy for a wide range of realistic smuggling scenarios. We also examine the impact of changes in adversary behavior on the new inspection systems and find that they effectively preclude strategic gaming behavior of the adversary. © 2011 Society for Risk Analysis.

  14. KSC-99pd-812-06

    NASA Image and Video Library

    1999-08-01

    KENNEDY SPACE CENTER, FLA. -- An orbiter has more than 300 miles of wires such as these shown here in the cable tray inside Columbia's payload bay. During launch of Columbia on mission STS-93, a damaged wire caused a short circuit in two separate main engine controllers. As a result of the findings, Shuttle program managers have decided to conduct inspections of the wiring in Endeavour's payload bay before its next mission, STS-99. The inspection and possible repair work will lead to a delayed launch date no earlier than Oct.7. The primary payload of the mission is the Shuttle Radar Topography Mission, a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled

  15. KSC-99pd-812-02

    NASA Image and Video Library

    1999-08-01

    KENNEDY SPACE CENTER, FLA. -- Proper Wiring Protection: The cables closest to the heads of the screws in this photo are properly protected from abrasion. During launch of Columbia on mission STS-93, a wire damaged from abrasion caused a short circuit in two separate main engine controllers. As a result of the findings, Shuttle program managers decided to conduct inspections of the wiring in Endeavour's payload bay before its next mission, STS-99. The inspection and possible repair work will lead to a delayed launch date no earlier than Oct.7. The primary payload of the mission is the Shuttle Radar Topography Mission, a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled

  16. Novel two channel self-registering integrated macro inspection tool

    NASA Astrophysics Data System (ADS)

    Aiyer, Arun A.; Meloni, Mark; Kueny, Andrew; Whelan, Mike

    2005-05-01

    After Develop Inspection (ADI) of every wafer in a lot is quite appealing, since that provides an opportunity to rework defective wafers instead of scrapping them later on. To achieve this level of inspection in manufacturing, automated macro inspection tools with higher throughput, better detection sensitivity and repeatability are needed. Moreover, such an inspector will have to be located within the Coater Developer track. To have a smaller footprint inspector, one might consider spiral-scan of the wafer surface using an off-axis illumination beam. In product wafers, one comes across Manhattan geometry with L/S patterns that are usually smaller than or comparable to the illumination wavelength. Since the reflectance of such a surface depends on the incident polarization and the pattern orientation with respect to the plane of incidence, the acquired wafer surface image will have dark and bright regions. Occurrence of this type of inhomogeneity in the surface image is referred to as the bow tie effect. The bow tie feature degrades S/N ratio of the acquired image and therefore reduces the inspector"s detection sensitivity. In this paper we will describe a macro inspection tool based on a fast spiral-scan technique that eliminates the bow tie effect by propagating the illumination beam in two orthogonal planes of incidence. In addition, by employing two counter-propagating beams, the tool is shown to have the ability to generate real time defect images that are immune to noise from die-to-die thickness variations, die-to-die alignment errors, and under layer contributions.

  17. Protection of extreme ultraviolet lithography masks. II. Showerhead flow mitigation of nanoscale particulate contamination [Protection of EUV lithography masks II: Showerhead flow mitigation of nanoscale particulate contamination

    DOE PAGES

    Klebanoff, Leonard E.; Torczynski, John R.; Geller, Anthony S.; ...

    2015-03-27

    An analysis is presented of a method to protect the reticle (mask) in an extreme ultraviolet (EUV) mask inspection tool using a showerhead plenum to provide a continuous flow of clean gas over the surface of a reticle. The reticle is suspended in an inverted fashion (face down) within a stage/holder that moves back and forth over the showerhead plenum as the reticle is inspected. It is essential that no particles of 10-nm diameter or larger be deposited on the reticle during inspection. Particles can originate from multiple sources in the system, and mask protection from each source is explicitlymore » analyzed. The showerhead plate has an internal plenum with a solid conical wall isolating the aperture. The upper and lower surfaces of the plate are thin flat sheets of porous-metal material. These porous sheets form the top and bottom showerheads that supply the region between the showerhead plate and the reticle and the region between the conical aperture and the Optics Zone box with continuous flows of clean gas. The model studies show that the top showerhead provides robust reticle protection from particles of 10-nm diameter or larger originating from the Reticle Zone and from plenum surfaces contaminated by exposure to the Reticle Zone. Protection is achieved with negligible effect on EUV transmission. Furthermore, the bottom showerhead efficiently protects the reticle from nanoscale particles originating from the Optics Zone.« less

  18. Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. L.

    1978-01-01

    Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.

  19. National Program for Inspection of Non-Federal Dams. Berry Brook Dam, (NH 00313), State Number 83.06, Piscataqua River Basin, Farmington, New Hampshire. Phase I Inspection Report.

    DTIC Science & Technology

    1979-12-01

    at embedded steel items 7 Spalling Minor spalling of surface ’+ deep exposi gcoarse aggregate of weir and dcwnstream f ce. Any Visible Reinforcing...1937, the above dam was inspected by me on _L LEO acomprie _ NOTES ON PHYSICAL CONDITI IT Ab ut mcnt s

  20. 14 CFR Appendix C to Part 147 - Airframe Curriculum Subjects

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... defueling. (1) 43. Inspect, check, and repair pressure fueling systems. (2) 44. Repair aircraft fuel system... repair aircraft fuel systems. g. aircraft electrical systems (2) 48. Repair and inspect aircraft... Components Teaching level a. aircraft landing gear systems (3) 29. Inspect, check, service, and repair...

  1. 14 CFR Appendix C to Part 147 - Airframe Curriculum Subjects

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... defueling. (1) 43. Inspect, check, and repair pressure fueling systems. (2) 44. Repair aircraft fuel system... repair aircraft fuel systems. g. aircraft electrical systems (2) 48. Repair and inspect aircraft... Components Teaching level a. aircraft landing gear systems (3) 29. Inspect, check, service, and repair...

  2. 14 CFR Appendix C to Part 147 - Airframe Curriculum Subjects

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... defueling. (1) 43. Inspect, check, and repair pressure fueling systems. (2) 44. Repair aircraft fuel system... repair aircraft fuel systems. g. aircraft electrical systems (2) 48. Repair and inspect aircraft... Components Teaching level a. aircraft landing gear systems (3) 29. Inspect, check, service, and repair...

  3. 14 CFR Appendix C to Part 147 - Airframe Curriculum Subjects

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... defueling. (1) 43. Inspect, check, and repair pressure fueling systems. (2) 44. Repair aircraft fuel system... repair aircraft fuel systems. g. aircraft electrical systems (2) 48. Repair and inspect aircraft... Components Teaching level a. aircraft landing gear systems (3) 29. Inspect, check, service, and repair...

  4. 14 CFR Appendix C to Part 147 - Airframe Curriculum Subjects

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... defueling. (1) 43. Inspect, check, and repair pressure fueling systems. (2) 44. Repair aircraft fuel system... repair aircraft fuel systems. g. aircraft electrical systems (2) 48. Repair and inspect aircraft... Components Teaching level a. aircraft landing gear systems (3) 29. Inspect, check, service, and repair...

  5. High-radiance LDP source for mask inspection and beam line applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Teramoto, Yusuke; Santos, Bárbara; Mertens, Guido; Kops, Ralf; Kops, Margarete; von Wezyk, Alexander; Bergmann, Klaus; Yabuta, Hironobu; Nagano, Akihisa; Ashizawa, Noritaka; Taniguchi, Yuta; Yamatani, Daiki; Shirai, Takahiro; Kasama, Kunihiko

    2017-04-01

    High-throughput actinic mask inspection tools are needed as EUVL begins to enter into volume production phase. One of the key technologies to realize such inspection tools is a high-radiance EUV source of which radiance is supposed to be as high as 100 W/mm2/sr. Ushio is developing laser-assisted discharge-produced plasma (LDP) sources. Ushio's LDP source is able to provide sufficient radiance as well as cleanliness, stability and reliability. Radiance behind the debris mitigation system was confirmed to be 120 W/mm2/sr at 9 kHz and peak radiance at the plasma was increased to over 200 W/mm2/sr in the recent development which supports high-throughput, high-precision mask inspection in the current and future technology nodes. One of the unique features of Ushio's LDP source is cleanliness. Cleanliness evaluation using both grazing-incidence Ru mirrors and normal-incidence Mo/Si mirrors showed no considerable damage to the mirrors other than smooth sputtering of the surface at the pace of a few nm per Gpulse. In order to prove the system reliability, several long-term tests were performed. Data recorded during the tests was analyzed to assess two-dimensional radiance stability. In addition, several operating parameters were monitored to figure out which contributes to the radiance stability. The latest model that features a large opening angle was recently developed so that the tool can utilize a large number of debris-free photons behind the debris shield. The model was designed both for beam line application and high-throughput mask inspection application. At the time of publication, the first product is supposed to be in use at the customer site.

  6. Food Safety and Quality. Uniform, Risk-Based Inspection System Needed to Ensure Safe Food Supply,

    DTIC Science & Technology

    1992-06-01

    Concerned about the effectiveness of the federal food safety inspection system, the Chairman, Subcommittee on Oversight and Investigations, House...federal resources for inspection, and (3) agencies are effectively coordinating their food safety and quality inspection efforts.

  7. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The principal mechanism for developing orbital debris environment models, is to make observations of larger pieces of debris in the range of several centimeters and greater using radar and optical techniques. For particles that are smaller than this threshold, breakup and migration models of particles to returned surfaces in lower orbit are relied upon to quantify the flux. This reliance on models to derive spatial densities of particles that are of critical importance to spacecraft make the unique nature of the EFT-1's return surface a valuable metric. To this end detailed post-flight inspections have been performed of the returned EFT-1 backshell, and the inspections identified six candidate impact sites that were not present during the pre-flight inspections. This paper describes the post-flight analysis efforts to characterize the EFT-1 mission craters. This effort included ground based testing to understand small particle impact craters in the thermal protection material, the pre- and post-flight inspection, the crater analysis using optical, X-ray computed tomography (CT) and scanning electron microscope (SEM) techniques, and numerical simulations.

  8. Development of machine-vision system for gap inspection of muskmelon grafted seedlings.

    PubMed

    Liu, Siyao; Xing, Zuochang; Wang, Zifan; Tian, Subo; Jahun, Falalu Rabiu

    2017-01-01

    Grafting robots have been developed in the world, but some auxiliary works such as gap-inspecting for grafted seedlings still need to be done by human. An machine-vision system of gap inspection for grafted muskmelon seedlings was developed in this study. The image acquiring system consists of a CCD camera, a lens and a front white lighting source. The image of inspected gap was processed and analyzed by software of HALCON 12.0. The recognition algorithm for the system is based on principle of deformable template matching. A template should be created from an image of qualified grafted seedling gap. Then the gap image of the grafted seedling will be compared with the created template to determine their matching degree. Based on the similarity between the gap image of grafted seedling and the template, the matching degree will be 0 to 1. The less similar for the grafted seedling gap with the template the smaller of matching degree. Thirdly, the gap will be output as qualified or unqualified. If the matching degree of grafted seedling gap and the template is less than 0.58, or there is no match is found, the gap will be judged as unqualified; otherwise the gap will be qualified. Finally, 100 muskmelon seedlings were grafted and inspected to test the gap inspection system. Results showed that the gap inspection machine-vision system could recognize the gap qualification correctly as 98% of human vision. And the inspection speed of this system can reach 15 seedlings·min-1. The gap inspection process in grafting can be fully automated with this developed machine-vision system, and the gap inspection system will be a key step of a fully-automatic grafting robots.

  9. s70-56415

    NASA Image and Video Library

    2013-09-11

    S70-56415 (December 1970) --- At Kapoho, Hawaii, astronauts David R. Scott (left), commander of the Apollo 15 lunar landing mission, and James B. Irwin, lunar module pilot, train at a designated lunar surface simulation area for their upcoming lunar landing mission. Wearing street clothes, but equipped with a Portable Life Support System (PLSS), the two rehearse for a selenological traverse. Here, they are inspecting a grapefruit-sized rock. Photo credit: NASA

  10. 30 CFR 77.1901 - Preshift and onshift inspections; reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... before and after blasting. (b) The surface area surrounding each slope and shaft shall be inspected by a... condition has been abated. (d) No work shall be performed in any slope or shaft, no drilling equipment shall...

  11. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined... the dry powder chemical system has been actuated, all components of the system shall be cleaned...

  12. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined... the dry powder chemical system has been actuated, all components of the system shall be cleaned...

  13. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined... the dry powder chemical system has been actuated, all components of the system shall be cleaned...

  14. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined... the dry powder chemical system has been actuated, all components of the system shall be cleaned...

  15. Pattern recognition of concrete surface cracks and defects using integrated image processing algorithms

    NASA Astrophysics Data System (ADS)

    Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie

    2017-06-01

    Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.

  16. Ethylene glycol contamination effects on first surface aluminized mirrors

    NASA Astrophysics Data System (ADS)

    Dunlop, Patrick; Probst, Ronald G.; Evatt, Matthew; Reddell, Larry; Sprayberry, David

    2016-07-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction for installation on the Mayall 4 Meter telescope. The use of a liquid cooling system is proposed to maintain the DESI prime focus assembly temperature within ±1°C of ambient. Due to concerns of fluid deposition onto optical surfaces from possible leaks, systematic tests were performed of the effects on first surface aluminized mirrors of ethylene glycol and two other candidate coolants. Objective measurement of scattering and reflectivity was an important supplement to visual inspection. Rapid cleanup of a coolant spill followed by a hand wash of the mirror limited surface degradation to the equivalent of a few months of general environmental exposure. Prolonged exposure to corrosive coolants dissolved the aluminum, necesitating mirror recoating.

  17. Fault-Tolerant Control For A Robotic Inspection System

    NASA Technical Reports Server (NTRS)

    Tso, Kam Sing

    1995-01-01

    Report describes first phase of continuing program of research on fault-tolerant control subsystem of telerobotic visual-inspection system. Goal of program to develop robotic system for remotely controlled visual inspection of structures in outer space.

  18. Advanced Computed-Tomography Inspection System

    NASA Technical Reports Server (NTRS)

    Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa

    1993-01-01

    Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.

  19. MODELING AND PERFORMANCE EVALUATION FOR AVIATION SECURITY CARGO INSPECTION QUEUING SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgood, Glenn O; Olama, Mohammed M; Rose, Terri A

    Beginning in 2010, the U.S. will require that all cargo loaded in passenger aircraft be inspected. This will require more efficient processing of cargo and will have a significant impact on the inspection protocols and business practices of government agencies and the airlines. In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, and throughput. These metrics aremore » performance indicators of the system s ability to service current needs and response capacity to additional requests. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures will reduce the overall cost and shipping delays associated with the new inspection requirements.« less

  20. A hybrid 2D/3D inspection concept with smart routing optimisation for high throughput, high dynamic range and traceable critical dimension metrology

    NASA Astrophysics Data System (ADS)

    Jones, Christopher W.; O’Connor, Daniel

    2018-07-01

    Dimensional surface metrology is required to enable advanced manufacturing process control for products such as large-area electronics, microfluidic structures, and light management films, where performance is determined by micrometre-scale geometry or roughness formed over metre-scale substrates. While able to perform 100% inspection at a low cost, commonly used 2D machine vision systems are insufficient to assess all of the functionally relevant critical dimensions in such 3D products on their own. While current high-resolution 3D metrology systems are able to assess these critical dimensions, they have a relatively small field of view and are thus much too slow to keep up with full production speeds. A hybrid 2D/3D inspection concept is demonstrated, combining a small field of view, high-performance 3D topography-measuring instrument with a large field of view, high-throughput 2D machine vision system. In this concept, the location of critical dimensions and defects are first registered using the 2D system, then smart routing algorithms and high dynamic range (HDR) measurement strategies are used to efficiently acquire local topography using the 3D sensor. A motion control platform with a traceable position referencing system is used to recreate various sheet-to-sheet and roll-to-roll inline metrology scenarios. We present the artefacts and procedures used to calibrate this hybrid sensor system for traceable dimensional measurement, as well as exemplar measurement of optically challenging industrial test structures.

  1. Video Mosaicking for Inspection of Gas Pipelines

    NASA Technical Reports Server (NTRS)

    Magruder, Darby; Chien, Chiun-Hong

    2005-01-01

    A vision system that includes a specially designed video camera and an image-data-processing computer is under development as a prototype of robotic systems for visual inspection of the interior surfaces of pipes and especially of gas pipelines. The system is capable of providing both forward views and mosaicked radial views that can be displayed in real time or after inspection. To avoid the complexities associated with moving parts and to provide simultaneous forward and radial views, the video camera is equipped with a wide-angle (>165 ) fish-eye lens aimed along the axis of a pipe to be inspected. Nine white-light-emitting diodes (LEDs) placed just outside the field of view of the lens (see Figure 1) provide ample diffuse illumination for a high-contrast image of the interior pipe wall. The video camera contains a 2/3-in. (1.7-cm) charge-coupled-device (CCD) photodetector array and functions according to the National Television Standards Committee (NTSC) standard. The video output of the camera is sent to an off-the-shelf video capture board (frame grabber) by use of a peripheral component interconnect (PCI) interface in the computer, which is of the 400-MHz, Pentium II (or equivalent) class. Prior video-mosaicking techniques are applicable to narrow-field-of-view (low-distortion) images of evenly illuminated, relatively flat surfaces viewed along approximately perpendicular lines by cameras that do not rotate and that move approximately parallel to the viewed surfaces. One such technique for real-time creation of mosaic images of the ocean floor involves the use of visual correspondences based on area correlation, during both the acquisition of separate images of adjacent areas and the consolidation (equivalently, integration) of the separate images into a mosaic image, in order to insure that there are no gaps in the mosaic image. The data-processing technique used for mosaicking in the present system also involves area correlation, but with several notable differences: Because the wide-angle lens introduces considerable distortion, the image data must be processed to effectively unwarp the images (see Figure 2). The computer executes special software that includes an unwarping algorithm that takes explicit account of the cylindrical pipe geometry. To reduce the processing time needed for unwarping, parameters of the geometric mapping between the circular view of a fisheye lens and pipe wall are determined in advance from calibration images and compiled into an electronic lookup table. The software incorporates the assumption that the optical axis of the camera is parallel (rather than perpendicular) to the direction of motion of the camera. The software also compensates for the decrease in illumination with distance from the ring of LEDs.

  2. To develop a flying fish egg inspection system by a digital imaging base system

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Jen; Jywe, Wenyuh; Hsieh, Tung-Hsien; Chen, Chien Hung

    2015-07-01

    This paper develops an automatic optical inspection system for flying fish egg quality inspection. The automatic optical inspection system consists of a 2-axes stage, a digital camera, a lens, a LED light source, a vacuum generator, a tube and a tray. This system can automatically find the particle on the flying egg tray and used stage to driver the tube onto the particle. Then use straw and vacuum generator to pick up the particle. The system pick rate is about 30 particles per minute.

  3. A cargo inspection system based on pulsed fast neutron analysis (PFNA).

    PubMed

    Ipe, N E; Olsher, R; Ryge, P; Mrozack, J; Thieu, J

    2005-01-01

    A cargo inspection system based on pulsed fast neutron analysis (PFNA) is to be used at a border crossing to detect explosives and contraband hidden in trucks and cargo containers. Neutrons are produced by the interaction of deuterons in a deuterium target mounted on a moveable scan arm. The collimated pulsed fast neutron beam is used to determine the location and composition of objects in a cargo container. The neutrons produce secondary gamma rays that are characteristic of the object's elemental composition. The cargo inspection system building consists of an accelerator room and an inspection tunnel. The accelerator room is shielded and houses the injector, accelerator and the neutron production gas target. The inspection tunnel is partially shielded. The truck or container to be inspected will be moved through the inspection tunnel by a conveyor system. The facility and radiation source terms considered in the shielding design are described.

  4. Computer vision for general purpose visual inspection: a fuzzy logic approach

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.

    In automatic visual industrial inspection, computer vision systems have been widely used. Such systems are often application specific, and therefore require domain knowledge in order to have a successful implementation. Since visual inspection can be viewed as a decision making process, it is argued that the integration of fuzzy logic analysis and computer vision systems provides a practical approach to general purpose visual inspection applications. This paper describes the development of an integrated fuzzy-rule-based automatic visual inspection system. Domain knowledge about a particular application is represented as a set of fuzzy rules. From the status of predefined fuzzy variables, the set of fuzzy rules are defuzzified to give the inspection results. A practical application where IC marks (often in the forms of English characters and a company logo) inspection is demonstrated, which shows a more consistent result as compared to a conventional thresholding method.

  5. 46 CFR 176.816 - Miscellaneous systems and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 100 GROSS TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.816 Miscellaneous systems and equipment. At each initial and subsequent inspection for certification the owner or managing operator shall be prepared to test and make available for inspection all items in the ship's outfit, such as ground...

  6. Development of an Extra-vehicular (EVA) Infrared (IR) Camera Inspection System

    NASA Technical Reports Server (NTRS)

    Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty

    2006-01-01

    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle s Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle s inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.

  7. Inspection method for the identification of TBT-containing antifouling paints.

    PubMed

    Senda, Tetsuya; Miyata, Osamu; Kihara, Takeshi; Yamada, Yasujiro

    2003-04-01

    In order to ensure the effectiveness of the international convention which will prohibit the use of organotin compounds in antifouling paints applied to ships, it is essential to establish an inspection system to determine the presence of the prohibited compounds in the paint. In the present study, a method for the identification of organotin containing antifouling paints using a two-stage analysis process is investigated. Firstly, X-ray fluorescence analysis (XRF) is utilized, which could be used at the place of ship surveys or port state control. Using a portable XRF instrument customized for ship inspection, analysis is automatically executed and determines whether tin is present or not. If the presence of tin is confirmed by XRF, the sample is subsequently examined at an analytical laboratory using more rigorous analytical techniques, such as gas chromatograph mass spectrometry (GC-MS). A sampling device has been designed. It is a disc of approximately 10 mm diameter and has abrasive paper pasted to one of its flat surfaces. The device is pressed onto and then slid along a ship hull to lightly scrape off fragments of paint onto the abrasive paper. Preliminary field tests have revealed that sampling from a ship in dock yields successful collection of the paint for XRD analysis and that the resultant damage caused to the antifouling paint surface by the sampling technique was found to be negligible.

  8. Security inspection in ports by anomaly detection using hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Rivera, Javier; Valverde, Fernando; Saldaña, Manuel; Manian, Vidya

    2013-05-01

    Applying hyperspectral imaging technology in port security is crucial for the detection of possible threats or illegal activities. One of the most common problems that cargo suffers is tampering. This represents a danger to society because it creates a channel to smuggle illegal and hazardous products. If a cargo is altered, security inspections on that cargo should contain anomalies that reveal the nature of the tampering. Hyperspectral images can detect anomalies by gathering information through multiple electromagnetic bands. The spectrums extracted from these bands can be used to detect surface anomalies from different materials. Based on this technology, a scenario was built in which a hyperspectral camera was used to inspect the cargo for any surface anomalies and a user interface shows the results. The spectrum of items, altered by different materials that can be used to conceal illegal products, is analyzed and classified in order to provide information about the tampered cargo. The image is analyzed with a variety of techniques such as multiple features extracting algorithms, autonomous anomaly detection, and target spectrum detection. The results will be exported to a workstation or mobile device in order to show them in an easy -to-use interface. This process could enhance the current capabilities of security systems that are already implemented, providing a more complete approach to detect threats and illegal cargo.

  9. Control of complex components with Smart Flexible Phased Arrays.

    PubMed

    Casula, O; Poidevin, C; Cattiaux, G; Dumas, Ph

    2006-12-22

    The inspection is mainly performed in contact with ultrasonic wedge transducers; However, the shape cannot fit the changing geometries of components (butt weld, nozzle, elbow). The variable thickness of the coupling layer, between the wedge and the local surface, leads to beam distortions and losses of sensitivity. Previous studies have shown that these two phenomena contribute to reduce the inspection performances leading to shadow area, split beam.... Flexible phased arrays have been developed to fit the complex profile and improve such controls. The radiating surface is composed with independent piezoelectric elements mechanically assembled and a profilometer, embedded in the transducer, measures the local distortion. The computed shape is used by an algorithm to compute in real-time the adapted delay laws compensating the distortions of 2D or 3D profiles. Those delay laws are transferred to the real-time UT acquisition system, which applies them to the piezoelectric elements. This self-adaptive process preserves, during the scanning, the features of the focused beam (orientation and focal depth) in the specimen. To validate the concept of the Smart Flexible Phased Array Transducer, prototypes have been integrated to detect flaws machined in mock-ups with realistic irregular 2D and 3D shapes. Inspections have been carried out on samples showing the enhancement performances of the "Smart Flexible Phased Array" and validating the mechanical and acoustical behaviors of these probes.

  10. Smart infrared inspection system field operational test.

    DOT National Transportation Integrated Search

    2014-04-01

    The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles : passing through the system are in need of further inspection by measuring the thermal data from the wheel : components. As a vehicle ...

  11. The Effect of Penetration Depth on Thermal Contrast of NDT by Thermography

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip; DiGregorio, Anthony; Russell, Samuel S.

    1999-01-01

    Nondestructive evaluation by Thermography (TNDE) is generally classified into two categories, the passive approach and the active approach. The passive approach is usually performed by measuring the natural temperature difference between the ambient and the material or structure to be tested. The active approach, on the other hand, requires the application of an external energy source to stimulate the material for inspection. A laser, a heater, a hot air blower, a high power thermal pulse, mechanical, or electromagnetic energy may provide the energy sources. For the external heating method to inspect materials for defects and imperfection at ambient temperature, a very short burst of heat can be introduced to one of the surfaces or slow heating of the side opposite to the side being observed. Due to the interruption of the heat flow through the defects, the thermal images will reveal the defective area by contrasting against the surrounding good materials. This technique is called transient Thermography, pulse video Thermography, or thermal wave imaging. As an empirical rule, the radius of the smallest defect should be at least one to two times larger than its depth under the surface. Thermography is being used to inspect void, debond, impact damage, and porosity in composite materials. It has been shown that most of the defects and imperfection can be detected. However, the current method of inspection using thermographic technique is more of an art than a practical scientific and engineering approach. The success rate of determining the defect location and defect type is largely depend on the experience of the person who operates thermography system and performs the inspection. The operator has to try different type of heat source, different duration of its application time, as well as experimenting with the thermal image acquisition time and interval during the inspection process. Further-more, the complexity of the lay-up and structure of composites makes it more difficult to determine the optimal operating condition for revealing the defects. In order to develop an optimal thermography inspection procedure, we must understand the thermal behavior inside the material subjected to transient heat in order to interpret the thermal images correctly. Fabrication of finite element models of characteristic defects in composite materials subjected to transient heat will enable the development of appropriate procedure for thermography inspection. Design of phantom defects could be modeled and behavior characterized prior to physically building these test parts. Since production of phantom test parts can be very time consuming and laborious, it is important to design good representative defects.

  12. Comparisons of NDT Methods to Inspect Cork and Cork filled Epoxy Bands

    NASA Technical Reports Server (NTRS)

    Lingbloom, Mike

    2007-01-01

    Sheet cork and cork filled epoxy provide external insulation for the Reusable Solid Rocket Motor (RSRM) on the Nation's Space Transportation System (STS). Interest in the reliability of the external insulation bonds has increased since the Columbia incident. A non-destructive test (NDT) method that will provide the best inspection for these bonds has been under evaluation. Electronic Shearography has been selected as the primary NDT method for inspection of these bond lines in the RSRM production flow. ATK Launch Systems Group has purchased an electronic shearography system that includes a vacuum chamber that is used for evaluation of test parts and custom vacuum windows for inspection of full-scale motors. Although the electronic shearography technology has been selected as the primary method for inspection of the external bonds, other technologies that exist continue to be investigated. The NASA/Marshall Space Flight Center (MSFC) NDT department has inspected several samples for comparison with electronic shearography with various inspections systems in their laboratory. The systems that were evaluated are X-ray backscatter, terahertz imaging, and microwave imaging. The samples tested have some programmed flaws as well as some flaws that occurred naturally during the sample making process. These samples provide sufficient flaw variation for the evaluation of the different inspection systems. This paper will describe and compare the basic functionality, test method and test results including dissection for each inspection technology.

  13. A smart ROV solution for ship hull and harbor inspection

    NASA Astrophysics Data System (ADS)

    Reed, Scott; Wood, Jon; Vazquez, Jose; Mignotte, Pierre-Yves; Privat, Benjamin

    2010-04-01

    Hull and harbor infrastructure inspections are frequently performed manually and involve quite a bit of risk and human and monetary resources. In any kind of threat and resource constrained environment, this involves unacceptable levels of risk and cost. Modern Remotely Operated Vehicles are highly refined machines that provide features and capabilities previously unavailable. Operations once carried out by divers can now be carried out more quickly, efficiently and safely by smart enabled ROVs. ROVs are rapidly deployable and capable of continuous, reliable operations in adverse conditions. They also provide a stable platform on which multiple sensors may be mounted and utilized to meet the harbor inspection problem. Automated Control software provides ROV's and their pilots with the capability to inspect complex, constrained environments such as those found in a harbor region. This application and the user interface allow the ROV to automatically conduct complex maneuvers relative to the area being inspected and relieves the training requirements and work load for the pilot, allowing he or she to focus on the primary task of survey, inspection and looking for possible threats (such as IEDs, Limpet Mines, signs of sabotage, etc). Real-time sensor processing tools can be integrated into the smart ROV solution to assist the operator. Automatic Target Recognition (ATR) algorithms are used to search through the sensor data collected by the ROV in real time. These algorithms provide immediate feedback on possible threats and notify the operator of regions that may require manual verification. Sensor data (sonar or video) is also mosaiced, providing the operator with real-time situational awareness and a coverage map of the hull or seafloor. Detected objects may also be placed in the context of the large scale characteristics of the hull (or bottom or pilings) and localized. Within the complex areas such as the harbor pier pilings and the running gear of the ship, real-time 3D reconstruction techniques may be used to process profiling sonar data for similar applications. An observation class ROV equipped with sensors, running an operator in the loop, Automated Surface-Computer (ASC) system can inspect an entire harbor region. These systems can autonomously provide coverage information, identify possible threats and provide the level of control required to operate in confined environments. The system may be controlled autonomously or by the operator. Previous inspection results may also be used for change detection applications. This paper presents the SeeByte Smart ROV and sensor processing technology relevant to the harbor inspection problem. These technologies have been tested extensively in real world applications and trials and are demonstrated using real data and examples.

  14. 40 CFR 60.36e - Inspection guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; (v) Inspect HMIWI door and door gaskets for proper sealing; (vi) Inspect motors for proper operation... applicable; (xiv) Inspect waste heat boiler systems to ensure proper operation, if applicable; (xv) Inspect...

  15. 47 CFR 76.1716 - Subscriber records and public inspection file.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... § 76.1716 Subscriber records and public inspection file. The operator of a cable television system shall make the system, its public inspection file, and its records of subscribers available for... 47 Telecommunication 4 2014-10-01 2014-10-01 false Subscriber records and public inspection file...

  16. 47 CFR 76.1716 - Subscriber records and public inspection file.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... § 76.1716 Subscriber records and public inspection file. The operator of a cable television system shall make the system, its public inspection file, and its records of subscribers available for... 47 Telecommunication 4 2013-10-01 2013-10-01 false Subscriber records and public inspection file...

  17. 46 CFR 176.814 - Steering systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Steering systems. 176.814 Section 176.814 Shipping COAST...) INSPECTION AND CERTIFICATION Material Inspections § 176.814 Steering systems. At each initial and subsequent inspection for certification the owner or managing operator shall be prepared to test the steering systems of...

  18. 46 CFR 176.814 - Steering systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Steering systems. 176.814 Section 176.814 Shipping COAST...) INSPECTION AND CERTIFICATION Material Inspections § 176.814 Steering systems. At each initial and subsequent inspection for certification the owner or managing operator shall be prepared to test the steering systems of...

  19. 40 CFR 202.22 - Visual exhaust system inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Visual exhaust system inspection. 202... Standards § 202.22 Visual exhaust system inspection. No motor carrier subject to these regulations shall operate any motor vehicle of a type to which this regulation is applicable unless the exhaust system of...

  20. 40 CFR 202.22 - Visual exhaust system inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Visual exhaust system inspection. 202... Standards § 202.22 Visual exhaust system inspection. No motor carrier subject to these regulations shall operate any motor vehicle of a type to which this regulation is applicable unless the exhaust system of...

  1. 40 CFR 202.22 - Visual exhaust system inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Visual exhaust system inspection. 202... Standards § 202.22 Visual exhaust system inspection. No motor carrier subject to these regulations shall operate any motor vehicle of a type to which this regulation is applicable unless the exhaust system of...

  2. 10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Heat Removal 34 Emergency Core Cooling 35 Inspection of Emergency Core Cooling System 36 Testing of Emergency Core Cooling System 37 Containment Heat Removal 38 Inspection of Containment Heat Removal System 39 Testing of Containment Heat Removal System 40 Containment Atmosphere Cleanup 41 Inspection of...

  3. 10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Heat Removal 34 Emergency Core Cooling 35 Inspection of Emergency Core Cooling System 36 Testing of Emergency Core Cooling System 37 Containment Heat Removal 38 Inspection of Containment Heat Removal System 39 Testing of Containment Heat Removal System 40 Containment Atmosphere Cleanup 41 Inspection of...

  4. 46 CFR 176.814 - Steering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Steering systems. 176.814 Section 176.814 Shipping COAST...) INSPECTION AND CERTIFICATION Material Inspections § 176.814 Steering systems. At each initial and subsequent inspection for certification the owner or managing operator shall be prepared to test the steering systems of...

  5. 49 CFR 213.333 - Automated vehicle inspection systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Automated vehicle inspection systems. 213.333... Higher § 213.333 Automated vehicle inspection systems. (a) For track Class 7, a qualifying Track Geometry Measurement System (TGMS) vehicle shall be operated at least twice within 120 calendar days with not less than...

  6. System for inspection of stacked cargo containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derenzo, Stephen

    The present invention relates to a system for inspection of stacked cargo containers. One embodiment of the invention generally comprises a plurality of stacked cargo containers arranged in rows or tiers, each container having a top, a bottom a first side, a second side, a front end, and a back end; a plurality of spacers arranged in rows or tiers; one or more mobile inspection devices for inspecting the cargo containers, wherein the one or more inspection devices are removeably disposed within the spacers, the inspection means configured to move through the spacers to detect radiation within the containers. Themore » invented system can also be configured to inspect the cargo containers for a variety of other potentially hazardous materials including but not limited to explosive and chemical threats.« less

  7. Optical microtopographic inspection of the surface of tooth subjected to stripping reduction

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F.; Pereira, Pedro B.

    2011-05-01

    In orthodontics, the decreasing of tooth-size by reducing interproximal enamel surfaces (stripping) of teeth is a common procedure which allows dental alignment with minimal changes in the facial profile and no arch expansion. In order to achieve smooth surfaces, clinicians have been testing various methods and progressively improved this therapeutic technique. In order to evaluate the surface roughness of teeth subject to interproximal reduction through the five most commonly used methods, teeth were inspected by scanning electron microscopy and microtopographically measured using the optical active triangulation based microtopographer MICROTOP.06.MFC. The metrological procedure will be presented as well as the comparative results concluding on the most suitable tooth interproximal reduction method.

  8. Apparatus and method for classifying fuel pellets for nuclear reactor

    DOEpatents

    Wilks, Robert S.; Sternheim, Eliezer; Breakey, Gerald A.; Sturges, Jr., Robert H.; Taleff, Alexander; Castner, Raymond P.

    1984-01-01

    Control for the operation of a mechanical handling and gauging system for nuclear fuel pellets. The pellets are inspected for diameters, lengths, surface flaws and weights in successive stations. The control includes, a computer for commanding the operation of the system and its electronics and for storing and processing the complex data derived at the required high rate. In measuring the diameter, the computer enables the measurement of a calibration pellet, stores that calibration data and computes and stores diameter-correction factors and their addresses along a pellet. To each diameter measurement a correction factor is applied at the appropriate address. The computer commands verification that all critical parts of the system and control are set for inspection and that each pellet is positioned for inspection. During each cycle of inspection, the measurement operation proceeds normally irrespective of whether or not a pellet is present in each station. If a pellet is not positioned in a station, a measurement is recorded, but the recorded measurement indicates maloperation. In measuring diameter and length a light pattern including successive shadows of slices transverse for diameter or longitudinal for length are projected on a photodiode array. The light pattern is scanned electronically by a train of pulses. The pulses are counted during the scan of the lighted diodes. For evaluation of diameter the maximum diameter count and the number of slices for which the diameter exceeds a predetermined minimum is determined. For acceptance, the maximum must be less than a maximum level and the minimum must exceed a set number. For evaluation of length, the maximum length is determined. For acceptance, the length must be within maximum and minimum limits.

  9. Optical fiber inspection system

    DOEpatents

    Moore, Francis W.

    1987-01-01

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  10. Optical fiber inspection system

    DOEpatents

    Moore, F.W.

    1985-04-05

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected. 10 figs.

  11. Theoretical and Experimental Analysis of an Induction Planar Actuator with Different Secondaries—A Planar Driver Application for Metallic Surface Inspection

    PubMed Central

    Treviso, Felipe; Silveira, Marilia A.; Flores Filho, Aly F.; Dorrell, David G.

    2016-01-01

    This paper presents a study on an induction planar actuator concept. The device uses the same principles as a linear induction motor in which the interaction between a travelling magnetic field and a conducting surface produces eddy currents that leads to the generation of a thrust force and can result in movement over a metallic surface. This can benefit the inspection of metallic surfaces based on the driving platform provided by the induction planar actuator. Equations of the magnetic and electric fields are presented and, by means of these equations, the forces involved were calculated. The behaviour of thrust and normal forces was analysed through the equations and by numerical models, and compared with the results obtained by measurements on a device prototype built in the laboratory as part of the study. With relation to the surface under inspection that forms the secondary, three cases were analysed: (1) a double-layered secondary formed by aluminium and ferromagnetic slabs; (2) a single aluminium layer and (3) a single ferromagnetic layer. Theoretical and measured values of thrust and normal forces showed good correlation. PMID:27007377

  12. Assessment of disinfection of hospital surfaces using different monitoring methods1

    PubMed Central

    Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos, Aires Garcia

    2015-01-01

    OBJECTIVE: to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. METHOD: descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05. RESULTS: after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. CONCLUSION: the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process. PMID:26312634

  13. Assessment of disinfection of hospital surfaces using different monitoring methods.

    PubMed

    Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos Junior, Aires Garcia

    2015-01-01

    to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05. after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process.

  14. The impact of Marcellus gas development on the rural transportation infrastructure.

    DOT National Transportation Integrated Search

    2013-07-01

    Deterioration was observed to occur in the wearing surfaces, decks, and parapets for all seven of the structures inspected. To date, little to no deck condition change was observed compared to the reviewed inspection reports. However, the oldest brid...

  15. 30 CFR 56.4201 - Inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control... following schedules: (1) Fire extinguishers shall be inspected visually at least once a month to determine...

  16. 30 CFR 840.15 - Public participation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM INSPECTION AND ENFORCEMENT PROCEDURES STATE REGULATORY AUTHORITY: INSPECTION AND... enforcement of the State program consistent with that provided by 30 CFR parts 842, 843 and 845 and 43 CFR...

  17. 30 CFR 840.15 - Public participation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM INSPECTION AND ENFORCEMENT PROCEDURES STATE REGULATORY AUTHORITY: INSPECTION AND... enforcement of the State program consistent with that provided by 30 CFR parts 842, 843 and 845 and 43 CFR...

  18. Development of an imaging system for the detection of alumina on turbine blades

    NASA Astrophysics Data System (ADS)

    Greenwell, S. J.; Kell, J.; Day, J. C. C.

    2014-03-01

    An imaging system capable of detecting alumina on turbine blades by acquiring LED-induced fluorescence images has been developed. Acquiring fluorescence images at adjacent spectral bands allows the system to distinguish alumina from fluorescent surface contaminants. Repair and overhaul processes require that alumina is entirely removed from the blades by grit blasting and chemical stripping. The capability of the system to detect alumina has been investigated with two series of turbine blades provided by Rolls-Royce plc. The results illustrate that the system provides a superior inspection method to visual assessment when ascertaining whether alumina is present on turbine blades during repair and overhaul processes.

  19. 46 CFR 199.190 - Operational readiness, maintenance, and inspection of lifesaving equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) LIFESAVING APPLIANCES AND ARRANGEMENTS LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS... manufacturer's handbook. (3) The general alarm system must be tested. (e) Monthly inspections. (1) Each...) Servicing of inflatable lifesaving appliances, inflated rescue boats, and marine evacuation systems. (1...

  20. A Flexible Arrayed Eddy Current Sensor for Inspection of Hollow Axle Inner Surfaces.

    PubMed

    Sun, Zhenguo; Cai, Dong; Zou, Cheng; Zhang, Wenzeng; Chen, Qiang

    2016-06-23

    A reliable and accurate inspection of the hollow axle inner surface is important for the safe operation of high-speed trains. In order to improve the reliability of the inspection, a flexible arrayed eddy current sensor for non-destructive testing of the hollow axle inner surface was designed, fabricated and characterized. The sensor, consisting of two excitation traces and 28 sensing traces, was developed by using the flexible printed circuit board (FPCB) technique to conform the geometric features of the inner surfaces of the hollow axles. The main innovative aspect of the sensor was the new arrangement of excitation/sensing traces to achieve a differential configuration. Finite element model was established to analyze sensor responses and to determine the optimal excitation frequency. Experimental validations were conducted on a specimen with several artificial defects. Results from experiments and simulations were consistent with each other, with the maximum relative error less than 4%. Both results proved that the sensor was capable of detecting longitudinal and transverse defects with the depth of 0.5 mm under the optimal excitation frequency of 0.9 MHz.

  1. Projector-Based Augmented Reality for Quality Inspection of Scanned Objects

    NASA Astrophysics Data System (ADS)

    Kern, J.; Weinmann, M.; Wursthorn, S.

    2017-09-01

    After scanning or reconstructing the geometry of objects, we need to inspect the result of our work. Are there any parts missing? Is every detail covered in the desired quality? We typically do this by looking at the resulting point clouds or meshes of our objects on-screen. What, if we could see the information directly visualized on the object itself? Augmented reality is the generic term for bringing virtual information into our real environment. In our paper, we show how we can project any 3D information like thematic visualizations or specific monitoring information with reference to our object onto the object's surface itself, thus augmenting it with additional information. For small objects that could for instance be scanned in a laboratory, we propose a low-cost method involving a projector-camera system to solve this task. The user only needs a calibration board with coded fiducial markers to calibrate the system and to estimate the projector's pose later on for projecting textures with information onto the object's surface. Changes within the projected 3D information or of the projector's pose will be applied in real-time. Our results clearly reveal that such a simple setup will deliver a good quality of the augmented information.

  2. Thickness and topographic inspection of RPG contact lenses by optical triangulation

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.

    2001-06-01

    Optical triangulation as a non-destructive test method extensively proved its usefulness on the dimensional and topographic inspection of a large range of objects and surfaces. In this communication the issue of microtopographic and thickness inspection of hard contact lenses (RPG) is addressed. The use of optical triangulation is discussed based on the results of the application of our MICROTOP.03.MFC microtopographer to this kind of tasks will be presented.

  3. Practical Guide for Flame Bending of Pipe

    DTIC Science & Technology

    1991-08-01

    cleaned. This surface inspection should be in the form of either a dye penetrant or magnetic particle inspection depending on the base material type...fairly accurate and marked on the pipe with a permanent marks-a-lot black ink pen, chalk, soapstone , or other marker which endures flame temperatures...orifice tip. The area to be heated was Magnetic Particle (MT) Inspected any heating and after the final heat. The MT inspectionssatisfactory. prior to Were

  4. 30 CFR 75.1101-11 - Inspection of water sprinkler systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection of water sprinkler systems. 75.1101... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-11 Inspection of water sprinkler systems. Each water sprinkler system shall be examined weekly and a...

  5. 30 CFR 75.1101-11 - Inspection of water sprinkler systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of water sprinkler systems. 75.1101... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-11 Inspection of water sprinkler systems. Each water sprinkler system shall be examined weekly and a...

  6. 30 CFR 75.1101-11 - Inspection of water sprinkler systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of water sprinkler systems. 75.1101... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-11 Inspection of water sprinkler systems. Each water sprinkler system shall be examined weekly and a...

  7. 30 CFR 75.1101-11 - Inspection of water sprinkler systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of water sprinkler systems. 75.1101... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-11 Inspection of water sprinkler systems. Each water sprinkler system shall be examined weekly and a...

  8. 30 CFR 75.1101-11 - Inspection of water sprinkler systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of water sprinkler systems. 75.1101... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-11 Inspection of water sprinkler systems. Each water sprinkler system shall be examined weekly and a...

  9. Robotic Technology Efforts at the NASA/Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center’s Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of “dull, dirty or dangerous” tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center’s newest development areas can provide crew with low mass exercise capability and also augment an astronaut’s strength while wearing a space suit.This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center’s Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  10. Robotic Technology Efforts at the NASA/Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center's Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of "dull, dirty or dangerous" tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center's newest development areas can provide crew with low mass exercise capability and also augment an astronaut's strength while wearing a space suit. This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center's Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  11. KSC-2011-2759

    NASA Image and Video Library

    2011-04-02

    VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane moves the Aquarius/SAC-D spacecraft to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB

  12. 48 CFR 552.270-9 - Inspection-Right of Entry.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for asbestos fibers; (2) Inspecting the heating, ventilation and air conditioning system, maintenance... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Inspection-Right of Entry. 552.270-9 Section 552.270-9 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION...

  13. Extreme ultraviolet patterned mask inspection performance of advanced projection electron microscope system for 11nm half-pitch generation

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji

    2016-03-01

    Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.

  14. High Pressure Coolant Injection (HPCI) System Risk-Based Inspection Guide for Browns Ferry Nuclear Power Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, S.; DiBiasio, A.; Gunther, W.

    1993-09-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A System Risk-Based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Browns Ferry Nuclear Power Plant, Units 1, 2 and 3. The role of. the HPCI system in mitigating accidents is discussed in this S-RIG, along with insights on identified risk-based failure modes which could prevent proper operation of the system. The S-RIG provides a review of industry-wide operating experience, including plant-specific illustrative examples to augment the PRA and operational considerations in identifying a catalogue of basic PRA failuremore » modes for the HPCI system. It is designed to be used as a reference for routine inspections, self-initiated safety system functional inspections (SSFIs), and the evaluation of risk significance of component failures at the nuclear power plant.« less

  15. Rapid surface defect detection based on singular value decomposition using steel strips as an example

    NASA Astrophysics Data System (ADS)

    Sun, Qianlai; Wang, Yin; Sun, Zhiyi

    2018-05-01

    For most surface defect detection methods based on image processing, image segmentation is a prerequisite for determining and locating the defect. In our previous work, a method based on singular value decomposition (SVD) was used to determine and approximately locate surface defects on steel strips without image segmentation. For the SVD-based method, the image to be inspected was projected onto its first left and right singular vectors respectively. If there were defects in the image, there would be sharp changes in the projections. Then the defects may be determined and located according sharp changes in the projections of each image to be inspected. This method was simple and practical but the SVD should be performed for each image to be inspected. Owing to the high time complexity of SVD itself, it did not have a significant advantage in terms of time consumption over image segmentation-based methods. Here, we present an improved SVD-based method. In the improved method, a defect-free image is considered as the reference image which is acquired under the same environment as the image to be inspected. The singular vectors of each image to be inspected are replaced by the singular vectors of the reference image, and SVD is performed only once for the reference image off-line before detecting of the defects, thus greatly reducing the time required. The improved method is more conducive to real-time defect detection. Experimental results confirm its validity.

  16. 49 CFR 180.511 - Acceptable results of inspections and tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Safety system inspection. A tank car successfully passes the safety system inspection when each thermal..., distortion, excessive permanent expansion, or other evidence of weakness that might render the tank car...

  17. Applications of lasers to production metrology, control, and machine 'Vision'

    NASA Astrophysics Data System (ADS)

    Pryor, T. R.; Erf, R. K.; Gara, A. D.

    1982-06-01

    General areas of laser application to production measurement and inspection are reviewed together with the associated laser measurement techniques. The topics discussed include dimensional gauging of part profiles using laser imaging or scanning techniques, laser triangulation for surface contour measurement, surface finish measurement and defect inspection, holography and speckle techniques, and strain measurement. The emerging field of robot guidance utilizing lasers and other sensing means is examined, and, finally, the use of laser marking and reading equipment is briefly discussed.

  18. Disposition of feedwater nozzle UT indications in a BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leshnoff, S.D.; Orski, M.A.

    A technical logic is developed, which justifies the disposition of feedwater nozzle ultrasonic testing (UT) indications in order to return to operation without visual inspection of the vessel inside surface. Present regulatory guidance is to inspect the inside surface from the inside if a reportable indication is found. A highly sensitive, tomographic UT technique, developed by Kraftwerk Union, is used to detect and size machined notches in the blend radius and bore regions of a full-sized feedwater nozzle mock-up.

  19. Built-in-test by signature inspection (bitsi)

    DOEpatents

    Bergeson, Gary C.; Morneau, Richard A.

    1991-01-01

    A system and method for fault detection for electronic circuits. A stimulus generator sends a signal to the input of the circuit under test. Signature inspection logic compares the resultant signal from test nodes on the circuit to an expected signal. If the signals do not match, the signature inspection logic sends a signal to the control logic for indication of fault detection in the circuit. A data input multiplexer between the test nodes of the circuit under test and the signature inspection logic can provide for identification of the specific node at fault by the signature inspection logic. Control logic responsive to the signature inspection logic conveys information about fault detection for use in determining the condition of the circuit. When used in conjunction with a system test controller, the built-in test by signature inspection system and method can be used to poll a plurality of circuits automatically and continuous for faults and record the results of such polling in the system test controller.

  20. Automated inspection of hot steel slabs

    DOEpatents

    Martin, R.J.

    1985-12-24

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes. 5 figs.

  1. Automated inspection of hot steel slabs

    DOEpatents

    Martin, Ronald J.

    1985-01-01

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

  2. A Mobile Acoustic Subsurface Sensing (MASS) System for Rapid Roadway Assessment

    PubMed Central

    Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J. Gregory; Wang, Ming L.

    2013-01-01

    Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test. PMID:23698266

  3. Contribution a l'inspection automatique des pieces flexibles a l'etat libre sans gabarit de conformation

    NASA Astrophysics Data System (ADS)

    Sattarpanah Karganroudi, Sasan

    The competitive industrial market demands manufacturing companies to provide the markets with a higher quality of production. The quality control department in industrial sectors verifies geometrical requirements of products with consistent tolerances. These requirements are presented in Geometric Dimensioning and Tolerancing (GD&T) standards. However, conventional measuring and dimensioning methods for manufactured parts are time-consuming and costly. Nowadays manual and tactile measuring methods have been replaced by Computer-Aided Inspection (CAI) methods. The CAI methods apply improvements in computational calculations and 3-D data acquisition devices (scanners) to compare the scan mesh of manufactured parts with the Computer-Aided Design (CAD) model. Metrology standards, such as ASME-Y14.5 and ISO-GPS, require implementing the inspection in free-state, wherein the part is only under its weight. Non-rigid parts are exempted from the free-state inspection rule because of their significant geometrical deviation in a free-state with respect to the tolerances. Despite the developments in CAI methods, inspection of non-rigid parts still remains a serious challenge. Conventional inspection methods apply complex fixtures for non-rigid parts to retrieve the functional shape of these parts on physical fixtures; however, the fabrication and setup of these fixtures are sophisticated and expensive. The cost of fixtures has doubled since the client and manufacturing sectors require repetitive and independent inspection fixtures. To eliminate the need for costly and time-consuming inspection fixtures, fixtureless inspection methods of non-rigid parts based on CAI methods have been developed. These methods aim at distinguishing flexible deformations of parts in a free-state from defects. Fixtureless inspection methods are required to be automatic, reliable, reasonably accurate and repeatable for non-rigid parts with complex shapes. The scan model, which is acquired as point clouds, represent the shape of a part in a free-state. Afterward, the inspection of defects is performed by comparing the scan and CAD models, but these models are presented in different coordinate systems. Indeed, the scan model is presented in the measurement coordinate system whereas the CAD model is introduced in the designed coordinate system. To accomplish the inspection and facilitate an accurate comparison between the models, the registration process is required to align the scan and CAD models in a common coordinate system. The registration includes a virtual compensation for the flexible deformation of the parts in a free-state. Then, the inspection is implemented as a geometrical comparison between the CAD and scan models. This thesis focuses on developing automatic and accurate fixtureless CAI methods for non-rigid parts along with assessing the robustness of the methods. To this end, an automatic fixtureless CAI method for non-rigid parts based on filtering registration points is developed to identify and quantify defects more accurately on the surface of scan models. The flexible deformation of parts in a free-state in our developed automatic fixtureless CAI method is compensated by applying FE non-rigid Registration (FENR) to deform the CAD model towards the scan mesh. The displacement boundary conditions (BCs) for FENR are determined based on the corresponding sample points, which are generated by the Generalized Numerical Inspection Fixture (GNIF) method on the CAD and scan models. These corresponding sample points are evenly distributed on the surface of the models. The comparison between this deformed CAD model and the scan mesh intend to evaluate and quantify the defects on the scan model. However, some sample points can be located close or on defect areas which result in an inaccurate estimation of defects. These sample points are automatically filtered out in our CAI method based on curvature and von Mises stress criteria. Once filtered out, the remaining sample points are used in a new FENR, which allows an accurate evaluation of defects with respect to the tolerances. The performance and robustness of all CAI methods are generally required to be assessed with respect to the actual measurements. This thesis also introduces a new validation metric for Verification and Validation (V&V) of CAI methods based on ASME recommendations. The developed V&V approach uses a nonparametric statistical hypothesis test, namely the Kolmogorov-Smirnov (K-S) test. In addition to validating the defects size, the K-S test allows a deeper evaluation based on distance distribution of defects. The robustness of CAI method with respect to uncertainties such as scanning noise is quantitatively assessed using the developed validation metric. Due to the compliance of non-rigid parts, a geometrically deviated part can still be assembled in the assembly-state. This thesis also presents a fixtureless CAI method for geometrically deviated (presenting defects) non-rigid parts to evaluate the feasibility of mounting these parts in the functional assembly-state. Our developed Virtual Mounting Assembly-State Inspection (VMASI) method performs a non-rigid registration to virtually mount the scan mesh in assembly-state. To this end, the point clouds of scan model representing the part in a free-state is deformed to meet the assembly constraints such as fixation position (e.g. mounting holes). In some cases, the functional shape of a deviated part can be retrieved by applying assembly loads, which are limited to permissible loads, on the surface of the part. The required assembly loads are estimated through our developed Restraining Pressures Optimization (RPO) aiming at displacing the deviated scan model to achieve the tolerance for mounting holes. Therefore, the deviated scan model can be assembled if the mounting holes on the predicted functional shape of scan model attain the tolerance range. Different industrial parts are used to evaluate the performance of our developed methods in this thesis. The automatic inspection for identifying different types of small (local) and big (global) defects on the parts results in an accurate evaluation of defects. The robustness of this inspection method is also validated with respect to different levels of scanning noise, which shows promising results. Meanwhile, the VMASI method is performed on various parts with different types of defects, which concludes that in some cases the functional shape of deviated parts can be retrieved by mounting them on a virtual fixture in assembly-state under restraining loads.

  4. Camber Angle Inspection for Vehicle Wheel Alignments

    PubMed Central

    Young, Jieh-Shian; Hsu, Hong-Yi; Chuang, Chih-Yuan

    2017-01-01

    This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU)-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ±0.015∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi. PMID:28165365

  5. Cargo container inspection test program at ARPA's Nonintrusive Inspection Technology Testbed

    NASA Astrophysics Data System (ADS)

    Volberding, Roy W.; Khan, Siraj M.

    1994-10-01

    An x-ray-based cargo inspection system test program is being conducted at the Advanced Research Project Agency (ARPA)-sponsored Nonintrusive Inspection Technology Testbed (NITT) located in the Port of Tacoma, Washington. The test program seeks to determine the performance that can be expected from a dual, high-energy x-ray cargo inspection system when inspecting ISO cargo containers. This paper describes an intensive, three-month, system test involving two independent test groups, one representing the criminal smuggling element and the other representing the law enforcement community. The first group, the `Red Team', prepares ISO containers for inspection at an off-site facility. An algorithm randomly selects and indicates the positions and preparation of cargoes within a container. The prepared container is dispatched to the NITT for inspection by the `Blue Team'. After in-gate processing, it is queued for examination. The Blue Team inspects the container and decides whether or not to pass the container. The shipment undergoes out-gate processing and returns to the Red Team. The results of the inspection are recorded for subsequent analysis. The test process, including its governing protocol, the cargoes, container preparation, the examination and results available at the time of submission are presented.

  6. Research on UAV Intelligent Obstacle Avoidance Technology During Inspection of Transmission Line

    NASA Astrophysics Data System (ADS)

    Wei, Chuanhu; Zhang, Fei; Yin, Chaoyuan; Liu, Yue; Liu, Liang; Li, Zongyu; Wang, Wanguo

    Autonomous obstacle avoidance of unmanned aerial vehicle (hereinafter referred to as UAV) in electric power line inspection process has important significance for operation safety and economy for UAV intelligent inspection system of transmission line as main content of UAV intelligent inspection system on transmission line. In the paper, principles of UAV inspection obstacle avoidance technology of transmission line are introduced. UAV inspection obstacle avoidance technology based on particle swarm global optimization algorithm is proposed after common obstacle avoidance technologies are studied. Stimulation comparison is implemented with traditional UAV inspection obstacle avoidance technology which adopts artificial potential field method. Results show that UAV inspection strategy of particle swarm optimization algorithm, adopted in the paper, is prominently better than UAV inspection strategy of artificial potential field method in the aspects of obstacle avoidance effect and the ability of returning to preset inspection track after passing through the obstacle. An effective method is provided for UAV inspection obstacle avoidance of transmission line.

  7. Topograph for inspection of engine cylinder walls.

    PubMed

    Franz, S; Leonhardt, K; Windecker, R; Tiziani, H J

    1999-12-20

    The microstructural inspection of engine cylinder walls is an important task for quality management in the automotive industry. Until recently, mainly tactile methods were used for this purpose. We present an optical instrument based on microscopic fringe projection that permits fast, reliable, and nondestructive measurements of microstructure. The field of view is 0.8 mm x 1.2 mm, with a spatial sampling of 1100 x 700 pixels. In contrast to conventional tactile sensors, the optical method provides fast in situ three-dimensional surface characterizations that provide more information about the surface than do line profiles. Measurements are presented, and advantages of this instrument for characterization of a surface are discussed.

  8. Evaluating practical vs. theoretical inspection system capability with a new programmed defect test mask designed for 3X and 4X technology nodes

    NASA Astrophysics Data System (ADS)

    Glasser, Joshua; Pratt, Tim

    2008-10-01

    Programmed defect test masks serve the useful purpose of evaluating inspection system sensitivity and capability. It is widely recognized that when evaluating inspection system capability, it is important to understand the actual sensitivity of the inspection system in production; yet unfortunately we have observed that many test masks are a more accurate judge of theoretical sensitivity rather than real-world usable capability. Use of ineffective test masks leave the purchaser of inspection equipment open to the risks of over-estimating the capability of their inspection solution and overspecifying defect sensitivity to their customers. This can result in catastrophic yield loss for device makers. In this paper we examine some of the lithography-related technology advances which place an increasing burden on mask inspection complexity, such as MEEF, defect printability estimation, aggressive OPC, double patterning, and OPC jogs. We evaluate the key inspection system component contributors to successful mask inspection, including what can "go wrong" with these components. We designed and fabricated a test mask which both (a) more faithfully represents actual production use cases; and (b) stresses the key components of the inspection system. This mask's patterns represent 32nm, 36nm, and 45nm logic and memory technology including metal and poly like background patterns with programmed defects. This test mask takes into consideration requirements of advanced lithography, such as MEEF, defect printability, assist features, nearly-repetitive patterns, and data preparation. This mask uses patterns representative of 32nm, 36nm, and 45nm logic, flash, and DRAM technology. It is specifically designed to have metal and poly like background patterns with programmed defects. The mask is complex tritone and was designed for annular immersion lithography.

  9. System-Inspection Guidelines for Minnesota PK-12 School Construction Projects.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Children, Families, and Learning, St. Paul.

    This document describes a 1998 commissioning statute passed by the Minnesota legislature requiring that mechanical HVAC systems undergo an inspection process to uncover and rectify problems before or shortly after a school building is occupied. The document presents the statute, describes the commissioning/system-inspection process and optional…

  10. 48 CFR 246.370 - Material inspection and receiving report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Material inspection and receiving report. 246.370 Section 246.370 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Clauses 246.370 Material inspection and receiving report. (a)...

  11. 48 CFR 246.370 - Material inspection and receiving report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Material inspection and receiving report. 246.370 Section 246.370 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Clauses 246.370 Material inspection and receiving report. (a)...

  12. Design of a fast Mars space transfer system

    NASA Astrophysics Data System (ADS)

    Woo, Henry H.; Glass, James F.; Roy, Claude

    1992-02-01

    Architecture strategies and concepts for manned missions to Mars are being developed by NASA and industry. This paper addresses the key Mars transfer vehicle (MTV) design requirements which include surface payload mass, MTV mass, propulsion system characteristics, launch vehicle capability, in-space operations, abort considerations, crew exposure to interplanetary environments, and crew reconditioning for planetary entry. Different mission strategies are presented along with their implications. A representative artificial-g MTV using nuclear thermal propulsion is defined to show concepts which minimize extravehicular activity operations for in-space assembly, inspection, and maintenance.

  13. Optics in engineering measurement; Proceedings of the Meeting, Cannes, France, December 3-6, 1985

    NASA Technical Reports Server (NTRS)

    Fagan, William F. (Editor)

    1986-01-01

    The present conference on optical measurement systems considers topics in the fields of holographic interferometry, speckle techniques, moire fringe and grating methods, optical surface gaging, laser- and fiber-optics-based measurement systems, and optics for engineering data evaluation. Specific attention is given to holographic NDE for aerospace composites, holographic interferometry of rotating components, new developments in computer-aided holography, electronic speckle pattern interferometry, mass transfer measurements using projected fringes, nuclear reactor photogrammetric inspection, a laser Doppler vibrometer, and optoelectronic measurements of the yaw angle of projectiles.

  14. Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.

  15. 30 CFR 933.842 - Federal inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NORTH CAROLINA § 933.842 Federal... coal mining and reclamation operations. (b) OSM will furnish a copy of any inspection report written pursuant to this part to the North Carolina Department of Natural Resources and Community Development upon...

  16. 30 CFR 56.12032 - Inspection and cover plates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection and cover plates. 56.12032 Section 56.12032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  17. 30 CFR 56.12032 - Inspection and cover plates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection and cover plates. 56.12032 Section 56.12032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  18. 30 CFR 56.12032 - Inspection and cover plates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection and cover plates. 56.12032 Section 56.12032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  19. 30 CFR 56.12032 - Inspection and cover plates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection and cover plates. 56.12032 Section 56.12032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  20. 30 CFR 56.12032 - Inspection and cover plates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection and cover plates. 56.12032 Section 56.12032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

Top