Pressure-actuated joint system
NASA Technical Reports Server (NTRS)
McGuire, John R. (Inventor)
2004-01-01
A pressure vessel is provided that includes first and second case segments mated with one another. First and second annular rubber layers are disposed inboard of the first and second case segments, respectively. The second annular rubber layer has a slot extending from the radial inner surface across a portion of its thickness to define a main body portion and a flexible portion. The flexible portion has an interfacing surface portion abutting against an interfacing surface portion of the first annular rubber layer to follow movement of the first annular rubber layer during operation of the pressure vessel. The slot receives pressurized gas and establishes a pressure-actuated joint between the interfacing surface portions. At least one of the interfacing surface portions has a plurality of enclosed and sealed recesses formed therein.
Solar cell with silicon oxynitride dielectric layer
Shepherd, Michael; Smith, David D
2015-04-28
Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0
Method of forming ultra thin film devices by vacuum arc vapor deposition
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor)
2005-01-01
A method for providing an ultra thin electrical circuit integral with a portion of a surface of an object, including using a focal Vacuum Arc Vapor Deposition device having a chamber, a nozzle and a nozzle seal, depressing the nozzle seal against the portion of the object surface to create an airtight compartment in the chamber and depositing one or more ultra thin film layer(s) only on the portion of the surface of the object, the layers being of distinct patterns such that they form the circuit.
Ferromagnets as pure spin current generators and detectors
Qu, Danru; Miao, Bingfeng; Chien, Chia -Ling; Huang, Ssu -Yen
2015-09-08
Provided is a spintronics device. The spintronics can include a ferromagnetic metal layer, a positive electrode disposed on a first surface portion of the ferromagnetic metal layer, and a negative electrode disposed on a second surface portion of the ferromagnetic metal.
Solare Cell Roof Tile And Method Of Forming Same
Hanoka, Jack I.; Real, Markus
1999-11-16
A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.
Process for selectively patterning epitaxial film growth on a semiconductor substrate
Sheldon, P.; Hayes, R.E.
1984-12-04
Disclosed is a process for selectively patterning epitaxial film growth on a semiconductor substrate. The process includes forming a masking member on the surface of the substrate, the masking member having at least two layers including a first layer disposed on the substrate and the second layer covering the first layer. A window is then opened in a selected portion of the second layer by removing that portion to expose the first layer thereunder. The first layer is then subjected to an etchant introduced through the window to dissolve the first layer a sufficient amount to expose the substrate surface directly beneath the window, the first layer being adapted to preferentially dissolve at a substantially greater rate than the second layer so as to create an overhanging ledge portion with the second layer by undercutting the edges thereof adjacent the window. The epitaxial film is then deposited on the exposed substrate surface directly beneath the window. Finally, an etchant is introduced through the window to dissolve the remainder of the first layer so as to lift-off the second layer and materials deposited thereon to fully expose the balance of the substrate surface.
Process for selectively patterning epitaxial film growth on a semiconductor substrate
Sheldon, Peter; Hayes, Russell E.
1986-01-01
A process is disclosed for selectively patterning epitaxial film growth on a semiconductor substrate. The process includes forming a masking member on the surface of the substrate, the masking member having at least two layers including a first layer disposed on the substrate and the second layer covering the first layer. A window is then opened in a selected portion of the second layer by removing that portion to expose the first layer thereunder. The first layer is then subjected to an etchant introduced through the window to dissolve a sufficient amount of the first layer to expose the substrate surface directly beneath the window, the first layer being adapted to preferentially dissolve at a substantially greater rate than the second layer so as to create an overhanging ledge portion with the second layer by undercutting the edges thereof adjacent to the window. The epitaxial film is then deposited on the exposed substrate surface directly beneath the window. Finally, an etchant is introduced through the window to dissolve the remainder of the first layer so as to lift-off the second layer and materials deposited thereon to fully expose the balance of the substrate surface.
Corrosion resistant solar mirror
Medwick, Paul A.; Abbott, Edward E.
2016-07-19
A reflective article includes a transparent substrate having a first major surface and a second major surface. A base coat is formed over at least a portion of the second major surface. A primary reflective coating having at least one metallic layer is formed over at least a portion of the base coat. A protective coating is formed over at least a portion of the primary reflective coating. The article further includes a solar cell and an anode, with the solar cell connected to the metallic layer and the anode.
NASA Technical Reports Server (NTRS)
Morrison, Andrew D. (Inventor); Daud, Taher (Inventor)
1986-01-01
A method for growing a high purity, low defect layer of semiconductor is described. This method involves depositing a patterned mask of a material impervious to impurities of the semiconductor on a surface of a blank. When a layer of semiconductor is grown on the mask, the semiconductor will first grow from the surface portions exposed by the openings in the mask and will bridge the connecting portions of the mask to form a continuous layer having improved purity, since only the portions overlying the openings are exposed to defects and impurities. The process can be iterated and the mask translated to further improve the quality of grown layers.
Selective layer disordering in III-nitrides with a capping layer
Wierer, Jr., Jonathan J.; Allerman, Andrew A.
2016-06-14
Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.
Apparatus and method for transient thermal infrared emission spectrometry
McClelland, John F.; Jones, Roger W.
1991-12-24
A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.
Proximity charge sensing for semiconductor detectors
Luke, Paul N; Tindall, Craig S; Amman, Mark
2013-10-08
A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.
Composite neutron absorbing coatings for nuclear criticality control
Wright, Richard N.; Swank, W. David; Mizia, Ronald E.
2005-07-19
Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.
Fiber optic device for sensing the presence of a gas
Benson, David K.; Bechinger, Clemens S.; Tracy, C. Edwin
1998-01-01
A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.
Spahn, O.B.; Lear, K.L.
1998-03-10
The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.
Spahn, Olga B.; Lear, Kevin L.
1998-01-01
A semiconductor structure. The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g. Al.sub.2 O.sub.3), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3-1.6 .mu.m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strassner, II, Bernd H.; Liedtke, Richard; McDonald, Jacob Jeremiah
The various technologies presented herein relate to utilizing a sealing layer of malleable material to seal gaps, etc., at a joint between edges of a waveguide channel formed in a first plate and a surface of a clamping plate. A compression pad is included in the surface of the clamping plate and is dimensioned such that the upper surface of the pad is less than the area of the waveguide channel opening on the first plate. The sealing layer is placed between the waveguide plate and the clamping plate, and during assembly of the waveguide module, the compression pad deformsmore » a portion of the sealing layer such that it ingresses into the waveguide channel opening. Deformation of the sealing layer results in the gaps, etc., to be filled, improving the operational integrity of the joint.« less
Optically switched graphene/4H-SiC junction bipolar transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrashekhar, MVS; Sudarshan, Tangali S.; Omar, Sabih U.
A bi-polar device is provided, along with methods of making the same. The bi-polar device can include a semiconductor substrate doped with a first dopant, a semiconductor layer on the first surface of the semiconductor substrate, and a Schottky barrier layer on the semiconductor layer. The method of forming a bi-polar device can include: forming a semiconductor layer on a first surface of a semiconductor substrate, where the semiconductor substrate comprises a first dopant and where the semiconductor layer comprises a second dopant that has an opposite polarity than the first dopant; and forming a Schottky barrier layer on amore » first portion of the semiconductor layer while leaving a second portion of the semiconductor layer exposed.« less
Fiber optic device for sensing the presence of a gas
Benson, D.K.; Bechinger, C.S.; Tracy, C.E.
1998-01-13
A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material`s optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment. 5 figs.
Solar cell modules with improved backskin and methods for forming same
Hanoka, Jack I.
1998-04-21
A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal. A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal.
Solar cell collector and method for producing same
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1978-01-01
A transparent, conductive collector layer containing conductive metal channels is formed as a layer on a photovoltaic substrate by coating a photovoltaic substract with a conductive mixed metal layer. A heat sink having portions protruding from one of its surfaces is attached. These protruding portions define a continuous pattern in combination with recessed regions among them such that they are in contact with the conductive layer of the photovoltaic substrate. Heating the substrate while simultaneously oxidizing the portions of the conductive layer exposed to a gaseous oxidizing substance forced into the recessed regions of the heat sink, creates a transparent metal oxide layer on the substrate. A continous pattern of highly conductive metal channels is contained in the metal oxide layer.
Silicon-nitride and metal composite
Landingham, R.L.; Huffsmith, S.A.
A composite and a method for bonding the composite are described. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi/sub 2/ indirectly bonding the composite together. The method includes contacting the layer of MoSi/sub 2/ with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400/sup 0/C; and, simultaneously, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.
Silicon-nitride and metal composite
Landingham, Richard L.; Huffsmith, Sarah A.
1981-01-01
A composite and a method for bonding the composite. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi.sub.2 indirectly bonding the composite together. The method includes contacting the layer of MoSi.sub.2 with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400.degree. C.; and, simultaneously with the heating, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.
Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
Mazur, Eric [Concord, MA; Shen, Mengyan [Arlington, MA
2008-10-28
The present invention generally provides semiconductor substrates having submicron-sized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.
Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
Mazur, Eric; Shen, Mengyan
2015-09-15
The present invention generally provides semiconductor substrates having submicronsized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.
Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
Mazur, Eric , Shen; Mengyan, [Belmont, MA
2011-02-08
The present invention generally provides semiconductor substrates having submicron-sized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.
Photovoltaic module with adhesion promoter
Xavier, Grace
2013-10-08
Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.
High reflectivity mirrors and method for making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heikman, Sten; Jacob-Mitos, Matthew; Li, Ting
2016-06-07
A composite high reflectivity mirror (CHRM) with at least one relatively smooth interior surface interface. The CHRM includes a composite portion, for example dielectric and metal layers, on a base element. At least one of the internal surfaces is polished to achieve a smooth interface. The polish can be performed on the surface of the base element, on various layers of the composite portion, or both. The resulting smooth interface(s) reflect more of the incident light in an intended direction. The CHRMs may be integrated into light emitting diode (LED) devices to increase optical output efficiency
Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
Mazur, Eric; Shen, Mengyan
2013-12-03
The present invention generally provides a semiconductor substrates having submicron-sized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.
Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer
Singh, Prabhakar; Ruka, Roswell J.
1995-01-01
A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.
Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer
Singh, P.; Ruka, R.J.
1995-02-14
A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.
Membrane architectures for ion-channel switch-based electrochemical biosensors
Sansinena, Jose-Maria; Redondo, Antonio; Swanson, Basil I.; Yee, Chanel Kitmon; Sapuri/Butti, Annapoorna R.; Parikh, Atul N.; Yang, Calvin
2008-10-28
The present invention is directed to a process of forming a bilayer lipid membrane structure by depositing an organic layer having a defined surface area onto an electrically conductive substrate, removing portions of said organic layer upon said electrically conductive substrate whereby selected portions of said organic layer are removed to form defined voids within said defined surface area of said organic layer and defined islands of organic layer upon said electrically conductive substrate, and, depositing a bilayer lipid membrane over the defined voids and defined islands of organic layer upon said substrate whereby aqueous reservoirs are formed between said electrically conductive substrate and said bilayer lipid membrane, said bilayer lipid membrane characterized as spanning across the defined voids between said defined islands. A lipid membrane structure is also described together with an array of such lipid membrane structure.
Growth and transfer of monolithic horizontal nanowire superstructures onto flexible substrates
Wang, Zhong L; Xu, Sheng
2013-08-27
In a method of making a monolithic elongated nanowire, a mask polymer layer is applied to a selected crystal surface of a seed crystal. A plurality of spaced apart elongated openings is defined through the mask polymer layer, thereby exposing a corresponding plurality of portions of the crystal surface. The openings are disposed so as to be aligned with and parallel to a selected crystal axis of the seed crystal. The portions of the crystal surface are subjected to a chemical nutrient environment that causes crystalline material to grow from the plurality of portions for at least a period of time so that monocrystalline members grow from the elongated openings and until the monocrystalline members laterally expand so that each monocrystalline member grows into and merges with an adjacent one of the monocrystalline members, thereby forming a monolithic elongated nanowire.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1976-01-01
An experimental investigation is presented that was performed to determine the effect of a surface-to-gap wall temperature discontinuity on the heat transfer within space shuttle, reusable surface insulation, tile gaps submerged in a thick turbulent boundary layer. Heat-transfer measurements were obtained on a flat-plate, single-gap model submerged in a turbulent tunnel wall boundary layer at a nominal free-stream Mach number of 10.3 and free-stream Reynolds numbers per meter of 1.5 million, 3.3 million and 7.8 million. Surface-to-gap wall temperature discontinuities of varying degree were created by heating the surface of the model upstream of the instrumented gap. The sweep angle of the gap was varied between 0 deg and 60 deg; gap width and depth were held constant. A surface-to-gap wall temperature discontinuity (surface temperature greater than gap wall temperature) results in increased heat transfer to the near-surface portion of the gap, as compared with the heat transfer under isothermal conditions, while decreasing the heat transfer to the deeper portions of the gap. The nondimensionalized heat transfer to the near-surface portion of the gap is shown to decrease with increasing Reynolds number; in the deeper portion of the gap, the heat transfer increases with Reynolds number.
Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell
Spengler, Charles J.; Folser, George R.; Vora, Shailesh D.; Kuo, Lewis; Richards, Von L.
1995-01-01
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.
Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell
Spengler, C.J.; Folser, G.R.; Vora, S.D.; Kuo, L.; Richards, V.L.
1995-06-20
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO{sub 3} powder, preferably compensated with chromium as Cr{sub 2}O{sub 3} and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO{sub 3} layer to about 1100 C to 1300 C to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell. 6 figs.
Photo-stimulated low electron temperature high current diamond film field emission cathode
Shurter,; Roger Philips, Devlin [Los Alamos, NM; David James, Moody [Santa Fe, NM; Nathan Andrew, Taccetti [Los Alamos, NM; Jose Martin, Russell [Santa Fe, NM; John, Steven [Los Alamos, NM
2012-07-24
An electron source includes a back contact surface having a means for attaching a power source to the back contact surface. The electron source also includes a layer comprising platinum in direct contact with the back contact surface, a composite layer of single-walled carbon nanotubes embedded in platinum in direct contact with the layer comprising platinum. The electron source also includes a nanocrystalline diamond layer in direct contact with the composite layer. The nanocrystalline diamond layer is doped with boron. A portion of the back contact surface is removed to reveal the underlying platinum. The electron source is contained in an evacuable container.
Majewski, Stanislaw; Weisenberger, Andrew G.
2004-06-15
In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.
Multi-Dimensional Sensors and Sensing Systems
NASA Technical Reports Server (NTRS)
Stetter, Joseph R. (Inventor); Shirke, Amol G. (Inventor)
2014-01-01
A universal microelectromechanical (MEMS) nano-sensor platform having a substrate and conductive layer deposited in a pattern on the surface to make several devices at the same time, a patterned insulation layer, wherein the insulation layer is configured to expose one or more portions of the conductive layer, and one or more functionalization layers deposited on the exposed portions of the conductive layer to make multiple sensing capability on a single MEMS fabricated device. The functionalization layers are adapted to provide one or more transducer sensor classes selected from the group consisting of: radiant, electrochemical, electronic, mechanical, magnetic, and thermal sensors for chemical and physical variables and producing more than one type of sensor for one or more significant parameters that need to be monitored.
NASA Technical Reports Server (NTRS)
Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)
1998-01-01
X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.
Heat transfer in the turbulent boundary layer with a short strip of surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.P.; Chakroun, W.M.
1992-01-01
The effects of a short strip of surface roughness on heat transfer and fluid flow in the turbulent boundary layer are investigated experimentally. This is done by measuring Stanton number and skin friction distributions and mean velocity, turbulence intensity, and mean temperature profiles in a turbulent boundary layer where the first 0.7 m length is smooth, the next 0.2 m is roughened with 1.27 mm hemispheres spaced 2 base diameters apart and the final 1.5 m is smooth. These results are compared with previously published data from experiments wiht a rough leading portion and smooth final portion and from experimentsmore » on an all-smooth surface. The influence of the roughness is large in the neighborhood of the rough strip, but the Stanton number and skin friction distributions are seen to quickly recover smooth-wall behavior downstream of the rough strip. 19 refs.« less
Plasmon absorption modulator systems and methods
Kekatpure, Rohan Deodatta; Davids, Paul
2014-07-15
Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.
Apparatus and method for transient thermal infrared spectrometry
McClelland, John F.; Jones, Roger W.
1991-12-03
A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.
Electrolytic etch for preventing electrical shorts in solar cells on polymer surfaces
Weber, Michael F.
1991-10-08
A method for preventing shorts and shunts in solar cells having in order, an insulating substrate, a conductive metal layer on the substrate, an amorphous silicon layer and a transparent conductive layer. The method includes anodic etching of exposed portions of the metal layer after deposition of the amorphous silicon and prior to depositing the transparent conductive layer.
Electron emitting device and method of making the same
Olsen, Gregory Hammond; Martinelli, Ramon Ubaldo; Ettenberg, Michael
1977-04-19
A substrate of single crystalline gallium arsenide has on a surface thereof a layer of single crystalline indium gallium phosphide. A layer of single crystalline gallium arsenide is on the indium gallium phosphide layer and a work function reducing material is on the gallium arsenide layer. The substrate has an opening therethrough exposing a portion of the indium gallium phosphide layer.
Method of bonding a conductive layer on an electrode of an electrochemical cell
Bowker, J.C.; Singh, P.
1989-08-29
A dense, electronically conductive interconnection layer is bonded onto a porous, tubular, electronically conductive air electrode structure, optionally supported by a ceramic support, by (A) providing an air electrode surface, (B) forming on a selected portion of the electrode surface, without the use of pressure, particles of LaCrO[sub 3] doped with an element selected from the group consisting of Sr, Mg, Ca, Ba, Co, and mixtures thereof, where the particles have a deposit on their surface comprising calcium oxide and chromium oxide; (C) heating the particles with the oxide surface deposit in an oxidizing atmosphere at from 1,300 C to 1,550 C, without the application of pressure, to provide a dense, sintered, interconnection material bonded to the air electrode, where calcium and chromium from the surface deposit are incorporated into the structure of the LaCrO[sub 3]. A solid electrolyte layer can be applied to the uncovered portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell. 4 figs.
Method of bonding a conductive layer on an electrode of an electrochemical cell
Bowker, Jeffrey C.; Singh, Prabhakar
1989-01-01
A dense, electronically conductive interconnection layer 26 is bonded onto a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) providing an air electrode surface, (B) forming on a selected portion of the electrode surface 24, without the use of pressure, particles of LaCrO.sub.3 doped with an element selected from the group consisting of Sr, Mg, Ca, Ba, Co, and mixtures thereof, where the particles have a deposit on their surface comprising calcium oxide and chromium oxide; (C) heating the particles with the oxide surface deposit in an oxidizing atmosphere at from 1,300.degree. C. to 1,550.degree. C., without the application of pressure, to provide a dense, sintered, interconnection material 26 bonded to the air electrode 16, where calcium and chromium from the surface deposit are incorporated into the structure of the LaCrO.sub.3. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.
Method of bistable optical information storage using antiferroelectric phase PLZT ceramics
Land, Cecil E.
1990-01-01
A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field.
Method of bistable optical information storage using antiferroelectric phase PLZT ceramics
Land, C.E.
1990-07-31
A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field. 8 figs.
Compact neutron imaging system using axisymmetric mirrors
Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E
2014-05-27
A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.
Cardinale, Gregory F.
2000-01-01
A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.
Vinegar, Harold J.; Sandberg, Chester Ledlie
2010-11-09
A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.
Huang, Junrong; Chen, Zhenghong; Xu, Yalun; Li, Hongliang; Liu, Shuxing; Yang, Daqing; Schols, Henk A
2014-02-15
To understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated, original and remaining granules of waxy potato starch had similar rapid visco analyzer (RVA) pasting profiles, while those of two normal potato starches behaved obviously different from each other. All remaining granules had lower peak viscosity than the corresponding original granules. Contribution of waxy potato starch granule's inner portion to the peak viscosity was significant more than those of normal potato starches. The shell structure appearing on the remaining granule surface for waxy potato starch was smoother and thinner than that for normal potato starches as observed by scanning electron microscopy, indicating a more regular structure of shell and a more ordered packing of shell for waxy potato starch granules. The blocklet size of waxy potato starch was smaller and more uniform than those of normal potato starches as shown by atomic force microscopy images of original and remaining granules. In general, our results provided the evidence for the spatial structure diversity between waxy and normal potato starch granules: outer layer and inner portion of waxy potato starch granule had similar structure, while outer layer had notably different structure from inner portion for normal potato starch granule. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of tethering on the surface dynamics of a thin polymer melt layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang
The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of “untethered chains” a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. Furthermore, the portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. They provide a route formore » tailoring polymer layer surface properties such as wetting, adhesion and friction, since these hybrid samples contain a covalently tethered layer at the bottom, does not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates.« less
Effect of tethering on the surface dynamics of a thin polymer melt layer
Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang; ...
2016-05-13
The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of “untethered chains” a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. Furthermore, the portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. They provide a route formore » tailoring polymer layer surface properties such as wetting, adhesion and friction, since these hybrid samples contain a covalently tethered layer at the bottom, does not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates.« less
Possible Fluvial Features in Golden Crater
2015-03-25
This observation from NASA Mars Reconnaissance Orbiter shows an interesting crater floor with what appear to be inverted channels, rounded lobe-like landforms, and light-toned layered deposits along the southern portion of the crater wall. High resolution can help study the layers, with an enhanced-color image showing us any variations in composition between those light-toned layers and the darker-toned surfaces. http://photojournal.jpl.nasa.gov/catalog/PIA19353
Surface studies on scandate cathodes and synthesized scandates
NASA Technical Reports Server (NTRS)
Lesny, Gary; Forman, Ralph
1990-01-01
Auger, ESCA, electron emission, evaporation, and desorption measurements were made on three different types of scandate surfaces. They are: (1) an impregnated top layer scandate cathode, (2) an unimpregnated top layer scandate cathode with a deposited barium or barium oxide adsorbate surface layer, and (3) a synthesized scandate surface, which replicates a scandate cathode surface. The purpose of these experiments was to determine the role that Sc2O3 plays in making the scandate cathode a more copious electron emitter than the conventional impregnated-type cathode. The synthesized scandate surface experiments consisted of depositing multilayer scandium on a tungsten surface, oxidizing the scandium, and then depositing either Ba or BaO on the scandium oxide surface. The results of these measurements showed that the low work function portions of the thin-film scandate cathode are where the Sc2O3 is the substrate and BaO is the adsorbate.
Conformal coating of highly structured surfaces
Ginley, David S.; Perkins, John; Berry, Joseph; Gennett, Thomas
2012-12-11
Method of applying a conformal coating to a highly structured substrate and devices made by the disclosed methods are disclosed. An example method includes the deposition of a substantially contiguous layer of a material upon a highly structured surface within a deposition process chamber. The highly structured surface may be associated with a substrate or another layer deposited on a substrate. The method includes depositing a material having an amorphous structure on the highly structured surface at a deposition pressure of equal to or less than about 3 mTorr. The method may also include removing a portion of the amorphous material deposited on selected surfaces and depositing additional amorphous material on the highly structured surface.
Layered solid sorbents for carbon dioxide capture
Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A
2013-02-25
A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.
Layered solid sorbents for carbon dioxide capture
Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A
2014-11-18
A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.
Controlled growth of larger heterojunction interface area for organic photosensitive devices
Yang, Fan [Somerset, NJ; Forrest, Stephen R [Ann Arbor, MI
2009-12-29
An optoelectronic device and a method of fabricating a photosensitive optoelectronic device includes depositing a first organic semiconductor material on a first electrode to form a continuous first layer having protrusions, a side of the first layer opposite the first electrode having a surface area at least three times greater than an underlying lateral cross-sectional area; depositing a second organic semiconductor material directly on the first layer to form a discontinuous second layer, portions of the first layer remaining exposed; depositing a third organic semiconductor material directly on the second layer to form a discontinuous third layer, portions of at least the second layer remaining exposed; depositing a fourth organic semiconductor material on the third layer to form a continuous fourth layer, filling any exposed gaps and recesses in the first, second, and third layers; and depositing a second electrode on the fourth layer, wherein at least one of the first electrode and the second electrode is transparent, and the first and third organic semiconductor materials are both of a donor-type or an acceptor-type relative to second and fourth organic semiconductor materials, which are of the other material type.
X-ray photoelectron spectroscopy (XPS) investigation of the surface film on magnesium powders.
Burke, Paul J; Bayindir, Zeynel; Kipouros, Georges J
2012-05-01
Magnesium (Mg) and its alloys are attractive for use in automotive and aerospace applications because of their low density and good mechanical properties. However, difficulty in forming magnesium and the limited number of available commercial alloys limit their use. Powder metallurgy may be a suitable solution for forming near-net-shape parts. However, sintering pure magnesium presents difficulties due to surface film that forms on the magnesium powder particles. The present work investigates the composition of the surface film that forms on the surface of pure magnesium powders exposed to atmospheric conditions and on pure magnesium powders after compaction under uniaxial pressing at a pressure of 500 MPa and sintering under argon at 600 °C for 40 minutes. Initially, focused ion beam microscopy was utilized to determine the thickness of the surface layer of the magnesium powder and found it to be ~10 nm. The X-ray photoelectron analysis of the green magnesium sample prior to sintering confirmed the presence of MgO, MgCO(3)·3H(2)O, and Mg(OH)(2) in the surface layer of the powder with a core of pure magnesium. The outer portion of the surface layer was found to contain MgCO(3)·3H(2)O and Mg(OH)(2), while the inner portion of the layer is primarily MgO. After sintering, the MgCO(3)·3H(2)O was found to be almost completely absent, and the amount of Mg(OH)(2) was also decreased significantly. This is postulated to occur by decomposition of the compounds to MgO and gases during the high temperature of sintering. An increase in the MgO content after sintering supports this theory.
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; Berger, Karen; Anderson, Brian
2012-01-01
Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.
NASA Astrophysics Data System (ADS)
Rowland, J. C.; Shelef, E.; Sutfin, N. A.; Piliouras, A.; Andresen, C. G.; Wilson, C. J.
2017-12-01
Movement and storage rates of soil and carbon along permafrost-dominated hillslopes may vary dramatically from long-term steady creeping, at centimeters per year, to rapid gullying, land sliding, and active layer detachments of meter to decimeter sized portions of hillslopes. The rate and drivers of hillslope soil processes may have strong feedbacks on microtopography and hydrology that in turn strongly influence vegetation dynamics and biogeochemistry within watersheds. We observed evidence of both steady soil creep and more catastrophic soil erosion processes occurring across three small watersheds in the southern Seward Peninsula, AK. In these watersheds, we inferred active soil creep processes from the occurrence of solifluction lobes with partially buried shrubs and tilted survey benchmarks on slopes lacking lobes. More dramatic and rapid erosion of soils was evidenced by active layer detachments, extensional cracks in the tundra vegetation, gullying, and both small- and large-scale soil failure scarps. The margins and heads of valley hollows exhibited failure scars up to 4m in height. The spatial distribution of actively eroding areas suggests that some portions of hilllslopes may be more susceptible to rapid erosion. Coring of hillslope soils suggests a possible association between more actively eroding areas and the presence of an ice-rich layer (> 50%) at depths of approximately 90 cm down to the inferred top of bedrock at depths at 170 to 200 cm. We observed that the surface of these hillslope regions appears to have greater microtopographic roughness with a more chaotic and "lumpy" surface than portions of the hillslope were no massive ice layers were encountered. We hypothesize that the extensional cracking and chaotic surface roughness may arise from small-scale soil failures triggered when the seasonal thaw depth intersects the ice-rich layer. It may be possible to identify hillslope regions underlain by ice-rich layers with greater susceptibility for localized erosion and deformation based on a quantitative characterization of the hillslope microtopography. Using drone-based LiDAR topographic data to be acquired in late summer of 2017, we will quantitatively explore the relationship between microtopography and hillslope ice-content.
Measurement of low turbulence levels with a thermoanemometer
NASA Technical Reports Server (NTRS)
Demin, V. S.; Morin, O. V.; Polyakov, N. F.; Shcherbakov, V. A.
1978-01-01
The trend for decreasing the drag of aircraft is retention of laminar flow in the boundary layer over a large portion of the surface. The laminar boundary layer was studied in a low turbulence wind tunnel for low subsonic velocities. The method used and results of measurements of very low levels of turbulence are presented. Measurements were performed by a constant-resistance thermoanemometer.
Discussion of flight experiments with an entry research vehicle
NASA Technical Reports Server (NTRS)
Potter, J. L.
1985-01-01
The focus of interest is the maneuvering flight of advanced entry vehicles operating at altitudes above 50 km and at velocities of 5 to 8 km/s. Information resulting in more accurate aerodynamic analysis is sought and measurement techniques that appear to be applicable are identified. Measurements discussed include: shock layer or boundary layer profiles of velocity, temperature, species mass fractions, and other gas properties associated with aerodynamic heating; surface energy transfer process; nonequilibrium flow processes and pressure distribution; separated, vortic leeside flow of nonequilibrium fluid; boundary layer transition on highly swept configurations; and shock and surface slip and gas/surface interaction. Further study should focus on evolving measurement techniques, installation requirements, and on identification of the portions of flights where successful results seem probable.
High Precision Metal Thin Film Liftoff Technique
NASA Technical Reports Server (NTRS)
Brown, Ari D. (Inventor); Patel, Amil A. (Inventor)
2015-01-01
A metal film liftoff process includes applying a polymer layer onto a silicon substrate, applying a germanium layer over the polymer layer to create a bilayer lift off mask, applying a patterned photoresist layer over the germanium layer, removing an exposed portion of the germanium layer, removing the photoresist layer and a portion of the polymer layer to expose a portion of the substrate and create an overhanging structure of the germanium layer, depositing a metal film over the exposed portion of the substrate and the germanium layer, and removing the polymer and germanium layers along with the overlaying metal film.
Capacitance reduction for pillar structured devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Qinghui; Conway, Adam; Nikolic, Rebecca J.
2017-05-09
In one embodiment, an apparatus includes: a first layer including a n+ dopant or p+ dopant; an intrinsic layer formed above the first layer, the intrinsic layer including a planar portion and pillars extending above the planar portion, cavity regions being defined between the pillars; and a second layer deposited on a periphery of the pillars thereby forming coated pillars, the second layer being substantially absent on the planar portion of the intrinsic layer between the coated pillars. The second layer includes an n+ dopant when the first layer includes a p+ dopant. The second layer includes a p+ dopantmore » when the first layer includes an n+ dopant. The apparatus includes a neutron sensitive material deposited between the coated pillars and above the planar portion of the intrinsic layer. In additional embodiments, an upper portion of each of the pillars includes a same type of dopant as the second layer.« less
Aeroheating Predictions for X-34 Using an Inviscid-Boundary Layer Method
NASA Technical Reports Server (NTRS)
Riley, Christopher J.; Kleb, William L.; Alter, Steven J.
1998-01-01
Radiative equilibrium surface temperatures and surface heating rates from a combined inviscid-boundary layer method are presented for the X-34 Reusable Launch Vehicle for several points along the hypersonic descent portion of its trajectory. Inviscid, perfect-gas solutions are generated with the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and the Data-Parallel Lower-Upper Relaxation (DPLUR) code. Surface temperatures and heating rates are then computed using the Langley Approximate Three-Dimensional Convective Heating (LATCH) engineering code employing both laminar and turbulent flow models. The combined inviscid-boundary layer method provides accurate predictions of surface temperatures over most of the vehicle and requires much less computational effort than a Navier-Stokes code. This enables the generation of a more thorough aerothermal database which is necessary to design the thermal protection system and specify the vehicle's flight limits.
One-step method for the production of nanofluids
Kostic, Milivoje [Chicago, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John R [Downers Grove, IL; Choi, Stephen U. S. [Napersville, IL
2010-05-18
A one step method and system for producing nanofluids by a particle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such (i.e. ethylene glycol) is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. A heater-boat-evaporator having an evaporant material (particle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material, the evaporated material absorbed by the liquid film to form nanofluid.
Output-increasing, protective cover for a solar cell
Hammerbacher, Milfred D.
1995-11-21
A flexible cover (14) for a flexible solar cell (12) protects the cell from the ambient and increases the cell's efficiency. The cell(12)includes silicon spheres (16) held in a flexible aluminum sheet matrix (20,22). The cover (14) is a flexible, protective layer (60) of light-transparent material having a relatively flat upper, free surface (64) and an irregular opposed surface (66). The irregular surface (66) includes first portions (68) which conform to the polar regions (31R) of the spheres (16) and second convex (72) or concave (90) portions (72 or 90) which define spaces (78) in conjunction with the reflective surface (20T) of one aluminum sheet (20). Without the cover (14) light (50) falling on the surface (20T) between the spheres (16) is wasted, that is, it does not fall on a sphere (16). The surfaces of the second portions are non-parallel to the direction of the otherwise wasted light (50), which fact, together with a selected relationship between the refractive indices of the cover and the spaces, result in sufficient diffraction of the otherwise wasted light (50) so that about 25% of it is reflected from the surface (20T) onto a sphere (16).
Observations of the Early Evening Boundary-Layer Transition Using a Small Unmanned Aerial System
NASA Astrophysics Data System (ADS)
Bonin, Timothy; Chilson, Phillip; Zielke, Brett; Fedorovich, Evgeni
2013-01-01
The evolution of the lower portion of the planetary boundary layer is investigated using the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial vehicle developed at the University of Oklahoma. The study focuses on the lowest 200 m of the atmosphere, where the most noticeable thermodynamic changes occur during the day. Between October 2010 and February 2011, a series of flights was conducted during the evening hours on several days to examine the vertical structure of the lower boundary layer. Data from a nearby Oklahoma Mesonet tower was used to supplement the vertical profiles of temperature, humidity, and pressure, which were collected approximately every 30 min, starting 2 h before sunset and continuing until dusk. From the profiles, sensible and latent heat fluxes were estimated. These fluxes were used to diagnose the portion of the boundary layer that was most affected by the early evening transition. During the transition period, a shallow cool and moist layer near the ground was formed, and as the evening progressed the cooling affected an increasingly shallower layer just above the surface.
Method of fabricating conductive electrodes on the front and backside of a thin film structure
Tabada, Phillipe J [Roseville, CA; Tabada, legal representative, Melody; Pannu, Satinderpall S [Pleasanton, CA
2011-05-22
A method of fabricating a thin film device having conductive front and backside electrodes or contacts. Top-side cavities are first formed on a first dielectric layer, followed by the deposition of a metal layer on the first dielectric layer to fill the cavities. Defined metal structures are etched from the metal layer to include the cavity-filled metal, followed by depositing a second dielectric layer over the metal structures. Additional levels of defined metal structures may be formed in a similar manner with vias connecting metal structures between levels. After a final dielectric layer is deposited, a top surface of a metal structure of an uppermost metal layer is exposed through the final dielectric layer to form a front-side electrode, and a bottom surface of a cavity-filled portion of a metal structure of a lowermost metal layer is also exposed through the first dielectric layer to form a back-side electrode.
Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals
Albright, Scot P.; Chamberlin, Rhodes R.
1996-03-26
A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.
Instability and sound emission from a flow over a curved surface
NASA Technical Reports Server (NTRS)
Maestrello, L.; Parikh, P.; Bayliss, A.
1988-01-01
The growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using the linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wavepacket increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically exhibits a decay characteristic of acoustic waves in two dimensions. The far-field acoustic pressure exhibits a peak at a frequency corresponding to the inflow instability frequency.
Process reduces pore diameters to produce superior filters
NASA Technical Reports Server (NTRS)
Todd, H. H.
1966-01-01
Porous metal structure with very small pore diameters is produced by heating the structure in oxygen for an oxidized surface layer, cooling it, and heating it in hydrogen to deoxidize the oxidized portion. Such structures are superior catalyst beds and filters.
Silicon-based visible and near-infrared optoelectric devices
Mazur, Eric; Carey, James Edward
2017-10-17
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Mazur, Eric [Concord, MA; Carey, III, James E.
2011-02-08
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Mazur, Eric; Carey, III, James E.
2010-08-24
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Mazur, Eric [Concord, MA; Carey, III, James Edward
2009-03-17
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Carey, III, James Edward; Mazur, Eric [Concord, MA
2011-12-20
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Carey, III, James Edward; Mazur, Eric
2006-06-06
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Mazur, Eric; Carey, James Edward
2016-03-01
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Mazur, Eric; Carey, James Edward
2013-12-10
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity great than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelenths, e.g., up to about 3.5 microns.
Electrical contact arrangement for a coating process
Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W
2013-09-17
A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.
Fuel decomposition and boundary-layer combustion processes of hybrid rocket motors
NASA Technical Reports Server (NTRS)
Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.
1995-01-01
Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with GOX under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from +/-20% of the localized mean pressure to an acceptable range of +/-1.5% Embedded fine-wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading-edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse-echo techniques were used to determine the instantaneous web thickness burned and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented.
Fabrication of contacts for silicon solar cells including printing burn through layers
Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria
2014-06-24
A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).
[XPS analysis of beads formed by fuse breaking of electric copper wire].
Wu, Ying; Meng, Qing-Shan; Wang, Xin-Ming; Gao, Wei; Di, Man
2010-05-01
The in-depth composition of beads formed by fuse breaking of the electric copper wire in different circumstances was studied by XPS with Ar+ ion sputtering. In addition, the measured Auger spectra and the calculated Auger parameters were compared for differentiation of the substances of Cu and Cu2O. Corresponding to the sputtering depth, the molten product on a bead induced directly by fuse breaking of the copper wire without cover may be distinguished as three portions: surface layer with a drastic decrease in carbon content; intermediate layer with a gentle change in oxygen content and gradually diminished carbon peak, and consisting of Cu2O; transition layer without Cu2O and with a rapid decrease in oxygen content. While the molten product on a bead formed by fuse breaking of the copper wire after its insulating cover had been burned out may be distinguished as two portions: surface layer with carbon content decreasing quickly; subsurface layer without Cu2O and with carbon and oxygen content decreasing gradually. Thus, it can be seen that there was an obvious interface between the layered surface product and the substrate for the first type of bead, while as to the second type of bead there was no interface. As a result, the presence of Cu2O and the quantitative results can be used to identify the molten product on a bead induced directly by fuse breaking of the copper wire without cover and the molten product on a bead formed by fuse breaking of the cupper wire after its insulating cover had been burned out, as a complementary technique for the judgments of fire cause.
Synthesis and Characterization of Polydiacetylene Films and Nanotubes
Gatebe, Erastus; Herron, Hayley; Zakeri, Rashid; Rajasekaran, Pradeep Ramiah; Aouadi, Samir; Kohli, Punit
2009-01-01
We report here the synthesis and characterization of polydiacetylene (PDA) films and nanotubes using layer-by-layer (LBL) chemistry. 10,12-Docosadiyndioic acid (DCDA) monomer was self-assembled on flat surfaces and inside of nanoporous alumina templates. UV irradiation of DCDA provided polymerized-DCDA (PDCDA) films and nanotubes. We have used zirconium-carboxylate interlayer chemistry to synthesize PDCDA multilayers on flat surfaces and in nanoporous template. PDCDA multilayers were characterized using optical (UV–vis, fluorescence, ellipsometry, FTIR) spectroscopies, ionic current–voltage (I–V) analysis, and scanning electron microscopy. Ellipsometry, FTIR, electronic absorption and emission spectroscopies showed a uniform DCDA deposition at each deposition cycle. Our optical spectroscopic analysis indicates that carboxylate-zirconium interlinking chemistry is robust. To explain the disorganization in the alkyl portion of PDCDA multilayer films, we propose carboxylate-zirconium interlinkages act as “locks” in between PDCDA layers which restrict the movement of alkyl portion in the films. Because of this locking, the induced-stresses in the polymer chains can not be efficiently relieved. Our ionic resistance data from I–V analysis correlate well with calculated resistance at smaller number of PDCDA layers but significantly deviated for thicker PDCDA nanotubes. These differences were attributed to ion-blocking because some of the PDCDA nanotubes were totally closed and the nonohmic and permselective ionic behaviors when the diameter of the pores approaches the double-layer thickness of the solution inside of the nanotubes. PMID:18823090
The effects of spatial inhomogeneities on flow through the endothelial surface layer.
Leiderman, Karin M; Miller, Laura A; Fogelson, Aaron L
2008-05-21
Flow through the endothelial surface layer (the glycocalyx and adsorbed plasma proteins) plays an important but poorly understood role in cell signaling through a process known as mechanotransduction. Characterizing the flow rates and shear stresses throughout this layer is critical for understanding how flow-induced ionic currents, deformations of transmembrane proteins, and the convection of extracellular molecules signal biochemical events within the cell, including cytoskeletal rearrangements, gene activation, and the release of vasodilators. Previous mathematical models of flow through the endothelial surface layer are based upon the assumptions that the layer is of constant hydraulic permeability and constant height. These models also assume that the layer is continuous across the endothelium and that the layer extends into only a small portion of the vessel lumen. Results of these models predict that fluid shear stress is dissipated through the surface layer and is thus negligible near endothelial cell membranes. In this paper, such assumptions are removed, and the resultant flow rates and shear stresses through the layer are described. The endothelial surface layer is modeled as clumps of a Brinkman medium immersed in a Newtonian fluid. The width and spacing of each clump, hydraulic permeability, and fraction of the vessel lumen occupied by the layer are varied. The two-dimensional Navier-Stokes equations with an additional Brinkman resistance term are solved using a projection method. Several fluid shear stress transitions in which the stress at the membrane shifts from low to high values are described. These transitions could be significant to cell signaling since the endothelial surface layer is likely dynamic in its composition, density, and height.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan
Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less
Reactive conductors for increased efficiency of exploding foil initiators and other detonators
Morris, Christopher J.; Wilkins, Paul; May, Chadd; Zakar, Eugene
2015-05-05
Provided among other things are reactive energetic material systems used for conductors in detonators for increased efficiencies. According to an embodiment, a detonator may include: a conductor including at least two constituents including (i) an electrically conductive constituent, and (ii) an electrically non-conductive constituent, that when subjected to sufficient electrical energy, result in an exothermic reaction; and a flyer plate having a non-conductive surface in contact with said conductor. When the sufficient electrical energy is supplied to said conductor, rapid heating and vaporization of at least a portion of the conductor occurs so as to explosively drive at least a portion of the flyer plate away from said conductor. In an embodiment, a multilayer conductor may be formed of alternating layers of at least one electrically conductive layer, and at least one electrically non-conductive layer, that when subjected to sufficient electrical energy, result in an exothermic reaction.
Helmet of a laminate construction of polycarbonate and polysulfone polymeric material
NASA Technical Reports Server (NTRS)
Kosmo, Joseph J. (Inventor); Dawn, Frederic S. (Inventor)
1991-01-01
An article of laminate construction is disclosed which is comprised of an underlayer of polycarbonate polymer material to which is applied a chemically resistant outer layer of polysulfone. The layers which are joined by compression-heat molding, are molded to form the shape of a body protective shell such as a space helmet comprising a shell of polycarbonate, polysulfone laminate construction attached at its open end to a sealing ring adapted for connection to a space suit. The front portion of the shell provides a transparent visor for the helmet. An outer visor of polycarbonate polysulfone laminate construction is pivotally mounted to the sealing ring for covering the transparent visor portion of the shell during extravehicular activities. The polycarbonate under layer of the outer visor is coated on its inner surface with a vacuum deposit of gold to provide additional thermal radiation resistance.
Embedded cluster metal-polymeric micro interface and process for producing the same
Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.
2002-01-29
A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.
One-step method for the production of nanofluids
Kostic, Milivoje [Sycamore, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John [Downers Grove, IL; Choi, Stephen U. S. [Naperville, IL
2011-08-16
A one step method and system for producing nanofluids by a nanoparticle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such oil or ethylene glycol is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. An insulated heater-boat-evaporator having an evaporant material (nanoparticle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material and forming nanoparticles, the nanoparticles absorbed by the liquid film to form nanofluid.
Application of sound and temperature to control boundary-layer transition
NASA Technical Reports Server (NTRS)
Maestrello, Lucio; Parikh, Paresh; Bayliss, A.; Huang, L. S.; Bryant, T. D.
1987-01-01
The growth and decay of a wave packet convecting in a boundary layer over a concave-convex surface and its active control by localized surface heating are studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiations are computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wave packet increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically, exhibiting a decay characteristic of acoustic waves in two dimensions. The far-field acoustic behavior exhibits a super-directivity type of behavior with a beaming downstream. Active control by surface heating is shown to reduce the growth of the wave packet but have little effect on acoustic far field behavior for the cases considered. Active control by sound emanating from the surface of an airfoil in the vicinity of the leading edge is experimentally investigated. The purpose is to control the separated region at high angles of attack. The results show that injection of sound at shedding frequency of the flow is effective in an increase of lift and reduction of drag.
The boundary layer as a means of controlling the flow of liquids and gases
NASA Technical Reports Server (NTRS)
Schrenk, Oskar
1930-01-01
According to one of the main propositions of the boundary layer theory the scarcely noticeable boundary layer may, under certain conditions, have a decisive influence on the form of the external flow by causing it to separate from the wing surface. These phenomena are known to be caused by a kind of stagnation of the boundary layer at the point of separation. The present report deals with similar phenomena. It is important to note that usually the cause (external interference) directly affects only the layer close to the wall, while its indirect effect extends to a large portion of the external flow.
Thin film solar cell including a spatially modulated intrinsic layer
Guha, Subhendu; Yang, Chi-Chung; Ovshinsky, Stanford R.
1989-03-28
One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.
Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars
Herkenhoff, K. E.; Plaut, J.J.
2000-01-01
Interpretation of the polar stratigraphy of Mars in terms of global climate changes is complicated by the significant difference in surface ages between the north and south polar layered terrains inferred from crater statistics. We have reassessed the cratering record in both polar regions using Viking Orbiter and Mariner 9 images. No craters have been found in the north polar layered terrain, but the surface of most of the south polar layered deposits appears to have been stable for many of the orbital/axial cycles that are thought to have induced global climate changes on Mars. The inferred surface age of the south polar layered deposits (about 10 Ma) is two orders of magnitude greater than the surface age of the north polar layered deposits and residual cap (at most 100 ka). Similarly, modeled resurfacing rates are at least 20 times greater in the north than in the south. These results are consistent with the hypotheses that polar layered deposit resurfacing rates are highest in areas covered by perennial ice and that the differences in polar resurfacing rates result from the 6.4 km difference in elevation between the polar regions. Deposition on the portion of the south polar layered deposits that is not covered by the perennial ice cap may have ceased about 5 million years ago when the obliquity of Mars no longer exceeded 40??. ?? 2000 Academic Press.
Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan; ...
2017-02-24
Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan
Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or nomore » alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less
Conduit for high temperature transfer of molten semiconductor crystalline material
NASA Technical Reports Server (NTRS)
Fiegl, George (Inventor); Torbet, Walter (Inventor)
1983-01-01
A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.
Moving hydrocarbons through portions of tar sands formations with a fluid
Stegemeier, George Leo; Mudunuri, Ramesh Raju; Vinegar, Harold J.; Karanikas, John Michael; Jaiswal, Namit; Mo, Weijian
2010-05-18
A method for treating a tar sands formation is disclosed. The method includes heating a first portion of a hydrocarbon layer in the formation from one or more heaters located in the first portion. The heat is controlled to increase a fluid injectivity of the first portion. A drive fluid and/or an oxidizing fluid is injected and/or created in the first portion to cause at least some hydrocarbons to move from a second portion of the hydrocarbon layer to a third portion of the hydrocarbon layer. The second portion is between the first portion and the third portion. The first, second, and third portions are horizontally displaced from each other. The third portion is heated from one or more heaters located in the third portion. Hydrocarbons are produced from the third portion of the formation. The hydrocarbons include at least some hydrocarbons from the second portion of the formation.
Lines that induce phenomenal transparency.
Grieco, Alba; Roncato, Sergio
2005-01-01
Three neighbouring opaque surfaces may appear split into two layers, one transparent and one opaque beneath, if an outline contour is drawn that encompasses two of them. The phenomenon was originally observed by Kanizsa [1955 Rivista di Psicologia 69 3-19; 1979 Organization in Vision: Essays on Gestalt Psychology (New York: Praeger)], for the case where an outline contour is drawn to encompass one of the two parts of a bicoloured figure and a portion of a background of lightest (or darkest) luminance. Preliminary observations revealed that the outline contour yields different effects: in addition to the stratification into layers described by Kanizsa, a second split, opposite in depth order, may occur when the outline contour is close in luminance to one of the three surfaces. An initial experiment was designed to investigate what conditions give rise to the two phenomenal transparencies: this led to the conclusion that an outline contour superimposed on an opaque surface causes this surface to emerge as a transparent layer when the luminances of the contour and the surface differ, in absolute value, by no more than 13.2 cd m(-2). We have named this phenomenon 'transparency of the intercepted surface', to distinguish it from the phenomenal transparency arising when the contour and surface are very different in luminance. When such a difference exists, the contour acts as a factor of surface definition and grouping: the portion of the homogeneous surface it bounds emerges as a fourth surface and groups with a nearby surface if there is one close in luminance. The transparency phenomena ('transparency of the contoured surface') perceived in this context conform to the constraints of Metelli's model, as demonstrated by a second experiment, designed to gather 'opacity' ratings of stimuli. The observer judgments conformed to the values predicted by Metelli's formula for perceived degree of transparency, alpha. The role of the outline contour in conveying figural and intensity information is discussed.
Metallic Nanowire Interconnections for Integrated Circuit Fabrication
NASA Technical Reports Server (NTRS)
Ng, Hou Tee (Inventor); Li, Jun (Inventor); Meyyappan, Meyya (Inventor)
2007-01-01
A method for fabricating an electrical interconnect between two or more electrical components. A conductive layer is provided on a substarte and a thin, patterned catalyst array is deposited on an exposed surface of the conductive layer. A gas or vapor of a metallic precursor of a metal nanowire (MeNW) is provided around the catalyst array, and MeNWs grow between the conductive layer and the catalyst array. The catalyst array and a portion of each of the MeNWs are removed to provide exposed ends of the MeNWs.
Introduction to boundary-layer theory. [viscous friction loss calculation for turbine blade design
NASA Technical Reports Server (NTRS)
Mcnally, W. D.
1973-01-01
The pressure ratio across a turbine provides a certain amount of ideal energy that is available to the turbine for producing work. The portion of the ideal energy that is not converted to work is considered to be a loss. One of the more important and difficult aspects of turbine design is the prediction of the losses. The primary cause of losses is the boundary layer that develops on the blade and end wall surfaces. Boundary-layer theory is used to calculate the parameters needed to estimate viscous (friction) losses.
Nanosecond Surface Microdischarges in Multilayer Structures
NASA Astrophysics Data System (ADS)
Dubinov, A. E.; Lyubimtseva, V. A.
2018-05-01
Multilayer structures in which nanosecond surface microdischarges are generated have been developed, fabricated, and investigated. In these structures, layers are made in the form of thin transparent films, and a plasma discharge channel is formed in thin spacings between the layers. Passage of the discharge channel from one layer into the neighboring layer is implemented via pre-fabricated microholes. Images of microdischarges were obtained which confirmed that their plasma channels are formed according to the route assigned by the holes. The route may follow a fairly complex scheme and have self-intersection points and portions in which the electrons are bound to move in opposition to the electric field. In studying the shape of channels in multilayer strictures, the authors have found a new physical effect which lies in the azimuthal self-orientation of the discharge channel as it passes from one microhole to another.
Multi-layer waste containment barrier
Smith, Ann Marie; Gardner, Bradley M.; Nickelson, David F.
1999-01-01
An apparatus for constructing an underground containment barrier for containing an in-situ portion of earth. The apparatus includes an excavating device for simultaneously (i) excavating earthen material from beside the in-situ portion of earth without removing the in-situ portion and thereby forming an open side trench defined by opposing earthen sidewalls, and (ii) excavating earthen material from beneath the in-situ portion of earth without removing the in-situ portion and thereby forming a generally horizontal underground trench beneath the in-situ portion defined by opposing earthen sidewalls. The apparatus further includes a barrier-forming device attached to the excavating device for simultaneously forming a side barrier within the open trench and a generally horizontal, multi-layer barrier within the generally horizontal trench. The multi-layer barrier includes at least a first layer and a second layer.
Strain Sensors, Methods of Making Same, and Applications of Same
NASA Technical Reports Server (NTRS)
Hatfield, Walter (Inventor); Biris, Alexandru S. (Inventor); Trigwell, Steven (Inventor)
2015-01-01
In one aspect, the present invention relates to a layered structure usable in a strain sensor. In one embodiment, the layered structure has a substrate with a first surface and an opposite, second surface defining a body portion therebetween; and a film of carbon nanotubes deposited on the first surface of the substrate, wherein the film of carbon nanotubes is conductive and characterized with an electrical resistance. In one embodiment, the carbon nanotubes are aligned in a preferential direction. In one embodiment, the carbon nanotubes are formed in a yarn such that any mechanical stress increases their electrical response. In one embodiment, the carbon nanotubes are incorporated into a polymeric scaffold that is attached to the surface of the substrate. In one embodiment, the surfaces of the carbon nanotubes are functionalized such that its electrical conductivity is increased.
Strain sensors, methods of making same, and applications of same
Biris, Alexandru S.; Trigwell, Steven; Hatfield, Walter
2015-06-30
In one aspect, the present invention relates to a layered structure usable in a strain sensor. In one embodiment, the layered structure has a substrate with a first surface and an opposite, second surface defining a body portion therebetween; and a film of carbon nanotubes deposited on the first surface of the substrate, wherein the film of carbon nanotubes is conductive and characterized with an electrical resistance. In one embodiment, the carbon nanotubes are aligned in a preferential direction. In one embodiment, the carbon nanotubes are formed in a yarn such that any mechanical stress increases their electrical response. In one embodiment, the carbon nanotubes are incorporated into a polymeric scaffold that is attached to the surface of the substrate. In one embodiment, the surfaces of the carbon nanotubes are functionalized such that its electrical conductivity is increased.
Marchant, David D.; Killpatrick, Don H.
1978-01-01
An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.
Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface
Saranadhi, Dhananjai; Chen, Dayong; Kleingartner, Justin A.; Srinivasan, Siddarth; Cohen, Robert E.; McKinley, Gareth H.
2016-01-01
Skin friction drag contributes a major portion of the total drag for small and large water vehicles at high Reynolds number (Re). One emerging approach to reducing drag is to use superhydrophobic surfaces to promote slip boundary conditions. However, the air layer or “plastron” trapped on submerged superhydrophobic surfaces often diminishes quickly under hydrostatic pressure and/or turbulent pressure fluctuations. We use active heating on a superhydrophobic surface to establish a stable vapor layer or “Leidenfrost” state at a relatively low superheat temperature. The continuous film of water vapor lubricates the interface, and the resulting slip boundary condition leads to skin friction drag reduction on the inner rotor of a custom Taylor-Couette apparatus. We find that skin friction can be reduced by 80 to 90% relative to an unheated superhydrophobic surface for Re in the range 26,100 ≤ Re ≤ 52,000. We derive a boundary layer and slip theory to describe the hydrodynamics in the system and show that the plastron thickness is h = 44 ± 11 μm, in agreement with expectations for a Leidenfrost surface. PMID:27757417
Small Volcano in Terra Cimmeria
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 26 June 2002) The Science This positive relief feature (see MOLA context) in the ancient highlands of Mars appears to be a heavily eroded volcanic center. The top of this feature appears to be under attack by the erosive forces of the martian wind. Light-toned streaks are visible, trending northeast to southwest, and may be caused by scouring of the terrain, or they may be dune forms moving sand. The northeast portion of the caldera area looks as though a layer of material is being removed to expose a slightly lighter-toned surface underneath. The flanks of this feature are slightly less cratered than the surrounding terrain, which could be explained in two ways: 1) this feature may be younger than the surrounding area, and has had less time to accumulate meteorite impacts, or 2) the slopes that are observed today may be so heavily eroded that the original, cratered surfaces are now gone, exposing relatively uncratered rocks. Although most of Terra Cimmeria has low albedo, some eastern portions, such as shown in this image, demonstrate an overall lack of contrast that attests to the presence of a layer of dust mantling the surface. This dust, in part, is responsible for the muted appearance and infill of many of the craters at the northern and southern ends of this image The Story This flat-topped volcano pops out from the surface, the swirls of its ancient lava flows running down onto the ancient highlands of Mars. Its smooth top appears to be under attack by the erosive forces of the martian wind. How can you tell? Click on the image above for a close-up look. You'll see some light-toned streaks that run in a northeast-southwest direction. They are caused either by the scouring of the terrain or dunes of moving sand. Either way, the wind likely plays upon the volcano's surface. Look also for the subtle, nearly crescent shaped feature at the northeast portion of the volcano's cap. It looks as if a layer of material has been removed by the wind, exposing a slightly lighter-toned surface underneath. The sides of the volcano are less cratered than the rest of the terrain. Perhaps that means it is younger than the surrounding area and has had less time to accumulate meteorite impacts. On the other hand, perhaps erosion has scrubbed away the original cratered surfaces. It's a little hard to tell which possibility holds the key to the history of this area. Although most of Terra Cimmeria can look relatively darker (has a low albedo or low 'reflective power') than some other Martian areas, its eastern portions sometimes have an overall lack of contrast as seen in the above image. A layer of dust blankets the surface here, causing it to look muted. Many of the craters in the northern and southern ends of the image also seem subdued, as dust has partly filled in the stark holes they once created. The Cimmerians who give their name to this region were an ancient, little-known people of southern Russia mentioned in Assyrian inscriptions and by Homer.
Apparatus and filtering systems relating to combustors in combustion turbine engines
Johnson, Thomas Edward [Greer, SC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC
2012-03-27
A combustor for a combustion turbine engine that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; and a multilayer screen filter comprising at least two layers of screen over at least a portion of the windows and at least one layer of screen over the remaining portion of the windows. The windows include a forward end and a forward portion, and an aft end and an aft portion. The multilayer screen filter is positioned over the windows such that, in operation, a supply of compressed air entering the chamber through the windows passes through at least one layer of screen. The multilayer screen filter is configured such that the aft portion of the windows include at least two layers of screen, and the forward portion of the windows includes one less layer of screen than the aft portion of the windows.
Recent analysis of ambient fine particulate matter (PM2.5) has found that significant portions of the organic matter contained therein are of biogenic origin. Radiocarbon (C-14) measurements of the bulk organic matter in fine particles collected near Nashville, TN, found that 40...
NASA Technical Reports Server (NTRS)
Rackl, Robert; Weston, Adam
2005-01-01
The literature on turbulent boundary layer pressure fluctuations provides several empirical models which were compared to the measured TU-144 data. The Efimtsov model showed the best agreement. Adjustments were made to improve its agreement further, consisting of the addition of a broad band peak in the mid frequencies, and a minor modification to the high frequency rolloff. The adjusted Efimtsov predicted and measured results are compared for both subsonic and supersonic flight conditions. Measurements in the forward and middle portions of the fuselage have better agreement with the model than those from the aft portion. For High Speed Civil Transport supersonic cruise, interior levels predicted by use of this model are expected to increase by 1-3 dB due to the adjustments to the Efimtsov model. The space-time cross-correlations and cross-spectra of the fluctuating surface pressure were also investigated. This analysis is an important ingredient in structural acoustic models of aircraft interior noise. Once again the measured data were compared to the predicted levels from the Efimtsov model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, W.L.; Eddy, M.M.; Hammond, R.B.
1991-12-10
This patent describes a method for producing a superconducting article comprising an oriented metal oxide superconducting layer containing thallium, optionally calcium, barium and copper, the layer being at least 30 {Angstrom} and having a c-axis oriented normal to a crystalline substrate surface. It comprises coating the crystalline substrate surface with a solution of thallium, optionally calcium, barium and copper carboxylate soaps dispersed in a medium of hydrocarbons of halohydrocarbons with a stoichiometric metal ratio to form the oxide superconducting layer, prepyrolyzing the soaps coated on the substrate at a temperature of 350{degrees} C. or less in an oxygen containing atmosphere,more » and pyrolyzing the soaps at a temperature in the range of 800{degrees} - 900{degrees} C. in the presence of oxygen and an overpressure of thallium for a sufficient time to produce the superconducting layer on the substrate, wherein usable portions of the superconducting layer are epitaxial to the substrate.« less
Low-Noise Large-Area Photoreceivers with Low Capacitance Photodiodes
NASA Technical Reports Server (NTRS)
Joshi, Abhay M. (Inventor); Datta, Shubhashish (Inventor)
2013-01-01
A quad photoreceiver includes a low capacitance quad InGaAs p-i-n photodiode structure formed on an InP (100) substrate. The photodiode includes a substrate providing a buffer layer having a metal contact on its bottom portion serving as a common cathode for receiving a bias voltage, and successive layers deposited on its top portion, the first layer being drift layer, the second being an absorption layer, the third being a cap layer divided into four quarter pie shaped sections spaced apart, with metal contacts being deposited on outermost top portions of each section to provide output terminals, the top portions being active regions for detecting light. Four transimpedance amplifiers have input terminals electrically connected to individual output terminals of each p-i-n photodiode.
Solar cells and methods of fabrication thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumate, Seth Daniel; Hutchings, Douglas Arthur; Mohammed, Hafeezuddin
A passivation layer is deposited on a first portion of a region of the solar cell. A grid line is deposited on a second portion of the region. The passivation layer is annealed to drive chemical species from the passivation layer to deactivate an electrical activity of a dopant in the first portion of the region of the solar cell.
Fully integrated and encapsulated micro-fabricated vacuum diode and method of manufacturing same
Resnick, Paul J.; Langlois, Eric
2015-12-01
Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.
Method of manufacturing a fully integrated and encapsulated micro-fabricated vacuum diode
Resnick, Paul J.; Langlois, Eric
2014-08-26
Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.
Stern Layer Structure and Energetics at Mica-Water Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourg, Ian C.; Lee, Sang Soo; Fenter, Paul
2017-04-11
The screening of surface charge by dissolved ions at solid liquid interfaces in the region of interfacial fluid known as the electrical double layer (EDL)-plays a recurrent role in surface science, from ion adsorption to colloidal mechanics to the transport properties of nanoporous media. A persistent unknown in theories of EDL-related phenomena is the structure of the Stern layer, the near-surface portion of the EDL where water molecules and adsorbed ions form specific short-range interactions with surface atoms. Here, we describe a set of synchrotron X-ray reflectivity (XRR) experiments and molecular dynamics (MD) simulations carried out under identical conditions formore » a range of 0.1 M alkali chloride (Li-, Na-, K-, Rb-, or CsCl) solutions on the basal surface of muscovite mica, a mineral isostructural to phyllosilicate clay minerals and one of the most widely studied reference surfaces in interfacial science. Our XRR and MD simulation results provide a remarkably consistent view of the structure and energetics of the Stern layer, with some discrepancy on the fraction of the minor outer-sphere component of Rb and on the adsorption energetics of Li. The results of both techniques, along with surface complexation model calculations, provide insight into the sensitivity of water structure and ion adsorption to surface topography and the type of adsorbed counterion.« less
Retroreflective systems for remote readout
Deason, V.A.; Colwell, F.S.; Ricks, K.L.
1998-10-13
A sensing device is described for sensing an environmental factor. The device includes a retroreflective layer disposed in a parallel, facing relationship with a sensing layer. The sensing layer has an initial optical absorption capacity for (1) sensing a presence of an environmental factor, (2) experiencing a change in optical absorption capacity responsive to said environmental factor, and (3) transmitting and attenuating light. A first portion of the sensing layer is sealed off from exposure to the environment while a second portion remains exposed to the environment such that, when the environmental factor is present, the first portion of the sensing layer is prevented from experiencing a change in optical absorption capacity responsive to said environmental factor. Well-collimated light beams are passed through the sensing layer and are reflected back from the retroreflective layer for processing. When the environmental factor is present, the beams which pass through the second portion are attenuated responsive to an increase in optical absorption capacity and are compared with the non-attenuated beams passing through the first portion to calculate the presence and quantity of the environmental factor. 7 figs.
Retroreflective systems for remote readout
Deason, Vance A.; Colwell, Frederick S.; Ricks, Kirk L.
1998-01-01
A sensing device for sensing an environmental factor. The device includes a retroreflective layer disposed in a parallel, facing relationship with a sensing layer. The sensing layer has an initial optical absorption capacity for (i) sensing a presence of an environmental factor, (ii) experiencing a change in optical absorption capacity responsive to said environmental factor, and (iii) transmitting and attenuating light. A first portion of the sensing layer is sealed off from exposure to the environment while a second portion remains exposed to the environment such that, when the environmental factor is present, the first portion of the sensing layer is prevented from experiencing a change in optical absorption capacity responsive to said environmental factor. Well-collimated light beams are passed through the sensing layer and are reflected back from the retroreflective layer for processing. When the environmental factor is present, the beams which pass through the second portion are attenuated responsive to an increase in optical absorption capacity and are compared with the non-attenuated beams passing through the first portion to calculate the presence and quantity of the environmental factor.
Multiple wavelength photolithography for preparing multilayer microstructures
Dentinger, Paul Michael; Krafcik, Karen Lee
2003-06-24
The invention relates to a multilayer microstructure and a method for preparing thereof. The method involves first applying a first photodefinable composition having a first exposure wavelength on a substrate to form a first polymeric layer. A portion of the first photodefinable composition is then exposed to electromagnetic radiation of the first exposure wavelength to form a first pattern in the first polymeric layer. After exposing the first polymeric layer, a second photodefinable composition having a second exposure wavelength is applied on the first polymeric layer to form a second polymeric layer. A portion of the second photodefinable composition is then exposed to electromagnetic radiation of the second exposure wavelength to form a second pattern in the second polymeric layer. In addition, a portion of each layer is removed according to the patterns to form a multilayer microstructure having a cavity having a shape that corresponds to the portions removed.
Boundary-layer and wake measurements on a swept, circulation-control wing
NASA Technical Reports Server (NTRS)
Spaid, Frank W.; Keener, Earl R.
1987-01-01
Wind-tunnel measurements of boundary-layer and wake velocity profiles and surface static pressure distributions are presented for a swept, circulation-control wing. The model is an aspect-ratio-four semispan wing mounted on the tunnel side wall at a sweep angle of 45 deg. A full-span, tangential, rearward blowing, circulation-control slot is located ahead of the trailing edge on the upper surface. Flow surveys were obtained at mid-semispan at freestream Mach numbers of 0.425 and 0.70. Boundary-layer profiles measured on the forward portions of the wing are approximately streamwise and two dimensional. The flow in the vicinity of the jet exit and in the near wake is highly three dimensional. The jet flow near the slot on the Coanda surface is directed normal to the slot. Near-wake surveys show large outboard flows at the center of the wake. At Mach 0.425 and a 5-deg angle of attack, a range of jet-blowing rates was found for which an abrupt transition from incipient separation to attached flow occurs in the boundary layer upstream of the slot. The variation in the lower-surface separation location with blowing rate was determined from boundary-layer measurements at Mach 0.425.
Excitation of high-frequency surface waves with long duration in the Valley of Mexico
NASA Astrophysics Data System (ADS)
Iida, Masahiro
1999-04-01
During the 1985 Michoacan earthquake (Ms = 8.1), large-amplitude seismograms with extremely long duration were recorded in the lake bed zone of Mexico City. We interpret high-frequency seismic wave fields in the three geotechnical zones (the hill, the transition, and the lake bed zones) in the Valley of Mexico on the basis of a systematic analysis for borehole strong motion recordings. We make identification of wave types for real seismograms. First, amplitude ratios between surface and underground seismograms indicate that predominant periods of the surface seismograms are largely controlled by the wave field incident into surficial layers in the Valley of Mexico. We interpret recorded surface waves as fundamental-mode Love waves excited in the Mexican Volcanic Belt by calculating theoretical amplification for different-scale structures. Second, according to a cross-correlation analysis, the hill and transition seismograms are mostly surface waves. In the lake bed zone, while early portions are noisy body waves, late portions are mostly surface waves. Third, using two kinds of surface arrays with different station intervals, we investigate high-frequency surface-wave propagation in the lake bed zone. The wave propagation is very complicated, depending upon the time section and the frequency band. Finally, on the basis of a statistical time series model with an information criterion, we separate S- and surface-wave portions from lake bed seismograms. Surface waves are dominant and are recognized even in the early time section. Thus high-frequency surface waves with long duration in the Valley of Mexico are excited by the Mexican Volcanic Belt.
Pettibone, Joseph S.; Wheeler, Paul C.
1983-01-01
An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.
Pettibone, J.S.; Wheeler, P.C.
1981-06-08
An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.
NASA Technical Reports Server (NTRS)
Iversen, J. D.
1991-01-01
The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.
Method of doping interconnections for electrochemical cells
Pal, Uday B.; Singhal, Subhash C.; Moon, David M.; Folser, George R.
1990-01-01
A dense, electronically conductive interconnection layer 26 is bonded on a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) forming a layer of oxide particles of at least one of the metals Ca, Sr, Co, Ba or Mg on a part 24 of a first surface of the air electrode 16, (B) heating the electrode structure, (C) applying a halide vapor containing at least lanthanum halide and chromium halide to the first surface and applying a source of oxygen to a second opposite surface of the air electrode so that they contact at said first surface, to cause a reaction of the oxygen and halide and cause a dense lanthanum-chromium oxide structure to grow, from the first electrode surface, between and around the oxide particles, where the metal oxide particles get incoporated into the lanthanum-chromium oxide structure as it grows thicker with time, and the metal ions in the oxide particles diffuse into the bulk of the lanthamum-chromium oxide structure, to provide a dense, top, interconnection layer 26 on top of the air electrode 16. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.
Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)
1994-01-01
A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.
Methods of fabrication of graphene nanoribbons
Zhang, Yuegang
2015-06-23
Methods of fabricating graphene nanoribbons include depositing a catalyst layer on a substrate. A masking layer is deposited on the catalyst layer. The masking layer and the catalyst layer are etched to form a structure on the substrate, the structure comprising a portion of the catalyst layer and a portion of the masking layer disposed on the catalyst layer, with sidewalls of the catalyst layer being exposed. A graphene layer is formed on a sidewall of the catalyst layer with a carbon-containing gas.
Controlling mechanisms of metals release form cement-based waste form in acetic acid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Kuang Ye.
1991-01-01
The purpose of this dissertation is to identify the individual leaching mechanisms of metals by knowing the pH profile within the leached specimen and the physical and chemical properties of the leached material. Leaching of cement-based waste form in acetic acid solutions with different acidic strengths has been investigated in this work. The pH profile along the acid penetration route in the cement-based waste form was identified by various pH color indicators. The pH in the surface altered layer varies from 5.0 to 6.0, which is very close to the pH in the bulk leachate. A reacting zone, where themore » pH abruptly changes from 6 to 12, sharply divides the altered surface layer from the remaining unleached waste form or kernel. Leaching of metals is controlled by the acidity available in the leachant. Dissolution of alkaline materials leaves a silica-rich layer on the surface of the cement-based waste form. This surface layer exhibits different properties than those of the unleached material. The surface layer has a higher water content, is lighter weight, and is soft and friable. Furthermore, the abundant silicate content on the solid surface detains portion of the leached metals, while they are moving through the leached layer into bulk solution. The leaching of metals is a consequence of acid penetration. The distance from the solid/solution interface to the front of the leaching boundary can be regarded as the depth of leaching zone, where the metals dissolve and diffuse out of the waste form. The metal ions diffuse through the leached layer may be retarded on the solid surface by the pH-dependent adsorption reactions. It is found that the leaching process through the leached layer is diffusion-controlled for calcium and cadmium, whereas diffusion and adsorption occur simultaneously in the leached layer for lead and arsenic.« less
Fabric circuits and method of manufacturing fabric circuits
NASA Technical Reports Server (NTRS)
Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)
2011-01-01
A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.
Frost Tables, Barrow, Alaska, NGEE Areas B, C and D for 2012, 2013, 2014, Final Version, 20150312
Liljedahl, Anna
2014-03-24
This dataset represent spatially intensive thaw depth surveys with individual point measurements spaced approximately 0.5 m apart. The three approximate10x10m grids cover an ice wedge and a portion of its two neighboring polygons. The file contains thaw depth, frost table elevation, ground surface elevation, active layer depth and surface water inundation across three seasons (2012, 2013 and 2014) at Barrow NGEE Areas B, C and D.
Lankford, Jr., James
1988-01-01
A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.
NASA Technical Reports Server (NTRS)
Rubesin, M. W.; Okuno, A. F.; Levy, L. L., Jr.; Mcdevitt, J. B.; Seegmiller, H. L.
1976-01-01
A combined experimental and computational research program is described for testing and guiding turbulence modeling within regions of separation induced by shock waves incident in turbulent boundary layers. Specifically, studies are made of the separated flow the rear portion of an 18%-thick circular-arc airfoil at zero angle of attack in high Reynolds number supercritical flow. The measurements include distributions of surface static pressure and local skin friction. The instruments employed include highfrequency response pressure cells and a large array of surface hot-wire skin-friction gages. Computations at the experimental flow conditions are made using time-dependent solutions of ensemble-averaged Navier-Stokes equations, plus additional equations for the turbulence modeling.
Fast Erase Method and Apparatus For Digital Media
NASA Technical Reports Server (NTRS)
Oakely, Ernest C. (Inventor)
2006-01-01
A non-contact fast erase method for erasing information stored on a magnetic or optical media. The magnetic media element includes a magnetic surface affixed to a toroidal conductor and stores information in a magnetic polarization pattern. The fast erase method includes applying an alternating current to a planar inductive element positioned near the toroidal conductor, inducing an alternating current in the toroidal conductor, and heating the magnetic surface to a temperature that exceeds the Curie-point so that information stored on the magnetic media element is permanently erased. The optical disc element stores information in a plurality of locations being defined by pits and lands in a toroidal conductive layer. The fast erase method includes similarly inducing a plurality of currents in the optical media element conductive layer and melting a predetermined portion of the conductive layer so that the information stored on the optical medium is destroyed.
Plasmonic hydrogen sensor based on integrated microring resonator
NASA Astrophysics Data System (ADS)
Yi, Ya Sha; Wu, Da Chuan
2017-12-01
We have proposed and demonstrated numerically an ultrasmall and highly sensitive plasmonic hydrogen sensor based on an integrated microring resonator, with a footprint size as small as 4×4 μm2. With a palladium (Pd) or platinum (Pt) hydrogen-sensitive layer coated on the inner surface of the microring resonator and the excitation of surface plasmon modes at the interface from the microring resonator waveguide, the device is highly sensitive to low hydrogen concentration variation, and the sensitivity is at least one order of magnitude larger than that of the optical fiber-based hydrogen sensor. We have also investigated the tradeoff between the portion coverage of the Pd/Pt layer and the sensitivity, as well as the width of the hydrogen-sensitive layer. This ultrasmall plasmonic hydrogen sensor holds promise for the realization of a highly compact sensor with integration capability for applications in hydrogen fuel economy.
Controlled placement and orientation of nanostructures
Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M
2014-04-08
A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.
Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.
1988-01-01
A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.
Wrenn, G.E. Jr.; Holcombe, C.E. Jr.
1988-09-13
A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.
Resistive heater geometry and regeneration method for a diesel particulate filter
Phelps, Amanda [Malibu, CA; Kirby, Kevin W [Calabasas Hills, CA; Gregoir, Daniel J [Thousand Oaks, CA
2011-10-25
One embodiment of the invention includes a diesel particulate filter comprising a first face and a second face; a bottom electrode layer formed over the first face of the diesel particulate filter; a middle resistive layer formed over a portion of the bottom electrode layer; and a top electrode layer formed over a portion of the middle resistive layer.
NASA Astrophysics Data System (ADS)
Tóth, A.; Veres, M.; Kereszturi, K.; Mohai, M.; Bertóti, I.; Szépvölgyi, J.
2011-10-01
The surfaces of untreated and helium plasma-based ion implantation (He PBII) treated poly(ethylene terephthalate) (PET) samples were characterised by reflectance colorimetry, contact angle studies and measurements of surface electrical resistance. The results were related to the structural and compositional data obtained by the authors earlier on parallel samples by XPS and Raman spectroscopy. Inverse correlations between lightness and ID/ IG ratio and between chroma and ID/ IG ratio were obtained, suggesting that the PBII-treated PET samples darken and their colourfulness decreases with the increase of the portion of aromatic sp 2 carbon rings in the chemical structure of the modified layer. Direct correlation between water contact angle and the ID/ IG ratio and inverse correlations between surface energy and ID/ IG ratio and between dispersive component of surface energy and ID/ IG ratio were found, reflecting that surface wettability, surface energy and its dispersive component decrease with the formation of surface structure, characterised again by enhanced portion of aromatic sp 2 carbon rings. The surface electrical resistance decreased with the increase of the surface C-content determined by XPS and also with the increase of the surface concentration of conjugated double bonds, reflected by the increase of the π → π* shake-up satellite of the C 1s peak.
NASA Astrophysics Data System (ADS)
Arango-Galván, C.; Flores-Marquez, L. E.; Martínez-Serrano, R.
2009-12-01
New policies on the use of water resources in Mexico have led to implement some alternative measures to optimize water management. In particular, water regulation entities have recommended some tools to preserve and protect the groundwater supplies. One of these tools is the artificial recharge by injecting water directly into the aquifer. The main goal of this study is to assess if it is suitable to inject rainwater and surface water in a small portion of the aquifer of the city of Puebla, in central Mexico. Artificial aquifer recharging was evaluated using a numeric model, which simulated the physical properties of the system. The model setup was inferred from an integrated study taking into account hydraulic, geological and geophysical data. The geoelectrical model was computed using electric resistivity tomography (ERT) and time domain electromagnetic data (TDEM). The aquifer geological structure inferred from geophysics depicts the presence of a shallower layer composed of sand and clay deposits with low saturation and permeability. This layer contains silt lenses that can be controlling the persistence of small water bodies on surface. Some water surficial bodies seem to be isolated from the main aquifer system. The intermediate layer shows lower electrical resistivity and higher permeability. Underlying this horizon, it is a deeper layer that reaches 200 m depth, according to information obtained from borehole in the zone. This layer shows an electrical resistivity even lower than intermediate layer but low permeability, caused by the higher content of silts. Both of these layers are the shallower aquifer exploited in the area. Once the numeric model was built we proceeded to simulate scenarios that include the continued extraction and recharge of water in wells located in strategic areas of the study zone. The results suggest that the effect of infiltration is beneficial on aquifer recharge and reduces the cone of depression caused by the extraction. However, this remedial action will only have a positive effect if the extraction rate is adequate.
Guerini, H; Fermand, M; Godefroy, D; Feydy, A; Chevrot, A; Morvan, G; Gault, N; Drapé, J L
2012-02-01
The supraspinatus tendon is composed of 5 different layers consisting of intertwining bundles. On a front portion of the tendon, the layers become coated bundles which insert on the trochanter. At the insertion, the superficial or bursal surface of the tendon corresponding to the tendon fibers in contact with the subacromial bursa can be distinguished from the deep surface corresponding to the fibers in contact with the glenohumeral joint. A tendon tear may involve partial or total disruption of the tendon fibers and is called full-thickness tear if it affects the entire tendon, and partial-thickness tear if it involves only part of the tendon. Partial-thickness tears of the supraspinatus tendon include lesions of the superficial, deep and central surface or tendon delamination.A contrast enhanced examination requires injection of contrast agent into the joint (arthrography followed by computed tomography (CT) or magnetic resonance imaging (MRI)) to study the deep surface, and injection into the subacromial bursa (bursography followed by CT) to study the superficial surface. MRI and ultrasound (US) examination allow the study of these different tendon layers without the use of contrast agent (which is not possible at CT).
Oceanographic features in the lee of the windward and leeward islands: ERTS and ship data
NASA Technical Reports Server (NTRS)
Hanson, K. J.; Hebard, F.; Cram, R.
1973-01-01
Analysis of the ERTS data in portions of the eastern Caribbean are presented for October 1972 showing features which are, as yet, not explained. Ground truth data obtained in that area during November 1972 are presented. These include vertical temperature structure in the mixed layer and thermocline, and surface measurements of salinity, temperature, and chlorophyll.
Listgarten, M A; Buser, D; Steinemann, S G; Donath, K; Lang, N P; Weber, H P
1992-02-01
This experiment was aimed at studying the intact tissue/implant interface of non-submerged dental implants with a titanium surface. Epoxy-resin replicas were fabricated from 3.05 x 8 mm cylindrical titanium implants with a plasma-sprayed apical portion and a smooth coronal collar. The replicas were coated with a 90-120-nm-thick layer of pure titanium and autoclaved. The coated replicas were inserted as non-submerged endosseous implants in the edentulous premolar region of dog mandibles and allowed to heal for three months. Jaw sections containing the implants were processed for light and electron microscopic study of the intact tissue/implant interface with and without prior demineralization. Gingival connective tissue fibers were closely adapted to the titanium layer, in an orientation more or less parallel to the implant surface. There was no evidence of any fiber insertions into the surface irregularities of the smooth or rough titanium surface. Undemineralized bone was intimately adapted to the titanium surface without any intervening space. In demineralized sections, the collagen fibers of the bone matrix tended to be somewhat thinner and occasionally less densely packed in the vicinity of the implant surface. However, they extended all the way to the titanium surface, without any intervening fibril-free layer.
Giorio, Chiara; Moyroud, Edwige; Glover, Beverley J; Skelton, Paul C; Kalberer, Markus
2015-10-06
Plant cuticle, which is the outermost layer covering the aerial parts of all plants including petals and leaves, can present a wide range of patterns that, combined with cell shape, can generate unique physical, mechanical, or optical properties. For example, arrays of regularly spaced nanoridges have been found on the dark (anthocyanin-rich) portion at the base of the petals of Hibiscus trionum. Those ridges act as a diffraction grating, producing an iridescent effect. Because the surface of the distal white region of the petals is smooth and noniridescent, a selective chemical characterization of the surface of the petals on different portions (i.e., ridged vs smooth) is needed to understand whether distinct cuticular patterns correlate with distinct chemical compositions of the cuticle. In the present study, a rapid screening method has been developed for the direct surface analysis of Hibiscus trionum petals using liquid extraction surface analysis (LESA) coupled with high-resolution mass spectrometry. The optimized method was used to characterize a wide range of plant metabolites and cuticle monomers on the upper (adaxial) surface of the petals on both the white/smooth and anthocyanic/ridged regions, and on the lower (abaxial) surface, which is entirely smooth. The main components detected on the surface of the petals are low-molecular-weight organic acids, sugars, and flavonoids. The ridged portion on the upper surface of the petal is enriched in long-chain fatty acids, which are constituents of the wax fraction of the cuticle. These compounds were not detected on the white/smooth region of the upper petal surface or on the smooth lower surface.
Multi-layer electrode for high contrast electrochromic devices
Schwendeman, Irina G [Wexford, PA; Finley, James J [Pittsburgh, PA; Polcyn, Adam D [Pittsburgh, PA; Boykin, Cheri M [Wexford, PA
2011-11-01
An electrochromic device includes a first substrate spaced from a second substrate. A first transparent conductive electrode is formed over at least a portion of the first substrate. A polymeric anode is formed over at least a portion of the first conductive electrode. A second transparent conductive electrode is formed over at least a portion of the second substrate. In one aspect of the invention, a multi-layer polymeric cathode is formed over at least a portion of the second conductive electrode. In one non-limiting embodiment, the multi-layer cathode includes a first cathodically coloring polymer formed over at least a portion of the second conductive electrode and a second cathodically coloring polymer formed over at least a portion of the first cathodically coloring polymer. An ionic liquid is positioned between the anode and the cathode.
Self-regulating chemo-mechano-chemical systems
Aizenberg, Joanna; He, Ximin; Aizenberg, Michael
2017-05-16
A chemo-mechano-chemical (C.sub.1-M-C.sub.2) system includes a base supporting an actuatable structure, said structure comprising a functionalized portion and being embedded in an environmentally responsive gel capable of volume change in response to an environmental stimulus; a first fluid layer disposed over the base and in contact with the actuatable structure, said first fluid layer comprising the environmentally responsive gel; and a second fluid layer in contact with the actuatable structure, wherein the layers are positioned such that the functionalized portion is in contact with the second layer in a first relaxed state and in contact with the first layer in a second actuated state and wherein the functionalized portion interacts with at least one of the layers to provide a chemical or physical response.
THE ANATOMIC SITE OF THE TRANSEPITHELIAL PERMEABILITY BARRIERS OF TOAD BLADDER
DiBona, Donald R.; Civan, Mortimer M.; Leaf, Alexander
1969-01-01
An examination of the mucosal epithelium of the urinary bladder of the toad reveals that the two major cell types which abut on the urinary surface, the granular and mitochondria-rich cells, also contact the basement membrane. Thus, the epithelium functions as a single cell layer. Although basal cells are interpolated between the granular cells and the basement membrane over a large portion of the epithelium, they do not constitute an additional continuous cell layer. This finding is consistent with extensive physiological data which had assumed that the major permeability barriers of this epithelium were the apical and basal-lateral plasma membranes of a single layer of cells. PMID:5782445
Combustion of solid fuel slabs with gaseous oxygen in a hybrid motor analog
NASA Technical Reports Server (NTRS)
Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.
1995-01-01
Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with gaseous oxygen (GOX) under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from plus or minus 20% of the localized mean pressure to an acceptable range of plus or minus 1.5%. Embedded fine--wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse echo techniques were used to determine the instantaneous web thicknesses and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented. Several tests were conducted using, simultaneously, one translucent fuel slab and one fuel slab processed with carbon black powder. The addition of carbon black did not affect the measured regression rates or surface temperatures in comparison to the translucent fuel slabs.
Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials
McClelland, John F.; Jones, Roger W.
1993-03-02
A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.
NASA Astrophysics Data System (ADS)
Michaelides, R. J.; Schaefer, K. M.; Zebker, H. A.; Liu, L.; Chen, J.; Parsekian, A.
2017-12-01
In permafrost regions, the active layer is defined as the uppermost portion of the permafrost table that is subject to annual freeze/thaw cycles. The active layer plays a crucial role in surface processes, surface hydrology, and vegetation succession; furthermore, trapped methane, carbon dioxide, and other greenhouse gases in permafrost are released into the atmosphere as permafrost thaws. A detailed understanding of active layer dynamics is therefore critical towards understanding the interactions between permafrost surface processes, freeze/thaw cycles, and climate-especially in regions across the Arctic subject to long-term permafrost degradation. The Yukon-Kuskokwim (YK) delta in southwestern Alaska is a region of discontinuous permafrost characterized by surface lakes, wetlands, and thermokarst depressions. Furthermore, extensive wildfires have burned across the YK delta in 2006, 2007, and 2015, impacting vegetation cover, surface soil moisture, and the active layer. Using data from the ALOS PALSAR, ALOS-2 PALSAR-2, and Sentinel-1A/B space borne synthetic aperture radar (SAR) systems, we generate a series of interferograms over a study site in the YK delta spanning 2007-2011, and 2014-present. Using the ReSALT (Remotely-Sensed Active Layer Thickness) technique, we demonstrate that active layer can be characterized over most of the site from the relative interferometric phase difference due to ground subsidence and rebound associated with the seasonal active layer freeze/thaw cycle. Additionally, we show that this technique successfully discriminates between burned and unburned regions, and can resolve increases in active layer thickness in burned regions on the order of 10's of cms. We use the time series of interferograms to discuss permafrost recovery following wildfire burn, and compare our InSAR observations with GPR and active layer probing data from a 2016 summer field campaign to the study site. Finally, we compare the advantages and disadvantages of the ALOS, ALOS-2, and Sentinel systems for characterizing permafrost dynamics.
NASA Technical Reports Server (NTRS)
Wick, Gary A.; Bates, John J.; Scott, Donna J.
2000-01-01
The latest Geostationary Operational Environmental Satellites (GOES) have facilitated significant improvements in our ability to measure sea surface temperature (SST) from geostationary satellites. Nonetheless, difficulties associated with sensor calibration and oceanic near-surface temperature gradients affect the accuracy of the measurements and our ability to estimate and interpret the diurnal cycle of the bulk SST. Overall, measurements of SST from the GOES Imagers on the GOES 8-10 satellites are shown to have very small bias (less than 0.02 K) and rms differences of between 0.6 and 0.9 K relative to buoy observations. Separate consideration of individual measurement times, however, demonstrates systematic bias variations of over 0.6 K with measurement hour. These bias variations significantly affect both the amplitude and shape of estimates of the diurnal SST cycle. Modeled estimates of the temperature difference across the oceanic cool skin and diurnal thermocline show that bias variations up to 0.3 K can result from variability in the near-surface layer. Oceanic near-surface layer and known "satellite midnight" calibration effects, however, explain only a portion of the observed bias variations, suggesting other possible calibration concerns. Methods of explicitly incorporating skin layer and diurnal thermocline effects in satellite bulk SST measurements were explored in an effort to further improve the measurement accuracy. While the approaches contain more complete physics, they do not yet significantly improve the accuracy of bulk SST measurements due to remaining uncertainties in the temperature difference across the near-surface layer.
One-step synthesis and patterning of aligned polymer nanowires on a substrate
Wang, Zhong L [Marietta, GA; Wang, Xudong [Atlanta, GA; Morber, Jenny R [Atlanta, GA; Liu, Jin [Danbury, CT
2011-11-08
In a method of making a polymer structure on a substrate a layer of a first polymer, having a horizontal top surface, is applied to a surface of the substrate. An area of the top surface of the polymer is manipulated to create an uneven feature that is plasma etched to remove a first portion from the layer of the first polymer thereby leaving the polymer structure extending therefrom. A light emitting structure includes a conductive substrate from which an elongated nanostructure of a first polymer extends. A second polymer coating is disposed about the nanostructure and includes a second polymer, which includes a material such that a band gap exists between the second polymer coating and the elongated nanostructure. A conductive material coats the second polymer coating. The light emitting structure emits light when a voltage is applied between the conductive substrate and the conductive coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vollmar, R.
A small adhesive glass capsule with a removable 0.5-mm thick layer of Pb is used for protection of the sensitive portions of the eye (cornea, lens, etc.) during Sr/sup 90/ BETA irradiation. The capsule need not be fitted optically to the eye surface. Bremstrahlung from the Pb amounts to less than 1% of the 500- r single dose applied during 25 sec with a 40 mC/cm/sup 2/ applicator. Radiation losses between the applicator and the eye surface are minimal. The method has been used to reduce vascular invasion of the cornea and cloudiness of transplants, marginal ulcerations in senile degeneration,more » chronic lymphocytic conjunctival hyperplasia, growing conjunctival nevus in children, and conjunctival melanoma. A combined treatment of the conjunctival bulba and tarsi was used for diseased conditions such as chronic lymphocytic conjunctival hyperplasia or laminar melanosis of the conjunctiva. Large capsules with portions of the edges removed are utilized for segmental irradiation of pterygium to avoid damage and appearance of late radiation effects in other portions of the eye. A large assortment of eye capsules is necessary to provide for the wide variety of sizes of individual conjunctiva. Use of eye capsules avoids damage to the lens that may otherwise receive as much as 10% of the surface beta dosage. This could bring about cataract formation as a later radiation injury. (BBB)« less
Akiyama, Yoshikatsu; Kikuchi, Akihiko; Yamato, Masayuki; Okano, Teruo
2014-08-01
A double polymeric nanolayer consisting of poly(N-isopropylacrylamide) (PIPAAm) and hydrophilic polyacrylamide (PAAm) was deposited on tissue culture polystyrene (TCPS) surfaces using electron beam irradiation to form a new temperature-responsive cell culture surface in which the basal hydrophilic PAAm component in the double polymeric layer promotes the hydration of the upper PIPAAm layer and induces rapid cell detachment compared to a conventional temperature-responsive cell culture surface, PIPAAm-grafted TCPS (PIPAAm-TCPS). Take-off angle-dependent X-ray photoelectron spectroscopy spectral analysis demonstrated that the grafted PIPAAm and PAAm components were located in the upper and basal regions of the double polymeric layer, respectively, suggesting that the double polymeric layer forms an inter-penetrating-network-like structure with PAAm at the basal portion of the PIPAAm grafted chains. The wettability of the temperature-responsive cell culture surfaces with the double polymeric layer tended to be more hydrophilic, with an increase in the basal PAAm graft density at a constant PIPAAm graft density. However, when the graft densities of the upper PIPAAm and basal PAAm were optimized, the resulting temperature-responsive cell culture surface with the double polymeric layer exhibited rapid cell detachment while maintaining cell adhesive character comparable to that of PIPAAm-TCPS. The cell adhesive character was altered from cell-adhesive to cell-repellent with increasing PAAm or PIPAAm graft density. The cell adhesive character of the temperature-responsive cell culture surfaces was relatively consistent with their contact angles. These results strongly suggest that the basal PAAm surface properties affect the degree of hydration and dehydration of the subsequently grafted PIPAAm. In addition, the roles of the hydrophilic component in accelerating cell detachment are further discussed in terms of the mobility of the grafted PIPAAm chains. Applications of this insight might be useful for designing temperature-responsive cell culture surfaces for achieving efficient cell culture and quick target cell detachment. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Field effect transistor and method of construction thereof
NASA Technical Reports Server (NTRS)
Fletner, W. R. (Inventor)
1978-01-01
A field effect transistor is constructed by placing a semi-conductor layer on an insulating substrate so that the gate region is separated from source and drain regions. The gate electrode and gate region of the layer are of generally reduced length, the gate region being of greatest length on its surface closest to the gate electrode. This is accomplished by initially creating a relatively large gate region of one polarity, and then reversing the polarity of a central portion of this gate region by ion bombardment, thus achieving a narrower final gate region of the stated configuration.
NASA Technical Reports Server (NTRS)
Tieleman, H. W.; Derrington, D. B., Jr.
1977-01-01
Turbulent flow, resembling an on-shore flow from the ocean crossing the beach at an oblique angle, is investigated. Measurements of this flow have been taken at high sample rates and include measurements at various heights, high enough to describe the portion of the mean wind and temperature profiles and fluxes that are of interest for the solution of practical engineering problems. These problems could include air pollution (fumigation and plume trapping), operation of low flying aircraft, crop-spraying and crop-dusting operations.
Collagen fibril arrangement and size distribution in monkey oral mucosa
OTTANI, V.; FRANCHI, M.; DE PASQUALE, V.; LEONARDI, L.; MOROCUTTI, M.; RUGGERI, A.
1998-01-01
Collagen fibre organisation and fibril size were studied in the buccal gingival and hard palate mucosa of Macacus rhesus monkey. Light and electron microscopy analysis showed connective papillae exhibiting a similar inner structure in the different areas examined, but varying in distribution, shape and size. Moving from the deep to surface layers of the buccal gingival mucosa (free and attached portions), large collagen fibril bundles became smaller and progressively more wavy with decreasing collagen fibril diameter. This gradual diameter decrease did not occur in the hard palate mucosa (free portion, rugae and interrugal regions) where the fibril diameter remained constant. A link between collagen fibril diameter and mechanical function is discussed. PMID:9688498
Energy-beam-driven rapid fabrication system
Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.
2002-01-01
An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.
Branagan, Daniel J [Idaho Falls, ID; Hyde, Timothy A [Idaho Falls, ID; Fincke, James R [Los Alamos, NM
2008-03-11
The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.
Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai
2011-01-01
Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.
High frequency reference electrode
Kronberg, J.W.
1994-05-31
A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.
High frequency reference electrode
Kronberg, James W.
1994-01-01
A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.
Griffith, Brent T.; Arasteh, Dariush K.; Selkowitz, Stephen E.
1993-01-01
A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.
Composite construction for nuclear fuel containers
Cheng, Bo-Ching [Fremont, CA; Rosenbaum, Herman S [Fremont, CA; Armijo, Joseph S [Saratoga, CA
1987-01-01
An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waki, E.; Kobayashi, S.; Hashimoto, Y.
A flat battery is described comprising: an electrically insulative sheathing film including a first film portion and a second film portion on opposite sides of a fold line, the film having an outer surface and an inner surface opposite the outer surface, on both of the first and the second film portions. The fold line divides the inner surface into a first inner surface portion on the first film portion and a second inner surface portion on the second film portion, the film being folded along the fold line so that the first inner surface portion faces the second innermore » surface portion. The first and second film portions are sealed to one another along the entire peripheries thereof except along the fold line, the first film portion having first a first terminal hole and a second terminal hole formed therein; a first collector formed in a plane on the first inner surface portion and having a first terminal portion covering the first terminal hole, the first terminal portion being exposed to the exterior of the battery through the first terminal hole so as to define a first terminal; and a second collector consisting of a first part formed on the first inner surface portion and a second part continuous to the first part formed on the second inner surface portion. The second collector extends across and is folded along the fold line, the second part having a second terminal portion covering the second terminal hole, the second terminal portion being exposed to the exterior of the battery through the second terminal hole so as to define a second terminal. The second part is formed in the plane in spaced non-overlapping relation to the first collector, one of the first and second collectors consisting of a positive collector, the other of the first and second collectors consisting of a negative collector.« less
NASA Astrophysics Data System (ADS)
Kuwano, Yuka; Kaga, Mitsuru; Morita, Takatoshi; Yamashita, Kouji; Yagi, Kouta; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu
2013-08-01
We demonstrated lateral Mg activation along p-GaN layers underneath n-GaN surface layers in nitride-based light emitting diodes (LEDs) with GaInN tunnel junctions. A high temperature thermal annealing was effective for the lateral Mg activation when the p-GaN layers were partly exposed to an oxygen ambient as etched sidewalls. The activated regions gradually extended from the etched sidewalls to the centers with an increase of annealing time, observed as emission regions with current injection. These results suggest that hydrogen diffuses not vertically thorough the above n-GaN but laterally through the exposed portions of the p-GaN. The lowest voltage drop at the GaInN tunnel junction was estimated to be 0.9 V at 50 mA with the optimized annealing condition.
Anatomy of the fasciae and fascial spaces of the maxillofacial and the anterior neck regions.
Kitamura, Seiichiro
2018-01-01
This review provides an overview of comprehensive knowledge regarding the anatomy of the fasciae and fascial spaces of the maxillofacial and the anterior neck regions, principally from the standpoint of oral surgery, whose descriptions have long been puzzling and descriptively much too complex. The maxillofacial and the anterior neck regions are divided into four portions: the portions superficial and deep to the superficial layer of the deep cervical fascia (SfDCF) including its rostral extension to the face, the intermediate portion sandwiched by the splitting SfDCF, and the superficial portion peculiar to the face where the deep structures open on the body surface to form the oral cavity. Different fascial spaces are contained in each of the portions, although the spaces belonging to the portion of the same depth communicate freely with each other. The spaces of the superficial portions are adjacent to the oral cavity and constitute the starting point of deep infections from that cavity. The spaces of the intermediate portion lie around the mandible and occupy the position connecting the superficial and deep portions. Among these spaces, the submandibular and prestyloid spaces play an important role as relay stations conveying the infections into the deep portion. The spaces of the deep portion lie near the cervical viscera and communicate inferiorly with the superior mediastinum, among which the poststyloid space plays a role as a reception center of the infections and conveys the infections into the superior mediastinum particularly by way of the retrovisceral space and the carotid sheath.
Water-tunnel experiments on an oscillating airfoil at RE equals 21,000
NASA Technical Reports Server (NTRS)
Mcalister, K. W.; Carr, L. W.
1978-01-01
Flow visualization experiments were performed in a water tunnel on a modified NACA 0012 airfoil undergoing large amplitude harmonic oscillations in pitch. Hydrogen bubbles were used to: (1) create a conveniently striated and well preserved set of inviscid flow markers; and (2) to expose the succession of events occurring within the viscous domain during the onset of dynamic stall. Unsteady effects were shown to have an important influence on the progression of flow reversal along the airfoil surface prior to stall. A region of reversed flow underlying a free shear layer was found to momentarily exist over the entire upper surface without any appreciable disturbance of the viscous-inviscid boundary. A flow protuberance was observed to develop near the leading edge, while minor vortices evolve from an expanding instability of the free shear layer over the rear portion of the airfoil. The complete breakdown of this shear layer culminates in the successive formation of two dominant vortices.
Dual-polarization characteristics of the radar ocean return in the presence of rain
NASA Technical Reports Server (NTRS)
Meneghini, R.; Kumagai, H.; Kozu, T.
1992-01-01
Experimental data are presented on the polarimetric and dual-wavelength characteristics of the ocean surface in the presence of rain. To explain a portion of the variability observed in scatter plots under rain conditions, a storm model is used that incorporates measured drop size distributions. The fairly large variability indicates that effects of drop size distribution and the presence of partially melted particles can introduce a significant error in the estimate of attenuation. This effect is especially significant in the case of a 10-GHz radar under high rain rates. A surface reference method at this frequency will tend to overestimate the rain attenuation unless melting layer attenuation is properly taken into account. Observations of the cross-polarization return in stratiform rain over an ocean surface show three distinct components. Two of these correspond to aspherical, nonaligned particles in the melting layer seen in the direct and mirror-image returns. The remaining part depends both on the off-nadir depolarization by the surface and on the rain medium. A possible mechanism for this latter effect is the bistatic scattering from the rain to the surface.
Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA
2011-12-20
An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.
Silicon micro-mold and method for fabrication
Morales, Alfredo M.
2005-01-11
The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon micro-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.
Morales, Alfredo M [Livermore, CA
2006-10-24
The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.
Refractory lining system for high wear area of high temperature reaction vessel
Hubble, David H.; Ulrich, Klaus H.
1998-01-01
A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag.
Control of Oscillatory Thermocapillary Convection in Microgravity
NASA Technical Reports Server (NTRS)
Skarda, Ray
1998-01-01
This project focused on the generation and suppression of oscillatory thermocapillary convection in a thin liquid layer. The bulk of the research was experimental in nature, some theoretical work was also done. ne first phase of this research generated, for the first time, the hydrothermal-wave instability predicted by Smith and Davis in 1983. In addition, the behavior of the fluid layer under a number of conditions was investigated and catalogued. A transition map for the instability of buoyancy-thermocapillary convection was prepared which presented results in terms of apparatus-dependent and apparatus-independent parameters, for ease of comparison with theoretical results. The second phase of this research demonstrated the suppression of these hydrothermal waves through an active, feed-forward control strategy employing a CO2 laser to selectively heat lines of negative disturbance temperature on the free surface of the liquid layer. An initial attempt at this control was only partially successful, employing a thermocouple inserted slightly below the free surface of the liquid to generate the control scheme. Subsequent efforts, however, were completely successful in suppressing oscillations in a portion of the layer by utilizing data from an infrared image of the free surface to compute hydrothermal-wave phase speeds and, using these, to tailor the control scheme to each passing wave.
Alpha voltaic batteries and methods thereof
NASA Technical Reports Server (NTRS)
Jenkins, Phillip (Inventor); Scheiman, David (Inventor); Castro, Stephanie (Inventor); Raffaelle, Ryne P. (Inventor); Wilt, David (Inventor); Chubb, Donald (Inventor)
2011-01-01
An alpha voltaic battery includes at least one layer of a semiconductor material comprising at least one p/n junction, at least one absorption and conversion layer on the at least one layer of semiconductor layer, and at least one alpha particle emitter. The absorption and conversion layer prevents at least a portion of alpha particles from the alpha particle emitter from damaging the p/n junction in the layer of semiconductor material. The absorption and conversion layer also converts at least a portion of energy from the alpha particles into electron-hole pairs for collection by the one p/n junction in the layer of semiconductor material.
Effect of Full-Chord Porosity on Aerodynamic Characteristics of the NACA 0012 Airfoil
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Hartwich, Peter M.
1996-01-01
A test was conducted on a model of the NACA 0012 airfoil section with a solid upper surface or a porous upper surface with a cavity beneath for passive venting. The purposes of the test were to investigate the aerodynamic characteristics of an airfoil with full-chord porosity and to assess the ability of porosity to provide a multipoint or self-adaptive design. The tests were conducted in the Langley 8-Foot Transonic Pressure Tunnel over a Mach number range from 0.50 to 0.82 at chord Reynolds numbers of 2 x 10(exp 6), 4 x 10(exp 6), and 6 x 10(exp 6). The angle of attack was varied from -1 deg to 6 deg. At the lower Mach numbers, porosity leads to a dependence of the drag on the normal force. At subcritical conditions, porosity tends to flatten the pressure distribution, which reduces the suction peak near the leading edge and increases the suction over the middle of the chord. At supercritical conditions, the compression region on the porous upper surface is spread over a longer portion of the chord. In all cases, the pressure coefficient in the cavity beneath the porous surface is fairly constant with a very small increase over the rear portion. For the porous upper surface, the trailing edge pressure coefficients exhibit a creep at the lower section normal force coefficients, which suggests that the boundary layer on the rear portion of the airfoil is significantly thickening with increasing normal force coefficient.
Anderson, Robert C.
1976-06-22
1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.
Thin layer imaging process for microlithography using radiation at strongly attenuated wavelengths
Wheeler, David R.
2004-01-06
A method for patterning of resist surfaces which is particularly advantageous for systems having low photon flux and highly energetic, strongly attenuated radiation. A thin imaging layer is created with uniform silicon distribution in a bilayer format. An image is formed by exposing selected regions of the silylated imaging layer to radiation. The radiation incident upon the silyliated resist material results in acid generation which either catalyzes cleavage of Si--O bonds to produce moieties that are volatile enough to be driven off in a post exposure bake step or produces a resist material where the exposed portions of the imaging layer are soluble in a basic solution, thereby desilylating the exposed areas of the imaging layer. The process is self limiting due to the limited quantity of silyl groups within each region of the pattern. Following the post exposure bake step, an etching step, generally an oxygen plasma etch, removes the resist material from the de-silylated areas of the imaging layer.
Wedge edge ceramic combustor tile
Shaffer, J.E.; Holsapple, A.C.
1997-06-10
A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures. 7 figs.
Wedge edge ceramic combustor tile
Shaffer, James E.; Holsapple, Allan C.
1997-01-01
A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures.
Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.
1993-12-14
A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.
Composite construction for nuclear fuel containers
Cheng, B. C.; Rosenbaum, H. S.; Armijo, J. S.
1987-04-21
Disclosed is an improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof. 1 fig.
Method for reducing formation of electrically resistive layer on ferritic stainless steels
Rakowski, James M.
2013-09-10
A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.
F-16XL Ship #2 during last flight showing titanium laminar flow glove on left wing
NASA Technical Reports Server (NTRS)
1996-01-01
Dryden research pilot Dana Purifoy bends NASA F-16 XL #848 away from the tanker on the 44th flight in the Supersonic Laminar Flow Control program recently. The flight test portion of the program ended with the 45th and last data collection flight from NASA's Dryden Flight Research Center, Edwards, California, on Nov. 26, 1996. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds. The flight tests at Dryden involved use of a suction system which drew boundary-layer air through millions of tiny laser-drilled holes in a titanium 'glove' that was fitted to the upper surface of the F-16XL's left wing.
Schramm, Rebecca; Abadie, Alicia; Hua, Na; Xu, Zhimin; Lima, Marybeth
2007-01-01
Value-added processing with respect to rice milling has traditionally treated the rice bran layer as a homogenous material that contains significant concentrations of high-value components of interest for pharmaceutical and nutraceutical applications. Investigators have shown that high-value components in the rice bran layer vary from differences in kernel-thickness, bran fraction, rice variety, and environmental conditions during the growing season. The objectives of this study were to quantify the amount of rice bran removed at pre-selected milling times and to correlate the amount of rice bran removed at each milling time with the concentration of vitamin E, gamma-oryzanol, rice bran saccharide, and protein obtained. The ultimate goal of this research is to show that rice bran fractionation is a useful method to obtain targeted, nutrient-rich bran samples for value-added processing. Two long grain rice cultivars, Cheniere and Cypress, were milled at discrete times between 3 and 40 seconds using a McGill mill to obtain bran samples for analysis. Results showed that the highest oryzanol and protein concentrations were found in the outer portion of the rice bran layer, while the highest rice bran saccharide concentration was found in the inner portion of the bran layer. Vitamin E concentration showed no significant difference across the bran layer within a variety, though the highest magnitude of concentration occurs within the first 10 seconds of milling for both varieties. To extract the higher concentration of oryzanol and protein only the outer portion of the bran layer requires processing, while to extract the higher concentration of rice bran saccharide, only the inner portion of the bran layer requires processing. Rice bran fractionation allows for the selective use of portions of the bran layer and is advantageous for two reasons: (1) bran fractions contain higher concentrations of components of interest with respect to the overall bran layer average, and (2) less bran needs to be processed to obtain components of interest. PMID:18271946
NASA Astrophysics Data System (ADS)
Tedford, E. W.; MacIntyre, S.; Miller, S. D.; Czikowsky, M. J.
2013-12-01
The actively mixing layer, or surface layer, is the region of the upper mixed layer of lakes, oceans and the atmosphere directly influenced by wind, heating and cooling. Turbulence within the surface mixing layer has a direct impact on important ecological processes. The Monin-Obukhov length scale (LMO) is a critical length scale used in predicting and understanding turbulence in the actively mixed layer. On the water side of the air-water interface, LMO is defined as: LMO=-u*^3/(0.4 JB0) where u*, the shear velocity, is defined as (τ/rho)^0.5 where τ is the shear stress and rho is the density of water and JBO is the buoyancy flux at the surface. Above the depth equal to the absolute value of the Monin-Obukhov length scale (zMO), wind shear is assumed to dominate the production of turbulent kinetic energy (TKE). Below zMO, the turbulence is assumed to be suppressed when JB0 is stabilizing (warming surface waters) and enhanced when the buoyancy flux is destabilizing (cooling surface waters). Our observed dissipations were well represented using the canonical similarity scaling equations. The Monin-Obukhov length scale was generally effective in separating the surface-mixing layer into two regions: an upper region, dominated by wind shear; and a lower region, dominated by buoyancy flux. During both heating and cooling and above a depth equal to |LMO|, turbulence was dominated by wind shear and dissipation followed law of the wall scaling although was slightly augmented by buoyancy flux during both heating and cooling. Below a depth equal to |LMO| during cooling, dissipation was nearly uniform with depth. Although distinguishing between an upper region of the actively mixing layer dominated by wind stress and a lower portion dominated by buoyancy flux is typically accurate the most accurate estimates of dissipation include the effects of both wind stress and buoyancy flux throughout the actively mixed layer. We demonstrate and discuss the impact of neglecting the non-dominant forcing (buoyancy flux above zMO and wind stress below zMO) above and below zMO.
Pronounced photogating effect in atomically thin WSe2 with a self-limiting surface oxide layer
NASA Astrophysics Data System (ADS)
Yamamoto, Mahito; Ueno, Keiji; Tsukagoshi, Kazuhito
2018-04-01
The photogating effect is a photocurrent generation mechanism that leads to marked responsivity in two-dimensional (2D) semiconductor-based devices. A key step to promote the photogating effect in a 2D semiconductor is to integrate it with a high density of charge traps. Here, we show that self-limiting surface oxides on atomically thin WSe2 can serve as effective electron traps to facilitate p-type photogating. By examining the gate-bias-induced threshold voltage shift of a p-type transistor based on single-layer WSe2 with surface oxide, the electron trap density and the trap rate of the oxide are determined to be >1012 cm-2 and >1010 cm-2 s-1, respectively. White-light illumination on an oxide-covered 4-layer WSe2 transistor leads to the generation of photocurrent, the magnitude of which increases with the hole mobility. During illumination, the photocurrent evolves on a timescale of seconds, and a portion of the current persists even after illumination. These observations indicate that the photogenerated electrons are trapped deeply in the surface oxide and effectively gate the underlying WSe2. Owing to the pronounced photogating effect, the responsivity of the oxide-covered WSe2 transistor is observed to exceed 3000 A/W at an incident optical power of 1.1 nW, suggesting the effectiveness of surface oxidation in facilitating the photogating effect in 2D semiconductors.
Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.
2011-01-01
Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.
The 2016 groundwater flow model for Dane County, Wisconsin
Parsen, Michael J.; Bradbury, Kenneth R.; Hunt, Randall J.; Feinstein, Daniel T.
2016-01-01
A new groundwater flow model for Dane County, Wisconsin, replaces an earlier model developed in the 1990s by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). This modeling study was conducted cooperatively by the WGNHS and the USGS with funding from the Capital Area Regional Planning Commission (CARPC). Although the overall conceptual model of the groundwater system remains largely unchanged, the incorporation of newly acquired high-quality datasets, recent research findings, and improved modeling and calibration techniques have led to the development of a more detailed and sophisticated model representation of the groundwater system. The new model is three-dimensional and transient, and conceptualizes the county’s hydrogeology as a 12-layer system including all major unlithified and bedrock hydrostratigraphic units and two high-conductivity horizontal fracture zones. Beginning from the surface down, the model represents the unlithified deposits as two distinct model layers (1 and 2). A single layer (3) simulates the Ordovician sandstone and dolomite of the Sinnipee, Ancell, and Prairie du Chien Groups. Sandstone of the Jordan Formation (layer 4) and silty dolostone of the St. Lawrence Formation (layer 5) each comprise separate model layers. The underlying glauconitic sandstone of the Tunnel City Group makes up three distinct layers: an upper aquifer (layer 6), a fracture feature (layer 7), and a lower aquifer (layer 8). The fracture layer represents a network of horizontal bedding-plane fractures that serve as a preferential pathway for groundwater flow. The model simulates the sandstone of the Wonewoc Formation as an upper aquifer (layer 9) with a bedding-plane fracture feature (layer 10) at its base. The Eau Claire aquitard (layer 11) includes shale beds within the upper portion of the Eau Claire Formation. This layer, along with overlying bedrock units, is mostly absent in the preglacially eroded valleys along the Yahara River valley and in northeastern Dane County. Layer 12 represents the Mount Simon sandstone as the lowermost model layer. It directly overlies the Precambrian crystalline basement rock, whose top surface forms the lower boundary of the model. The model uses the USGS MODFLOW-NWT finite-difference code, a standalone version of MODFLOW-2005 that incorporates the Newton (NWT) solver. MODFLOW-NWT improves the handling of unconfined conditions by smoothing the transition from wet to dry cells. The model explicitly simulates groundwater–surface-water interaction with streamflow routing and lake-level fluctuation. Model input included published and unpublished hydrogeologic data from recent estimates of aquifer hydraulic conductivities. A spatial groundwater recharge distribution was obtained from a recent GIS-based, soil-water-balance model for Dane County. Groundwater withdrawals from pumping were simulated for 572 wells across the entire model domain, which includes Dane County and portions of seven neighboring counties—Columbia, Dodge, Green, Iowa, Jefferson, Lafayette, and Rock. These wells withdrew an average of 60 million gallons per day (mgd) over the 5-year period from 2006 through 2010. Within Dane County, 385 wells were simulated with an average withdrawal rate of 52 mgd.Model calibration used the parameter estimation code PEST, and calibration targets included heads, stream and spring flows, lake levels, and borehole flows. Steady-state calibration focused on the period 2006 through 2010; the transient calibration focused on the 7-week drought period from late May through July 2012. This model represents a significant step forward from previous work because of its finer grid resolution, improved hydrostratigraphic discretization, transient capabilities, and more sophisticated representation of surface-water features and multi-aquifer wells.Potential applications of the model include evaluation of potential sites for and impacts of new high-capacity wells, development of wellhead protection plans, evaluating the effects of changing land use and climate on groundwater, and quantifying the relationships between groundwater and surface water.
Dynamics of threading dislocations in porous heteroepitaxial GaN films
NASA Astrophysics Data System (ADS)
Gutkin, M. Yu.; Rzhavtsev, E. A.
2017-12-01
Behavior of threading dislocations in porous heteroepitaxial gallium nitride (GaN) films has been studied using computer simulation by the two-dimensional discrete dislocation dynamics approach. A computational scheme, where pores are modeled as cross sections of cylindrical cavities, elastically interacting with unidirectional parallel edge dislocations, which imitate threading dislocations, is used. Time dependences of coordinates and velocities of each dislocation from dislocation ensembles under investigation are obtained. Visualization of current structure of dislocation ensemble is performed in the form of a location map of dislocations at any time. It has been shown that the density of appearing dislocation structures significantly depends on the ratio of area of a pore cross section to area of the simulation region. In particular, increasing the portion of pores surface on the layer surface up to 2% should lead to about a 1.5-times decrease of the final density of threading dislocations, and increase of this portion up to 15% should lead to approximately a 4.5-times decrease of it.
Investigation of Oxidation Profile in PMR-15 Polyimide using Atomic Microscope (AFM)
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Johnson, Lili L.; Eby, R. K.
2002-01-01
Nanoindentation measurements are made on thermosetting materials using cantiever deflection vs. piezoelectric scanner position behavior determined by AFM. The spring model is used to determine mechanical properties of materials. The generalized Sneddon's equation is utilized to calculate Young's moduli for thermosetting materials at ambient conditions. Our investigations show that the force-penetration depth curves during unloading in these materials can be described accurately by a power law relationship. The results show that the accuracy of the measurements can be controlled within 7%. The above method is used to study oxidation profiles in Pl\\1R-15 polyimide. The thermo-mechanical profiles ofPNIR-15 indicate that the elastic modulus at the surface portion of the specimen is different from that at the interior of the material. It is also shown that there are two zones within the oxidized portion of the samples. Results confirm that the surface layer and the core material have substantially different properties.
Thermocouple Boundary Layer Rake
NASA Technical Reports Server (NTRS)
Hwang, Danny P. (Inventor); Will, Herbert A. (Inventor); Fralick, Gustave C. (Inventor)
2002-01-01
Apparatus and method for providing a velocity flow profile near a reference surface. A measuring device utilizes a plurality of thermojunction pairs to provide the velocity flow profile in accordance with behavior of a gas relative to a constant thickness strut which stands vertically from the reference surface such that the span is normal to the surface, and the chord is parallel to the surface along the initial flow direction. Each thermojunction is carried on either side of a heater formed on a measuring surface in a constant thickness portion of a strut. Additionally, each thermojunction of a given pair is located at a predetermined height from the reference surface. Gas velocity data obtained from temperature differentials from one side of the heater to the other at each successive height is utilized to generate the velocity and turbulence level profiles.
Farrington, Robert B.; Anderson, Ren
2001-01-01
The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.
Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle
NASA Technical Reports Server (NTRS)
Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.
2017-01-01
As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.
Resonant infrared detector with substantially unit quantum efficiency
NASA Technical Reports Server (NTRS)
Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)
1994-01-01
A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.
Method for forming nuclear fuel containers of a composite construction and the product thereof
Cheng, Bo-Ching; Rosenbaum, Herman S.; Armijo, Joseph S.
1984-01-01
An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.
DMFS: A Data Migration File System for NetBSD
NASA Technical Reports Server (NTRS)
Studenmund, William
1999-01-01
I have recently developed dmfs, a Data Migration File System, for NetBSD. This file system is based on the overlay file system, which is discussed in a separate paper, and provides kernel support for the data migration system being developed by my research group here at NASA/Ames. The file system utilizes an underlying file store to provide the file backing, and coordinates user and system access to the files. It stores its internal meta data in a flat file, which resides on a separate file system. Our data migration system provides archiving and file migration services. System utilities scan the dmfs file system for recently modified files, and archive them to two separate tape stores. Once a file has been doubly archived, files larger than a specified size will be truncated to that size, potentially freeing up large amounts of the underlying file store. Some sites will choose to retain none of the file (deleting its contents entirely from the file system) while others may choose to retain a portion, for instance a preamble describing the remainder of the file. The dmfs layer coordinates access to the file, retaining user-perceived access and modification times, file size, and restricting access to partially migrated files to the portion actually resident. When a user process attempts to read from the non-resident portion of a file, it is blocked and the dmfs layer sends a request to a system daemon to restore the file. As more of the file becomes resident, the user process is permitted to begin accessing the now-resident portions of the file. For simplicity, our data migration system divides a file into two portions, a resident portion followed by an optional non-resident portion. Also, a file is in one of three states: fully resident, fully resident and archived, and (partially) non-resident and archived. For a file which is only partially resident, any attempt to write or truncate the file, or to read a non-resident portion, will trigger a file restoration. Truncations and writes are blocked until the file is fully restored so that a restoration which only partially succeed does not leave the file in an indeterminate state with portions existing only on tape and other portions only in the disk file system. We chose layered file system technology as it permits us to focus on the data migration functionality, and permits end system administrators to choose the underlying file store technology. We chose the overlay layered file system instead of the null layer for two reasons: first to permit our layer to better preserve meta data integrity and second to prevent even root processes from accessing migrated files. This is achieved as the underlying file store becomes inaccessible once the dmfs layer is mounted. We are quite pleased with how the layered file system has turned out. Of the 45 vnode operations in NetBSD, 20 (forty-four percent) required no intervention by our file layer - they are passed directly to the underlying file store. Of the twenty five we do intercept, nine (such as vop_create()) are intercepted only to ensure meta data integrity. Most of the functionality was concentrated in five operations: vop_read, vop_write, vop_getattr, vop_setattr, and vop_fcntl. The first four are the core operations for controlling access to migrated files and preserving the user experience. vop_fcntl, a call generated for a certain class of fcntl codes, provides the command channel used by privileged user programs to communicate with the dmfs layer.
Boundary Layer Transition on X-43A
NASA Technical Reports Server (NTRS)
Berry, Scott; Daryabeigi, Kamran; Wurster, Kathryn; Bittner, Robert
2008-01-01
The successful Mach 7 and 10 flights of the first fully integrated scramjet propulsion systems by the Hyper-X (X-43A) program have provided the means with which to verify the original design methodologies and assumptions. As part of Hyper-X s propulsion-airframe integration, the forebody was designed to include a spanwise array of vortex generators to promote boundary layer transition ahead of the engine. Turbulence at the inlet is thought to provide the most reliable engine design and allows direct scaling of flight results to groundbased data. Pre-flight estimations of boundary layer transition, for both Mach 7 and 10 flight conditions, suggested that forebody boundary layer trips were required to ensure fully turbulent conditions upstream of the inlet. This paper presents the results of an analysis of the thermocouple measurements used to infer the dynamics of the transition process during the trajectories for both flights, on both the lower surface (to assess trip performance) and the upper surface (to assess natural transition). The approach used in the analysis of the thermocouple data is outlined, along with a discussion of the calculated local flow properties that correspond to the transition events as identified in the flight data. The present analysis has confirmed that the boundary layer trips performed as expected for both flights, providing turbulent flow ahead of the inlet during critical portions of the trajectory, while the upper surface was laminar as predicted by the pre-flight analysis.
Macchi, Veronica; Porzionato, Andrea; Bardini, Romeo; Picardi, Edgardo Enrico Edoardo; De Caro, Raffaele
2013-10-01
During right hepatectomies, dissection of the bare area is performed to obtain mobilisation of the liver. Fifty computed tomography scans of the upper abdomen of patients were examined. Specimens of supramesocolic compartment were sampled from 10 un-embalmed cadavers. Macrosections were cut for histotopographic study. In four cadavers, in situ dissection of the posterior liver surface was performed. The hepatophrenic tissue showed a stratigraphic organisation resulting from the juxtaposition of thin layer of dense connective tissue corresponding to the inferior diaphragmatic fascia (mean thickness is 30 ± 4 μm); variable amount of fibroadipose tissue corresponding to retroperitoneal fibroadipose tissue (mean thickness is 34 ± 8 μm); two connective layers with nets of flat cells forming a fusion fascia, the retrohepatic lamina (mean thickness 24 ± 6 μm); and layer of connective tissue corresponding to the hepatic capsule. The juxta-caval portion of the retrohepatic lamina, connecting the right and left sides of the caval groove, forms the inferior vena cava ligament. During dissection, fluid injection developed a preferential plane between the two layers of the retrohepatic lamina, close to the hepatic surface, and no major or minor vessels were ever found along this plane. During right hepatectomy, to reduce the risk of dissemination of tumour cells, the dissection plane should be performed between the two layers of the retrohepatic lamina.
NASA Technical Reports Server (NTRS)
Bindschadler, Duane L.; Parmentier, E. Marc
1990-01-01
The crust and mantle of Venus can be represented by a model of a layered structure stratified in both density and viscosity. This structure consists of a brittle-elastic upper crustal layer; a ductile weaker crustal layer; a strong upper mantle layer, about 10 percent denser than the crust; and a weaker substrate, representing the portion of the mantle in which convective flow occurs which is a primary source of large-scale topographic and tectonic features. This paper examines the interactions between these four layers and the mantle flow driven by thermal or compositional variations. Solutions are found for a flow driven by a buoyancy-force distribution within the mantle and by relief at the surface and crust-mantle boundary. It is shown that changes in crustal thickness are driven by vertical normal stresses due to mantle flow and by shear coupling of horizontal mantle flow into the crust.
Method of fabricating a 3-dimensional tool master
Bonivert, William D.; Hachman, John T.
2002-01-01
The invention is a method for the fabrication of an imprint tool master. The process begins with a metallic substrate. A layer of photoresist is placed onto the metallic substrate and a image pattern mask is then aligned to the mask. The mask pattern has opaque portions that block exposure light and "open" or transparent portions which transmit exposure light. The photoresist layer is then exposed to light transmitted through the "open" portions of the first image pattern mask and the mask is then removed. A second layer of photoresist then can be placed onto the first photoresist layer and a second image pattern mask may be placed on the second layer of photoresist. The second layer of photoresist is exposed to light, as before, and the second mask removed. The photoresist layers are developed simultaneously to produce a multi-level master mandrel upon which a conductive film is formed. A tool master can now be formed onto the conductive film. An imprint tool is then produced from the tool master. In one embodiment, nickel is electroplated onto the tool master to produce a three-dimensional imprint tool.
Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy
NASA Technical Reports Server (NTRS)
Langer, J. S.; Hong, D. C.
1986-01-01
This paper is concerned primarily with the development of an analytic approach to the theory of steady-state velocity selection in the boundary-layer model of dendritic solidification. The two-dimensional version of this model with a fourfold crystalline anisotropy alpha in the surface tension is considered. By extending a WKB method introduced in an earlier paper, the alpha dependence of the selected growth rate is determined in the limit of small alpha; and this rate is studied for large alphas in the limit in which the dimensionless undercooling approaches unity. Portions of the paper are devoted to a reinterpretation of the mathematical structure of the solvability condition in problems of this kind.
Refractory lining system for high wear area of high temperature reaction vessel
Hubble, D.H.; Ulrich, K.H.
1998-04-21
A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag. 10 figs.
Refractory lining system for high wear area of high temperature reaction vessel
Hubble, D.H.; Ulrich, K.H.
1998-09-22
A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag. 10 figs.
Kuo, Lewis J. H.; Vora, Shailesh D.
1995-01-01
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.
Kuo, L.J.H.; Vora, S.D.
1995-02-21
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La{sub 1{minus}x}M{sub x}Cr{sub 1{minus}y}N{sub y}O{sub 3}, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075--0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO){sub 12}(Al{sub 2}O{sub 3}){sub 7} flux particles including Ca and Al dopant, and LaCrO{sub 3} interconnection particles, preferably undoped LaCrO{sub 3}, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and (C) heat treating the interconnection layer at from about 1,200 to 1,350 C to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power. 4 figs.
Photoluminescent nanofiber composites, methods for fabrication, and related lighting devices
Guzan, Kimberly A.; Mills, Karmann C.; Han, Li; Davis, James Lynn; Hoertz, Paul G.
2015-08-04
A photoluminescent nanofiber composite includes a nanofiber substrate, first luminescent particles, and second luminescent particles. The first luminescent particles are supported by the nanofibers and span at least a portion of a substrate surface, as a layer on the substrate surface, or with some particles located in a bulk of the substrate, or both. The second luminescent particles are disposed on the substrate. The second luminescent particles may be disposed directly on the substrate surface or on the first luminescent particles. The second luminescent particles may be deposited in a pattern of deposition units. The first and second luminescent particles are configured for emitting light of different respective wavelengths in response to excitation by a light beam. One or more surface treatment coatings may be provided at different locations.
1975-12-01
crossed the essentially normal portion of the bow shock is swallowed by the boundary layer. The flow along the edge of the boundary layer on the aft...portions hf the body will then have passed through an oblique part of the bow shock and will be in a different state than had it passed through a normal...determination of the local edge flow conditions may be improvedby taking into con- sideration the inclination of the bow shock where the local flow stream- line
Nuzzo, Ralph G.; Childs, William R.; Motala, Michael J.; Lee, Keon Jae
2010-02-16
A method of making a microstructure includes selectively activating a portion of a surface of a silicon-containing elastomer, contacting the activated portion with a substance, and bonding the activated portion and the substance, such that the activated portion of the surface and the substance in contact with the activated portion are irreversibly attached. The selective activation may be accomplished by positioning a mask on the surface of the silicon-containing elastomer, and irradiating the exposed portion with UV radiation.
Minichan, Richard L.
1993-01-01
An end effector for use in probing a surface with a robotic arm. The end effector has a first portion that carries a gimbal with a probe, the gimbal holding the probe normal to the surface, and a second portion with a set of three shafts within a housing for urging the gimbal and probe against the surface. The second portion contains a potentiometer connected by another shaft to the first portion to measure the position of the first portion with respect to the second so that the second portion can be moved to place and maintain the shafts at the midpoint of their travel. Then, as irregularities in the surface are encountered, the first portion can respond by moving closer to or farther from the second portion.
Minichan, R.L.
1993-10-05
An end effector is described for use in probing a surface with a robotic arm. The end effector has a first portion that carries a gimbal with a probe, the gimbal holding the probe normal to the surface, and a second portion with a set of three shafts within a housing for urging the gimbal and probe against the surface. The second portion contains a potentiometer connected by another shaft to the first portion to measure the position of the first portion with respect to the second so that the second portion can be moved to place and maintain the shafts at the midpoint of their travel. Then, as irregularities in the surface are encountered, the first portion can respond by moving closer to or farther from the second portion. 7 figures.
F-16XL Ship #2 in hangar for Laminar Flow Glove mounting
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's two-seat F-16XL research aircraft is shown in the modification hangar at the Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently concluded a 13 month-long, 45-flight research program which investigated drawing off a small portion of the boundary-layer air in order to provide laminar -- or smooth -- flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future high-speed aircraft in developing a more efficient civil transport.
Synthesis of Three-dimensional Polymer Nanostructures via Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Cheng, Kenneth
Chemical vapor deposition (CVD) is a widely practiced methodology for preparing thin film polymer coatings, and the coatings can be applied to a broad range of materials, including three-dimensional solid structures and low-vapor pressure liquids. Reactive poly(p-xylylene) (PPX) coatings prepared by CVD can be used as a powerful tool for surface functionalization and bio-conjugation. The first portion of this dissertation serves to extend the use of CVD-based reactive PPX coatings as a surface functionalization strategy for the conjugation of biomolecules. Micro-structured PPX coatings having multiple surface reactive groups were fabricated. Multiple orthogonal click reactions were then employed to selectively immobilize galactose and mannobiose to the micro-structured polymer coatings. The presence of different types of carbohydrate enables lectins binding for examining ligands/cell receptor interactions. This dissertation also demonstrates the use of CVD-based reactive PPX coatings as intermediate layers to immobilize adenoviral vectors onto tissue scaffolds. The ability to tether adenoviral vectors on tissue scaffolds localizes the transduction near the scaffold surface and reduces acute toxicity and hepatic pathology cause by direct administration of the viral vector, providing a safe and efficient gene therapy delivery strategy. In the second portion of this dissertation, we explore the CVD of PPX onto surfaces coated with a thin layer of liquid crystal (LC). Instead of forming a conformal PPX coating encapsulating the LC layer, PPX assembled into an array of high-aspect ratio nanofibers inside the LC layer. The LC layer was demonstrated to act as a template where the anisotropic internal ordering of the LC facilitated the formation of nanofibers. The diameter of the nanofibers was in the range of 100 nm and could be tuned by type of LC template used, and the length of the nanofibers could be precisely controlled by varying the thickness of the LC film. The overall shape of the nanofibers could be controlled by the internal ordering of the LC template, as exemplified by the assembly of helical nanofibers using cholesteric LC as the template. PPX nanofibers could be applied to a broad range of materials, such as curved surface, metal meshes and microparticles. We successfully created nanofibers with different surface functionalities and utilized them to capture molecules of interest. We also demonstrated the synthesis of twisted nanofibers using chiral-substituted precursors. The direction and the degree of twisting of nanofibers could be controlled by the handedness and the enantiomeric excess of the chiral precursor. Finally, we showed that the LC-templated CVD method could be extended to fabricating nanofibers made of other CVD-based polymer systems, such as poly(lutidine) and poly(p-phenylene vinylene). Our work opens a new platform for designing functional polymer nanostructures with programmable geometry, alignment and chemistry. The polymer nanostructures can be attractive for applications ranging from sensors, affinity filtration, and catalytic supports.
Method and apparatus for heat extraction by controlled spray cooling
Edwards, Christopher Francis; Meeks, Ellen; Kee, Robert; McCarty, Kevin
1999-01-01
Two solutions to the problem of cooling a high temperature, high heat flux surface using controlled spray cooling are presented for use on a mandrel. In the first embodiment, spray cooling is used to provide a varying isothermal boundary layer on the side portions of a mandrel by providing that the spray can be moved axially along the mandrel. In the second embodiment, a spray of coolant is directed to the lower temperature surface of the mandrel. By taking advantage of super-Leidenfrost cooling, the temperature of the high temperature surface of the mandrel can be controlled by varying the mass flux rate of coolant droplets. The invention has particular applicability to the field of diamond synthesis using chemical vapor deposition techniques.
Method for reducing formation of electrically resistive layer on ferritic stainless steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakowski, James M.
A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surfacemore » region that has been depleted of silicon relative to a remainder of the steel.« less
Arntzen, John D.
1978-01-01
An electrochemical cell includes two outer electrodes and a central electrode of opposite polarity, all nested within a housing having two symmetrical halves which together form an offset configuration. The outer electrodes are nested within raised portions within the side walls of each housing half while the central electrode sealingly engages the perimetric margins of the side-wall internal surfaces. Suitable interelectrode separators and electrical insulating material electrically isolate the central electrode from the housing and the outer electrodes. The outer electrodes are electrically connected to the internal surfaces of the cell housing to provide current collection. The nested structure minimizes void volume that would otherwise be filled with gas or heavy electrolyte and also provides perimetric edge surfaces for sealing and supporting at the outer margins of frangible interelectrode separator layers.
Structural transformation in monolayer materials: a 2D to 1D transformation.
Momeni, Kasra; Attariani, Hamed; LeSar, Richard A
2016-07-20
Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials.
Architectural evidence of dune collapse in the Navajo Sandstone, Zion National Park, Utah
NASA Astrophysics Data System (ADS)
Ford, Colby; Bryant, Gerald; Nick, Kevin E.
2016-10-01
The Canyon Overlook Trail of Zion National Park follows an outcrop of Navajo Sandstone, which displays a uniquely well-exposed assemblage of features associated with failure of the lee face of a large eolian dune, and run-out over an expanse of interdune sediments downwind of that bedform. Exposed features include dramatic folds in the interdune succession and a stacked series of thrust sheets incorporating both interdune and overlying dune deposits. Thrust surfaces display consistent strikes, parallel to those of undeformed foresets, and incorporate zones of brittle failure and fluid deformation, including folds overturned in the direction of foreset dip. These features correspond to predictions made by a previous researcher's model of dune collapse, formulated from less fortuitously exposed architectures in the Navajo Sandstone. Unlike the previous model, however, this site preserves distinct indications that the bulk of deformed material accumulated above the level of the contemporary interdune surface, in an aggradational succession. Paleotopographic reconstruction, based on preserved facies relationships at this site, indicates the presence of a large dune, partially encroached upon a well-developed wet interdune succession, made up of two half-meter carbonate mud layers, separated by a meter of medium-grained sand. Trapping of pore water pressure between these mud layers during liquefaction reduced shear strength in this interval, facilitating the collapse of the lee face of the upwind dune into the interdune area, and transmitted resultant shear forces to distal portions of the interdune expanse, in the shallow subsurface. Shear failure developed along bedding planes in the horizontally laminated carbonate muds, which provided both lubrication of the shear surfaces and structural support for the preservation of coherent thrust sheets during production of an imbricated succession of shear zones in the toe portion of the slump. Individual shear surfaces exposed in this outcrop extend for up to 50 m along strike and dip north up to 55°. Upturned mud layers in the toe of the slump resisted deflation, promoting preservation of an irregular interdune topography, over which the reorganized dune ultimately advanced.
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor); Clough, Thomas J. (Inventor); Josefowicz, Jack Y. (Inventor); Sibert, John W. (Inventor)
1985-01-01
The unitary electrode (10) comprises a porous sheet (12) of fiberglass the strands (14) of which contain a coating (16) of conductive tin oxide. The lower portion of the sheet contains a layer (18) of resin and the upper layer (20) contains lead dioxide forming a positive active electrode on an electrolyte-impervious layer. The strands (14) form a continuous conduction path through both layers (16, 18). Tin oxide is prevented from reduction by coating the surface of the plate facing the negative electrode with a conductive, impervious layer resistant to reduction such as a thin film (130) of lead or graphite filled resin adhered to the plate with a layer (31) of conductive adhesive. The plate (10) can be formed by casting a molten resin from kettle (60) onto a sheet of glass wool (56) overlying a sheet of lead foil and then applying positive active paste from hopper (64) into the upper layer (68). The plate can also be formed by passing an assembly of a sheet ( 80) of resin, a sheet (86) of sintered glass and a sheet (90) of lead between the nip (92) of heated rollers (93, 95) and then filling lead oxide into the pores (116) of the upper layer (118).
Verhoog, Roelof; Precigout, Claude; Stewart, Donald
1996-05-21
The electrode plate includes an active portion that is pasted with active material, and a plate head that is made up of three layers of compressed metal foam comprising: a non-pasted portion of height G of the support of the electrode plate; and two strips of non-pasted metal foam of height R on either side of the non-pasted portion of height G of the support and also extending for an overlap height h.sub.2 over the pasted portion of the support. The plate head includes a zone of reduced thickness including a portion that is maximally compressed, and a transitional portion between said maximally compressed portion and the remainder of the electrode which is of thickness e.sub.2. A portion of said plate head forms a connection tab. The method of obtaining the electrode consists in simultaneously rolling all three layers of metal foam in the plate head, and then in cutting matter away from the plates so as to obtain respective connection tabs.
NASA Astrophysics Data System (ADS)
Corti, Giacomo; Zeoli, Antonio; Belmaggio, Pietro; Folco, Luigi
2008-03-01
Three-dimensional laboratory physical experiments have been used to investigate the influence of bedrock topography and ablation on ice flow. Different models were tested in a Plexiglas box, where a transparent silicone simulating ice in nature was allowed to flow. Experimental results show how the flow field (in terms of both flow lines and velocity) and variations in the topography of the free surface and internal layers of the ice are strongly influenced by the presence and height of bedrock obstacles. In particular, the buttressing effect forces the ice to slow down, rise up, and avoid the obstacle; the higher the bedrock barrier, the more pronounced the process. Only limited uplift of internal layers is observed in these experiments. In order to exhume deep material embedded in the ice, ablation (simulated by physically removing portions of silicone from the model surface to maintain a constant topographic depression) must be included in the physical models. In this case, the analogue ice replenishes the area of material removal, thereby allowing deep layers to move vertically to the surface and severely altering the local ice flow pattern. This process is analogous to the ice flow model proposed in the literature for the origin of meteorite concentrations in blue ice areas of the Antarctic plateau.
Active radiometer for self-calibrated furnace temperature measurements
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.
1996-01-01
Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.
Method for laser machining explosives and ordnance
Muenchausen, Ross E.; Rivera, Thomas; Sanchez, John A.
2003-05-06
Method for laser machining explosives and related articles. A laser beam is directed at a surface portion of a mass of high explosive to melt and/or vaporize the surface portion while directing a flow of gas at the melted and/or vaporized surface portion. The gas flow sends the melted and/or vaporized explosive away from the charge of explosive that remains. The method also involves splitting the casing of a munition having an encased explosive. The method includes rotating a munition while directing a laser beam to a surface portion of the casing of an article of ordnance. While the beam melts and/or vaporizes the surface portion, a flow of gas directed at the melted and/or vaporized surface portion sends it away from the remaining portion of ordnance. After cutting through the casing, the beam then melts and/or vaporizes portions of the encased explosive and the gas stream sends the melted/vaporized explosive away from the ordnance. The beam is continued until it splits the article, after which the encased explosive, now accessible, can be removed safely for recycle or disposal.
Evaluating a vessel for suitability for containing fluid
Barefield, II, James E.; Judge, Elizabeth J.; Le, Loan A.; Lopez, Leon N.; Beveridge, Andrew C.; Chapman, Daniel R.; Taylor, Seth T.
2017-05-30
A method for evaluating a vessel for suitability to contain a fluid includes providing a vessel and forming a polished surface portion of the vessel by removing oxidation and/or contaminants from a portion of the vessel. The method further includes applying a focused laser to the polished surface portion to form plasma on the polished surface portion, and determining whether the vessel is suitable for containing a fluid based on silicon content of the polished surface portion. The silicon content is estimated based on light emitted from the plasma.
Interfacial behavior of polymer electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, John; Kerr, John B.; Han, Yong Bong
2003-06-03
Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combinedmore » with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.« less
NASA Astrophysics Data System (ADS)
Adkins, K. A.; Sescu, A.
2016-12-01
Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.
NASA Astrophysics Data System (ADS)
Soloviev, A.; Dean, C.; Lukas, R.; Donelan, M. A.; Terray, E. A.
2016-12-01
Surface-wave breaking is a powerful mechanism producing significant energy flux to small scale turbulence. Most of the turbulent energy produced by breaking waves dissipates within one significant wave height, while the turbulent diffusion layer extends to approximately ten significant wave heights. Notably, the near-surface shear may practically vanish within the wave-stirred layer due to small-scale turbulent mixing. The surface ocean temperature-salinity structure, circulation, and mass exchanges (including greenhouse gases and pollutants) substantially depend on turbulent mixing and non-local transport in the near-surface layer of the ocean. Spatially coherent organized motions have been recognized as an important part of non-local transport. Langmuir circulation (LC) and ramp-like structures are believed to vertically transfer an appreciable portion of the momentum, heat, gases, pollutants (e.g., oil), and other substances in the upper layer of the ocean. Free surface significantly complicates the analysis of turbulent exchanges at the air-sea interface and the coherent structures are not yet completely understood. In particular, there is growing observational evidence that in the case of developing seas when the wind direction may not coincide with the direction of the energy containing waves, the Langmuir lines are oriented in the wind rather than the wave direction. In addition, the vortex force due to Stokes drift in traditional models is altered in the breaking-wave-stirred layer. Another complication is that the ramp-like structures in the upper ocean turbulent boundary layer have axes perpendicular to the axes of LC. The ramp-like structures are not considered in the traditional model. We have developed a new model, which treats the LC and ramp-like structures in the near-surface layer of the ocean as a coupled system. Using computational fluid dynamics tools (LES), we have been able to reproduce both LC and ramp-like structures coexisting in space though intermittent in time. In the model, helicity isosurfaces appear to be tilted and, in general, coordinated with the tilted velocity isosurfaces produced by ramp-like structures. This is an indication of coupling between the LC and ramp-like structures. Remarkably, the new model is able to explain observations of LC under developing seas.
Article and method of forming an article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Dutta, Sandip
Provided are an article and a method of forming an article. The method includes providing a metallic powder, heating the metallic powder to a temperature sufficient to joint at least a portion of the metallic powder to form an initial layer, sequentially forming additional layers in a build direction by providing a distributed layer of the metallic powder over the initial layer and heating the distributed layer of the metallic powder, repeating the steps of sequentially forming the additional layers in the build direction to form a portion of the article having a hollow space formed in the build direction,more » and forming an overhang feature extending into the hollow space. The article includes an article formed by the method described herein.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Sang Eon; Hoard, Brittany R.; Han, Sang M.
Provided is a method for fabricating a nanopatterned surface. The method includes forming a mask on a substrate, patterning the substrate to include a plurality of symmetry-breaking surface corrugations, and removing the mask. The mask includes a pattern defined by mask material portions that cover first surface portions of the substrate and a plurality of mask space portions that expose second surface portions of the substrate, wherein the plurality of mask space portions are arranged in a lattice arrangement having a row and column, and the row is not oriented parallel to a [110] direction of the substrate. The patterningmore » the substrate includes anisotropically removing portions of the substrate exposed by the plurality of spaces.« less
Laminar-flow wind tunnel experiments
NASA Technical Reports Server (NTRS)
Harvey, William D.; Harris, Charles D.; Sewall, William G.; Stack, John P.
1989-01-01
Although most of the laminar flow airfoils recently developed at the NASA Langley Research Center were intended for general aviation applications, low-drag airfoils were designed for transonic speeds and wind tunnel performance tested. The objective was to extend the technology of laminar flow to higher Mach and Reynolds numbers and to swept leading edge wings representative of transport aircraft to achieve lower drag and significantly improved operation costs. This research involves stabilizing the laminar boundary layer through geometric shaping (Natural Laminar Flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (Laminar-Flow Control, LFC), either through discrete slots or perforated surface. Results show that extensive regions of laminar flow with large reductions in skin friction drag can be maintained through the application of passive NLF boundary-layer control technologies to unswept transonic wings. At even greater extent of laminar flow and reduction in the total drag level can be obtained on a swept supercritical airfoil with active boundary layer-control.
Improved contact resistance stability in a MEMS separable electrical connector
NASA Astrophysics Data System (ADS)
Larsson, M. P.
2005-12-01
A MEMS in-line separable electrical connector with improved contact resistance stability to thermal fluctuations and mating cycles is described. The design allows sliding, in-line connection between separate halves, inducing vertical deflections on a set of flexible conductors to establish stable electrical contacts. Features are present on both halves to ensure precise lateral and vertical self-alignment; preventing shorts and maintaining consistent conductor deflections. Characterisation on early prototypes revealed significant variability in contact resistance with thermal fluctuations and mating cycle history. As flexible conductors are multi-layered structures of Au supported by a thick structural layer of Ni, they undergo differential thermal expansion, introducing variability in contact resistance with temperature. Sliding contact wear during repeated mating leads to removal of portions of the Au surface coating, and electrical contact between underlying (non-noble) Ni layers. By using a harder Co-Au alloy as the contact surface layer and modifying the arrangement of constituent conductor layers to balance thermal stresses, improvements to both wear and thermal tolerance of contact resistance can be obtained. Devices implementing the above design modifications show stable contact resistance over 100 mating cycles and an increase in contact resistance of between 3.5 and 7% over a temperature rise of 60°C. The electrical performance improvements increase the attractiveness of the MEMS in-line separable connector concept for applications in portable electronics and MEMS integration.
Kairdolf, Brad A.; Nie, Shuming
2011-01-01
Colloidal gold nanocrystals with broad size tunability and unusual pH-sensitive properties have been synthesized by using multidentate polymer ligands. Containing both carboxylic functional groups and sterically hindered aliphatic chains, the multidentate ligands are able to both reduce gold precursors and to stabilize gold nanoclusters during nucleation and growth. The “as-synthesized” nanocrystals are protected by an inner coordinating layer and an outer polymer layer, and are soluble in water and polar solvents. When the solution pH is lowered by just 0.6 units (from pH 4.85 to 4.25), the particles undergo a dramatic cooperative transition from being soluble to insoluble, allowing rapid isolation, purification, and redispersion of the multidentate-protected nanocrystals. A surprise finding is that when a portion of the surface carboxylate groups is neutralized by protonation, the particles irreversibly shed their outer polymer layer and become soluble in nonpolar organic solvents. Further, the multidentate polymer coatings are permeable to small organic molecules, in contrast to tightly packed self-assembled monolayers of alkanethiols on gold. These insights are important towards the design of “smart” imaging and therapeutic nanoparticles that are activated by small pH changes in the tumor interstitial space or endocytic organelles. PMID:21510704
NASA Astrophysics Data System (ADS)
Berg, Jacob; Patton, Edward G.; Sullivan, Peter S.
2017-11-01
The effect of mesh resolution and size on shear driven atmospheric boundary layers in a stable stratified environment is investigated with the NCAR pseudo-spectral LES model (J. Atmos. Sci. v68, p2395, 2011 and J. Atmos. Sci. v73, p1815, 2016). The model applies FFT in the two horizontal directions and finite differencing in the vertical direction. With vanishing heat flux at the surface and a capping inversion entraining potential temperature into the boundary layer the situation is often called the conditional neutral atmospheric boundary layer (ABL). Due to its relevance in high wind applications such as wind power meteorology, we emphasize on second order statistics important for wind turbines including spectral information. The simulations range from mesh sizes of 643 to 10243 grid points. Due to the non-stationarity of the problem, different simulations are compared at equal eddy-turnover times. Whereas grid convergence is mostly achieved in the middle portion of the ABL, statistics close to the surface of the ABL, where the presence of the ground limits the growth of the energy containing eddies, second order statistics are not converged on the studies meshes. Higher order structure functions also reveal non-Gaussian statistics highly dependent on the resolution.
Campbell, Christian X; Thomaidis, Dimitrios
2014-05-13
A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.
Active radiometer for self-calibrated furnace temperature measurements
Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.
1996-11-12
A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.
The looped adhesive strip: An example of coplanar delamination interaction
NASA Technical Reports Server (NTRS)
Bottega, W. J.
1990-01-01
The phenomenon of peeling and debonding of thin layers is a subject of interest to those concerned with adhesives, thin films, and layered materials. In recent years much attention has been focused on such problems as a result of increased interest and application of advanced composites and thin film coatings. A related problem which is of interest for its own sake but also represents a simple example of a tangled adhesive strip and of coplanar delamination interaction, is the problem of a looped adhesive strip. This is the subject of the present study. Researchers consider here the problem of an elastic strip which possesses an adherend on (at least) one of its surfaces. If the strip is deformed so that two portions of such a surface are brought into contact, a position of the strip becomes bonded and a loop is formed. Researchers are interested in determining the equilibrium configuration of such a strip and investigating the behavior of the strip when its edges are pulled apart. The problem is approached as a moving interior boundary problem in the calculus of variations with the strip modeled as an inextensible elastica and the bond strength characterized by its surface energy. A Griffith type energy criterion is employed for debonding, and solutions corresponding to the problem of interest obtained. The solution obtained will be seen to predict the interesting phenomenon of bond point propagation, as well as the more standard peeling type behavior. Numerical results demonstrating the phenomena of interest are presented as well and will be seen to reveal both stable and unstable propagation of the boundaries of the bonded portion of the strip, depending upon the loading conditions.
On the role of infiltration and exfiltration in swash zone boundary layer dynamics
NASA Astrophysics Data System (ADS)
Pintado-Patiño, José Carlos; Torres-Freyermuth, Alec; Puleo, Jack A.; Pokrajac, Dubravka
2015-09-01
Boundary layer dynamics are investigated using a 2-D numerical model that solves the Volume-Averaged Reynolds-Averaged Navier-Stokes equations, with a VOF-tracking scheme and a k - ɛ turbulence closure. The model is validated with highly resolved data of dam break driven swash flows over gravel impermeable and permeable beds. The spatial gradients of the velocity, bed shear stress, and turbulence intensity terms are investigated with reference to bottom boundary layer (BL) dynamics. Numerical results show that the mean vorticity responds to flow divergence/convergence at the surface that result from accelerating/decelerating portions of the flow, bed shear stress, and sinking/injection of turbulence due to infiltration/exfiltration. Hence, the zero up-crossing of the vorticity is employed as a proxy of the BL thickness inside the shallow swash zone flows. During the uprush phase, the BL develops almost instantaneously with bore arrival and fluctuates below the surface due to flow instabilities and related horizontal straining. In contrast, during the backwash phase, the BL grows quasi-linearly with less influence of surface-induced forces. However, the infiltration produces a reduction of the maximum excursion and duration of the swash event. These effects have important implications for the BL development. The numerical results suggest that the BL growth rate deviates rapidly from a quasi-linear trend if the infiltration is dominant during the initial backwash phase and the flat plate boundary layer theory may no longer be applicable under these conditions.
Aerodynamic Evidence Pertaining to the Entry of Tektites into the Earth's Atmosphere
NASA Technical Reports Server (NTRS)
Chapman, Dean R.; Larson, Howard K.; Anderson, Lewis A.
1962-01-01
Evidence is presented which shows that the Australian and Java tektites entered the earth's atmosphere and experienced ablation by severe aerodynamic heating in hypervelocity flight. The laboratory experiments on hypervelocity ablation have reproduced ring-wave flow ridges and coiled circumferential flanges like those found on certain of these tektites. Systematic striae distortions exhibited in a thin layer beneath the front surface of australites also are reproduced in the laboratory ablation experiments, and are shown to correspond to the calculated distortions for aerodynamic ablation of a glass. About 98 percent of Australian tektites represent aerodynamically stable configurations during the ablative portion of an entry trajectory. Certain meteorites exhibit surface features similar to those on tektites.
Method of assembling and sealing an alkali metal battery
Elkins, Perry E.; Bell, Jerry E.; Harlow, Richard A.; Chase, Gordon G.
1983-01-01
A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed therebetween. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants therethrough at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed therebetween. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal therebetween. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal.
Method of assembling and sealing an alkali metal battery
Elkins, P.E.; Bell, J.E.; Harlow, R.A.; Chase, G.G.
1983-03-01
A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed there between. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants there through at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed there between. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal there between. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal. 4 figs.
Seismic Structure of India from Regional Waveform Matching
NASA Astrophysics Data System (ADS)
Gaur, V.; Maggi, A.; Priestley, K.; Rai, S.
2003-12-01
We use a neighborhood adaptive grid search procedure and reflectivity synthetics to model regional distance range (500-2000~km) seismograms recorded in India and to determine the variation in the crust and uppermost mantle structure across the subcontinent. The portions of the regional waveform which are most influenced by the crust and uppermost mantle structure are the 10-100~s period Pnl and fundamental mode surface waves. We use the adaptive grid search algorithm to match both portions of the seismogram simultaneously. This procedure results in a family of 1-D path average crust and upper mantle velocity and attenuation models whose propagation characteristics closely match those of the real Earth. Our data set currently consist of ˜20 seismograms whose propagation paths are primarily confined to the Ganges Basin in north India and the East Dharwar Craton of south India. The East Dharwar Craton has a simple and uniform structure consisting of a 36+/-2 km thick two layer crust, and an uppermost mantle with a sub-Moho velocity of 4.5~km/s. The structure of northern India is more complicated, with pronounced low velocities in the upper crustal layer due to the large sediment thicknesses in the Ganges basin.
Protective sheath for a continuous measurement thermocouple
Phillippi, R.M.
1991-12-03
Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device. 4 figures.
Protective sheath for a continuous measurement thermocouple
Phillippi, R. Michael
1991-01-01
Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device.
Liu, Chuyu [Newport News, VA; Zhang, Shukui [Yorktown, VA
2011-10-04
A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.
Wind-tunnel experiments of scalar transport in aligned and staggered wind farms
NASA Astrophysics Data System (ADS)
Zhang, W.; Markfort, C. D.; Porté-Agel, F.
2012-04-01
Wind energy is the fastest growing renewable energy worldwide, and it is expected that many more large-scale wind farms will be built and will cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer, wind farms may affect the exchange/transport of momentum, heat and moisture between the atmosphere and land surface. To ensure the long-term sustainability of wind energy, it is important to understand the influence of large-scale wind farms on land-atmosphere interaction. Knowledge of this impact will also be useful to improve parameterizations of wind farms in numerical prediction tools, such as large-scale weather models and large-eddy simulation. Here, we present wind-tunnel measurements of the surface scalar (heat) flux from model wind farms, consisting of more than 10 rows of wind turbines, in a turbulent boundary layer with a surface heat source. Spatially distributed surface heat flux was obtained in idealized aligned and staggered wind farm layouts, having the same turbine distribution density. Measurements, using surface-mounted heat flux sensors, were taken at the 11th out of 12 rows of wind turbines, where the mean flow achieves a quasi-equilibrium state. In the aligned farm, there exist two distinct regions of increased and decreased surface heat flux on either side of turbine columns. The regions are correlated with coherent wake rotation in the turbine-array. On the upwelling side there is decreased flux, while on the downwelling side cool air moves towards the surface causing increased flux. For the staggered farm, the surface heat flux exhibits a relatively uniform distribution and an overall reduction with respect to the boundary layer flow, except in the vicinity of the turbine tower. This observation is also supported by near-surface temperature and turbulent heat flux measured using a customized x-wire/cold-wire. The overall surface heat flux, relative to that of the boundary layer flow without wind turbines, is reduced by approximately 4% in the staggered wind farm and remains nearly the same in the aligned wind farm.
Internal stratigraphy of the South Polar Layered Deposits, Mars from SHARAD data
NASA Astrophysics Data System (ADS)
Whitten, J. L.; Campbell, B. A.
2017-12-01
The South Polar Layered Deposits (SPLD) are one of the largest deposits of water ice on Mars, composed of alternating layers of ice and dust. The accumulation of the layers is driven by orbital forcings (e.g., obliquity) and both the cadence and structure of these layers preserve a record of the past martian climate. Image of very limited exposed layering suggest several distinct sequences, demarcated by erosional hiatuses, with a gently domical shape. Here we use the Shallow Radar (SHARAD) sounder dataset to investigate the internal stratigraphy of the SPLD in order to further constrain the south polar climate record. We identify four distinct units based in part on their degree of vertical sharpness (focus) in the SHARAD data: (1) upper focused layer packets, (2) focused layer packets, (3) blurred layer packets, and (4) reflection free zones (RFZs). A diffuse echo pattern related to uncertain aspects of composition or layer roughness is termed fog. The upper focused layer packets are concentrated in the area between 270° to 90°E, close to the residual polar cap. The focused and blurred layer packets cover a large portion of the SPLD and are subdivided into two different units, those with an average reflecting-interface brightness and those with substantially brighter reflectors. The brighter radar reflectors have a coherent spatial distribution and only comprise a small portion of the entire unit. The diffuse echoes are separated into a fog that is present throughout the entire vertical column of the SPLD and a fog that begins at the surface and traverses only the uppermost layers. Depending on the geometry of individual SHARAD tracks, reflectors can be traced for hundreds of kilometers, but the fog obscures much of the internal layering, and is related to the focusing distortion that prevents individual reflectors from being traced across the entire SPLD. We identify a major deviation from a gently domical SPLD shape in a 200 km dome. Its presence suggests that the depositional history of the SPLD was more complicated than previously proposed. Differences in the distribution of the identified units further supports the dynamic and changing nature of the south polar climate. We also explore the distribution and radar characteristics of other ice-rich deposits in the south polar region of Mars.
Method of freeform fabrication by selective gelation of powder suspensions
Baskaran, S.; Graff, G.L.
1997-12-09
The present invention is a novel method for freeform fabrication. Specifically, the method of solid freeform fabrication has the steps of: (a) preparing a slurry by mixing powder particles with a suspension medium and a gelling polysaccharide; (b) making a layer by depositing an amount of said powder slurry in a confined region; (c) hardening a selected portion of the layer by applying a gelling agent to the selected portion; and (d) repeating steps (b) and (c) to make successive layers and forming a layered object. In many applications, it is desirable to remove unhardened material followed by heating to remove gellable polysaccharide then sintering. 2 figs.
Method of freeform fabrication by selective gelation of powder suspensions
Baskaran, Suresh; Graff, Gordon L.
1997-01-01
The present invention is a novel method for freeform fabrication. Specifically, the method of solid freeform fabrication has the steps of: (a) preparing a slurry by mixing powder particles with a suspension medium and a gelling polysaccharide; (b) making a layer by depositing an amount of said powder slurry in a confined region; (c) hardening a selected portion of the layer by applying a gelling agent to the selected portion; and (d) repeating steps (b) and (c) to make successive layers and forming a layered object. In many applications, it is desirable to remove unhardened material followed by heating to remove gellable polysaccharide then sintering.
NASA Astrophysics Data System (ADS)
Escobar-Palafox, Gustavo; Gault, Rosemary; Ridgway, Keith
2011-12-01
Shaped Metal Deposition (SMD) is an additive manufacturing process which creates parts layer by layer by weld depositions. In this work, empirical models that predict part geometry (wall thickness and outer diameter) and some metallurgical aspects (i.e. surface texture, portion of finer Widmanstätten microstructure) for the SMD process were developed. The models are based on an orthogonal fractional factorial design of experiments with four factors at two levels. The factors considered were energy level (a relationship between heat source power and the rate of raw material input.), step size, programmed diameter and travel speed. The models were validated using previous builds; the prediction error for part geometry was under 11%. Several relationships between the factors and responses were identified. Current had a significant effect on wall thickness; thickness increases with increasing current. Programmed diameter had a significant effect on percentage of shrinkage; this decreased with increasing component size. Surface finish decreased with decreasing step size and current.
Morning Martian Atmospheric Temperature Gradients and Fluctuations Observed by Mars Pathfinder
NASA Technical Reports Server (NTRS)
Mihalov, John D.; Haberle, R. M.; Murphy, J. R.; Seiff, A.; Wilson, G. R.
1999-01-01
We have studied the most prominent atmospheric temperature fluctuations observed during Martian mornings by Mars Pathfinder and have concluded, based on comparisons with wind directions, that they appear to be a result of atmospheric heating associated with the Lander spacecraft. Also, we have examined the morning surface layer temperature lapse rates, which are found to decrease as autumn approaches at the Pathfinder location, and which have mean (and median) values as large as 7.3 K/m in the earlier portions of the Pathfinder landed mission. It is plausible that brief isolated periods with gradients twice as steep are associated with atmospheric heating adjacent to Lander air bag material. In addition, we have calculated the gradient with height of the structure function obtained with Mars Pathfinder, for Mars' atmospheric temperatures measured within about 1.3 m from the surface, assuming a power law dependence, and have found that these gradients superficially resemble those reported for the upper region of the terrestrial stable boundary layer.
An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Gordon, Arnold L.; Shroyer, Emily; Murty, V. S. N.
2017-04-01
The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar’s interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification.
An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal.
Gordon, Arnold L; Shroyer, Emily; Murty, V S N
2017-04-12
The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar's interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification.
An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal
Gordon, Arnold L.; Shroyer, Emily; Murty, V. S. N.
2017-01-01
The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar’s interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification. PMID:28401909
Lunar seismic profiling experiment natural activity study
NASA Technical Reports Server (NTRS)
Duennebier, F. K.
1976-01-01
The Lunar Seismic Experiment Natural Activity Study has provided a unique opportunity to study the high frequency (4-20 Hz) portion to the seismic spectrum on the moon. The data obtained from the LSPE was studied to evaluate the origin and importance of the process that generates thermal moonquakes and the characteristics of the seismic scattering zone at the lunar surface. The detection of thermal moonquakes by the LSPE array made it possible to locate the sources of many events and determine that they are definitely not generated by astronaut activities but are the result of a natural process on the moon. The propagation of seismic waves in the near-surface layers was studied in a qualitative manner. In the absence of an adequate theoretical model for the propagation of seismic waves in the moon, it is not possible to assign a depth for the scattering layer. The LSPE data does define several parameters which must be satisfied by any model developed in the future.
Fuel cell generator with fuel electrodes that control on-cell fuel reformation
Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA
2011-10-25
A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.
Lokar, Marusa; Urbanija, Jasna; Frank, Mojca; Hägerstrand, Henry; Rozman, Blaz; Bobrowska-Hägerstrand, Malgorzata; Iglic, Ales; Kralj-Iglic, Veronika
2008-08-01
Plasma protein-mediated attractive interaction between membranes of red blood cells (RBCs) and phospholipid vesicles was studied. It is shown that beta(2)-glycoprotein I (beta(2)-GPI) may induce RBC discocyte-echinocyte-spherocyte shape transformation and subsequent agglutination of RBCs. Based on the observed beta(2)-GPI-induced RBC cell shape transformation it is proposed that the hydrophobic portion of beta(2)-GPI molecule protrudes into the outer lipid layer of the RBC membrane and increases the area of this layer. It is also suggested that the observed agglutination of RBCs is at least partially driven by an attractive force which is of electrostatic origin and depends on the specific molecular shape and internal charge distribution of membrane-bound beta(2)-GPI molecules. The suggested beta(2)-GPI-induced attractive electrostatic interaction between like-charged RBC membrane surfaces is qualitatively explained by using a simple mathematical model within the functional density theory of the electric double layer, where the electrostatic attraction between the positively charged part of the first domains of bound beta(2)-GPI molecules and negatively charged glycocalyx of the adjacent RBC membrane is taken into account.
Apparatus for externally controlled closed-loop feedback digital epitaxy
Eres, D.; Sharp, J.W.
1996-07-30
A method and apparatus for digital epitaxy are disclosed. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced. 5 figs.
Apparatus for externally controlled closed-loop feedback digital epitaxy
Eres, Djula; Sharp, Jeffrey W.
1996-01-01
A method and apparatus for digital epitaxy. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced.
Method of digital epitaxy by externally controlled closed-loop feedback
Eres, D.; Sharp, J.W.
1994-07-19
A method and apparatus for digital epitaxy are disclosed. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced. 4 figs.
Method of digital epilaxy by externally controlled closed-loop feedback
Eres, Djula; Sharp, Jeffrey W.
1994-01-01
A method and apparatus for digital epitaxy. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced.
Vibration damping and heat transfer using material phase changes
NASA Technical Reports Server (NTRS)
Kloucek, Petr (Inventor); Reynolds, Daniel R. (Inventor)
2009-01-01
A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.
Vibration damping and heat transfer using material phase changes
Kloucek, Petr [Houston, TX; Reynolds, Daniel R [Oakland, CA
2009-03-24
A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.
Layered Deposits on the floor of Ganges Chasma
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 29 March 2002) The Science The Story These layered deposits are located on the floor of a large canyon called Ganges Chasma which is a part of the Valles Marineris. Dramatic layering can be seen throughout the deposit. Different styles of erosion are manifest in these different layers and at different locations within the layered material. For example, the southern portion of these deposits have a pronounced fluting, whereas in other areas the same layers are more intact. Relatively dark dunes and sand sheets can be observed surrounding the relatively brighter layered material in the upper right and lower portions of the image. Darker material also appears to mantle select areas of the layered deposits. The formation of the dunes is influenced by topography; this influence is best illustrated in the upper left of the image where a small hillock has interfered with the local wind flow. Impact craters of all sizes are noticeably absent in this image, indicating a relatively young age for this surface. This image is approximately 22 km wide and 60 km in length; north is toward the top. The Story If this wonderfully textured landform were on Earth, it would have to be designated as a 'national park,' much like the popular canyon parklands of the American Southwest. Look for the oblong plateau at the center right of this image, and see how the terrain descends from it on all sides. The southerly canyon wall (bottom third of the image) displays a visually beautiful canyon slope, with descending erosional flutes that cut pathways through the differently hued rock and mineral layers. While the northern side of the plateau might not look as dramatic, don't miss the dark-colored sand dunes that lie at the base of the canyon. Why did they form in just that place? To find out, look for the small hillock in the top left of the image that has interfered with the wind's flow, causing the ripply dunes to form. With so many interesting and physically stunning features, this spot will no doubt attract eager Mars tourists some day far in the future.
NASA Technical Reports Server (NTRS)
Parmentier, E. M.; Hess, P. C.
1992-01-01
Chemically depleted mantle forming a buoyant, refractory layer at the top of the mantle can have important implications for the evolution of the interior and surface. On Venus, the large apparent depths of compensation for surface topographic features might be explained if surface topography were supported by variations in the thickness of a 100-200 km thick chemically buoyant mantle layer or by partial melting in the mantle at the base of such a layer. Long volcanic flows seen on the surface may be explained by deep melting that generates low-viscosity MgO-rich magmas. The presence of a shallow refractory mantle layer may also explain the lack of volcanism associated with rifting. As the depleted layer thickens and cools, it becomes denser than the convecting interior and the portion of it that is hot enough to flow can mix with the convecting mantle. Time dependence of the thickness of a depleted layer may create episodic resurfacing events as needed to explain the observed distribution of impact craters on the venusian surface. We consider a planetary structure consisting of a crust, depleted mantle layer, and a thermally and chemically well-mixed convecting mantle. The thermal evolution of the convecting spherical planetary interior is calculated using energy conservation: the time rate of change of thermal energy in the interior is equated to the difference in the rate of radioactive heat production and the rate of heat transfer across the thermal boundary layer. Heat transfer across the thermal boundary layer is parameterized using a standard Nusselt number-Rayleigh number relationship. The radioactive heat production decreases with time corresponding to decay times for the U, Th, and K. The planetary interior cools by the advection of hot mantle at temperature T interior into the thermal boundary layer where it cools conductively. The crust and depleted mantle layers do not convect in our model so that a linear conductive equilibrium temperature distribution is assumed. The rate of melt production is calculated as the product of the volume flux of mantle into the thermal boundary layer and the degree of melting that this mantle undergoes. The volume flux of mantle into the thermal boundary layer is simply the heat flux divided by amount of heat lost in cooling mantle to the average temperature in the thermal boundary layer. The degree of melting is calculated as the temperature difference above the solidus, divided by the latent heat of melting. A maximum degree of melting is prescribed corresponding to the maximum amount of basaltic melt that the mantle can initially generate. As the crust thickens, the pressure at the base of the crust becomes high enough and the temperature remains low enough for basalt to transform to dense eclogite.
Investigation of Microgranular Adsorptive Filtration System
NASA Astrophysics Data System (ADS)
Cai, Zhenxiao
Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling in muGAF systems can occur both on the membrane surface and in the cake layer. Fouling caused by soluble NOM, like polysaccharides, occurs mostly on the membrane surface, and increasing the adsorbent surface loading (i.e., the thickness of the layer) can mitigate fouling by such molecules. By contrast, fouling by colloids and particulate matter occurs mostly on the surface or upstream portion of the pre-deposited adsorbent layer. Use of smaller adsorbent particles improves the capture of these contaminants but also exacerbates such fouling. Lastly, preliminary tests demonstrate that muGAF is also effective at reducing fouling caused by NOM in seawater, and that combining multiple adsorbents in muGAF is a potential approach to optimize overall system performance.
Method of electroplating a conversion electron emitting source on implant
Srivastava, Suresh C [Setauket, NY; Gonzales, Gilbert R [New York, NY; Adzic, Radoslav [East Setauket, NY; Meinken, George E [Middle Island, NY
2012-02-14
Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H.sub.2 evolution in H.sub.2SO.sub.4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H.sub.2SO.sub.4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.
2002-12-16
This image shows the dissected interior of a crater in the Cydonia region of Mars. The flat-topped buttes and mesas in the northern portion of the image were once a continuous layer of material that filled the crater. Since deposition, the material has been disturbed and dissected. The process that causes such landforms is not well known, but likely involves frozen subsurface water that may have found its way to the surface. The surfaces on the mesas are not rough, suggesting that the whole scene is mantled with fine dust, masking the details that may give clues to whether surface water was involved at some point in the past. Small recent channels can be seen in the lower left. This is an indication of relatively recent small-scale surface activity, which has been could have been volcanic, fluvial, or some process involving subsurface volatiles (ice). http://photojournal.jpl.nasa.gov/catalog/PIA04030
Harvey, Andrew C.; Ribich, William A.; Marinaccio, Paul J.; Sawaf, Bernard E.
1987-12-01
A separable fastener system has a first separable member that includes a series of metal hook sheets disposed in stacked relation that defines an array of hook elements on its broad surface. Each hook sheet is a planar metal member of uniform thickness and has a body portion with a series of hook elements formed along one edge of the body. Each hook element includes a stem portion, a deflecting surface portion, and a latch portion. Metal spacer sheets are disposed between the hook sheets and may be varied in thickness and in number to control the density of the hook elements on the broad surface of the first fastener member. The hook and spacer sheets are secured together in stacked relation. A second fastener member has a surface of complementary engaging elements extending along its broad surface which are releasably interengageable with the hook elements of the first fastener member, the deflecting surfaces of the hook elements of the first fastener member tending to deflect hook engaging portions of the second fastener member and the latch portions of the hook elements of the first fastener member engaging portions of the second fastener member in fastening relation.
Pyramiding tumuli waste disposal site and method of construction thereof
Golden, Martin P.
1989-01-01
An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.
2010-04-19
Melas Chasma is the central portion of Valles Marineris. This image taken by NASA 2001 Mars Odyssey shows a small portion of the floor of Melas Chasma, including layered deposits and wind eroded and deposited materials.
NASA Astrophysics Data System (ADS)
Hayakawa, Y. S.; Obanawa, H.
2015-12-01
Bedrock knickpoints (waterfalls) often act as erosional front in bedrock rivers, whose geomorphological processes are various. In waterfalls with vertical cliffs, both fluvial erosion and mass movement are feasible to form the landscape. Although morphological changes of such steep cliffs are sometimes visually observed, quantitative and precise measurements of their spatiotemporal distribution have been limited due to poor accessibility to such cliffs. For the clarification of geomorphological processes in such cliffs, multi-temporal mapping of the cliff face at a high resolution can be advantaged by short-range remote sensing approaches. Here we carry out multi-temporal terrestrial laser scanning (TLS), as well as structure-from-motion multi-view stereo (SfM-MVS) photogrammetry based on unmanned aerial system (UAS) for accurate topographic mapping of cliffs around a waterfall. The study site is Kegon Falls in central Japan, having a vertical drop of surface water from top of its overhanging cliff and groundwater outflows from its lower portions. The bedrock consists of alternate layers of jointed andesite lava and conglomerates. The latest major rockfall in 1986 caused approximately 8-m recession of the waterfall lip. Three-dimensional changes of the rock surface were detected by multi-temporal measurements by TLS over years, showing the portions of small rockfalls and surface lowering in the bedrock. Erosion was frequently observed in relatively weak the conglomerates layer, whereas small rockfalls were often found in the andesite layers. Wider areas of the waterfall and cliff were also measured by UAS-based SfM-MVS photogrammetry, improving the mapping quality of the cliff morphology. Point clouds are also projected on a vertical plane to generate a digital elevation model (DEM), and cross-sectional profiles extracted from the DEM indicate the presence of a distinct, 5-10-m deep depression in the cliff face. This appears to have been formed by freeze-thaw and/or wet-dry weathering following the recession in 1986. The long-term development of the waterfall cliff face is then discussed comprising various processes of rockfalls, water pressure and weathering.
Abrasion resistant track shoe grouser
Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A
2013-04-23
A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.
Streamflow simulation for continental-scale river basins
NASA Astrophysics Data System (ADS)
Nijssen, Bart; Lettenmaier, Dennis P.; Liang, Xu; Wetzel, Suzanne W.; Wood, Eric F.
1997-04-01
A grid network version of the two-layer variable infiltration capacity (VIC-2L) macroscale hydrologic model is described. VIC-2L is a hydrologically based soil- vegetation-atmosphere transfer scheme designed to represent the land surface in numerical weather prediction and climate models. The grid network scheme allows streamflow to be predicted for large continental rivers. Off-line (observed and estimated surface meteorological and radiative forcings) applications of the model to the Columbia River (1° latitude-longitude spatial resolution) and Delaware River (0.5° resolution) are described. The model performed quite well in both applications, reproducing the seasonal hydrograph and annual flow volumes to within a few percent. Difficulties in reproducing observed streamflow in the arid portion of the Snake River basin are attributed to groundwater-surface water interactions, which are not modeled by VIC-2L.
Optical method for the determination of stress in thin films
Maris, H.J.
1999-01-26
A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer. 16 figs.
Optical method for the determination of stress in thin films
Maris, Humphrey J.
1999-01-01
A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer.
NASA Astrophysics Data System (ADS)
Adkins, Kevin; Elfajri, Oumnia; Sescu, Adrian
2016-11-01
Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Results are also compared to numerical experiments conducted using large eddy simulation (LES). Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.
Development of a gastroretentive pulsatile drug delivery platform.
Thitinan, Sumalee; McConville, Jason T
2012-04-01
To develop a novel gastroretentive pulsatile drug delivery platform by combining the advantages of floating dosage forms for the stomach and pulsatile drug delivery systems. A gastric fluid impermeable capsule body was used as a vessel to contain one or more drug layer(s) as well as one or more lag-time controlling layer(s). A controlled amount of air was sealed in the innermost portion of the capsule body to reduce the overall density of the drug delivery platform, enabling gastric floatation. An optimal mass fill inside the gastric fluid impermeable capsule body enabled buoyancy in a vertical orientation to provide a constant surface area for controlled erosion of the lag-time controlling layer. The lag-time controlling layer consisted of a swellable polymer, which rapidly formed a gel to seal the mouth of capsule body and act as a barrier to gastric fluid ingress. By varying the composition of the lag-time controlling layer, it was possible to selectively program the onset of the pulsatile delivery of a drug. This new delivery platform offers a new method of delivery for a variety of suitable drugs targeted in chronopharmaceutical therapy. This strategy could ultimately improve drug efficacy and patient compliance, and reduce harmful side effects by scaling back doses of drug administered. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
Self-healing cable for extreme environments
NASA Technical Reports Server (NTRS)
Huston, Dryver R. (Inventor); Tolmie, Bernard R. (Inventor)
2009-01-01
Self-healing cable apparatus and methods disclosed. The self-healing cable has a central core surrounded by an adaptive cover that can extend over the entire length of the self-healing cable or just one or more portions of the self-healing cable. The adaptive cover includes an axially and/or radially compressible-expandable (C/E) foam layer that maintains its properties over a wide range of environmental conditions. A tape layer surrounds the C/E layer and is applied so that it surrounds and axially and/or radially compresses the C/E layer. When the self-healing cable is subjected to a damaging force that causes a breach in the outer jacket and the tape layer, the corresponding localized axially and/or radially compressed portion of the C/E foam layer expands into the breach to form a corresponding localized self-healed region. The self-healing cable is manufacturable with present-day commercial self-healing cable manufacturing tools.
A multilayer scaffold design with spatial arrangement of cells to modulate esophageal tissue growth.
Soliman, Sherif; Laurent, Julie; Kalenjian, Lena; Burnette, Kalia; Hedberg, Bert; La Francesca, Saverio
2018-05-02
Esophageal diseases may require resectioning of the damaged portion. The current standard of care requires the replacement of the esophagus with the stomach or the intestine. Such procedures have high rates of mortality and morbidity; therefore, the use of alternative conduits is needed. A tissue engineering approach that allows for the regeneration of esophageal tissues would have significant clinical application. A cell-seeded synthetic scaffold could replace the resected part of the esophagus and elicit tissue regrowth. In order to ideally recreate a functioning esophagus, its two crucial tissue layers should be induced: an epithelium on the luminal surface and a muscle layer on the exterior surface. To create a bioengineered esophagus with both tissue layers, a multilayer (ML) tubular scaffold design was considered. Luminal and exterior layers were electrospun with broad pore size to promote penetration and proliferation of mesenchymal stem cells on the lumen and smooth muscle cells on the external. These two layers would be separated by a thin layer with substantially narrower pore size intended to act as a barrier for the two cell types. This ML scaffold design was achieved via electrospinning by tuning the solution and the process parameters. Analysis of the scaffold demonstrated that this tuning enabled the production of three integrated layers with distinguishable microstructures and good mechanical integrity. In vitro validation was conducted on the separated unilayer components of the ML scaffold. The resultant proof-of-concept ML scaffold design could possibly support the spatial arrangement of cells needed to promote esophageal tissue regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Vinod Kumar, A.; Sitaraman, V.; Oza, R. B.; Krishnamoorthy, T. M.
A one-dimensional numerical planetary boundary layer (PBL) model is developed and applied to study the vertical distribution of radon and its daughter products in the atmosphere. The meteorological model contains parameterization for the vertical diffusion coefficient based on turbulent kinetic energy and energy dissipation ( E- ɛ model). The increased vertical resolution and the realistic concentration of radon and its daughter products based on the time-dependent PBL model is compared with the steady-state model results and field observations. The ratio of radon concentration at higher levels to that at the surface has been studied to see the effects of atmospheric stability. The significant change in the vertical profile of concentration due to decoupling of the upper portion of the boundary layer from the shallow lower stable layer is explained by the PBL model. The disequilibrium ratio of 214Bi/ 214Pb broadly agrees with the observed field values. The sharp decrease in the ratio during transition from unstable to stable atmospheric condition is also reproduced by the model.
The cytoarchitecture of the torus semicircularis in the Tegu lizard, Tupinambis nigropunctatus.
Browner, R H; Rubinson, K
1977-12-15
The torus semicircularis (TS) of the Tegu lizard extends from the superficial caudal mesencephalon, dorsal to the exiting trochlear nerve, to a position ventral to the middle part of the optic tectum and its ventricle. It has an oblique orientation with the caudal pole abutting the midline while the rostal end is lateral and slightly ventral. The TS consists of a central nucleus and several adjacent cell groups. The central nucleus and the laminar nucleus, situated medially, extend the entire length of the TS while the cortical nucleus, situated dorsally and laterally, is present only in the caudal superficial portion. The central nucleus is composed of ovoid neurons with branched, radiating dendrites. The dendrites are directed medially and laterally with spines on the distal portion of the dendritic tree. The laminar nucleus consists of three to five neuronal layers. It is mainly composed of fusiform neurons with one dendritic trunk from each extremity of the soma. There is little branching and few dendritic spines. The cortical nucleus is a laminated region consisting of alternating layers of neurons and lateral lemniscal fibers. The neurons of the superficial layers are fusiform with their long axis perpendicular to the long axis of the brainstem. They possess two main dendritic trunks which parallel the laminae and are covered with dendritic spines. The deeper layers consist of pyramidal neurons with three dendritic trunks, secondary branches, and few spines. The long axis of these neurons extends from the center of the TS to the periphery. Two dendritic trunks extend dorsally or laterally towards the surface, while the third extends towards the central nucleus. The dendrites, thus, extend across the laminae. In addition, a cell-free lateral zone is described.
Methods for providing ceramic matrix composite components with increased thermal capacity
NASA Technical Reports Server (NTRS)
Steibel, James Dale (Inventor); Utah, David Alan (Inventor)
2001-01-01
A method for enhancing the cooling capability of a turbine component made from a ceramic matrix composite. The method improves the thermal performance of the component by producing a surface having increased cooling capacity, thereby allowing the component to operate at a higher temperature. The method tailors the available surface area on the cooling surface of the composite component by depositing a particulate layer of coarse grained ceramic powders of preselected size onto the surface of the ceramic matrix composite component. The size of the particulate is selectively tailored to match the desired surface finish or surface roughness of the article. The article may be designed to have different surface finishes for different locations, so that the application of different sized powders can provide different cooling capabilities at different locations, if desired. The compositions of the particulates are chemically compatible with the ceramic material comprising the outer surface or portion of the ceramic matrix composite. The particulates are applied using a slurry and incorporated into the article by heating to an elevated temperature without melting the matrix, the particulates or the fiber reinforcement.
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor); Spaulding, Glenn F. (Inventor)
1994-01-01
A portion of an organic polymer article such as a membrane is made hydrophilic by exposing a hydrophobic surface of the article to a depth of about 50 to about 5000 angstroms to atomic oxygen or hydroxyl radicals at a temperature below 100C., preferably below 40 C, to form a hydrophilic uniform surface layer of hydrophilic hydroxyl groups. The atomic oxygen and hydroxyl radicals are generated by a flowing afterglow microwave discharge, and the surface is outside of a plasma produced by the discharge. A membrane having both hydrophilic and hydrophobic surfaces can be used in an immunoassay by adhering antibodies to the hydrophobic surface. In another embodiment, the membrane is used in cell culturing where cells adhere to the hydrophilic surface. Prior to adhering cells, the hydrophilic surface may be grafted with a compatibilizing compound. A plurality of hydrophilic regions bounded by adjacent hydrophobic regions can be produced such that a maximum of one cell per each hydrophilic region adheres.
Geologic age: using radioactive decay to determine geologic age
,
1997-01-01
At the close of the 18th century, the haze of fantasy and mysticism that tended to obscure the true nature of the Earth was being swept away. Careful studies by scientists showed that rocks had diverse origins. Some rock layers, containing clearly identifiable fossil remains of fish and other forms of aquatic animal and plant life, originally formed in the ocean. Other layers, consisting of sand grains winnowed clean by the pounding surf, obviously formed as beach deposits that marked the shorelines of ancient seas. Certain layers are in the form of sand bars and gravel banks -- rock debris spread over the land by streams. Some rocks were once lava flows or beds of cinders and ash thrown out of ancient volcanoes; others are portions of large masses of once-molten rock that cooled very slowly far beneath the Earth's surface. Other rocks were so transformed by heat and pressure during the heaving and buckling of the Earth's crust in periods of mountain building that their original features were obliterated.
Doyle, Larry J.
1983-01-01
An 1800-joule sparker survey of the West Florida continental slope between about 26?N and 29?15?N showed a top bed of Pleistocene age forming an irregular drape over a surface that is probably Pliocene. The contact between the top two layers is unconformable in the south and, in some places, shows karst collapse and solution features. Karst topography grades into a more hummocky erosional surface to the north, which in turn smoothes out; the contact become conformable still further north. A period of folding, which is widespread over the outer portion of the study area and which may be related to large scale mass wasting, occurred at about the same time represented by the unconformity. Significant subsidence has occurred as late as Pleistocene. The surface layer thins to a minimum (0 in the south) at about 525-meters water depth and then thickens again dramatically to the west, downslope. This thinning is interpreted to be due to the Loop Current, which flows from north to south in the area and which acts to block deposition and scour the bottom. Despite the fact that the margin is dominated by carbonates, usually associated with low sedimentation rates, there is widespread evidence of mass wasting affecting ancient and surficial deposits on the outer part of the upper slope. Three potential groups of geohazards identified are: 1. Potential bottom failure in areas where a thin top layer overlies the karst surface. 2. Potential for sliding and slumping. 3. Scour due to currents which could also affect drilling and engineering activities.
NASA Astrophysics Data System (ADS)
Bonin, Timothy A.; Blumberg, William G.; Klein, Petra M.; Chilson, Phillip B.
2015-12-01
The nocturnal stable boundary layer (SBL) can generally be classified into the weakly stable boundary layer (wSBL) and very stable boundary layer (vSBL). Within the wSBL, turbulence is relatively continuous, whereas in the vSBL, turbulence is intermittent and not well characterized. Differentiating characteristics of each type of SBL are still unknown. Herein, thermodynamic and kinematic data collected by a suite of instruments in north central Oklahoma in autumn 2012 are analyzed to better understand both SBL regimes and their differentiating characteristics. Many low-level jets were observed during the experiment, as it took place near a climatological maximum. A threshold wind speed, above which bulk shear-generated turbulence develops, is found to exist up to 300 m. The threshold wind speed must also be exceeded at lower heights (down to the surface) in order for strong turbulence to develop. Composite profiles, which are normalized using low-level jet scaling, of potential temperature, wind speed, vertical velocity variance, and the third-order moment of vertical velocity (overline{w'^3}) are produced for weak and moderate/strong turbulence regimes, which exhibit features of the vSBL and wSBL, respectively. Within the wSBL, turbulence is generated at the surface and transported upward. In the vSBL, values of vertical velocity variance are small throughout the entire boundary layer, likely due to the fact that a strong surface inversion typically forms after sunset. The temperature profile tends to be approximately isothermal in the lowest portions of the wSBL, and it did not substantially change over the night. Within both types of SBL, stability in the residual layer tends to increase as the night progresses. It is thought that this stability increase is due to differential warm air advection, which frequently occurs in the southern Great Plains when southerly low-level jets and a typical north-south temperature gradient are present. Differential radiative flux divergence also contributes to this increase in stability.
NASA Astrophysics Data System (ADS)
Caniaux, Guy; Planton, Serge
1998-10-01
A primitive equation model is used to simulate the mesoscale circulation associated with a portion of the Azores Front investigated during the intensive observation period (IOP) of the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in fall 1993. The model is a mesoscale version of the ocean general circulation model (OGCM) developed at the Laboratoire d'Océanographie Dynamique et de Climatologie (LODYC) in Paris and includes open lateral boundaries, a 1.5-level-order turbulence closure scheme, and fine mesh resolution (0.11° for latitude and 0.09° for longitude). The atmospheric forcing is provided by satellite data for the solar and infrared fluxes and by analyzed (or reanalyzed for the wind) atmospheric data from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model. The extended data set collected during the IOP of SEMAPHORE enables a detailed initialization of the model, a coupling with the rest of the basin through time dependent open boundaries, and a model/data comparison for validation. The analysis of model outputs indicates that most features are in good agreement with independent available observations. The surface front evolution is subject to an intense deformation different from that of the deep front system, which evolves only weakly. An estimate of the upper layer heat budget is performed during the 22 days of the integration of the model. Each term of this budget is analyzed according to various atmospheric events that occurred during the experiment, such as the passage of a strong storm. This facilitates extended estimates of mixed layer or relevant surface processes beyond those which are obtainable directly from observations. Surface fluxes represent 54% of the heat loss in the mixed layer and 70% in the top 100-m layer, while vertical transport at the mixed layer bottom accounts for 31% and three-dimensional processes account for 14%.
Structural charge site influence on the interlayer hydration of expandable three-sheet clay minerals
Kerns, Raymond L.; Mankin, Charles J.
1968-01-01
Previous investigations have demonstrated the influences of interlayer cation composition, relative humidity, temperature, and magnitude of interlayer surface charge on the interlayer hydration of montmorillonites and vermiculites. It has been suggested that the sites of layer charge deficiencies may also have an influence upon the amount of hydration that can take place in the interlayers of expandable clay minerals. If the interlayer cation-to-layer bonds are considered as ideally electrostatic, the magnitude of the forces resisting expansion may be expressed as a form of Coulomb's law. If this effect is significant, expandable structures in which the charge-deficiency sites are predominantly in the tetrahedral sheet should have less pronounced swelling properties than should structures possessing charge deficiencies located primarily in the octahedral sheet.Three samples that differed in location of layer charge sites were selected for study. An important selection criterion was a non-correlation between tetrahedral charge sites and high surface-charge density, and between octahedral charge sites and low surface-charge density.The effects of differences in interlayer cation composition were eliminated by saturating portions of each sample with the same cations. Equilibrium (001) d values at controlled constant humidities were used as a measure of the relative degree of interlayer hydration.Although no correlation could be made between the degree of interlayer hydration and total surface-charge density, the investigation does not eliminate total surface-charge density as being significant to the swelling properties of three-sheet clay-mineral structures. The results do indicate a correlation between more intense expandability and predominance of charge deficiencies in the octahedral sheet. Conversely, less intense swelling behavior is associated with predominantly tetrahedral charge deficiencies.
NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS
Mills, F.T.
1961-05-01
A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.
Neutronic Reactor Design to Reduce Neutron Loss
Miles, F. T.
1961-05-01
A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)
Turbulent flow and scalar transport in a large wind farm
NASA Astrophysics Data System (ADS)
Porte-Agel, F.; Markfort, C. D.; Zhang, W.
2012-12-01
Wind energy is one of the fastest growing sources of renewable energy world-wide, and it is expected that many more large-scale wind farms will be built and cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer and converting it to electricity, wind farms may affect the transport of momentum, heat, moisture and trace gases (e.g. CO_2) between the atmosphere and the land surface locally and globally. Understanding wind farm-atmosphere interaction is complicated by the effects of turbine array configuration, wind farm size, land-surface characteristics, and atmospheric thermal stability. A wind farm of finite length may be modeled as an added roughness or as a canopy in large-scale weather and climate models. However, it is not clear which analogy is physically more appropriate. Also, surface scalar flux is affected by wind farms and needs to be properly parameterized in meso-scale and/or high-resolution numerical models. Experiments involving model wind farms, with perfectly aligned and staggered configurations, having the same turbine distribution density, were conducted in a thermally-controlled boundary-layer wind tunnel. A neutrally stratified turbulent boundary layer was developed with a surface heat source. Measurements of the turbulent flow and fluxes over and through the wind farm were made using a custom x-wire/cold-wire anemometer; and surface scalar flux was measured with an array of surface-mounted heat flux sensors far within the quasi-developed region of the wind-farm. The turbulence statistics exhibit similar properties to those of canopy-type flows, but retain some characteristics of surface-layer flows in a limited region above the wind farms as well. The flow equilibrates faster and the overall momentum absorption is higher for the staggered compared to the aligned farm, which is consistent with canopy scaling and leads to a larger effective roughness. Although the overall surface heat flux change produced by the wind farms is found to be small, with a net reduction of 4% for the staggered wind farm and nearly zero change for the aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on wind farm layout, is significant. This comprehensive first wind-tunnel dataset on turbulent flow and scalar transport in wind farms will be further used to develop and validate new parameterizations of surface fluxes in numerical models.
Dereshgi, Sina Abedini; Okyay, Ali Kemal
2016-08-08
Plasmonically enhanced absorbing structures have been emerging as strong candidates for photovoltaic (PV) devices. We investigate metal-insulator-metal (MIM) structures that are suitable for tuning spectral absorption properties by modifying layer thicknesses. We have utilized gold and silver nanoparticles to form the top metal (M) region, obtained by dewetting process compatible with large area processes. For the middle (I) and bottom (M) layers, different dielectric materials and metals are investigated. Optimum MIM designs are discussed. We experimentally demonstrate less than 10 percent reflection for most of the visible (VIS) and near infrared (NIR) spectrum. In such stacks, computational analysis shows that the bottom metal is responsible for large portion of absorption with a peak of 80 percent at 1000 nm wavelength for chromium case.
Aruna, I; Mehta, B R; Malhotra, L K; Khan, S A; Avasthi, D K
2005-10-01
A detailed elastic recoil detection analysis using 40 MeV 28Si5+ ions has been carried out to study the changes in the H concentration and concentration profiles during the hydrogenation/dehydrogenation process in polycrystalline and nanoparticle Gd layers formed using vacuum evaporation and inert gas evaporation techniques, respectively. Nanoparticle sample exhibits a larger difference in the [H]/[Gd] values (2.9 and 1.7) in comparison to polycrystalline sample (2.4 and 2.0) in the loaded and deloaded states. Hydrogenation/dehydrogenation activity is restricted to the top portion in case of polycrystalline sample. In contrast to this, size induced structural transformation; enhanced surface area and the presence of large number of inter particle boundaries due to nanoparticle character result in the complete Gd layer becoming active during switching.
Systems and methods for producing low work function electrodes
Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Kahn, Antoine; Meyer, Jens; Shim, Jae Won; Marder, Seth R.
2015-07-07
According to an exemplary embodiment of the invention, systems and methods are provided for producing low work function electrodes. According to an exemplary embodiment, a method is provided for reducing a work function of an electrode. The method includes applying, to at least a portion of the electrode, a solution comprising a Lewis basic oligomer or polymer; and based at least in part on applying the solution, forming an ultra-thin layer on a surface of the electrode, wherein the ultra-thin layer reduces the work function associated with the electrode by greater than 0.5 eV. According to another exemplary embodiment of the invention, a device is provided. The device includes a semiconductor; at least one electrode disposed adjacent to the semiconductor and configured to transport electrons in or out of the semiconductor.
Visible light emitting vertical cavity surface emitting lasers
Bryan, Robert P.; Olbright, Gregory R.; Lott, James A.; Schneider, Jr., Richard P.
1995-01-01
A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of .lambda./2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In.sub.z (Al.sub.y Ga.sub.1-y).sub.1-z P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m .lambda./2n.sub.eff where m is an integer and n.sub.eff is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of .lambda./n, typically within the green to red portion of the visible spectrum.
Visible light emitting vertical cavity surface emitting lasers
Bryan, R.P.; Olbright, G.R.; Lott, J.A.; Schneider, R.P. Jr.
1995-06-27
A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of {lambda}/2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In{sub z}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}z}P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m {lambda}/2n{sub eff} where m is an integer and n{sub eff} is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of {lambda}/n, typically within the green to red portion of the visible spectrum. 10 figs.
A study of juncture flow in the NASA Langley 0.3-meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Chokani, Ndaona
1992-01-01
A numerical investigation of the interaction between a wind tunnel sidewall boundary layer and a thin low-aspect-ratio wing has been performed for transonic speeds and flight Reynolds numbers. A three-dimensional Navier-Stokes code was applied to calculate the flow field. The first portion of the investigation examined the capability of the code to calculate the flow around the wing, with no sidewall boundary layer present. The second part of the research examined the effect of modeling the sidewall boundary layer. The results indicated that the sidewall boundary layer had a strong influence on the flow field around the wing. The viscous sidewall computations accurately predicted the leading edge suction peaks, and the strong adverse pressure gradients immediately downstream of the leading edge. This was in contrast to the consistent underpredictions of the free-air computations. The low momentum of the sidewall boundary layer resulted in higher pressures in the juncture region, which decreased the favorable spanwise pressure gradient. This significantly decreased the spanwise migration of the wing boundary layer. The computations indicated that the sidewall boundary layer remained attached for all cases examined. Weak vortices were predicted in both the upper and lower surface juncture regions. These vortices are believed to have been generated by lateral skewing of the streamlines in the approaching boundary layer.
NASA Astrophysics Data System (ADS)
Xu, Wei; Qiu, Nansheng; Wang, Ye; Chang, Jian
2018-01-01
The Meso-Cenozoic lithospheric thermal-rheological structure and lithospheric strength evolution of the Jiyang sub-basin were modeled using thermal history, crustal structure, and rheological parameter data. Results indicate that the thermal-rheological structure of the Jiyang sub-basin has exhibited obvious rheological stratification and changes over time. During the Early Mesozoic, the uppermost portion of the upper crust, middle crust, and the top part of the upper mantle had a thick brittle layer. During the early Early Cretaceous, the top of the middle crust's brittle layer thinned because of lithosphere thinning and temperature increase, and the uppermost portion of the upper mantle was almost occupied by a ductile layer. During the late Early Cretaceous, the brittle layer of the middle crust and the upper mantle changed to a ductile one. Then, the uppermost portion of the middle crust changed to a thin brittle layer in the late Cretaceous. During the early Paleogene, the thin brittle layer of the middle crust became even thinner and shallower under the condition of crustal extension. Currently, with the decrease in lithospheric temperature, the top of the upper crust, middle crust, and the uppermost portion of the upper mantle are of a brittle layer. The total lithospheric strength and the effective elastic thickness ( T e) in Meso-Cenozoic indicate that the Jiyang sub-basin experienced two weakened stages: during the late Early Cretaceous and the early Paleogene. The total lithospheric strength (approximately 4-5 × 1013 N m-1) and T e (approximately 50-60 km) during the Early Mesozoic was larger than that after the Late Jurassic (2-7 × 1012 N m-1 and 19-39 km, respectively). The results also reflect the subduction, and rollback of Pacific plate is the geodynamic mechanism of the destruction of the eastern North China Craton.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Joslyn, H. D.; Blair, M. F.
1987-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence and airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx. 5X engine), ambient temperature, rotating turbine model configured in both single-stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first stator-rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations.
Frankel, A.
1993-01-01
Three-dimensional finite difference simulations of elastic waves in the San Bernardino Valley were performed for two hypothetical earthquakes on the San Andreas fault: a point source with moment magnitude M5 and an extended rupture with M6.5. A method is presented for incorporating a source with arbitrary focal mechanism in the grid. Synthetics from the 3-D simulations are compared with those derived from 2-D (vertical cross section) and 1-D (flat-layered) models. The synthetic seismograms from the 3-D and 2-D simulations exhibit large surface waves produced by conversion of incident S waves at the edge of the basin. Seismograms from the flat-layered model do not contain these converted surface waves and underestimate the duration of shaking. Maps of maximum ground velocities occur in localized portions of the basin. The location of the largest velocities changes with the rupture propagation direction. Contours of maximum shaking are also dependent on asperity positions and radiation pattern. -from Author
NASA Technical Reports Server (NTRS)
2005-01-01
Since landing on Mars a year ago, NASA's pair of six-wheeled geologists have been constantly exposed to martian winds and dust. As a result, the Spirit rover has gradually experienced a slight decline in power as a thin layer of dust has accumulated on the solar panels, blocking some of the sunlight that is converted to electricity. In this enlarged image of a postage-stamp-size (3-centimeter-square, 1.2-inch-square) portion of one of Spirit's solar panels, a fine layer of martian dust coats electrical connections and metal surfaces. Individual silt grains or clumps of dust are visible where sediment has accumulated in crevices between solar cells and circuits. The upper right half of the image shows the edge of one of the rover's solar cells. The lower left half shows electrical wires bonded with silicon adhesive to the underlying composite surface; the circular abrasions are the result of sanding by hand on Earth. The braided wire is connected to a thermocouple used to measure temperature based on electrical resistance. Spirit took this image with its microscopic imager on martian day, or sol, 350 (Dec. 26, 2004).A Numerical Model of Viscoelastic Layer Entrainment by Airflow in Cough
NASA Astrophysics Data System (ADS)
Mitran, Sorin M.
2008-07-01
Coughing is an alternative mode of ensuring mucus clearance in the lung when normal cilia induced flow breaks down. A numerical model of this process is presented with the following aspects. (1) A portion of the airway comprising the first three bronchus generations is modeled as radially reinforced elastic tubes. Elasticity equations are solved to predict airway deformation under effect of airway pressure. (2) The compressible, turbulent flow induced by rapid lung contraction is modeled by direct numerical simulation for Reynolds numbers in the range 5,000-10,000 and by Large Eddy Simulation for Reynolds numbers in the range 5,000-40,000. (3) A two-layer model of the airway surface liquid (ASL) covering the airway epithelial layer is used. The periciliary liquid (PCL) in direct contact with the epithelial layer is considered to be a Newtonian fluid. Forces modeling cilia beating can act upon this layer. The mucus layer between the PCL and the interior airflow is modeled as an Oldroyd-B fluid. The overall computation is a fluid-structure interaction simulation that tracks changes in ASL thickness and airway diameters that result from impulsive airflow boundary conditions imposed at bronchi ends. In particular, the amount of mucus that is evacuated from the system is computed as a function of cough intensity and mucus rheological properties.
Combating Frosting with Joule-Heated Liquid-Infused Superhydrophobic Coatings.
Elsharkawy, Mohamed; Tortorella, Domenico; Kapatral, Shreyas; Megaridis, Constantine M
2016-05-03
Frost formation is omnipresent when suitable environmental conditions are met. A good portion of research on combating frost formation has revolved around the passive properties of superhydrophobic (SHPO) and slippery lubricant-impregnated porous (SLIP) surfaces. Despite much progress, the need for surfaces that can effectively combat frost formation over prolonged periods still remains. In this work, we report, for the first time, the use of electrically conductive SHPO/SLIP surfaces for active mitigation of frost formation. First, we demonstrate the failure of these surfaces to passively avert prolonged (several hours) frosting. Next, we make use of their electroconductive property for active Joule heating, which results in the removal of any formed frost. We study the role of the impregnating lubricant in the heat transfer across the interface, the surface, and the ambient. We show that, even though the thermal properties of the impregnating lubricant may vary drastically, the lubricant type does not noticeably affect the defrosting behavior of the surface. We attribute this outcome to the dominant thermal resistance of the thick frost layer formed on the cooled surface. We support this claim by drawing parallels between the present system and heat transfer through a one-dimensional (1D) composite medium, and solving the appropriate transient transport equations. Lastly, we propose periodic thermal defrosting for averting frost formation altogether. This methodology utilizes the coating's passive repellent capabilities, while eliminating the dominant effect of thick deposited frost layers. The periodic heating approach takes advantage of lubricants with higher thermal conductivities, which effectively enhance heat transfer through the porous multiphase surface that forms the first line of defense against frosting.
Ion irradiation damage in ilmenite at 100 K
Mitchell, J.N.; Yu, N.; Devanathan, R.; Sickafus, K.E.; Nastasi, M.A.; Nord, G.L.
1997-01-01
A natural single crystal of ilmenite (FeTiO3) was irradiated at 100 K with 200 keV Ar2+. Rutherford backscattering spectroscopy and ion channeling with 2 MeV He+ ions were used to monitor damage accumulation in the surface region of the implanted crystal. At an irradiation fluence of 1 ?? 1015 Ar2+/cm2, considerable near-surface He+ ion dechanneling was observed, to the extent that ion yield from a portion of the aligned crystal spectrum reached the yield level of a random spectrum. This observation suggests that the near-surface region of the crystal was amorphized by the implantation. Cross-sectional transmission electron microscopy and electron diffraction on this sample confirmed the presence of a 150 nm thick amorphous layer. These results are compared to similar investigations on geikielite (MgTiO3) and spinel (MgAl2O4) to explore factors that may influence radiation damage response in oxides.
Self-calibrated active pyrometer for furnace temperature measurements
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1998-01-01
Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.
Multilayer electronic component systems and methods of manufacture
NASA Technical Reports Server (NTRS)
Thompson, Dane (Inventor); Wang, Guoan (Inventor); Kingsley, Nickolas D. (Inventor); Papapolymerou, Ioannis (Inventor); Tentzeris, Emmanouil M. (Inventor); Bairavasubramanian, Ramanan (Inventor); DeJean, Gerald (Inventor); Li, RongLin (Inventor)
2010-01-01
Multilayer electronic component systems and methods of manufacture are provided. In this regard, an exemplary system comprises a first layer of liquid crystal polymer (LCP), first electronic components supported by the first layer, and a second layer of LCP. The first layer is attached to the second layer by thermal bonds. Additionally, at least a portion of the first electronic components are located between the first layer and the second layer.
NASA Astrophysics Data System (ADS)
Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.
2016-06-01
Hydrographic data from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the thermohaline structure related to the observed circulation along the Mesoamerican Barrier Reef System (MBRS). From our observations we identify three water masses in the MBRS: the Caribbean Surface Water (CSW), North Atlantic Subtropical Underwater (SUW), and Tropical Atlantic Central Water (TACW). Little vertical structure in temperature is observed in the upper 100 m of the water column, but important differences are observed in the salinity distribution both horizontally and with depth. Freshwater inputs to the system from the mainland can be traced in the surface layer, with two possible sources: one from surface rivers located along the southern portion of the MBRS, and the other originating from an underground river system located along the northern portion of the MBRS. The thermohaline structure in the MBRS reflects the dynamics of the observed circulation. Uplifted isopycnals along most of the central and northern coastline of the MBRS reflect the effects of the strong geostrophic circulation flowing northward, i.e. the Yucatan Current. To the south along the MBRS, much weaker velocities are observed, with the Honduras Gyre dominating the flow in this region as presented during January/February 2007. These two regions are separated by onshore and divergent alongshore flow associated with the impingement of the Cayman Current on the shore and the MBRS.
NASA Astrophysics Data System (ADS)
Johnson, B.; Cullis, P.; Schnell, R. C.; Oltmans, S. J.; Sterling, C. W.; Jordan, A. F.; Hall, E.
2016-12-01
Extreme high ozone mixing ratios, far exceeding U.S. National Air Quality Standards, were observed in the Uinta Basin in January-February 2013 under conditions highly favorable for wintertime ozone production. Hourly average ozone mixing ratios increased from regional background levels of 40-50 ppbv to >160 ppbv during several multi-day episodes of prolonged temperature inversions over snow-covered ground within air confining topography. Extensive surface and tethered balloon profile measurements of ozone, meteorology, CH4, CO2, NO2 and a suite of non-methane hydrocarbons (NMHCs) link emissions from oil and natural gas extraction with the strong ozone production throughout the Basin. High levels of NMHCs that were well correlated with CH4 showed that abundant O3 precursors were available throughout the Basin where high ozone mixing ratios extended from the surface to the top of the inversion layer at 200 m above ground level. This layer was at a nearly uniform height across the Basin even though there are significant terrain variations. Tethered balloon measurements rising above the elevated levels of ozone within the cold pool layer beneath the inversion measured regional background O3 concentrations. Surface wind and direction data from tethered balloons showed a consistent diurnal pattern in the Basin that moved air with the highest levels of CH4 and ozone precursor NMHC's from the gas fields of the east-central portion of the Basin to the edges during the day, before draining back into the Basin at night.
Photovoltaic module mounting clip with integral grounding
Lenox, Carl J.
2008-10-14
An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.
Composite turbine bucket assembly
Liotta, Gary Charles; Garcia-Crespo, Andres
2014-05-20
A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.
Methods of making wind turbine rotor blades
Livingston, Jamie T.; Burke, Arthur H. E.; Bakhuis, Jan Willem; Van Breugel, Sjef; Billen, Andrew
2008-04-01
A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.
Main roll for an air press of a papermaking machine
Beck, David A.
2004-03-09
A roll for use in an air press assembly of a papermaking machine has a pair of ends associated therewith. The roll includes a pair of edge portions with each edge portion extending to one of the pair of ends. Each edge portion has an edge surface portion composed of a first material, the first material having a first hardness. The roll further includes a middle portion located between the pair of edge portions, the middle portion having a middle surface portion composed of a second material. The second material has a second hardness, the second material being harder than the first material. The first material is preferably a soft, seal material which promotes reduced air leakage from the air press assembly.
Apparatus for mixing fuel in a gas turbine
Uhm, Jong Ho; Johnson, Thomas Edward
2015-04-21
A combustor nozzle includes an inlet surface and an outlet surface downstream from the inlet surface, wherein the outlet surface has an indented central portion. A plurality of fuel channels are arranged radially outward of the indented central portion, wherein the plurality of fuel channels extend through the outlet surface.
A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium
NASA Astrophysics Data System (ADS)
Fang, Chao; Garcia, C. Isaac; Choi, Shi-Hoon; DeArdo, Anthony J.
2015-08-01
The batch annealing behavior of two cold-rolled, microalloyed HSLA steels has been studied in this program. One steel was microalloyed with niobium while the other with titanium. A successfully batch annealed steel will exhibit minimum variation in properties along the length of the coil, even though the inner and outer wraps experience faster heating and cooling rates and lower soaking temperatures, i.e., the so-called "cold spot" areas, than the mid-length portion of the coil, i.e., the so-called "hot spot" areas. The variation in strength and ductility is caused by differences in the extent of annealing in the different areas. It has been known for 30 years that titanium-bearing HSLA steels show more variability after batch annealing than do the niobium-bearing steels. One of the goals of this study was to try to explain this observation. In this study, the annealing kinetics of the surface and center layers of the cold-rolled sheet were compared. The surface and center layers of the niobium steel and the surface layer of the titanium steel all showed similar annealing kinetics, while the center layer of the titanium steel exhibited much slower kinetics. Metallographic results indicate that the stored energy of the cold-rolled condition, as revealed by grain center sub-grain boundary density, appeared to strongly influence the annealing kinetics. The kinetics were followed by the Kernel Average Misorientation reconstruction of the microstructure at different stages on annealing. Possible pinning effects caused by microalloy precipitates were also considered. Methods of improving uniformity and increasing kinetics, involving optimizing both hot-rolled and cold-rolled microstructure, are suggested.
NASA Astrophysics Data System (ADS)
Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin
2017-06-01
The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.
Creating fluid injectivity in tar sands formations
Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan
2012-06-05
Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.
Creating fluid injectivity in tar sands formations
Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan
2010-06-08
Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.
Bucket platform cooling scheme and related method
Abuaf, Nesim; Barb, Kevin Joseph; Chopra, Sanjay; Kercher, David Max; Kellock, Iain Robertson; Lenahan, Dean Thomas; Nellian, Sankar; Starkweather, John Howard; Lupe, Douglas Arthur
2002-01-01
A turbine bucket includes an airfoil extending from a platform, having high and low pressure sides; a wheel mounting portion; a hollow shank portion located radially between the platform and the wheel mounting portion, the platform having an under surface. An impingement cooling plate is located in the hollow shank portion, spaced from the under surface, and the impingement plate is formed with a plurality of impingement cooling holes therein.
Direct k-space mapping of the electronic structure in an oxide-oxide interface.
Berner, G; Sing, M; Fujiwara, H; Yasui, A; Saitoh, Y; Yamasaki, A; Nishitani, Y; Sekiyama, A; Pavlenko, N; Kopp, T; Richter, C; Mannhart, J; Suga, S; Claessen, R
2013-06-14
The interface between LaAlO(3) and SrTiO(3) hosts a two-dimensional electron system of itinerant carriers, although both oxides are band insulators. Interface ferromagnetism coexisting with superconductivity has been found and attributed to local moments. Experimentally, it has been established that Ti 3d electrons are confined to the interface. Using soft x-ray angle-resolved resonant photoelectron spectroscopy we have directly mapped the interface states in k space. Our data demonstrate a charge dichotomy. A mobile fraction contributes to Fermi surface sheets, whereas a localized portion at higher binding energies is tentatively attributed to electrons trapped by O vacancies in the SrTiO(3). While photovoltage effects in the polar LaAlO(3) layers cannot be excluded, the apparent absence of surface-related Fermi surface sheets could also be fully reconciled in a recently proposed electronic reconstruction picture where the built-in potential in the LaAlO(3) is compensated by surface O vacancies serving also as a charge reservoir.
Application of the Nimbus 5 ESMR to rainfall detection over land surfaces
NASA Technical Reports Server (NTRS)
Meneely, J. M.
1975-01-01
The ability of the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) to detect rainfall over land surfaces was evaluated. The ESMR brightness temperatures (Tb sub B) were compared with rainfall reports from climatological stations for a limited number of rain events over portions of the U.S. The greatly varying emissivity of land surfaces precludes detection of actively raining areas. Theoretical calculations using a ten-layer atmospheric model showed this to be an expected result. Detection of rain which had fallen was deemed feasible over certain types of land surfaces by comparing the Tb sub B fields before and after the rain fell. This procedure is reliable only over relatively smooth terrain having a substantial fraction of bare soil, such as exists in major agricultural regions during the dormant or early growing seasons. Soil moisture budgets were computed at selected sites to show how the observed emissivity responded to changes in the moisture content of the upper soil zone.
NASA Astrophysics Data System (ADS)
Aoki, Toshichika; Wakayama, Hisashi; Kaneda, Naoki; Mishima, Tomoyoshi; Nomoto, Kazuki; Shiojima, Kenji
2013-11-01
The effects of the inductively coupled plasma (ICP) etching damage on the electrical characteristics of low-Mg-doped p-GaN Schottky contacts were evaluated by high-temperature isothermal capacitance transient spectroscopy. A large single peak for an acceptor-type surface state was dominantly detected for as-grown samples. The energy level and state density were obtained to be 1.18 eV above the valence band, which is close to a Ga vacancy (VGa), and 1.5×1013 cm-2, respectively. It was speculated that a small portion of Ga atoms were missing from the surface, and a high VGa density was observed in a few surface layers. The peak intensity decreased by 60% upon annealing at 800 °C, and further decrease was found by ICP etching. This decrease is consistent with the suppression of the memory effect in current-voltage characteristics. Upon annealing and ICP etching, since the VGa structure might be disordered, the peak intensity decreased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q; Lei, Y; Zheng, D
Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness weremore » created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.« less
System for reducing combustion dynamics and NO.sub.x in a combustor
Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Hughes, Michael John; York, William David
2016-05-31
A combustor includes an end cap that extends radially across at least a portion of the combustor. The end cap includes an upstream surface axially separated from a downstream surface. A plurality of tubes extend from the upstream surface through the downstream surface of the end cap to provide fluid communication through the end cap. Each tube in a first set of the plurality of tubes has an inlet proximate to the upstream surface and an outlet downstream from the downstream surface. Each outlet has a first portion that extends a different axial distance from the inlet than a second portion.
Method and apparatus for reading lased bar codes on shiny-finished fuel rod cladding tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldenfield, M.P.; Lambert, D.V.
1990-10-02
This patent describes, in a nuclear fuel rod identification system, a method of reading a bar code etched directly on a surface of a nuclear fuel rod. It comprises: defining a pair of light diffuser surfaces adjacent one another but in oppositely inclined relation to a beam of light emitted from a light reader; positioning a fuel rod, having a cylindrical surface portion with a bar code etched directly thereon, relative to the light diffuser surfaces such that the surfaces are disposed adjacent to and in oppositely inclined relation along opposite sides of the fuel rod surface portion and themore » fuel rod surface portion is aligned with the beam of light emitted from the light reader; directing the beam of light on the bar code on fuel rod cylindrical surface portion such that the light is reflected therefrom onto one of the light diffuser surfaces; and receiving and reading the reflected light from the bar code via the one of the light diffuser surfaces to the light reader.« less
Electrochemical machining process for forming surface roughness elements on a gas turbine shroud
Lee, Ching-Pang; Johnson, Robert Alan; Wei, Bin; Wang, Hsin-Pang
2002-01-01
The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.
Direct mounted photovoltaic device with improved adhesion and method thereof
Boven, Michelle L; Keenihan, James R; Lickly, Stan; Brown, Jr., Claude; Cleereman, Robert J; Plum, Timothy C
2014-12-23
The present invention is premised upon a photovoltaic device suitable for directly mounting on a structure. The device includes an active portion including a photovoltaic cell assembly having a top surface portion that allows transmission of light energy to a photoactive portion of the photovoltaic device for conversion into electrical energy and a bottom surface having a bottom bonding zone; and an inactive portion immediately adjacent to and connected to the active portion, the inactive portion having a region for receiving a fastener to connect the device to the structure and having on a top surface, a top bonding zone; wherein one of the top and bottom bonding zones comprises a first bonding element and the other comprises a second bonding element, the second bonding element designed to interact with the first bonding element on a vertically overlapped adjacent photovoltaic device to bond the device to such adjacent device or to the structure.
High temperature control rod assembly
Vollman, Russell E.
1991-01-01
A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.
Method to planarize three-dimensional structures to enable conformal electrodes
Nikolic, Rebecca J; Conway, Adam M; Graff, Robert T; Reinhardt, Catherine; Voss, Lars F; Shao, Qinghui
2012-11-20
Methods for fabricating three-dimensional PIN structures having conformal electrodes are provided, as well as the structures themselves. The structures include a first layer and an array of pillars with cavity regions between the pillars. A first end of each pillar is in contact with the first layer. A segment is formed on the second end of each pillar. The cavity regions are filled with a fill material, which may be a functional material such as a neutron sensitive material. The fill material covers each segment. A portion of the fill material is etched back to produce an exposed portion of the segment. A first electrode is deposited onto the fill material and each exposed segment, thereby forming a conductive layer that provides a common contact to each the exposed segment. A second electrode is deposited onto the first layer.
Interactive calculation procedures for mixed compression inlets
NASA Technical Reports Server (NTRS)
Reshotko, Eli
1983-01-01
The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections.
Webber, K.L.; Falster, A.U.; Simmons, W.B.; Foord, E.E.
1997-01-01
The George Ashley Block (GAB), located in the Pala Pegmatite District, San Diego County, California, is a composite pegmatite-aplite dike of 8 m thickness displaying striking mineralogical layering in the aphte portion of the dike, referred to as line rock. Rhythmic layering is characterized by garnet-rich bands alternating with albite-quartz-muscovite-rich bands. Cumulus textures are notably absent from the layered portion of the dike. Elongated quartz, megacrysts are oriented perpendicular to the garnet-rich layers and poikilitically include garnet, albite, and muscovite. Calculated crystal-free magma viscosity with 3% H2O is 106.2 Pa s and the calculated settling velocity for garnet is 0??51 cm/year. Conductive cooling calculations based on emplacement of a 650??C dike into 150?? C fractured gabbroic country rock at 1??5 kbar, and accounting for latent heat of crystallization, demonstrate that the line rock portion of the dike cools to 550?? C in about 1 year. Crystal size distribution studies also suggest very rapid nucleation and crystallization. Diffusion-controlled gel crystallization experiments yield textures virtually identical to those observed in the layered aplite, including rhythmic banding, colloform layering, and band discontinuities. Thus, observed textures and calculated magmatic parameters suggest that mineralogical layering in the GAB results from an in situ diffusion-controlled process of oscillatory nucleation and crystallization. We propose that any event that promotes strong undercooling has the potential to initiate rapid heterogeneous nucleation and oscillatory crystal growth, leading to the development of a layer of excluded components in front of the crystallization front, and the formation of line rock.
Rine, J.M.; Berg, R.C.; Shafer, J.M.; Covington, E.R.; Reed, J.K.; Bennett, C.B.; Trudnak, J.E.
1998-01-01
A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.
Cratering Studies in Thin Plastic Films
NASA Astrophysics Data System (ADS)
Shu, Anthony; Bugiel, S.; Gruen, E.; Horanyi, M.; Munsat, T.; Srama, R.; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team
2013-10-01
Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. Two Smoothed Particle Hydrodynamics (SPH) codes are being evaluated for use as a simulator for hypervelocity impacts: Ansys Autodyn and LS-Dyna from the Livermore Software Technology Corp. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Experimental results and preliminary simulation results and conclusions will be presented.
Large-scale effects on the regulation of tropical sea surface temperature
NASA Technical Reports Server (NTRS)
Hartmann, Dennis L.; Michelsen, Marc L.
1993-01-01
The dominant terms in the surface energy budget of the tropical oceans are absorption of solar radiation and evaporative cooling. If it is assumed that relative humidity in the boundary layer remains constant, evaporative cooling will increase rapidly with sea surface temperature (SST) because of the strong temperature dependence of saturation water vapor pressure. The resulting stabilization of SST provided by evaporative cooling is sufficient to overcome positive feedback contributed by the decrease of surface net longwave cooling with increasing SST. Evaporative cooling is sensitive to small changes in boundary-layer relative humidity. Large and negative shortwave cloud forcing in the regions of highest SST are supported by the moisture convergence associated with largescale circulations. In the descending portions of these circulations the shortwave cloud forcing is suppressed. When the effect of these circulations is taken into account by spatial averaging, the area-averaged cloud forcing shows no sensitivity to area-averaged SST changes associated with the 1987 warming event in the tropical Pacific. While the shortwave cloud forcing is large and important in the convective regions, the importance of its role in regulating the average temperature of the tropics and in modulating temperature gradients within the tropics is less clear. A heuristic model of SST is used to illustrate the possible role of large-scale atmospheric circulations on SST in the tropics and the coupling between SST gradients and mean tropical SST. The intensity of large-scale circulations responds sensitivity to SST gradients and affects the mean tropical SST by supplying dry air to the planetary boundary layer. Large SST gradients generate vigorous circulations that increase evaporation and reduce the mean SST.
Multiple pass and multiple layer friction stir welding and material enhancement processes
Feng, Zhili [Knoxville, TN; David, Stan A [Knoxville, TN; Frederick, David Alan [Harriman, TN
2010-07-27
Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.
NASA Astrophysics Data System (ADS)
Hubble, Thomas; De Carli, Elyssa; Airey, David; Breakfree 2012-2013, Scientific Parties MV
2014-05-01
The peak of the recent prolonged 'Millennium Drought' (1997-2011) triggered an episode of widespread mass failure in the alluvial river-banks of the Lower Murray River in South Australia. Multi-beam surveying of the channel and submerged river-banks between Mannum and Murray Bridge and coring of the bank sediments has been undertaken in sections of the river where large bank failures threatened private housing or public infrastructure. This data demonstrates that the bank materials are soft, horizontally-layered muds and that translational, planar slab-slides have frequently occurred in permanently submerged portions of the Murray's river banks. Despite these riverine features being several orders of magnitude smaller than the translational submarine landslides of the continental margins, the submerged river-bank slides are strikingly similar in their morphology to their submarine equivalents. Intriguingly, the Murray River translational slide failure-surfaces are usually developed as river-floor-parallel features in a manner similar to many submarine landslides which present failure-surfaces that are developed on seafloor-parallel, bedding planes. In contrast however, the Murray's river-bank slides occur on steep slopes (>20o) and their failure surfaces must cut across the horizontal laminations and layering of the muds at a relative high angle which removes the possibility of a weak sediment layer being responsible for the occurrence of these failures. Modelling of the river-bank failures with classical soil mechanics methods and the measured physical properties of the river-bank materials indicates that the failures are probably a consequence of flood-flow scour removing the bank-slope toe in combination with pore-pressure effects related to river-level fluctuation (ie. drawdown). Nevertheless, the Murray's translational slab-slides provide a reliable example of slope-parallel planar failure in muds that does not require a stratigraphic weak layer to explain the occurrence of those failures.
NASA Astrophysics Data System (ADS)
Stauffer, David R.
1990-01-01
The application of dynamic relationships to the analysis problem for the atmosphere is extended to use a full-physics limited-area mesoscale model as the dynamic constraint. A four-dimensional data assimilation (FDDA) scheme based on Newtonian relaxation or "nudging" is developed and evaluated in the Penn State/National Center for Atmospheric Research (PSU/NCAR) mesoscale model, which is used here as a dynamic-analysis tool. The thesis is to determine what assimilation strategies and what meterological fields (mass, wind or both) have the greatest positive impact on the 72-h numerical simulations (dynamic analyses) of two mid-latitude, real-data cases. The basic FDDA methodology is tested in a 10-layer version of the model with a bulk-aerodynamic (single-layer) representation of the planetary boundary layer (PBL), and refined in a 15-layer version of the model by considering the effects of data assimilation within a multi-layer PBL scheme. As designed, the model solution can be relaxed toward either gridded analyses ("analysis nudging"), or toward the actual observations ("obs nudging"). The data used for assimilation include standard 12-hourly rawinsonde data, and also 3-hourly mesoalpha-scale surface data which are applied within the model's multi-layer PBL. Continuous assimilation of standard-resolution rawinsonde data into the 10-layer model successfully reduced large-scale amplitude and phase errors while the model realistically simulated mesoscale structures poorly defined or absent in the rawinsonde analyses and in the model simulations without FDDA. Nudging the model fields directly toward the rawinsonde observations generally produced results comparable to nudging toward gridded analyses. This obs -nudging technique is especially attractive for the assimilation of high-frequency, asynoptic data. Assimilation of 3-hourly surface wind and moisture data into the 15-layer FDDA system was most effective for improving the simulated precipitation fields because a significant portion of the vertically integrated moisture convergence often occurs in the PBL. Overall, the best dynamic analyses for the PBL, mass, wind and precipitation fields were obtained by nudging toward analyses of rawinsonde wind, temperature and moisture (the latter uses a weaker nudging coefficient) above the model PBL and toward analyses of surface-layer wind and moisture within the model PBL.
Raoufi, Mohammad; Schönherr, Holger
2014-02-18
We report on the fabrication of unprecedented free-standing complex polymeric nanoobjects, which possess both concave and convex curvatures, by exploiting the layer-by-layer (LBL) deposition of polyelectrolytes. In a combined top-down/bottom-up replication approach pore diameter-modulated anodic aluminum oxide (AAO) templates, fabricated by temperature modulation hard anodization (TMHA), were replicated with multilayers of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) to yield open nanotubes with diameters in the wide and narrow segments of 210 and 150 nm, respectively. To obtain stable pore diameter-modulated nanopores, which possess segment lengths between 1 and 5 μm and 5 and 10 μm in the narrow and wide pore portion, respectively, conventional hard anodization of aluminum was followed by a subsequent temperature-modulated anodization. After removing the backside aluminum electrode, silanizing the aluminum oxide, and passivating the exposed membrane surface with a thin layer of gold, PSS and PAH were deposited alternatingly to yield LBL multilayers. For optimized LBL multilayer thicknesses and compactness, established in separate experiments on silicon substrates and nanoporous AAO with straight pores, free-standing polymeric nanoobjects with concave and convex curvatures, were obtained. These were stable for wall thickness to pore diameter ratios of ≥0.08.
NASA Astrophysics Data System (ADS)
Galperin, Boris; Mellor, George L.
1990-09-01
The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.
Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Brian Richmond; Chen, Xinwei; Chiang, Yet-Ming
In certain embodiments, the invention relates to an electrochemical device having a liquid lubricant impregnated surface. At least a portion of the interior surface of the electrochemical device includes a portion that includes a plurality of solid features disposed therein. The plurality of solid features define a plurality of regions therebetween. A lubricant is disposed in the plurality of regions which retain the liquid lubricant in the plurality of regions during operation of the device. An electroactive phase comes in contact with at least the portion of the interior surface. The liquid lubricant impregnated surface introduces a slip at themore » surface when the electroactive phase flows along the surface. The electroactive phase may be a yield stress fluid.« less
Effect of Film-Hole Shape on Turbine Blade Film Cooling Performance
NASA Technical Reports Server (NTRS)
Han, J. C.; Teng, S.
2000-01-01
The detailed heat transfer coefficient and film cooling effectiveness distributions as well as tile detailed coolant jet temperature profiles on the suction side of a gas turbine blade A,ere measured using a transient liquid crystal image method and a traversing cold wire and a traversing thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 or 0.1. Coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness.
Insertion tube methods and apparatus
Casper, William L.; Clark, Don T.; Grover, Blair K.; Mathewson, Rodney O.; Seymour, Craig A.
2007-02-20
A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.
Casper, William L [Rigby, ID; Clark, Don T [Idaho Falls, ID; Grover, Blair K [Idaho Falls, ID; Mathewson, Rodney O [Idaho Falls, ID; Seymour, Craig A [Idaho Falls, ID
2008-10-07
A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.
Deposition of dopant impurities and pulsed energy drive-in
Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.
2008-01-01
A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.
Deposition of dopant impurities and pulsed energy drive-in
Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.
1999-01-01
A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.
Deposition of dopant impurities and pulsed energy drive-in
Wickboldt, P.; Carey, P.G.; Smith, P.M.; Ellingboe, A.R.
1999-06-29
A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique is disclosed. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques. 2 figs.
Structural characterization of cup-stacked-type nanofibers with an entirely hollow core
NASA Astrophysics Data System (ADS)
Endo, M.; Kim, Y. A.; Hayashi, T.; Fukai, Y.; Oshida, K.; Terrones, M.; Yanagisawa, T.; Higaki, S.; Dresselhaus, M. S.
2002-02-01
Straight long carbon nanofibers with a large hollow core obtained by a floating reactant method show a stacking morphology of truncated conical graphene layers, which in turn exhibit a large portion of open edges on the outer surface and also in the inner channels. Through a judicious choice of oxidation conditions, nanofibers with increased active edge sites are obtained without disrupting the fiber's morphology. A graphitization process induces a morphological change from a tubular type to a reversing saw-toothed type and the formation of loops along the inner channel of the nanofibers, accompanied by a decrease in interlayer spacing.
Wittrock, D D; Bruce, C S; Johnson, A D
1991-06-01
Cysts of Uvulifer ambloplitis from green sunfish, Lepomis cyanellus, and Neascus pyriformis from red shiners, Notropis lutrensis, were studied with light-level histochemistry and scanning and transmission electron microscopy. Cysts of both species are bilayered, consisting of an outer host capsule and an inner parasite cyst; the space between these layers is filled with a viscous material. The outer portion of the host capsule of both species is composed of fibrocytes, melanin granules, and collagen fibrils, and the inner portion of layers of flattened fibrocytes. The parasite cyst of U. ambloplitis is formed of 2 layers, an outer dense layer and an inner light layer, whereas the parasite cyst of N. pyriformis is made of 3 layers. A thin outer light-staining layer is present in addition to the 2 layers observed in U. ambloplitis. Results of histochemical staining were the same for both species. The host capsule stained positively for proteins and neutral and acid mucopolysaccharides. The viscous material was positive for neutral and acid mucopolysaccharides but not for proteins. The parasite cyst gave a strong positive reaction for neutral mucopolysaccharides but was negative for acid mucopolysaccharides and proteins.
Newsome, Anthony L; DuBois, John D; Tenney, Joel D
2009-01-01
Backround Community-associated methicillin-resistant Staphylococcus aureus outbreaks have occurred in individuals engaged in athletic activities such as wrestling and football. Potential disease reduction interventions include the reduction or elimination of bacteria on common use items such as equipment. Chlorine dioxide has a long history of use as a disinfectant. The purpose of this investigation was to evaluate the ability of novel portable chlorine dioxide generation devices to eliminate bacteria contamination of helmets and pads used by individuals engaged in football. Methods In field studies, the number of bacteria associated with heavily used football helmets and shoulder pads was determined before and after overnight treatment with chlorine dioxide gas. Bacteria were recovered using cotton swabs and plated onto trypticase soy agar plates. In laboratory studies, Staphylococcus aureus was applied directly to pads. The penetration of bacteria into the pads was determined by inoculating agar plates with portions of the pads taken from the different layers of padding. The ability to eliminate bacteria on the pad surface and underlying foam layers after treatment with chlorine dioxide was also determined. Results Rates of recovery of bacteria after treatment clearly demonstrated that chlorine dioxide significantly (p < 0.001) reduce and eliminated bacteria found on the surface of pads. For example, the soft surface of shoulder pads from a university averaged 2.7 × 103 recoverable bacteria colonies before chlorine dioxide treatment and 1.3 × 102 recoverable colonies after treatment. In addition, the gas was capable of penetrating the mesh surface layer and killing bacteria in the underlying foam pad layers. Here, 7 × 103 to 4.5 × 103 laboratory applied S. aureus colonies were recovered from underlying layers before treatment and 0 colonies were present after treatment. Both naturally occurring bacteria and S. aureus were susceptible to the treatment process. Conclusion Results of this study have shown that chlorine dioxide can easily and safely be used to eliminate bacteria contamination of protective pads used by football players. This could serve to reduce exposure to potential pathogens such as the methicillin-resistant Staphylococcus aureus among this group of individuals. PMID:19737415
Method and system for laser-based formation of micro-shapes in surfaces of optical elements
Bass, Isaac Louis; Guss, Gabriel Mark
2013-03-05
A method of forming a surface feature extending into a sample includes providing a laser operable to emit an output beam and modulating the output beam to form a pulse train having a plurality of pulses. The method also includes a) directing the pulse train along an optical path intersecting an exposed portion of the sample at a position i and b) focusing a first portion of the plurality of pulses to impinge on the sample at the position i. Each of the plurality of pulses is characterized by a spot size at the sample. The method further includes c) ablating at least a portion of the sample at the position i to form a portion of the surface feature and d) incrementing counter i. The method includes e) repeating steps a) through d) to form the surface feature. The sample is free of a rim surrounding the surface feature.
Basic analytical investigation of plasma-chemically modified carbon fibers1
NASA Astrophysics Data System (ADS)
Bubert, H.; Ai, X.; Haiber, S.; Heintze, M.; Brüser, V.; Pasch, E.; Brandl, W.; Marginean, G.
2002-10-01
The background of the present investigation is to enhance the overall adherence of vapor grown carbon fibers (VGCF) to the surrounding polymer matrix in different applications by forming polar groups at their surfaces and by modifying the surface morphology. This has been done by plasma treatments using a low-pressure plasma with different gases, flow rates, pressures and powers. Two different types of carbon fibers were investigated: carbon microfibers and carbon nanofibers. The characterization of fiber surfaces was achieved by photoelectron spectroscopy (XPS), contact angle measurements and titration. These investigations were accompanied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The oxygen plasma treatment of the fibers changes the surfaces by forming a layer with a thickness of the order of one nanometer mainly consisting of functional groups like hydroxyl, carbonyl and carboxyl. After functionalization of the complete surface, a further plasma treatment does not enhance the superficial oxygen content but changes slightly the portions of the functional groups. A comparison of the methods applied provides a largely consistent image of the effect of plasma treatment.
Simultaneous ocean cross-section and rainfall measurements from space with a nadir-pointing radar
NASA Technical Reports Server (NTRS)
Meneghini, R.; Atlas, D.
1984-01-01
A method to determine simultaneously the rainfall rate and the normalized backscattering cross section of the surface was evaluated. The method is based on the mirror reflected power, p sub m which corresponds to the portion of the incident power scattered from the surface to the precipitation, intercepted by the precipitation, and again returned to the surface where it is scattered a final time back to the antenna. Two approximations are obtained for P sub m depending on whether the field of view at the surface is either much greater or much less than the height of the reflection layer. Since the dependence of P sub m on the backscattering cross section of the surface differs in the two cases, two algorithms are given by which the path averaged rain rate and normalized cross section are deduced. The detectability of P sub m, the relative strength of other contributions to the return power arriving simultaneous with P sub m, and the validity of the approximations used in deriving P sub m are discussed.
Clouds in the Northern Tempe Terra
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 2 May 2002) The Science This THEMIS visible image shows a region in northern Tempe Terra near 48o N, 75o W (285o E). Patchy water-ice clouds cover portions of the low-lying canyon at the top (north) of this image. Further south the atmosphere is clear and the knobby or 'scabby' plains that are typical of many mid-latitude regions on Mars can be seen. These plains appear to mantle and modify a pre-existing surface, burying the older cratered terrain. This mantling layer has itself been modified to produce a pitted, knobby surface. The large mesa seen in this image has unusual deposits of material that occur preferentially on the cold, north-facing slopes. These deposits are seen frequently at mid-northern and southern latitudes, and have a distinct, rounded boundary that typically occurs at approximately the same distance below the ridge crest. It has been suggested that these deposits once draped the entire surface and have since been removed from all but the north-facing slopes. The presence of water ice in these layers is a likely possibility to account for their preservation only on the colder surfaces. The south-facing slopes lack this mantling material, and show clear evidence for layering in the rock units that form the mesa. The Story This deep and murky-looking depression is in an area called 'Tempe Terra,' a lilting, alliterative name that seems almost a little too merry for this kind of terrain. If the top of the image looks a little smudgy, that's because patchy water-ice clouds hang over the low lying canyon. Further south, where the air is clear, you can see some 'scabby' plains (particularly in the high-res image, where the knobby patches of raised surface areas sort of do look like crusted-over dirt wounds). These plains cover a more ancient, cratered surface, but have been eroded away enough to form these scabby-seeming features. The large mesa in this image has some odd deposits of material on its cold, north-facing slopes. Could these deposits have been all over the surface of Mars long ago, but then were subsequently eroded away in most places on the planet? Did water ice on the colder surfaces preserve the last vestiges of these deposits so that scientists have the advantage of studying them today? While those answers won't be clear for a while, the south-facing slopes don't have this piled on material. That makes it easier to see the rock layers in the mesa. Layers are important to study, because they tell what has happened to the planet geologically over its history. The bottom layers are usually the oldest (unless some geologic force has pushed them up), so looking at each layer can give an idea of what happened first and last . . . and maybe even how long each period of time lasted.
NASA Technical Reports Server (NTRS)
Kaufman, L. G., II; Johnson, C. B.
1984-01-01
Aerodynamic surface heating rate distributions in three dimensional shock wave boundary layer interaction flow regions are presented for a generic set of model configurations representative of the aft portion of hypersonic aircraft. Heat transfer data were obtained using the phase change coating technique (paint) and, at particular spanwise and streamwise stations for sample cases, by the thin wall transient temperature technique (thermocouples). Surface oil flow patterns are also shown. The good accuracy of the detailed heat transfer data, as attested in part by their repeatability, is attributable partially to the comparatively high temperature potential of the NASA-Langley Mach 8 Variable Density Tunnel. The data are well suited to help guide heating analyses of Mach 8 aircraft, and should be considered in formulating improvements to empiric analytic methods for calculating heat transfer rate coefficient distributions.
Chemical modification of the cocoa shell surface using diazonium salts.
Fioresi, Flavia; Vieillard, Julien; Bargougui, Radhouane; Bouazizi, Nabil; Fotsing, Patrick Nkuigue; Woumfo, Emmanuel Djoufac; Brun, Nicolas; Mofaddel, Nadine; Le Derf, Franck
2017-05-15
The outer portion of the cocoa bean, also known as cocoa husk or cocoa shell (CS), is an agrowaste material from the cocoa industry. Even though raw CS is used as food additive, garden mulch, and soil conditioner or even burnt for fuel, this biomass material has hardly ever been investigated for further modification. This article proposes a strategy of chemical modification of cocoa shell to add value to this natural material. The study investigates the grafting of aryl diazonium salt on cocoa shell. Different diazonium salts were grafted on the shell surface and characterized by infrared spectroscopy and scanning electronic microscopy imaging. Strategies were developed to demonstrate the spontaneous grafting of aryl diazonium salt on cocoa shell and to elucidate that lignin is mainly involved in immobilizing the phenyl layer. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Settles, G. S.; Garg, S.
1993-01-01
An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins at angle of attack. Fin angles from 10 to 20 deg at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature Kulite pressure transducers flush-mounted in the flat plate are used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their ring levels, amplitude distributions, and power spectra, are also determined. Measurements were made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 160 dB. These fluctuations are dominated by low frequency (0-5 kHz) signals. The maximum ring levels in the interactions show an increasing trend with increasing interaction strength. On the other hand, the maximum ring levels in the forward portion of the interactions decrease linearly with increasing interaction sweep back. These ring pressure distributions and spectra are correlated with the features of the interaction flowfield. The unsteadiness of the off-surface flowfield is studied using a new, non-intrusive technique based on the shadow graph method. The results indicate that the entire lambda-shock structure generated by the interaction undergoes relatively low-frequency oscillations. Some regions where particularly strong fluctuations are generated were identified. Fluctuating pressure measurements are also made along the line of symmetry of an axisymmetric jet impinging upon a flat plate at an angle. This flow was chosen as a simple analog to the impinging jet region found in the rear portion of the shock wave/boundary layer interactions under study. It is found that a sharp peak in ring pressure level exists at or near the mean stagnation point. It is suggested that the phenomena responsible for this peak may be active in the swept interactions as well, and may cause the extremely high fluctuating pressures observed in the impinging jet region in the present experimental program.
Pathways of basal meltwater from Antarctic ice shelves: A model study
NASA Astrophysics Data System (ADS)
Kusahara, Kazuya; Hasumi, Hiroyasu
2014-09-01
We investigate spreading pathways of basal meltwater released from all Antarctic ice shelves using a circumpolar coupled ice shelf-sea ice-ocean model that reproduces major features of the Southern Ocean circulation, including the Antarctic Circumpolar Current (ACC). Several independent virtual tracers are used to identify detailed pathways of basal meltwaters. The spreading pathways of the meltwater tracers depend on formation sites, because the meltwaters are transported by local ambient ocean circulation. Meltwaters from ice shelves in the Weddell and Amundsen-Bellingshausen Seas in surface/subsurface layers are effectively advected to lower latitudes with the ACC. Although a large portion of the basal meltwaters is present in surface and subsurface layers, a part of the basal meltwaters penetrates into the bottom layer through active dense water formation along the Antarctic coastal margins. The signals at the seafloor extend along the topography, showing a horizontal distribution similar to the observed spreading of Antarctic Bottom Water. Meltwaters originating from ice shelves in the Weddell and Ross Seas and in the Indian sector significantly contribute to the bottom signals. A series of numerical experiments in which thermodynamic interaction between the ice shelf and ocean is neglected regionally demonstrates that the basal meltwater of each ice shelf impacts sea ice and/or ocean thermohaline circulation in the Southern Ocean. This article was corrected on 10 OCT 2014. See the end of the full text for details.
Study of Photosensitive Dry Films Absorption for Printed Circuit Boards by Photoacoustic Technique
NASA Astrophysics Data System (ADS)
Hernández, R.; Zaragoza, J. A. Barrientos; Jiménez-Pérez, J. L.; Orea, A. Cruz; Correa-Pacheco, Z. N.
2017-08-01
In this work, the study of photosensitive dry-type films by photoacoustic technique is proposed. The dry film photoresist is resistant to chemical etching for printed circuit boards such as ferric chloride, sodium persulfate or ammonium, hydrochloric acid. It is capable of faithfully reproducing circuit pattern exposed to ultraviolet light (UV) through a negative. Once recorded, the uncured portion is removed with alkaline solution. It is possible to obtain good results in surface mount circuits with tracks of 5 mm. Furthermore, the solid resin films are formed by three layers, two protective layers and a UV-sensitive optical absorption layer in the range of 325 nm to 405 nm. By means of optical absorption of UV-visible rays emitted by a low-power Xe lamp, the films transform this energy into thermal waves generated by the absorption of optical radiation and subsequently no-radiative de-excitation occurs. The photoacoustic spectroscopy is a useful technique to measure the transmittance and absorption directly. In this study, the optical absorption spectra of the three layers of photosensitive dry-type films were obtained as a function of the wavelength, in order to have a knowledge of the absorber layer and the protective layers. These analyses will give us the physical properties of the photosensitive film, which are very important in curing the dry film for applications in printed circuit boards.
Method of fabricating multiwavelength infrared focal plane array detector
NASA Technical Reports Server (NTRS)
Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)
1996-01-01
A multiwavelength local plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y.ltoreq.1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.
Multiwavelength infrared focal plane array detector
NASA Technical Reports Server (NTRS)
Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)
1995-01-01
A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.
NASA Technical Reports Server (NTRS)
2002-01-01
[figure removed for brevity, see original site] (Released 26 July 2002) Another in a series of craters with unusual interior deposits, this THEMIS image shows an unnamed crater in the southern hemisphere Pandora Fretum region near the Hellas Basin. Craters with eroded layered deposits are quite common on Mars but the crusty textured domes in the center of the image make this crater more unusual. Looking vaguely like granitic intrusions, there erosional style is distinct from the rest of the interior deposit which shows a very obvious layered morphology. While it is unlikely that the domes are granite plutons, it is possible that they do represent some other shallowly emplaced magmatic intrusion. More likely still is that variations in induration of the layered deposit allow for variations in the erosional morphology. Note how the surface of the crater floor in the northernmost portion of the image has a texture similar to that of the domes. This may represent an incipient form of the erosion that has produced the domes but has not progressed as far. An analysis of other craters in the area may shed light on the origin of the domes.
Towards industrial-strength Navier-Stokes codes
NASA Technical Reports Server (NTRS)
Jou, Wen-Huei; Wigton, Laurence B.; Allmaras, Steven R.
1992-01-01
In this paper we discuss our experiences with Navier-Stokes (NS) codes using central differencing (CD) and scalar artificial dissipation (SAD). The NS-CDSAD codes have been developed by several researchers. Our results confirm that for typical commercial transport wing and wing/body configurations flying at transonic conditions with all turbulent boundary layers, NS-CDSAD codes, when used with the Johnson-King turbulence model, are capable of computing pressure distributions in excellent agreement with experimental data. However, results are not as good when laminar boundary layers are present. Exhaustive 2-D grid refinement studies supported by detailed analysis suggest that the numerical errors associated with SAD severely contaminate the solution in the laminar portion of the boundary layer. It is left as a challenge to the CFD community to find and fix the problems with Navier-Stokes codes and to produce a NS code which converges reliably and properly captures the laminar portion of the boundary layer on a reasonable grid.
Making Complex Electrically Conductive Patterns on Cloth
NASA Technical Reports Server (NTRS)
Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert
2008-01-01
A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.
40 CFR 761.302 - Proportion of the total surface area to sample.
Code of Federal Regulations, 2011 CFR
2011-07-01
... surface into approximately 1 meter square portions and mark the portions so that they are clearly... surfaces contaminated by a single source of PCBs with a uniform concentration, assign each 1 meter square surface a unique sequential number. (i) For three or fewer 1 meter square areas, sample all of the areas...
40 CFR 761.302 - Proportion of the total surface area to sample.
Code of Federal Regulations, 2014 CFR
2014-07-01
... surface into approximately 1 meter square portions and mark the portions so that they are clearly... surfaces contaminated by a single source of PCBs with a uniform concentration, assign each 1 meter square surface a unique sequential number. (i) For three or fewer 1 meter square areas, sample all of the areas...
40 CFR 761.302 - Proportion of the total surface area to sample.
Code of Federal Regulations, 2010 CFR
2010-07-01
... surface into approximately 1 meter square portions and mark the portions so that they are clearly... surfaces contaminated by a single source of PCBs with a uniform concentration, assign each 1 meter square surface a unique sequential number. (i) For three or fewer 1 meter square areas, sample all of the areas...
40 CFR 761.302 - Proportion of the total surface area to sample.
Code of Federal Regulations, 2012 CFR
2012-07-01
... surface into approximately 1 meter square portions and mark the portions so that they are clearly... surfaces contaminated by a single source of PCBs with a uniform concentration, assign each 1 meter square surface a unique sequential number. (i) For three or fewer 1 meter square areas, sample all of the areas...
40 CFR 761.302 - Proportion of the total surface area to sample.
Code of Federal Regulations, 2013 CFR
2013-07-01
... surface into approximately 1 meter square portions and mark the portions so that they are clearly... surfaces contaminated by a single source of PCBs with a uniform concentration, assign each 1 meter square surface a unique sequential number. (i) For three or fewer 1 meter square areas, sample all of the areas...
NASA Astrophysics Data System (ADS)
Chang, Feng-Ming; Wu, Zong-Zhe; Lin, Yen-Fu; Kao, Li-Chi; Wu, Cheng-Ta; JangJian, Shiu-Ko; Chen, Yuan-Nian; Lo, Kuang Yao
2018-03-01
The condition of the beam current in the implantation process is a key issue in the damage rate and structural evolution in the sequent annealing process, especially for ultra-shallow layers. In this work, we develop a compensative optical method combined with UV Raman, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near edge spectroscopy (XANES) to inspect the influence of the beam current in the implantation process. The optima condition of the beam current in the implantation process is determined by higher effective Si-B bond portion in UV Raman spectra and less the peak of B-B bond in XPS spectra which is caused by B cluster defects. Results of XANES indicate that the B oxide layer is formed on the surface of the ultra-shallow junction. The defects in the ultra-shallow junction after annealing are analyzed by novel optical analyses, which cannot be inspected by a traditional thermal wave and resistance measurement. This work exhibits the structural variation of the ultra-shallow junction via a variant beam current and provides a valuable metrology in examining the chemical states and the effective activation in the implantation technology.
NASA Technical Reports Server (NTRS)
Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.
1994-01-01
Wall shear stress measurements beneath crossing-shock-wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin-friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction center line. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-epsilon model, are compared with the experimental results for the Mach 3.85, 15-deg interaction case. Although the k-epsilon model did a reasonable job of predicting the overall trend in portions of the skin-friction distribution, neither computation fully captured the physics of the near-surface flow in this complex interaction.
NASA Technical Reports Server (NTRS)
Garrison, T. J.; Settles, G. S.
1993-01-01
Wall shear stress measurements beneath crossingshock wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symmetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 degrees at Mach 3 and 15 degrees at Mach 4. The measurements were made using a Laser Interferometer Skin Friction (LISF) meter; a device which determines the wail shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction centerline. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k- model, are compared to the experimental results for the Mach 4, 15 degree interaction case. While the k- model did a reasonable job of predicting the overall trend in portions of the skin friction distribution, neither computation fully captured the physics of the near surface flow in this complex interaction.
Mars 2020 Candidate Landing Site in McLaughlin Crater
2016-01-14
McLaughlin Crater (21.9 N, 337.6 E) is a large, approximately 95-kilometer diameter impact crater located north of Mawrth Vallis, in Arabia Terra, a region that was made famous by the book and movie "The Martian" by Andy Weir. McLaughlin Crater straddles three major terrain types: the Northern lowlands, the Southern highlands and the Mawrth Vallis region. The crater floor is thought to be covered by clays and carbonates that were deposited in a deep lake at least 3.8 billion years ago perhaps by ground water upwelling from beneath the crater floor (Michalski et al., 2013, Nature Geoscience). McLaughlin Crater is listed as a candidate landing site for the 2020 Mars surface mission. Although it is described as a "flat, low-risk and low-elevation landing zone," the region in this image on the southern floor of the crater shows a complex surface of eroded layers that are rough in places. An unusual feature is a straight fracture cutting diagonally across the layered material at the bottom portion of the image that may be a fault line. http://photojournal.jpl.nasa.gov/catalog/PIA20338
Methods of Testing Thermal Insulation and Associated Test Apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2004-01-01
The system and method for testing thermal insulation uses a cryostatic insulation tester having a vacuum chamber and a cold mass including a test chamber and upper and lower guard chambers adjacent thereto. The thermal insulation is positioned within the vacuum chamber and adjacent the cold mass. Cryogenic liquid is supplied to the test chamber, upper guard and lower guard to create a first gas layer in an upper portion of the lower guard chamber and a second gas layer in an upper portion of the test chamber. Temperature are sensed within the vacuum chamber to test the thermal insulation.
Creating and maintaining a gas cap in tar sands formations
Vinegar, Harold J.; Karanikas, John Michael; Dinkoruk, Deniz Sumnu; Wellington, Scott Lee
2010-03-16
Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.
New insights about cloud vertical structure from CloudSat and CALIPSO observations
NASA Astrophysics Data System (ADS)
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin
2017-09-01
Active cloud observations from A-Train's CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B-CLDCLASS-LIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major cloud vertical structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap and provide their global frequency of occurrence. The two most frequent CVS classes are single-layer (per our definition) low and high clouds that represent 53% of cloudy skies, followed by high clouds overlying low clouds, and vertically extensive clouds that occupy near-contiguously a large portion of the troposphere. The prevalence of these configurations changes seasonally and geographically, between daytime and nighttime, and between continents and oceans. The radiative effects of the CVS classes reveal the major radiative warmers and coolers from the perspective of the planet as a whole, the surface, and the atmosphere. Single-layer low clouds dominate planetary and atmospheric cooling and thermal infrared surface warming. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of Moderate Resolution Imaging Spectroradiometer cloud regimes for spatiotemporally coincident MODIS-Aqua (also on the A-Train) and CloudSat-CALIPSO daytime observations. When the analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS cloud regimes, it ultimately confirms previous interpretations of their makeup that did not have the benefit of collocated active observations.
Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme
NASA Astrophysics Data System (ADS)
Berner, A. H.; Bretherton, C. S.; Wood, R.; Muhlbauer, A.
2013-07-01
A large-eddy simulation (LES) coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of aerosol number. The system is described in a reduced two-dimensional phase plane with inversion height and boundary-layer average aerosol concentrations as the state variables. Simulations with a full diurnal cycle show similar evolutions, except that open-cell formation is phase-locked into the early morning hours. The same steadily-forced modeling framework is applied to the development and evolution of a POC and the surrounding overcast boundary layer. An initial aerosol perturbation applied to a portion of the model domain leads that portion to transition into open-cell convection, forming a POC. Reduced entrainment in the POC induces a negative feedback between areal fraction covered by the POC and boundary layer depth changes. This stabilizes the system by controlling liquid water path and precipitation sinks of aerosol number in the overcast region, while also preventing boundary-layer collapse within the POC, allowing the POC and overcast to coexist indefinitely in a quasi-steady equilibrium.
Coffinberry, A.S.
1962-04-10
A process for removing fission products from reactor liquid fuel without interfering with the reactor's normal operation or causing a significant change in its fuel composition is described. The process consists of mixing a liquid scavenger alloy composed of about 44 at.% plutoniunm, 33 at.% lanthanum, and 23 at.% nickel or cobalt with a plutonium alloy reactor fuel containing about 3 at.% lanthanum; removing a portion of the fuel and scavenger alloy from the reactor core and replacing it with an equal amount of the fresh scavenger alloy; transferring the portion to a quiescent zone where the scavenger and the plutonium fuel form two distinct liquid layers with the fission products being dissolved in the lanthanum-rich scavenger layer; and the clean plutonium-rich fuel layer being returned to the reactor core. (AEC)
Electrode and method of interconnection sintering on an electrode of an electrochemical cell
Ruka, R.J.; Kuo, L.J.H.
1994-01-11
An electrode structure is made by applying a base layer of doped LaCrO[sub 3] particles on a portion of an electrode and then coating the particles with a top layer composition such as CaO+Al[sub 2]O[sub 3], SrO+Al[sub 2]O[sub 3], or BaO+Al[sub 2]O[sub 3], and then heating the composition for a time effective to melt the composition and allow it to fill any open porosity in the base layer of doped LaCrO[sub 3] to form an interconnection, after which solid oxide electrolyte can be applied to the remaining portion of the electrode and the electrolyte can be covered with a cermet exterior electrode. 2 figures.
Electrode and method of interconnection sintering on an electrode of an electrochemical cell
Ruka, Roswell J.; Kuo, Lewis J. H.
1994-01-01
An electrode structure (10) is made by applying a base layer of doped LaCrO.sub.3 particles on a portion of an electrode (16) and then coating the particles with a top layer composition such as CaO+Al.sub.2 O.sub.3, SrO+Al.sub.2 O.sub.3, or BaO+Al.sub.2 O.sub.3, and then heating the composition for a time effective to melt the composition and allow it to fill any open porosity in the base layer of doped LaCrO.sub.3 to form an interconnection (26), after which solid oxide electrolyte (18) can be applied to the remaining portion of the electrode (16) and the electrolyte (18) can be covered with a cermet exterior electrode (20).
NASA Technical Reports Server (NTRS)
Castro, Sandra L.; Emery, William J.
2002-01-01
The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.
Lind, Randall F; Lloyd, Peter D; Love, Lonnie J; Noakes, Mark W; Pin, Francois G; Richardson, Bradley S; Rowe, John C
2014-09-16
An apparatus for obtaining samples from a structure includes a support member, at least one stabilizing member, and at least one moveable member. The stabilizing member has a first portion coupled to the support member and a second portion configured to engage with the structure to restrict relative movement between the support member and the structure. The stabilizing member is radially expandable from a first configuration where the second portion does not engage with a surface of the structure to a second configuration where the second portion engages with the surface of the structure.
Phase change liquid purifier and pump
Steinhour, Leif Alexi
2017-05-23
Systems, methods, and apparatus are provided for purifying and pumping liquids, and more particularly, for purifying and pumping water. The apparatus includes a chamber including a top portion and a bottom portion. A surface configured to be heated is proximate the bottom portion of the chamber. A baffle is disposed within the chamber and above the surface. The baffle is disposed at an angle relative to a vertical direction. The chamber further includes an inlet and a first outlet. The surface heats a liquid in the chamber, causing the liquid to boil. In operation, bubbles rise from the surface and are forced in a horizontal direction by the baffle disposed in the chamber.
Attractions in Layers of Mountain Inside Gale Crater
2011-07-22
The lower portion of a mountain inside Gale crater on Mars contains layers that may be examined by NASA Mars Science Laboratory. A landing site in Gale, close to the foot of the mountain, has been selected for the mission.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 6 May 2002) The Science Cerberus is a dark region on Mars that has shrunk down from a continuous length of about 1000 km to roughly three discontinuous spots a few 100 kms in length in less than 20 years. There are two competing processes at work in the Cerberus region that produce the bright and dark features seen in this THEMIS image. Bright dust settles out of the atmosphere, especially after global dust storms, depositing a layer just thick enough to brighten the dark surfaces. Deposition occurs preferentially in the low wind 'shadow zones' within craters and downwind of crater rims, producing the bright streaks. The direction of the streaks clearly indicates that the dominant winds come from the northeast. Dust deposition would completely blot out the dark areas if it were not for the action of wind-blown sand grains scouring the surface and lifting the dust back into the atmosphere. Again, the shadow zones are protected from the blowing sand, preserving the bright layer of dust. Also visible in this image are lava flow features extending from the flanks of the huge Elysium volcanoes to the northwest. Two shallow channels and a raised flow lobe are just barely discernable. The lava channel in the middle of the image crosses the boundary of the bright and dark surfaces without any obvious change in its morphology. This demonstrates that the bright dust layer is very thin in this location, perhaps as little as a few millimeters. The Story Mars is an ever-changing land of spectacular contrasts. This THEMIS image shows the Cerberus region of Mars, a dark area located near the Elysium volcanoes and fittingly named after the three-headed, dragon-tailed dog who guards the door of the underworld. Two opposing processes are at work here: a thin layer of dust falling from the atmosphere and/or dust storms creating brighter surface areas (e.g. the top left portion of this image) and dust being scoured away by the action of the Martian wind disturbing the sand grains and freeing the lighter dust to fly away once more (the darker portions of this image). There are, however, some darker areas that are somewhat shielded and protected from the wind that have yielded bright, dusty crater floors and wind streaks that trail out behind the craters. These wind streaks tell a story all their own as to the prevailing wind direction coming from the northeast. This, added to the fact that this dark region was once 1000 km in length and has dwindled to just a few isolated dark splotches of 100 kilometers in the past 20 years, help us to see that the Martian environment is still quite dynamic and capable of changing. Finally, this being a volcanic region, a lobe of a lava flow from the immense Elysium volcanoes to the northwest is visible stretching across the bottom one-quarter of the image.
Mechanical Stress Measurement During Thin-Film Fabrication
NASA Technical Reports Server (NTRS)
Broadway, David M. (Inventor)
2017-01-01
A method and system are provided for determining mechanical stress experienced by a film during fabrication thereof on a substrate positioned in a vacuum deposition chamber. The substrate's first surface is disposed to have the film deposited thereon and the substrate's opposing second surface is a specular reflective surface. A portion of the substrate is supported. An optical displacement sensor is positioned in the vacuum deposition chamber in a spaced-apart relationship with respect to a portion of the substrate's second surface. During film deposition on the substrate's first surface, displacement of the portion of the substrate's second surface is measured using the optical displacement sensor. The measured displacement is indicative of a radius of curvature of the substrate, and the radius of curvature is indicative of mechanical stress being experienced by the film.
NASA Technical Reports Server (NTRS)
Wick, Gary A.; Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)
2002-01-01
The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work was performed in two different major areas. The first centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. The second involved a modeling and data analysis effort whereby modeled near-surface temperature profiles were integrated into the retrieval of bulk SST estimates from existing satellite data. Under the first work area, two different seagoing infrared radiometers were designed and fabricated and the first of these was deployed on research ships during two major experiments. Analyses of these data contributed significantly to the Ph.D. thesis of one graduate student and these results are currently being converted into a journal publication. The results of the second portion of work demonstrated that, with presently available models and heat flux estimates, accuracy improvements in SST retrievals associated with better physical treatment of the near-surface layer were partially balanced by uncertainties in the models and extra required input data. While no significant accuracy improvement was observed in this experiment, the results are very encouraging for future applications where improved models and coincident environmental data will be available. These results are included in a manuscript undergoing final review with the Journal of Atmospheric and Oceanic Technology.
Dual load path ball screw with rod end swivel
NASA Technical Reports Server (NTRS)
Wngett, Paul (Inventor)
2002-01-01
A dual drive ball has a ball screw shaft coupled at one end to a gear train and coupled at the other end to a ball screw nut. The ball screw shaft and ball screw nut are connected through complementary helical grooves filled with ball bearing balls. The outer surface of the ball screw nut is plined and can be driven by a second gear train. An output tube is coupled at one end to the ball screw nut and at its opposite end has a connector portion with a groove on its inner surface. A rod end has a coupling member for coupling to a surface to be actuated and a shaft portion with a groobe on its outer surface. This shaft portion is received with in the outputtube portion and the corresponding grooves are coupled through the use of a plurality of ball bearing balls.
Protective interlayer for high temperature solid electrolyte electrochemical cells
Singh, P.; Vasilow, T.R.; Richards, V.L.
1996-05-14
The invention is comprised of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb{sub x}Ta{sub y}Ce{sub 1{minus}x{minus}y}O{sub 2} where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same is also described. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell, characterized by a first electrode; an electrically conductive interlayer of niobium and/or tantalum doped cerium oxide deposited over at least a first portion of the first electrode; an interconnect deposited over the interlayer; a solid electrolyte deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode deposited over the solid electrolyte. The interlayer is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode, an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer is a dense yttria stabilized zirconium oxide, the interconnect layer is a dense, doped lanthanum chromite, and the second electrode, a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy. 5 figs.
Internal impacted screw-locking pellet
NASA Technical Reports Server (NTRS)
MacMartin, Malcolm J. (Inventor)
1994-01-01
An elongate fastener having an engaging surface engageable with an engaging surface of a fastener's mate includes a hole extending through a portion of the fastener and having a top opening and a bottom floor, a locking pellet disposed near the bottom floor, a discharge channel communicating between the pellet and through the engaging surface of the fastener and opening out toward the engaging surface of the fastener's mate, and an impact pin in the hole having a top portion protruding through the top opening and a bottom portion near the locking pellet, whereby the pin drives the locking pellet through the discharge channel against the engaging surfaces of the fastener and the fastener's mate whereby to lock the fastener against the fastener's mate.
The Onset of Channelling in a Fluidized Mud Layer
NASA Astrophysics Data System (ADS)
Papanicolaou, T.; Tsakiris, A. G.; Billing, B. M.
2012-12-01
Fluidization of a soil occurs when the drag force exerted on the soil grains by upwelling water equals the submerged weight of the soil grains, hence reducing the effective (or contact) stress between the soil grains to zero. In nature, fluidization is commonly encountered in localized portions of highly saturated mud layers found in tidal flats, estuaries and lakes, where upward flow is initiated by significant pore water pressure gradients triggered by wave or tidal action. The water propagates through the fluidized mud layer by forming channels (or vents), carrying the fluidized mud to the surface and forming mud volcano structures. The presence of these fluidization channels alters the mud layer structure with implications on its hydraulic and geotechnical properties, such as the hydraulic conductivity. Despite the importance of these channels, the conditions that lead to their formation and their effects on the mud layer structure still remain poorly documented. The present study couples experimental and theoretical methods aimed at quantifying the conditions, under which fluidization of a saturated mud layer is accompanied by the formation of channels, and assessing the effects of channeling on the mud layer structure. Fluidization and channel formation in a mud layer were reproduced in the laboratory using a carefully designed fluidization column attached to a pressurized vessel (plenum). To eliminate any effects of the material, the mud was produced from pure kaolin clay and deionized water. Local porosity measurements along the mud layer prior, during and after fluidization were conducted using an Americium-241 gamma source placed on a fully automated carriage. Different water inflow rates, q, were applied to the base of the mud layer and the plenum pressure was monitored throughout the experiment. These experiments revealed that for high q values, a single vertical channel formed and erupted at the center of the fluidization column. Instead for low q values, the experiments suggested that a channel network formed within the mud layer leading to the eruption of multiple channels on the mud layer surface. The gamma source measurements captured quantitatively the porosity increase as the channel formed. The experiments were complemented with a theoretical analysis using the two-phase, flow mass and momentum governing equations. This analysis aims to establish a relation between the applied pressure, the fluid velocity and the local porosity of mud during the formation of the channels.
Wafer bonded epitaxial templates for silicon heterostructures
Atwater, Jr., Harry A.; Zahler, James M [Pasadena, CA; Morral, Anna Fontcubera I [Paris, FR
2008-03-11
A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.
Shimada, K; Takeshige, N; Moriyama, H; Miyauchi, Y; Shimada, S; Fujimaki, E
1997-12-01
In this study, we clarified the distribution of elastic and oxytalan fibers in a human sternoclavicular joint (SCJ) using a color image system and in extracellular matrices using immunoperoxidase staining. Fine elastic fibers (EFs) were scattered in the fibrous layer of the sternoclavicular disk. This articular disk was composed of a collagenous bundle on the sternum side of the articular disk in the SCJ and cellular components including connective tissue on the clavicular side of the articular disk. The thickness of the disk gradually increased from the inferior to superior portion. Collagen fibers type I, III and V and other extracellular matrices (ECMs) were detected in the hypertrophic zone in the clavicular and sternum side of the SCJ and in the connective tissue of the articulatio condylar. On the cervical surface of the articular disk, cellular activity was higher than on the sternum surface.
Rind-Like Features at a Meridiani Outcrop
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Annotated image of PIA04189 Rind-Like Features at a Meridiani Outcrop After months spent crossing a sea of rippled sands, Opportunity reached an outcrop in August 2005 and began investigating exposures of sedimentary rocks, intriguing rind-like features that appear to cap the rocks, and cobbles that dot the martian surface locally. Opportunity spent several martian days, or sols, analyzing a feature called 'Lemon Rind,' a thin surface layer covering portions of outcrop rocks poking through the sand north of 'Erebus Crater.' In images from the panoramic camera, Lemon Rind appears slightly different in color than surrounding rocks. It also appears to be slightly more resistant to wind erosion than the outcrop's interior. This is an approximately true-color composite produced from frames taken during Opportunity's 552nd martian day, or sol (Aug. 13, 2005).Wafer bonded epitaxial templates for silicon heterostructures
NASA Technical Reports Server (NTRS)
Atwater, Harry A., Jr. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcubera I (Inventor)
2008-01-01
A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.
Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US
NASA Astrophysics Data System (ADS)
Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.
2013-12-01
Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss. The analysis of the stable isotopes indicate that much of the low flow volume originates from surface storages including wetlands and small lakes within the watershed, with a small amount of the flow originating from groundwater seepage into the creek in the upper reaches of the creek. The temperature surveys and the seepage meter measurements along the main channel of the watershed show a trend that groundwater enters into the creek in the upper reaches, while the flux exchange is from the creek to groundwater in the lower reaches. The differences in flux direction between the upper and lower portions of the creek can be explained by three possible nonexclusive causes. First, the creek empties to the Mississippi River, and as the mouth of the creek is approached, the regional piezometric head drops significantly. Second, the lower end of the creek has a much larger portion of ';bottomless' surficial aquifer and therefore greater potential vertical loss of water. Third, the lower portion of the watershed is more developed and has major stormwater pipe infrastructure, a possible pathway for accelerating drainage of the surficial aquifer. To address the issue of low groundwater contribution to low-flows in the creek it is proposed to divert stormwater to key locations within the riparian zone along the creek, and to infiltrate that water and store it for slow release to the creek during non-rain periods.
Efficient semiconductor light-emitting device and method
Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.
1996-01-01
A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).
Efficient semiconductor light-emitting device and method
Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.
1996-02-20
A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.
Metal-bonded, carbon fiber-reinforced composites
Sastri, Suri A.; Pemsler, J. Paul; Cooke, Richard A.; Litchfield, John K.; Smith, Mark B.
1996-01-01
Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates.
Metal-bonded, carbon fiber-reinforced composites
Sastri, S.A.; Pemsler, J.P.; Cooke, R.A.; Litchfield, J.K.; Smith, M.B.
1996-03-05
Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates. 2 figs.
NASA Technical Reports Server (NTRS)
2004-01-01
9 September 2004 Northeastern Arabia Terra is a heavily eroded portion of the martian cratered highlands. Layered rock, containing filled and buried valleys and ancient impact craters, has been eroded such that these once-buried features are now partially exposed at the martian surface. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example of a field of circular and somewhat circular features that once were impact craters that were subsequently filled, buried, then exhumed to form the patterns exhibited here. The image is located near 25.6oN, 290.2oW. The image covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.NASA Technical Reports Server (NTRS)
2006-01-01
As NASA's Mars Exploration Rover Opportunity continues a southward trek from 'Erebus Crater' toward 'Victoria Crater,' the terrain consists of large sand ripples and patches of flat-lying rock outcrops, as shown in this image. Whenever possible, rover planners keep Opportunity on the 'pavement' for best mobility. This false-color image mosaic was assembled using images acquired by the panoramic camera on Opportunity's 784th sol (April 8, 2006) at about 11:45 a.m. local solar time. The camera used its 753-nanometer, 535-nanometer and 432-nanometer filters. This view shows a portion of the outcrop named 'Bosque,' including rover wheel tracks, fractured and finely-layered outcrop rocks and smaller, dark cobbles littered across the surface.Borowska-Wykret, Dorota; Rypien, Aleksandra; Dulski, Mateusz; Grelowski, Michal; Wrzalik, Roman; Kwiatkowska, Dorota
2017-06-01
The capitulum of Helichrysum bracteatum is surrounded by scarious involucral bracts that perform hygroscopic movements leading to bract bending toward or away from the capitulum, depending on cell wall water status. The present investigation aimed at explaining the mechanism of these movements. Surface strain and bract shape changes accompanying the movements were quantified using the replica method. Dissection experiments were used to assess the contribution of different tissues in bract deformation. Cell wall structure and composition were examined with the aid of light and electron microscopy as well as confocal Raman spectroscopy. At the bract hinge (organ actuator) longitudinal strains at opposite surfaces differ profoundly. This results in changes of hinge curvature that drive passive displacement of distal bract portions. The distal portions in turn undergo nearly uniform strain on both surfaces and also minute shape changes. The hinge is built of sclerenchyma-like abaxial tissue, parenchyma and adaxial epidermis with thickened outer walls. Cell wall composition is rather uniform but tissue fraction occupied by cell walls, cell wall thickness, compactness and cellulose microfibril orientation change gradually from abaxial to adaxial hinge surface. Dissection experiments show that the presence of part of the hinge tissues is enough for movements. Differential strain at the hinge is due to adaxial-abaxial gradient in structural traits of hinge tissues and cell walls. Thus, the bract hinge of H. bracteatum is a structure comprising gradually changing tissues, from highly resisting to highly active, rather than a bi-layered structure with distinct active and resistance parts, often ascribed for hygroscopically moving organs. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Williams, Daniel M.
1989-01-01
An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves on the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first.
Williams, D.M.
1988-01-21
An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves in the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first. 14 figs.
Bottoli, Carla B G; Vigna, Camila R M; Fischer, Gerd; Albert, Klaus; Collins, Kenneth E; Collins, Carol H
2004-03-19
Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by the deposition of PMOS, into the pores of HPLC silica. Portions of PMOS-loaded silica were allowed to remain at ambient temperature, without further treatment for 2, 9, 20, 31, 51, 105 and 184 days after preparation to undergo self-immobilization (irreversible adsorption of a layer of polymer on silica at ambient temperature in the absence of initiators). Other portions were subjected to a thermal treatment (100 degrees C for 4h) after 1, 2, 5, 7, 9, 15, 20, 25, 70, 111 and 184 days. Self-immobilized and thermally treated samples were characterized by % C, 29Si cross-polarization magic angle spinning (CP/MAS) NMR spectroscopy and reversed-phase column performance. The results show that thermal immobilization accelerates the distribution and rearrangement of the polymer on the silica surface. However, from the time that a monolayer has been formed by self-immobilization (approximately 100 days for PMOS on Kromasil silica), the thermal treatment does not alter this configuration and, thus, does not change the resulting chromatographic parameters.
System and method for producing metallic iron
Englund, David J.; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan
2014-07-29
A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.
Method for forming porous platinum films
Maya, Leon
2000-01-01
A method for forming a platinum film includes providing a substrate, sputtering a crystalline platinum oxide layer over at least a portion of the substrate, and reducing the crystalline platinum oxide layer to form the platinum film. A device includes a non-conductive substrate and a platinum layer having a density of between about 2 and 5 g/cm.sup.3 formed over at least a portion of the non-conductive substrate. The platinum films produced in accordance with the present invention provide porous films suitable for use as electrodes, yet require few processing steps. Thus, such films are less costly. Such films may be formed on both conductive and non-conductive substrates. While the invention has been illustrated with platinum, other metals, such as noble metals, that form a low density oxide when reactively sputtered may also be used.
NASA Astrophysics Data System (ADS)
Sagy, A.; Tesei, T.; Collettini, C.
2016-12-01
Geometrical irregularity of contacting surfaces is a fundamental factor controlling friction and energy dissipation during sliding. We performed direct shear experiments on 20x20 cm limestone surfaces by applying constant normal load (40-200 kN) and sliding velocity 1-300 µm/s. Before shearing, the surfaces were polished with maximal measured amplitudes of less than 0.1 mm. After shear, elongated islands of shear zones are observed, characterized by grooves ploughed into the limestone surfaces and by layers of fine grain wear. These structures indicate that the contact areas during shear are scattered and occupy a limited portion of the entire surface area. The surfaces was scanned by a laser profilometer that measures topography using 640 parallel beams in a single run, offer up to 10 µm accuracy and working ranges of 200 mm. Two distinctive types of topographical end members are defined: rough wavy sections and smooth polished ones. The rough zones display ridges with typical amplitudes of 0.1-1 mm that cross the grooves perpendicular to the slip direction. These features are associated with penetrative brittle damage and with fragmentation. The smoother zones display reflective mirror-like surfaces bordered by topographical sharp steps at heights of 0.3-0.5 mm. These sections are localized inside the wear layer or between the wear layer and the host rock, and are not associated with observed penetrative damage. Preliminary statistical analysis suggests that the roughness of the ridges zones can be characterized using a power-low relationship between profile length and mean roughness, with relatively high values of Hurst exponents (e.g. H > 0.65) parallel to the slip direction. The polished zones, on the other hand, corresponded to lower values of Hurst exponents (e.g. H ≤ 0.6). Both structural and roughness measurements indicate that the distinctive topographic variations on the surfaces reflect competing mechanical processes which occur simultaneously during shear. The wavy ridged zone is the surface expression of penetrative cracking and fragmentation which widen the shear zone, while the smooth zones reflect localized flow and plastic deformation of the wear material. The similarity in topography of shear structures between experimental and natural faults suggests similar mechanical processes.
Growth of Fault-Cored Anticlines by Flexural Slip Folding: Analysis by Boundary Element Modeling
NASA Astrophysics Data System (ADS)
Johnson, Kaj M.
2018-03-01
Fault-related folds develop due to a combination of slip on the associated fault and distributed deformation off the fault. Under conditions that are sufficient for sedimentary layering to act as a stack of mechanical layers with contact slip, buckling can dramatically amplify the folding process. We develop boundary element models of fault-related folding of viscoelastic layers embedded with a reverse fault to examine the influence of such layering on fold growth. The strength of bedding contacts, the thickness and stiffness of layering, and fault geometry all contribute significantly to the resulting fold form. Frictional contact strength between layers controls the degree of localization of slip within fold limbs; high contact friction in relatively thin bedding tends to localize bedding slip within narrow kink bands on fold limbs, and low contact friction tends to produce widespread bedding slip and concentric fold form. Straight ramp faults tend to produce symmetric folds, whereas listric faults tend to produce asymmetric folds with short forelimbs and longer backlimbs. Fault-related buckle folds grow exponentially with time under steady loading rates. At early stages of folding, fold growth is largely attributed to slip on the fault, but as the fold increases amplitude, a larger portion of the fold growth is attributed to distributed slip across bedding contacts on the limbs of the fold. An important implication for geologic and earthquake studies is that not all surface deformation associated with blind reverse faults may be attributed to slip on the fault during earthquakes.
Could Crop Roughness Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?
NASA Astrophysics Data System (ADS)
Vanderwende, B. J.; Lundquist, J. K.
2014-12-01
The high concentration of both large-scale agriculture and wind power production in the United States Midwest region raises new questions concerning the interaction of the two activities. For instance, it is known from internal boundary layer theory that changes in the roughness of the land-surface resulting from crop choices could modify the momentum field aloft. Upward propagation of such an effect might impact the properties of the winds encountered by modern turbines, which typically span a layer from about 40 to 120 meters above the surface. As direct observation of such interaction would require impractical interference in the planting schedules of farmers, we use numerical modeling to quantify the magnitude of crop-roughness effects. To simulate a collocated farm and turbine array, we use version 3.4.1 of the Weather Research and Forecasting model (WRF). The hypothetical farm is inserted near the real location of the 2013 Crop Wind Energy Experiment (CWEX). Reanalyses provide representative initial and boundary conditions. A month-long period spanning August 2013 is used to evaluate the differences in flows above corn (maize) and soybean crops at the mature, reproductive stage. Simulations are performed comparing the flow above each surface regime, both in the absence and presence of a wind farm, which consists of a parameterized 11x11 array of 1.8 MW Vestas V90 turbines. Appreciable differences in rotor-layer wind speeds emerge. The use of soybeans results in an increase in wind speeds and a corresponding reduction in rotor-layer shear when compared to corn. Despite the turbulent nature of flow within a wind farm, high stability reduces the impact of crop roughness on the flow aloft, particularly in the upper portion of the rotor disk. We use these results to estimate the economic impact of crop selection on wind power producers.
Morphology of the copulatory apparatus of the spotted tinamou Nothura maculosa (Aves: Tinamiformes).
de Oliveira, C A; Mahecha, G A
2000-03-01
The components of the copulatory apparatus of Nothura maculosa were identified and studied by means of dissections, parenteral latex injections and standard histological and histochemical techniques. N. maculosa possesses an intromittent phallus with a tubular cavity, within which a fixed base and a tubular portion can be distinguished. An ejaculatory groove, which is supported by a fibrous body, runs dorsally at the base of the phallus. The tubular portion of the phallus inserts into the fibrous body, the former possessing two continuous but morphologically distinct parts, one of which is eversible and is extruded during erection while the other is a fixed non-eversible glandular portion. The walls of both parts are formed by the mucosa, an intermediate layer of connective tissue containing a wide lymphatic space which surrounds the whole perimeter of the tube, and an external layer of dense connective tissue. The mucosa of the eversible portion, which lodges the phallic groove, is lined by a non-keratinized stratified squamous epithelium. In the fixed tubular portion, the tubular lumen is reduced in size, the phallic groove disappears, the mucosa becomes folded and there occurs an abrupt change to a pseudostratified columnar secretory epithelium. The copulatory apparatus of N. maculosa includes the vascular bodies of the phallus, which show morphofunctional continuity with the phallic structures, thus forming a single system involved in erection. On erection, the eversible portion of the phallus evaginates and emerges from the cloacal opening as a spiral shaped structure directed towards the left.
Method and apparatus for coating thin foil with a boron coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Jeffrey L.
An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to amore » thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.« less
Process for forming a chromium diffusion portion and articles made therefrom
Helmick, David Andrew; Cavanaugh, Dennis William; Feng, Ganjiang; Bucci, David Vincent
2012-09-11
In one embodiment, a method for forming an article with a diffusion portion comprises: forming a slurry comprising chromium and silicon, applying the slurry to the article, and heating the article to a sufficient temperature and for a sufficient period of time to diffuse chromium and silicon into the article and form a diffusion portion comprising silicon and a microstructure comprising .alpha.-chromium. In one embodiment, a gas turbine component comprises: a superalloy and a diffusion portion having a depth of less than or equal to 60 .mu.m measured from the superalloy surface into the gas turbine component. The diffusion portion has a diffusion surface having a microstructure comprising greater than or equal to 40% by volume .alpha.-chromium.
Some constraints on the thermal history of the lunar magma ocean
NASA Technical Reports Server (NTRS)
Herbert, F.; Drake, M. J.; Sonett, C. P.; Wiskerchen, M. J.
1977-01-01
If the accumulating evidence is accepted that the outer portion of the moon was molten for 100-200 million years, it is clear that a permanent insulating surface layer existed over nearly all of that epoch. Considerations of crustal stability against break-up and foundering lead to the view that this insulating blanket must have been an early-forming plagioclase-rich layer light enough to float on the hot magma. It is found that radiometric age-dating evidence implies a fairly specific history for the solidification of the lunar magma ocean. The possibility is anticipated that geochronological and petrological constraints will be sufficient to narrow the range of allowed geophysical and geochemical models. It is hoped that such a study will make it possible to deduce the original depth, and hence, the composition of the lunar magma ocean. If the moon accreted homogeneously, the composition of the magma ocean will also be that of the whole moon, and hence such models should allow estimation of the bulk lunar composition.
Nuclear fuel elements having a composite cladding
Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.
1983-09-20
An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.
New quaternary thallium indium germanium selenide TlInGe2Se6: Crystal and electronic structure
NASA Astrophysics Data System (ADS)
Khyzhun, O. Y.; Parasyuk, O. V.; Tsisar, O. V.; Piskach, L. V.; Myronchuk, G. L.; Levytskyy, V. O.; Babizhetskyy, V. S.
2017-10-01
Crystal structure of a novel quaternary thallium indium germanium selenide TlInGe2Se6 was investigated by means of powder X-ray diffraction method. It was determined that the compound crystallizes in the trigonal space group R3 with the unit cell parameters a = 10.1798(2) Å, c = 9.2872(3) Å. The relationship with similar structures was discussed. The as-synthesized TlInGe2Se6 ingot was tested with X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). In particular, the XPS valence-band and core-level spectra were recorded for initial and Ar+ ion-bombarded surfaces of the sample under consideration. The XPS data allow for statement that the TlInGe2Se6 surface is rigid with respect to Ar+ ion-bombardment. Particularly, Ar+ ion-bombardment (3.0 keV, 5 min duration, ion current density fixed at 14 μA/cm2) did not cause substantial modifications of stoichiometry in topmost surface layers. Furthermore, comparison on a common energy scale of the XES Se Kβ2 and Ge Kβ2 bands and the XPS valence-band spectrum reveals that the principal contributions of the Se 4p and Ge 4p states occur in the upper and central portions of the valence band of TlInGe2Se6, respectively, with also their substantial contributions in other portions of the band. The bandgap energy of TlInGe2Se6 at the level of αg=103 cm-1 is equal to 2.38 eV at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan
Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less
Electrochemical cells and methods of manufacturing the same
Bazzarella, Ricardo; Slocum, Alexander H; Doherty, Tristan; Cross, III, James C
2015-11-03
Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus, the intermediate layer can serve as a current collector for the electrochemical cell.
Cratering Studies in Thin Plastic Films
NASA Astrophysics Data System (ADS)
Shu, A. J.; Bugiel, S.; Gruen, E.; Hillier, J.; Horanyi, M.; Munsat, T. L.; Srama, R.
2013-12-01
Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions and shape of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. LS-Dyna, a smoothed particle hydrodynamics (SPH) code from the Livermore Software Technology Corp. was chosen to simulate micrometeorite impacts. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Material properties are accounted for using the Grüneisen Equation of State. The results of the SPH model can then be fed into electrostatic relaxation models to enhance the fidelity of interpretation of charge signals from a PVDF detector. Experimental results and preliminary simulation results and conclusions will be presented. Scanning Electron Microscope image of a microcrater caused by a dust impact into Polyvinylidene Fluoride (PVDF)
Cratering Studies in Thin Plastic Films
NASA Astrophysics Data System (ADS)
Shu, A. J.; Bugiel, S.; Gruen, E.; Horanyi, M.; Munsat, T. L.; Srama, R.
2014-12-01
Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions and shape of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. LS-Dyna, a smoothed particle hydrodynamics (SPH) code from the Livermore Software Technology Corp. was chosen to simulate micrometeorite impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Material properties are accounted for using the Grüneisen Equation of State. The results of the SPH model can then be fed into electrostatic relaxation models to enhance the fidelity of interpretation of charge signals from a PVDF detector. An electrostatic relaxation code was also used to determine the theoretical charge produced by the PVDF detector given a crater of specific depth and diameter. Experimental results and preliminary simulation results and conclusions will be presented.
Multi-element microelectropolishing method
Lee, Peter J.
1994-01-01
A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle.
Large eddy simulation of trailing edge noise
NASA Astrophysics Data System (ADS)
Keller, Jacob; Nitzkorski, Zane; Mahesh, Krishnan
2015-11-01
Noise generation is an important engineering constraint to many marine vehicles. A significant portion of the noise comes from propellers and rotors, specifically due to flow interactions at the trailing edge. Large eddy simulation is used to investigate the noise produced by a turbulent 45 degree beveled trailing edge and a NACA 0012 airfoil. A porous surface Ffowcs-Williams and Hawkings acoustic analogy is combined with a dynamic endcapping method to compute the sound. This methodology allows for the impact of incident flow noise versus the total noise to be assessed. LES results for the 45 degree beveled trailing edge are compared to experiment at M = 0 . 1 and Rec = 1 . 9 e 6 . The effect of boundary layer thickness on sound production is investigated by computing using both the experimental boundary layer thickness and a thinner boundary layer. Direct numerical simulation results of the NACA 0012 are compared to available data at M = 0 . 4 and Rec = 5 . 0 e 4 for both the hydrodynamic field and the acoustic field. Sound intensities and directivities are investigated and compared. Finally, some of the physical mechanisms of far-field noise generation, common to the two configurations, are discussed. Supported by Office of Naval research.
Lowe, Mike; Miner, Michael L.; ,
1990-01-01
Ground water in Ogden Valley occurs in perched, confined, and unconfined aquifers in the valley fill to depths of 600 feet and more. The confined aquifer, which underlies only the western portion of the valley, is overlain by cleyey silt lacustrine sediments probably deposited during the Bonneville Basin's Little Valley lake cycle sometime between 90,000 and 150,000 years ago. The top of this cleyey silt confining layer is generally 25 to 60 feet below the ground surface. Unconfined conditions occur above and beyond the outer margin of the confining layer. The sediments overlying the confining layer are primarily Lake Bonneville deposits. Water samples from springs, streams, and wells around Pineview Reservoir, and from the reservoir itself, were collected and analyzed. These samples indicate that water quality in Ogden Valley is presently good. Average nitrate concentrations in the shallow unconfined aquifer increase toward the center of Ogden Valley. This trend was not observed in the confined aquifer. There is no evidence, however, of significant water-quality deterioration, even in the vicinity of Huntsville, a town that has been densely developed using septic-tank-soil-absorption systems for much of the time since it was founded in 1860.
On the role of glottis-interior sources in the production of voiced sound.
Howe, M S; McGowan, R S
2012-02-01
The voice source is dominated by aeroacoustic sources downstream of the glottis. In this paper an investigation is made of the contribution to voiced speech of secondary sources within the glottis. The acoustic waveform is ultimately determined by the volume velocity of air at the glottis, which is controlled by vocal fold vibration, pressure forcing from the lungs, and unsteady backreactions from the sound and from the supraglottal air jet. The theory of aerodynamic sound is applied to study the influence on the fine details of the acoustic waveform of "potential flow" added-mass-type glottal sources, glottis friction, and vorticity either in the glottis-wall boundary layer or in the portion of the free jet shear layer within the glottis. These sources govern predominantly the high frequency content of the sound when the glottis is near closure. A detailed analysis performed for a canonical, cylindrical glottis of rectangular cross section indicates that glottis-interior boundary/shear layer vortex sources and the surface frictional source are of comparable importance; the influence of the potential flow source is about an order of magnitude smaller. © 2012 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Roadman, Jason; Mohseni, Kamran
2009-11-01
Modern technology operating in the atmospheric boundary layer could benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the turbulence of the atmospheric boundary layer at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an ``atmospheric wind tunnel'' is sought. Many programs could utilize such a tool including that of Micro Aerial Vehicles (MAVs) and other unmanned aircraft, the wind energy industry, fuel efficient vehicles, and the study of bird and insect fight. The construction of an active ``gust generator'' for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to days ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated using oil flow visualization.
Schäffer, Christina; Novotny, René; Küpcü, Seta; Zayni, Sonja; Scheberl, Andrea; Friedmann, Jacqueline; Sleytr, Uwe B.; Messner, Paul
2015-01-01
The crystalline cell-surface (S) layer sgsE of Geobacillus stearothermophilus NRS 2004/3a represents a natural protein self-assembly system with nanometer-scale periodicity that is evaluated as a combined carrier/patterning element for the conception of novel types of biocatalyst aiming at the controllable display of biocatalytic epitopes, storage stability, and reuse. The glucose-1-phosphate thymidylyltransferase RmlA is used as a model enzyme and chimeric proteins are constructed by translational fusion of rmlA to the C-terminus of truncated forms of sgsE (rSgsE 131–903, rSgsE331–903) and used for the construction of three principal types of biocatalysts: soluble (monomeric), self-assembled in aqueous solution, and recrystallized on negatively charged liposomes. Enzyme activity of the biocatalysts reaches up to 100% compared to sole RmlA cloned from the same bacterium. The S-layer portion of the biocatalysts confers significantly improved shelf life to the fused enzyme without loss of activity over more than three months, and also enables biocatalyst recycling. These nanopatterned composites may open up new functional concepts for biocatalytic applications in nanobiotechnology. PMID:17786898
Klett, James W [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC
2010-03-02
A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.
16 CFR 1610.34 - Only uncovered or exposed parts of wearing apparel to be tested.
Code of Federal Regulations, 2014 CFR
2014-01-01
... procedures set forth in § 1610.6. (b) If the outer layer of plastic film or plastic-coated fabric of a...—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all or a portion of one... characteristics of the film or coating, the uncovered or exposed layer shall be tested in accordance with part...
16 CFR 1610.34 - Only uncovered or exposed parts of wearing apparel to be tested.
Code of Federal Regulations, 2012 CFR
2012-01-01
... procedures set forth in § 1610.6. (b) If the outer layer of plastic film or plastic-coated fabric of a...—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all or a portion of one... characteristics of the film or coating, the uncovered or exposed layer shall be tested in accordance with part...
16 CFR 1610.34 - Only uncovered or exposed parts of wearing apparel to be tested.
Code of Federal Regulations, 2011 CFR
2011-01-01
... procedures set forth in § 1610.6. (b) If the outer layer of plastic film or plastic-coated fabric of a...—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all or a portion of one... characteristics of the film or coating, the uncovered or exposed layer shall be tested in accordance with part...
16 CFR 1610.34 - Only uncovered or exposed parts of wearing apparel to be tested.
Code of Federal Regulations, 2010 CFR
2010-01-01
... procedures set forth in § 1610.6. (b) If the outer layer of plastic film or plastic-coated fabric of a...—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all or a portion of one... characteristics of the film or coating, the uncovered or exposed layer shall be tested in accordance with part...
Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride
2017-04-01
An environmental survey was performed on shooting ranges for small arms located on minerotrophic mires. The highest mean concentrations of Pb (13 g/kg), Cu (5.2 g/kg), Zn (1.1 g/kg), and Sb (0.83 g/kg) in the top soil were from a range located on a poor minerotrophic and acidic mire. This range had also the highest concentrations of Pb, Cu, Zn, and Sb in discharge water (0.18 mg/L Pb, 0.42 mg/L Cu, 0.63 mg/L Zn, and 65 μg/L Sb) and subsurface soil water (2.5 mg/L Pb, 0.9 mg/L Cu, 1.6 mg/L Zn, and 0.15 mg/L Sb). No clear differences in the discharge of ammunition residues between the mires were observed based on the characteristics of the mires. In surface water with high pH (pH ~7), there was a trend with high concentrations of Sb and lower relative concentrations of Cu and Pb. The relatively low concentrations of ammunition residues both in the soil and soil water, 20 cm below the top soil, indicates limited vertical migration in the soil. Channels in the mires, made by plant roots or soil layer of less decomposed materials, may increase the rate of transport of contaminated surface water into deeper soil layers and ground water. A large portion of both Cu and Sb were associated to the oxidizable components in the peat, which may imply that these elements form inner-sphere complexes with organic matter. The largest portion of Pb and Zn were associated with the exchangeable and pH-sensitive components in the peat, which may imply that these elements form outer-sphere complexes with the peat.
Article, component, and method of forming an article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Itzel, Gary Michael; Kottilingam, Srikanth Chandrudu
An article and method of forming an article are provided. The article includes a body portion separating an inner region and an outer region, an aperture in the body portion, the aperture fluidly connecting the inner region to the outer region, and a conduit extending from an outer surface of the body portion at the aperture and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The method includes providing a body portion separating an inner region and an outer region, providing an aperture in the body portion, and forming a conduit overmore » the aperture, the conduit extending from an outer surface of the body portion and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The article is arranged and disposed for insertion within a hot gas path component.« less
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor); Griffith, Bryan Kristian (Inventor)
2010-01-01
A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.
Multi-winding homopolar electric machine
Van Neste, Charles W
2012-10-16
A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.
Controlling and assessing pressure conditions during treatment of tar sands formations
Zhang, Etuan; Beer, Gary Lee
2015-11-10
A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the tar sands formation from a plurality of heaters located in the formation. Heat is allowed to transfer from the heaters to at least a portion of the formation. A pressure in the portion of the formation is controlled such that the pressure remains below a fracture pressure of the formation overburden while allowing the portion of the formation to heat to a selected average temperature of at least about 280.degree. C. and at most about 300.degree. C. The pressure in the portion of the formation is reduced to a selected pressure after the portion of the formation reaches the selected average temperature.
Koral, C; Dell'Aglio, M; Gaudiuso, R; Alrifai, R; Torelli, M; De Giacomo, A
2018-05-15
In this paper, Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy is applied to transparent samples and gemstones with the aim to overcome the laser induced damage on the sample. We propose to deposit a layer of AuNPs on the sample surface by drying a colloidal solution before ablating the sample with a 532 nm pulsed laser beam. This procedure ensures that the most significant fraction of the beam, being in resonance with the AuNP surface plasmon, is mainly absorbed by the NP layer, which in turn results the breakdown to be induced on NPs rather than on the sample itself. The fast explosion of the NPs and the plasma induction allow the ablation and the transfer in the plasma phase of the portion of sample surface where the NPs were placed. The employed AuNPs are prepared in milliQ water without the use of any chemical stabilizers by Pulsed Laser Ablation in Liquids (PLAL), in order to obtain a strict control of composition and impurities, and to limit possible spectral interferences (except from Au emission lines). Therefore with this technique it is possible to obtain, together with the emission signal of Au (coming from atomized NPs), the emission spectrum of the sample, by limiting or avoiding the direct interaction of the laser pulse with the sample itself. This approach is extremely useful for the elemental analysis by laser ablation of high refractive index samples, where the laser pulse on an untreated surface can otherwise penetrate inside the sample, generate breakdown events below the superficial layer, and consequently cause cracks and other damage. The results obtained with NELIBS on high refractive index samples like glasses, tourmaline, aquamarine and ruby are very promising, and demonstrate the potentiality of this approach for precious gemstones analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Electrolyte matrix in a molten carbonate fuel cell stack
Reiser, C.A.; Maricle, D.L.
1987-04-21
A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.
Electrolyte matrix in a molten carbonate fuel cell stack
Reiser, Carl A.; Maricle, Donald L.
1987-04-21
A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack.
Microfluidic process monitor for industrial solvent extraction system
Gelis, Artem; Pereira, Candido; Nichols, Kevin Paul Flood
2016-01-12
The present invention provides a system for solvent extraction utilizing a first electrode with a raised area formed on its surface, which defines a portion of a microfluidic channel; a second electrode with a flat surface, defining another portion of the microfluidic channel that opposes the raised area of the first electrode; a reversibly deformable substrate disposed between the first electrode and second electrode, adapted to accommodate the raised area of the first electrode and having a portion that extends beyond the raised area of the first electrode, that portion defining the remaining portions of the microfluidic channel; and an electrolyte of at least two immiscible liquids that flows through the microfluidic channel. Also provided is a system for performing multiple solvent extractions utilizing several microfluidic chips or unit operations connected in series.
Johnston, G R; Feeney, D A; Osborne, C A; Johnston, S D; Smith, F O; Jessen, C R
1985-03-01
Positive-contrast retrograde urethrocystograms were obtained serially on 12 male dogs weighing 11.4 to 23.2 kg before, during, and after the injection of contrast medium until the urinary bladder neck and prostatic and membranous portions of the urethra remained open and distended as viewed by fluoroscopy. Correlations of intravesical volumes and pressures required to achieve maximum distension of the midprostatic portion of the urethra with body weight and surface area were not significant. Because of the variability in intravesical volumes and pressures encountered at maximum distension of the prostatic portion of the urethra, a dose of contrast material expressed relative to body weight or surface area could not be determined for consistently providing maximum distension of the prostatic portion of the urethra.
NASA Technical Reports Server (NTRS)
Kashkarov, L. L.; Genayeva, L. I.; Lavrukhina, A. K.
1977-01-01
Fission tracks formed by the vH (very heavy) nuclei group of solar and galactic cosmic rays have been studied in silicate minerals of the lunar regolith returned by the Luna 16 and Luna 20 unmanned spacecraft. It is shown that the material in the Luna 16 core sample, from a typical mare region of the lunar surface, has undergone stronger irradiation by cosmic rays than material returned a highland region by Luna 20. A low-irradiation component (about 10 percent of the total number of crystals) has been found in the Luna 20 core sample materials, which can possibly be attributed to material added to the main bulk of the regolith in the formation of the crater Apollonius C. From the track density distribution of crystals, as a function of depth in the regolith core sample, it follows that the process of formation of the upper layer of the regolith, both for the lunar mare and for the highland region, includes sequential layering of finely crushed crystalline matter and subsequent mixing of it by micrometeorite bombardment. A portion of the crystals with a very high track density may be a component added to the lunar surface from outer space.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Blair, M. F.; Joslyn, H. D.
1986-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermcouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained as part of the program include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations. The results are reported in four separate volumes, of which this is Volume 2: Heat Transfer Data Tabulation; 15 Percent Axial Spacing.
NASA Astrophysics Data System (ADS)
Abraham, Edward H.; Woo, Van H.; Harlin-Jones, Cheryl; Heselich, Anja; Frohns, Florian
2014-02-01
Benefit of concomitant infrared hyperthermia and low level laser therapy and ionizing radiation is evaluated in this study. The purpose/objectives: presentation with locally advanced bulky superficial tumors is clinically challenging. To enhance the efficacy of chemotherapy and IMRT (intensity-modulated radiation therapy) and/or electron beam therapy we have developed an inexpensive and clinically effective infrared hyperthermia approach that combines black-body infrared radiation with halogen spectrum radiation and discrete wave length infrared clinical lasers LLLT. The goal is to produce a composite spectrum extending from the far infrared to near infrared and portions of the visible spectrum with discrete penetrating wavelengths generated by the clinical infrared lasers with frequencies of 810 nm and/or 830 nm. The composite spectrum from these sources is applied before and after radiation therapy. We monitor the surface and in some cases deeper temperatures with thermal probes, but use an array of surface probes as the limiting safe thermal constraint in patient treatment while at the same time maximizing infrared entry to deeper tissue layers. Fever-grade infrared hyperthermia is produced in the first centimeters while non-thermal infrared effects act at deeper tissue layers. The combination of these effects with ionizing radiation leads to improved tumor control in many cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, C.D.; Lai, M.O.; Cotterell, B.
Since the Lanxide process was advanced for forming of Al{sub 2}O{sub 3} ceramic composite by directed oxidation of Al alloys, much work has been done with various mechanisms being proposed. The mechanisms have claimed that only certain dopants are essential to the growth process. Nevertheless, no united consensus has yet been reached. In the present work, Al alloy containing 5% Mg was oxidized in air for 12 hours at 1,150 C with or without surface dopants of MgO or Pd. The resultant composites showed very different microstructures. Without any surface doping, the alloy did not develop any portion of compositemore » as the initial intimate oxide film stops further oxidation. This intimate oxide film can either be broken off by mechanical means or penetrated by reaction with surface dopants, so that the composite can grow and develop. The results show that the previously reported incubation time is not only related to reaction processes but also to the initial mechanical disturbances. Doping with Pd made the composite darker in color as the grains of the alumina ceramic matrix and inclusions of Al metal are finer. This shows that Pd may make the top oxide layer less intimate, and more nucleation sites are therefore available for oxidation. A new model is presented for oxide sustained growth based on the existence of oxygen active top surface layer and the capillary flow of molten metal around ceramic phase.« less
Depth evolution of the Meirama pit lake, A Coruña, NW Spain
NASA Astrophysics Data System (ADS)
Delgado, Jordi; Juncosa-Rivera, Ricardo; Cereijo-Arango, José Luis; García-Morrondo, David; Muñoz-Ibáñez, Andrea; Grande-García, Elisa; Rodríguez-Cedrún, Borja
2016-04-01
The Meirama pit lake is a water mass in the process of controlled flooding that, by the end of December 2015, can be described as a steadily stratified meromictic system. The deepest portion of the lake (monimolimnion) is isolated regarding the annual mixing dynamics (December/January) of the upper water body (mixolimnion), for which the depth of mixing is restricted to a water column of 35-40 m thick. Due to the contrasting flooding history (access of groundwater at the beginning and mixed access of stream/groundwater (being dominant the stream water) the deepest portion of the lake is separated from the upper, non-mixed layer by a marked chemocline. Strictly speaking, the monimolimnion of a meromictic lake extends to the waters located beneath the mixed lake layer. In the case of the Meirama Lake the monimolimnion is internally stratified and made of two major water bodies. From hereafter the deep and upper monimolimnion will be identified as bottom and middle sections of the lake while the mixolimnion is referred to as the surface layer. The general characteristics and evolution of the Meirama Lake have been reported elsewhere. In this work we focus on a summary description of the chemical evolution of the monimolimnion of the lake based on data gathered between 2009 and 2015 from the still on-going monitoring survey. The chemical evolution of the monimolimnion of the lake differs significantly from that of the mixolimnion. In general, surface water is sensible to seasonal fluctuations due to weather conditions, rainfall and biogeochemical processes. The middle and bottom sections are not sensible, in general, to this effects and their evolution obeys to a number of internal processes. In the case of temperature we observe a nearly constant gradient increase (0.001 °C/day) in the middle and deep lake waters up to the beginning of 2012, where it remains constant. The rise in temperature is likely due to the heat provided by groundwater seepage whose temperature is above that of the lake water at the corresponding depth. Likewise, electrical conductance shows a similar constant-rate increasing rate (0.223 and 0.115 S/cm-day in the bottom and middle sections, respectively) whose origin we also associate with groundwater seepage. Based on a wide number of parameters (O2, Cl, SO4, NO3, NO2, NH4, Fe, Mn…) we observe that the monimolimnion of the lake, either in its bottom or middle layer is a rather dynamic (transient) geochemical system.
NASA Astrophysics Data System (ADS)
Soltani, Iman
Means for improving barrier properties of polymers against gases, particularly for promoting their applications as packaging materials, are divided into surface coating and embedding nanoparticles in the bulk of the polymeric membranes. In this research, we mainly investigated improvement in barrier properties of polymers against oxygen and carbon dioxide, through layer-by-layer (LBL) coating and bulk nanocomposite methods. Initially, we studied the morphology of layer-by-layer assemblies comprising alternating layers of polyelectrolyte (PE) and natural montmorillonite (MMT) platelets, where polyethyleneterephthalate ionomer was used as our proposed alternative PE, to be compared with already examined polyethyleneimine. For both investigated PEs, while microscopic images showed the formation of tortuous networks of galleries between subsequent layers of oriented clay platelets parallel to the substrate surface, x-ray diffractometry (XRD) traces pointed to the intercalation of PE layers between clay platelets. As a confirmation of forming tortuous networks between oriented and high aspect ratio clay platelets to increase the path length of diffusing gas species dramatically, LBL-coated polystyrene-based membranes demonstrated pronounced decreases in permeability of oxygen and carbon dioxide (e.g. about the scale of 500 times decrease in permeability, with only five cycles of bilayer deposition). Before LBL deposition, the surface of the hydrophobic polymeric substrate was pretreated with oxygen plasma to improve its interaction with the coating. In the next study, previously LBL-coated samples were melt pressed in a cyclic manner to embed and to crush the coating inside the polystyrene-based matrix, aiming the exfoliated polymer-clay nanocomposites. The morphological investigations by transmission electron microscopy (TEM) revealed the tortuous internal structure of crushed LBL assemblies' portions, mainly comprising swollen intercalated stacks of clay, as well as flocculated exfoliated tactoids of a few clay platelets, down to about 2nm thickness. Moreover, XRD traces confirmed this increase in intercalation and exfoliation of clay platelets. Following ahead, dynamic mechanical thermal analysis (DMA) revealed significant increases in the storage and loss moduli values for our PNCs over those of pristine polystyrenebased matrix, hypothesizing the occurrence of substantial interactions between clay and the polymeric matrix, induced by intervening effect of PE interlayers. Also, permeation experiments showed noticeable improvement in gas barrier properties of processed PNCs. Considering the low content of clay particles and their limited level of global dispersions throughout the matrix, it may theorize the significant efficiency of high aspect ratio and tortuous LBL assemblies portions, oriented (induced by cycling pressing into thin films) perpendicular to the permeants' path routes. Thus, it might act almost as scavenging hubs against transport of diffusing gases. Finally, using PVAc, as the matrix, with this novel two-step approach of preparing PNCs, showed relatively higher clay content, when prepared with similar coating conditions. Also, DMA and permeation experiments pointed to significant improvements in mechanical and gas barrier properties of the PNCs, prepared by only 25 times melt pressing steps. Additionally, XRD traces postulated occurrence of noticeable irregularities in the interdistance of clay platelets. So, it is conjectured that semi-hydrophilic PVAc matrix promotes stronger interactions with clay particles, compared with those of polystyrene-based PNCs. However, moderate global dispersion of clay throughout the matrix points to the insufficient efficiency of repetitive melt pressing procedure to apply intensive enough stresses on samples, in order to overcome internal cohesion in LBL assemblies, which established initial intercalation and exfoliation in the otherwise aggregately clustered natural clay platelets. In addition, it is postulated that possibly occurring slight thermal degradations induce adverse results on the dispersion level and aforementioned properties of PNCs, processed over extended times.
The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient
NASA Technical Reports Server (NTRS)
Cohen, Clarence B; Reshotko, Eli
1956-01-01
An approximate method for the calculation of the compressible laminar boundary layer with heat transfer and arbitrary pressure gradient, based on Thwaites' correlation concept, is presented. With the definition of dimensionless shear and heat-transfer parameters and an assumed correlation of these parameters in terms of a momentum parameter, a complete system of relations for calculating skin friction and heat transfer results. Knowledge of velocity or temperature profiles is not necessary in using this calculation method. When the method is applied to a convergent-divergent, axially symmetric rocket nozzle, it shows that high rates of heat transfer are obtained at the initial stagnation point and at the throat of the nozzle. Also indicated are negative displacement thicknesses in the convergent portion of the nozzle; these occur because of the high density within the lower portions of the cooled boundary layer. (author)
Observations of metal concentrations in E-region sporadic thin layers using incoherent-scatter radar
NASA Astrophysics Data System (ADS)
Suzuki, Nobuhiro
This thesis has used incoherent-scatter radar data from the facility at Sondrestrom, Greenland to determine the ion mass values inside thin sporadic-E layers in the lower ionosphere. Metallic positively-charged ions of meteoric origin are deposited in the earth's upper atmosphere over a height range of about 85-120 km. Electric fields and neutral-gas (eg N2, O, O2) winds at high latitudes may produce convergent ion dynamics that results in the re-distribution of the background altitude distribution of the ions to form thin (1-3 km) high-density layers that are detectable with radar. A large database of experimental radar observations has been processed to determine ion mass values inside these thin ion layers. The range resolution of the radar was 600 meters that permitted mass determinations at several altitude steps within the layers. Near the lower edge of the layers the ion mass values were in the range 20-25 amu while at the top portion of the layers the mass values were generally in the range 30-40 amu. The numerical values are consistent with in-situ mass spectrometer data obtained by other researchers that suggest these layers are mainly composed of a mixture or Mg +, Si+, and Fe + ions. The small tendency for heavier ions to reside at the top portion of the layers is consistent with theory. The results have also found new evidence for the existence of complex-shaped multiple layers; the examples studied suggest similar ion mass values in different layers that in some cases are separated in altitude by several km.
Lamp bulb with integral reflector
Levin, Izrail; Shanks, Bruce; Sumner, Thomas L.
2001-01-01
An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.
Strippable containment and decontamination coating composition and method of use
Moore, Robert C [Edgewood, NM; Tucker, Mark D [Albuquerque, NM; Jones, Joseph A [Albuquerque, NM
2009-04-07
A method for containing at least a portion of radioisotopes, radionuclides, heavy metal or combination thereof contaminating a substrate wherein a containment composition is applied to the substrate. The ingredients within the containment composition interact with the contaminants on the surface of the substrate until the containment composition has polymerized to a water insoluble form containing at least a portion of the contaminates enmeshed therein. The dried composition is removed from the contaminated surface removing with the composition at least a portion of the contaminate.
Kim, Ji Young; Kim, A-Young; Liu, Guicheng; Woo, Jae-Young; Kim, Hansung; Lee, Joong Kee
2018-03-14
An amorphous SiO 2 (a-SiO 2 ) thin film was developed as an artificial passivation layer to stabilize Li metal anodes during electrochemical reactions. The thin film was prepared using an electron cyclotron resonance-chemical vapor deposition apparatus. The obtained passivation layer has a hierarchical structure, which is composed of lithium silicide, lithiated silicon oxide, and a-SiO 2 . The thickness of the a-SiO 2 passivation layer could be varied by changing the processing time, whereas that of the lithium silicide and lithiated silicon oxide layers was almost constant. During cycling, the surface of the a-SiO 2 passivation layer is converted into lithium silicate (Li 4 SiO 4 ), and the portion of Li 4 SiO 4 depends on the thickness of a-SiO 2 . A minimum overpotential of 21.7 mV was observed at the Li metal electrode at a current density of 3 mA cm -2 with flat voltage profiles, when an a-SiO 2 passivation layer of 92.5 nm was used. The Li metal with this optimized thin passivation layer also showed the lowest charge-transfer resistance (3.948 Ω cm) and the highest Li ion diffusivity (7.06 × 10 -14 cm 2 s -1 ) after cycling in a Li-S battery. The existence of the Li 4 SiO 4 artificial passivation layer prevents the corrosion of Li metal by suppressing Li dendritic growth and improving the ionic conductivity, which contribute to the low charge-transfer resistance and high Li ion diffusivity of the electrode.
Silicon micromachined broad band light source
NASA Technical Reports Server (NTRS)
George, Thomas (Inventor); Jones, Eric (Inventor); Tuma, Margaret L. (Inventor); Eastwood, Michael (Inventor); Hansler, Richard (Inventor)
2004-01-01
A micro electromechanical system (MEMS) broad band incandescent light source includes three layers: a top transmission window layer; a middle filament mount layer; and a bottom reflector layer. A tungsten filament with a spiral geometry is positioned over a hole in the middle layer. A portion of the broad band light from the heated filament is reflective off the bottom layer. Light from the filament and the reflected light of the filament are transmitted through the transmission window. The light source may operate at temperatures of 2500 K or above. The light source may be incorporated into an on board calibrator (OBC) for a spectrometer.
Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate
NASA Technical Reports Server (NTRS)
Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)
2009-01-01
A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saptarshi; Bera, Mrinal K.; Roelofs, Andreas K
A method of forming a TMDC monolayer comprises providing a multi-layer transition metal dichalcogenide (TMDC) film. The multi-layer TMDC film comprises a plurality of layers of the TMDC. The multi-layer TMDC film is positioned on a conducting substrate. The conducting substrate is contacted with an electrolyte solution. A predetermined electrode potential is applied on the conducting substrate and the TMDC monolayer for a predetermined time. A portion of the plurality of layers of the TMDC included in the multi-layer TMDC film is removed by application of the predetermined electrode potential, thereby leaving a TMDC monolayer film positioned on the conductingmore » substrate.« less
Photovoltaic module mounting clip with integral grounding
Lenox, Carl J.
2010-08-24
An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.
Wheel-type magnetic refrigerator
Barclay, John A.
1983-01-01
The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.
Wheel-type magnetic refrigerator
Barclay, J.A.
1982-01-20
The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Mars Exploration Rover Spirit took this panoramic camera image of the rock target named 'Mazatzal' on sol 77 (March 22, 2004). It is a close-up look at the rock face and the targets that will be brushed and ground by the rock abrasion tool in upcoming sols.
Mazatzal, like most rocks on Earth and Mars, has layers of material near its surface that provide clues about the history of the rock. Scientists believe that the top layer of Mazatzal is actually a coating of dust and possibly even salts. Under this light coating may be a more solid portion of the rock that has been chemically altered by weathering. Past this layer is the unaltered rock, which may give scientists the best information about how Mazatzal was formed. Because each layer reveals information about the formation and subsequent history of Mazatzal, it is important that scientists get a look at each of them. For this reason, they have developed a multi-part strategy to use the rock abrasion tool to systematically peel back Mazatzal's layers and analyze what's underneath with the rover's microscopic imager, and its Moessbauer and alpha particle X-ray spectrometers. The strategy began on sol 77 when scientists used the microscopic imager to get a closer look at targets on Mazatzal named 'New York,' 'Illinois' and 'Arizona.' These rock areas were targeted because they posed the best opportunity for successfully using the rock abrasion tool; Arizona also allowed for a close-up look at a range of tones. On sol 78, Spirit's rock abrasion tool will do a light brushing on the Illinois target to preserve some of the surface layers. Then, a brushing of the New York target should remove the top coating of any dust and salts and perhaps reveal the chemically altered rock underneath. Finally, on sol 79, the rock abrasion tool will be commanded to grind into the New York target, which will give scientists the best chance of observing Mazatzal's interior. The Mazatzal targets were named after the home states of some of the rock abrasion tool and science team members.Brázová, Tímea; Poddubnaya, Larisa G; Miss, Noemí Ramírez; Hanzelová, Vladimíra
2014-12-01
The ultrastructure and chemical composition of the proboscis hooks and surrounding tegument of Acanthocephalus lucii (Müller, 1776), a parasite of European perch, Perca fluviatilis Linnaeus, were examined using scanning (SEM) and transmission (TEM) electron microscopy and X-ray microanalysis (EDXA). The blade of middle hooks consists of three layers: an outer homogeneous layer, an inner heterogeneous layer and a central core. TEM observation revealed the presence of hollow tubes, which spaced the central core; fibrous inner hook layer surrounded by an electron-dense margin and the basal tegumental layer filled with electron-dense bodies and outer layer. We found for the first time that the so-called 'epidermal covering' surrounding of the exposed hook blade (outer hook layer) is a modified striped portion of the tegumental layer and there are no special contact sites between these two morphologically different structures, i.e. striped layer of the syncytial tegument and following proper outer hook layer, which is a homogeneous, moderately electron-dense layer of -0.3 μm in thickness. The hook root is embedded into subtegumental fibrous layer. X-ray microanalysis of both the surface and internal parts of A. lucii hooks demonstrated the presence of calcium, magnesium, phosphorus and sulphur. The highest concentration of sulphur was recorded at the tip of hooks, whereas the middle part of the hooks was most rich in calcium, phosphorus and magnesium. The proximal part of the hooks contained lower concentrations of sulphur, calcium and phosphorus. In the proboscis tegument, only two elements, calcium and silicon, were found. The differences observed in the chemical composition of the hook 'epidermal covering' and the proboscis tegument support our ultrastructural findings that the hook tegumental covering is a modified structure compared with that of the general proboscis tegument.
Electrochemical cells and methods of manufacturing the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan
2016-07-26
Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less
Gas turbine blade film cooling and blade tip heat transfer
NASA Astrophysics Data System (ADS)
Teng, Shuye
The detailed heat transfer coefficient and film cooling effectiveness distributions as well as the detailed coolant jet temperature profiles on the suction side of a gas turbine blade were measured using a transient liquid crystal image method and a traversing cold wire and thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 105. The upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 and 0.1. The coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness. Measurements of detailed heat transfer coefficient distributions on a turbine blade tip were performed in the same wind tunnel facility as above. The central blade had a variable tip gap clearance. Measurements were made at three different tip gap clearances of about 1.1%, 2.1%, and 3% of the blade span. Static pressure distributions were measured in the blade mid-span and on the shroud surface. Detailed heat transfer coefficient distributions were measured on the blade tip surface. Results show that reduced tip clearance leads to reduced heat transfer coefficient over the blade tip surface. Results also show that reduced tip clearance tends to weaken the unsteady wake effect on blade tip heat transfer.
NASA Technical Reports Server (NTRS)
2006-01-01
8 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a pit chain on the lower, northern flank of the giant martian volcano, Arsia Mons. Pits such as these commonly form as a result of collapse of surface materials into a subsurface void, possibly along a fault or into an old lava tube. The layered material, exposed near the top of several of the pits, is shedding house-sized boulders which can be seen resting on the sloping sidewalls and floors of many of the pits. Location near: 6.7oS, 120.1oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern SummerMethod of reusably sealing a silicone rubber vacuum bag to a mold for composite manufacture
NASA Technical Reports Server (NTRS)
Steinbach, John (Inventor)
1989-01-01
A silicone rubber vacuum bag for use in composite article manufacture is reusably sealed to a mold, without mechanical clamping means. The mold-mating portion of the bag is primed with a silicone rubber adhesive, which is cured thereto, and a layer of semiadhesive sealer is applied between the primed mold-mating portion of the bag and the mold.
Hot gas path component having cast-in features for near wall cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul
A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface of the substrate defines at least one interior space. At least a portion of the outer surface of the substrate includes a recess formed therein. The recess includes a bottom surface and a groove extending at least partially along the bottom surface of the recess. A cover is disposed within the recess and covers at least a portion of the groove. The groove is configured to channel a cooling fluid therethrough to cool the cover.
Is Obsidian Hydration Dating Affected by Relative Humidity?
Friedman, I.; Trembour, F.W.; Smith, G.I.; Smith, F.L.
1994-01-01
Experiments carried out under temperatures and relative humidities that approximate ambient conditions show that the rate of hydration of obsidian is a function of the relative humidity, as well as of previously established variables of temperature and obsidian chemical composition. Measurements of the relative humidity of soil at 25 sites and at depths of between 0.01 and 2 m below ground show that in most soil environments, at depths below about 0.25 m, the relative humidity is constant at 100%. We have found that the thickness of the hydrated layer developed on obsidian outcrops exposed to the sun and to relative humidities of 30-90% is similar to that formed on other portions of the outcrop that were shielded from the sun and exposed to a relative humidity of approximately 100%. Surface samples of obsidian exposed to solar heating should hydrate more rapidly than samples buried in the ground. However, the effect of the lower mean relative humidity experiences by surface samples tends to compensate for the elevated temperature, which may explain why obsidian hydration ages of surface samples usually approximate those derived from buried samples.
Influence of atmospheric plasma on physicochemical properties of vapor-grown graphite nanofibers.
Seo, Min-Kang; Park, Soo-Jin; Lee, Sang-Kwan
2005-05-01
Vapor-grown graphite nanofibers (GNFs) were modified by plasma treatments using low-pressure plasmas with different gases (Ar gas only and/or Ar/O2 gases), flow rates, pressures, and powers. Surface characterizations and morphologies of the GNFs after plasma treatment were investigated by X-ray photoelectron spectroscopy (XPS), contact angle, titration, and transmission electron microscopy (TEM) measurements. Also, the investigation of thermomechanical behavior and impact strengths of the GNFs/epoxy composites was performed by dynamic-mechanical thermal analysis (DMTA) and Izod impact testing, respectively. The plasma treatment of the fibers changed the surface morphologies by forming a layer with a thickness on the order of 1 nm, mainly consisting of oxygen functional groups such as hydroxyl, carbonyl, and carboxyl groups. After functionalization of the complete surfaces, further plasma treatment did not enhance the superficial oxygen content but slightly changed the portions of the functional groups. Also, the composites with plasma-treated GNFs showed an increase in T(g) and impact strength compared to the composites containing the same amount of plasma-untreated GNFs.
NASA Astrophysics Data System (ADS)
Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M.
2013-12-01
The planetary boundary layer (PBL) includes the portion of the atmosphere which is directly influenced by the presence of the earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study the boundary-layer vertical structure and time variability. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. The present analysis considers three different methods to estimate the PBL height. The first method is based on the determination of the first-order derivative of the logarithm of the range-corrected elastic lidar signals. Estimates of the PBL height for specific case studies obtained through this approach are compared with simultaneous estimates from the potential temperature profiles measured by radiosondes launched simultaneously to lidar operation. Additional estimates of the boundary layer height are based on the determination of the first-order derivative of the range-corrected rotational Raman lidar signals. This latter approach results to be successfully applicable also in the afternoon-evening decaying phase of the PBL, when the effectiveness of the approach based on the elastic lidar signals may be compromised or altered by the presence of the residual layer. Results from these different approaches are compared and discussed in the paper, with a specific focus on selected case studies collected by the University of Basilicata Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS).
NASA Astrophysics Data System (ADS)
Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M.
2013-06-01
The Planetary Boundary Layer (PBL) includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study the boundary-layer vertical structure and time variability. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. The present analysis considers three different methods to estimate the PBL height. A first method is based on the determination of the first order derivative of the logarithm of the range-corrected elastic lidar signals. Estimates of the PBL height for specific case studies obtained from this approach are compared with simultaneous estimates from the potential temperature profiles measured by radiosondes launched simultaneously to lidar operation. Additional estimates of the boundary layer height are based on the determination of the first order derivative of the range-corrected rotational Raman lidar signals. This latter approach results to be successfully applicable also in the afternoon-evening decaying phase of the PBL, when the effectiveness of the approach based on the elastic lidar signals may be compromised or altered by the presence of the residual layer. Results from these different approaches are compared and discussed in the paper, with a specific focus on selected case studies collected by the University of Basilicata Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS).
Multi-element microelectropolishing method
Lee, P.J.
1994-10-11
A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle. 10 figs.
Protective interlayer for high temperature solid electrolyte electrochemical cells
Singh, Prabhakar; Vasilow, Theodore R.; Richards, Von L.
1996-01-01
The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.
NASA Astrophysics Data System (ADS)
Mahan, K. H.; Schulte-Pelkum, V.; Shen, W.; Ritzwoller, M. H.
2012-12-01
Continental crust worldwide has been found to have areas with a lowermost layer characterized by unusually high seismic P velocities of over 7 km/s, often called 7.x layers. Such layers are commonly ascribed to underplating - in some cases by underthrusting, but in most cases by magmatic processes. In North America, high-velocity lower crust underlies upper crust of Archean, Proterozoic, and younger ages. Its presence reflects the tectonic and magmatic processes associated with continental rifting, collision, subduction, and other evolutionary (e.g. thermal) trends, and its occurrence also provides clues on the nature of the underlying mantle. Detection of a lower crustal high-velocity layer stems mostly from seismic refraction and wide-angle reflection experiments, and information on its geographical extent is very spotty. Similarly sparse are age determinations and knowledge of the tectonic processes responsible for construction of these layers. Despite glimpses of 7.x layers on many profiles across the continental U.S. and Canada, there is no systematic geographical and age information on this fundamental process of crustal growth, and many of the existing observations contradict current hypotheses on underplating. We compare compositional and physical property data of lower crustal and uppermost mantle xenoliths from Montana, Wyoming, and other localities with maps of lower crustal and uppermost mantle seismic velocities obtained from joint inversions of receiver functions with surface waves, and to mapped distinct high-velocity lower crustal layers in receiver functions in areas covered by the EarthScope Transportable Array. Xenolith observations from Montana indicate that portions of metasomatized uppermost mantle exist in that area that may be difficult to distinguish from mafic lower crust based on seismic velocities alone, raising the interesting question of whether a 7.x layer may be below rather than above the seismic Moho in some cases. The persistence of high-velocity, presumably strong lower crust under the Laramide-affected Wyoming craton and the Colorado Plateau suggest that crustal strength may influence surface deformation. The Rocky Mountain Front and Rio Grande rift largely separate fast lower crust to the East from slower lower crust to the West, cutting across NE-SW trends inherited from continental assembly and suggesting that the velocity distribution may be dominated by thermal effects; however, recent volcanics do not correlate well geographically with lower crustal velocity.
Urine collection apparatus. [feminine hygiene
NASA Technical Reports Server (NTRS)
Michaud, R. B. (Inventor)
1981-01-01
A urine collection device for females comprises an interface body with an interface surface for engagement with the user's body. The interface body comprises a forward portion defining a urine-receiving bore which has an inlet in the interface surface adapted to be disposed in surrounding relation to the urethral opening of the user. The interface body also has a rear portion integrally adjoining the forward portion and a non-invasive vaginal seal on the interface surface for sealing the vagina of the user from communication with the urine-receiving bore. An absorbent pad is removably supported on the interface body and extends laterally therefrom. A garment for supporting the urine collection is also disclosed.
Method and system for pipeline communication
Richardson,; John, G [Idaho Falls, ID
2008-01-29
A pipeline communication system and method includes a pipeline having a surface extending along at least a portion of the length of the pipeline. A conductive bus is formed to and extends along a portion of the surface of the pipeline. The conductive bus includes a first conductive trace and a second conductive trace with the first and second conductive traces being adapted to conformally couple with a pipeline at the surface extending along at least a portion of the length of the pipeline. A transmitter for sending information along the conductive bus on the pipeline is coupled thereto and a receiver for receiving the information from the conductive bus on the pipeline is also couple to the conductive bus.
Morrison, Edward F.; Bergman, John W.
2001-05-22
A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.
Funnel for localizing biological cell placement and arrangement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soscia, David; Benett, William J.; Mukerjee, Erik V.
2018-03-06
The present disclosure relates to a funnel apparatus for channeling cells onto a plurality of distinct, closely spaced regions of a seeding surface. The funnel apparatus has a body portion having an upper surface and a lower surface. The body portion forms a plurality of flow paths, at least one of which is shaped to have a decreasing cross-sectional area from the upper surface to the lower surface. The flow paths are formed at the lower surface to enable cells deposited into the flow paths at the upper surface of the funnel apparatus to be channeled into a plurality ofmore » distinct, closely spaced regions on the seeding surface positioned adjacent the lower surface.« less
NASA Technical Reports Server (NTRS)
Carros, R. J.; Boissevain, A. G.; Aoyagi, K.
1975-01-01
Data are presented from an investigation of the aerodynamic characteristics of large-scale wind tunnel aircraft model that utilized a hybrid-upper surface blown flap to augment lift. The hybrid concept of this investigation used a portion of the turbofan exhaust air for blowing over the trailing edge flap to provide boundary layer control. The model, tested in the Ames 40- by 80-foot Wind Tunnel, had a 27.5 deg swept wing of aspect ratio 8 and 4 turbofan engines mounted on the upper surface of the wing. The lift of the model was augmented by turbofan exhaust impingement on the wind upper-surface and flap system. Results were obtained for three flap deflections, for some variation of engine nozzle configuration and for jet thrust coefficients from 0 to 3.0. Six-component longitudinal and lateral data are presented with four engine operation and with the critical engine out. In addition, a limited number of cross-plots of the data are presented. All of the tests were made with a downwash rake installed instead of a horizontal tail. Some of these downwash data are also presented.
Method of condensing vaporized water in situ to treat tar sands formations
Hsu, Chia-Fu
2010-03-16
Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. Heat may be allowed to transfer from the heaters to at least a first portion of the formation. Conditions may be controlled in the formation so that water vaporized by the heaters in the first portion is selectively condensed in a second portion of the formation. At least some of the fluids may be produced from the formation.
Gas turbine bucket cooling circuit and related process
Lewis, Doyle C.; Barb, Kevin Joseph
2002-01-01
A turbine bucket includes an airfoil portion having leading and trailing edges; at least one radially extending cooling passage within the airfoil portion, the airfoil portion joined to a platform at a radially inner end of the airfoil portion; a dovetail mounting portion enclosing a cooling medium supply passage; and, a crossover passage in fluid communication with the cooling medium supply passage and with at least one radially extending cooling passage, the crossover passage having a portion extending along and substantially parallel to an underside surface of the platform.
Isolation of Cytoplasmic Pituitary Granules with Gonadotropic Activity
Hartley, Marshall W.; McShan, W. H.; Ris, Hans
1960-01-01
A fraction isolated from the anterior pituitary glands of rats castrate for 8 weeks contained essentially a single cytoplasmic constituent with which the major portion of the gonadotropic hormone activity was associated. The glands were homogenized in an 0.25 M sucrose + 7.3 per cent polyvinylpyrrolidone (PVP) solution and fractionated by differential centrifugation to give a heterogeneous small granule fraction which contained almost all the gonadotropic hormone activity. The active supernatant containing this small granule fraction was separated into layers by isopycnic gradient centrifugation on a continuous 6 to 45 per cent sucrose + 17.5 per cent "diodrast" + 5 x 10-4 M "versene" gradient at 100,000 g for 2 hours. Three layers were obtained and the pellet from the active bottom layer was sectioned, examined with the electron microscope, and found to contain 200 mµ granules, mitochondria, ergastoplasm, and other cellular debris. This layer was fractionated further by isopycnic and differential centrifugation to obtain a pellet which contained the major portion of the gonadotropic hormone activity. Because of the heterogeneity of this fraction, due to the contamination of the 200 mµ granules with mitochondria and other cellular debris, the active layer and the resuspended active pellet, obtained by centrifuging this layer first at 17,000 g then diluting the supernatant and centrifuging at 30,000 g for 1 hour, were filtered through Millipore HA paper with a pore size of 0.45 µ. The cytoplasmic material containing the gonadotropic hormone activity passed through the filter paper and this activity was recovered in the pellets obtained by centrifuging at 100,000 g for 1 hour. These active pellets consisted almost entirely of 200 mµ granules with a minimum amount of contamination, and they contained the major portion of the gonadotropic hormone activity with practically none remaining in the supernatant fraction. These results are discussed in view of their importance to the cytology of the pituitary gland. PMID:14400127
Bickes Jr., Robert W.; Renlund, Anita M.; Stanton, Philip L.
1994-11-01
A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.
Bickes, Jr., Robert W.; Renlund, Anita M.; Stanton, Philip L.
1994-01-01
A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.
Enhanced depth imaging optical coherence tomography of choroidal metastasis in 14 eyes.
Al-Dahmash, Saad A; Shields, Carol L; Kaliki, Swathi; Johnson, Timothy; Shields, Jerry A
2014-08-01
To describe the imaging features of choroidal metastasis using enhanced depth imaging optical coherence tomography (EDI-OCT). This retrospective observational case series included 31 eyes with choroidal metastasis. Spectral domain EDI-OCT was performed using Heidelberg Spectralis HRA + OCT. The main outcome measures were imaging features by EDI-OCT. Of 31 eyes with choroidal metastasis imaged with EDI-OCT, 14 (45%) eyes displayed image detail suitable for study. The metastasis originated from carcinoma of the breast (n = 7, 50%), lung (n = 5, 36%), pancreas (n = 1, 7%), and thyroid gland (n = 1, 7%). The mean tumor basal diameter was 6.4 mm, and mean thickness was 2.3 mm by B-scan ultrasonography. The tumor location was submacular in 6 (43%) eyes and extramacular in 8 (57%) eyes. By EDI-OCT, the mean tumor thickness was 987 μm. The most salient EDI-OCT features of the metastasis included anterior compression/obliteration of the overlying choriocapillaris (n = 13, 93%), an irregular (lumpy bumpy) anterior contour (n = 9, 64%), and posterior shadowing (n = 12, 86%). Overlying retinal pigment epithelial abnormalities were noted (n = 11, 78%). Outer retinal features included structural loss of the interdigitation of the cone outer segment tips (n = 9, 64%), the ellipsoid portion of photoreceptors (n = 8, 57%), external limiting membrane (n = 4, 29%), outer nuclear layer (n = 1, 7%), and outer plexiform layer (n = 1, 7%). The inner retinal layers (inner nuclear layer to nerve fiber layer) were normal. Subretinal fluid (n = 11, 79%), subretinal lipofuscin pigment (n = 1, 7%), and intraretinal edema (n = 2, 14%) were identified. The EDI-OCT of choroidal metastasis shows a characteristic lumpy bumpy anterior tumor surface and outer retinal layer disruption with preservation of inner retinal layers.
Isenberg, A.O.
1992-04-21
An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO[sub 3], YCrO[sub 3] or LaMnO[sub 3] particles, on a portion of a porous ceramic substrate, (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure between the doped particles, (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles as a contact. 7 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumesic, James A.; Alonso, David Martin; Gurbuz, Elif I.
A method to make levulinic acid (LA), furfural, or gamma-valerolactone (GVL). React cellulose (and/or other C.sub.6 carbohydrates) or xylose (and/or other C.sub.5 carbohydrates) or combinations thereof in a monophasic reaction medium comprising GVL and an acid; or (ii) a biphasic reaction system comprising an organic layer comprising GVL, and a substantially immiscible aqueous layer. At least a portion of the cellulose (and/or other C.sub.6 carbohydrates), if present, is converted to LA and at least a portion of the xylose (and/or other C.sub.5 carbohydrates), if present, is converted into furfural.
Aeolian sand transport over complex intertidal bar-trough beach topography
NASA Astrophysics Data System (ADS)
Anthony, Edward J.; Ruz, Marie-Hélène; Vanhée, Stéphane
2009-04-01
Aeolian sand transport on macrotidal beaches with complex intertidal bar-trough topography (ridge-and-runnel beaches) was assessed from experiments in northern France that involved measurements of wind speed, saltation, surface moisture contents, and rates of sand trapping across surveyed portions of the upper beach profile. Beaches exhibiting intertidal bars and troughs are much more complex, topographically, than simple reflective or dissipative beaches. Furthermore, the intertidal bar-trough morphology commonly exhibits strong cross-shore variations in the moisture contents of the beach surface and in patterns of bedform development. The results of four 30-minute experiments, conducted along topographically surveyed portions of the upper beach-dune toe profile, show that troughs act as extremely efficient sand interceptors, because of their permanently saturated state, which also inhibits sand mobilisation. Troughs, thus, limit or segment the dry fetch during conditions of intermittent saltation. Flow lines, inferred from the wind profiles, suggest that complex interactions at the boundary layer are generated by the bar-trough topography. Troughs systematically appear to be characterised by air expansion, while bar faces generate ramp wind acceleration for onshore winds, and sometimes immediate downwind deceleration for offshore winds. These effects may also contribute to cross-shore variations in the rates of sand trapping. Finally, a simple conceptual model of effective fetch development, integrating the effects of the spring-neap tidal range and of gross bar-trough morphological variability over time, is proposed for bar-trough beaches. The model highlights the key theme of fetch segmentation induced by cross-shore differentiation in the moisture contents of the beach surface hinged on the complex topography of multiple bars and troughs.
Experimental study of the impact of large-scale wind farms on land-atmosphere exchanges
NASA Astrophysics Data System (ADS)
Zhang, wei; Markfort, Corey; Porté-Agel, Fernando
2013-04-01
Wind energy is one of the fastest growing sources of renewable energy world-wide, and it is expected that many more large-scale wind farms will be built and cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer and converting it to electricity, wind farms may affect the transport of momentum, heat, moisture and trace gases (e.g. CO2) between the atmosphere and the land surface locally and globally. Understanding wind farm-atmosphere interactions and subsequent environmental impacts are complicated by the effects of turbine array configuration, wind farm size, land-surface characteristics and atmospheric thermal stability. In particular, surface scalar flux is influenced by wind farms and needs to be appropriately parameterized in meso-scale and/or high-resolution numerical models. Wind-tunnel experiments of model wind farms with perfectly aligned and staggered configurations, having the same turbine distribution density, were conducted in a neutral turbulent boundary layer with a surface heat source. Turbulent flow and fluxes over and through the wind farm were measured using a custom x-wire/cold-wire anemometer; and surface scalar flux was measured with an array of surface-mounted heat flux sensors within the quasi-developed flow regime. Although the overall surface heat flux change produced by the wind farms was found to be small, with a net reduction of 4% for the staggered wind farm and nearly zero for the aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on wind farm layout, is significant. The difference between the minimum and maximum surface heat fluxes could be up to 12% and 7% in aligned and staggered wind farms, respectively. This finding is important for planning intensive agriculture practices and optimizing agricultural land use with regard to wind energy project development. The well-controlled wind-tunnel experiments presented here also provide a first comprehensive dataset on turbulent flow and scalar transport in wind farms, which can be further used to develop and validate new parameterizations for surface scalar fluxes in numerical models.
NASA Astrophysics Data System (ADS)
Memon, Muhammad Omar
Cost-effective air-travel is something everyone wishes for when it comes to booking flights. The continued and projected increase in commercial air travel advocates for energy efficient airplanes, reduced carbon footprint, and a strong need to accommodate more airplanes into airports. All of these needs are directly affected by the magnitudes of drag these aircraft experience and the nature of their wingtip vortex. A large portion of the aerodynamic drag results from the airflow rolling from the higher pressure side of the wing to the lower pressure side, causing the wingtip vortices. The generation of this particular drag is inevitable however, a more fundamental understanding of the phenomenon could result in applications whose benefits extend much beyond the relatively minuscule benefits of commonly-used winglets. Maximizing airport efficiency calls for shorter intervals between takeoffs and landings. Wingtip vortices can be hazardous for following aircraft that may fly directly through the high-velocity swirls causing upsets at vulnerably low speeds and altitudes. The vortex system in the near wake is typically more complex since strong vortices tend to continue developing throughout the near wake region. Several chord lengths distance downstream of a wing, the so-called fully rolled up wing wake evolves into a combination of a discrete wingtip vortex pair and a free shear layer. Lift induced drag is generated as a byproduct of downwash induced by the wingtip vortices. The parasite drag results from a combination of form/pressure drag and the upper and lower surface boundary layers. These parasite effects amalgamate to create the free shear layer in the wake. While the wingtip vortices embody a large portion of the total drag at lifting angles, flow properties in the free shear layer also reveal their contribution to the aerodynamic efficiency of the aircraft. Since aircraft rarely cruise at maximum aerodynamic efficiency, a better understanding of the balance between the lift induced drag (wingtip vortices) and parasite drag (free shear layer) can have a significant impact. Particle Image Velocimetry (PIV) experiments were performed at a) a water tunnel at ILR Aachen, Germany, and b) at the University of Dayton Low Speed Wind Tunnel in the near wake of an AR 6 wing with a Clark-Y airfoil to investigate the characteristics of the wingtip vortex and free shear layer at angles of attack in the vicinity of maximum aerodynamic efficiency for the wing. The data was taken 1.5 and 3 chord lengths downstream of the wing at varying free-stream velocities. A unique exergy-based technique was introduced to quantify distinct changes in the wingtip vortex axial core flow. The existence of wingtip vortex axial core flow transformation from wake-like (velocity less-than the freestream) to jet-like (velocity greater-than the freestream) behavior in the vicinity of the maximum (L/D) angles was observed. The exergy-based technique was able to identify the change in the out of plane profile and corresponding changes in the L/D performance. The resulting velocity components in and around the free shear layer in the wing wake showed counter flow in the cross-flow plane presumably corresponding to behavior associated with the flow over the upper and lower surfaces of the wing. Even though the velocity magnitudes in the free shear layer in cross-flow plane are a small fraction of the freestream velocity ( 10%), significant directional flow was observed. An indication of the possibility of the transfer of momentum (from inboard to outboard of the wing) was identified through spanwise flow corresponding to the upper and lower surfaces through the free shear layer in the wake. A transition from minimal cross flow in the free shear layer to a well-established shear flow in the spanwise direction occurs in the vicinity of maximum lift-to-drag ratio (max L/D) angle of attack. A distinctive balance between the lift induced drag and parasite drag was identified. Improved understanding of this relationship could be extended not only to improve aircraft performance through the reduction of lift induced drag, but also to air vehicle performance in off-design cruise conditions.
System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics
France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan
2017-11-21
The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.
Nanostructured Quantum Dots or Dashes in Photovoltaic Devices and Methods Thereof
NASA Technical Reports Server (NTRS)
Raffaele, Ryne P. (Inventor); Wilt, David M. (Inventor)
2015-01-01
A photovoltaic device includes one or more structures, an array of at least one of quantum dots and quantum dashes, at least one groove, and at least one conductor. Each of the structures comprises an intrinsic layer on one of an n type layer and a p type layer and the other one of the n type layer and the p type layer on the intrinsic layer. The array of at least one of quantum dots and quantum dashes is located in the intrinsic layer in at least one of the structures. The groove extends into at least one of the structures and the conductor is located along at least a portion of the groove.
Single-atom detection of isotopes
Meyer, Fred W.
2002-01-01
A method for performing accelerator mass spectrometry, includes producing a beam of positive ions having different multiple charges from a multicharged ion source; selecting positive ions having a charge state of from +2 to +4 to define a portion of the beam of positive ions; and scattering at least a portion of the portion of the beam of positive ions off a surface of a target to directly convert a portion of the positive ions in the portion of the beam of positive ions to negative ions.
Wheel-type magnetic refrigerator
Barclay, J.A.
1983-10-11
The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.
Method of bonding an interconnection layer on an electrode of an electrochemical cell
Pal, U.B.; Isenberg, A.O.; Folser, G.R.
1992-01-14
An electrochemical cell containing an air electrode, contacting electrolyte and electronically conductive interconnection layer, and a fuel electrode, has the interconnection layer attached by: (A) applying a thin, closely packed, discrete layer of LaCrO[sub 3] particles, doped with an element selected from the group consisting of Ca, Sr, Co, Ba, Mg and their mixtures on a portion of the air electrode, and then (B) electrochemical vapor depositing a dense skeletal structure between and around the doped LaCrO[sub 3] particles. 2 figs.
Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Kraaijenbrink, Philip; Immerzeel, Walter; de Jong, Steven; Shea, Joseph; Pellicciotti, Francesca; Meijer, Sander; Shresta, Arun
2016-04-01
Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed multiple times over two debris covered glaciers in the Langtang catchment, located in the Nepalese Himalayas. Using differential GPS measurements and the Structure for Motion algorithm the UAV imagery was processed into accurate high-resolution digital elevation models and orthomosaics for both pre- and post-monsoon periods. These data were successfully used to estimate seasonal surface flow and mass wasting by using cross-correlation feature tracking and DEM differencing techniques. The results reveal large heterogeneity in mass loss and surface flow over the glacier surfaces, which are primarily caused by the presence of surface features such as ice cliffs and supra-glacial lakes. Accordingly, we systematically analyze those features using an object-based approach and relate their characteristics to the observed dynamics. We show that ice cliffs and supra-glacial lakes are contributing to a significant portion of the melt water of debris covered glaciers and we conclude that UAVs have great potential in understanding the key surface processes that remain largely undetected by using satellite remote sensing.
The variability of California summertime marine stratus: impacts on surface air temperatures
Iacobellis, Sam F.; Cayan, Daniel R.
2013-01-01
This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.