Analysis of reverse gate leakage mechanism of AlGaN/GaN HEMTs with N2 plasma surface treatment
NASA Astrophysics Data System (ADS)
Liu, Hui; Zhang, Zongjing; Luo, Weijun
2018-06-01
The mechanism of reverse gate leakage current of AlGaN/GaN HEMTs with two different surface treatment methods are studied by using C-V, temperature dependent I-V and theoretical analysis. At the lower reverse bias region (VR >- 3.5 V), the dominant leakage current mechanism of the device with N2 plasma surface treatment is the Poole-Frenkel emission current (PF), and Trap-Assisted Tunneling current (TAT) is the principal leakage current of the device which treated by HCl:H2O solution. At the higher reverse bias region (VR <- 3.5 V), both of the two samples show good agreement with the surface leakage mechanism. The leakage current of the device with N2 plasma surface treatment is one order of magnitude smaller than the device which treated by HCl:H2O solution. This is due to the recovery of Ga-N bond in N2 plasma surface treatment together with the reduction of the shallow traps in post-gate annealing (PGA) process. The measured results agree well with the theoretical calculations and demonstrate N2 plasma surface treatment can reduce the reverse leakage current of the AlGaN/GaN HEMTs.
NASA Astrophysics Data System (ADS)
Zheng, Xue-Feng; Fan, Shuang; Chen, Yong-He; Kang, Di; Zhang, Jian-Kun; Wang, Chong; Mo, Jiang-Hui; Li, Liang; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue
2015-02-01
The transport mechanism of reverse surface leakage current in the AlGaN/GaN high-electron mobility transistor (HEMT) becomes one of the most important reliability issues with the downscaling of feature size. In this paper, the research results show that the reverse surface leakage current in AlGaN/GaN HEMT with SiN passivation increases with the enhancement of temperature in the range from 298 K to 423 K. Three possible transport mechanisms are proposed and examined to explain the generation of reverse surface leakage current. By comparing the experimental data with the numerical transport models, it is found that neither Fowler-Nordheim tunneling nor Frenkel-Poole emission can describe the transport of reverse surface leakage current. However, good agreement is found between the experimental data and the two-dimensional variable range hopping (2D-VRH) model. Therefore, it is concluded that the reverse surface leakage current is dominated by the electron hopping through the surface states at the barrier layer. Moreover, the activation energy of surface leakage current is extracted, which is around 0.083 eV. Finally, the SiN passivated HEMT with a high Al composition and a thin AlGaN barrier layer is also studied. It is observed that 2D-VRH still dominates the reverse surface leakage current and the activation energy is around 0.10 eV, which demonstrates that the alteration of the AlGaN barrier layer does not affect the transport mechanism of reverse surface leakage current in this paper. Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002, 61106106, and 61474091), the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201206), the New Experiment Development Funds for Xidian University, China (Grant No. SY1213), the 111 Project, China (Grant No. B12026), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. K5051325002).
Hoffbauer, Mark A.; Prettyman, Thomas H.
2001-01-01
Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.
Current transport mechanisms in mercury cadmium telluride diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn; Li, Qing; He, Jiale
This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation,more » flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.« less
NASA Astrophysics Data System (ADS)
Conseil-Gudla, Hélène; Jellesen, Morten S.; Ambat, Rajan
2017-02-01
Corrosion reliability is a serious issue today for electronic devices, components, and printed circuit boards (PCBs) due to factors such as miniaturization, globalized manufacturing practices which can lead to process-related residues, and global usage effects such as bias voltage and unpredictable user environments. The investigation reported in this paper focuses on understanding the synergistic effect of such parameters, namely contamination, humidity, PCB surface finish, pitch distance, and potential bias on leakage current under different humidity levels, and electrochemical migration probability under condensing conditions. Leakage currents were measured on interdigitated comb test patterns with three different types of surface finish typically used in the electronics industry, namely gold, copper, and tin. Susceptibility to electrochemical migration was studied under droplet conditions. The level of base leakage current (BLC) was similar for the different surface finishes and NaCl contamination levels up to relative humidity (RH) of 65%. A significant increase in leakage current was found for comb patterns contaminated with NaCl above 70% to 75% RH, close to the deliquescent RH of NaCl. Droplet tests on Cu comb patterns with varying pitch size showed that the initial BLC before dendrite formation increased with increasing NaCl contamination level, whereas electrochemical migration and the frequency of dendrite formation increased with bias voltage. The effect of different surface finishes on leakage current under humid conditions was not very prominent.
Modeling and analysis of sub-surface leakage current in nano-MOSFET under cutoff regime
NASA Astrophysics Data System (ADS)
Swami, Yashu; Rai, Sanjeev
2017-02-01
The high leakage current in nano-meter regimes is becoming a significant portion of power dissipation in nano-MOSFET circuits as threshold voltage, channel length, and gate oxide thickness are scaled down to nano-meter range. Precise leakage current valuation and meticulous modeling of the same at nano-meter technology scale is an increasingly a critical work in designing the low power nano-MOSFET circuits. We present a specific compact model for sub-threshold regime leakage current in bulk driven nano-MOSFETs. The proposed logical model is instigated and executed into the latest updated PTM bulk nano-MOSFET model and is found to be in decent accord with technology-CAD simulation data. This paper also reviews various transistor intrinsic leakage mechanisms for nano-MOSFET exclusively in weak inversion, like drain-induced barricade lowering (DIBL), gate-induced drain leakage (GIDL), gate oxide tunneling (GOT) leakage etc. The root cause of the sub-surface leakage current is mainly due to the nano-scale short channel length causing source-drain coupling even in sub-threshold domain. Consequences leading to carriers triumphing the barricade between the source and drain. The enhanced model effectively considers the following parameter dependence in the account for better-quality value-added results like drain-to-source bias (VDS), gate-to-source bias (VGS), channel length (LG), source/drain junction depth (Xj), bulk doping concentration (NBULK), and operating temperature (Top).
Improving off-state leakage characteristics for high voltage AlGaN/GaN-HFETs on Si substrates
NASA Astrophysics Data System (ADS)
Moon, Sung-Woon; Twynam, John; Lee, Jongsub; Seo, Deokwon; Jung, Sungdal; Choi, Hong Goo; Shim, Heejae; Yim, Jeong Soon; Roh, Sungwon D.
2014-06-01
We present a reliable process and design technique for realizing high voltage AlGaN/GaN hetero-junction field effect transistors (HFETs) on Si substrates with very low and stable off-state leakage current characteristics. In this work, we have investigated the effects of the surface passivation layer, prepared by low pressure chemical vapor deposition (LPCVD) of silicon nitride (SiNx), and gate bus isolation design on the off-state leakage characteristics of metal-oxide-semiconductor (MOS) gate structure-based GaN HFETs. The surface passivated devices with gate bus isolation fully surrounding the source and drain regions showed extremely low off-state leakage currents of less than 20 nA/mm at 600 V, with very small variation. These techniques were successfully applied to high-current devices with 80-mm gate width, yielding excellent off-state leakage characteristics within a drain voltage range 0-700 V.
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2018-02-01
Surface leakage and lateral diffusion currents in InAs-based nBn photodetectors have been investigated. Devices fabricated using a shallow etch processing scheme that etches through the top contact and stops at the barrier exhibited large lateral diffusion current but undetectably low surface leakage. Such large lateral diffusion current significantly increased the dark current, especially in small devices, and causes pixel-to-pixel crosstalk in detector arrays. To eliminate the lateral diffusion current, two different approaches were examined. The conventional solution utilized a deep etch process, which etches through the top contact, barrier, and absorber. This deep etch processing scheme eliminated lateral diffusion, but introduced high surface current along the device mesa sidewalls, increasing the dark current. High device failure rate was also observed in deep-etched nBn structures. An alternative approach to limit lateral diffusion used an inverted nBn structure that has its absorber grown above the barrier. Like the shallow etch process on conventional nBn structures, the inverted nBn devices were fabricated with a processing scheme that only etches the top layer (the absorber, in this case) but avoids etching through the barrier. The results show that inverted nBn devices have the advantage of eliminating the lateral diffusion current without introducing elevated surface current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke, P. N.; Amman, M.; Lee J. S.
2000-10-10
Noise in CdZnTe devices with different electrode configurations was investigated. Measurements on devices with guard-ring electrode structures showed that surface leakage current does not produce any significant noise. The parallel white noise component of the devices appeared to be generated by the bulk current alone, even though the surface current was substantially higher. This implies that reducing the surface leakage current of a CdZnTe detector may not necessarily result in a significant improvement in noise performance. The noise generated by the bulk current is also observed to be below full shot noise. This partial suppression of shot noise may bemore » the result of Coulomb interaction between carriers or carrier trapping. Devices with coplanar strip electrodes were observed to produce a 1/f noise term at the preamplifier output. Higher levels of this 1/f noise were observed with decreasing gap widths between electrodes. The level of this 1/f noise appeared to be independent of bias voltage and leakage current but was substantially reduced after certain surface treatments.« less
Investigation of mercury thruster isolators. [service life
NASA Technical Reports Server (NTRS)
Mantenieks, M. A.
1973-01-01
Mercury ion thruster isolator lifetime tests were performed using different isolator materials and geometries. Tests were performed with and without the flow of mercury through the isolators in an oil diffusion pumped vacuum facility and cryogenically pumped bell jar. The onset of leakage current in isolators tested occurred in time intervals ranging from a few hours to many hundreds of hours. In all cases, surface contamination was responsible for the onset of leakage current and subsequent isolator failure. Rate of increase of leakage current and the leakage current level increased approximately exponentially with isolator temperature. Careful attention to shielding techniques and the elimination of sources of metal oxides appear to have eliminated isolator failures as a thruster life limiting mechanism.
The effect of guard ring on leakage current and spectroscopic performance of TlBr planar detectors
NASA Astrophysics Data System (ADS)
Kargar, Alireza; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2014-09-01
Four thallium bromide planar detectors were fabricated from materials grown at RMD Inc. The TlBr samples were prepared to investigate the effect of guard ring on device gamma-ray spectroscopy performance, and to investigate the leakage current through surface and bulk. The devices' active area in planar configuration were 4.4 × 4.4 × 1.0 mm3. In this report, the detector fabrication process is described and the resulting energy spectra are discussed. It is shown that the guard ring improves device spectroscopic performance by shielding the sensing electrode from the surface leakage current, and by making the electric filed more uniform in the active region of the device.
Surface Conduction in III-V Semiconductor Infrared Detector Materials
NASA Astrophysics Data System (ADS)
Sidor, Daniel Evan
III-V semiconductors are increasingly used to produce high performance infrared photodetectors; however a significant challenge inherent to working with these materials is presented by unintended electrical conduction pathways that form along their surfaces. Resulting leakage currents contribute to system noise and are ineffectively mitigated by device cooling, and therefore limit ultimate performance. When the mechanism of surface conduction is understood, the unipolar barrier device architecture offers a potential solution. III-V bulk unipolar barrier detectors that effectively suppress surface leakage have approached the performance of the best II-VI pn-based structures. This thesis begins with a review of empirically determined Schottky barrier heights and uses this information to present a simple model of semiconductor surface conductivity. The model is validated through measurements of degenerate n-type surface conductivity on InAs pn junctions, and non-degenerate surface conductivity on GaSb pn junctions. It is then extended, along with design principles inspired by the InAs-based nBn detector, to create a flat-band pn-based unipolar barrier detector possessing a conductive surface but free of detrimental surface leakage current. Consideration is then given to the relative success of these and related bulk detectors in suppressing surface leakage when compared to analogous superlattice-based designs, and general limitations of unipolar barriers in suppressing surface leakage are proposed. Finally, refinements to the molecular beam epitaxy crystal growth techniques used to produce InAs-based unipolar barrier heterostructure devices are discussed. Improvements leading to III-V device performance well within an order of magnitude of the state-of-the-art are demonstrated.
NASA Technical Reports Server (NTRS)
Fragomeni, James M.
1998-01-01
As a consequence of preparations concerning the International Space Welding Experiment (ISWE), studies were performed to better understand the effect of molten metal contact and electron beam impingement with various fabrics for space suit applications. The question arose as to what would occur if the electron beam from the Ukrainian Universal Hand Tool (UHT) designed for welding in space were to impinge upon a piece of Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The expectation was that the electron beam would lay down a static charge pattern with no damage to the ceramic fabric. The electron beam is capable of spraying the fabric with enough negative charge to repel further electrons from the fabric before significant heating occurs. The static charge pattern would deflect any further charge accumulation except for a small initial amount of leakage to the grounded surface of the welder. However, when studies were made of the effect of the electron beam on the insulating ceramic fabric it was surprisingly found that the electron beam did indeed burn through the ceramic fabric. It was also found that the shorter electron beam standoff distances had longer burnthrough times than did some greater electron beam standoff distances. A possible explanation for the longer burnthrough times for the small electron beam standoff distance would be outgassing of the fabric which caused the electron beam hand-tool to cycle on and off to provide some protection for the cathodes. The electron beam hand tool was observed to cycle off at the short standoff distance of two inches likely due to vapors being outgassed. During the electron beam welding process there is an electron leakage, or current leakage, flow from the fabric. A static charge pattern is initially laid down by the electron beam current flow. The static charge makes up the current leakage flow which initially slightly heats up the fabric. The initially laid down surface charge leaks a small amount of current. The rate at which the current charge leaks from the fabric controls how fast the fabric heats up. As the ceramic fabric is heated it begins to outgass primarily from contamination/impurities atoms or molecules on and below the fabric surface. The contaminant gases ionize to create extra charge carriers and multiply a current of electrons. The emitted gas which ionized in the electron leakage flow promotes further leakage. Thus, the small leakage of charge from the fabric surface is enhanced by outgassing. When the electron beam current makes up the lost current, the incoming electrons heat the fabric and further enhance the outgassing. The additional leakage promotes additional heating up of the ceramic fabric. The electrons bound to the ceramic fabric surface leak off more and more as the surface gets hotter promoting even greater leakage. The additional electrons that result also gain energy in the field and produce further electrons. Eventually the process becomes unstable and accelerates to the point where a hole is burned through the fabric.
NASA Technical Reports Server (NTRS)
Neudeck, P. G.; Carpenter, M. S.; Melloch, Michael R.; Cooper, James A., Jr.
1991-01-01
Ammonium-sulfide (NH4)2S treated gates have been employed in the fabrication of GaAs MESFETs that exhibit a remarkable reduction in subthreshold leakage current. A greater than 100-fold reduction in drain current minimum is observed due to a decrease in Schottky gate leakage. The electrical characteristics have remained stable for over a year during undesiccated storage at room temperature, despite the absence of passivation layers.
Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi
2016-08-16
Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.
Dark current reduction of Ge photodetector by GeO₂ surface passivation and gas-phase doping.
Takenaka, Mitsuru; Morii, Kiyohito; Sugiyama, Masakazu; Nakano, Yoshiaki; Takagi, Shinichi
2012-04-09
We have investigated the dark current of a germanium (Ge) photodetector (PD) with a GeO₂ surface passivation layer and a gas-phase-doped n+/p junction. The gas-phase-doped PN diodes exhibited a dark current of approximately two orders of magnitude lower than that of the diodes formed by a conventional ion implantation process, indicating that gas-phase doping is suitable for low-damage PN junction formation. The bulk leakage (Jbulk) and surface leakage (Jsurf) components of the dark current were also investigated. We have found that GeO₂ surface passivation can effectively suppress the dark current of a Ge PD in conjunction with gas-phase doping, and we have obtained extremely low values of Jbulk of 0.032 mA/cm² and Jsurf of 0.27 μA/cm.
Surface Passivation of CdZnTe Detector by Hydrogen Peroxide Solution Etching
NASA Technical Reports Server (NTRS)
Hayes, M.; Chen, H.; Chattopadhyay, K.; Burger, A.; James, R. B.
1998-01-01
The spectral resolution of room temperature nuclear radiation detectors such as CdZnTe is usually limited by the presence of conducting surface species that increase the surface leakage current. Studies have shown that the leakage current can be reduced by proper surface preparation. In this study, we try to optimize the performance of CdZnTe detector by etching the detector with hydrogen peroxide solution as function of concentration and etching time. The passivation effect that hydrogen peroxide introduces have been investigated by current-voltage (I-V) measurement on both parallel strips and metal-semiconductor-metal configurations. The improvements on the spectral response of Fe-55 and 241Am due to hydrogen peroxide treatment are presented and discussed.
NASA Astrophysics Data System (ADS)
Ramanan, Narayanan; Lee, Bongmook; Misra, Veena
2016-03-01
Many passivation dielectrics are pursued for suppressing current collapse due to trapping/detrapping of access-region surface traps in AlGaN/GaN based metal oxide semiconductor heterojuction field effect transistors (MOS-HFETs). The suppression of current collapse can potentially be achieved either by reducing the interaction of surface traps with the gate via surface leakage current reduction, or by eliminating surface traps that can interact with the gate. But, the latter is undesirable since a high density of surface donor traps is required to sustain a high 2D electron gas density at the AlGaN/GaN heterointerface and provide a low ON-resistance. This presents a practical trade-off wherein a passivation dielectric with the optimal surface trap characteristics and minimal surface leakage is to be chosen. In this work, we compare MOS-HFETs fabricated with popular ALD gate/passivation dielectrics like SiO2, Al2O3, HfO2 and HfAlO along with an additional thick plasma-enhanced chemical vapor deposition SiO2 passivation. It is found that after annealing in N2 at 700 °C, the stack containing ALD HfAlO provides a combination of low surface leakage and a high density of shallow donor traps. Physics-based TCAD simulations confirm that this combination of properties helps quick de-trapping and minimal current collapse along with a low ON resistance.
NASA Astrophysics Data System (ADS)
Luo, B.; Mehandru, R.; Kim, Jihyun; Ren, F.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Gotthold, D.; Birkhahn, R.; Peres, B.; Fitch, R. C.; Moser, N.; Gillespie, J. K.; Jessen, G. H.; Jenkins, T. J.; Yannuzi, M. J.; Via, G. D.; Crespo, A.
2003-10-01
The dc and power characteristics of AlGaN/GaN MOS-HEMTs with Sc 2O 3 gate dielectrics were compared with that of conventional metal-gate HEMTs fabricated on the same material. The MOS-HEMT shows higher saturated drain-source current (˜0.75 A/mm) and significantly better power-added efficiency (PAE, 27%) relative to the HEMT (˜0.6 A/mm and ˜5%). The Sc 2O 3 also provides effective surface passivation, with higher drain current, lower leakage currents and higher three-terminal breakdown voltage in passivated devices relative to unpassivated devices. The PAE also increases (from ˜5% to 12%) on the surface passivated HEMTs, showing that Sc 2O 3 is an attractive option for reducing gate and surface leakage in AlGaN/GaN heterostructure transistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soerqvist, T.; Vlastos, A.E.
1996-12-31
The hydrophobicity of polymeric insulators is crucial for their performance. This paper reports the hydrophobicity and the peak leakage current statistics of one porcelain, two ethylene-propylene-diene monomer (EPDM) and four silicone rubber (SIR) commercially available insulators. The insulators have been energized with 130 kV rms phase-to-ground AC voltage under identical outdoor conditions for more than seven years. The results presented show that under wet and polluted conditions the hydrophilic EPDM rubber insulators develop high leakage currents and substantial arcing. During a typical salt-storm the arcing amplitude of the EPDM rubber insulators is at least twice as high as that ofmore » the porcelain insulator. The SIR insulators, on the other hand, preserve a high degree of hydrophobicity after more than seven years in service and maintain very low leakage currents. However, the results show that during heavy salt contaminated conditions a highly stressed SIR insulator can temporarily lose its hydrophobicity and thereby develop considerable surface arcing.« less
Surface leakage current in 12.5 μm long-wavelength HgCdTe infrared photodiode arrays.
Qiu, Weicheng; Hu, Weida; Lin, Chun; Chen, Xiaoshuang; Lu, Wei
2016-02-15
Long-wavelength (especially >12 μm) focal plane array (FPA) infrared detection is the cutting edge technique for third-generation infrared remote sensing. However, dark currents, which are very sensitive to the growth of small Cd composition HgCdTe, strongly limits the performance of long wavelength HgCdTe photodiode arrays in FPAs. In this Letter, 12.5 μm long-wavelength Hg1-xCdxTe (x≈0.219) infrared photodiode arrays are reported. The variable-area and variable-temperature electrical characteristics of the long-wavelength infrared photodiodes are measured. The characteristics of the extracted zero-bias resistance-area product (l/R0A) varying with the perimeter-to-area (P/A) ratio clearly show that surface leakage current mechanisms severely limit the overall device performance. A sophisticated model has been developed for investigating the leakage current mechanism in the photodiodes. Modeling of temperature-dependent I-V characteristic indicates that the trap-assisted tunneling effect dominates the dark current at 50 K resulting in nonuniformities in the arrays. The extracted trap density, approximately 1013-1014 cm-3, with an ionized energy of 30 meV is determined by simulation. The work described in this Letter provides the basic mechanisms for a better understanding of the leakage current mechanism for long-wavelength (>12 μm) HgCdTe infrared photodiode arrays.
Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, D.W.; Wheeler, F.J.
1981-01-01
The Poloidal Diverter Experiment (PDX) facility at Princeton University is the first operating tokamak to require substantial radiation shielding. A calculational model has been developed to estimate the radiation dose in the PDX control room and at the site boundary due to the skyshine effect. An efficient one-dimensional method is used to compute the neutron and capture gamma leakage currents at the top surface of the PDX roof shield. This method employs an S /SUB n/ calculation in slab geometry and, for the PDX, is superior to spherical models found in the literature. If certain conditions are met, the slabmore » model provides the exact probability of leakage out the top surface of the roof for fusion source neutrons and for capture gamma rays produced in the PDX floor and roof shield. The model also provides the correct neutron and capture gamma leakage current spectra and angular distributions, averaged over the top roof shield surface. For the PDX, this method is nearly as accurate as multidimensional techniques for computing the roof leakage and is much less costly. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab S /SUB n/ calculation. The capture gamma dose is computed using a simple point-kernel single-scatter method.« less
Method for surface passivation and protection of cadmium zinc telluride crystals
Mescher, Mark J.; James, Ralph B.; Schlesinger, Tuviah E.; Hermon, Haim
2000-01-01
A method for reducing the leakage current in CZT crystals, particularly Cd.sub.1-x Zn.sub.x Te crystals (where x is greater than equal to zero and less than or equal to 0.5), and preferably Cd.sub.0.9 Zn.sub.0.1 Te crystals, thereby enhancing the ability of these crystal to spectrally resolve radiological emissions from a wide variety of radionuclides. Two processes are disclosed. The first method provides for depositing, via reactive sputtering, a silicon nitride hard-coat overlayer which provides significant reduction in surface leakage currents. The second method enhances the passivation by oxidizing the CZT surface with an oxygen plasma prior to silicon nitride deposition without breaking the vacuum state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaidi, Z. H., E-mail: zaffar.zaidi@sheffield.ac.uk; Lee, K. B.; Qian, H.
2014-12-28
In this work, we have compared SiN{sub x} passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiN{sub x} passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10{sup 4}–10{sup 5} to 10{sup 7}) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid ismore » believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D{sub it}) is reduced (from 4.86 to 0.90 × 10{sup 12 }cm{sup −2} eV{sup −1}), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN{sub x} passivation after full device fabrication results in the reduction of D{sub it} and improves the surface related current collapse.« less
Investigation of defect-induced abnormal body current in fin field-effect-transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Kuan-Ju; Tsai, Jyun-Yu; Lu, Ying-Hsin
2015-08-24
This letter investigates the mechanism of abnormal body current at the linear region in n-channel high-k/metal gate stack fin field effect transistors. Unlike body current, which is generated by impact ionization at high drain voltages, abnormal body current was found to increase with decreasing drain voltages. Notably, the unusual body leakage only occurs in three-dimensional structure devices. Based on measurements under different operation conditions, the abnormal body current can be attributed to fin surface defect-induced leakage current, and the mechanism is electron tunneling to the fin via the defects, resulting in holes left at the body terminal.
NASA Astrophysics Data System (ADS)
Sheremet, V.; Genç, M.; Gheshlaghi, N.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2018-01-01
Enhancement of InGaN/GaN based light emitting diode performance with step graded electron injectors through a two-step passivation is reported. Perimeter passivation of LED dies with SiO2 immediately following ICP mesa etch in addition to conventional Si3N4 dielectric surface passivation leads to decrease in the reverse bias leakage current by a factor of two as well as a decrease in the shunt current under forward bias by an order of magnitude. Mitigation of the leakage currents owing to the two-step passivation leads to significant increase in the radiant intensity of LEDs by more than a factor of two compared to the conventional single step surface passivation. Further, micro-dome patterned surface of Si3N4 passivation layer allow enhanced light extraction from LEDs.
Mitigation of PID in commercial PV modules using current interruption method
NASA Astrophysics Data System (ADS)
Bora, Birinchi; Oh, Jaewon; Tatapudi, Sai; Sastry, Oruganty S.; Kumar, Rajesh; Prasad, Basudev; Tamizhmani, Govindasamy
2017-08-01
Potential-induced degradation (PID) is known to have a very severe effect on the reliability of PV modules. PID is caused due to the leakage of current from the cell circuit to the grounded frame under humid conditions of high voltage photovoltaic (PV) systems. There are multiple paths for the current leakage. The most dominant leakage path is from the cell to the frame through encapsulant, glass bulk and glass surface. This dominant path can be prevented by interrupting the electrical conductivity at the glass surface. In our previous works related to this topic, we demonstrated the effectiveness of glass surface conductivity interruption technique using one-cell PV coupons. In this work, we demonstrate the effectiveness of this technique using a full size commercial module susceptible to PID. The interruption of surface conductivity of the commercial module was achieved by attaching a narrow, thin flexible glass strips, from Corning, called Willow Glass on the glass surface along the inner edges of the frame. The flexible glass strip was attached to the module glass surface by heating the glass strip with an ionomer adhesive underneath using a handheld heat gun. The PID stress test was performed at 60°C and 85% RH for 96 hours at -600 V. Pre- and post-PID characterizations including I-V and electroluminescence were carried out to determine the performance loss and affected cell areas. This work demonstrates that the PID issue can be effectively addressed by using this current interruption technique. An important benefit of this approach is that this interruption technique can be applied after manufacturing the modules and after installing the modules in the field as well.
Evaluating Plasmonic Transport in Current-carrying Silver Nanowires
Song, Mingxia; Stolz, Arnaud; Zhang, Douguo; Arocas, Juan; Markey, Laurent; Colas des Francs, Gérard; Dujardin, Erik; Bouhelier, Alexandre
2013-01-01
Plasmonics is an emerging technology capable of simultaneously transporting a plasmonic signal and an electronic signal on the same information support1,2,3. In this context, metal nanowires are especially desirable for realizing dense routing networks4. A prerequisite to operate such shared nanowire-based platform relies on our ability to electrically contact individual metal nanowires and efficiently excite surface plasmon polaritons5 in this information support. In this article, we describe a protocol to bring electrical terminals to chemically-synthesized silver nanowires6 randomly distributed on a glass substrate7. The positions of the nanowire ends with respect to predefined landmarks are precisely located using standard optical transmission microscopy before encapsulation in an electron-sensitive resist. Trenches representing the electrode layout are subsequently designed by electron-beam lithography. Metal electrodes are then fabricated by thermally evaporating a Cr/Au layer followed by a chemical lift-off. The contacted silver nanowires are finally transferred to a leakage radiation microscope for surface plasmon excitation and characterization8,9. Surface plasmons are launched in the nanowires by focusing a near infrared laser beam on a diffraction-limited spot overlapping one nanowire extremity5,9. For sufficiently large nanowires, the surface plasmon mode leaks into the glass substrate9,10. This leakage radiation is readily detected, imaged, and analyzed in the different conjugate planes in leakage radiation microscopy9,11. The electrical terminals do not affect the plasmon propagation. However, a current-induced morphological deterioration of the nanowire drastically degrades the flow of surface plasmons. The combination of surface plasmon leakage radiation microscopy with a simultaneous analysis of the nanowire electrical transport characteristics reveals the intrinsic limitations of such plasmonic circuitry. PMID:24378340
Pan, Bai Cao; Tang, Wen Xuan; Qi, Mei Qing; Ma, Hui Feng; Tao, Zui; Cui, Tie Jun
2016-07-22
Mutual coupling inside antenna array is usually caused by two routes: signal leakage via conducting currents on the metallic background or surface wave along substrates; radio leakage received from space between antenna elements. The former one can be depressed by changing the distribution of surface currents, as reported in literatures. But when it comes to the latter one, the radiation-leakage-caused coupling, traditional approaches using circuit manipulation may be inefficient. In this article, we propose and design a new type of decoupling module, which is composed of coupled metamaterial (MTM) slabs. Two classes of MTM particles, the interdigital structure (IS) and the split-ring resonators (SRRs), are adopted to provide the first and second modulations of signal. We validate its function to reduce the radiation leakage between two dual-polarized patch antennas. A prototype is fabricated in a volume with subwavelength scale (0.6λ × 0.3λ × 0.053λ) to provide 7dB improvement for both co-polarization and cross-polarization isolations from 1.95 to 2.2 GHz. The design has good potential for wireless communication and radar systems.
Pan, Bai Cao; Tang, Wen Xuan; Qi, Mei Qing; Ma, Hui Feng; Tao, Zui; Cui, Tie Jun
2016-01-01
Mutual coupling inside antenna array is usually caused by two routes: signal leakage via conducting currents on the metallic background or surface wave along substrates; radio leakage received from space between antenna elements. The former one can be depressed by changing the distribution of surface currents, as reported in literatures. But when it comes to the latter one, the radiation-leakage-caused coupling, traditional approaches using circuit manipulation may be inefficient. In this article, we propose and design a new type of decoupling module, which is composed of coupled metamaterial (MTM) slabs. Two classes of MTM particles, the interdigital structure (IS) and the split-ring resonators (SRRs), are adopted to provide the first and second modulations of signal. We validate its function to reduce the radiation leakage between two dual-polarized patch antennas. A prototype is fabricated in a volume with subwavelength scale (0.6λ × 0.3λ × 0.053λ) to provide 7dB improvement for both co-polarization and cross-polarization isolations from 1.95 to 2.2 GHz. The design has good potential for wireless communication and radar systems. PMID:27444147
NASA Technical Reports Server (NTRS)
Lin, A. H.
1972-01-01
In the process of ion implantation, ion beams bombard the surface and create undesirable surface effects. The surface effects were investigated, and surface leakage currents were shown to be reduced by surface treatment. I-V characteristics and C-V measurements were obtained for the Zn-GaAs and Zn-(In,Ga)As junction is considered as a p-i-n heterojunction, without generation-recombination current. The Zn-GaAs junction is considered as a p-n homojunction with appreciable generation-recombination currents.
Dry etching, surface passivation and capping processes for antimonide based photodetectors
NASA Astrophysics Data System (ADS)
Dutta, Partha; Langer, Jeffery; Bhagwat, Vinay; Juneja, Jasbir
2005-05-01
III-V antimonide based devices suffer from leakage currents. Surface passivation and subsequent capping of the surfaces are absolutely essential for any practical applicability of antimonide based devices. The quest for a suitable surface passivation technology is still on. In this paper, we will present some of the promising recent developments in this area based on dry etching of GaSb based homojunction photodiodes structures followed by various passivation and capping schemes. We have developed a damage-free, universal dry etching recipe based on unique ratios of Cl2/BCl3/CH4/Ar/H2 in ECR plasma. This novel dry plasma process etches all III-V compounds at different rates with minimal damage to the side walls. In GaSb based photodiodes, an order of magnitude lower leakage current, improved ideality factor and higher responsivity has been demonstrated using this recipe compared to widely used Cl2/Ar and wet chemical etch recipes. The dynamic zero bias resistance-area product of the Cl2/BCl3/CH4/Ar/H2 etched diodes (830 Ω cm2) is higher than the Cl2/Ar (300 Ω cm2) and wet etched (330 Ω cm2) diodes. Ammonium sulfide has been known to passivate surfaces of III-V compounds. In GaSb photodiodes, the leakage current density reduces by a factor of 3 upon sulfur passivation using ammonium sulfide. However, device performance degrades over a period of time in the absence of any capping or protective layer. Silicon Nitride has been used as a cap layer by various researchers. We have found that by using silicon nitride caps, the devices exhibit higher leakage than unpassivated devices probably due to plasma damage during SiNx deposition. We have experimented with various polymers for capping material. It has been observed that ammonium sulfide passivation when combined with parylene capping layer (150 Å), devices retain their improved performance for over 4 months.
NASA Astrophysics Data System (ADS)
Alvarez, J.; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.
2014-09-01
The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm-1). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current-voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices.
NASA Astrophysics Data System (ADS)
Underwood, T. G.
2017-12-01
Examination of the radiation budget at the surface of the Earth shows that there are three factors affecting the surface temperature; the amount of solar radiation absorbed by the atmosphere and by the surface respectively, and the amount of leakage of infrared radiation emitted from the surface directly into space. If there were no leakage, the upwelling infrared radiation from the Earth's surface would be equal to the incoming solar radiation absorbed by the atmosphere plus twice the solar radiation absorbed by the surface. This results from the summation of a sequence of equal upward and downward re-emissions of infrared radiation absorbed by the atmosphere following the initial absorption of solar radiation. At current levels of solar absorption, this would result in total upwelling radiation of approximately 398.6 W/m2, or a maximum surface temperature of 16.4°C. Allowing for leakage of infrared radiation through the atmospheric window, the resulting emission from the Earth's surface is reduced to around 396 W/m2, corresponding to the current average global surface temperature of around 15.9°C. Absorption of solar and infrared radiation by greenhouse gases is determined by the absorption bands for the respective gases and their concentrations. Absorption of incoming solar radiation is largely by water vapor and ozone, and an increase in absorption would reduce not increase the surface temperature. Moreover, it is probable that all emitted infrared radiation that can be absorbed by greenhouse gases, primarily water vapor, with a small contribution from carbon dioxide and ozone, is already fully absorbed, and the leakage of around 5.5 % corresponds to the part of the infrared red spectrum that is not absorbed by greenhouse gases. The carbon dioxide absorption bands, which represent a very small percentage of the infrared spectrum, are most likely fully saturated. In these circumstances, increased concentrations of greenhouse gases, and carbon dioxide in particular, will have no effect on the emitted radiation. The surface temperature is probably at the thermodynamic limit for the current luminosity of the sun. Satellite based measurements since 1979 suggest that any global warming over the past 150 years may be due to an increase in total solar irradiance, which we are still a decade or two from being able to confirm.
Liu, Jing; Zhang, Hai-Bo
2014-12-01
The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experimental study on surface properties of the PMMA used in high power spark gaps
NASA Astrophysics Data System (ADS)
Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Liu, Yunfei; Gou, Yang
2017-10-01
This paper studies the surface properties of the Polymethylmethacrylate (PMMA) insulator samples used in high power spark gaps. Experiments on surface morphology, surface profile, surface chemical composition and surface leakage current were performed. Metal particles ejected in tangent direction of discharge spots were researched on the sample surface. Three kinds of distinct bands were found on the surface after 1500 shots: colorless and transparent sinking band, black band, and grey powdered coating band. The thickness of the coating band was tens of microns and the maximum radial erosion rate was about 10 μm/C. Surface content analysis indicated that the powdered coating was a mixture of decomposed insulator material and electrode material oxides. In addition, leakage current significantly depended on water content in the chamber and presented an U-shape curve distribution along the insulator surface, in keeping with the amount of powdered coating due to shock waves. Possible reasons of the surface property changes were discussed. Electroconductive oxides of low valence states of Cu and W produced by the reactions between electrode materials and arc plasmas were considered to be the cause of dielectric performance degradation.
NASA Astrophysics Data System (ADS)
Tevi, Tete; Yaghoubi, Houman; Wang, Jing; Takshi, Arash
2013-11-01
Supercapacitors are electrochemical energy storage devices with high power density. However, application of supercapacitors is limited mainly due to their high leakage current. In this work, application of an ultra-thin layer of electrodeposited poly (p-phenylene oxide) (PPO) has been investigated as a blocking layer to reduce the leakage current. The polymer was first deposited on a glassy carbon electrode. The morphology of the film was studied by atomic force microscopy (AFM), and the film thickness was estimated to be ˜1.5 nm by using the electrochemical impedance spectroscopy (EIS) technique. The same deposition method was applied to coat the surface of the activated carbon electrodes of a supercapacitor with PPO. The specific capacitance, the leakage current, and the series resistance were measured in two devices with and without the blocking layer. The results demonstrate that the application of the PPO layer reduced the leakage current by ˜78%. However, the specific capacitance was decreased by ˜56%, when the blocking layer was applied. Due to the lower rate of self-discharge, the suggested approach can be applied to fabricate devices with longer charge storage time.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, K.H.
1998-06-30
A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, Kurt H.
1998-01-01
A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.
Relationship between Leakage Current and Pollution Deposits on the Surface of Polymeric Insulator
NASA Astrophysics Data System (ADS)
Miyake, Takuma; Seo, Yuya; Sakoda, Tatsuya; Otsubo, Masahisa
Application of polymeric materials used for housing insulators is considered. However, because polymeric insulator is organic matter, the aged deterioration is anxious. The lifetime of polymeric insulator is influenced by environmental conditions such as ultraviolet, acid rain, and polluted deposits. A change of the surface condition of polymeric material causes the dry band arc discharge and the discharge may lower the insulation strength. To investigate the relationship between insoluble pollution and occurrence of dry band arc discharge, we performed a salt-fog test with ethylene vinyl acetate (EVA) samples. The results showed that the heavy erosion caused by frequent dry band arc discharges occurred even in the case of a light polluted condition. Additionally, a very characteristic increase tendency in leakage current with a period of about 5 h was observed during the mist period.
Low leakage current Ni/CdZnTe/In diodes for X/ γ-ray detectors
NASA Astrophysics Data System (ADS)
Sklyarchuk, V. M.; Gnatyuk, V. A.; Pecharapa, W.
2018-01-01
The electrical characteristics of the Ni/Cd1-xZnxTe/In structures with a metal-semiconductor rectifying contact are investigated. The diodes, fabricated on the base of In-doped n-type Cd1-xZnxTe (CZT) crystals with resistivity of ∼1010 Ω ṡ cm, have low leakage current and can be used as X/ γ-ray detectors. The rectifying contact was obtained by vacuum deposition of Ni on the semiconductor surface pretreated with argon plasma. The high barrier rectifying contact allowed us to increase applied reverse bias voltage up to 2500 V at the CZT crystal thickness of 1 mm. Dark (leakage) currents of the diodes with the rectifying contact area of 4 mm2 did not exceed 3-5 nA at bias voltage of 2000 V and room temperature. The charge transport mechanisms in the Ni/CZT/In structures have been interpreted as generation-recombination in the space charge region within the range of reverse bias of 5-100 V and as currents limited by space charge at both forward and reverse bias at V >100 V.
Vail, W.B. III.
1991-08-27
Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.
Vail, III, William B.
1991-01-01
Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.
Method for surface treatment of a cadmium zinc telluride crystal
James, Ralph; Burger, Arnold; Chen, Kuo-Tong; Chang, Henry
1999-01-01
A method for treatment of the surface of a CdZnTe (CZT) crystal that reduces surface roughness (increases surface planarity) and provides an oxide coating to reduce surface leakage currents and thereby, improve resolution. A two step process is disclosed, etching the surface of a CZT crystal with a solution of lactic acid and bromine in ethylene glycol, following the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, oxidizing the CZT crystal surface.
NASA Astrophysics Data System (ADS)
Nolde, J. A.; Jackson, E. M.; Bennett, M. F.; Affouda, C. A.; Cleveland, E. R.; Canedy, C. L.; Vurgaftman, I.; Jernigan, G. G.; Meyer, J. R.; Aifer, E. H.
2017-07-01
Longwave infrared detectors using p-type absorbers composed of InAs-rich type-II superlattices (T2SLs) nearly always suffer from high surface currents due to carrier inversion on the etched sidewalls. Here, we demonstrate reticulated shallow etch mesa isolation (RSEMI): a structural method of reducing surface currents in longwave single-band and midwave/longwave dual-band detectors with p-type T2SL absorbers. By introducing a lateral shoulder to increase the separation between the n+ cathode and the inverted absorber surface, a substantial barrier to surface electron flow is formed. We demonstrate experimentally that the RSEMI process results in lower surface current, lower net dark current, much weaker dependence of the current on bias, and higher uniformity compared to mesas processed with a single deep etch. For the structure used, a shoulder width of 2 μm is sufficient to block surface currents.
P-type doping of GaN(000\\bar{1}) by magnesium ion implantation
NASA Astrophysics Data System (ADS)
Narita, Tetsuo; Kachi, Tetsu; Kataoka, Keita; Uesugi, Tsutomu
2017-01-01
Magnesium ion implantation has been performed on a GaN(000\\bar{1}) substrate, whose surface has a high thermal stability, thus allowing postimplantation annealing without the use of a protective layer. The current-voltage characteristics of p-n diodes fabricated on GaN(000\\bar{1}) showed distinct rectification at a turn-on voltage of about 3 V, although the leakage current varied widely among the diodes. Coimplantation with magnesium and hydrogen ions effectively suppressed the leakage currents and device-to-device variations. In addition, an electroluminescence band was observed at wavelengths shorter than 450 nm for these diodes. These results provide strong evidence that implanted magnesium ions create acceptors in GaN(000\\bar{1}).
Satellite Spacecraft Charging Control Materials.
1980-04-01
Surface potential in terms of beam energy 923.4.4 Typical current recordings 92 3 - 5 Analysis III 3.5.1 Background ill 3.5.2 Silica fabric behaviour 114...3521 surface potentials, leakage and secondary electron emission currents 114 3521-1 variation with time 114I 3521-2 variation with the beam energy ...Irradiations 51 Figure 15 Silica Fabric - FEP - Aluminum Foil Composite 56 Figure 16 Electron Energy Spectrum After Scattering through and Aluminum Foil
Local electronic and optical behavior of ELO a-plane GaN
NASA Astrophysics Data System (ADS)
Baski, A. A.; Moore, J. C.; Ozgur, U.; Kasliwal, V.; Ni, X.; Morkoc, H.
2007-03-01
Conductive atomic force microscopy (CAFM) and near-field optical microscopy (NSOM) were used to study a-plane GaN films grown via epitaxial lateral overgrowth (ELO). The ELO films were prepared by metal organic chemical vapor deposition on a patterned SiO2 layer with 4-μm wide windows, which was deposited on a GaN template grown on r-plane sapphire. The window regions of the coalesced ELO films appear as depressions with a high density of surface pits. At reverse bias below 12 V, very low uniform conduction (2 pA) is seen in the window regions. Above 20 V, a lower-quality sample shows localized sites inside the window regions with significant leakage, indicating a correlation between the presence of surface pits and leakage sites. Room temperature NSOM studies also suggest a greater density of surface terminated dislocations in the window regions, while wing regions explicitly show enhanced optical quality of the overgrown GaN. The combination of CAFM and NSOM data therefore indicates a correlation between the presence of surface pits, localized reverse-bias current leakage, and low PL intensity in the window regions.
Zirconium doped TiO{sub 2} thin films: A promising dielectric layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Arvind; Mondal, Sandip, E-mail: sandipmondal@physics.iisc.ernet.in; Rao, K. S. R. Koteswara
2016-05-06
In the present work, we have fabricated the zirconium doped TiO{sub 2} thin (ZTO) films from a facile spin – coating method. The addition of Zirconium in TiO{sub 2} offers conduction band offset to Si and consequently decreased the leakage current density by approximately two orders as compared to pure TiO{sub 2} thin (TO) films. The ZTO thin film shows a high dielectric constant 27 with a very low leakage current density ∼10{sup −8} A/cm{sup 2}. The oxide capacitate, flat band voltage and change in flat band voltage are 172 pF, -1.19 V and 54 mV. The AFM analysis confirmed the compactmore » and pore free flat surface. The RMS surface roughness is found to be 1.5 Å. The ellipsometry analysis also verified the fact with a high refractive index 2.21.« less
Method for surface treatment of a cadmium zinc telluride crystal
James, R.; Burger, A.; Chen, K.T.; Chang, H.
1999-08-03
A method for treatment of the surface of a CdZnTe (CZT) crystal is disclosed that reduces surface roughness (increases surface planarity) and provides an oxide coating to reduce surface leakage currents and thereby, improve resolution. A two step process is disclosed, etching the surface of a CZT crystal with a solution of lactic acid and bromine in ethylene glycol, following the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, oxidizing the CZT crystal surface. 3 figs.
Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode
NASA Astrophysics Data System (ADS)
Hu, J.; Stoffels, S.; Lenci, S.; Bakeroot, B.; Venegas, R.; Groeseneken, G.; Decoutere, S.
2015-02-01
This paper presents a combined technique of high voltage off-state stress and current transient measurements to investigate the trapping/de-trapping characteristics of Au-free AlGaN/GaN Schottky barrier diodes. The device features a symmetric three-terminal structure with a central anode contact surrounded by two separate cathodes. Under the diode off-state stress conditions, the two separate cathodes were electrically shorted. The de-trapping dynamics was studied by monitoring the recovery of the two-dimensional electron gas (2DEG) current at different temperatures by applying 0.5 V at cathode 2 while grounding cathode 1. During the recovery, the anode contact acts as a sensor of changes in diode leakage current. This leakage variation was found to be mainly due to the barrier height variation. With this method, the energy level and capture cross section of different traps in the AlGaN/GaN Schottky barrier diode can be extracted. Furthermore, the physical location of different trapping phenomena is indicated by studying the variation of the diode leakage current during the recovery. We have identified two distinct trapping mechanisms: (i) electron trapping at the AlGaN surface in the vicinity of the Schottky contact which results in the leakage reduction (barrier height ϕB increase) together with RON degradation; (ii) the electron trapping in the GaN channel layer which partially depletes the 2DEG. The physical origin of the two different traps is discussed in the text.
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Lv, Jiajiang; Wu, Yini; Zhang, Yuan; Zheng, Chenju; Liu, Sheng
2018-05-01
We investigated the reverse leakage current characteristics of InGaN/GaN multiple quantum well (MQW) near-ultraviolet (NUV)/blue/green light-emitting diodes (LEDs). Experimental results showed that the NUV LED has the smallest reverse leakage current whereas the green LED has the largest. The reason is that the number of defects increases with increasing nominal indium content in InGaN/GaN MQWs. The mechanism of the reverse leakage current was analyzed by temperature-dependent current–voltage measurement and capacitance–voltage measurement. The reverse leakage currents of NUV/blue/green LEDs show similar conduction mechanisms: at low temperatures, the reverse leakage current of these LEDs is attributed to variable-range hopping (VRH) conduction; at high temperatures, the reverse leakage current of these LEDs is attributed to nearest-neighbor hopping (NNH) conduction, which is enhanced by the Poole–Frenkel effect.
Effect of Post-HALT Annealing on Leakage Currents in Solid Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2010-01-01
Degradation of leakage currents is often observed during life testing of tantalum capacitors and is sometimes attributed to the field-induced crystallization in amorphous anodic tantalum pentoxide dielectrics. However, degradation of leakage currents and the possibility of annealing of degraded capacitors have not been investigated yet. In this work the effect of annealing after highly accelerated life testing (HALT) on leakage currents in various types of solid tantalum capacitors was analyzed. Variations of leakage currents with time during annealing at temperatures from 125 oC to 180 oC, thermally stimulated depolarization (TSD) currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. Annealing resulted in a gradual decrease of leakage currents and restored their initial values. Repeat HALT after annealing resulted in reproducible degradation of leakage currents. The observed results are explained based on ionic charge instability (drift/diffusion of oxygen vacancies) in the tantalum pentoxide dielectrics using a modified Schottky conduction mechanism.
40 CFR 265.222 - Action leakage rate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to § 265.221(a). The action leakage rate is the maximum design flow rate that the leak detection... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Action leakage rate. 265.222 Section... FACILITIES Surface Impoundments § 265.222 Action leakage rate. (a) The owner or operator of surface...
Leakage current conduction in metal gate junctionless nanowire transistors
NASA Astrophysics Data System (ADS)
Oproglidis, T. A.; Karatsori, T. A.; Barraud, S.; Ghibaudo, G.; Dimitriadis, C. A.
2017-05-01
In this paper, the experimental off-state drain leakage current behavior is systematically explored in n- and p-channel junctionless nanowire transistors with HfSiON/TiN/p+-polysilicon gate stack. The analysis of the drain leakage current is based on experimental data of the gate leakage current. It has been shown that the off-state drain leakage current in n-channel devices is negligible, whereas in p-channel devices it is significant and dramatically increases with drain voltage. The overall results indicate that the off-state drain leakage current in p-channel devices is mainly due to trap-assisted Fowler-Nordheim tunneling of electrons through the gate oxide of electrons from the metal gate to the silicon layer near the drain region.
Simulation of leakage through mechanical sealing device
NASA Astrophysics Data System (ADS)
Tikhomorov, V. P.; Gorlenko, O. A.; Izmerov, M. A.
2018-03-01
The procedure of mathematical modeling of leakage through the mechanical seal taking into account waviness and roughness is considered. The percolation process is represented as the sum of leakages through a gap between wavy surfaces and percolation through gaps formed by fractal roughness, i.e. the total leakage is determined by the slot model and filtration leakage. Dependences of leaks on the contact pressure of corrugated and rough surfaces of the mechanical seal elements are presented.
Vrabel, Joseph; Teeple, Andrew; Kress, Wade H.
2009-01-01
With increasing demands for reliable water supplies and availability estimates, groundwater flow models often are developed to enhance understanding of surface-water and groundwater systems. Specific hydraulic variables must be known or calibrated for the groundwater-flow model to accurately simulate current or future conditions. Surface geophysical surveys, along with selected test-hole information, can provide an integrated framework for quantifying hydrogeologic conditions within a defined area. In 2004, the U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, performed a surface geophysical survey using a capacitively coupled resistivity technique to map the lithology within the top 8 meters of the near-surface for 110 kilometers of the Interstate and Tri-State Canals in western Nebraska and eastern Wyoming. Assuming that leakage between the surface-water and groundwater systems is affected primarily by the sediment directly underlying the canal bed, leakage potential was estimated from the simple vertical mean of inverse-model resistivity values for depth levels with geometrically increasing layer thickness with depth which resulted in mean-resistivity values biased towards the surface. This method generally produced reliable results, but an improved analysis method was needed to account for situations where confining units, composed of less permeable material, underlie units with greater permeability. In this report, prepared by the U.S. Geological Survey in cooperation with the North Platte Natural Resources District, the authors use geostatistical analysis to develop the minimum-unadjusted method to compute a relative leakage potential based on the minimum resistivity value in a vertical column of the resistivity model. The minimum-unadjusted method considers the effects of homogeneous confining units. The minimum-adjusted method also is developed to incorporate the effect of local lithologic heterogeneity on water transmission. Seven sites with differing geologic contexts were selected following review of the capacitively coupled resistivity data collected in 2004. A reevaluation of these sites using the mean, minimum-unadjusted, and minimum-adjusted methods was performed to compare the different approaches for estimating leakage potential. Five of the seven sites contained underlying confining units, for which the minimum-unadjusted and minimum-adjusted methods accounted for the confining-unit effect. Estimates of overall leakage potential were lower for the minimum-unadjusted and minimum-adjusted methods than those estimated by the mean method. For most sites, the local heterogeneity adjustment procedure of the minimum-adjusted method resulted in slightly larger overall leakage-potential estimates. In contrast to the mean method, the two minimum-based methods allowed the least permeable areas to control the overall vertical permeability of the subsurface. The minimum-adjusted method refined leakage-potential estimation by additionally including local lithologic heterogeneity effects.
Fractal modeling of fluidic leakage through metal sealing surfaces
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong
2018-04-01
This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.
Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2014-01-01
Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.
Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2016-01-01
Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.; Birkholzer, Jens T.
The Cap-and-Trade and Low Carbon Fuel Standard (LCFS) programs being administered by the California Air Resources Board (CARB) include Carbon Dioxide Capture and Storage (CCS) as a potential means to reduce greenhouse gas (GHG) emissions. However, there is currently no universal standard approach that quantifies GHG emissions reductions for CCS and that is suitable for the quantitative needs of the Cap-and-Trade and LCFS programs. CCS involves emissions related to the capture (e.g., arising from increased energy needed to separate carbon dioxide (CO 2) from a flue gas and compress it for transport), transport (e.g., by pipeline), and storage of COmore » 2 (e.g., due to leakage to the atmosphere from geologic CO 2 storage sites). In this project, we reviewed and compared monitoring, verification, and accounting (MVA) protocols for CCS from around the world by focusing on protocols specific to the geologic storage part of CCS. In addition to presenting the review of these protocols, we highlight in this report those storage-related MVA protocols that we believe are particularly appropriate for CCS in California. We find that none of the existing protocols is completely appropriate for California, but various elements of all of them could be adopted and/or augmented to develop a rigorous, defensible, and practical surface leakage MVA protocol for California. The key features of a suitable surface leakage MVA plan for California are that it: (1) informs and validates the leakage risk assessment, (2) specifies use of the most effective monitoring strategies while still being flexible enough to accommodate special or site-specific conditions, (3) quantifies stored CO 2, and (4) offers defensible estimates of uncertainty in monitored properties. California’s surface leakage MVA protocol needs to be applicable to the main CO 2 storage opportunities (in California and in other states with entities participating in California’s Cap-and-Trade or LCFS programs), specifically CO 2-enhanced oil recovery (CO 2-EOR), CO 2 injection into depleted gas reservoirs (with or without CO 2-enhanced gas recovery (CO 2-EGR)), as well as deep saline storage. Regarding the elements of an effective surface leakage MVA protocol, our recommendations for California are that: (1) both CO 2 and methane (CH 4) surface leakage should be monitored, especially for enhanced recovery scenarios, (2) emissions from all sources not directly related to injection and geologic storage (e.g., from capture, or pipeline transport) should be monitored and reported under a plan separate from the surface leakage MVA plan that is included as another component of the quantification methodology (QM), (3) the primary objective of the surface leakage MVA plan should be to quantify surface leakage of CO 2 and CH 4 and its uncertainty, with consideration of best-practices and state-of-the-art approaches to monitoring including attribution assessment, (4) effort should be made to monitor CO 2 storage and migration in the subsurface to anticipate future surface leakage monitoring needs, (5) detailed descriptions of specific monitoring technologies and approaches should be provided in the MVA plan, (6) the main purpose of the CO 2 injection project (CO 2-EOR, CO 2-EGR, or pure geologic carbon sequestration (GCS)) needs to be stated up front, (7) approaches to dealing with missing data and quantifying uncertainty need to be described, and (8) post-injection monitoring should go on for a period consistent with or longer than that prescribed by the U.S. EPA.« less
Electron-beam irradiation-induced gate oxide degradation
NASA Astrophysics Data System (ADS)
Cho, Byung Jin; Chong, Pei Fen; Chor, Eng Fong; Joo, Moon Sig; Yeo, In Seok
2000-12-01
Gate oxide degradation induced by electron-beam irradiation has been studied. A large increase in the low-field excess leakage current was observed on irradiated oxides and this was very similar to electrical stress-induced leakage currents. Unlike conventional electrical stress-induced leakage currents, however, electron-beam induced leakage currents exhibit a power law relationship with fluency without any signs of saturation. It has also been found that the electron-beam neither accelerates nor initiates quasibreakdown of the ultrathin gate oxide. Therefore, the traps generated by electron-beam irradiation do not contribute to quasibreakdown, only to the leakage current.
Enhanced ground bounce noise reduction in a low-leakage CMOS multiplier
NASA Astrophysics Data System (ADS)
Verma, Bipin Kumar; Akashe, Shyam; Sharma, Sanjay
2015-09-01
In this paper, various parameters are used to reduce leakage power, leakage current and noise margin of circuits to enhance their performance. A multiplier is proposed with low-leakage current and low ground bounce noise for the microprocessor, digital signal processors (DSP) and graphics engines. The ground bounce noise problem appears when a conventional power-gating circuit transits from sleep-to-active mode. This paper discusses a reduction in leakage current in the stacking power-gating technique by three modes - sleep, active and sleep-to-active. The simulation results are performed on a 4 × 4 carry-save multiplier for leakage current, active power, leakage power and ground bounce noise, and comparison made for different nanoscales. Ground bounce noise is limited to 90%. The leakage current of the circuit is decimated up to 80% and the active power is reduced to 31%. We performed simulations using cadence virtuoso 180 and 45 nm at room temperature at various supply voltages.
Lu, Qifeng; Mu, Yifei; Roberts, Joseph W.; Althobaiti, Mohammed; Dhanak, Vinod R.; Wu, Jingjin; Zhao, Chun; Zhao, Ce Zhou; Zhang, Qian; Yang, Li; Mitrovic, Ivona Z.; Taylor, Stephen; Chalker, Paul R.
2015-01-01
In this research, the hafnium titanate oxide thin films, TixHf1–xO2, with titanium contents of x = 0, 0.25, 0.9, and 1 were deposited on germanium substrates by atomic layer deposition (ALD) at 300 °C. The approximate deposition rates of 0.2 Å and 0.17 Å per cycle were obtained for titanium oxide and hafnium oxide, respectively. X-ray Photoelectron Spectroscopy (XPS) indicates the formation of GeOx and germanate at the interface. X-ray diffraction (XRD) indicates that all the thin films remain amorphous for this deposition condition. The surface roughness was analyzed using an atomic force microscope (AFM) for each sample. The electrical characterization shows very low hysteresis between ramp up and ramp down of the Capacitance-Voltage (CV) and the curves are indicative of low trap densities. A relatively large leakage current is observed and the lowest leakage current among the four samples is about 1 mA/cm2 at a bias of 0.5 V for a Ti0.9Hf0.1O2 sample. The large leakage current is partially attributed to the deterioration of the interface between Ge and TixHf1–xO2 caused by the oxidation source from HfO2. Consideration of the energy band diagrams for the different materials systems also provides a possible explanation for the observed leakage current behavior. PMID:28793705
49 CFR 236.735 - Current, leakage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Current, leakage. A stray electric current of relatively small value which flows through or across the...
49 CFR 236.735 - Current, leakage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2011-10-01 2011-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...
49 CFR 236.735 - Current, leakage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2014-10-01 2014-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...
49 CFR 236.735 - Current, leakage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2013-10-01 2013-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...
49 CFR 236.735 - Current, leakage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2012-10-01 2012-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...
Chen, Ying-Chieh; Tsai, Che-Yao; Lee, Chi-Young; Lin, I-Nan
2014-05-01
Thin ultrananocrystalline diamond (UNCD) films were evaluated for use as hermetic and bioinert encapsulating coatings for implantable microchips, where the reaction to UNCD in vitro and in vivo tissue was investigated. Leakage current tests showed that depositing UNCD coatings, which were conformally grown in (1% H2) Ar/CH4 plasma, on microchips rendered the surface electrochemically inactive, i.e. with a very low leakage current density (2.8×10(-5)Acm(-2) at -1V and 1.9×10(-3)Acm(-2) at ±5V) ex vivo. The impact of UNCD with different surface modifications on the growth and activation of macrophages was compared to that of standard-grade polystyrene. Macrophages attached to oxygen-terminated UNCD films down-regulated their production of cytokines and chemokines. Moreover, with UNCD-coated microchips, which were implanted subcutaneously into BALB/c mice for up to 3months, the tissue reaction and capsule formation was significantly decreased compared to the medical-grade titanium alloy Ti-6Al-4V and bare silicon. Additionally, the leakage current density, elicited by electrochemical activity, on silicon chips encapsulated in oxygen-terminated UNCD coatings remained at the low level of 2.5×10(-3)Acm(-2) at 5V for up to 3months in vivo, which is half the level of those encapsulated in hydrogen-terminated UNCD coatings. Thus, controlling the surface properties of UNCDs makes it possible to manipulate the in vivo functionality and stability of implantable devices so as to reduce the host inflammatory response following implantation. These observations suggest that oxygen-terminated UNCDs are promising candidates for use as encapsulating coatings for implantable microelectronic devices. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sometani, Mitsuru; Okamoto, Dai; Harada, Shinsuke; Ishimori, Hitoshi; Takasu, Shinji; Hatakeyama, Tetsuo; Takei, Manabu; Yonezawa, Yoshiyuki; Fukuda, Kenji; Okumura, Hajime
2015-01-01
The conduction mechanism of the leakage current of a thermally grown oxide on 4H silicon carbide (4H-SiC) was investigated. The dominant carriers of the leakage current were found to be electrons by the carrier-separation current-voltage method. The current-voltage and capacitance-voltage characteristics, which were measured over a wide temperature range, revealed that the leakage current in SiO2/4H-SiC on the Si-face can be explained as the sum of the Fowler-Nordheim (FN) tunneling and Poole-Frenkel (PF) emission leakage currents. A rigorous FN analysis provided the true barrier height for the SiO2/4H-SiC interface. On the basis of Arrhenius plots of the PF current separated from the total leakage current, the existence of carbon-related defects and/or oxygen vacancy defects was suggested in thermally grown SiO2 films on the Si-face of 4H-SiC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sometani, Mitsuru; Takei, Manabu; Fuji Electric Co. Ltd., 1 Fuji-machi, Hino, 191-8502 Tokyo
The conduction mechanism of the leakage current of a thermally grown oxide on 4H silicon carbide (4H-SiC) was investigated. The dominant carriers of the leakage current were found to be electrons by the carrier-separation current-voltage method. The current-voltage and capacitance-voltage characteristics, which were measured over a wide temperature range, revealed that the leakage current in SiO{sub 2}/4H-SiC on the Si-face can be explained as the sum of the Fowler-Nordheim (FN) tunneling and Poole-Frenkel (PF) emission leakage currents. A rigorous FN analysis provided the true barrier height for the SiO{sub 2}/4H-SiC interface. On the basis of Arrhenius plots of the PFmore » current separated from the total leakage current, the existence of carbon-related defects and/or oxygen vacancy defects was suggested in thermally grown SiO{sub 2} films on the Si-face of 4H-SiC.« less
Open-Gated pH Sensor Fabricated on an Undoped-AlGaN/GaN HEMT Structure
Abidin, Mastura Shafinaz Zainal; Hashim, Abdul Manaf; Sharifabad, Maneea Eizadi; Rahman, Shaharin Fadzli Abd; Sadoh, Taizoh
2011-01-01
The sensing responses in aqueous solution of an open-gated pH sensor fabricated on an AlGaN/GaN high-electron-mobility-transistor (HEMT) structure are investigated. Under air-exposed ambient conditions, the open-gated undoped AlGaN/GaN HEMT only shows the presence of a linear current region. This seems to show that very low Fermi level pinning by surface states exists in the undoped AlGaN/GaN sample. In aqueous solution, typical current-voltage (I-V) characteristics with reasonably good gate controllability are observed, showing that the potential of the AlGaN surface at the open-gated area is effectively controlled via aqueous solution by the Ag/AgCl gate electrode. The open-gated undoped AlGaN/GaN HEMT structure is capable of distinguishing pH level in aqueous electrolytes and exhibits linear sensitivity, where high sensitivity of 1.9 mA/pH or 3.88 mA/mm/pH at drain-source voltage, VDS = 5 V is obtained. Due to the large leakage current where it increases with the negative gate voltage, Nernstian like sensitivity cannot be determined as commonly reported in the literature. This large leakage current may be caused by the technical factors rather than any characteristics of the devices. Surprisingly, although there are some imperfections in the device preparation and measurement, the fabricated devices work very well in distinguishing the pH levels. Suppression of current leakage by improving the device preparation is likely needed to improve the device performance. The fabricated device is expected to be suitable for pH sensing applications. PMID:22163786
NASA Astrophysics Data System (ADS)
Lee, Jae-Hoon; Park, Hyun-Sang; Jeon, Jae-Hong; Han, Min-Koo
2008-03-01
We have proposed a new poly-Si TFT pixel, which can suppress TFT leakage current effect on active matrix organic diode (AMOLED) displays, by employing a new circular switching TFT and additional signal line for compensating the leakage current. When the leakage current of switching TFT is increased, the VGS of the current driving TFT in the proposed pixel is not altered by the variable data voltages due to the circular switching TFT. Our simulation results show that OLED current variation of the proposed pixel can be suppressed less than 3%, while that of conventional pixel exceeds 30%. The proposed pixel may be suitable to suppress the leakage current effect on AMOLED display.
NASA Astrophysics Data System (ADS)
Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.
2018-04-01
III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.
NASA Astrophysics Data System (ADS)
Barry, Ousmane I.; Tanaka, Atsushi; Nagamatsu, Kentaro; Bae, Si-Young; Lekhal, Kaddour; Matsushita, Junya; Deki, Manato; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi
2017-06-01
We have investigated the effect of V/III ratio on the surface morphology, impurity concentration and electrical properties of m-plane (10 1 bar 0) Gallium Nitride (GaN) homoepitaxial layers. Four-sided pyramidal hillocks are observed on the nominally on-axis m-plane GaN films. Hillocks sizes relatively increase by increasing the V/III ratio. All facets of pyramidal hillocks exhibit well-defined step-terrace features. Secondary ion mass spectrometry depth profiles reveal that carbon impurities decrease by increasing the V/III ratio while the lowest oxygen content is found at an optimized V/III ratio of 900. Vertical Schottky barrier diodes fabricated on the m-GaN samples were characterized. Low leakage current densities of the order of 10-10 A/cm2 at -5 V are obtained at the optimum V/III ratio. Oxygen impurities and screw-component dislocations around hillocks are found to have more detrimental impact on the leakage current mechanism.
Electrical characteristics of TMAH-surface treated Ni/Au/Al2O3/GaN MIS Schottky structures
NASA Astrophysics Data System (ADS)
Reddy, M. Siva Pratap; Lee, Jung-Hee; Jang, Ja-Soon
2014-03-01
The electrical characteristics and reverse leakage mechanisms of tetramethylammonium hydroxide (TMAH) surface-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes were investigated by using the current-voltage ( I-V) and capacitance-voltage ( C-V) characteristics. The MIS diode was formed on n-GaN after etching the AlGaN in the AlGaN/GaN heterostructures. The TMAH-treated MIS diode showed better Schottky characteristics with a lower ideality factor, higher barrier height and lower reverse leakage current compared to the TMAH-free MIS diode. In addition, the TMAH-free MIS diodes exhibited a transition from Poole-Frenkel emission at low voltages to Schottky emission at high voltages, whereas the TMAH-treated MIS diodes showed Schottky emission over the entire voltage range. Reasonable mechanisms for the improved device-performance characteristics in the TMAH-treated MIS diode are discussed in terms of the decreased interface state density or traps associated with an oxide material and the reduced tunneling probability.
Leakage current evaluation for pn junctions formed in DC and RF MeV ion implanted wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanagisawa, Yasunobu; Honda, Mitsuharu; Ogasawara, Makota
1996-12-31
The leakage current of pn junctions formed in DC and RF MeV implanted wells have been evaluated. There is no substantial difference in the leakage current levels between the continuous and pulsive beam implantations. However, the leakage current, so called diffusion current, for RF implanted wells is slightly higher than that for DC implanted wells on some condition. This suggests a possibility that relatively higher density of residual defects remains in the case of RIF implant.
Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers
NASA Astrophysics Data System (ADS)
Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.
2014-09-01
The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.
Design Study of Wafer Seals for Future Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H.; Finkbeiner, Joshua R.; Steinetz, Bruce M.; DeMange, Jeffrey J.
2005-01-01
Future hypersonic vehicles require high temperature, dynamic seals in advanced hypersonic engines and on the vehicle airframe to seal the perimeters of movable panels, flaps, and doors. Current seals do not meet the demanding requirements of these applications, so NASA Glenn Research Center is developing improved designs to overcome these shortfalls. An advanced ceramic wafer seal design has shown promise in meeting these needs. Results from a design of experiments study performed on this seal revealed that several installation variables played a role in determining the amount of leakage past the seals. Lower leakage rates were achieved by using a tighter groove width around the seals, a higher seal preload, a tighter wafer height tolerance, and a looser groove length. During flow testing, a seal activating pressure acting behind the wafers combined with simulated vibrations to seat the seals more effectively against the sealing surface and produce lower leakage rates. A seal geometry study revealed comparable leakage for full-scale wafers with 0.125 and 0.25 in. thicknesses. For applications in which lower part counts are desired, fewer 0.25-in.-thick wafers may be able to be used in place of 0.125-in.-thick wafers while achieving similar performance. Tests performed on wafers with a rounded edge (0.5 in. radius) in contact with the sealing surface resulted in flow rates twice as high as those for wafers with a flat edge. Half-size wafers had leakage rates approximately three times higher than those for full-size wafers.
Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals
Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.
2006-02-21
A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.
Kapton charging characteristics: Effects of material thickness and electron-energy distribution
NASA Technical Reports Server (NTRS)
Williamson, W. S.; Dulgeroff, C. R.; Hymann, J.; Viswanathan, R.
1985-01-01
Charging characteristics of polyimide (Kapton) of varying thicknesses under irradiation by a very-low-curent-density electron beam, with the back surface of the sample grounded are reported. These charging characteristics are in good agreement with a simple analytical model which predicts that in thin samples at low current density, sample surface potential is limited by conduction leakage through the bulk material. The charging of Kapton in a low-current-density electron beam in which the beam energy was modulated to simulate Maxwellian and biMaxwellian distribution functions is measured.
The role of ITO resistivity on current spreading and leakage in InGaN/GaN light emitting diodes
NASA Astrophysics Data System (ADS)
Sheremet, V.; Genç, M.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2017-11-01
The effect of a transparent ITO current spreading layer on electrical and light output properties of blue InGaN/GaN light emitting diodes (LEDs) is discussed. When finite conductivity of ITO is taken into account, unlike in previous models, the topology of LED die and contacts are shown to significantly affect current spreading and light output characteristics in top emitting devices. We propose an approach for calculating the current transfer length describing current spreading. We show that an inter-digitated electrode configuration with distance between the contact pad and the edge of p-n junction equal to transfer length in the current spreading ITO layer allows one to increase the optical area of LED chip, as compared to the physical area of the die, light output power, and therefore, the LED efficiency for a given current density. A detailed study of unpassivated LEDs also shows that current transfer lengths longer than the distance between the contact pad and the edge of p-n junction leads to increasing surface leakage that can only be remedied with proper passivation.
Leakage current reduction of vertical GaN junction barrier Schottky diodes using dual-anode process
NASA Astrophysics Data System (ADS)
Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Watahiki, Tatsuro; Yamamuka, Mikio
2018-04-01
The origin of the leakage current of a trench-type vertical GaN diode was discussed. We found that the edge of p-GaN is the main leakage spot. To reduce the reverse leakage current at the edge of p-GaN, a dual-anode process was proposed. As a result, the reverse blocking voltage defined at the leakage current density of 1 mA/cm2 of a vertical GaN junction barrier Schottky (JBS) diode was improved from 780 to 1,190 V, which is the highest value ever reported for vertical GaN Schottky barrier diodes (SBDs).
The Role of Nanoparticle Surface Functionality in the Disruption of Model Cell Membranes
Moghadam, Babak Y.; Hou, Wen-Che; Corredor, Charlie; Westerhoff, Paul; Posner, Jonathan D.
2012-01-01
Lipid bilayers are biomembranes common to cellular life and constitute a continuous barrier between cells and their environment. Understanding the interaction of engineered nanomaterials (ENMs) with lipid bilayers is an important step toward predicting subsequent biological effects. In this study, we assess the effect of varying the surface functionality and concentration of 10 nm-diameter gold (Au) and titanium dioxide (TiO2) ENMs on the disruption of negatively charged lipid bilayer vesicles (liposomes) using a dye leakage assay. Our findings show that Au ENMs having both positive and negative surface charge induce leakage that reaches a steady state after several hours. Positively charged particles with identical surface functionality and different core composition show similar leakage effects and result in faster and greater leakage than negatively charged particles, which suggests that surface functionality, not particle core composition, is a critical factor in determining the interaction between ENMs and lipid bilayers. The results suggest that particles permanently adsorb to bilayers and that only one positively charged particle is required to disrupt a liposome and trigger leakage of its entire contents in contrast to mellitin molecules, the most widely studied membrane lytic peptide, which requires hundred of molecules to generate leakage. PMID:22921268
Pinhole mediated electrical transport across LaTiO3/SrTiO3 and LaAlO3/SrTiO3 oxide hetero-structures
NASA Astrophysics Data System (ADS)
Kumar, Pramod; Dogra, Anjana; Toutam, Vijaykumar
2013-11-01
Metal-insulator-metal configuration of LaTiO3/SrTiO3 and LaAlO3/SrTiO3 hetero-structures between two dimensional electron gas formed at the interface and different area top electrodes is employed for Conductive Atomic force microscopy (CAFM) imaging, Current-Voltage (I-V), and Capacitance-Voltage (C-V) spectroscopy. Electrode area dependent I-V characteristics are observed for these oxide hetero-structures. With small area electrodes, rectifying I-V characteristics are observed, compared to, both tunneling and leakage current characteristics for large area electrodes. CAFM mapping confirmed the presence of pinholes on both surfaces. Resultant I-V characteristics have a contribution from both tunneling and leakage due to pinholes.
Li, Chien-Yu; Cheng, Min-Yu; Houng, Mau-Phon; Yang, Cheng-Fu; Liu, Jing
2018-01-01
In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs) with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD) at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V), a low reverse leakage current density (≤72 μA/mm2@100 V), and a Schottky barrier height of 1.074 eV. PMID:29316726
Li, Chien-Yu; Cheng, Min-Yu; Houng, Mau-Phon; Yang, Cheng-Fu; Liu, Jing
2018-01-08
In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs) with hydrogen plasma treatment on silicon surface and Al x O x guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H₂ plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the Al x O x guard ring structure deposited by the atomic layer deposition (ALD) at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the Al x O x guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V), a low reverse leakage current density (≤72 μA/mm²@100 V), and a Schottky barrier height of 1.074 eV.
NASA Astrophysics Data System (ADS)
Wang, X.-S.; Ma, M.-G.; Li, X.; Zhao, J.; Dong, P.; Zhou, J.
2009-12-01
The behavior of groundwater response to leakage of surface water in the middle reaches area of Heihe River Basin is significantly influenced by a thick vadose zone. The variation of groundwater level is a result of two recharge events corresponding to leakage of Heihe River and irrigation water with different delay time. A nonlinear leakage model is developed to calculate the monthly leakage of Heihe River in considering changes of streamflow, river stage and agricultural water utilization. Numerical modeling of variable saturated flow is carried out to investigate the general behaviors of leakage-recharge conversion through a thick vadose zone. It is found that the variable recharge can be approximated by simple reservoir models for both leakage under a river and leakage under an irrigation district but with different delay-time and recession coefficient. A triple-reservoir model of relationship between surface water, vadose zone and groundwater is developed. It reproduces the in situ water table movement during 1989-2006 with variable streamflow of Heihe River and agricultural water utilization. The model is applied to interpret groundwater dynamics during 2007-2008 that observed in the Watershed Airborne Telemetry Experimental Research (WATER).
Numerical studies on the performance of an aerosol respirator with faceseal leakage
NASA Astrophysics Data System (ADS)
Zaripov, S. K.; Mukhametzanov, I. T.; Grinshpun, S. A.
2016-11-01
We studied the efficiency of a facepiece filtering respirator (FFR) in presence of a measurable faceseal leakage using the previously developed model of a spherical sampler with porous layer. In our earlier study, the model was validated for a specific filter permeability value. In this follow-up study, we investigated the effect of permeability on the overall respirator performance accounting for the faceseal leakage. The Total Inward Leakage (TIL) was calculated as a function of the leakage-to-filter surface ratio and the particle diameter. A good correlation was found between the theoretical and experimental TIL values. The TIL value was shown to increase and the effect of particle size on TIL to decrease as the leakage-to- filter surface ratio grows. The model confirmed that within the most penetrating particle size range (∼50 nm) and at relatively low leakage-to-filter surface ratios, an FFR performs better (TIL is lower) when the filter has a lower permeability which should be anticipated as long as the flow through the filter represents the dominant particle penetration pathway. An increase in leak size causes the TIL to rise; furthermore, under certain leakage-to-filter surface ratios, TIL for ultrafine particles becomes essentially independent on the filter properties due to a greater contribution of the aerosol flow through the faceseal leakage. In contrast to the ultrafine fraction, the larger particles (e.g., 800 nm) entering a typical high- or medium-quality respirator filter are almost fully collected by the filter medium regardless of its permeability; at the same time, the fraction penetrated through the leakage appears to be permeability- dependent: higher permeability generally results in a lower pressure drop through the filter which increases the air flow through the filter at the expense of the leakage flow. The latter reduces the leakage effect thus improving the overall respiratory protection level. The findings of this study provide valuable information for developing new respirators with a predictable actual workplace protection factor.
Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.
2003-11-18
A CdZnTe (CZT) crystal provided with a native CdO dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals is disclosed. A two step process is provided for forming the dielectric coating which includes etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water after attaching electrical contacts to the crystal surface.
Study of gain homogeneity and radiation effects of Low Gain Avalanche Pad Detectors
NASA Astrophysics Data System (ADS)
Gallrapp, C.; Fernández García, M.; Hidalgo, S.; Mateu, I.; Moll, M.; Otero Ugobono, S.; Pellegrini, G.
2017-12-01
Silicon detectors with intrinsic charge amplification implementing a n++-p+-p structure are considered as a sensor technology for future tracking and timing applications in high energy physics experiments. The performance of the intrinsic gain in Low Gain Avalanche Detectors (LGAD) after irradiation is crucial for the characterization of radiation hardness and timing properties in this technology. LGAD devices irradiated with reactor neutrons or 800 MeV protons reaching fluences of 2.3 × 1016 neq/cm2 were characterized using Transient Current Technique (TCT) measurements with red and infra-red laser pulses. Leakage current variations observed in different production lots and within wafers were investigated using Thermally Stimulated Current (TSC). Results showed that the intrinsic charge amplification is reduced with increasing fluence up to 1015 neq/cm2 which is related to an effective acceptor removal. Further relevant issues were charge collection homogeneity across the detector surface and leakage current performance before and after irradiation.
Influence of thermal aging on AC leakage current in XLPE insulation
NASA Astrophysics Data System (ADS)
Geng, Pulong; Song, Jiancheng; Tian, Muqin; Lei, Zhipeng; Du, Yakun
2018-02-01
Cross-linked polyethylene (XLPE) has been widely used as cable insulation material because of its excellent dielectric properties, thermal stability and solvent resistance. To understand the influence of thermal aging on AC leakage current in XLPE insulation, all XLPE specimens were aged in oven in temperature range from 120 °C to 150 °C, and a series of tests were conducted on these XLPE specimens in different aging stages to measure the characteristic parameters, such as complex permittivity, leakage current and complex dielectric modulus. In the experiments, the effects of thermal aging, temperature and frequency on the AC leakage current in XLPE insulation were studied by analyzing complex dielectric constant and dielectric relaxation modulus spectrum, the change of relaxation peak and activation energy. It has been found that the active part of leakage current increases sharply with the increase of aging degree, and the test temperature and frequency have an influence on AC leakage current but the influence of test temperature is mainly reflected in the low frequency region. In addition, it has been shown by the experiments that the reactive part of leakage current exhibits a strong frequency dependent characteristic in the testing frequency range from 10-2 Hz to 105 Hz, but the influence of test temperature and thermal aging on it is relatively small.
NASA Astrophysics Data System (ADS)
Su, Jie; Posthuma, Niels; Wellekens, Dirk; Saripalli, Yoga N.; Decoutere, Stefaan; Arif, Ronald; Papasouliotis, George D.
2016-12-01
We are reporting the growth of AlGaN based enhancement-mode high electron mobility transistors (HEMTs) on 200 mm silicon (111) substrates using a single wafer metalorganic chemical vapor deposition reactor. It is found that TMAl pre-dosing conditions are critical in controlling the structural quality, surface morphology, and wafer bow of the HEMT stack. Optimal structural quality and pit-free surface are demonstrated for AlGaN HEMTs with pre-dosing temperature at 750°C. Intrinsically, carbon-doped AlGaN, is used as the current blocking layer in the HEMT structures. The lateral buffer breakdown and device breakdown characteristics, reach 400 V at a leakage current of 1 μA/mm measured at 150°C. The fabricated HEMT devices, with a Mg doped p-GaN gate layer, are operating in enhancement mode reaching a positive threshold voltage of 2-2.5 V, a low on-resistance of 10.5 Ω mm with a high drain saturation current of 0.35 A/mm, and a low forward bias gate leakage current of 0.5 × 10-6 A/mm ( V gs = 7 V). Tight distribution of device parameters across the 200 mm wafers and over repeat process runs is observed.
40 CFR 264.222 - Action leakage rate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Action leakage rate. 264.222 Section... Impoundments § 264.222 Action leakage rate. (a) The Regional Administrator shall approve an action leakage rate for surface impoundment units subject to § 264.221 (c) or (d). The action leakage rate is the maximum...
NASA Astrophysics Data System (ADS)
Zubrzycka, W.; Kasinski, K.
2018-04-01
Leakage current flowing into the charge sensitive amplifier (CSA) is a common issue in many radiation detection systems as it can increase overall system noise, shift a DC baseline or even lead a recording channel to instability. The commonly known leakage current contributor is a detector, however other system components like wires or an input protection circuit may become a serious problem. Compensation of the leakage current resulting from the electrostatic discharge (ESD) protection circuit by properly sizing its components is possible only for a narrow temperature range. Moreover, the leakage current from external sources can be significantly larger. Many applications, especially High Energy Physics (HEP) experiments, require a fast baseline restoration for high input hit rates by applying either a low-value feedback resistor or a high feedback resistance combined with a pulsed reset circuit. Leakage current flowing in the feedback in conjunction with a large feedback resistance supplied with a pulsed reset results in a significant voltage offset between the CSA input and output which can cause problems (e.g. fake hits or instability). This paper shows an issue referred to the leakage current of the ESD protection circuit flowing into the input amplifier. The following analysis and proposed solution is a result of the time and energy readout ASIC project realization for the Compressed Baryonic Matter (CBM) experiment at FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. This chip is purposed to work with microstrip and gaseous detectors, with high average input pulses frequencies (250 kHit/s per channel) and the possibility to process input charge of both polarities. We present measurements of the test structure fabricated in UMC 180 nm technology and propose a solution addressing leakage current related issues. This work combines the leakage current compensation capabilities at the CSA level with high, controllable value of the amplifier feedback resistor independent of the leakage current level and polarity. The simulation results of the double, switchable, Krummenacher circuit-based feedback application in the CSA with a pulsed reset functionality are presented.
Surface treatment and protection method for cadmium zinc telluride crystals
Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.
2003-01-01
A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water.
Nadalin, Silvio; Li, Jun; Lang, Hauke; Sotiropoulos, Georgios C; Schaffer, Randolph; Radtke, Arnold; Saner, Fuat; Broelsch, Christoph E; Malagó, Massimo
2008-04-01
To describe a new intraoperative bile leakage test in patients undergoing a major liver resection aimed to combine the advantages of each of the other standard bile leakage tests (accurate visualization of leaks, reproducibility, and ease of use) without their disadvantages. At the end of the major hepatic resection, 10 to 30 mL of sterile fat emulsion, 5%, is injected via an olive-tip cannula through the cystic duct while manually occluding the distal common bile duct. As the biliary tree fills with fat emulsion solution, leakage of the white fluid is visualized on the raw surface of the liver resection margin. The detected leakages are closed by means of single stitches. Afterwards, the residual fat emulsion on the resection surface is washed off with saline and the White test is repeated to detect and/or exclude additional bile leakages. At the end, residual fat emulsion is washed out from the biliary tract by a low-pressure infusion of saline solution. Intraoperatively, additional potential bile leakages (not seen using a conventional saline bile leakage test) were identified in 74% of our patients. Postoperative bile leakages (within 30 days) occurred in only 5.1% of patients when the White test was used. No adverse effects related to this technique were observed. The White test has clear advantages in comparison with other bile leakage tests: it precisely detects bile leakages, regardless of size; it does not stain the resection surface, allowing it to be washed off and repeated ad infinitum; and it is safe, quick, and inexpensive.
Yu, Young-Dong; Kim, Dong-Sik; Jung, Sung-Won; Han, Jae-Hyun; Suh, Sung-Ock
2016-07-01
Anti-adhesive agents are increasingly used to reduce the incidence of postoperative adhesions following abdominal surgery. Bile leakage after liver resection remains a major cause of postoperative morbidity. The aim of this study was to examine the effect of anti-adhesive agent on bile leakage after liver resection. 77 patients were enrolled to receive an anti-adhesive agent (study group) during liver resection between May 2012 and August 2013. The study group was compared to a match-paired control group. Clinical data were collected including bilirubin concentration in serum and drain fluid and bile leakage rate. In addition, a separate analysis was performed between patients with and without postoperative bile leakage. There was no difference in bile leakage rate or hospital stay between the study group (n = 77) and control group (n = 77). Of the total number of patients (n = 154), there were 29 patients with postoperative bile leak and 125 patients without bile leak. On univariate analysis, patients without history of hepatitis were significantly associated with bile leakage. In addition, liver resection with broader cut surface area was associated with bile leakage. Application of anti-adhesive agent was not associated with bile leakage. On multivariate analysis, resection with broader cut surface area (OR = 2.788, p = 0.026) and patients without history of hepatitis (OR = 5.153, p = 0.039) were significantly associated with bile leakage. Larger area of cut-surface and patients without history of hepatitis were significant risk factors for bile leakage. The use of anti-adhesive agent was not associated with increased risk of bile leakage. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oshima, Takayoshi; Hashiguchi, Akihiro; Moribayashi, Tomoya; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu; Oishi, Toshiyuki; Kasu, Makoto
2017-08-01
The electrical properties of Schottky barrier diodes (SBDs) on a (001) β-Ga2O3 substrate were characterized and correlated with wet etching-revealed crystal defects below the corresponding Schottky contacts. The etching process revealed etched grooves and etched pits, indicating the presence of line-shaped voids and small defects near the surface, respectively. The electrical properties (i.e., leakage currents, ideality factor, and barrier height) exhibited almost no correlation with the density of the line-shaped voids. This very weak correlation was reasonable considering the parallel positional relation between the line-shaped voids extending along the [010] direction and the (001) basal plane in which the voids are rarely exposed on the initial surface in contact with the Schottky metals. The distribution of small defects and SBDs with unusually large leakage currents showed similar patterns on the substrate, suggesting that these defects were responsible for the onset of fatal leak paths. These results will encourage studies on crystal defect management of (001) β-Ga2O3 substrates for the fabrication of devices with enhanced performance using these substrates.
A 3D CZT high resolution detector for x- and gamma-ray astronomy
NASA Astrophysics Data System (ADS)
Kuvvetli, I.; Budtz-Jørgensen, C.; Zappettini, A.; Zambelli, N.; Benassi, G.; Kalemci, E.; Caroli, E.; Stephen, J. B.; Auricchio, N.
2014-07-01
At DTU Space we have developed a high resolution three dimensional (3D) position sensitive CZT detector for high energy astronomy. The design of the 3D CZT detector is based on the CZT Drift Strip detector principle. The position determination perpendicular to the anode strips is performed using a novel interpolating technique based on the drift strip signals. The position determination in the detector depth direction, is made using the DOI technique based the detector cathode and anode signals. The position determination along the anode strips is made with the help of 10 cathode strips orthogonal to the anode strips. The position resolutions are at low energies dominated by the electronic noise and improve therefore with increased signal to noise ratio as the energy increases. The achievable position resolution at higher energies will however be dominated by the extended spatial distribution of the photon produced ionization charge. The main sources of noise contribution of the drift signals are the leakage current between the strips and the strip capacitance. For the leakage current, we used a metallization process that reduces the leakage current by means of a high resistive thin layer between the drift strip electrodes and CZT detector material. This method was applied to all the proto type detectors and was a very effective method to reduce the surface leakage current between the strips. The proto type detector was recently investigated at the European Synchrotron Radiation Facility, Grenoble which provided a fine 50 × 50 μm2 collimated X-ray beam covering an energy band up to 600 keV. The Beam positions are resolved very well with a ~ 0.2 mm position resolution (FWHM ) at 400 keV in all directions.
Sheath effects observed on a 10 meter high voltage panel in simulated low earth orbit plasma
NASA Technical Reports Server (NTRS)
Mccox, J. E.; Konradi, A.
1979-01-01
A large (1m x 10m) flat surface of conductive material was biased to high voltage (+ or - 3000 V) to simulate the behavior of a large solar array in low earth orbit. The model array was operated in a plasma environment of 1,000 to 1,000,000/cu cm, with sufficient free space around it for the resulting plasma sheaths to develop unimpeded for 5-10 meters into the surrounding plasma. Measurements of the resulting sheath thickness were obtained. The observed thickness varied approximately as V to the 3/4 power and N to the 1/2 power. This effect appears to limit total current leakage from the test array until sheath dimensions exceed about 1 meter. Total leakage current was also measured with the array.
NASA Astrophysics Data System (ADS)
Wang, X.-S.; Ma, M.-G.; Li, X.; Zhao, J.; Dong, P.; Zhou, J.
2010-04-01
The behavior of groundwater response to leakage of surface water in the middle reaches area of Heihe River Basin is significantly influenced by a thick vadose zone. The groundwater regime is a result of two recharge events due to leakage of Heihe River and irrigation water with different delay time. A nonlinear leakage model is developed to calculate the monthly leakage of Heihe River in considering changes of streamflow, river stage and agricultural water utilization. Numerical modeling of variable saturated flow is carried out to investigate the general behaviors of leakage-recharge conversion through a thick vadose zone. It is found that the recharge pattern can be approximated by simple reservoir models of leakages under a river and under an irrigation district with different delay-time and recession coefficient. A triple-reservoir model of relationship between surface water, vadose zone and groundwater is developed. It reproduces the groundwater regime during 1989-2006 with variable streamflow of Heihe River and agricultural water utilization. The model is applied to interpret changes of groundwater level during 2007-2008 that observed in the Watershed Airborne Telemetry Experimental Research (WATER).
Tabata, R; Kobayashi, T; Mori, A; Matsuno, S; Watarida, S; Onoe, M; Sugita, T; Shiraisi, S; Nojima, T
1993-04-01
We explored the blood-retaining mechanism of a vascular prosthesis made of expanded polytetrafluoroethylene through analysis of its structure and physicochemical properties. Plasma leakage through this vascular prosthesis was simulated by computer to explore its etiology. These examinations disclosed that leakage is dependent upon the inner pressure and the density of fibers. In other words, the study revealed that the mean distance between fibers constituting the wall of the expanded polytetrafluoroethylene vascular prosthesis is increased by tension (that is, inner pressure), resulting in an increased probability of leakage. It was additionally found that a thin membrane is formed on the polytetrafluoroethylene surface if blood in contact with the surface is dried. This membrane was found to reduce the water-repelling property of polytetrafluoroethylene and to make it impossible to preserve the inter-fiber liquid surface, thus causing leakage through the expanded polytetrafluoroethylene vascular prosthesis.
NASA Astrophysics Data System (ADS)
Sutanto, E.; Chandra, F.; Dinata, R.
2017-05-01
Leakage current measurement which can follow IEC standard for medical device is one of many challenges to be answered. The IEC 60601-1 has defined that the limit for a leakage current for Medical Device can be as low as 10 µA and as high as 500 µA, depending on which type of contact (applied part) connected to the patient. Most people are using ELCB (Earth-leakage circuit breaker) for safety purpose as this is the most common and available safety device in market. One type of ELCB devices is RCD (Residual Current Device) and this RCD type can measure the leakage current directly. This work will show the possibility on how Helmholtz Coil Configuration can be made to be like the RCD. The possibility is explored by comparing the magnetic field formula from each device, then it proceeds with a simulation using software EJS (Easy Java Simulation). The simulation will make sure the concept of magnetic field current cancellation follows the RCD concept. Finally, the possibility of increasing the measurement’s sensitivity is also analyzed. The sensitivity is needed to see the possibility on reaching the minimum leakage current limit defined by IEC, 0.01mA.
NASA Astrophysics Data System (ADS)
Kim, Chang Su; Jo, Sung Jin; Kim, Jong Bok; Ryu, Seung Yoon; Noh, Joo Hyon; Baik, Hong Koo; Lee, Se Jong; Kim, Youn Sang
2007-12-01
This communication reports on the fabrication of low operating voltage pentacene thin-film transistors with high-k gate dielectrics by ion beam assisted deposition (IBAD). These densely packed dielectric layers by IBAD show a much lower level of leakage current than those created by e-beam evaporation. These results, from the fact that those thin films deposited with low adatom mobility, have an open structure, consisting of spherical grains with pores in between, that acts as a significant path for leakage current. By contrast, our results demonstrate the potential to limit this leakage. The field effect mobility, on/off current ratio, and subthreshold slope obtained from pentacene thin-film transistors (TFTs) were 1.14 cm2/V s, 105, and 0.41 V/dec, respectively. Thus, the high-k gate dielectrics obtained by IBAD show promise in realizing low leakage current, low voltage, and high mobility pentacene TFTs.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-05-02
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-01-01
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components. PMID:28468324
NASA Astrophysics Data System (ADS)
Doumoto, Takafumi; Akagi, Hirofumi
This paper deals with a leakage current flowing out of the heat sink of a voltage-source PWM inverter. The heat-sink leakage current is caused by a steep change in the common-mode voltage produced by the inverter. It flows through parasitic capacitors between the heat sink and power semiconductor devices when no EMI filter is connected. Experimental results reveal that the heat-sink leakage current flows not into the supply side, but into the motor side. These understandings succeed in describing an equivalent common-mode circuit taking the parasitic capacitors into account. The authors have proposed a passive EMI filter that is unique in access to the ungrounded motor neutral line. It is discussed from this equivalent circuit that the passive EMI filter is effective in preventing the leakage current from flowing. Moreover, installation of another small-sized common-mode inductor at the ac side of the diode rectifier prevents the leakage current from flowing into the supply side. Experimental results obtained from a 200-V, 3.7-kW laboratory system confirm the effectiveness and viability of the EMI filter.
Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate
NASA Astrophysics Data System (ADS)
Usami, Shigeyoshi; Ando, Yuto; Tanaka, Atsushi; Nagamatsu, Kentaro; Deki, Manato; Kushimoto, Maki; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi; Sugawara, Yoshihiro; Yao, Yong-Zhao; Ishikawa, Yukari
2018-04-01
Dislocations that cause a reverse leakage current in vertical p-n diodes on a GaN free-standing substrate were investigated. Under a high reverse bias, dot-like leakage spots were observed using an emission microscope. Subsequent cathodoluminescence (CL) observations revealed that the leakage spots coincided with part of the CL dark spots, indicating that some types of dislocation cause reverse leakage. When etch pits were formed on the dislocations by KOH etching, three sizes of etch pits were obtained (large, medium, and small). Among these etch pits, only the medium pits coincided with leakage spots. Additionally, transmission electron microscopy observations revealed that pure screw dislocations are present under the leakage spots. The results revealed that 1c pure screw dislocations are related to the reverse leakage in vertical p-n diodes.
NASA Astrophysics Data System (ADS)
Jin, Peitong
2000-11-01
Local mass/heat transfer measurements from the turbine blade near-tip and the tip surfaces are performed using the naphthalene sublimation technique. The experiments are conducted in a linear cascade consisting of five high-pressure blades with a central test-blade configuration. The incoming flow conditions are close to those of the gas turbine engine environment (boundary layer displacement thickness is about 0.01 of chord) with an exit Reynolds number of 6.2 x 105. The effects of tip clearance level (0.86%--6.90% of chord), mainstream Reynolds number and turbulence intensity (0.2 and 12.0%) are investigated. Two methods of flow visualization---oil and lampblack, laser light sheet smoke wire---as well as static pressure measurement on the blade surface are used to study the tip leakage flow and vortex in the cascade. In addition, numerical modeling of the flow and heat transfer processes in the linear cascade with different tip clearances is conducted using commercial software incorporating advanced turbulence models. The present study confirms many important results on the tip leakage flow and vortex from the literature, contributes to the current understanding in the effects of tip leakage flow and vortex on local heat transfer from the blade near-tip and the tip surfaces, and provides detailed local and average heat/mass transfer data applicable to turbine blade tip cooling design.
Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes
NASA Astrophysics Data System (ADS)
Sang, Liwen; Ren, Bing; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Tanaka, Atsushi; Cho, Yujin; Harada, Yoshitomo; Nabatame, Toshihide; Sekiguchi, Takashi; Usami, Shigeyoshi; Honda, Yoshio; Amano, Hiroshi
2017-09-01
Electrical characteristics of leakage current paths in vertical-type n-GaN Schottky barrier diodes (SBDs) on free-standing GaN substrates are investigated by using photon emission microscopy (PEM). The PEM mapping shows that the initial failure of the SBD devices at low voltages is due to the leakage current paths from polygonal pits in the GaN epilayers. It is observed that these polygonal pits originate from carbon impurity accumulation to the dislocations with a screw-type component by microstructure analysis. For the SBD without polygonal pits, no initial failure is observed and the first leakage appeals at the edge of electrodes as a result of electric field concentration. The mechanism of leakage at pits is explained in terms of trap assisted tunneling through fitting current-voltage characteristics.
Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs
NASA Astrophysics Data System (ADS)
Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro
2018-04-01
The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.
Impact of the Agulhas Return Current on the glacial Subantarctic region in the South Indian Ocean
NASA Astrophysics Data System (ADS)
Ikehara, M.; Crosta, X.; Manoj, M. C.
2017-12-01
The Southern Ocean has played an important role in the evolution of the global climate system. The Southern Ocean circulation is dominated by the Antarctic Circumpolar Current (ACC), the world's longest and largest current system. Sea ice coverage on sea surface strongly affects the climate of the Southern Hemisphere through its impacts on the energy and gas budget, on the atmospheric circulation, on the hydrological cycle, and on the biological productivity. The Agulhas Return Current (ARC) originates from the Agulhas Current, the major western boundary current in the Indian Ocean, and transports heat from subtropical to subantarctic region. It's thought that the Agulhas leakage from the Indian Ocean to the Atlantic was reduced for the last glacial due to a northward shift of the westerlies and ACC, however, there are still unknown yet how the ARC was responded to the reduced Agulhas leakage. A piston core DCR-1PC was collected from the Del Caño Rise (46°S, 44°E, 2632m), Indian sector of the Southern Ocean. Core site located in the Subantarctic region between the Subtropical Front (STF) and Subantarctic Front (SAF). Age model of the core was established by radiocarbon dating of planktic foraminifer Globorotalia bulloides and oxygen isotope stratigraphy of benthic foraminifers Cibicidoides wuellerstorfi and Melonis bareelanus. Sediment of DCR-1PC show the cyclic changes of diatom/carbonate ooze sedimentation corresponding to Southern Ocean fronts' migrations on glacial-interglacial timescales. Records of ice-rafted debris (IRD) and oxygen isotope in planktic foraminfer G. bulloides suggest that the melting of sea ice was significantly increased during the last glacial maximum (LGM) in the Subantarctic surface water. Diatom assemblage based summer SST also shows the relative warmer condition in the Subantarctic during the LGM. These results might be explained by the strong influence of the Agulhas Return Current during the LGM in the Subantarctic. The reduced Agulhas leakage due to a northward shift of the westerlies and ACC impacted significantly on sea ice melting in the glacial Subantarctic region in the South Indian Ocean.
Fabrication and Benchmarking of a Stratix V FPGA with Monolithic Integrated Microfluidic Cooling
2017-03-01
run. The output from all cores were monitored through the Altera Signaltap tool in order to detect glitches which occurred in the output...dependence on temperature, and static/ leakage power, which comes from several components, such as subthreshold leakage , gate leakage , and reverse bias 220...junction current. Subthreshold leakage current tends to be the most significant temperature dependent component of the power [6,7] and is given by
Kano, Shinya; Fujii, Minoru
2017-03-03
We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.
NASA Astrophysics Data System (ADS)
Shih, Wen-Chieh; Kang, Kun-Yung; Lee, Joseph Ya-Min
2007-11-01
Metal-ferroelectric-insulator-semiconductor transistors (MFISFETs) and capacitors with the structure of Al /Pb (Zr0.53,Ti0.47) O3/ZrO2/Si were fabricated. The wafers were pretreated with H2O2 before ZrO2 deposition and/or post-treated with HCl after ZrO2 deposition. The leakage current density at 5V is reduced from 10-1to5×10-6A /cm2. The subthreshold slope was improved to 91mV/decade. The MFISFETs maintain a threshold voltage window of about 1.1V after an elapsed time of 3000s. The mobility is 267cm2/Vs. The improvements are most likely due to the reduction of interfacial layer thickness and the interface states at the ZrO2/Si interface.
FELERION: a new approach for leakage power reduction
NASA Astrophysics Data System (ADS)
R, Anjana; Somkuwar, Ajay
2014-12-01
The circuit proposed in this paper simultaneously reduces the sub threshold leakage power and saves the state of art aspect of the logic circuits. Sleep transistors and PMOS-only logic are used to further reduce the leakage power. Sleep transistors are used as the keepers to reduce the sub threshold leakage current providing the low resistance path to the output. PMOS-only logic is used between the pull up and pull down devices to mitigate the leakage power further. Our proposed fast efficient leakage reduction circuit not only reduces the leakage current but also reduces the power dissipation. Power and delay are analyzed at the 32 nm BSIM4 model for a chain of four inverters, NAND, NOR and ISCAS-85 c17 benchmark circuits using DSCH3 and the Microwind tool. The simulation results reveal that our proposed approach mitigates leakage power by 90%-94% as compared to the conventional approach.
NASA Astrophysics Data System (ADS)
Cappa, Paolo; Marinozzi, Franco; Sciuto, Salvatore Andrea
2000-07-01
The Leakage Current Sentinel (LCS) has been designed and implemented for the detection of hazardous situations caused by dangerous earth leakage current values in intensive care units and operating theaters. The device, designed and manufactured with full compliance of the high risk environment requirements, is able to monitor online the earth leakage current and detect ground wire faults. Operation utilizes a microammeter with an overall sensitivity of 2.5×104 V/A. In order to assure the reliability of the device in providing alarm signals, the simultaneous presence of absorbed power current is monitored by means of another ammeter with decreased sensitivity (3.0 V/A). The measured root mean square current values are compared with reference values in order to send signals to NAND and OR complementary metal-oxide-semiconductor gates to enable audible and visible alarms according to the possible hazardous cases examined in the article. The final LCS packaging was shaped as a wall socket adapter for common electromedical device power cord plugs, with particular attention to minimizing its dimensions and to provide analog voltage outputs for both measured leakage and power currents, in order to allow automatic data acquisition and computerized hazardous situation management. Finally, a personal computer based automatic measuring system has been configured to simultaneously monitor several LCSs installed in the same intensive care unit room and, as a consequence, to distinguish different hazardous scenarios and provide an adequate alert to the clinical personnel whose final decision is still required. The test results confirm the effectiveness and reliability of the LCS in giving an alert in case of leakage current anomalous values, either in case of a ground fault or in case of a dangerous leakage current.
40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... than 1 year. (2) Identification of potential surface leakage pathways for CO2 in the maximum monitoring area and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways. (3) A...
40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... than 1 year. (2) Identification of potential surface leakage pathways for CO2 in the maximum monitoring area and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways. (3) A...
49 CFR 178.345-13 - Pressure and leakage tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... entire cargo tank surface is inspected for leakage and other sign of defects. The inspection method must... Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and leakage tests. (a) Each cargo tank must be pressure and leakage tested in accordance with this section and §§ 178.346-5, 178.347...
49 CFR 178.345-13 - Pressure and leakage tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... entire cargo tank surface is inspected for leakage and other sign of defects. The inspection method must... Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and leakage tests. (a) Each cargo tank must be pressure and leakage tested in accordance with this section and §§ 178.346-5, 178.347...
49 CFR 178.345-13 - Pressure and leakage tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... entire cargo tank surface is inspected for leakage and other sign of defects. The inspection method must... Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and leakage tests. (a) Each cargo tank must be pressure and leakage tested in accordance with this section and §§ 178.346-5, 178.347...
49 CFR 178.345-13 - Pressure and leakage tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... entire cargo tank surface is inspected for leakage and other sign of defects. The inspection method must... Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and leakage tests. (a) Each cargo tank must be pressure and leakage tested in accordance with this section and §§ 178.346-5, 178.347...
NASA Astrophysics Data System (ADS)
Li, Jeng-Ting; Tsai, Ho-Lin; Lai, Wei-Yao; Hwang, Weng-Sing; Chen, In-Gann; Chen, Jen-Sue
2018-04-01
This study addresses the variation in gate-leakage current due to the Fowler-Nordheim (FN) tunneling of electrons through a SiO2 dielectric layer in zinc-tin oxide (ZTO) thin film transistors. It is shown that the gate-leakage current is not related to the absolute area of the ZTO active layer, but it is reduced by reducing the ZTO/SiO2 area ratio. The ZTO/SiO2 area ratio modulates the ZTO-SiO2 interface dipole strength as well as the ZTO-SiO2 conduction band offset and subsequently affects the FN tunneling current through the SiO2 layer, which provides a route that modifies the gate-leakage current.
Seasonal inorganic nitrogen release in alpine lakes on the Colorado western slope
Inyan, B.I.; Williams, M.W.; Tonnessen, K.; Turk, J.T.; Campbell, D.H.
1998-01-01
In the Rocky Mountains, the association of increases in acidic deposition with increased atmospheric loading of sulfate and direct changes in surface water chemistry has been well established. The importance, though, of increased nitrogen (N) deposition in the episodic acidification of alpine lakes and N saturation in alpine ecosystems is only beginning to be documented. In alpine areas of the Colorado Front Range, modest loadings of N in deposition have been associated with leakage of N to surface waters. On the Colorado western slope, however, no leakage of N to surface waters has been reported. A 1995 study that included early season under-ice water samples that were not available in earlier studies showed that there is, in fact, N leakage to surface waters in some western slope basins. Under-ice nitrate (NO3-) concentrations were as high as 10.5 ??q L-1, and only decreased to detection limits in September. Landscape type appears to be important in leakage of N to surface waters, which is associated with basins having steep slopes, thin soils, and large amounts of exposed bedrock. NO3- leakage compounds the existing sensitivity to episodic acidification from low acid neutralizing capacity (ANC), which is less than 40 ??eq L-1 in those basins.
NASA Astrophysics Data System (ADS)
Alema, Fikadu; Reinholz, Aaron; Pokhodnya, Konstantin
2013-03-01
We report on the tunable dielectric properties of Mg and Nb co-doped Ba0.45Sr0.55TiO3 (BST) thin film prepared by the magnetron sputtering using BST target (pure and doped with BaMg0.33Nb0.67O3 (BMN)) on Pt/TiO2/SiO2/Al2O3 4'' wafers at 700 °C under oxygen atmosphere. The electrical measurements are conducted on 2432 metal-ferroelectric-metal capacitors using Pt as the top and bottom electrode. The crystalline structure, microstructure, and surface morphology of the films are analyzed and correlated to the films dielectric properties. The BMN doped and undoped BST films have shown tunabilities of 48% and 52%; and leakage current densities of 2.2x10-6 A/cm2 and 3.7x10-5 A/cm2, respectively at 0.5 MV/cm bias field. The results indicate that the BMN doped film exhibits a lower leakage current with no significant decrease in tunability. Due to similar electronegativity and ionic radii, it was suggested that both Mg2+ (accepter-type) and Nb5+ (donor-type) dopants substitutTi4+ ion in BST. The improvement in the film dielectric losses and leakage current with insignificant loss of tunability is attributed to the adversary effects of Mg2+ and Nb5+ in BST.
Gas-path leakage seal for a turbine
Bagepalli, B.S.; Aksit, M.F.; Farrell, T.R.
1999-08-10
A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a turbine (such as combustor casing segments of a gas turbine). The seal includes a flexible and generally imperforate metal sheet assemblage having opposing first and second surfaces and two opposing raised edges extending a generally identical distance above and below the surfaces. A first cloth layer assemblage has a thickness generally equal to the previously-defined identical distance and is superimposed on the first surface between the raised edges. A second cloth layer assemblage is generally identical to the first cloth layer assemblage and is superimposed on the second surface between the raised edges. 5 figs.
Gas-path leakage seal for a turbine
Bagepalli, Bharat Sampathkumaran; Aksit, Mahmut Faruk; Farrell, Thomas Raymond
1999-01-01
A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a turbine (such as combustor casing segments of a gas turbine). The seal includes a flexible and generally imperforate metal sheet assemblage having opposing first and second surfaces and two opposing raised edges extending a generally identical distance above and below the surfaces. A first cloth layer assemblage has a thickness generally equal to the previously-defined identical distance and is superimposed on the first surface between the raised edges. A second cloth layer assemblage is generally identical to the first cloth layer assemblage and is superimposed on the second surface between the raised edges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ANDREWS,J.W.
1998-12-01
The house pressure test for air leakage in ducts calculates the signed difference between the supply and return leakage from the response of the air pressure in the house to operation of the system fan. The currently accepted version of this calculation was based on particular assumptions about how the house envelope leakage is distributed between the walls, ceiling, and floor. This report generalizes the equation to account for an arbitrary distribution of envelope leakage. It concludes that the currently accepted equation is usually accurate to within {+-}5%, but in a small proportion of cases the results may diverge bymore » 50% or more.« less
Analysis for leakage and rotordynamic coefficients of surface-roughened tapered annular gas seals
NASA Technical Reports Server (NTRS)
Nelson, C. C.
1984-01-01
The present analysis calculates the leakage and rotor-dynamic coefficients for tapered annular gas seals whose rotor and stator have been subjected to different surface roughness treatments. The analysis is demonstrated for the effects of changes in the Space Shuttle Main Engine High Pressure Oxygen Turbopump's turbine interstage seal length, taper, clearance, and fluid prerotation. It is noted that changes in these parameters generally resulted in major changes in leakage and rotordynamic coefficients.
Au/n-ZnO rectifying contact fabricated with hydrogen peroxide pretreatment
NASA Astrophysics Data System (ADS)
Gu, Q. L.; Cheung, C. K.; Ling, C. C.; Ng, A. M. C.; Djurišić, A. B.; Lu, L. W.; Chen, X. D.; Fung, S.; Beling, C. D.; Ong, H. C.
2008-05-01
Au contacts were deposited on n-type ZnO single crystals with and without hydrogen peroxide pretreatment for the ZnO substrate. The Au/ZnO contacts fabricated on substrates without H2O2 pretreatment were Ohmic and those with H2O2 pretreatment were rectifying. With an aim of fabricating a good quality Schottky contact, the rectifying property of the Au/ZnO contact was systemically investigated by varying the treatment temperature and duration. The best performing Schottky contact was found to have an ideality factor of 1.15 and a leakage current of ˜10-7 A cm-2. A multispectroscopic study, including scanning electron microscopy, positron annihilation spectroscopy, deep level transient spectroscopy, x-ray photoelectron spectroscopy, and photoluminescence, showed that the H2O2 treatment removed the OH impurity and created Zn-vacancy related defects hence decreasing the conductivity of the ZnO surface layer, a condition favorable for forming good Schottky contact. However, the H2O2 treatment also resulted in a deterioration of the surface morphology, leading to an increase in the Schottky contact ideality factor and leakage current in the case of nonoptimal treatment time and temperature.
Spacecraft dielectric surface charging property determination
NASA Technical Reports Server (NTRS)
Williamson, W. S.
1987-01-01
The charging properties of 127 micron thick polyimide, (a commonly used spacecraft dielectric material) was measured under conditions of irradiation by a low-current-density electron beam with energy between 2 and 14 keV. The observed charging characteristics were consistent with predictions of the NASCAP computer model. The use of low electron current density results in a nonlinearity in the sample-potential versus beam-energy characteristic which is attributed to conduction leakage through the sample. Microdischarges were present at relatively low beam energies.
Spiral groove seal. [for hydraulic rotating shaft
NASA Technical Reports Server (NTRS)
Ludwig, L. P. (Inventor)
1973-01-01
Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.
NASA Astrophysics Data System (ADS)
Sun, Huarui; Bajo, Miguel Montes; Uren, Michael J.; Kuball, Martin
2015-01-01
Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage "hot spots" at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7-0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which is consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.
NASA Astrophysics Data System (ADS)
Upadhyay, Bhanu B.; Takhar, Kuldeep; Jha, Jaya; Ganguly, Swaroop; Saha, Dipankar
2018-03-01
We demonstrate that N2 and O2 plasma treatment followed by rapid thermal annealing leads to surface stoichiometry modification in a AlGaN/GaN high electron mobility transistor. Both the source/drain access and gate regions respond positively improving the transistor characteristics albeit to different extents. Characterizations indicate that the surface show the characteristics of that of a higher band-gap material like AlxOy and GaxOy along with N-vacancy in the sub-surface region. The N-vacancy leads to an increased two-dimensional electron gas density. The formation of oxides lead to a reduced gate leakage current and surface passivation. The DC characteristics show increased transconductance, saturation drain current, ON/OFF current ratio, sub-threshold swing and lower ON resistance by a factor of 2.9, 2.0, 103.3 , 2.3, and 2.1, respectively. The RF characteristics show an increase in unity current gain frequency by a factor of 1.7 for a 500 nm channel length device.
Degradation of Leakage Currents in Solid Tantalum Capacitors Under Steady-State Bias Conditions
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2010-01-01
Degradation of leakage currents in various types of solid tantalum capacitors under steady-state bias conditions was investigated at temperatures from 105 oC to 170 oC and voltages up to two times the rated voltage. Variations of leakage currents with time under highly accelerated life testing (HALT) and annealing, thermally stimulated depolarization currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. During HALT the currents increase gradually up to three orders of magnitude in some cases, and then stabilize with time. This degradation is reversible and annealing can restore the initial levels of leakage currents. The results are attributed to migration of positively charged oxygen vacancies in tantalum pentoxide films that diminish the Schottky barrier at the MnO2/Ta2O5 interface and increase electron injection. A simple model allows for estimation of concentration and mobility of oxygen vacancies based on the level of current degradation.
Vertical Displacement of the Surface Area over the Leakage to the Transverse salt Mine in 1992-2012
NASA Astrophysics Data System (ADS)
Lipecki, Tomasz
2018-03-01
The leakage of water in the salt mine caused considerable deformation of the surface. This article shows the vertical displacement in the area of leakage to the mine excavation, measured by precision leveling, carried out from the first days of leakage in 1992 until 2012. The geological and hydrogeological conditions of the mine, as well as the associated water hazards were described, which in conjunction with the inconvenient location of the excavation site in the northern frontage of the Carpathians and also inadequately conducted mining operations, contributed to the risk of flooding mine. The analysis of the vertical movements of the surface - subsidence and uplift - were present as well as the process of formation of the depression trough in the form of maps and graphs. The analyzes were based on 49 measurement series, starting from the first days of the disaster within the next 20 years. The course of development of the depression trough and the condition of the surface after stopping the water from the rock mass has been shown, which caused the surface to uplift.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Jin, Lei; Jiang, Dandan; Zou, Xingqi; Zhao, Zhiguo; Gao, Jing; Zeng, Ming; Zhou, Wenbin; Tang, Zhaoyun; Huo, Zongliang
2018-03-01
In order to optimize program disturbance characteristics effectively, a characterization approach that measures top select transistor (TSG) leakage from bit-line is proposed to quantify TSG leakage under program inhibit condition in 3D NAND flash memory. Based on this approach, the effect of Vth modulation of two-cell TSG on leakage is evaluated. By checking the dependence of leakage and corresponding program disturbance on upper and lower TSG Vth, this approach is validated. The optimal Vth pattern with high upper TSG Vth and low lower TSG Vth has been suggested for low leakage current and high boosted channel potential. It is found that upper TSG plays dominant role in preventing drain induced barrier lowering (DIBL) leakage from boosted channel to bit-line, while lower TSG assists to further suppress TSG leakage by providing smooth potential drop from dummy WL to edge of TSG, consequently suppressing trap assisted band-to-band tunneling current (BTBT) between dummy WL and TSG.
Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Proctor, Margaret P.
2007-01-01
Seal leakage decreases with increasing surface speed due to reduced clearances from disk centrifugal growth. Annular and labyrinth seal leakage are 2-3 times greater than brush and finger seal leakage. Seal leakage rates increase with increasing temperature because of seal clearance growth due to different coefficients of thermal expansion between the seal and test disk. Seal power loss is not strongly affected by inlet temperature. Seal power loss increases with increasing surface speed, seal pressure differential, mass flow rate or flow factor, and radial clearance. The brush and finger seals had nearly the same power loss. Annular and labyrinth seal power loss were higher than finger or brush seal power loss. The brush seal power loss was the lowest and 15-30% lower than annular and labyrinth seal power loss.
Effects of chemo-mechanical polishing on CdZnTe X-ray and gamma-ray detectors
Egarievwe, Stephen E.; Hossain, Anwar; Okwechime, Ifechukwude O.; ...
2015-06-23
Here, mechanically polishing cadmium zinc telluride (CdZnTe) wafers for x-ray and gamma-ray detectors often is inadequate in removing surface defects caused by cutting them from the ingots. Fabrication-induced defects, such as surface roughness, dangling bonds, and nonstoichiometric surfaces, often are reduced through polishing and etching the surface. In our earlier studies of mechanical polishing with alumina powder, etching with hydrogen bromide in hydrogen peroxide solution, and chemomechanical polishing with bromine–methanol–ethylene glycol solution, we found that the chemomechanical polishing process produced the least surface leakage current. In this research, we focused on using two chemicals to chemomechanically polish CdZnTe wafers aftermore » mechanical polishing, viz. bromine–methanol–ethylene glycol (BME) solution, and hydrogen bromide (HBr) in a hydrogen peroxide and ethylene–glycol solution. We used x-ray photoelectron spectroscopy (XPS), current–voltage (I–V) measurements, and Am-241 spectral response measurements to characterize and compare the effects of each solution. The results show that the HBr-based solution produced lower leakage current than the BME solution. Results from using the same chemomechanical polishing solution on two samples confirmed that the surface treatment affects the measured bulk current (a combination of bulk and surface currents). XPS results indicate that the tellurium oxide to tellurium peak ratios for the mechanical polishing process were reduced significantly by chemomechanical polishing using the BME solution (78.9% for Te 3d 5/2O 2 and 76.7% for Te 3d 3/2O 2) compared with the HBr-based solution (27.6% for Te 3d 5/2O 2 and 35.8% for Te 3d 3/2O 2). Spectral response measurements showed that the 59.5-keV peak of Am-241 remained under the same channel number for all three CdZnTe samples. While the BME-based solution gave a better performance of 7.15% full-width at half-maximum (FWHM) compared with 7.59% FWHM for the HBr-based solution, the latter showed a smaller variation in performance of 0.39% FWHM over 7 days compared with 0.69% for the BME-based solution.« less
Potential for downward leakage to the Floridan Aquifer, Green Swamp area, central Florida
Grubb, H.F.
1977-01-01
A qualitative evaluation of the potential for downward leakage from the surficial sand aquifer to the underlying Floridan aquifer was made for the Green Swamp area (about 870 sq mi) in central Florida. Downward leakage, or recharge, is limited under natural conditions owing to the nearness to land surface of the potentiometric surface of both the sand aquifer and the underlying Floridan aquifer. Continuous cores of the unconsolidated section were obtained at 74 sites in the study area and were evaluated for downward leakage potential based on grain-size distribution. Sand percentage was estimated for each interval or bed from microscopic examination of the core samples. The four maps prepared from this data show sand thickness, clay thickness, relative vertical hydraulic conductivity of the confining beds and the relative potential for downward leakage. About 20 percent (178 sq mi) of the area classified has a relatively good potential for downward leakage; almost 50 percent of the area has a relatively poor potential. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Kaneko, Masanao; Tsujita, Hoshio
2015-04-01
In a centrifugal compressor, the leakage flow through the tip clearance generates the tip leakage vortex by the interaction with the main flow, and consequently makes the flow in the impeller passage more complex by the interaction with the passage vortex. In addition, the tip leakage vortex interacts with the shock wave on the suction surface near the blade tip in the transonic centrifugal compressor impeller. Therefore, the detailed examination for the influence of the tip leakage vortex becomes seriously important to improve the aerodynamic performance especially for the transonic centrifugal compressor. In this study, the flows in the transonic centrifugal compressor with and without the tip clearance at the design condition were analyzed numerically by using the commercial CFD code. The computed results revealed that the tip leakage vortex induced by the high loading at the blade tip around the leading edge affected the loss generation by the reduction or the suppression of the shock wave on the suction surface of the blade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotani, Junji, E-mail: kotani.junji-01@jp.fujitsu.com; Yamada, Atsushi; Ishiguro, Tetsuro
2016-04-11
This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 10{sup 4 }cm{sup −2} and 1.2 × 10{sup 9 }cm{sup −2} by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, andmore » a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel–Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.« less
Oh, S K; Song, C G; Jang, T; Kim, Kwang-Choong; Jo, Y J; Kwak, J S
2013-03-01
This study examined the effect of electron-beam (E-beam) irradiation on the AIGaN/GaN HEMTs for the reduction of gate leakage. After E-beam irradiation, the gate leakage current significantly decreased from 2.68 x 10(-8) A to 4.69 x 10(-9) A at a drain voltage of 10 V. The maximum drain current density of the AIGaN/GaN HEMTs with E-beam irradiation increased 14%, and the threshold voltage exhibited a negative shift, when compared to that of the AIGaN/GaN HEMTs before E-beam irradiation. These results strongly suggest that the reduction of gate leakage current resulted from neutralization nitrogen vacancies and removing of oxygen impurities.
NASA Astrophysics Data System (ADS)
Jung, Tae-Uk; Kim, Myung-Hwan; Yoo, Jin-Hyung
2018-05-01
Current fed dual active bridge converters for photovoltaic generation may typically require a given leakage or extra inductance in order to provide proper control of the currents. Therefore, the many researches have been focused on the leakage inductance control of high frequency transformer to integrate an extra inductor. In this paper, an asymmetric winding arrangement to get the controlled leakage inductance for the high frequency transformer is proposed to improve the efficiency of the current fed dual active bridge converter. In order to accurate analysis, a coupled electromagnetic analysis model of transformer connected with high frequency switching circuit is used. A design optimization procedure for high efficiency is also presented using design analysis model, and it is verified by the experimental result.
NASA Astrophysics Data System (ADS)
Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji
2018-06-01
We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.
Hot-Electron-Induced Device Degradation during Gate-Induced Drain Leakage Stress
NASA Astrophysics Data System (ADS)
Kim, Kwang-Soo; Han, Chang-Hoon; Lee, Jun-Ki; Kim, Dong-Soo; Kim, Hyong-Joon; Shin, Joong-Shik; Lee, Hea-Beoum; Choi, Byoung-Deog
2012-11-01
We studied the interface state generation and electron trapping by hot electrons under gate-induced drain leakage (GIDL) stress in p-type metal oxide semiconductor field-effect transistors (P-MOSFETs), which are used as the high-voltage core circuit of flash memory devices. When negative voltage was applied to a drain in the off-state, a GIDL current was generated, but when high voltage was applied to the drain, electrons had a high energy. The hot electrons produced the interface state and electron trapping. As a result, the threshold voltage shifted and the off-state leakage current (trap-assisted drain junction leakage current) increased. On the other hand, electron trapping mitigated the energy band bending near the drain and thus suppressed the GIDL current generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, M.B.; Brody, E.; Sowell, B.
1987-12-15
Direct measurements of homojunction and heterojunction carrier leakage currents in InGaAsP/InP buried heterostructure lasers have been made by monitoring the electroluminescence (EL) at 0.96 ..mu..m in the InP confinement layers. These EL measurements show directly, for the first time, a correlation between homojunction leakage currents and the sublinearity in the 1.3-..mu..m light output-current characteristic. The observed decrease in the 0.96-..mu..m intensity with increasing p-dopant concentration is a direct confirmation that heterojunction leakage is reduced when the doping level in the p-InP confinement layer is increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Huarui, E-mail: huarui.sun@bristol.ac.uk; Bajo, Miguel Montes; Uren, Michael J.
2015-01-26
Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage “hot spots” at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7–0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which ismore » consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.« less
NASA Astrophysics Data System (ADS)
Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young
2017-09-01
Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.
Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films
NASA Astrophysics Data System (ADS)
Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.
2018-03-01
Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.
1984-05-10
overgrowth from a spoke 90 pattern of radial stripe openings at 1 intervals on an Si0 2 coated (110) surface. Bright regions are GaAs and dark regions are Si0...the dark current for such an ideal device is given by Idark - Io[exp(eVbi/AokT) - 1] , (11-l) where Io is a proportionality constant describing the...recombination and leakage currents which contribute to an increased dark current. The value of Voc is determined by the built-in junction barrier height and the
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable... the electrical leakage current between any two points of an electrical system and to sound an alarm if...
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable... the electrical leakage current between any two points of an electrical system and to sound an alarm if...
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable... the electrical leakage current between any two points of an electrical system and to sound an alarm if...
Fan-less long range alpha detector
MacArthur, D.W.; Bounds, J.A.
1994-05-10
A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.
Fan-less long range alpha detector
MacArthur, Duncan W.; Bounds, John A.
1994-01-01
A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.
GUARD RING SEMICONDUCTOR JUNCTION
Goulding, F.S.; Hansen, W.L.
1963-12-01
A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)
Code of Federal Regulations, 2010 CFR
2010-07-01
... and run-off control systems; (2) The presence of leakage in and proper functioning of leakage detection system. (3) Deterioration or cracking of the drip pad surface. Note: See § 265.443(m) for remedial action required if deterioration or leakage is -detected. [55 FR 50486, Dec. 6, 1990, as amended at 71 FR...
NASA Astrophysics Data System (ADS)
Hamachi, T.; Takeuchi, S.; Tohei, T.; Imanishi, M.; Imade, M.; Mori, Y.; Sakai, A.
2018-04-01
The mechanisms associated with electrical conduction through individual threading dislocations (TDs) in a Na-flux GaN crystal grown with a multipoint-seed-GaN technique were investigated by conductive atomic force microscopy (C-AFM). To focus on individual TDs, dislocation-related etch pits (DREPs) were formed on the Na-flux GaN surface by wet chemical etching, after which microscopic Pt electrodes were locally fabricated on the DREPs to form conformal contacts to the Na-flux GaN crystal, using electron beam assisted deposition. The C-AFM data clearly demonstrate that the leakage current flows through the individual TD sites. It is also evident that the leakage current and the electrical conduction mechanism vary significantly based on the area within the Na-flux GaN crystal where the TDs are formed. These regions include the c-growth sector (cGS) in which the GaN grows in the [0001 ] direction on top of the point-seed with a c-plane growth front, the facet-growth sector (FGS) in which the GaN grows with {10 1 ¯ 1 } facets on the side of the cGS, the boundary region between the cGS and FGS (BR), and the coalescence boundary region between FGSs (CBR). The local current-voltage (I-V) characteristics of the specimen demonstrate space charge limited current conduction and conduction related to band-like trap states associated with TDs in the FGS, BR, and CBR. A detailed analysis of the I-V data indicates that the electrical conduction through TDs in the cGS may proceed via the Poole-Frenkel emission mechanism.
NASA Technical Reports Server (NTRS)
Adell, Phillipe C.; Barnaby, H. J.; Schrimpf, R. D.; Vermeire, B.
2007-01-01
We propose a model, validated with simulations, describing how band-to-band tunneling (BBT) affects the leakage current degradation in some irradiated fully-depleted SOI devices. The dependence of drain current on gate voltage, including the apparent transition to a high current regime is explained.
How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs
NASA Astrophysics Data System (ADS)
Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart
2014-05-01
Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that faults play a major role when it comes to fluid migration from a reservoir. However, nearly 50% of the non-leaking studied reservoirs are also fault bound, demonstrating that faults are not always necessarily leakage pathways.
Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong
2013-05-22
In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.
NASA Astrophysics Data System (ADS)
Smits, K. M.; Mitton, M.; Moradi, A.; Chamindu, D. K.
2017-12-01
Reducing the amount of leaked natural gas (NG) from pipelines from production to use has become a high priority in efforts to cut anthropogenic emissions of methane. In addition to environmental impacts, NG leakage can cause significant economic losses and safety failures such as fires and explosions. However, tracking and evaluating NG pipeline leaks requires a better understanding of the leak from the source to the detector as well as more robust quantification methods. Although recent measurement-based approaches continue to make progress towards this end, efforts are hampered due to the complexity of leakage scenarios. Sub- surface transport of leaked NG from pipelines occurs through complex transport pathways due to soil heterogeneities and changes in soil moisture. Furthermore, it is affected by variable atmospheric conditions such as winds, frontal passages and rain. To better understand fugitive emissions from NG pipelines, we developed a field scale testbed that simulates low pressure gas leaks from pipe buried in soil. The system is equipped with subsurface and surface sensors to continuously monitor changes in soil and atmospheric conditions (e.g. moisture, pressure, temperature) and methane concentrations. Using this testbed, we are currently conducting a series of gas leakage experiments to study of the impact of subsurface (e.g. soil moisture, heterogeneity) and atmospheric conditions (near-surface wind and temperature) on the detected gas signals and establish the relative importance of the many pathways for methane migration between the source and the sensor location. Accompanying numerical modeling of the system using the multiphase transport simulator TOUGH2-EOS7CA demonstrates the influence of leak location and direction on gas migration. These findings will better inform leak detectors of the leak severity before excavation, aiding with safety precautions and work order categorization for improved efficiency.
Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2015-01-01
Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2017-02-01
The conventional processing of the III-V nBn photodetectors defines mesa devices by etching the contact n-layer and stopping immediately above the barrier, i.e., a shallow etch. This processing enables great suppression of surface leakage currents without having to explore surface passivation techniques. However, devices that are made with this processing scheme are subject to lateral diffusion currents. To address the lateral diffusion current, we compare the effects of different processing approaches and epitaxial structures of nBn detectors. The conventional solution for eliminating lateral diffusion current, a deep etch through the barrier and the absorber, creates increased dark currents and an increased device failure rate. To avoid deep etch processing, a new device structure is proposed, the inverted-nBn structure. By comparing with the conventional nBn structure, the results show that the lateral diffusion current is effectively eliminated in the inverted-nBn structure without elevating the dark currents.
Magnetic shielding of large high-power-satellite solar arrays using internal currents
NASA Technical Reports Server (NTRS)
Parker, L. W.; Oran, W. A.
1979-01-01
Present concepts for solar power satellites involve dimensions up to tens of kilometers and operating internal currents up to hundreds of kiloamperes. A question addressed is whether the local magnetic fields generated by these strong currents during normal operation can shield the array against impacts by plasma ions and electrons (and from thruster plasmas) which can cause possible losses such as power leakage and surface erosion. One of several prototype concepts was modeled by a long narrow rectangular panel 2 km wide and 20 km long. The currents flow in a parallel across the narrow dimension (sheet current) and along the edge (wire currents). The wire currents accumulate from zero to 100 kiloamp and are the dominant sources. The magnetic field is approximated analytically. The equations of motion for charged particles in this magnetic field are analyzed. The ion and electron fluxes at points on the surface are represented analytically for monoenergetic distributions and are evaluated.
NASA Astrophysics Data System (ADS)
Petrick, Benjamin; McClymont, Erin; van der Meer, Marcel; Marret, Fabienne
2015-04-01
The Southeast Atlantic Ocean is an important component of global ocean circulation, as it includes heat and salt transfer into the Atlantic through Agulhas Leakage. Here, we reconstruct sea surface temperatures (SSTs) and sea surface salinity from Ocean Drilling Program (ODP) Site 1087 in the Southeast Atlantic to investigate surface ocean circulation patterns during the late Pleistocene (0-500 ka). The alkenone-derived U37K'index and assemblages of dinoflagellate cysts are used to reconstruct SSTs. The hydrogen isotope composition of the alkenones (δDalkenone) is used to reconstruct changes in sea-surface salinity. The greatest amplitude of SST warming precedes decreases in benthic δ18O and therefore occurs early in the transition from glacials to interglacials. The timing of the early warming is consistent with previously published foraminifera reconstructions from the same site (Caley et al., 2012). However, δDalkenone decreases at the start of interglacials, suggesting that sea surface salinity increased earlier than the deglacial warmings, and indicating that the pattern of Agulhas leakage is more complex than suggested by SST proxies alone. Furthermore, the δDalkenonevalues indicate a strong salinity increases occurred before both MIS 11 and MIS 1, which are both periods where there is evidence of connection between increased Agulhas Leakage and a stronger Atlantic meridional overturning circulation (AMOC). Finally, the ODP site 1087 record shows an overall trend of increasing SSTs and δDalkenone towards the present day, suggesting that Agulhas leakage has strengthened since 500 ka, which may have impacted the intensity of the AMOC. Caley, T., Giraudeau, J., Malaize, B., Rossignol, L., Pierre, C., 2012. Agulhas leakage as a key process in the modes of Quaternary climate changes. Proc. Natl. Acad. Sci. 109, 6835-6839. doi:10.1073/pnas.1115545109
NASA Astrophysics Data System (ADS)
Lin, Yu-Shu; Cheng, Po-Hsien; Huang, Kuei-Wen; Lin, Hsin-Chih; Chen, Miin-Jang
2018-06-01
Sub-10 nm high-K gate dielectrics are of critical importance in two-dimensional transition metal dichalcogenides (TMDs) transistors. However, the chemical inertness of TMDs gives rise to a lot of pinholes in gate dielectrics, resulting in large gate leakage current. In this study, sub-10 nm, uniform and pinhole-free Al2O3 high-K gate dielectrics on MoS2 were achieved by atomic layer deposition without surface functionalization, in which an ultrathin Al2O3 layer prepared with a short purge time at a low temperature of 80 °C offers the nucleation cites for the deposition of the overlaying oxide at a higher temperature. Conductive atomic force microscopy reveals the significant suppression of gate leakage current in the sub-10 nm Al2O3 gate dielectrics with the low-temperature nucleation layer. Raman and X-ray photoelectron spectroscopies indicate that no oxidation occurred during the deposition of the low-temperature Al2O3 nucleation layer on MoS2. With the high-quality sub-10 nm Al2O3 high-K gate dielectrics, low hysteresis and subthreshold swing were demonstrated on the normally-off top-gated MoS2 transistors.
Sagara, Hideto; Sekiryu, Tetsuju; Noji, Hiroki; Ogasawara, Masashi; Imaizumi, Kimihiro; Yago, Keiko
2015-01-01
We present the case of a 47-year-old man who had bilateral proliferative diabetic retinopathy and neovascular glaucoma. Schirmer I test revealed tear secretions of 5 mm and 3 mm in the right and left eyes, respectively. Tear breakup times in the right and left eyes were 7 and 8 seconds, respectively. The ocular surface staining in both eyes was scored as Grade 1 as per the Oxford scheme. Retinal photocoagulation was performed for correction of the proliferative diabetic retinopathy and rubeosis iridis, which resolved with treatment. However, the intraocular pressure in the left eye could not be adequately controlled. Therefore, trabeculectomy with mitomycin C using limbal-based conjunctival flap was performed. Three hours after the surgery, the patient developed a large and diffuse filtering bleb, but no leakage occurred from the conjunctival scar. However, on the first postoperative day, leakage was noted and the conjunctiva was at the leakage point. The leakage resolved transiently, but recurred the next day. Severe keratoconjunctival epithelial failure was detected, and the patient was administrated 0.1% sodium hyaluronate eye drops six times daily. The epithelial failure improved, and many microcysts were detected on the bleb surface where the epithelial failure improved. The leakage resolved 2 days after initiation of the sodium hyaluronate eye drops. The microcysts disappeared and the bleb surface became smooth 1 month later. PMID:26664245
Sagara, Hideto; Sekiryu, Tetsuju; Noji, Hiroki; Ogasawara, Masashi; Imaizumi, Kimihiro; Yago, Keiko
2015-01-01
We present the case of a 47-year-old man who had bilateral proliferative diabetic retinopathy and neovascular glaucoma. Schirmer I test revealed tear secretions of 5 mm and 3 mm in the right and left eyes, respectively. Tear breakup times in the right and left eyes were 7 and 8 seconds, respectively. The ocular surface staining in both eyes was scored as Grade 1 as per the Oxford scheme. Retinal photocoagulation was performed for correction of the proliferative diabetic retinopathy and rubeosis iridis, which resolved with treatment. However, the intraocular pressure in the left eye could not be adequately controlled. Therefore, trabeculectomy with mitomycin C using limbal-based conjunctival flap was performed. Three hours after the surgery, the patient developed a large and diffuse filtering bleb, but no leakage occurred from the conjunctival scar. However, on the first postoperative day, leakage was noted and the conjunctiva was at the leakage point. The leakage resolved transiently, but recurred the next day. Severe keratoconjunctival epithelial failure was detected, and the patient was administrated 0.1% sodium hyaluronate eye drops six times daily. The epithelial failure improved, and many microcysts were detected on the bleb surface where the epithelial failure improved. The leakage resolved 2 days after initiation of the sodium hyaluronate eye drops. The microcysts disappeared and the bleb surface became smooth 1 month later.
Modeling of Dual Gate Material Hetero-dielectric Strained PNPN TFET for Improved ON Current
NASA Astrophysics Data System (ADS)
Kumari, Tripty; Saha, Priyanka; Dash, Dinesh Kumar; Sarkar, Subir Kumar
2018-01-01
The tunnel field effect transistor (TFET) is considered to be a promising alternative device for future low-power VLSI circuits due to its steep subthreshold slope, low leakage current and its efficient performance at low supply voltage. However, the main challenging issue associated with realizing TFET for wide scale applications is its low ON current. To overcome this, a dual gate material with the concept of dielectric engineering has been incorporated into conventional TFET structure to tune the tunneling width at source-channel interface allowing significant flow of carriers. In addition to this, N+ pocket is implanted at source-channel junction of the proposed structure and the effect of strain is added for exploring the performance of the model in nanoscale regime. All these added features upgrade the device characteristics leading to higher ON current, low leakage and low threshold voltage. The present work derives the surface potential, electric field expression and drain current by solving 2D Poisson's equation at different boundary conditions. A comparative analysis of proposed model with conventional TFET has been done to establish the superiority of the proposed structure. All analytical results have been compared with the results obtained in SILVACO ATLAS device simulator to establish the accuracy of the derived analytical model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabovski, E. V.; Gribov, A. N.; Samokhin, A. A.
2016-08-15
Current leakages in the magnetically insulated transmission lines (MITL) impose restrictions on the transmission of electromagnetic pulses to the load in high-power electrophysical facilities. The multimodule Angara-5-1 facility with an output electric power of up to 6 TW is considered. In this work, the experimental and calculated profiles of leakage currents in two sections of the line are compared when the eight-module facility is loaded by a wire array. The azimuthal distribution of the current in the cylindrical section of the MITL is also considered.
NASA Astrophysics Data System (ADS)
Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Burger, S.; Schmidt, F.; Ledentsov, N. N.
2016-03-01
Oxide-confined apertures in vertical cavity surface emitting laser (VCSEL) can be engineered such that they promote leakage of the transverse optical modes from the non- oxidized core region to the selectively oxidized periphery of the device. The reason of the leakage is that the VCSEL modes in the core can be coupled to tilted modes in the periphery if the orthogonality between the core mode and the modes at the periphery is broken by the oxidation-induced optical field redistribution. Three-dimensional modeling of a practical VCSEL design reveals i) significantly stronger leakage losses for high-order transverse modes than that of the fundamental one as high-order modes have a higher field intensity close to the oxide layers and ii) narrow peaks in the far-field profile generated by the leaky component of the optical modes. Experimental 850-nm GaAlAs leaky VCSELs produced in the modeled design demonstrate i) single-mode lasing with the aperture diameters up to 5μm with side mode suppression ratio >20dB at the current density of 10kA/cm2; and ii) narrow peaks tilted at 37 degrees with respect to the vertical axis in excellent agreement with the modeling data and confirming the leaky nature of the modes and the proposed mechanism of mode selection. The results indicate that in- plane coupling of VCSELs, VCSELs and p-i-n photodiodes, VCSEL and delay lines is possible allowing novel photonic integrated circuits. We show that the approach enables design of oxide apertures, air-gap apertures, devices created by impurity-induced intermixing or any combinations of such designs through quantitative evaluation of the leaky emission.
Shigetani, Yoshimi; Tate, Yasuaki; Okamoto, Akira; Iwaku, Masaaki; Abu-Bakr, Neamat
2002-09-01
The purpose of this study was to evaluate marginal leakage of composite resin restoration from cavities prepared by Er:YAG laser. The observation of the dentin surface after the application of laser irradiation was performed by LSM, the cutting surface showed a rough surface similar to scales, and exposed dentinal tubules were observed without striations or a smeared layer formation that were observed when using a rotary cutting device. Leakage tests revealed no significant differences in the marginal seal for both enamel and dentin between cavities prepared by Er:YAG laser irradiation and when using an air-turbine. In this study, the usefulness of cavity preparation by Er:YAG laser irradiation in composite resin restoration was suggested.
NASA Technical Reports Server (NTRS)
Nicks, C. O.; Childs, D. W.
1984-01-01
The importance of seal behavior in rotordynamics is discussed and current annular seal theory is reviewed. A Nelson's analytical-computational method for determining rotordynamic coefficients for this type of compressible-flow seal is outlined. Various means for the experimental identification of the dynamic coefficients are given, and the method employed at the Texas A and M University (TAMU) test facility is explained. The TAMU test apparatus is described, and the test procedures are discussed. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and rotordynamic coefficients for a smooth and a honeycomb constant-clearance seal are presented and compared to theoretical results from Nelson's analysis. The results for both seals show little sensitivity to the running speed over the test range. Agreement between test results and theory for leakage through the seal is satisfactory. Test results for direct stiffness show a greater sensitivity to fluid pre-rotation than predicted. Results also indicate that the deliberately roughened surface of the honeycomb seal provides improved stability versus the smooth seal.
Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating.
Chen, Yanjing; Bose, Arijit; Bothun, Geoffrey D
2010-06-22
Nanoscale assemblies that can be activated and controlled through external stimuli represent a next stage in multifunctional therapeutics. We report the formation, characterization, and release properties of bilayer-decorated magnetoliposomes (dMLs) that were prepared by embedding small hydrophobic SPIO nanoparticles at different lipid molecule to nanoparticle ratios within dipalmitoylphosphatidylcholine (DPPC) bilayers. The dML structure was examined by cryogenic transmission electron microscopy and differential scanning calorimetry, and release was examined by carboxyfluorescein leakage. Nanoparticle heating using alternating current electromagnetic fields (EMFs) operating at radio frequencies provided selective release of the encapsulated molecule at low nanoparticle concentrations and under physiologically acceptable EMF conditions. Without radio frequency heating, spontaneous leakage from the dMLs decreased with increasing nanoparticle loading, consistent with greater bilayer stability and a decrease in the effective dML surface area due to aggregation. With radio frequency heating, the initial rate and extent of leakage increased significantly as a function of nanoparticle loading and electromagnetic field strength. The mechanism of release is attributed to a combination of bilayer permeabilization and partial dML rupture.
Humidity-Induced Charge Leakage and Field Attenuation in Electric Field Microsensors
Zhang, Haiyan; Fang, Dongming; Yang, Pengfei; Peng, Chunrong; Wen, Xiaolong; Xia, Shanhong
2012-01-01
The steady-state zero output of static electric field measuring systems often fluctuates, which is caused mainly by the finite leakage resistance of the water film on the surface of the electric field microsensor package. The water adsorption has been calculated using the Boltzmann distribution equation at various relative humidities for borosilicate glass and polytetrafluoroethylene surfaces. At various humidities, water film thickness has been calculated, and the induced charge leakage and field attenuation have been theoretically investigated. Experiments have been performed with microsensors to verify the theoretical predictions and the results are in good agreement. PMID:22666077
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... monitoring will achieve detection and quantification of CO 2 in the event surface leakage occurs. The UIC... leakage detection monitoring system or technical specifications should also be described in the MRV plan... of injected CO 2 or from another cause (e.g. natural variability). The MRV plan leakage detection and...
NASA Astrophysics Data System (ADS)
Zhang, Zhili; Song, Liang; Li, Weiyi; Fu, Kai; Yu, Guohao; Zhang, Xiaodong; Fan, Yaming; Deng, Xuguang; Li, Shuiming; Sun, Shichuang; Li, Xiajun; Yuan, Jie; Sun, Qian; Dong, Zhihua; Cai, Yong; Zhang, Baoshun
2017-08-01
In this paper, we systematically investigated the leakage mechanism of the ion-implantation isolated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) on Si substrate. By means of combined DC tests at different temperatures and electric field dependence, we demonstrated the following original results: (1) It is proved that gate leakage is the main contribution to OFF-state leakage of ion-implantation isolated AlGaN/GaN MIS-HEMTs, and the gate leakage path is a series connection of the gate dielectric Si3N4 and Si3N4-GaN interface. (2) The dominant mechanisms of the leakage current through LPCVD-Si3N4 gate dielectric and Si3N4-GaN interface are identified to be Frenkel-Poole emission and two-dimensional variable range hopping (2D-VRH), respectively. (3) A certain temperature annealing could reduce the density of the interface state that produced by ion implantation, and consequently suppress the interface leakage transport, which results in a decrease in OFF-state leakage current of ion-implantation isolated AlGaN/GaN MIS-HEMTs.
Energy Efficient High-Pressure Turbine Leakage Technology Report
NASA Technical Reports Server (NTRS)
Gardner, W. B.
1980-01-01
The leakage test program was one of such supporting technology programs structured to provide guidance to the Energy Efficient Engine High Pressure Turbine Component Design Effort. Leakage reduction techniques were identified and evaluated. Test models were used to simulate component leak paths and to evaluate leakage reduction techniques. These models simulated the blade/disk attachment, the vane inner platform attachment, and the vane outer platform attachment combined with the blade outer airseal. Disk blade attachment testing indicated that leakage in this area could be reduced to very low levels by paying careful attention to the tolerances along the contact surface between the blade vibration damper and the blade platform contact surface. The aim of feather seal testing was to achieve a goal for an effective leakage gap of one mil (.001 inch) per inch of feather seal length. Results indicated that effective gaps even below the goal level were achievable by (1) maintaining close tolerances between feather seals and their slots to minimize end gaps and limit seal rotation, (2) avoiding feather seal overlap, and (3) minimizing feather seal intersections. W seals were shown to be effective leakage control devices. Wire rope, in its present state of development, was shown not to be an effective sealing concept for application to the component design.
NASA Astrophysics Data System (ADS)
Zhi, Jiang; Yi-Qi, Zhuang; Cong, Li; Ping, Wang; Yu-Qi, Liu
2016-02-01
Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (Dit) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574109 and 61204092).
Hobza, Christopher M.; Andersen, Michael J.
2010-01-01
The water supply in areas of the North Platte River Basin in the Nebraska Panhandle has been designated as fully appropriated or overappropriated by the Nebraska Department of Natural Resources (NDNR). Enacted legislation (Legislative Bill 962) requires the North Platte Natural Resources District (NPNRD) and the NDNR to develop an Integrated Management Plan (IMP) to balance groundwater and surface-water supply and demand in the NPNRD. A clear understanding of the groundwater and surface-water systems is critical for the development of a successful IMP. The primary source of groundwater recharge in parts of the NPNRD is from irrigation canal leakage. Because canal leakage constitutes a large part of the hydrologic budget, spatially distributing canal leakage to the groundwater system is important to any management strategy. Surface geophysical data collected along selected reaches of irrigation canals has allowed for the spatial distribution of leakage on a relative basis; however, the actual magnitude of leakage remains poorly defined. To address this need, the U.S. Geological Survey, in cooperation with the NPNRD, established streamflow-gaging stations at upstream and downstream ends from two selected canal reaches to allow a mass-balance approach to be used to calculate daily leakage rates. Water-level and sediment temperature data were collected and simulated at three temperature monitoring sites to allow the use of heat as a tracer to estimate the hydraulic conductivity of canal bed sediment. Canal-leakage rates were estimated by applying Darcy's Law to modeled vertical hydraulic conductivity and either the estimated or measured hydraulic gradient. This approach will improve the understanding of the spatial and temporal variability of canal leakage in varying geologic settings identified in capacitively coupled resistivity surveys. The high-leakage potential study reach of the Tri-State Canal had two streamflow-gaging stations and two temperature monitoring sites along its length. Calculated leakage rates from the mass-balance approach varied from year to year and were generally dependent on local climatic conditions, and the timing and magnitude of the initial seasonal diversion into the Tri-State Canal. Leakage rates ranged from 0.98 meter per day (m/d) on June 22, 2007, to about to 0 m/d during July 2009. Drier conditions generally resulted in higher leakage rates because of reduced flow from Spottedtail Creek, lower groundwater levels near Spottedtail Creek, and no unmeasured flow entering the reach. Of the three years studied (2007-09), 2007 was the driest, and therefore had the highest canal leakage rates. The moderately low leakage potential study reach of Interstate Canal had two streamflow-gaging stations and one temperature monitoring site along its length. Excluding the leakage calculations from early May 2007, leakage rates ranged from 0.08 to 0.7 m/d. Less variability in leakage from year to year indicates that climatic conditions may have less of an effect for Interstate Canal compared to Tri-State Canal. This may be because Interstate Canal was cut into the northern edge of the North Platte alluvial valley and consequently the canal bed is well above the local groundwater table resulting in a constant (1 meter per meter [m/m]) hydraulic gradient. Interstate Canal also does not receive any captured flow that can vary substantially year to year. Two temperature monitoring sites were installed within the high-leakage potential reach of Tri-State Canal. Site TCTEMP1 was established in 2007 where the water table was well below the canal bed surface. The vertical hydraulic conductivity of the poorly sorted sand and gravel beneath site TCTEMP1 was estimated using a calibrated one-dimensional VS2DH model. Using a trial-and-error approach, the best-fit vertical hydraulic conductivity for the site TCTEMP1 model domain was 1.1 m/d. Site TCTEMP2 was established at the mouth of Spottedtail Creek where a shallow
NASA Astrophysics Data System (ADS)
Hejazi, M. M.; Safari, A.
2011-11-01
This paper discusses the electrical conduction mechanisms in a 0.88 Bi0.5Na0.5TiO3-0.08 Bi0.5K0.5TiO3-0.04 BaTiO3 thin film in the temperature range of 200-350 K. The film was deposited on a SrRuO3/SrTiO3 substrate by pulsed laser deposition technique. At all measurement temperatures, the leakage current behavior of the film matched well with the Lampert's triangle bounded by three straight lines of different slopes. The relative location of the triangle sides varied with temperature due to its effect on the density of charge carriers and un-filled traps. At low electric fields, the ohmic conduction governed the leakage mechanism. The calculated activation energy of the trap is 0.19 eV implying the presence of shallow traps in the film. With increasing the applied field, an abrupt increase in the leakage current was observed. This was attributed to a trap-filling process by the injected carriers. At sufficiently high electric fields, the leakage current obeyed the Child's trap-free square law suggesting the space charge limited current was the dominant mechanism.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Xu, Jun; Wang, You-Nian; Choi, Chi Kyu; Zhou, Da-Yu
2016-03-01
Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.
Electrical characterization of MIM capacitor comprises an adamantane film at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Rajanish N., E-mail: rajanisht@gmail.com; Toyota Technological Institute, 2-12-1Hisakata, Tempaku-Ku, Nagoya 468-8511; Yoshimura, Masamichi
2016-06-15
We fabricated a new metal-insulator-metal capacitor at room temperature, comprising a ∼90 nm thin low–k adamantane film on a Si substrate. The surface morphology of deposited organic film was investigated by using scanning electron microscopy and Raman spectroscopy, which is confirmed that the adamantane thin film was uniformly distributed on the Si surface. The adamantane film exhibits a low leakage current density of 7.4 x 10{sup −7} A/cm{sup 2} at 13.5 V, better capacitance density of 2.14 fF/μm{sup 2} at 100 KHz.
NASA Astrophysics Data System (ADS)
Petrick, Benjamin F.; McClymont, Erin L.; Marret, Fabienne; van der Meer, Marcel T. J.
2015-09-01
The Southeast Atlantic Ocean is an important component of global ocean circulation, as it includes heat and salt transfer into the Atlantic through the Agulhas leakage as well as the highly productive Benguela upwelling system. Here we reconstruct sea surface temperatures (SSTs) from Ocean Drilling Program (ODP) Site 1087 in the Southeast Atlantic to investigate surface ocean circulation patterns during the late Pleistocene (0-500 ka). The UK'37 index and dinoflagellate cyst assemblages are used to reconstruct SSTs, δDalkenone is used to reconstruct changes in sea surface salinity, and mass accumulation rates of alkenones and chlorine pigments are quantified to detect changing marine export productivity. The greatest amplitude of SST warming precedes decreases in benthic δ18O and therefore occurs early in the transition from glacials to interglacials. The δDalkenone, as a salinity indicator, increases before SSTs, suggesting that the pattern of Agulhas leakage is more complex than suggested by SST proxies. Marine isotope stage (MIS) 10 shows an anomalous pattern: it is marked by a pronounced increase in chlorine concentration, which may be related to enhanced/expanded Benguela upwelling reaching the core site. We find no evidence of an absence of Agulhas leakage throughout the record, suggesting that there is no Agulhas cutoff even during MIS 10. Finally, the ODP Site 1087 record shows an increasing strength of Agulhas leakage towards the present day, which may have impacted the intensity of the Atlantic meridional overturning circulation. As a result, the new analyses from ODP Site 1087 demonstrate a complex interaction between influences of the Benguela upwelling and the Agulhas leakage through the late Pleistocene, which are inferred here to reflect changing circulation patterns in the Southern Ocean and in the atmosphere.
Spiral groove seal. [for rotating shaft
NASA Technical Reports Server (NTRS)
Ludwig, L. P.; Strom, T. N. (Inventor)
1974-01-01
Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove produces a pumping action toward the fluid when the shaft rotates. This prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear. Provision is made for placing these spiral grooves in communication with the fluid to accelerate the generation of the hydraulic lifting force.
Analysis and modeling of leakage current sensor under pulsating direct current
NASA Astrophysics Data System (ADS)
Li, Kui; Dai, Yihua; Wang, Yao; Niu, Feng; Chen, Zhao; Huang, Shaopo
2017-05-01
In this paper, the transformation characteristics of current sensor under pulsating DC leakage current is investigated. The mathematical model of current sensor is proposed to accurately describe the secondary side current and excitation current. The transformation process of current sensor is illustrated in details and the transformation error is analyzed from multi aspects. A simulation model is built and a sensor prototype is designed to conduct comparative evaluation, and both simulation and experimental results are presented to verify the correctness of theoretical analysis.
Properties of the surface generation-recombination noise in 1.94 μm GaSb-based laser diodes
NASA Astrophysics Data System (ADS)
Glemža, Justinas; Palenskis, Vilius; Pralgauskaitė, Sandra; Vyšniauskas, Juozas; Matukas, Jonas
2018-06-01
A detail investigation of generation-recombination (g-r) noise in 1.94 μm GaSb-based type-I ridge waveguide laser diodes (LDs) has been performed in a temperature range (230-295) K. Lorentzian-type noise spectra have been observed in the current range below the threshold at the forward and reverse biases of the LDs with the same characteristic time (3.7 μs) and activation energy (≈0.37 eV) of charge carriers transitions associated with the g-r processes. An equivalent electrical circuit possessing the voltage noise source is presented, which allows the description of both the current-voltage characteristic and the voltage fluctuation spectral density of the laser diode. Results indicate that the origin of the g-r noise in the investigated samples is the surface recombination caused by the surface leakage current channel between n+GaSb and p+GaSb contacts, which is practically independent from the applied bias polarity.
Apparatus for detecting leakage of liquid sodium
Himeno, Yoshiaki
1978-01-01
An apparatus for detecting the leakage of liquid sodium includes a cable-like sensor adapted to be secured to a wall of piping or other equipment having sodium on the opposite side of the wall, and the sensor includes a core wire electrically connected to the wall through a leak current detector and a power source. An accidental leakage of the liquid sodium causes the corrosion of a metallic layer and an insulative layer of the sensor by products resulted from a reaction of sodium with water or oxygen in the atmospheric air so as to decrease the resistance between the core wire and the wall. Thus, the leakage is detected as an increase in the leaking electrical current. The apparatus is especially adapted for use in detecting the leakage of liquid sodium from sodium-conveying pipes or equipment in a fast breeder reactor.
Analysis of Co-Tunneling Current in Fullerene Single-Electron Transistor
NASA Astrophysics Data System (ADS)
KhademHosseini, Vahideh; Dideban, Daryoosh; Ahmadi, MohammadTaghi; Ismail, Razali
2018-05-01
Single-electron transistors (SETs) are nano devices which can be used in low-power electronic systems. They operate based on coulomb blockade effect. This phenomenon controls single-electron tunneling and it switches the current in SET. On the other hand, co-tunneling process increases leakage current, so it reduces main current and reliability of SET. Due to co-tunneling phenomenon, main characteristics of fullerene SET with multiple islands are modelled in this research. Its performance is compared with silicon SET and consequently, research result reports that fullerene SET has lower leakage current and higher reliability than silicon counterpart. Based on the presented model, lower co-tunneling current is achieved by selection of fullerene as SET island material which leads to smaller value of the leakage current. Moreover, island length and the number of islands can affect on co-tunneling and then they tune the current flow in SET.
Characterization of CdTe and (CdZn)Te detectors with different metal contacts
NASA Astrophysics Data System (ADS)
Pekárek, J.; Belas, E.; Grill, R.; Uxa, Å.; James, R. B.
2013-09-01
In the present work we studied an influence of different types of surface etching and surface passivation of high resistivity CdZnTe-based semiconductor detector material. The aim was to find the optimal conditions to improve the properties of metal-semiconductor contact. The main effort was to reduce the leakage current and thus get better X-ray and gamma-ray spectrum, i.e. to create a detector operating at room temperature based on this semiconductor material with sufficient energy resolution and the maximum charge collection efficiency. Individual surface treatments were characterized by I-V characteristics, spectral analysis and by determination of the profile of the internal electric field.
Comparison of the Standard of Air Leakage in Current Metal Duct Systems in the World
NASA Astrophysics Data System (ADS)
Di, Yuhui; Wang, Jiqian; Feng, Lu; Li, Xingwu; Hu, Chunlin; Shi, Junshe; Xu, Qingsong; Qiao, Leilei
2018-01-01
Based on the requirements of air leakage of metal ducts in Chinese design standards, technical measures and construction standards, this paper compares the development history, the classification of air pressure levels and the air tightness levels of air leakage standards of current Chinese and international metal ducts, sums up the differences, finds shortage by investigating the design and construction status and access to information, and makes recommendations, hoping to help the majority of engineering and technical personnel.
Litmus paper helps detect potential pancreatoenterostomy leakage.
Yamaguchi, K; Chijiwa, K; Shimizu, S; Yokohata, K; Tanaka, M
1998-03-01
Leakage of pancreatoenterostomy remains as a serious and fatal complication after pancreatectomy. Several risk factors have been reported, ie, normal pancreatic parenchyma, small pancreatic duct, a large amount of intraoperative blood loss, management of the cut surface of the pancreas, and the presence of preoperative jaundice. Transected pancreatic ductules on the cut surface of the pancreas that are not drained into the main pancreatic duct after pancreatectomy are one of the risks. The pancreatic juice is alkaline and turns red litmus to blue. In order to detect the transected pancreatic ductules on the cut surface of the pancreas, red litmus paper is applied to the cutting surface of the pancreas after stimulation of secretin. Nondrained, transected pancreatic ductules on the cut surface of the pancreas can be detected as blue spots on the red litmus paper. The corresponding areas to the blue spots can be transfixed with sutures to close the nondrained and transected pancreatic ductules. Litmus paper can be expected to detect pancreatoenterostomy leakage after pancreatectomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The most common method of measuring air leakage is to perform single (or solo) blower door pressurization and/or depressurization test. In detached housing, the single blower door test measures leakage to the outside. In attached housing, however, this "solo" test method measures both air leakage to the outside and air leakage between adjacent units through common surfaces. Although minimizing leakage to neighboring units is highly recommended to avoid indoor air quality issues between units, reduce pressure differentials between units, and control stack effect, the energy benefits of air sealing can be significantly overpredicted if the solo air leakage number ismore » used in the energy analysis. Guarded blower door testing is more appropriate for isolating and measuring leakage to the outside in attached housing. This method uses multiple blower doors to depressurize adjacent spaces to the same level as the unit being tested. Maintaining a neutral pressure across common walls, ceilings, and floors acts as a "guard" against air leakage between units. The resulting measured air leakage in the test unit is only air leakage to the outside. Although preferred for assessing energy impacts, the challenges of performing guarded testing can be daunting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Kai; Wang, Xi; Zhang, Peng
2015-05-28
This work investigates the effect of surface fields on the dynamic resistance of a planar HgCdTe mid-wavelength infrared photodiode from both theoretical and experimental aspects, considering a gated n-on-p diode with the surface potential of its p-region modulated. Theoretical models of the surface leakage current are developed, where the surface tunnelling current in the case of accumulation is expressed by modifying the formulation of bulk tunnelling currents, and the surface channel current for strong inversion is simulated with a transmission line method. Experimental data from the fabricated devices show a flat-band voltage of V{sub FB}=−5.7 V by capacitance-voltage measurement, and thenmore » the physical parameters for bulk properties are determined from the resistance-voltage characteristics of the diode working at a flat-band gate voltage. With proper values of the modeling parameters such as surface trap density and channel electron mobility, the theoretical R{sub 0}A product and corresponding dark current calculated from the proposed model as functions of the gate voltage V{sub g} demonstrate good consistency with the measured values. The R{sub 0}A product remarkably degenerates when V{sub g} is far below or above V{sub FB} because of the surface tunnelling current or channel current, respectively; and it attains the maximum value of 5.7×10{sup 7} Ω · cm{sup 2} around the transition between surface depletion and weak inversion when V{sub g}≈−4 V, which might result from reduced generation-recombination current.« less
Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2012-01-01
Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.
NASA Astrophysics Data System (ADS)
Mangasa Simanjuntak, Firman; Chandrasekaran, Sridhar; Pattanayak, Bhaskar; Lin, Chun-Chieh; Tseng, Tseung-Yuen
2017-09-01
We explore the use of cubic-zinc peroxide (ZnO2) as a switching material for electrochemical metallization memory (ECM) cell. The ZnO2 was synthesized with a simple peroxide surface treatment. Devices made without surface treatment exhibits a high leakage current due to the self-doped nature of the hexagonal-ZnO material. Thus, its switching behavior can only be observed when a very high current compliance is employed. The synthetic ZnO2 layer provides a sufficient resistivity to the Cu/ZnO2/ZnO/ITO devices. The high resistivity of ZnO2 encourages the formation of a conducting bridge to activate the switching behavior at a lower operation current. Volatile and non-volatile switching behaviors with sufficient endurance and an adequate memory window are observed in the surface-treated devices. The room temperature retention of more than 104 s confirms the non-volatility behavior of the devices. In addition, our proposed device structure is able to work at a lower operation current among other reported ZnO-based ECM cells.
Your View or Mine: Spatially Quantifying CO2 Storage Risk from Various Stakeholder Perspectives
NASA Astrophysics Data System (ADS)
Bielicki, J. M.; Pollak, M.; Wilson, E.; Elliot, T. R.; Guo, B.; Nogues, J. P.; Peters, C. A.
2011-12-01
CO2 capture and storage involves injecting captured CO2 into geologic formations, such as deep saline aquifers. This injected CO2 is to be "stored" within the rock matrix for hundreds to thousands of years, but injected CO2, or the brine it displaces, may leak from the target reservoir. Such leakage could interfere with other subsurface activities-water production, energy production, energy storage, and waste disposal-or migrate to the surface. Each of these interferences will incur multiple costs to a variety of stakeholders. Even if injected or displaced fluids do not interfere with other subsurface activities or make their way to the surface, costs will be incurred to find and fix the leak. Consequently, the suitability of a site for CO2 storage must therefore include an assessment of the risk of leakage and interference with various other activities within a three-dimensional proximity of where CO2 is being injected. We present a spatial analysis of leakage and interference risk associated with injecting CO2 into a portion of the Mount Simon sandstone in the Michigan Basin. Risk is the probability of an outcome multiplied by the impact of that outcome (Ro=po*Io). An outcome is the result of the leakage (e.g., interference with oil production), and the impact is the cost associated with the outcome. Each outcome has costs that will vary by stakeholder. Our analysis presents CO2 storage risk for multiple outcomes in a spatially explicit manner that varies by stakeholder. We use the ELSA semi-analytical model for estimating CO2 and brine leakage from aquifers to determine plume and pressure front radii, and CO2 and brine leakage probabilities for the Mount Simon sandstone and multiple units above it. Results of ELSA simulations are incorporated into RISCS: the Risk Interference Subsurface CO2 Storage model. RISCS uses three-dimensional data on subsurface geology and the locations of wells and boreholes to spatially estimate risks associated with CO2 leakage from injection reservoirs. Where plumes probabilistically intersect subsurface activities, reach groundwater, or reach the surface, RISCS uses cost estimates from the Leakage Impact Valuation framework to estimate CO2 storage leakage and interference risk in monetary terms. This framework estimates costs that might be incurred if CO2 leaks from an injection reservoir. Such leakage could beget a variety of costs, depending on the nature and extent of the impacts. The framework identifies multiple costs under headings of: (a) finding and fixing the leak, (b) business disruption, and (c) cleaning up and paying for damages. The framework also enumerates the distribution of costs between ten different stakeholders, and allocates these costs along four leakage scenarios: 1) No interference, 2) interference with a subsurface activity, 3) interference with groundwater, and 4) migration to the surface. Our methodology facilitates research along two lines. First, it allows a probabilistic assessment of leakage costs to an injection operator, and thus what the effect of leakage might be on CCS market effectiveness. Second, it allows a broader inquiry about injection site prioritization from the point of view of various stakeholders.
Background canceling surface alpha detector
MacArthur, D.W.; Allander, K.S.; Bounds, J.A.
1996-06-11
A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone. 5 figs.
Background canceling surface alpha detector
MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.
1996-01-01
A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone.
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable leakage current alarm. 870.2640 Section 870.2640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable...
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable leakage current alarm. 870.2640 Section 870.2640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable...
The Random Telegraph Signal Behavior of Intermittently Stuck Bits in SDRAMs
NASA Astrophysics Data System (ADS)
Chugg, Andrew Michael; Burnell, Andrew J.; Duncan, Peter H.; Parker, Sarah; Ward, Jonathan J.
2009-12-01
This paper reports behavior analogous to the Random Telegraph Signal (RTS) seen in the leakage currents from radiation induced hot pixels in Charge Coupled Devices (CCDs), but in the context of stuck bits in Synchronous Dynamic Random Access Memories (SDRAMs). Our analysis suggests that pseudo-random sticking and unsticking of the SDRAM bits is due to thermally induced fluctuations in leakage current through displacement damage complexes in depletion regions that were created by high-energy neutron and proton interactions. It is shown that the number of observed stuck bits increases exponentially with temperature, due to the general increase in the leakage currents through the damage centers with temperature. Nevertheless, some stuck bits are seen to pseudo-randomly stick and unstick in the context of a continuously rising trend of temperature, thus demonstrating that their damage centers can exist in multiple widely spaced, discrete levels of leakage current, which is highly consistent with RTS. This implies that these intermittently stuck bits (ISBs) are a displacement damage phenomenon and are unrelated to microdose issues, which is confirmed by the observation that they also occur in unbiased irradiation. Finally, we note that observed variations in the periodicity of the sticking and unsticking behavior on several timescales is most readily explained by multiple leakage current pathways through displacement damage complexes spontaneously and independently opening and closing under the influence of thermal vibrations.
Universality of Non-Ohmic Shunt Leakage in Thin-Film Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongaonkar, S.; Servaites, J.D.; Ford, G.M.
2010-01-01
We compare the dark current-voltage (IV) characteristics of three different thin-film solar cell types: hydrogenated amorphous silicon (a-Si:H) p-i-n cells, organic bulk heterojunction (BHJ) cells, and Cu(In,Ga)Se 2 (CIGS) cells. All three device types exhibit a significant shunt leakage current at low forward bias (V<~0.4) and reverse bias, which cannot be explained by the classical solar cell diode model. This parasitic shunt current exhibits non-Ohmic behavior, as opposed to the traditional constant shunt resistance model for photovoltaics. We show here that this shunt leakage (I sh) , across all three solar cell types considered, is characterized by the following commonmore » phenomenological features: (a) voltage symmetry about V=0 , (b) nonlinear (power law) voltage dependence, and (c) extremely weak temperature dependence. Based on this analysis, we provide a simple method of subtracting this shunt current component from the measured data and discuss its implications on dark IV parameter extraction. We propose a space charge limited (SCL) current model for capturing all these features of the shunt leakage in a consistent framework and discuss possible physical origin of the parasitic paths responsible for this shunt current mechanism.« less
NASA Astrophysics Data System (ADS)
Kuo, Meng-Wei
Semiconductor nanowires are important components in future nanoelectronic and optoelectronic device applications. These nanowires can be fabricated using either bottom-up or top-down methods. While bottom-up techniques can achieve higher aspect ratio at reduced dimension without having surface and sub-surface damage, uniform doping distributions with abrupt junction profiles are less challenging for top-down methods. In this dissertation, nanowires fabricated by both methods were systematically investigated to understand: (1) the in situ incorporation of boron (B) dopants in Si nanowires grown by the bottom-up vapor-liquid-solid (VLS) technique, and (2) the impact of plasma-induced etch damage on InGaAs p +-i-n+ nanowire junctions for tunnel field-effect transistors (TFETs) applications. In Chapter 2 and 3, the in situ incorporation of B in Si nanowires grown using silane (SiH4) or silicon tetrachloride (SiCl4) as the Si precursor and trimethylboron (TMB) as the p-type dopant source is investigated by I-V measurements of individual nanowires. The results from measurements using a global-back-gated test structure reveal nonuniform B doping profiles on nanowires grown from SiH4, which is due to simultaneous incorporation of B from nanowire surface and the catalyst during VLS growth. In contrast, a uniform B doping profile in both the axial and radial directions is achieved for TMBdoped Si nanowires grown using SiCl4 at high substrate temperatures. In Chapter 4, the I-V characteristics of wet- and dry-etched InGaAs p+-i-n+ junctions with different mesa geometries, orientations, and perimeter-to-area ratios are compared to evaluate the impact of the dry etch process on the junction leakage current properties. Different post-dry etch treatments, including wet etching and thermal annealing, are performed and the effectiveness of each is assessed by temperaturedependent I-V measurements. As compared to wet-etched control devices, dry-etched junctions have a significantly higher leakage current and a current kink in the reverse bias regime, which is likely due to additional trap states created by plasma-induced damage during the Cl2/Ar/H2 mesa isolation step. These states extend more than 60 nm from the mesa surface and can only be partially passivated after a thermal anneal at 350°C for 20 minutes. The evolution of the electrical properties with post-dry etch treatments indicates that the shallow and deep-level trap states resulting from ion-induced point defects, arsenic vacancies and hydrogen-dopant complexes are the primary cause of degradation in the electrical properties of the dry-etched junctions.
An Investigation of Tendon Corrosion-Inhibitor Leakage into Concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costello, J.F.; Naus, D.J.; Oland, C.B.
1999-07-05
During inspections performed at US nuclear power plants several years ago, some of the prestressed concrete containment had experienced leakage of the tendon sheathing filler. A study was conducted to indicate the extent of the leakage into the concrete and its potential effects on concrete properties. Concrete core samples were obtained from the Trojan Nuclear Plant. Examination and testing of the core samples indicated that the appearance of tendon sheathing filler on the surface was due to leakage of the filler from the conduits and its subsequent migration to the concrete surface through cracks that were present. Migration of themore » tendon sheathing filler was confined to the cracks with no perceptible movement into the concrete. Results of compressive strength tests indicated that the concrete quality was consistent in the containment and that the strength had increased relative to the strength at 28 days age.« less
Impact of substrate off-angle on the m-plane GaN Schottky diodes
NASA Astrophysics Data System (ADS)
Yamada, Hisashi; Chonan, Hiroshi; Takahashi, Tokio; Shimizu, Mitsuaki
2018-04-01
We investigated the effects of the substrate off-angle on the m-plane GaN Schottky diodes. GaN epitaxial layers were grown by metal-organic chemical vapor deposition on m-plane GaN substrates having an off-angle of 0.1, 1.1, 1.7, or 5.1° toward [000\\bar{1}]. The surface of the GaN epitaxial layers on the 0.1°-off substrate consisted of pyramidal hillocks and contained oxygen (>1017 cm-3) and carbon (>1016 cm-3) impurities. The residual carbon and oxygen impurities decreased to <1016 cm-3 when the off-angle of the m-plane GaN substrate was increased. The leakage current of the 0.1°-off m-plane GaN Schottky diodes originated from the +c facet of the pyramidal hillocks. The leakage current was efficiently suppressed through the use of an off-angle that was observed to be greater than 1.1°. The off-angle of the m-plane GaN substrate is critical in obtaining high-performance Schottky diodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aeberhard, Urs, E-mail: u.aeberhard@fz-juelich.de
2016-07-18
We discuss the effects of built-in fields and contact configuration on the photovoltaic characteristics of ultra-thin GaAs solar cells. The investigation is based on advanced quantum-kinetic simulations reaching beyond the standard semi-classical bulk picture concerning the consideration of charge carrier states and dynamics in complex potential profiles. The thickness dependence of dark and photocurrent in the ultra-scaled regime is related to the corresponding variation of both, the built-in electric fields and associated modification of the density of states, and the optical intensity in the films. Losses in open-circuit voltage and short-circuit current due to the leakage of electronically and opticallymore » injected carriers at minority carrier contacts are investigated for different contact configurations including electron and hole blocking barrier layers. The microscopic picture of leakage currents is connected to the effect of finite surface recombination velocities in the semi-classical description, and the impact of these non-classical contact regions on carrier generation and extraction is analyzed.« less
Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Proctor, Margaret P.
2006-01-01
Secondary seal leakage in jet engine applications results in power losses to the engine cycle. Likewise, seal power loss in jet engines not only result in efficiency loss but also increase the heat input into the engine resulting in reduced component lives. Experimental work on labyrinth and annular seals was performed at NASA Glenn Research Center to quantify seal leakage and power loss at various temperatures, seal pressure differentials, and surface speeds. Data from annular and labyrinth seals are compared with previous brush and finger seal test results. Data are also compared to literature. Annular and labyrinth seal leakage rates are 2 to 3 times greater than brush and finger seal rates. Seal leakage decreases with increasing speed but increases with increasing test temperature due to thermal expansion mismatch. Also seal power loss increases with surface speed, seal pressure differential, mass flow rate, and radial clearance. Annular and labyrinth seal power losses were higher than those of brush or finger seal data. The brush seal power loss was 15 to 30 percent lower than annular and labyrinth seal power loss.
Breakdown of equipartition in diffuse fields caused by energy leakage
NASA Astrophysics Data System (ADS)
Margerin, L.
2017-05-01
Equipartition is a central concept in the analysis of random wavefields which stipulates that in an infinite scattering medium all modes and propagation directions become equally probable at long lapse time in the coda. The objective of this work is to examine quantitatively how this conclusion is affected in an open waveguide geometry, with a particular emphasis on seismological applications. To carry our this task, the problem is recast as a spectral analysis of the radiative transfer equation. Using a discrete ordinate approach, the smallest eigenvalue and associated eigenfunction of the transfer equation, which control the asymptotic intensity distribution in the waveguide, are determined numerically with the aid of a shooting algorithm. The inverse of this eigenvalue may be interpreted as the leakage time of the diffuse waves out of the waveguide. The associated eigenfunction provides the depth and angular distribution of the specific intensity. The effect of boundary conditions and scattering anisotropy is investigated in a series of numerical experiments. Two propagation regimes are identified, depending on the ratio H∗ between the thickness of the waveguide and the transport mean path in the layer. The thick layer regime H∗ > 1 has been thoroughly studied in the literature in the framework of diffusion theory and is briefly considered. In the thin layer regime H∗ < 1, we find that both boundary conditions and scattering anisotropy leave a strong imprint on the leakage effect. A parametric study reveals that in the presence of a flat free surface, the leakage time is essentially controlled by the mean free time of the waves in the layer in the limit H∗ → 0. By contrast, when the free surface is rough, the travel time of ballistic waves propagating through the crust becomes the limiting factor. For fixed H∗, the efficacy of leakage, as quantified by the inverse coda quality factor, increases with scattering anisotropy. For sufficiently thin layers H∗≈ 1/5, the energy flux is predominantly directed parallel to the surface and equipartition breaks down. Qualitatively, the anisotropy of the intensity field is found to increase with the inverse non-dimensional leakage time, with the scattering mean free time as time scale. Because it enhances leakage, a rough free surface may result in stronger anisotropy of the intensity field than a flat surface, for the same bulk scattering properties. Our work identifies leakage as a potential explanation for the large deviation from isotropy observed in the coda of body waves.
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Nicot, J.; Bryant, S. L.
2008-12-01
Motivated by the dual objectives of (1) encouraging geologic carbon sequestration (GCS) as one of several strategies urgently needed to reduce CO2 emissions, and (2) protecting the environment from unintended CO2 injection-related impacts, we have developed a simple and transparent framework for certifying GCS safety and effectiveness at individual sites. The approach we developed, called the Certification Framework (CF), is proposed as a standard way for project proponents, regulators, and the public to analyze and understand risks and uncertainties of GCS. In the CF, we relate effective trapping to CO2 leakage risk, where we use the standard definition of risk involving the two factors (1) probability of a particular leakage scenario, and (2) impact of that leakage scenario. In short, if the CO2 leakage risk as calculated by the CF is below threshold values for the life of the project, then effective trapping is predicted and the site can be certified. The concept of effective trapping is more general than traditional "no migration" approaches to underground injection regulation. We achieve simplicity in the CF by using (1) wells and faults as the potential leakage pathways, (2) five compartments to represent where impacts can occur (underground sources of drinking water, hydrocarbon and mineral resources, near-surface environment, health and safety, and emission credits and atmosphere), (3) modeled CO2 fluxes and concentrations as proxies for impact to compartments, (4) broad ranges of storage formation properties to generate a catalog of simulated CO2 plumes, and (5) probabilities of intersection of the CO2 plume with the conduits and compartments. In a case study application of the CF for a saline formation GCS site in the Texas Gulf Coast, analysis with the CF suggested the overall leakage risk to be very small, with the largest contribution coming from risk to the near-surface environment due to potential leakage up abandoned wells, depending on the effective permeability assumed for the wells. This result shows that risk could be drastically reduced by locating and monitoring abandoned wells, along with well or leakage mitigation if necessary. By this means, effective trapping can be predicted with greater certainty because both factors of risk (probability of well leakage, and impact of well leakage) can be reduced significantly through surface monitoring and mitigation, if needed.
Inoue, Yoshihiro; Imai, Yoshiro; Fujii, Kensuke; Hirokawa, Fumitoshi; Hayashi, Michihiro; Uchiyama, Kazuhisa
2017-06-01
The purpose of this retrospective study was to evaluate the utility of the new intraoperative bile leakage test as a preventive measure of postoperative bile leakage. 737 patients were retrospectively analyzed with respect to the management of intra- and post-operative bile leakage. Nine (8.3%) of 109 patients evaluated using conventional white light fluorescent imaging were recognized as having intra-operative bile leakage. However, performance of 5-aminolevulinic acid (5-ALA)-mediated PDD detected bile leakage intraoperatively not only in these 9 patients, but also in an additional 6 patients, such that 'red fluorescence' at the cut surface of the liver, was visualized in a total of 15 patients. The postoperative courses of most patients were uneventful, and postoperative bile leakages occurred in only one (0.9%) patient. 5-ALA fluorescence imaging may be needed to prevent postoperative bile leakage in patients at high risk for this surgical complication after hepatic resection. Copyright © 2016 Elsevier Inc. All rights reserved.
Pulsed magnetic flux leakage method for hairline crack detection and characterization
NASA Astrophysics Data System (ADS)
Okolo, Chukwunonso K.; Meydan, Turgut
2018-04-01
The Magnetic Flux leakage (MFL) method is a well-established branch of electromagnetic Non-Destructive Testing (NDT), extensively used for evaluating defects both on the surface and far-surface of pipeline structures. However the conventional techniques are not capable of estimating their approximate size, location and orientation, hence an additional transducer is required to provide the extra information needed. This research is aimed at solving the inevitable problem of granular bond separation which occurs during manufacturing, leaving pipeline structures with miniature cracks. It reports on a quantitative approach based on the Pulsed Magnetic Flux Leakage (PMFL) method, for the detection and characterization of the signals produced by tangentially oriented rectangular surface and far-surface hairline cracks. This was achieved through visualization and 3D imaging of the leakage field. The investigation compared finite element numerical simulation with experimental data. Experiments were carried out using a 10mm thick low carbon steel plate containing artificial hairline cracks with various depth sizes, and different features were extracted from the transient signal. The influence of sensor lift-off and pulse width variation on the magnetic field distribution which affects the detection capability of various hairline cracks located at different depths in the specimen is explored. The findings show that the proposed technique can be used to classify both surface and far-surface hairline cracks and can form the basis for an enhanced hairline crack detection and characterization for pipeline health monitoring.
NASA Astrophysics Data System (ADS)
Ju, Byongsun
2005-11-01
As the microelectronic devices are aggressively scaled down to the 1999 International Technology Roadmap, the advanced complementary metal oxide semiconductor (CMOS) is required to increase packing density of ultra-large scale integrated circuits (ULSI). High-k alternative dielectrics can provide the required levels of EOT for device scaling at larger physical thickness, thereby providing a materials pathway for reducing the tunneling current. Zr silicates and its end members (SiO2 and ZrO2) and Zr-Si oxynitride films, (ZrO2)x(Si3N 4)y(SiO2)z, have been deposited using a remote plasma-enhanced chemical vapor deposition (RPECVD) system. After deposition of Zr silicate, the films were exposed to He/N2 plasma to incorporate nitrogen atoms into the surface of films. The amount of incorporated nitrogen atoms was measured by on-line Auger electron spectrometry (AES) as a function of silicate composition and showed its local minimum around the 30% silicate. The effect of nitrogen atoms on capacitance-voltage (C-V) and leakage-voltage (J-V) were also investigated by fabricating metal-oxide-semiconductor (MOS) capacitors. Results suggested that incorporating nitrogen into silicate decreased the leakage current in SiO2-rich silicate, whereas the leakage increased in the middle range of silicate. Zr-Si oxynitride was a pseudo-ternary alloy and no phase separation was detected by x-ray photoelectron spectroscopy (XPS) analysis up to 1100°C annealing. The leakage current of Zr-Si oxynitride films showed two different temperature dependent activation energies, 0.02 eV for low temperature and 0.3 eV for high temperature. Poole-Frenkel emission was the dominant leakage mechanism. Zr silicate alloys with no Si3N4 phase were chemically separated into the SiO2 and ZrO2 phase as annealed above 900°C. While chemical phase separation in Zr silicate films with Si 3N4 phase (Zr-Si oxynitride) were suppressed as increasing the amount of Si3N4 phase due to the narrow bonding network m Si3N4 phase. (3.4 bonds/atom for Si3 N4 network, 2.67 bonds/atom for SiO2 network).
Module Hipot and ground continuity test results
NASA Technical Reports Server (NTRS)
Griffith, J. S.
1984-01-01
Hipot (high voltage potential) and module frame continuity tests of solar energy conversion modules intended for deployment into large arrays are discussed. The purpose of the tests is to reveal potentially hazardous voltage conditions in installed modules, and leakage currents that may result in loss of power or cause ground fault system problems, i.e., current leakage potential and leakage voltage distribution. The tests show a combined failure rate of 36% (69% when environmental testing is included). These failure rates are believed easily corrected by greater care in fabrication.
Chen, Yun-Hao; Jiang, Jin-Bao; Steven, Michael D; Gong, A-Du; Li, Yi-Fan
2012-07-01
With the global climate warming, reducing greenhouse gas emissions becomes a focused problem for the world. The carbon capture and storage (CCS) techniques could mitigate CO2 into atmosphere, but there is a risk in case that the CO2 leaks from underground. The objective of this paper is to study the chlorophyll contents (SPAD value), relative water contents (RWC) and leaf spectra changing features of beetroot under CO2 leakage stress through field experiment. The result shows that the chlorophyll contents and RWC of beetroot under CO2 leakage stress become lower than the control beetroot', and the leaf reflectance increases in the 550 nm region and decreases in the 680nm region. A new vegetation index (R550/R680) was designed for identifying beetroot under CO2 leakage stress, and the result indicates that the vegetation index R550/R680 could identify the beetroots after CO2 leakage for 7 days. The index has strong sensitivity, stability and identification for monitoring the beetroots under CO2 stress. The result of this paper has very important meaning and application values for selecting spots of CCS project, monitoring and evaluating land-surface ecology under CO2 stress and monitoring the leakage spots by using remote sensing.
a High-Level Technique for Estimation and Optimization of Leakage Power for Full Adder
NASA Astrophysics Data System (ADS)
Shrivas, Jayram; Akashe, Shyam; Tiwari, Nitesh
2013-06-01
Optimization of power is a very important issue in low-voltage and low-power application. In this paper, we have proposed power gating technique to reduce leakage current and leakage power of one-bit full adder. In this power gating technique, we use two sleep transistors i.e., PMOS and NMOS. PMOS sleep transistor is inserted between power supply and pull up network. And NMOS sleep transistor is inserted between pull down network and ground terminal. These sleep transistors (PMOS and NMOS) are turned on when the circuit is working in active mode. And sleep transistors (PMOS and NMOS) are turned off when circuit is working in standby mode. We have simulated one-bit full adder and compared with the power gating technique using cadence virtuoso tool in 45 nm technology at 0.7 V at 27°C. By applying this technique, we have reduced leakage current from 2.935 pA to 1.905 pA and leakage power from 25.04μw to 9.233μw. By using this technique, we have reduced leakage power up to 63.12%.
NASA Astrophysics Data System (ADS)
Maggioni, G.; Carturan, S.; Raniero, W.; Riccetto, S.; Sgarbossa, F.; Boldrini, V.; Milazzo, R.; Napoli, D. R.; Scarpa, D.; Andrighetto, A.; Napolitani, E.; De Salvador, D.
2018-03-01
A new method for the formation of hole-barrier contacts in high purity germanium (HPGe) is described, which consists in the sputter deposition of a Sb film on HPGe, followed by Sb diffusion produced through laser annealing of the Ge surface in the melting regime. This process gives rise to a very thin ( ≤ 100 nm) n-doped layer, as determined by SIMS measurement, while preserving the defect-free morphology of HPGe surface. A small prototype of gamma ray detector with a Sb laser-diffused contact was produced and characterized, showing low leakage currents and good spectroscopy data with different gamma ray sources.
Recovery Characteristics of Anomalous Stress-Induced Leakage Current of 5.6 nm Oxide Films
NASA Astrophysics Data System (ADS)
Inatsuka, Takuya; Kumagai, Yuki; Kuroda, Rihito; Teramoto, Akinobu; Sugawa, Shigetoshi; Ohmi, Tadahiro
2012-04-01
Anomalous stress-induced leakage current (SILC), which has a much larger current density than average SILC, causes severe bit error in flash memories. To suppress anomalous SILC, detailed evaluations are strongly required. We evaluate the characteristics of anomalous SILC of 5.6 nm oxide films using a fabricated array test pattern, and recovery characteristics are observed. Some characteristics of typical anomalous cells in the time domain are measured, and the recovery characteristics of average and anomalous SILCs are examined. Some of the anomalous cells have random telegraph signals (RTSs) of gate leakage current, which are characterized as discrete and random switching phenomena. The dependence of RTSs on the applied electric field is investigated, and the recovery tendency of anomalous SILC with and without RTSs are also discussed.
Effect of Mechanical Stresses on Characteristics of Chip Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2007-01-01
The effect of compressive mechanical stresses on chip solid tantalum capacitors is investigated by monitoring characteristics of different part types under axial and hydrostatic stresses. Depending on part types, an exponential increase of leakage currents was observed when stresses exceeded 10 MPa to 40 MPa. For the first time, reversible variations of leakage currents (up to two orders of magnitude) with stress have been demonstrated. Mechanical stresses did not cause significant changes of AC characteristics of the capacitors, whereas breakdown voltages measured during the surge current testing decreased substantially indicating an increased probability of failures of stressed capacitors in low impedance applications. Variations of leakage currents are explained by a combination of two mechanisms: stress-induced scintillations and stress-induced generation of electron traps in the tantalum pentoxide dielectric.
Reduction of leakage current at the gate edge of SDB SOI NMOS transistor
NASA Astrophysics Data System (ADS)
Kang, Sung-Weon; Lyu, Jong-Son; Kang, Jin-Young; Kang, Sang-Won; Lee, Jin-Hyo
1995-06-01
Leakage current through the parasitic channel formed at the sidewall of the SOI active region has been investigated by measuring the subthreshold I-V characteristics. Partially depleted (PD, approximately 2500 Angstrom) and fully depleted (FD, approximately 800 Angstrom) SOI NMOS transistors of enhancement mode have been fabricated using the silicon direct bonding (SDB) technology. Isolation processes for the SOI devices were LOCOS, LOCOS with channel stop ion implantation or fully recessed trench (FRT). The electron concentration of the parasitic channel is calculated by the PISCES Ilb simulation. As a result, leakage current of the FD mode SOI device with FRT isolation at the front and back gate biases of 0 V was reduced to approximately pA and no hump was seen on the drain current curve.
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Lewicki, J. L.; Zhang, Y.
2003-12-01
The injection of CO2 into deep geologic formations for the purpose of carbon sequestration entails risk that CO2 will leak upward from the target formation and ultimately seep out of the ground surface. We have developed a coupled subsurface and atmospheric surface layer modeling capability based on TOUGH2 to simulate CO2 leakage and seepage. Simulation results for representative subsurface and surface layer conditions are used to specify the requirements of potential near-surface monitoring strategies relevant to both health, safety, and environmental risk assessment as well as sequestration verification. The coupled model makes use of the standard multicomponent and multiphase framework of TOUGH2 and extends the model domain to include an atmospheric surface layer. In the atmospheric surface layer, we assume a logarithmic velocity profile for the time-averaged wind and make use of Pasquill-Gifford and Smagorinski dispersion coefficients to model surface layer dispersion. Results for the unsaturated zone and surface layer show that the vadose zone pore space can become filled with pure CO2 even for small leakage fluxes, but that CO2 concentrations above the ground surface are very low due to the strong effects of dispersion caused by surface winds. Ecological processes such as plant photosynthesis and root respiration, as well as biodegradation in soils, strongly affect near-surface CO2 concentrations and fluxes. The challenge for geologic carbon sequestration verification is to discern the leakage and seepage signal from the ecological signal. Our simulations point to the importance of subsurface monitoring and the need for geochemical (e.g., isotopic) analyses to distinguish leaking injected fossil CO2 from natural ecological CO2. This work was supported by the Office of Science, U.S. Department of Energy under contract No. DE-AC03-76SF00098.
30 CFR 56.4102 - Spillage and leakage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control Prohibitions/precautions/housekeeping § 56.4102 Spillage and leakage. Flammable or combustible...
30 CFR 56.4102 - Spillage and leakage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control Prohibitions/precautions/housekeeping § 56.4102 Spillage and leakage. Flammable or combustible...
30 CFR 56.4102 - Spillage and leakage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control Prohibitions/precautions/housekeeping § 56.4102 Spillage and leakage. Flammable or combustible...
30 CFR 56.4102 - Spillage and leakage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control Prohibitions/precautions/housekeeping § 56.4102 Spillage and leakage. Flammable or combustible...
J series thruster isolator failure analysis
NASA Technical Reports Server (NTRS)
Campbell, J. W.; Bechtel, R. T.; Brophy, J. R.
1982-01-01
Three Hg propellant isolators (two cathode and one main) failed during testing in the Mission Profile Life Test. These failures involved contamination of the surface of the alumina insulating body which resulted in heating of the vaporizer by leakage current from the high voltage supply, with subsequent loss of propellant flow rate control. Failure analysis of the isolators showed the surface resistance was temperature dependent and that the alumina could be restored to its original insulating state by grit blasting the surface. The contaminant was identified as carbon and the most likely sources identified as ambient facility hydrocarbons, directed back-sputtered facility materials, and outgassing from organic insulating materials within the thruster envelope. Methods to eliminate contamination from each of these sources are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, A. L.; Li, G., E-mail: liguang1971@ahu.edu.cn, E-mail: xschen@mail.sitp.ac.cn; He, G.
2013-11-07
We have performed the study on the dependence of laser beam induced current (LBIC) spectra on the temperature for the vacancy-doped molecular beam epitaxy grown Hg{sub 1−x}Cd{sub x}Te (x = 0.31) photodiodes by both experiment and numerical simulations. It is found that the measured LBIC signal has different distributions for different temperature extents. The LBIC profile tends to be more asymmetric with increasing temperature below 170 K. But the LBIC profile becomes more symmetric with increasing temperature above 170 K. Based on a localized leakage model, it is indicated that the localized junction leakage can lead to asymmetric LBIC signal, in good agreement withmore » the experimental data. The reason is that the trap-assisted tunneling current is the dominant leakage current at the cryogenic temperature below 170 K while the diffusion current component becomes dominant above the temperature of 170 K. The results are helpful for us to better clarify the mechanism of the dependence of LBIC spectra on temperature for the applications of HgCdTe infrared photodiodes.« less
Preparation and properties of sol-gel derived PZT thin films for decoupling capacitor applications
NASA Astrophysics Data System (ADS)
Schwartz, R. W.; Dimos, D.; Lockwood, S. J.; Torres, V. M.
The use of ceramic thin films as decoupling capacitors offers the possibility of capacitor integration within the integrated circuit (IC) package and, potentially, directly onto the IC itself. Since these configurations minimize series inductance, higher operational speeds are possible. In the present study, the authors have investigated the dielectric and leakage characteristics of sol-gel PZT films. For compositions near the morphotropic phase boundary, dielectric constants of 1000, and loss tangents of about 0.02, are observed. The current-voltage behavior of the capacitors is characterized by a non-linear response, and significant asymmetry in both the leakage and breakdown characteristics as a function of bias sign is observed. Breakdown fields for PZT 53/47 thin films are typically approximately 800 kV/cm at 25 C. The authors have also studied the effects of La and Nb dopant additions and alternate firing strategies on film leakage characteristics. Donor doping at 2 - 5 mol % lowers leakage currents by a factor of 10(exp 3). For films prepared by a multilayering approach, firing each layer to crystallization results in leakage currents that are a factor of 10(exp 2) lower than films prepared by the standard process.
A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding
NASA Astrophysics Data System (ADS)
Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui
2016-02-01
In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within ±0.09 mV s-1 0.005% s-1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yong; Yao, Manwen, E-mail: yaomw@tongji.edu.cn; Chen, Jianwen
The electrical characteristics of SrTiO{sub 3}/Al{sub 2}O{sub 3} (160 nm up/90 nm down) laminated film capacitors using the sol-gel process have been investigated. SrTiO{sub 3} is a promising and extensively studied high-K dielectric material, but its leakage current property is poor. SrTiO{sub 3}/Al{sub 2}O{sub 3} laminated films can effectively suppress the demerits of pure SrTiO{sub 3} films under low electric field, but the leakage current value reaches to 0.1 A/cm{sup 2} at higher electric field (>160 MV/m). In this study, a new approach was applied to reduce the leakage current and improve the dielectric strength of SrTiO{sub 3}/Al{sub 2}O{sub 3} laminated films. Compared tomore » laminated films with Au top electrodes, dielectric strength of laminated films with Al top electrodes improves from 205 MV/m to 322 MV/m, simultaneously the leakage current maintains the same order of magnitude (10{sup −4} A/cm{sup 2}) until the breakdown occurs. The above electrical characteristics are attributed to the anodic oxidation reaction in origin, which can repair the defects of laminated films at higher electric field. The anodic oxidation reactions have been confirmed by the corresponding XPS measurement and the cross sectional HRTEM analysis. This work provides a new approach to fabricate dielectrics with high dielectric strength and low leakage current.« less
Lu, Yu Yu; Wang, Hsin Yi; Lin, Ying; Lin, Wan Yu
2012-09-01
Radionuclide Cisternography (RNC) is of potential value in pointing out the sites of cerebrospinal fluid (CSF) leakage in patients with spontaneous intracranial hypotension (SIH). In the current report, we present two patients who underwent RNC for suspected CSF leakage. Both patients underwent magnetic resonance imaging (MRI) and RNC for evaluation. We describe a simple method to increase the detection ability of RNC for CSF leakage in patients with SIH.
NASA Astrophysics Data System (ADS)
Pearson, B.; Franzese, A. M.
2017-12-01
The Agulhas Current, the strongest western boundary current in the southern hemisphere, is uniquely characterized by its strong retroflection. The current carries water southward from the Indian Ocean toward the cape of South Africa, before turning back on itself. At this point of retroflection, some of the current's flow escapes into the southern Atlantic Ocean. This transfer of water from the Indian Ocean to Atlantic Ocean makes up the Agulhas Leakage. The Leakage occurs in a series of eddies and rings located in the Cape Basin south of the African continent. Scientific literature demonstrates that relatively buoyant leakage water has been a determining factor varying strength of the Atlantic Meridional Ocean Current (AMOC), during glacial-interglacial cycles. It has been demonstrated that radiogenic isotope, major, and trace element concentrations serve as a proxy for terrigenous sediment provenance in the Agulhas region. Current understanding is that terrigenous sediment provenance is older during warmer periods of deposition. This corresponds to more input from southeastern African end members, and thus a stronger Agulhas Current, during warming periods in the paleoclimate record. Conversely, younger terrigenous sediment deposited during colder periods, such as the Last Glacial Maximum, suggests a weaker Agulhas Current, and less Agulhas Leakage. In 2016, on the International Ocean Discovery Program Expedition 361, sediment cores were drilled at 6 sites in the Greater Agulhas region. A major goal of the expedition was to expand knowledge of the relation between changes in the Agulhas System and changes in paleoclimate, southern African climate, and AMOC. We analyzed sediment from Expedition 361 Site U1479 (35°03.53'S; 17°24.06'E; 2615 mbsl) located where the Agulhas Leakage occurs. We measured Argon, strontium isotope ratios, ɛNd, trace and major element concentrations on the <2 micron clay fraction. Preliminary results foretell promising findings. For instance, for the Early Pleistocene ( 1.3 - 1.5 Ma), K-Ar model ages correlate with shipboard measurements of natural gamma radiation, which show approximate 41 kyr periodicity.
NASA Astrophysics Data System (ADS)
Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi
2016-08-01
To develop high-performance, high-reliability gate insulation and surface passivation technologies for wide-bandgap semiconductor devices, the effect of atomic layer deposition (ALD) temperature on current conduction in Al2O3 films is investigated based on the recently proposed space-charge-controlled field emission model. Leakage current measurement shows that Al2O3 metal-insulator-semiconductor capacitors formed on the Si substrates underperform thermally grown SiO2 capacitors at the same average field. However, using equivalent oxide field as a more practical measure, the Al2O3 capacitors are found to outperform the SiO2 capacitors in the cases where the capacitors are negatively biased and the gate material is adequately selected to reduce virtual dipoles at the gate/Al2O3 interface. The Al2O3 electron affinity increases with the increasing ALD temperature, but the gate-side virtual dipoles are not affected. Therefore, the leakage current of negatively biased Al2O3 capacitors is approximately independent of the ALD temperature because of the compensation of the opposite effects of increased electron affinity and permittivity in Al2O3. By contrast, the substrate-side sheet of charge increases with increasing ALD temperature above 210 °C and hence enhances the current of positively biased Al2O3 capacitors more significantly at high temperatures. Additionally, an anomalous oscillatory shift of the current-voltage characteristics with ALD temperature was observed in positively biased capacitors formed by low-temperature (≤210 °C) ALD. This shift is caused by dipoles at the Al2O3/underlying SiO2 interface. Although they have a minimal positive-bias leakage current, the low-temperature-grown Al2O3 films cause the so-called blisters problem when heated above 400 °C. Therefore, because of the absence of blistering, a 450 °C ALD process is presently the most promising technology for growing high-reliability Al2O3 films.
Hobza, Christopher M.; Burton, Bethany L.; Lucius, Jeffrey E.; Tompkins, Ryan E.
2014-01-01
Understanding the spatial characteristics of leakage from canals is critical to effectively managing and utilizing water resources for irrigation and hydroelectric purposes. Canal leakage in some parts of Nebraska is the primary source of water for groundwater recharge and helps maintain the base flow of streams. Because surface-water supplies depend on the streamflow of the Platte River and the available water stored in upstream reservoirs, water managers seek to minimize conveyance losses, which can include canal leakage. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District and Nebraska Public Power District, used capacitively coupled (CC) and direct-current (DC) resistivity techniques for continuous resistivity profiling to map near-surface lithologies near and underlying the Cozad, Thirty-Mile, Orchard-Alfalfa, Kearney, and Outlet Canals. Approximately 84 kilometers (km) of CC-resistivity data were collected along the five canals. The CC-resistivity data were compared with results from continuous sediment cores and electrical conductivity logs. Generally, the highest resistivities were recorded at the upstream reaches of the Cozad, Thirty-Mile, and Orchard-Alfalfa canals where flood-plain deposits of silt and clay mantle coarser channel deposits of sand and gravel. The finer grained deposits gradually thicken with increasing distance away from the Platte River. Consequently, for many surveyed reaches the thickness of fine-grained deposits exceeded the 8-meter depth of investigation. A detailed geophysical investigation along a 5-km reach of the Outlet Canal southwest of North Platte, Nebraska, used CC and DC resistivity to examine the condition of a compacted-core bank structure and characterized other potential controls on areas of focused seepage. CC-resistivity data, collected along the 5-km study reach, were compared with continuous sediment cores and DC-resistivity data collected near a selected seep near Outlet Canal mile post 15.55 along 5 separate profiles. DC-resistivity results were compared to a schematic cross section of the Outlet Canal north embankment that include the original surfaces and modifications to the compacted-core bank structure. Along the canal road south line, there is a transition from high resistivity at land surface to much lower resistivity near the estimated depth of the northern slope of the original compacted-core bank; however, the surveyed elevation of the water surface in the canal also is at this elevation. Along the canal road north line, there is a transition from high resistivity near land surface to lower resistivity at depth. Although the transition is rapid near the estimated depth of the first-modified bank slope, it also is coincident with the groundwater level measured in piezometer PZ-4. Currently (2013), it is unknown if the indicated changes in resistivity at these elevations was the effect of saturation of the underlying sediments or caused by the compacted-core bank.
Hao, Zhichao; Chao, Yonglie; Meng, Yukun; Yin, Hongmin
2014-08-01
Magnetic attachments are widely used in overdentures and maxillofacial prostheses. Because the patient will routinely have to insert and remove a removable prosthesis, the retentive force and magnetic flux leakage of the magnetic attachments after repeated insertion and removal must be evaluated to assess their clinical performance. The purpose of this in vitro study was to investigate the retentive force and flux leakage of magnetic attachments after repeated insertion and removal. Magfit EX600W magnet-keeper combinations (n=5) were used in this study. After 5000, 10,000, and 20,000 insertion-removal cycles, the retentive force of the magnetic attachments was measured 5 times at a crosshead speed of 5 mm/min with a universal testing machine. Magnetic flux leakage at 3 positions (P1, the upper surface of the magnet; P2, the lower surface of the keeper; and P3, the lateral side of the magnetic attachment set) was evaluated with a gaussmeter. Data were statistically analyzed by 1-way ANOVA (α=.05). The morphology of the abraded surfaces for both the magnet and the keeper was observed with an optical microscope (5×). The mean retentive force decreased significantly after 5000, 10,000, and 20,000 insertion-removal movements (P<.05). Significant differences of flux leakage were also observed at P1 after 5000 cycles and 10,000 cycles, at P2 after 5000 cycles, and at P3 after 5000, 10,000, and 20,000 insertion-removal cycles (P < .05). However, no significant differences in flux leakage were evident after 20,000 cycles at P1 and 10,000 cycles and 20,000 cycles at P2. Repeated insertion and removal influenced the retentive force and magnetic flux leakage of the magnetic attachments. Retentive force decreased significantly after repeated insertion-removal cycles, whereas the variation of magnetic flux leakage depended on refitting cycles and positions of the magnetic attachments. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Krevor, Samuel; Benson, Sally; Rella, Chris; Perrin, Jean-Christophe; Esposito, Ariel; Crosson, Eric
2010-05-01
The surface monitoring of CO2 over geologic sequestration sites will be an essential tool in the monitoring and verification of sequestration projects. Surface monitoring is the only tool that currently provides the opportunity to detect and quantify leakages on the order of 1000 tons/year CO2. Near-surface detection and quantification can be made complicated, however, due to large temporal and spatial variations in natural background CO2 fluxes from biological processes. In addition, current surface monitoring technologies, such as the use of IR spectroscopy in eddy covariance towers and aerial surveys, radioactive or noble gas isotopic tracers, and flux chamber gas measurements can generally accomplish one or two of the necessary tasks of leak detection, identification, and quantification, at both large spatial scales and high spatial resolution. It would be useful, however, to combine the utility of these technologies so that a much simplified surface monitoring program can be deployed. Carbon isotopes of CO2 provide an opportunity to distinguish between natural biogenic CO2 fluxes from the ground and CO2 leaking from a sequestration reservoir that has ultimate origins in a process giving it a distinct isotopic signature such as natural gas processing. Until recently, measuring isotopic compositions of gases was a time-consuming and expensive process utilizing mass-spectrometry, not practical for deployment in a high-resolution survey of a potential leakage site at the surface. Recent developments in commercially available instruments utilizing wavelength scanned cavity ringdown spectroscopy (WS-CRDS) and Fourier transform infrared spectroscopy (FT-IR) have made it possible to rapidly measure the isotopic composition of gases including the 13C and 12C isotopic composition of CO2 in a field setting. A portable stable carbon isotope ratio analyzer for carbon dioxide, based on wavelength scanned cavity ringdown spectroscopy, has been used to rapidly detect and characterize an intentional leakage of CO2 from an underground pipeline at the ZERT experimental facility in Bozeman, Montana. Rapid ( 1 hour) walking surveys of the entire 100m x 100m site were collected using this mobile, real-time instrument. The resulting concentration and 13C isotopic abundance maps were processed using simple yet powerful analysis techniques, permitting not only the identification of specific leakage locations, but providing the ability to distinguish petrogenic sources of CO2 from biogenic sources. At the site an approximately 100-meter horizontal well has been drilled below an alfalfa field at a depth between 1-3 meters below the surface. The well has perforations along the central 70 meters of the well. The overlying strata are highly permeable sand, silt, and topsoil. For 30 days starting July 15, 2009, CO2 was injected at a rate of 0.2 tonnes per day. The injection rate is designed to simulate leakage from a mature storage reservoir at an annual rate of between .001 and .01%. The isotopic composition of the gas from the tank is at δ13C signature of approximately -52 parts per thousand (per mil), far more negative than either atmospheric (approx. -8 per mil) or CO2 from soil respiration (approx. -26 per mil) at the site. The CO2 isotopic and concentration measurements were taken with a Picarro WS-CRDS analyzer with 1/8' tubing connected to a sampling inlet. Simultaneous with CO2 concentrations (including 13C), position data was logged using a GPS receiver. Datapoints are taken around every second. The analyzer was powered using batteries and housed in a mobile cart. The surveys consisted of traverses of the site along the length of the pipeline and extending out 100 meters on either side of the pipeline with the end of the gas inlet tube approximate 9 cm above the ground at a speed of 1-2m/sec. This simulates the type of survey that could be easily performed if the actual or potential site of a leak was known to within an area on the order of 100 square kilometers or less, the scale of expected industrial CO2 sequestration operations. The surveys were performed both during the day and during the evening when CO2 flux due to respiration from the soil is markedly different. Keeling plots were used to characterize the spatially varying 13C composition of ground source CO2 across the site. A map constructed from this data shows that CO2 flux from sources of leakage was characterized by a δ13C of -40 per mil or less whereas locations away from the leakage spots had much higher δ13C signatures, -25 per mil or higher. The distinct isotopic signature allows for a clear discernment between leakage of petrogenic CO2 and that of natural CO2 fluxes from soil respiration. This is particularly valuable in the circumstance where the leak is slow enough that it could not be identified from CO2 concentration or flux changes above the natural background signal alone. Moreover, this detection took place both rapidly and at high spatial resolution. Samples collected from a mobile platform moving at the rate and with the sampling frequency used in this study could provide a 1000 km of survey traverses over an area of 100 km2 within 2-3 weeks. This provides a powerful tool for surface monitoring, combining the utilities of leak detection, characterization, and source identification with rapid deployment across large spatial scales and high spatial resolutions.
Wang, Xiao-ling; Xu, Juan; Zhao, Xin-yi; He, Hui-ming
2011-01-01
To evaluate the effect of carbamide peroxide (CP) bleaching agents at different concentrations and with different carriers on the micro-leakage of composite resin interface. Class V cavity (2 mm in diameter and 2 mm in depth) preparations were made at the enamelo-cemental junction on the buccal and lingual surfaces of 35 extracted human premolars. The cavities were filled with hybrid composite resin. The teeth were stored for 24 h in distilled water at 37 degrees celsius; before thermocyling for 500 times between 5 and 55 degrees celsius;. The teeth were then randomly assigned into 7 groups, and in groups 1-6, the bleaching gels containing 10% or 20% of CP were applied on the buccal and lingual surface of the teeth for two weeks (6-8 h/day, 37 degrees celsius;, 100% relative humidity) using Carbopol, PVP or Poloxamer as the thickening carriers, respectively. The seventh group served as the control without bleaching treatment. Nail polish was applied to the surface of the tooth, and all the teeth were immersed in ammoniacal silver nitrate solution followed by developing solution. The teeth were finally sectioned through the midline of the restoration and observed under stereomicroscope. SEM micrographs were also made to observe the interface. With the same bleaching agent, the micro-leakage in the gingival wall was slightly greater than in the occlusive wall, but the difference was not significant. Only 20% CP with Poloxamer as the thickening agent significantly increased the leakage of dentine-resin composite interface, and 10% and 20% CP with Carbopol or PVP as the thickening agents and 10% CP with Poloxamer produced minimal effects on filling the micro-leakage. Thickening carriers and the concentration of CP (20% or below) have no significant effect on micro-leakage of composite resin.
NASA Astrophysics Data System (ADS)
Wang, Xiao; Zhang, Tian-Bao; Yang, Wen; Zhu, Hao; Chen, Lin; Sun, Qing-Qing; Zhang, David Wei
2017-01-01
The effective and high-quality integration of high-k dielectrics on two-dimensional (2D) crystals is essential to the device structure engineering and performance improvement of field-effect transistor (FET) based on the 2D semiconductors. We report a 2D MoS2 transistor with ultra-thin Al2O3 top-gate dielectric (6.1 nm) and extremely low leakage current. Remote forming gas plasma pretreatment was carried out prior to the atomic layer deposition, providing nucleation sites with the physically adsorbed ions on the MoS2 surface. The top gate MoS2 FET exhibited excellent electrical performance, including high on/off current ratio over 109, subthreshold swing of 85 mV/decade and field-effect mobility of 45.03 cm2/V s. Top gate leakage current less than 0.08 pA/μm2 at 4 MV/cm has been obtained, which is the smallest compared with the reported top-gated MoS2 transistors. Such an optimized integration of high-k dielectric in 2D semiconductor FET with enhanced performance is very attractive, and it paves the way towards the realization of more advanced 2D nanoelectronic devices and integrated circuits.
Toward single electron resolution phonon mediated ionization detectors
NASA Astrophysics Data System (ADS)
Mirabolfathi, Nader; Harris, H. Rusty; Mahapatra, Rupak; Sundqvist, Kyle; Jastram, Andrew; Serfass, Bruno; Faiez, Dana; Sadoulet, Bernard
2017-05-01
Experiments seeking to detect rare event interactions such as dark matter or coherent elastic neutrino nucleus scattering are striving for large mass detectors with very low detection threshold. Using Neganov-Luke phonon amplification effect, the Cryogenic Dark Matter Search (CDMS) experiment is reaching unprecedented RMS resolutions of ∼14 eVee. CDMSlite is currently the most sensitive experiment to WIMPs of mass ∼5 GeV/c2 but is limited in achieving higher phonon gains due to an early onset of leakage current into Ge crystals. The contact interface geometry is particularly weak for blocking hole injection from the metal, and thus a new design is demonstrated that allows high voltage bias via vacuum separated electrode. With an increased bias voltage and a×2 Luke phonon gain, world best RMS resolution of sigma ∼7 eVee for 0.25 kg (d=75 mm, h=1 cm) Ge detectors was achieved. Since the leakage current is a function of the field and the phonon gain is a function of the applied voltage, appropriately robust interface blocking material combined with thicker substrate (25 mm) will reach a resolution of ∼2.8 eVee. In order to achieve better resolution of ∼ eV, we are investigating a layer of insulator between the phonon readout surface and the semiconductor crystals.
Predicting Envelope Leakage in Attached Dwellings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faakye, O.; Arena, L.; Griffiths, D.
2013-07-01
The most common method for measuring air leakage is to use a single blower door to pressurize and/or depressurize the test unit. In detached housing, the test unit is the entire home and the single blower door measures air leakage to the outside. In attached housing, this 'single unit', 'total', or 'solo' test method measures both the air leakage between adjacent units through common surfaces as well air leakage to the outside. Measuring and minimizing this total leakage is recommended to avoid indoor air quality issues between units, reduce energy losses to the outside, reduce pressure differentials between units, andmore » control stack effect. However, two significant limitations of the total leakage measurement in attached housing are: for retrofit work, if total leakage is assumed to be all to the outside, the energy benefits of air sealing can be significantly over predicted; for new construction, the total leakage values may result in failing to meet an energy-based house tightness program criterion. The scope of this research is to investigate an approach for developing a viable simplified algorithm that can be used by contractors to assess energy efficiency program qualification and/or compliance based upon solo test results.« less
NASA Astrophysics Data System (ADS)
Chen, Te-Chih; Kuo, Yue; Chang, Ting-Chang; Chen, Min-Chen; Chen, Hua-Mao
2017-10-01
Device characteristics changes in an a-IGZO thin film transistor under light illumination and at raised temperature have been investigated. Light exposure causes a large leakage current, which is more obvious with an increase in the illumination energy, power and the temperature. The increase in the leakage current is due to the trap assisted photon excitation process that generates electron-hole pairs and the mechanism is enhanced with the additional thermal energy. The leakage current comes from the source side because holes generated in the process drift to the source side and therefore lower the barrier height. The above mechanism has been further verified with experiments of drain bias induced shifts in the threshold voltage and the subthreshold slope.
Technology Solutions Case Study: Predicting Envelope Leakage in Attached Dwellings
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-11-01
The most common method of measuring air leakage is to perform single (or solo) blower door pressurization and/or depressurization test. In detached housing, the single blower door test measures leakage to the outside. In attached housing, however, this “solo” test method measures both air leakage to the outside and air leakage between adjacent units through common surfaces. In an attempt to create a simplified tool for predicting leakage to the outside, Building America team Consortium for Advanced Residential Buildings (CARB) performed a preliminary statistical analysis on blower door test results from 112 attached dwelling units in four apartment complexes. Althoughmore » the subject data set is limited in size and variety, the preliminary analyses suggest significant predictors are present and support the development of a predictive model. Further data collection is underway to create a more robust prediction tool for use across different construction types, climate zones, and unit configurations.« less
NASA Astrophysics Data System (ADS)
Chae, Hee Jae; Seok, Ki Hwan; Lee, Sol Kyu; Joo, Seung Ki
2018-04-01
A novel inverted staggered metal-induced laterally crystallized (MILC) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with a combination of a planarized gate and an overlap/off-set at the source-gate/drain-gate structure were fabricated and characterized. While the MILC process is advantageous for fabricating inverted staggered poly-Si TFTs, MILC TFTs reveal higher leakage current than TFTs crystallized by other processes due to their high trap density of Ni contamination. Due to this drawback, the planarized gate and overlap/off-set structure were applied to inverted staggered MILC TFTs. The proposed device shows drastic suppression of leakage current and pinning phenomenon by reducing the lateral electric field and the space-charge limited current from the gate to the drain.
An Evaluation of a High Pressure Regulator for NASA's Robotic Lunar Lander Spacecraft
NASA Technical Reports Server (NTRS)
Burnside, Christopher G.; Trinh, Huu P.; Pedersen, Kevin W.
2013-01-01
The Robotic Lunar Lander (RLL) development project office at NASA Marshall Space Flight Center is currently studying several lunar surface science mission concepts. The focus is on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface or other air-less bodies in the solar system. Initial trade studies of launch vehicle options indicate the spacecraft will be significantly mass and volume constrained. Because of the investment by the DOD in low mass, highly volume efficient components, NASA has investigated the potential integration of some of these technologies in space science applications. A 10,000 psig helium pressure regulator test activity has been conducted as part of the overall risk reduction testing for the RLL spacecraft. The regulator was subjected to typical NASA acceptance testing to assess the regulator response to the expected RLL mission requirements. The test results show the regulator can supply helium at a stable outlet pressure of 740 psig within a +/- 5% tolerance band and maintain a lock-up pressure less than the +5% above nominal outlet pressure for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for the internal seat leakage at lock-up and less than 10-5 SCCS for external leakage through the regulator body. The successful test has shown the potential for 10,000 psig helium systems in NASA spacecraft and has reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements.
Systematic review of methods to predict and detect anastomotic leakage in colorectal surgery.
Hirst, N A; Tiernan, J P; Millner, P A; Jayne, D G
2014-02-01
Anastomotic leakage is a serious complication of gastrointestinal surgery resulting in increased morbidity and mortality, poor function and predisposing to cancer recurrence. Earlier diagnosis and intervention can minimize systemic complications but is hindered by current diagnostic methods that are non-specific and often uninformative. The purpose of this paper is to review current developments in the field and to identify strategies for early detection and treatment of anastomotic leakage. A systematic literature search was performed using the MEDLINE, Embase, PubMed and Cochrane Library databases. Search terms included 'anastomosis' and 'leak' and 'diagnosis' or 'detection' and 'gastrointestinal' or 'colorectal'. Papers concentrating on the diagnosis of gastrointestinal anastomotic leak were identified and further searches were performed by cross-referencing. Computerized tomography CT scanning and water-soluble contrast studies are the current preferred techniques for diagnosing anastomotic leakage but suffer from variable sensitivity and specificity, have logistical constraints and may delay timely intervention. Intra-operative endoscopy and imaging may offer certain advantages, but the ability to predict anastomotic leakage is unproven. Newer techniques involve measurement of biomarkers for anastomotic leakage and have the potential advantage of providing cheap real-time monitoring for postoperative complications. Current diagnostic tests often fail to diagnose anastomotic leak at an early stage that enables timely intervention and minimizes serious morbidity and mortality. Emerging technologies, based on detection of local biomarkers, have achieved proof of concept status but require further evaluation to determine whether they translate into improved patient outcomes. Further research is needed to address this important, yet relatively unrecognized, area of unmet clinical need. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.
Normally-off AlGaN/GaN-based MOS-HEMT with self-terminating TMAH wet recess etching
NASA Astrophysics Data System (ADS)
Son, Dong-Hyeok; Jo, Young-Woo; Won, Chul-Ho; Lee, Jun-Hyeok; Seo, Jae Hwa; Lee, Sang-Heung; Lim, Jong-Won; Kim, Ji Heon; Kang, In Man; Cristoloveanu, Sorin; Lee, Jung-Hee
2018-03-01
Normally-off AlGaN/GaN-based MOS-HEMT has been fabricated by utilizing damage-free self-terminating tetramethyl ammonium hydroxide (TMAH) recess etching. The device exhibited a threshold voltage of +2.0 V with good uniformity, extremely small hysteresis of ∼20 mV, and maximum drain current of 210 mA/mm. The device also exhibited excellent off-state performances, such as breakdown voltage of ∼800 V with off-state leakage current as low as ∼10-12 A and high on/off current ratio (Ion/Ioff) of 1010. These excellent device performances are believed to be due to the high quality recessed surface, provided by the simple self-terminating TMAH etching.
30 CFR 56.4102 - Spillage and leakage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and... liquid spillage or leakage shall be removed in a timely manner or controlled to prevent a fire hazard. ...
High-voltage space-plasma interactions measured on the PASP Plus test arrays
NASA Astrophysics Data System (ADS)
Guidice, Donald A.
1995-10-01
The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).
High-voltage space-plasma interactions measured on the PASP Plus test arrays
NASA Technical Reports Server (NTRS)
Guidice, Donald A.
1995-01-01
The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillinger, M.; Schneider, M.; Bittner, A.
2015-02-14
Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 hmore » in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.« less
On Leakage Current Measured at High Cell Voltages in Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vadivel, Nicole R.; Ha, Seungbum; He, Meinan
2017-01-01
In this study, parasitic side reactions in lithium-ion batteries were examined experimentally using a potentiostatic hold at high cell voltage. The experimental leakage current measured during the potentiostatic hold was compared to the Tafel expression and showed poor agreement with the expected transfer coefficient values, indicating that a more complicated expression could be needed to accurately capture the physics of this side reaction. Here we show that cross-talk between the electrodes is the primary contribution to the observed leakage current after the relaxation of concentration gradients has ceased. This cross-talk was confirmed with experiments using a lithium-ion conducting glass ceramicmore » (LICGC) separator, which has high conductance only for lithium cations. The cells with LICGC separators showed significantly less leakage current during the potentiostatic hold test compared to cells with standard microporous separators where cross-talk is present. In addition, direct-current pulse power tests show an impedance rise for cells held at high potentials and for cells held at high temperatures, which could be attributed to film formation from the parasitic side reaction. Based on the experimental findings, a phenomenological mechanism is proposed for the parasitic side reaction which accounts for cross-talk and mass transport of the decomposition products across the separator.« less
Non-Ideal Properties of Gallium Nitride Based Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Shan, Qifeng
The spectacular development of gallium nitride (GaN) based light-emitting diodes (LEDs) in recent years foreshadows a new era for lighting. There are still several non-ideal properties of GaN based LEDs that hinder their widespread applications. This dissertation studies these non-ideal properties including the large reverse leakage current, large subthreshold forward leakage current, an undesired parasitic cyan luminescence and high-concentration deep levels in GaInN blue LEDs. This dissertation also studies the thermal properties of GaInN LEDs.
Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-04-13
The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less
Leakage radiation interference microscopy.
Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter
2013-09-01
We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.
Process-based approach for the detection of deep gas invading the surface
Romanak, Katherine; Bennett, Philip C.
2017-05-09
The present invention includes a method for determining the level of deep gas in a near surface formation that includes: measuring CO.sub.2, O.sub.2, CH.sub.4, and N.sub.2 levels in percent by volume from one or more surface or near surface geological samples; adding the water vapor content to the measured CO.sub.2, O.sub.2, CH.sub.4, and N.sub.2 levels in percent by volume; normalizing the gas mixture to 100% by volume or 1 atmospheric total pressure; and determining the ratios of: O.sub.2 versus CO.sub.2 to distinguish in-situ vadose zone CO.sub.2 from exogenous deep leakage CO.sub.2; CO.sub.2 versus N.sub.2 to distinguish whether CO.sub.2 is being removed from the near surface formation or CO.sub.2 is added from an exogenous deep leakage input; or CO.sub.2 versus N.sub.2/O.sub.2 to determine the degree of oxygen influx, consumption, or both; wherein the ratios are indicative of natural in situ CO.sub.2 or CO.sub.2 from the exogenous deep leakage input.
Microdose Induced Drain Leakage Effects in Power Trench MOSFETs: Experiment and Modeling
NASA Astrophysics Data System (ADS)
Zebrev, Gennady I.; Vatuev, Alexander S.; Useinov, Rustem G.; Emeliyanov, Vladimir V.; Anashin, Vasily S.; Gorbunov, Maxim S.; Turin, Valentin O.; Yesenkov, Kirill A.
2014-08-01
We study experimentally and theoretically the micro-dose induced drain-source leakage current in the trench power MOSFETs under irradiation with high-LET heavy ions. We found experimentally that cumulative increase of leakage current occurs by means of stochastic spikes corresponding to a strike of single heavy ion into the MOSFET gate oxide. We simulate this effect with the proposed analytic model allowing to describe (including Monte Carlo methods) both the deterministic (cumulative dose) and stochastic (single event) aspects of the problem. Based on this model the survival probability assessment in space heavy ion environment with high LETs was proposed.
A compact model of the reverse gate-leakage current in GaN-based HEMTs
NASA Astrophysics Data System (ADS)
Ma, Xiaoyu; Huang, Junkai; Fang, Jielin; Deng, Wanling
2016-12-01
The gate-leakage behavior in GaN-based high electron mobility transistors (HEMTs) is studied as a function of applied bias and temperature. A model to calculate this current is given, which shows that trap-assisted tunneling, trap-assisted Frenkel-Poole (FP) emission, and direct Fowler-Nordheim (FN) tunneling have their main contributions at different electric field regions. In addition, the proposed model clearly illustrates the effect of traps and their assistance to the gate leakage. We have demonstrated the validity of the model by comparisons between model simulation results and measured experimental data of HEMTs, and a good agreement is obtained.
Advanced Wet Tantalum Capacitors: Design, Specifications and Performance
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2016-01-01
Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.
Advanced Wet Tantalum Capacitors: Design, Specifications and Performance
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2017-01-01
Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.
Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-03-01
Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-nmore » junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the IV characteristics of the leaky DUV-LED is achieved.« less
Yoon, Jun-Young; Jeong, Sunho; Lee, Sun Sook; Kim, Yun Ho; Ka, Jae-Won; Yi, Mi Hye; Jang, Kwang-Suk
2013-06-12
We studied a low-temperature-annealed sol-gel-derived alumina interlayer between the organic semiconductor and the organic gate insulator for high-performance organic thin-film transistors. The alumina interlayer was deposited on the polyimide gate insulator by a simple spin-coating and 200 °C-annealing process. The leakage current density decreased by the interlayer deposition: at 1 MV/cm, the leakage current densities of the polyimide and the alumina/polyimide gate insulators were 7.64 × 10(-7) and 3.01 × 10(-9) A/cm(2), respectively. For the first time, enhancement of the organic thin-film transistor performance by introduction of an inorganic interlayer between the organic semiconductor and the organic gate insulator was demonstrated: by introducing the interlayer, the field-effect mobility of the solution-processed organic thin-film transistor increased from 0.35 ± 0.15 to 1.35 ± 0.28 cm(2)/V·s. Our results suggest that inorganic interlayer deposition could be a simple and efficient surface treatment of organic gate insulators for enhancing the performance of solution-processed organic thin-film transistors.
Leakage Currents in Low-Voltage PME and BME Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2015-01-01
Introduction of BME capacitors to high-reliability electronics as a replacement for PME capacitors requires better understanding of changes in performance and reliability of MLCCs to set justified screening and qualification requirements. In this work, absorption and leakage currents in various lots of commercial and military grade X7R MLCCs rated to 100V and less have been measured to reveal difference in behavior of PME and BME capacitors in a wide range of voltages and temperatures. Degradation of leakage currents and failures in virgin capacitors and capacitors with introduced cracks has been studied at different voltages and temperatures during step stress highly accelerated life testing. Mechanisms of charge absorption, conduction and degradation have been discussed and a failure model in capacitors with defects suggested.
NASA Astrophysics Data System (ADS)
Lin, Jing-Jenn; Wu, You-Lin; Hsu, Po-Yen
2007-10-01
In this paper, we present a novel dry-type glucose sensor based on a metal-oxide-semiconductor capacitor (MOSC) structure using SiO2 as a gate dielectric in conjunction with a horseradish peroxidase (HRP) + glucose oxidase (GOD) catalyzing layer. The tested glucose solution was dropped directly onto the window opened on the SiO2 layer, with a coating of HRP + GOD catalyzing layer on top of the gate dielectric. From the capacitance-voltage (C-V) characteristics of the sensor, we found that the glucose solution can induce an inversion layer on the silicon surface causing a gate leakage current flowing along the SiO2 surface. The gate current changes Δ I before and after the drop of glucose solution exhibits a near-linear relationship with increasing glucose concentration. The Δ I sensitivity is about 1.76 nA cm-2 M-1, and the current is quite stable 20 min after the drop of the glucose solution is tested.
Large eddy simulation of tip-leakage flow in an axial flow fan
NASA Astrophysics Data System (ADS)
Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol; Kwon, Oh-Kyoung
2016-11-01
An axial flow fan with a shroud generates a complicated tip-leakage flow by the interaction of the axial flow with the fan blades and shroud near the blade tips. In this study, large eddy simulation is performed for tip-leakage flow in a forward-swept axial flow fan inside an outdoor unit of an air-conditioner, operating at the design condition of the Reynolds number of 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame is adopted. The present simulation clearly reveals the generation and evolution of tip-leakage vortex near the blade tip by the leakage flow. At the inception of the leakage vortex near the leading edge of the suction-side of the blade tip, the leakage vortex is composed of unsteady multiple vortices containing high-frequency fluctuations. As the leakage vortex develops downstream along a slant line toward the following blade, large and meandering movements of the leakage vortex are observed. Thus low-frequency broad peaks of velocity and pressure occur near the pressure surface. Supported by the KISTI Supercomputing Center (KSC-2016-C3-0027).
2017 NEPP Tasks Update for Ceramic and Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2017-01-01
This presentation gives an overview of current NEPP tasks on ceramic and tantalum capacitors and plans for the future. It includes tasks on leakage currents, gas generation and case deformation in wet tantalum capacitors; ESR degradation and acceleration factors in MnO2 and polymer cathode capacitors. Preliminary results on the effect of moisture on degradation of reverse currents in MnO2 tantalum capacitors are discussed. Latest results on mechanical characteristics of MLCCs and modeling of degradation of leakage currents in BME capacitors with defects are also presented.
Qiu, Chenguang; Zhang, Zhiyong; Zhong, Donglai; Si, Jia; Yang, Yingjun; Peng, Lian-Mao
2015-01-27
Field-effect transistors (FETs) based on moderate or large diameter carbon nanotubes (CNTs) usually suffer from ambipolar behavior, large off-state current and small current on/off ratio, which are highly undesirable for digital electronics. To overcome these problems, a feedback-gate (FBG) FET structure is designed and tested. This FBG FET differs from normal top-gate FET by an extra feedback-gate, which is connected directly to the drain electrode of the FET. It is demonstrated that a FBG FET based on a semiconducting CNT with a diameter of 1.5 nm may exhibit low off-state current of about 1 × 10(-13) A, high current on/off ratio of larger than 1 × 10(8), negligible drain-induced off-state leakage current, and good subthreshold swing of 75 mV/DEC even at large source-drain bias and room temperature. The FBG structure is promising for CNT FETs to meet the standard for low-static-power logic electronics applications, and could also be utilized for building FETs using other small band gap semiconductors to suppress leakage current.
NASA Astrophysics Data System (ADS)
Ghopa, Wan Aizon W.; Harun, Zambri; Funazaki, Ken-ichi; Miura, Takemitsu
2015-02-01
The existence of a gap between combustor and turbine endwall in the real gas turbine induces to the leakages phenomenon. However, the leakages could be used as a coolant to protect the endwall surfaces from the hot gas since it could not be completely prevented. Thus, present study investigated the potential of leakage flows as a function of film cooling. In present study, the flow field at the downstream of high-pressure turbine blade has been investigated by 5-holes pitot tube. This is to reveal the aerodynamic performances under the influenced of leakage flows while the temperature measurement was conducted by thermochromic liquid crystal (TLC). Experimental has significantly captured theaerodynamics effect of leakage flows near the blade downstream. Furthermore, TLC measurement illustrated that the film cooling effectiveness contours were strongly influenced by the secondary flows behavior on the endwall region. Aero-thermal results were validated by the numerical simulation adopted by commercial software, ANSYS CFX 13. Both experimental and numerical simulation indicated almost similar trendinaero and also thermal behavior as the amount of leakage flows increases.
Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly
2007-03-15
The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.
Theory and Application of Magnetic Flux Leakage Pipeline Detection.
Shi, Yan; Zhang, Chao; Li, Rui; Cai, Maolin; Jia, Guanwei
2015-12-10
Magnetic flux leakage (MFL) detection is one of the most popular methods of pipeline inspection. It is a nondestructive testing technique which uses magnetic sensitive sensors to detect the magnetic leakage field of defects on both the internal and external surfaces of pipelines. This paper introduces the main principles, measurement and processing of MFL data. As the key point of a quantitative analysis of MFL detection, the identification of the leakage magnetic signal is also discussed. In addition, the advantages and disadvantages of different identification methods are analyzed. Then the paper briefly introduces the expert systems used. At the end of this paper, future developments in pipeline MFL detection are predicted.
Theory and Application of Magnetic Flux Leakage Pipeline Detection
Shi, Yan; Zhang, Chao; Li, Rui; Cai, Maolin; Jia, Guanwei
2015-01-01
Magnetic flux leakage (MFL) detection is one of the most popular methods of pipeline inspection. It is a nondestructive testing technique which uses magnetic sensitive sensors to detect the magnetic leakage field of defects on both the internal and external surfaces of pipelines. This paper introduces the main principles, measurement and processing of MFL data. As the key point of a quantitative analysis of MFL detection, the identification of the leakage magnetic signal is also discussed. In addition, the advantages and disadvantages of different identification methods are analyzed. Then the paper briefly introduces the expert systems used. At the end of this paper, future developments in pipeline MFL detection are predicted. PMID:26690435
NASA Technical Reports Server (NTRS)
Spiering, Bruce A.; Carter, Gregory A.
2001-01-01
Malfunctioning, or leaking, sewer systems increase the supply of water and nutrients to surface vegetation. Excess nutrients and harmful bacteria in the effluent pollute ground water and local water bodies and are dangerous to humans and the aquatic ecosystems. An airborne multispectral plant chlorophyll imaging system (PCIS) was used to identify growth patterns in the vegetation covering onsite and public sewer systems. The objective was to evaluate overall performance of the PCIS as well as to determine the best operational configuration for this application. The imaging system was flown in a light aircraft over selected locations Mobile County, Alabama. Calibration panels were used to help characterize instrument performance. Results demonstrated that the PCIS performed well and was capable of detecting septic leakage patterns from altitudes as high as 915 m. From 915 m, 6 of 18 sites were suspected to have sewage leakage. Subsequent ground inspections confirmed leakage on 3 of the 6 sites. From 610 m, 3 of 8 known leakage sites were detected. Tree cover and shadows near residential structures prevented detection of several known malfunctioning systems. Also some leakages known to occur in clear areas were not detected. False detections occurred in areas characterized by surface water drainage problems or recent excavation.
An assessment of the Space Station Freedom program's leakage current requirement
NASA Technical Reports Server (NTRS)
Nagy, Michael
1991-01-01
The Space Station Freedom Program requires leakage currents to be limited to less than human perception level, which NASA presently defines as 5 mA for dc. The origin of this value is traced, and the literature for other dc perception threshold standards is surveyed. It is shown that while many varying standards exist, very little experimental data is available to support them.
Using the Bongwana natural CO2 release to understand leakage processes and develop monitoring
NASA Astrophysics Data System (ADS)
Jones, David; Johnson, Gareth; Hicks, Nigel; Bond, Clare; Gilfillan, Stuart; Kremer, Yannick; Lister, Bob; Nkwane, Mzikayise; Maupa, Thulani; Munyangane, Portia; Robey, Kate; Saunders, Ian; Shipton, Zoe; Pearce, Jonathan; Haszeldine, Stuart
2016-04-01
Natural CO2 leakage along the Bongwana Fault in South Africa is being studied to help understand processes of CO2 leakage and develop monitoring protocols. The Bongwana Fault crops out over approximately 80 km in KwaZulu-Natal province, South Africa. In outcrop the fault is expressed as a broad fracture corridor in Dwyka Tillite, with fractures oriented approximately N-S. Natural emissions of CO2 occur at various points along the fault, manifest as travertine cones and terraces, bubbling in the rivers and as gas fluxes through soil. Exposed rock outcrop shows evidence for Fe-staining around fractures and is locally extensively kaolinitised. The gas has also been released through a shallow water well, and was exploited commercially in the past. Preliminary studies have been carried out to better document the surface emissions using near surface gas monitoring, understand the origin of the gas through major gas composition and stable and noble gas isotopes and improve understanding of the structural controls on gas leakage through mapping. In addition the impact of the leaking CO2 on local water sources (surface and ground) is being investigated, along with the seismic activity of the fault. The investigation will help to build technical capacity in South Africa and to develop monitoring techniques and plans for a future CO2 storage pilot there. Early results suggest that CO2 leakage is confined to a relatively small number of spatially-restricted locations along the weakly seismically active fault. Fracture permeability appears to be the main method by which the CO2 migrates to the surface. The bulk of the CO2 is of deep origin with a minor contribution from near surface biogenic processes as determined by major gas composition. Water chemistry, including pH, DO and TDS is notably different between CO2-rich and CO2-poor sites. Soil gas content and flux effectively delineates the fault trace in active leakage sites. The fault provides an effective testing ground for field-based monitoring with results to date indicating the methods and technologies tested successfully detect leaking CO2. Further work will investigate the source of the CO2 and attempt to quantify CO2 flux rates and detection thresholds.
Effects of Inductively Coupled Plasma Hydrogen on Long-Wavelength Infrared HgCdTe Photodiodes
NASA Astrophysics Data System (ADS)
Boieriu, P.; Buurma, C.; Bommena, R.; Blissett, C.; Grein, C.; Sivananthan, S.
2013-12-01
Bulk passivation of semiconductors with hydrogen continues to be investigated for its potential to improve device performance. In this work, hydrogen-only inductively coupled plasma (ICP) was used to incorporate hydrogen into long-wavelength infrared HgCdTe photodiodes grown by molecular-beam epitaxy. Fully fabricated devices exposed to ICP showed statistically significant increases in zero-bias impedance values, improved uniformity, and decreased dark currents. HgCdTe photodiodes on Si substrates passivated with amorphous ZnS exhibited reductions in shunt currents, whereas devices on CdZnTe substrates passivated with polycrystalline CdTe exhibited reduced surface leakage, suggesting that hydrogen passivates defects in bulk HgCdTe and in CdTe.
NASA Astrophysics Data System (ADS)
Husin, Shuib; Afiq Pauzi, Ahmad; Yunus, Salmi Mohd; Ghafar, Mohd Hafiz Abdul; Adilin Sekari, Saiful
2017-10-01
This technical paper demonstrates the successful of the application of self-magnetic leakage field (SMLF) technique in detecting anomalies in weldment of a thick P91 materials joint (1 inch thickness). Boiler components such as boiler tubes, stub boiler at penthouse and energy piping such as hot reheat pipe (HRP) and H-balance energy piping to turbine are made of P91 material. P91 is ferromagnetic material, therefore the technique of self-magnetic leakage field (SMLF) is applicable for P91 in detecting anomalies within material (internal defects). The technique is categorized under non-destructive technique (NDT). It is the second passive method after acoustic emission (AE), at which the information on structures radiation (magnetic field and energy waves) is used. The measured magnetic leakage field of a product or component is a magnetic leakage field occurring on the component’s surface in the zone of dislocation stable slipbands under the influence of operational (in-service) or residual stresses or in zones of maximum inhomogeneity of metal structure in new products or components. Inter-granular and trans-granular cracks, inclusion, void, cavity and corrosion are considered types of inhomogeneity and discontinuity in material where obviously the output of magnetic leakage field will be shown when using this technique. The technique does not required surface preparation for the component to be inspected. This technique is contact-type inspection, which means the sensor has to touch or in-contact to the component’s surface during inspection. The results of application of SMLF technique on the developed P91 reference blocks have demonstrated that the technique is practical to be used for anomaly inspection and detection as well as identification of anomalies’ location. The evaluation of this passive self-magnetic leakage field (SMLF) technique has been verified by other conventional non-destructive tests (NDTs) on the reference blocks where simulated defects/anomalies have been developed inside at the weldment. The results from the inspection test showed that the signatures of magnetic leakage field gradient distribution prove that the peak is found on the location of defect/anomaly in the reference block. It is in agreement with the evidence of anomaly that seen in the radiography test film (RT).
Nonstoichiometric Solution-Processed BaTiO₃ Film for Gate Insulator Applications.
Lau, Joyce; Kim, Sangsub; Kim, Hyunki; Koo, Kwangjun; Lee, Jaeseob; Kim, Sangsoo; Choi, Byoungdeog
2018-09-01
Solution processed barium titanate (BTO) was used to fabricate an Al/BaTiO3/p-Si metal-insulator-semiconductor (MIS) structure, which was used as a gate insulator. Changes in the electrical characteristics of the film were investigated as a function of the film thickness and post deposition annealing conditions. Our results showed that a thickness of 5 layers and an annealing temperature of 650 °C produced the highest electrical performance. BaxTi1-xO3 was altered at x = 0.10, 0.30, 0.50, 0.70, 0.90, and 1.0 to investigate changes in the electrical properties as a function of composition. The highest dielectric constant of 87 was obtained for x = 0.10, while the leakage current density was suppressed as Ba content increased. The lowest leakage current density was 1.34×10-10 A/cm2, which was observed at x = 0.90. The leakage current was related to the resistivity of the film, the interface states, and grain densification. Space charge limited current (SCLC) was the dominant leakage mechanism in BTO films based on leakage current analysis. Although a Ba content of x = 0.90 had the highest trap density, the traps were mainly composed of Ti-vacancies, which acted as strong electron traps and affected the film resistivity. A secondary phase, Ba2TiO4, which was observed in cases of excess Ba, acted as a grain refiner and provided faster densification of the film during the thermal process. The absence of a secondary phase in BaO (x = 1.0) led to the formation of many interface states and degradation in the electrical properties. Overall, the insulator properties of BTO were improved when the composition ratio was x = 0.90.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ching-Wei; Wu, Yung-Hsien; Hsieh, Ching-Heng
2014-11-17
Through the technique of solid phase epitaxy (SPE), an epitaxial Ge{sub 0.955}Sn{sub 0.045} film was formed on a Ge substrate by depositing an amorphous GeSn film followed by a rapid thermal annealing at 550 °C. A process that uses a SiO{sub 2} capping layer on the amorphous GeSn film during SPE was proposed and it prevents Sn precipitation from occurring while maintaining a smooth surface due to the reduced surface mobility of Sn atoms. The high-quality epitaxial GeSn film was observed to have single crystal structure, uniform thickness and composition, and tiny surface roughness with root mean square of 0.56 nm. Withmore » a SnO{sub x}-free surface, Yb{sub 2}O{sub 3}-gated GeSn metal-oxide-semiconductor (MOS) capacitors with equivalent oxide thickness (EOT) of 0.55 nm were developed. A small amount of traps inside the Yb{sub 2}O{sub 3} was verified by negligible hysteresis in capacitance measurement. Low leakage current of 0.4 A/cm{sup 2} at gate bias of flatband voltage (V{sub FB})-1 V suggests the high quality of the gate dielectric. In addition, the feasibility of using Yb{sub 2}O{sub 3} to well passivate GeSn surface was also evidenced by the small interface trap density (D{sub it}) of 4.02 × 10{sup 11} eV{sup −1} cm{sup −2}, which can be attributed to smooth GeSn surface and Yb{sub 2}O{sub 3} valency passivation. Both leakage current and D{sub it} performance outperform other passivation techniques at sub-nm EOT regime. The proposed epitaxial GeSn film along with Yb{sub 2}O{sub 3} dielectric paves an alternative way to enable high-performance GeSn MOS devices.« less
Evaluation of steam generator WWER 440 tube integrity criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splichal, K.; Otruba, J.; Burda, J.
1997-02-01
The main corrosion damage in WWER steam generators under operating conditions has been observed on the outer surface of these tubes. An essential operational requirement is to assure a low probability of radioactive primary water leakage, unstable defect development and rupture of tubes. In the case of WWER 440 steam generators the above requirements led to the development of permissible limits for data evaluation of the primary-to-secondary leak measurements and determination of acceptable values for plugging of heat exchange tubes based on eddy current test (ECT) inspections.
Semiconductor radiation detector with internal gain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwanczyk, Jan; Patt, Bradley E.; Vilkelis, Gintas
An avalanche drift photodetector (ADP) incorporates extremely low capacitance of a silicon drift photodetector (SDP) and internal gain that mitigates the surface leakage current noise of an avalanche photodetector (APD). The ADP can be coupled with scintillators such as CsI(Tl), NaI(Tl), LSO or others to form large volume scintillation type gamma ray detectors for gamma ray spectroscopy, photon counting, gamma ray counting, etc. Arrays of the ADPs can be used to replace the photomultiplier tubes (PMTs) used in conjunction with scintillation crystals in conventional gamma cameras for nuclear medical imaging.
GaAs photoconductive semiconductor switch
Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.
1998-01-01
A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.
NASA Astrophysics Data System (ADS)
Luo, B.; Mehandru, R. M.; Kim, Jihyun; Ren, F.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Fitch, R. C.; Gillespie, J.; Dellmer, R.; Jenkins, T.; Sewell, J.; Via, D.; Crespo, A.
2002-12-01
The effect of layer structure (GaN versus AlGaN cap) and cleaning procedure prior to Sc 2O 3 or MgO deposition at 100 °C were examined for their effects on the long-term bias-stress stability of AlGaN/GaN high electron mobility transistors (HEMTs). Surface cleaning by itself was not sufficient to prevent current collapse in the devices. The forward and reverse gate leakage currents were decreased under most conditions upon deposition of the oxide passivation layers. After ≈13 h of bias-stressing, the MgO-passivated HEMTs retain ⩾90% their initial drain-source current. The Sc 2O 3-passivated devices retained ˜80% recovery of the current under the same conditions.
Aroma Leakage from Orange Juice Packed in Gable-Top Paper Containers for Chilled Distribution.
Aoki, Risa; Tokuda, Aika; Shigemura, Yasutaka; Mineki, Machiko; Sato, Yoshio
2017-01-01
We conducted a study to examine aroma leakage from orange juice packed in gable-top paper containers for chilled distribution. Limonene, an aromatic component of orange juice, was considered as an index compound of aroma leakage, and its seepage on the surface of the container and concentration in the orange juice were measured by GC-MS for 12 commercial samples. After 3 days of storage, limonene was detected on the surface of 8 orange juice containers, and the concentration of limonene in the orange juice was found to have decreased. Thus, limonene leaked through the container within a few days, and the extent of leakage differed between containers, presumably depending upon their barrier properties. In addition, limonene was detected in green tea and milk that was stored together with the unopened orange juice containers at 4℃. The transference of orange aroma into milk was significant, because the contamination of the milk was confirmed by subjective sensory evaluation. This study suggests the possibility of transfer of aroma compounds through paper containers to other beverages.
Indian Ocean sources of Agulhas leakage
NASA Astrophysics Data System (ADS)
Durgadoo, Jonathan; Rühs, Siren; Biastoch, Arne; Böning, Claus
2017-04-01
We examine the mean pathways, transit timescales, and transformation of waters flowing from the Pacific and the marginal seas through the Indian Ocean (IO) on their way toward the South Atlantic within a high-resolution ocean/sea-ice model. The model fields are analysed from a Lagrangian perspective where water volumes are tracked as they enter the IO. The IO contributes 12.6 Sv to Agulhas leakage, which within the model is 14.1 ± 2.2 Sv, the rest originates from the South Atlantic. The Indonesian Through-flow constitutes about half of the IO contribution, is surface bound, cools and salinificates as it leaves the basin within 1-3 decades. Waters entering the IO south of Australia are at intermediate depths and maintain their temperature-salinity properties as they exit the basin within 1.5-3.5 decades. Of these waters, the contribution from Tasman leakage is 1.4 Sv. The rest stem from recirculation of Subantarctic Mode Water formed within the IO. The marginal seas export 1.0 Sv into the Atlantic within 1.5-4 decades, and the waters cool and freshen on-route. However, the model's simulation of waters from the Gulfs of Aden and Oman are too light and hence overly susceptible to upper ocean circulations. In the Cape Basin, Agulhas leakage is well mixed. On-route, temperature-salinity transformations occur predominantly in the Arabian Sea and within the greater Agulhas Current region. Overall, the IO communicates at least 7.9 Sv from the Pacific to the Atlantic, thereby quantifying the strength of the upper cell of the global conveyor belt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohaghegh, Shahab D.
apability of underground carbon dioxide storage to confine and sustain injected CO2 for a very long time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak in order to implement proper remediation activity. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2. This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situmore » CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or Smart Wells along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. The presence of the PDGs were considered in the reservoir model at the injection well and an observation well. High frequency pressure data from sensors were collected based on different synthetic CO2 leakage scenarios in the model. Due to complexity of the pressure signal behaviors, a Machine Learning-based technology was introduced to build an Intelligent Leakage Detection System (ILDS). The ILDS was able to detect leakage characteristics in a short period of time (less than a day) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS was examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise in the pressure sensor and uncertainty in the reservoir model.« less
Effect of Relative Velocity Between Rough Surfaces: Hydrodynamic Lubrication of Rotary Lip Seal
NASA Astrophysics Data System (ADS)
Lahjouji, I.; Gadari, M. El; Fahime, B. El; Radouani, M.
2017-05-01
Since the sixties, most of numerical studies that model the rotary lip seal lubrication have been restricted by assuming that one of the two opposing surfaces is smooth: either the lip or the shaft. This hypothesis, although it is verified only for a shaft roughness ten times smaller than that of the seal, is the best solution to avoid the transient term "∂h/∂t" in the deterministic approach. Thus, the subject of the present study is twofold. The first part validates the current hydrodynamic model with the international literature by assuming the asperities on the lip and shaft as a two-dimensional cosine function. In the second part the Reynolds equation for rough surfaces with relative motion is solved. The numerical results show that the relative motion between rough surfaces impacts significantly the load support and the leakage rate, but affects slightly the friction torque.
Conduction mechanism of leakage current due to the traps in ZrO2 thin film
NASA Astrophysics Data System (ADS)
Seo, Yohan; Lee, Sangyouk; An, Ilsin; Song, Chulgi; Jeong, Heejun
2009-11-01
In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO2) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current-voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5-5.0 MV cm-1) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8-1.5 MV cm-1). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV.
A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs.
Li, Qianwen; Cai, Tiange; Huang, Yinghong; Xia, Xi; Cole, Susan P C; Cai, Yu
2017-05-27
Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid-polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, have been employed in recent years. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core-shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. Hence, we have reviewed the current state of development for the NLCs', PNPs', and PLNs' structures, preparation, and applications over the past five years, to provide the basis for further study on a controlled release drug delivery system.
A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs
Li, Qianwen; Cai, Tiange; Huang, Yinghong; Xia, Xi; Cole, Susan P. C.; Cai, Yu
2017-01-01
Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid–polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, have been employed in recent years. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core–shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. Hence, we have reviewed the current state of development for the NLCs’, PNPs’, and PLNs’ structures, preparation, and applications over the past five years, to provide the basis for further study on a controlled release drug delivery system. PMID:28554993
NASA Astrophysics Data System (ADS)
Jegert, Gunther; Kersch, Alfred; Weinreich, Wenke; Lugli, Paolo
2011-01-01
In this paper, we investigate the influence of electrode roughness on the leakage current in TiN/high-κ ZrO2/TiN (TZT) thin-film capacitors which are used in dynamic random access memory cells. Based on a microscopic transport model, which is expanded to incorporate electrode roughness, we assess the ultimate scaling potential of TZT capacitors in terms of equivalent oxide thickness, film smoothness, thickness fluctuations, defect density and distribution, and conduction band offset (CBO). The model is based on three-dimensional, fully self-consistent, kinetic Monte Carlo transport simulations. Tunneling transport in the bandgap of the dielectric is treated, which includes defect-assisted transport mechanisms. Electrode roughness is described in the framework of fractal geometry. While the short-range roughness of the electrodes is found not to influence significantly the leakage current, thickness fluctuations of the dielectric have a major impact. For thinner dielectric films they cause a transformation of the dominant transport mechanism from Poole-Frenkel conduction to trap-assisted tunneling. Consequently, the sensitivity of the leakage current on electrode roughness drastically increases on downscaling. Based on the simulations, optimization of the CBO is suggested as the most viable strategy to extend the scalability of TZT capacitors over the next chip generations.
Surface dynamics of amorphous polymers used for high-voltage insulators.
Shemella, Philip T; Laino, Teodoro; Fritz, Oliver; Curioni, Alessandro
2011-11-24
Amorphous siloxane polymers are the backbone of high-voltage insulation materials. The natural hydrophobicity of their surface is a necessary property for avoiding leakage currents and dielectric breakdown. As these surfaces are exposed to the environment, electrical discharges or strong mechanical impact can temporarily destroy their water-repellent properties. After such events, however, a self-healing process sets in and restores the original hydrophobicity within some hours. In the present study, we investigate possible mechanisms of this restoration process. Using large-scale, all-atom molecular dynamics simulations, we show that molecules on the material surface have augmented motion that allows them to rearrange with a net polarization. The overall surface region has a net orientation that contributes to hydrophobicity, and charged groups that are placed at the surface migrate inward, away from the vacuum interface and into the bulk-like region. Our simulations provide insight into the mechanisms for hydrophobic self-recovery that repair material strength and functionality and suggest material compositions for future high-voltage insulators. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Mendillo, Christopher B.; Howe, Glenn A.; Hewawasam, Kuravi; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya
2017-09-01
The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. Four leakage sources owing to the optical fabrication tolerances and optical coatings are: electric field conjugation (EFC) residuals, beam walk on the secondary and tertiary mirrors, optical surface scattering, and polarization aberration. Simulations and analysis of these four leakage sources for the PICTUREC optical design are presented here.
Hopkins, Kristina G.; Bain, Daniel J.
2018-01-01
Identifying areas where deteriorating sewer infrastructure is in close proximity to surface waterways is needed to map likely connections between sewers and streams. We present a method to estimate sewer installation year and deterioration status using historical maps of the sewer network, parcel-scale property assessment data, and pipe material. Areas where streams were likely buried into the sewer system were mapped by intersecting the historical stream network derived from a 10-m resolution digital elevation model with sewer pipe locations. Potential sewer leakage hotspots were mapped by identifying where aging sewer pipes are in close proximity (50-m) to surface waterways. Results from Pittsburgh, Pennsylvania (USA), indicated 41% of the historical stream length was lost or buried and the potential interface between sewers and streams is great. The co-location of aging sewer infrastructure (>75 years old) near stream channels suggests that 42% of existing streams are located in areas with a high potential for sewer leakage if sewer infrastructure fails. Mapping the sewer-stream interface provides an approach to better understand areas were failing sewers may contribute a disproportional amount of nutrients and other pathogens to surface waterways.
Large-Eddy Simulation of Crashback in a Ducted Propulsor
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Mahesh, Krishnan
2011-11-01
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of free stream flow with strong reverse flow. Crashback causes highly unsteady loads and flow separation on blade surface. This study uses Large-Eddy Simulation to predict the highly unsteady flow field in crashback for a ducted propulsor. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average during high amplitude event shows that the tip leakage flow and pressure difference are significantly higher. This work is supported by the United States Office of Naval Research under ONR Grant N00014-05-1-0003.
NASA Astrophysics Data System (ADS)
Kotani, Junji; Yamada, Atsushi; Ishiguro, Tetsuro; Yamaguchi, Hideshi; Nakamura, Norikazu
2017-03-01
This paper investigates the gate leakage characteristics of in-situ AlN capped InAlN/AlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. It was revealed that the leakage characteristics of AlN capped InAlN/AlN/GaN heterostructures are strongly dependent on the growth temperature of the AlN cap. For an AlN capped structure with an AlN growth temperature of 740 °C, the leakage current even increased although there exists a large bandgap material on InAlN/AlN/GaN heterostructures. On the other hand, a large reduction of the gate leakage current by 4-5 orders of magnitudes was achieved with a very low AlN growth temperature of 430 °C. X-ray diffraction analysis of the AlN cap grown at 740 °C indicated that the AlN layer is tensile-strained. In contrast to this result, the amorphous structure was confirmed for the AlN cap grown at 430 °C by transmission electron microscopy. Furthermore, theoretical analysis based on one-dimensional band simulation was carried out, and the large increase in two-dimensional electron gas (2DEG) observed in Hall measurements was well reproduced by taking into account the spontaneous and piezo-electric polarization in the AlN layer grown at 740 °C. For the AlN capped structure grown at 430 °C, it is believed that the reduced polarization field in the AlN cap suppressed the penetration of 2DEG into the InAlN barrier layer, resulting in a small impact on 2DEG mobility and density. We believe that an in-situ grown AlN cap with a very low growth temperature of 430 °C is a promising candidate for high-frequency/high-power GaN-based devices with low gate leakage current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Arthur W; Diehl, J Rodney; Strazisar, Brian R
2012-05-01
Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 × 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period ofmore » 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 20–30% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.« less
Optimal Dynamic Sub-Threshold Technique for Extreme Low Power Consumption for VLSI
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2012-01-01
For miniaturization of electronics systems, power consumption plays a key role in the realm of constraints. Considering the very large scale integration (VLSI) design aspect, as transistor feature size is decreased to 50 nm and below, there is sizable increase in the number of transistors as more functional building blocks are embedded in the same chip. However, the consequent increase in power consumption (dynamic and leakage) will serve as a key constraint to inhibit the advantages of transistor feature size reduction. Power consumption can be reduced by minimizing the voltage supply (for dynamic power consumption) and/or increasing threshold voltage (V(sub th), for reducing leakage power). When the feature size of the transistor is reduced, supply voltage (V(sub dd)) and threshold voltage (V(sub th)) are also reduced accordingly; then, the leakage current becomes a bigger factor of the total power consumption. To maintain low power consumption, operation of electronics at sub-threshold levels can be a potentially strong contender; however, there are two obstacles to be faced: more leakage current per transistor will cause more leakage power consumption, and slow response time when the transistor is operated in weak inversion region. To enable low power consumption and yet obtain high performance, the CMOS (complementary metal oxide semiconductor) transistor as a basic element is viewed and controlled as a four-terminal device: source, drain, gate, and body, as differentiated from the traditional approach with three terminals: i.e., source and body, drain, and gate. This technique features multiple voltage sources to supply the dynamic control, and uses dynamic control to enable low-threshold voltage when the channel (N or P) is active, for speed response enhancement and high threshold voltage, and when the transistor channel (N or P) is inactive, to reduce the leakage current for low-leakage power consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp; Matsumura, Daisuke; Kawarada, Hiroshi, E-mail: kawarada@waseda.jp
To develop high-performance, high-reliability gate insulation and surface passivation technologies for wide-bandgap semiconductor devices, the effect of atomic layer deposition (ALD) temperature on current conduction in Al{sub 2}O{sub 3} films is investigated based on the recently proposed space-charge-controlled field emission model. Leakage current measurement shows that Al{sub 2}O{sub 3} metal-insulator-semiconductor capacitors formed on the Si substrates underperform thermally grown SiO{sub 2} capacitors at the same average field. However, using equivalent oxide field as a more practical measure, the Al{sub 2}O{sub 3} capacitors are found to outperform the SiO{sub 2} capacitors in the cases where the capacitors are negatively biased andmore » the gate material is adequately selected to reduce virtual dipoles at the gate/Al{sub 2}O{sub 3} interface. The Al{sub 2}O{sub 3} electron affinity increases with the increasing ALD temperature, but the gate-side virtual dipoles are not affected. Therefore, the leakage current of negatively biased Al{sub 2}O{sub 3} capacitors is approximately independent of the ALD temperature because of the compensation of the opposite effects of increased electron affinity and permittivity in Al{sub 2}O{sub 3}. By contrast, the substrate-side sheet of charge increases with increasing ALD temperature above 210 °C and hence enhances the current of positively biased Al{sub 2}O{sub 3} capacitors more significantly at high temperatures. Additionally, an anomalous oscillatory shift of the current-voltage characteristics with ALD temperature was observed in positively biased capacitors formed by low-temperature (≤210 °C) ALD. This shift is caused by dipoles at the Al{sub 2}O{sub 3}/underlying SiO{sub 2} interface. Although they have a minimal positive-bias leakage current, the low-temperature-grown Al{sub 2}O{sub 3} films cause the so-called blisters problem when heated above 400 °C. Therefore, because of the absence of blistering, a 450 °C ALD process is presently the most promising technology for growing high-reliability Al{sub 2}O{sub 3} films.« less
Development and characterization of ultrathin hafnium titanates as high permittivity gate insulators
NASA Astrophysics Data System (ADS)
Li, Min
High permittivity or high-kappa materials are being developed for use as gate insulators for future ultrascaled metal oxide semiconductor field effect transistors (MOSFETs). Hafnium containing compounds are the leading candidates. Due to its moderate permittivity, however, it is difficult to achieve HfO2 gate structures with an EOT well below 1.0 nm. One approach to increase HfO2 permittivity is combining it with a very high-kappa material, such as TiO2. In this thesis, we systematically studied the electrical and physical characteristics of high-kappa hafnium titanates films as gate insulators. A series of HfxTi1-xO2 films with well-controlled composition were deposited using an MOCVD system. The physical properties of the films were analyzed using a variety of characterization techniques. X-ray micro diffraction indicates that the Ti-rich thin film is more immune to crystallization. TEM analysis showed that the thick stoichiometric HfTiO 4 film has an orthorhombic structure and large anisotropic grains. The C-V curves from the devices with the hafnium titanates films displayed relatively low hysteresis. In a certain composition range, the interfacial layer (IL) EOT and permittivity of HfxTi1-x O2 increases linearly with increasing Ti. The charge is negative for HfxTi1-xO2/IL and positive for Si/IL interface, and the magnitude increases as Hf increases. For ultra-thin films (less than 2 nm EOT), the leakage current increases with increasing HE Moreover, the Hf-rich sample has weaker temperature dependence of the current. In the MOSFET devices with the hafnium titanates films, normal transistor characteristics were observed, also electron mobility degradation. Next, we investigated the effects that different pre-deposition surface treatments, including HF dipping, NH3 surface nitridation, and HfO2 deposition, have on the electrical properties of hafnium titanates. Surface nitridation shows stronger effect than the thin HfO2 layer. The nitrided samples displayed a negative flat band voltage shift and larger hysteresis relative to the HF-dipped samples. The IL EOT reduction by mtridation increases with increasing HE Surface nitridation also induces extra charge, more considerable at the Si/IL interface. The leakage current is reduced in the Hf-rich samples with a nitride layer. Electron mobility degradation by surface nitridation was also observed.
Leakage current transport mechanism under reverse bias in Au/Ni/GaN Schottky barrier diode
NASA Astrophysics Data System (ADS)
Peta, Koteswara Rao; Kim, Moon Deock
2018-01-01
The leakage current transport mechanism under reverse bias of Au/Ni/GaN Schottky diode is studied using temperature dependent current-voltage (I-V-T) and capacitance-voltage (C-V) characteristics. I-V measurement in this study is in the range of 140 K-420 K in steps of 10 K. A reduction in voltage dependent barrier height and a strong internal electric field in depletion region under reverse bias suggested electric field enhanced thermionic emission in carrier transport via defect states in Au/Ni/GaN SBD. A detailed analysis of reverse leakage current revealed two different predominant transport mechanisms namely variable-range hopping (VRH) and Poole-Frenkel (PF) emission conduction at low (<260 K) and high (>260 K) temperatures respectively. The estimated thermal activation energies (0.20-0.39 eV) from Arrhenius plot indicates a trap assisted tunneling of thermally activated electrons from a deep trap state into a continuum of states associated with each conductive threading dislocation.
Influence of surface oxides on hydrogen-sensitive Pd:GaN Schottky diodes
NASA Astrophysics Data System (ADS)
Weidemann, O.; Hermann, M.; Steinhoff, G.; Wingbrant, H.; Lloyd Spetz, A.; Stutzmann, M.; Eickhoff, M.
2003-07-01
The hydrogen response of Pd:GaN Schottky diodes, prepared by in situ and ex situ deposition of catalytic Pd Schottky contacts on Si-doped GaN layers is compared. Ex situ fabricated devices show a sensitivity towards molecular hydrogen, which is about 50 times higher than for in situ deposited diodes. From the analysis of these results, we conclude that adsorption sites for atomic hydrogen in Pd:GaN sensors are provided by an oxidic intermediate layer. In addition, in situ deposited Pd Schottky contacts reveal lower barrier heights and drastically higher reverse currents. We suggest that the passivation of the GaN surface before ex situ deposition of Pd also results in quenching of leakage paths caused by structural defects.
Design of an arc-free thermal blanket
NASA Technical Reports Server (NTRS)
Fellas, C. N.
1981-01-01
The success of a multilayer thermal blanket in eliminating arcing is discussed. Arcing is eliminated by limiting the surface potential to well below the threshold level for discharge. This is achieved by enhancing the leakage current which results in conduction of the excess charge to the spacecraft structure. The thermal blanket consists of several layers of thermal control (space approved) materials, bonded together, with Kapton on the outside, arranged in such a way that when the outer surface is charged by electron irradiation, a strong electric field is set up on the Kapton layer resulting in a greatly improved conductivity. The basic properties of matter utilized in designing this blanket method of charge removal, and optimum thermo-optical properties are summarized.
The influence of shrouded stator cavity flows on multistage compressor performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellborn, S.R.; Okiishi, T.H.
1999-07-01
Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved systematic changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Rig data indicate increasing seal-tooth leakage substantially degraded compressor performance. For every 1 percent increase in seal-tooth clearance-to-span ratio, the decrease in pressure rise was 3 percent and the reduction in efficiency was 1 point. These observed performance penalties are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. The performance degradation observed with increased leakagemore » was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near-hub performance of the stator row in which leakage occurred. Second, the altered stator exit flow conditions, caused by increased leakage, impaired the performance of the next downstream stage by decreasing the work input of the rotor and increasing total pressure loss of the stator. These trends caused the performance of downstream stages to deteriorate progressively. Numerical simulations of the test rig stator flow field were also conducted to help resolve important fluid mechanic details associated with the interaction between the primary and cavity flows. Simulation results show that fluid originating in the upstream cavity collected on the stator suction surface when the cavity tangential momentum was low and on the pressure side when it was high. The convection of cavity fluid to the suction surface was a mechanism that reduced stator performance when leakage increased.« less
Moniruzzaman, Md; Alam, Jahangir Md; Dohra, Hideo; Yamazaki, Masahito
2015-09-29
Enzymatic digestion of bovine lactoferrin generates lactoferricin B (Lfcin B), a 25-mer peptide with strong antimicrobial activity of unknown mechanism. To elucidate the mechanistic basis of Lfcin B bactericidal activity, we investigated the interaction of Lfcin B with Escherichia coli and liposomes of lipid membranes. Lfcin B induced the influx of a membrane-impermeant fluorescent probe, SYTOX green, from the outside of E. coli into its cytoplasm. Lfcin B induced gradual leakage of calcein from large unilamellar vesicles (LUVs) of dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) membranes. To clarify the cause of Lfcin B-induced leakage of calcein from the LUVs, we used the single giant unilamellar vesicle (GUV) method to investigate the interaction of Lfcin B with calcein-containing DOPG/DOPC-GUVs. We observed that a rapid leakage of calcein from a GUV started stochastically; statistical analysis provided a rate constant for Lfcin B-induced pore formation, kp. On the other hand, phase-contrast microscopic images revealed that Lfcin B induced a rapid leakage of sucrose from the single GUVs with concomitant appearance of a spherical GUV of smaller diameter. Because of the very fast leakage, and at the present time resolution of the experiments (33 ms), we could not follow the evolution of pore nor the process of the structural changes of the GUV. Here we used the term "local rupture" to express the rapid leakage of sucrose and determined the rate constant of local rupture, kL. On the basis of the comparison between kp and kL, we concluded that the leakage of calcein from single GUVs occurred as a result of a local rupture in the GUVs and that smaller pores inducing leakage of calcein were not formed before the local rupture. The results of the effect of the surface charge density of lipid membranes and that of salt concentration in buffer on kp clearly show that kp increases with an increase in the extent of electrostatic interactions due to the surface charges. Analysis of Lfcin B-induced shape changes indicated that the binding of Lfcin B increased the area of the outer monolayer of GUVs. These results indicate that Lfcin B-induced damage of the plasma membrane of E. coli with its concomitant rapid leakage of internal contents is a key factor for the bactericidal activity of LfcinB.
NASA Technical Reports Server (NTRS)
Doerbeck, F. H.; Yuan, H. T.; Mclevige, W. V.
1981-01-01
Ion implantation techniques that permit the reproducible fabrication of bipolar GaAs integrated circuits are studied. A 15 stage ring oscillator and discrete transistor were characterized between 25 and 400 C. The current gain of the transistor was found to increase slightly with temperature. The diode leakage currents increase with an activation energy of approximately 1 eV and dominate the transistor leakage current 1 sub CEO above 200 C. Present devices fail catastrophically at about 400 C because of Au-metallization.
Assessment of the Potential for Flux Estimation Using Concentration Data from Mobile Surveys
NASA Astrophysics Data System (ADS)
Gyenis, A.; Zahasky, C.; Moriarty, D. M.; Benson, S. M.
2014-12-01
Carbon capture and storage is a climate change mitigation technology with the potential to serve as a bridge technology as society transitions from a fossil fuel dependent energy system to a renewable energy dominated system. One of the greatest concerns associated with wide-scale adoption of carbon capture and storage technology is the risk of carbon dioxide leakage from sequestration reservoirs. Thus there is a need to develop efficient and effective strategies for monitoring and verification of geologically stored carbon dioxide. To evaluate the potential for estimating leakage fluxes based on mobile surveys, we establish correlations between concentration data and flux measurements made with a flux chamber. These correlations are then used to estimate leakage fluxes over a 70-meter long horizontal well buried approximately 1.8 meters below the surface at the Zero Emissions Research and Technology (ZERT) facility operated by Montana State University. The CO2 had a leakage rate of 0.15 t/d, which is comparable to a small leak in an industrial scale project (0.005% of a 1 Mt/yr storage project). A Picarro gas analyzer was used to measure 12CO2 and 13CO2 at heights of 3 cm above the ground surface. Previous studies (Moriarty, 2014) show that concentration data at this height provides a very high likelihood (>95%) of detecting leaks within a distance of 2.5 m of the leak. Measured concentration data show a noisy but significant correlation with flux measurements, thus providing the possibility to obtain rough estimates of leakage fluxes from mobile measurements. Moriarty, Dylan, 2014. Rapid Surface Detection of CO2 Leaks from Geologic Sequestration Sites. MS Thesis, Stanford University.
Kohl, Jesse; Pantina, Joseph A; O'Carroll, Deirdre M
2014-04-07
The light outcoupling efficiency of organic light-emitting optoelectronic devices is severely limited by excitation of tightly bound surface plasmon polaritons at the metal electrodes. We present a theoretical study of an organic semiconductor-silver-SiO(2) waveguide and demonstrate that by simple tuning of metal film thickness and the emission regime of the organic semiconductor, a significant fraction of surface plasmon polariton mode amplitude is leaked into the active semiconductor layer, thereby decreasing the amount of optical energy trapped by the metal. At visible wavelengths, mode leakage increases by factors of up to 3.8 and 88 by tuning metal film thickness and by addition of gain, respectively.
NASA Astrophysics Data System (ADS)
Racko, Juraj; Benko, Peter; Mikolášek, Miroslav; Granzner, Ralf; Kittler, Mario; Schwierz, Frank; Harmatha, Ladislav; Breza, Juraj
2017-02-01
The contribution employs electrical simulation to assess the effect of the distribution of aluminium in the metal/GaN/AlGaN heterostructure on the leakage current. The heterostructure is characterized by a high density of traps causing an increase of the leakage current consisting of the thermionic emission component and of a non-negligible contribution of trap-assisted tunnelling. The leakage current is highly sensitive to the bending of the potential barrier Ec in the subsurface region of the GaN/AlGaN structure. The band bending is strongly affected by the sheet bound charge at the first GaN/AlGaN/GaN interface due to spontaneous and piezoelectric polarization. The overall charge depends on the concentration of Al, the distribution of Al at the first heterointerface having a strong effect on the formation of the potential barrier.
TID Simulation of Advanced CMOS Devices for Space Applications
NASA Astrophysics Data System (ADS)
Sajid, Muhammad
2016-07-01
This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.
NASA Astrophysics Data System (ADS)
Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.
2017-12-01
Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted to plan methane release experiments in 2018 and onwards. This research will create knowledge which informs strategies to detect and monitor fugitive gas fluxes at the surface and in groundwater; as well as guide associated regulatory and technical policies.
Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb
NASA Astrophysics Data System (ADS)
Brown, Natalie C.; Brown, Kenneth R.
2018-05-01
Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .
Integrated circuit electrometer and sweep circuitry for an atmospheric probe
NASA Technical Reports Server (NTRS)
Zimmerman, L. E.
1971-01-01
The design of electrometer circuitry using an integrated circuit operational amplifier with a MOSFET input is described. Input protection against static voltages is provided by a dual ultra low leakage diode or a neon lamp. Factors affecting frequency response leakage resistance, and current stability are discussed, and methods are suggested for increasing response speed and for eliminating leakage resistance and current instabilities. Based on the above, two practical circuits, one having a linear response and the other a logarithmic response, were designed and evaluated experimentally. The design of a sweep circuit to implement mobility measurements using atmospheric probes is presented. A triangular voltage waveform is generated and shaped to contain a step in voltage from zero volts in both positive and negative directions.
Study of the dose rate effect of 180 nm nMOSFETs
NASA Astrophysics Data System (ADS)
He, Bao-Ping; Yao, Zhi-Bin; Sheng, Jiang-Kun; Wang, Zu-Jun; Huang, Shao-Yan; Liu, Min-Bo; Xiao, Zhi-Gang
2015-01-01
Radiation induced offstate leakage in the shallow trench isolation regions of SIMC 0.18 μm nMOSFETs is studied as a function of dose rate. A “true” dose rate effect (TDRE) is observed. Increased damage is observed at low dose rate (LDR) than at high dose rate (HDR) when annealing is taken into account. A new method of simulating radiation induced degradation in shallow trench isolation (STI) is presented. A comparison of radiation induced offstate leakage current in test nMOSFETs between total dose irradiation experiments and simulation results exhibits excellent agreement. The investigation results imply that the enhancement of the leakage current may be worse for the dose rate encountered in the environment of space.
Martian neutron leakage spectra
NASA Astrophysics Data System (ADS)
Drake, D. M.; Feldman, W. C.; Jakosky, B. M.
1988-06-01
A high-energy nucleon-meson transport code is used to calculate energy spectra of Martian leakage neutrons. Four calculations are used to simulate a uniform surface layer containing various amounts of water, different burial depths of a 50 percent water layer underneath a 1 percent water layer, changing atmospheric pressure, and a thick carbon dioxide ice sheet overlying a "dirty" water ice sheet. Calculated spectra at energies less than about 1000 eV were fitted by a superposition of thermal and epithermal functions having four free parameters, two of which (thermal and epithermal amplitudes) were found to vary systematically and to specify uniquely the configuration in each of the series. Parameter variations depend on the composition of the assumed surface layers through the average atomic mass and the macroscopic scattering and absorption cross sections. It is concluded that measurements of leakage neutron spectra should allow determination of the hydrogen content of surface layers buried to depths up to about 100 g/sq. cm and determination of the thickness of a polar dry ice cap up to a thickness of about 250 g/sq. cm.
[Reflection on the present study of anastomotic leakage after colorectal surgery].
Wu, Zhouqiao; Shi, Jinyao; Li, Ziyu; Ji, Jiafu
Anastomotic leakage is one of the most serious complications of colorectal surgery. Despite progress in available surgical techniques, the morbidity associated with anastomotic leakage remains high. In this review, we summarize the current clinical status of this complication, the problems it causes, and relevant research achievements. To date, a lack of consensus regarding the diagnosis of anastomotic leakage has resulted in varying rates of diagnosis across countries and regions worldwide. Accurately predicting the occurrence of anastomotic leakage using the established risk factors and preoperative scoring systems remains difficult. Many of the described preventive measures, including defunctioning stoma creation, positive air leak testing, and use of effective tissue adhesives, remain controversial; more evidence-based medical information is urgently needed. Delayed diagnoses of anastomotic leakage also remain common in clinical practice. To prevent catastrophic outcomes, such as reoperations or deaths, early diagnosis is critically important. Parameters local to the area of the anastomosis may facilitate early detection of leakage, but their effectiveness is subject to clinical validation. Lastly, the pathological etiology of anastomotic leakage remains to be determined, and its elucidation may inspire innovative interventions that solve this critical surgical complication.
NASA Astrophysics Data System (ADS)
SU, J.; Sagdeev, R.; Usikov, D.; Chin, G.; Boyer, L.; Livengood, T. A.; McClanahan, T. P.; Murray, J.; Starr, R. D.
2013-12-01
Introduction: The leakage flux of lunar neutrons produced by precipitation of galactic cosmic ray (GCR) particles in the upper layer of the lunar regolith and measured by orbital instruments such as the Lunar Exploration Neutron Detector (LEND) is investigated by Monte Carlo simulation. Previous Monte Carlo (MC) simulations have been used to investigate neutron production and leakage from the lunar surface to assess the elemental composition of lunar soil [1-6] and its effect on the leakage neutron flux. We investigate effects on the emergent flux that depend on the physical distribution of hydrogen within the regolith. We use the software package GEANT4 [7] to calculate neutron production from spallation by GCR particles [8,9] in the lunar soil. Multiple layers of differing hydrogen/water at different depths in the lunar regolith model are introduced to examine enhancement or suppression of leakage neutron flux. We find that the majority of leakage thermal and epithermal neutrons are produced in 25 cm to 75 cm deep from the lunar surface. Neutrons produced in the shallow top layer retain more of their original energy due to fewer scattering interactions and escape from the lunar surface mostly as fast neutrons. This provides a diagnostic tool in interpreting leakage neutron flux enhancement or suppression due to hydrogen concentration distribution in lunar regolith. We also find that the emitting angular distribution of thermal and epithermal leakage neutrons can be described by cos3/2(theta) where the fast neutrons emitting angular distribution is cos(theta). The energy sensitivity and angular response of the LEND detectors SETN and CSETN are investigated using the leakage neutron spectrum from GEANT4 simulations. A simplified LRO model is used to benchmark MCNPX[10] and GEANT4 on CSETN absolute count rate corresponding to neutron flux from bombardment of 120MV solar potential GCR particles on FAN lunar soil. We are able to interpret the count rates of SETN and CSETN from the leakage neutron spectrum, emission angle, detector energy sensitivity and angular response. Reference: [1] W. C. Feldman, et al., Science 4 September 1998: Vol. 281 no. 5382 pp. 1496-1500. [2] Gasnault, O., et al., (2000) J. Geophys. Res., 105(E2), 4263-4271. [3] Little, R. C., et al. (2003), J. Geophys. Res., 108(E5), 5046. [4] McKinney et al., (2006), J. Geophys. Res., 111, E06004. [5] Lawrence et al., (2006), J. Geophys. Res., 111, E08001. [6] Looper et al, (2013), Space Weather, VOL. 11, 142-152. [7] J. Allison, et al, (2006) IEEE TRANS. ON NUCL SCI, VOL. 53, NO. 1. [8] J. Masarik and R. Reedy (1996), J. Geophys. Res., 101, 18,891-18,912. [9] P. O'Neil (2010) IEEE Trans. Nucl. Sci., 57(6), 3148-3153. [10] D. Pelowitz, (2005), Rep. LA-CP-05-0369, LANL, Los Alamos, NM.
NASA Astrophysics Data System (ADS)
Shi, Li-Bin; Li, Ming-Biao; Xiu, Xiao-Ming; Liu, Xu-Yang; Zhang, Kai-Cheng; Li, Chun-Ran; Dong, Hai-Kuan
2017-04-01
La2O3 is a potential dielectric material with high permittivity (high-κ) for metal-oxide-semiconductor (MOS) devices. However, band offsets and oxide defects should still be concerned. Smaller band offsets and carrier traps increase leakage current, and degenerate performance of the devices. In this paper, the interface behaviors of La2O3/GaAs under biaxial strain and hydrostatic pressure are investigated, which is performed by first principles calculations based on density functional theory (DFT). Strain engineering is attempted to improve performance of the metal/La2O3/GaAs devices. First of all, we creatively realize band alignment of La2O3/GaAs interface under biaxial strain and hydrostatic pressure. The proper biaxial tensile strain can effectively increase valence band offsets (VBO) and conduction band offsets (CBO), which can be used to suppress leakage current. However, the VBO will decrease with the increase of hydrostatic pressure, indicating that performance of the devices is degenerated. Then, a direct tunneling leakage current model is used to investigate current and voltage characteristics of the metal/La2O3/GaAs. The impact of biaxial strain and hydrostatic pressure on leakage current is discussed. At last, formation energies and transition levels of oxygen interstitial (Oi) and oxygen vacancy (VO) in La2O3 are assessed. We investigate how they will affect performance of the devices.
NASA Astrophysics Data System (ADS)
Li, Yapeng; Li, Yingfeng; Zhang, Jianhua; Tong, Ting; Ye, Wei
2018-03-01
The ZnO films were fabricated on the surface of n-Si(1 1 1) substrate using the sol-gel method, and the graphene was then transferred to its surface for the fabrication of the graphene/ZnO Schottky contact. The results showed that ZnO films presented a strong (0 0 2) preferred direction, and that the particle sizes on the surface decreased as the doping concentration of B ions increased. The electrical properties of the graphene/ZnO Schottky contact were measured by using current-voltage measurements. It was found that the graphene/ZnO Schottky contact showed a fine rectification behavior when the doping concentration of B ions was increased. However, when the doping concentration of the B ions increased to 0.15 mol l-1, the leakage current increased and rectification behavior weakened. This was due to the Fermi level pinning caused by the presence of the O vacancy at the interface of the graphene/ZnO Schottky contact.
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Wilson, Jack; Wu, Tom; Flower, Ralph
1997-01-01
Presented is a study of the use of a set of I.D./O.D. bidirectional press seals to reduce the leakage losses in a wave rotor. Relative to the baseline configuration, data indicate the use of brush seals enhanced wave rotor efficiency from 36 to 45 percent at low leakages (small rotor endwall gap spacings) and from 15 to 33 percent at high leakages (larger endwall gap spacings). These brush seals are capable of sealing positive or negative pressure drops with respect to the axial direction. Surface tribology for these tests suggested little evidence of grooving although the bristles appeared polished.
Leakage and Power Loss Test Results for Competing Turbine Engine Seals
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Delgado, Irebert R.
2004-01-01
Advanced brush and finger seal technologies offer reduced leakage rates over conventional labyrinth seals used in gas turbine engines. To address engine manufacturers concerns about the heat generation and power loss from these contacting seals, brush, finger, and labyrinth seals were tested in the NASA High Speed, High Temperature Turbine Seal Test Rig. Leakage and power loss test results are compared for these competing seals for operating conditions up to 922 K (1200 F) inlet air temperature, 517 KPa (75 psid) across the seal, and surface velocities up to 366 m/s (1200 ft/s).
Integrating an MR head into a peak detection channel
NASA Astrophysics Data System (ADS)
Curland, Nathan; Machelski, Russell J.
1994-03-01
Integrating a magnetoresistive (MR) head into a peak detection channel requires the engineer to deal with basic differences between MR and thin film heads. These differences result from nonlinear sensor response, separate write and read elements, and having an active element at the air bearing surface (ABS). A simple model for flux superposition can adequately address nonlinear effects and be used for equalization design. Timing budgets can be developed which demonstrate the dominance of media noise for present day systems. Single threshold qualification can handle most current system requirements. Separate read/write elements mean that more attention needs to be paid to offtrack equalization design and head dimensional tolerancing. An active element at the ABS requires better control of the head-disc potential and leakage currents.
Improved performance in vertical GaN Schottky diode assisted by AlGaN tunneling barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.; Chu, R.; Li, R.
2016-03-14
In a vertical GaN Schottky barrier diode, the free electron concentration n in the 6-μm-thick drift layer was found to greatly impact the diode reverse leakage current, which increased from 2.1 × 10{sup −7} A to 3.9 × 10{sup −4} A as n increased from 7.5 × 10{sup 14 }cm{sup −3} to 6.3 × 10{sup 15 }cm{sup −3} at a reverse bias of 100 V. By capping the drift layer with an ultrathin 5-nm graded AlGaN layer, reverse leakage was reduced by more than three orders of magnitude with the same n in the drift layer. We attribute this to the increased Schottky barrier height with the AlGaN at the surface. Meanwhile, themore » polarization field within the graded AlGaN effectively shortened the depletion depth, which led to the formation of tunneling current at a relatively small forward bias. The turn-on voltage in the vertical Schottky diodes was reduced from 0.77 V to 0.67 V—an advantage in reducing conduction loss in power switching applications.« less
NASA Astrophysics Data System (ADS)
Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan
2015-04-01
This paper presents the results of humidity testing of weak organic acids (WOAs), namely adipic, succinic, glutaric, dl-malic, and palmitic acids, which are commonly used as activators in no-clean solder fluxes. The study was performed under humidity conditions varying from 60% relative humidity (RH) to ˜99%RH at 25°C. The following parameters were used for characterization of WOAs: mass gain due to water adsorption and deliquescence of the WOA (by quartz crystal microbalance), resistivity of the water layer formed on the printed circuit board (by impedance spectroscopy), and leakage current measured using the surface insulation resistance pattern in the potential range from 0 V to 10 V. The combined results indicate the importance of the WOA chemical structure for the water adsorption and therefore conductive water layer formation on the printed circuit board assembly (PCBA). A substantial increase of leakage currents and probability of electrochemical migration was observed at humidity levels above the RH corresponding to the deliquescence point of WOAs present as contaminants on the printed circuit boards. The results suggest that use of solder fluxes with WOAs having higher deliquescence point could improve the reliability of electronics operating under circumstances in which exposure to high humidity is likely to occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravikiran, L.; Radhakrishnan, K., E-mail: ERADHA@e.ntu.edu.sg; Ng, G. I.
2015-06-28
The effect of carbon doping on the structural and electrical properties of GaN buffer layer of AlGaN/GaN high electron mobility transistor (HEMT) structures has been studied. In the undoped HEMT structures, oxygen was identified as the dominant impurity using secondary ion mass spectroscopy and photoluminescence (PL) measurements. In addition, a notable parallel conduction channel was identified in the GaN buffer at the interface. The AlGaN/GaN HEMT structures with carbon doped GaN buffer using a CBr{sub 4} beam equivalent pressure of 1.86 × 10{sup −7} mTorr showed a reduction in the buffer leakage current by two orders of magnitude. Carbon doped GaN buffersmore » also exhibited a slight increase in the crystalline tilt with some pits on the growth surface. PL and Raman measurements indicated only a partial compensation of donor states with carbon acceptors. However, AlGaN/GaN HEMT structures with carbon doped GaN buffer with 200 nm thick undoped GaN near the channel exhibited good 2DEG characteristics.« less
NASA Astrophysics Data System (ADS)
Gong, You-Pin; Li, Ai-Dong; Qian, Xu; Zhao, Chao; Wu, Di
2009-01-01
Ultrathin HfO2 films with about ~3 nm thickness were deposited on n-type (1 0 0) silicon substrates using hafnium chloride (HfCl4) source by the surface sol-gel method and post-deposition annealing (PDA). The interfacial structure and electrical properties of ultrathin HfO2 films were investigated. The HfO2 films show amorphous structures and smooth surface morphologies with a very thin interfacial oxide layer of ~0.5 nm and small surface roughness (~0.45 nm). The 500 °C PDA treatment forms stronger Hf-O bonds, leading to passivated traps, and the interfacial layer is mainly Hf silicate (HfxSiyOz). Equivalent oxide thickness of around 0.84 nm of HfO2/Si has been obtained with a leakage current density of 0.7 A cm-2 at Vfb + 1 V after 500 °C PDA. It was found that the current conduction mechanism of HfO2/Si varied from Schottky-Richardson emission to Fowler-Nordheim tunnelling at an applied higher positive voltage due to the activated partial traps remaining in the ultrathin HfO2 films.
Test results for rotordynamic coefficients of anti-swirl self-injection seals
NASA Technical Reports Server (NTRS)
Kim, C. H.; Lee, Y. B.
1994-01-01
Test results are presented for rotordynamic coefficients and leakage for three annular seals which use anti-swirl self-injection concept to yield significant improvement in whirl frequency ratios as compared to smooth and damper seals. A new anti-swirl self-inection mechanism is achieved by deliberately machining self-injection holes inside the seal stator mechanism which is used to achieve effective reduction of the tangential flow which is considered as a prime cause of rotor instability in high performance turbomachinery. Test results show that the self-injection mechanism significantly improves whirl frequency ratios; however, the leakage performance degrades due to the introduction of the self-injection mechanism. Through a series of the test program, an optimum anti-swirl self-injection seal which uses a labyrinth stator surface with anti-axial flow injections is selected to obtain a significant improvement in the whirl frequency ratio as compared to a damper seal, while showing moderate leakage performance. Best whirl frequency ratio is achieved by an anti-swirl self-injection seal of 12 holes anti-swirl and 6 degree anti-leakage injection with a labyrinth surface configuration. When compared to a damper seal, the optimum configuration outperforms the whirl frequency ratio by a factor of 2.
NASA Astrophysics Data System (ADS)
Tonomura, Osamu; Miki, Hiroshi; Takeda, Ken-ichi
2011-10-01
An Al2O3/SiO buffer layer was incorporated in a metal-insulator-semiconductor (MIS) Ta2O5 capacitor for dynamic random access memory (DRAM) application. Al2O3 was chosen for the buffer layer owing to its high band offset against silicon and oxidation resistance against increase in effective oxide thickness (EOT). It was clarified that post-deposition annealing in nitrogen at 800 °C for 600 s increased the band offset between Al2O3 and the lower electrode and decreased leakage current by two orders of magnitude at 1 V. Furthermore, we predicted and experimentally confirmed that there was an optimized value of y in (Si3N4)y(SiO2)(1-y), which is 0.58, for minimizing the leakage current and EOT of SiON. To clarify the oxidation resistance and appropriate thickness of Al2O3, a TiN/Ta2O5/Al2O3/SiON/polycrystalline-silicon capacitor was fabricated. It was confirmed that the lower electrode was not oxidized during the crystallization annealing of Ta2O5. By setting the Al2O3 thickness to 3.4 nm, the leakage current is lowered below the required value with an EOT of 3.6 nm.
NASA Astrophysics Data System (ADS)
Abazari, M.; Safari, A.
2009-05-01
We report the effects of Ba, Ti, and Mn dopants on ferroelectric polarization and leakage current of (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 (KNN-LT-LS) thin films deposited by pulsed laser deposition. It is shown that donor dopants such as Ba2+, which increased the resistivity in bulk KNN-LT-LS, had an opposite effect in the thin film. Ti4+ as an acceptor B-site dopant reduces the leakage current by an order of magnitude, while the polarization values showed a slight degradation. Mn4+, however, was found to effectively suppress the leakage current by over two orders of magnitude while enhancing the polarization, with 15 and 23 μC/cm2 remanent and saturated polarization, whose values are ˜70% and 82% of the reported values for bulk composition. This phenomenon has been associated with the dual effect of Mn4+ in KNN-LT-LS thin film, by substituting both A- and B-site cations. A detailed description on how each dopant affects the concentrations of vacancies in the lattice is presented. Mn-doped KNN-LT-LS thin films are shown to be a promising candidate for lead-free thin films and applications.
Use of VUV Radiation to Control Elastomer Seal Adhesion
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.
2013-01-01
Due to their wide operating temperatures and low leakage rates, silicone elastomers are the only class of flight qualified elastomer materials that currently meet NASA's needs for various seal applications, which include docking and hatch seals for future space exploration vehicles. However, silicone elastomers are naturally sticky and exhibit sizeable adhesion when mated against metals and other silicone surfaces. This undesirable adhesion can make undocking spacecraft or opening a hatch problematic. Two approaches that can be used to reduce seal adhesion include use of grease or, application of low doses of atomic oxygen (AO). This paper investigates a third approach: the application of light doses of vacuum ultraviolet (VUV) radiation. Presented are the adhesion and leakage characteristics of S0383-70 silicone elastomer exposed to various VUV doses in the 115 to 200 nm wavelength range. The data indicate that adhesion is expected to be less than the target threshold maximum of 2 lb/in(exp2) after about 1 J/cm(exp2) of VUV exposure for seal-to-metal configurations and after 2 J/cm(exp2) for seal-to-seal configurations with no significant damage, or increase in seal leakage. This paper shows that VUV, without AO or grease, can be an effective means to reduce adhesion to the desired levels necessary for space seals with minimal change in seal leak rates.
Routes for GMR-Sensor Design in Non-Destructive Testing
Pelkner, Matthias; Neubauer, Andreas; Reimund, Verena; Kreutzbruck, Marc; Schütze, Andreas
2012-01-01
GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT) applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL) distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of μm sized defects a gradiometer base line of 250 μm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial μm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.
Leakage current phenomena in Mn-doped Bi(Na,K)TiO{sub 3}-based ferroelectric thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walenza-Slabe, J.; Gibbons, B. J., E-mail: brady.gibbons@oregonstate.edu
2016-08-28
Mn-doped 80(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-20(Bi{sub 0.5}K{sub 0.5})TiO{sub 3} thin films were fabricated by chemical solution deposition on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates. Steady state and time-dependent leakage current were investigated from room temperature to 180 °C. Undoped and low-doped films showed space-charge-limited current (SCLC) at high temperatures. The electric field marking the transition from Ohmic to trap-filling-limited current increased monotonically with Mn-doping. With 2 mol. % Mn, the current was Ohmic up to 430 kV/cm, even at 180 °C. Modeling of the SCLC showed that all films exhibited shallow trap levels and high trap concentrations. In the regime of steady state leakage, theremore » were also observations of negative differential resistivity and positive temperature coefficient of resistivity near room temperature. Both of these phenomena were confined to relatively low temperatures (below ∼60 °C). Transient currents were observed in the time-dependent leakage data, which was measured out to several hundred seconds. In the undoped films, these were found to be a consequence of oxygen vacancy migration modulating the electronic conductivity. The mobility and thermal activation energy for oxygen vacancies was extracted as μ{sub ion} ≈ 1.7 × 10{sup −12} cm{sup 2} V{sup −1} s{sup −1} and E{sub A,ion} ≈ 0.92 eV, respectively. The transient current displayed different characteristics in the 1 mol. % Mn-doped films which were not readily explained by oxygen vacancy migration.« less
Effect of a Cooling Step Treatment on a High-Voltage GaN LED During ICP Dry Etching
NASA Astrophysics Data System (ADS)
Lin, Yen-Sheng; Hsiao, Sheng-Yu; Tseng, Chun-Lung; Shen, Ching-Hsing; Chiang, Jung-Sheng
2017-02-01
In this study, a lower dislocation density for a GaN surface and a reduced current path are observed at the interface of a SiO2 isolation sidewall, using high-resolution transmission electron microscopy. This is grown using a 3-min cooling step treatment during inductivity coupled plasma dry etching. The lower forward voltage is measured, the leakage current decreases from 53nA to 32nA, and the maximum output power increases from 354.8 W to 357.2 W for an input current of 30 mA. The microstructure and the optoelectronic properties of high-voltage light-emitting-diodes is proven to be affected by the cooling step treatment, which allows enough time to release the thermal energy of the SiO2 isolation well.
NASA Astrophysics Data System (ADS)
Goodman, H.
2017-12-01
This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244
Miniature electrical connector
Casper, Robert F.
1976-01-01
A miniature coaxial cable electrical connector includes an annular compressible gasket in a receptacle member, the gasket having a generally triangular cross section resiliently engaging and encircling a conically tapered outer surface of a plug member to create an elongated current leakage path at their interface; means for preventing rotation of the plug relative to the receptacle; a metal sleeve forming a portion of the receptacle and encircling the plug member when interconnected; and a split ring in the plug having outwardly and rearwardly projecting fingers spaced from and encircling a portion of a coaxial cable and engageable with the metal sleeve to interlock the receptacle and plug.
GaAs photoconductive semiconductor switch
Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.
1998-09-08
A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.
Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch.
Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui
2016-06-09
Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients.
NASA Astrophysics Data System (ADS)
Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng
2018-05-01
The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.
Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence
NASA Technical Reports Server (NTRS)
Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.;
2016-01-01
Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.
Materials and techniques for spacecraft static charge control
NASA Technical Reports Server (NTRS)
Amore, L. J.; Eagles, A. E.
1977-01-01
An overview of the design, development, fabrication, and testing of transparent conductive coatings and conductive lattices deposited or formed on high resistivity spacecraft dielectric materials to obtain control static charge buildup on spacecraft external surfaces is presented. Fabrication techniques for the deposition of indium/tin oxide coatings and copper grid networks on Kapton and FEP Teflon films and special frit coatings for OSR and solar cell cover glasses are discussed. The techniques include sputtering, photoetching, silkscreening, and mechanical processes. A facility designed and built to simulate the electron plasma at geosynchronous altitudes is described along with test procedures. The results of material characterizations as well as electron irradiation aging effects in this facility for spacecraft polymers treated to control static charge are presented. The data presents results for electron beam energies up to 30 kV and electron current densities of 30 nA/cm squared. Parameters measured include secondary emission, surface leakage, and through the sample currents as a function of primary beam energy and voltage.
NASA Astrophysics Data System (ADS)
Truyen, Nguyen Xuan; Taoka, Noriyuki; Ohta, Akio; Makihara, Katsunori; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Shimizu, Mitsuaki; Miyazaki, Seiichi
2018-06-01
The impacts of noble gas species (Ar and He) on the formation of a SiO2/GaN structure formed by a remote oxygen plasma-enhanced chemical vapor deposition (ROPE-CVD) method were systematically investigated. Atomic force microscopy revealed that ROPE-CVD with He leads to a smooth SiO2 surface compared with the case of Ar. We found that no obvious oxidations of the GaN surfaces after the SiO2 depositions with the both Ar and He cases were observed. The capacitance–voltage (C–V) curves of the GaN MOS capacitors formed by ROPE-CVD with the Ar and He dilutions show good interface properties with no hysteresis and good agreement with the ideal C–V curves even after post deposition annealing at 800 °C. Besides, we found that the current density–oxide electric field characteristics shows a gate leakage current for the Ar case lower than the He case.
Experimental grid connected PV system power analysis
NASA Astrophysics Data System (ADS)
Semaoui, Smail; Abdeladim, Kamel; Arab, Amar Hadj; Boulahchich, Saliha; Amrouche, Said Ould; Yassaa, Noureddine
2018-05-01
Almost 80 % of Algerian territory is appropriate for the exploitation of solar energy. The Algerian energetic strategy provides a substantial injection of PV electricity to the national grid. Currently, about 344 MWp of PV arrays which corresponds approximately to 2,34 km2 of module surfaces, are connected on electricity grid over the national territory. The Algerian Northern regions are characterized by strong pollution and high humidity. These phenomena affect the energetic productivity of PV generator. The objective of our study is to analyze experimental grid connected PV system power in coastal locations. Hence, experiments have been conducted on three identical PV systems to determine the electrical performances. Transformer-less inverters are the most attractive for the ground-based photovoltaic (PV) system due to their efficiencies, reduced cost and weight. Besides, the absence of the galvanic isolation generates problems of capacitive leakage current on the AC side and the degradation of the insulation resistance on the DC side of the inverter. In this work, experimental study of the behavior of single-phase inverters without transformers is presented. The main objective of this work is to study the degradation of the insulation resistance at the input of the inverter, and the capacitive leakage current at the output of the inverter. This study was achieved at the CDER on a rainy day of 15/03/2017, on the first PV plant connected to the low voltage network in Algeria. This investigation can help forecasting the PV array energetic production by taking into account natural conditions.
The capacitive proximity sensor based on transients in RC-circuits
NASA Astrophysics Data System (ADS)
Yakunin, A. G.
2018-05-01
The principle of operation of the capacitive proximity sensor is described. It can be used in various robotic complexes, automation systems and alarm devices to inform the control device of the approach to the sensor sensitive surface of an object. At the heart of the device is the measurement of the change in the current of the transient accompanying the charge of the reference capacitor because of the parallel connection to it the capacitance formed by the sensitive sensor surface and the external object. At the heart of the device is the measurement of the change in the current of the transient accompanying the charge of the reference capacitor caused by the parallel connection to it the capacitance formed by the sensitive sensor surface and the external object. As shown by theoretical and experimental studies, the value of this capacity, depending on the purpose of the device, can vary within very wide limits. In this case, the sensitive surface can be both a piece of ordinary wire several centimeters long, and a metall plate or grid, the area of which can reach units and even tens of square meters. The main advantage of the proposed solution is a significant reduction in the effect of spurious leakage currents arising at the capacitance of the measuring electrode under the influence of pollution and humidity of the environment.
Evaluation of High Temperature Knitted Spring Tubes for Structural Seal Applications
NASA Technical Reports Server (NTRS)
Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.
2004-01-01
Control surface seals are crucial to current and future space vehicles, as they are used to seal the gaps surrounding body flaps, elevons, and other actuated exterior surfaces. During reentry, leakage of high temperature gases through these gaps could damage underlying lower temperature structures such as rudder drive motors and mechanical actuators, resulting in impaired vehicle control. To be effective, control surface seals must shield lower temperature structures from heat transfer by maintaining sufficient resiliency to remain in contact with opposing sealing surfaces through multiple compression cycles. The current seal exhibits significant loss of resiliency after a few compression cycles at elevated temperatures (i.e., 1900 F) and therefore would be inadequate for advanced space vehicles. This seal utilizes a knitted Inconel X-750 spring tube as its primary resilient element. As part of a larger effort to enhance seal resiliency, researchers at the NASA Glenn Research Center performed high temperature compression testing (up to 2000 F) on candidate spring tube designs employing material substitutions and modified geometries. These tests demonstrated significant improvements in spring tube resiliency (5.5x better at 1750 F) through direct substitution of heat treated Rene 41 alloy in the baseline knit design. The impact of geometry modification was minor within the range of parameters tested, however trends did suggest that moderate resiliency improvements could be obtained by optimizing the current spring tube geometry.
Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Patrick R.
2010-01-07
Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current ormore » leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.« less
Design and simulation of nanoscale double-gate TFET/tunnel CNTFET
NASA Astrophysics Data System (ADS)
Bala, Shashi; Khosla, Mamta
2018-04-01
A double-gate tunnel field-effect transistor (DG tunnel FET) has been designed and investigated for various channel materials such as silicon (Si), gallium arsenide (GaAs), alminium gallium arsenide (Al x Ga1‑x As) and CNT using a nano ViDES Device and TCAD SILVACO ATLAS simulator. The proposed devices are compared on the basis of inverse subthreshold slope (SS), I ON/I OFF current ratio and leakage current. Using Si as the channel material limits the property to reduce leakage current with scaling of channel, whereas the Al x Ga1‑x As based DG tunnel FET provides a better I ON/I OFF current ratio (2.51 × 106) as compared to other devices keeping the leakage current within permissible limits. The performed silmulation of the CNT based channel in the double-gate tunnel field-effect transistor using the nano ViDES shows better performace for a sub-threshold slope of 29.4 mV/dec as the channel is scaled down. The proposed work shows the potential of the CNT channel based DG tunnel FET as a futuristic device for better switching and high retention time, which makes it suitable for memory based circuits.
Eccentricity and misalignment effects on the performance of high-pressure annular seals
NASA Technical Reports Server (NTRS)
Chen, W. C.; Jackson, E. D.
1985-01-01
Annular pressure seals act as powerful hydrostatic bearings and influence the dynamic characteristics of rotating machinery. This work, using the existing concentric seal theories, provides a simple approximate method for calculation of both seal leakage and the dynamic coefficients for short seals with large eccentricity and/or misalignment of the shaft. Rotation and surface roughness effects are included for leakage and dynamic force calculation. The leakage calculations for both laminar and turbulent flow are compared with experimental results. The dynamic coefficients are compared with analytical results. Excellent agreement between the present work and published results have been observed up to the eccentricitiy ratio of 0.8.
NASA Technical Reports Server (NTRS)
Childs, Dara W.
1993-01-01
The bulk-flow analysis results for this contract are incorporated in the following publications: 'Fluid-Structure Interaction Forces at Pump-Impeller Shroud Surfaces for Axial Vibration Analysis'; 'Centrifugal Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing'; 'Influence of Impeller Shroud Forces on Pump Rotordynamics'; 'Pressure Oscillation in the Leakage Annulus Between a Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure Disturbances'; and 'Compressibility Effects on Rotor Forces in the Leakage Path Between a Shrouded Pump Impeller and Its Housing'. These publications are summarized and included in this final report. Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are reported separately.
Detecting the leakage source of a reservoir using isotopes.
Yi, Peng; Yang, Jing; Wang, Yongdong; Mugwanezal, Vincent de Paul; Chen, Li; Aldahan, Ala
2018-07-01
A good monitoring method is vital for understanding the sources of a water reservoir leakage and planning for effective restoring. Here we present a combination of several tracers ( 222 Rn, oxygen and hydrogen isotopes, anions and temperature) for identification of water leakage sources in the Pushihe pumped storage power station which is in the Liaoning province, China. The results show an average 222 Rn activity of 6843 Bq/m 3 in the leakage water, 3034 Bq/m 3 in the reservoir water, and 41,759 Bq/m 3 in the groundwater. Considering that 222 Rn activity in surface water is typically less than 5000 Bq/m 3 , the low level average 222 Rn activity in the leakage water suggests the reservoir water as the main source of water. Results of the oxygen and hydrogen isotopes show comparable ranges and values in the reservoir and the leakage water samples. However, important contribution of the groundwater (up to 36%) was present in some samples from the bottom and upper parts of the underground powerhouse, while the leakage water from some other parts indicate the reservoir water as the dominant source. The isotopic finding suggests that the reservoir water is the main source of the leakage water which is confirmed by the analysis of anions (nitrate, sulfate, and chloride) in the water samples. The combination of these tracer methods for studying dam water leakage improves the accuracy of identifying the source of leaks and provide a scientific reference for engineering solutions to ensure the dam safety. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musolino, M.; Treeck, D. van, E-mail: treeck@pdi-berlin.de; Tahraoui, A.
2016-01-28
We investigated the origin of the high reverse leakage current in light emitting diodes (LEDs) based on (In,Ga)N/GaN nanowire (NW) ensembles grown by molecular beam epitaxy on Si substrates. To this end, capacitance deep level transient spectroscopy (DLTS) and temperature-dependent current-voltage (I-V) measurements were performed on a fully processed NW-LED. The DLTS measurements reveal the presence of two distinct electron traps with high concentrations in the depletion region of the p-i-n junction. These band gap states are located at energies of 570 ± 20 and 840 ± 30 meV below the conduction band minimum. The physical origin of these deep level states is discussed. Themore » temperature-dependent I-V characteristics, acquired between 83 and 403 K, show that different conduction mechanisms cause the observed leakage current. On the basis of all these results, we developed a quantitative physical model for charge transport in the reverse bias regime. By taking into account the mutual interaction of variable range hopping and electron emission from Coulombic trap states, with the latter being described by phonon-assisted tunnelling and the Poole-Frenkel effect, we can model the experimental I-V curves in the entire range of temperatures with a consistent set of parameters. Our model should be applicable to planar GaN-based LEDs as well. Furthermore, possible approaches to decrease the leakage current in NW-LEDs are proposed.« less
Advanced Control Surface Seal Development for Future Space Vehicles
NASA Technical Reports Server (NTRS)
DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.
2004-01-01
NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.
Matsumoto, Yousuke; Hata, Yoshinobu; Makino, Takashi; Koezuka, Satoshi; Otsuka, Hajime; Sugino, Keishi; Isobe, Kazutoshi; Homma, Sakae; Iyoda, Akira
2016-08-02
One cause of recurrent spontaneous pneumothorax includes overlooking bullae during a previous surgery for pneumothorax; and the identification of the culprit lesions is necessary for prevention of recurrence. A 28-year-old man was referred to our hospital because of spontaneous right-sided pneumothorax. He underwent video-assisted thoracoscopic surgery, which did not reveal air leakage. The patient was subsequently seen at our hospital for 2 additional episodes of recurrent right-sided pneumothorax. At the third admission we observed intermittent air leakage while the patient was in the sitting position after chest drainage, and we performed surgery. An intraoperative submersion test showed air leakage dorsally from the pleural surface of S(6) and a minute culprit lesion, which were not seen at the first operation and confirmed the leakage site. The area was ligated and coated with regenerated oxidized cellulose mesh and autologous blood. In cases of pneumothorax with repeated recurrence, the best time to perform surgery on the patient with undetectable culprit lesion is the exact time that air leakage is observed.
Development of advanced seals for space propulsion turbomachinery
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Liang, A. D.; Childs, D. W.; Proctor, M. P.
1992-01-01
Current activities in seals for space propulsion turbomachinery that the NASA Lewis Research Center sponsors are surveyed. The overall objective is to provide the designer and researcher with the concepts and the data to control seal dynamics and leakage. Included in the program are low-leakage seals, such as the brush seal, the 'ceramic rope' seal, low-leakage seals for liquid oxygen turbopumps, face seals for two phase flow, and swirl brakes for stability. Two major efforts are summarized: a seal dynamics in rotating machinery and an effort in seal code development.
First-principles study on leakage current caused by oxygen vacancies at HfO2/SiO2/Si interface
NASA Astrophysics Data System (ADS)
Takagi, Kensuke; Ono, Tomoya
2018-06-01
The relationship between the position of oxygen vacancies in HfO2/SiO2/Si gate stacks and the leakage current is studied by first-principles electronic-structure and electron-conduction calculations. We find that the increase in the leakage current due to the creation of oxygen vacancies in the HfO2 layer is much larger than that in the SiO2 interlayer. According to previous first-principles total energy calculations, the formation energy of oxygen vacancies is smaller in the SiO2 interlayer than that in the HfO2 layer under the same conditions. Therefore, oxygen vacancies will be attracted from the SiO2 interlayer to minimize the energy, thermodynamically justifying the scavenging technique. Thus, the scavenging process efficiently improves the dielectric constant of HfO2-based gate stacks without increasing the number of oxygen vacancies, which cause the dielectric breakdown.
NASA Astrophysics Data System (ADS)
Bromhal, G. S.; Wilson, T. H.; Wells, A.; Diehl, R.; Smith, D. H.
2003-12-01
Recently, a few thousand tons of CO2 were injected into the West Pearl Queen field, a depleted oil reservoir in southeastern New Mexico, for a pilot carbon sequestration project. Small amounts of 3 different perfluorocarbon tracers were injected with the CO2. Approximately 50 capillary absorption tube samplers (CATS) were located across the field within 2m of the grounds surface to detect the tracers in extremely small (~10-13L) quantities. After only several days, the CATS detected quantities of tracers at distances of up to 350m from the injection well. Greater amounts of tracers were detected in the different directions. The underground transport mechanism(s) are uncertain; however, appearance of tracer in the CATS after only a 6 day period suggests that CO2 movement may have occurred through near-surface processes. Subsequent tracer measurements made over 10 and 54 day time periods revealed continued tracer leakage. To try to understand the tracer information, we conducted lineament interpretations of the area using a black and white aerial photo taken in 1949, digital orthophotos, and Landsat TM imagery. Lineament interpretations revealed distinct northeast and northwest trending lineament sets. These directions coincided roughly with the direction of tracer-leakage into areas northwest and southwest of the injection well. The near-surface geology consists of a few-feet thick veneer of late Pleistocene and Holocene sand dunes covering the middle Pleistocene Mescalero caliche. A survey of the caliche was made using ground penetrating radar (GPR) to attempt to identify any preferential migration pathways. Modeling studies also were performed to identify the potential leakage pathways at the site. Because of the relatively fast appearance of tracers at large distances from the injection well, simple diffusion through the surface layers was ruled out. Wind patterns in the area have also made transport through the atmosphere and back into the ground highly unlikely. Other potential leakage pathways were transport from the well through the saturated zone and diffusion into the unsaturated zone or combined pressure-driven and diffusive flow through the vadose zone. An analysis of these alternatives has been made for this study.
Enhancement of Device Performances in GaN-Based Light-Emitting Diodes Using Nano-Sized Surface Pit.
Yeon, Seunghwan; Son, Taejoon; Shin, Dong Su; Jung, Kyung-Young; Park, Jinsub
2015-07-01
We report the improvement in optical and electrical properties of GaN-based green light-emitting diodes (LEDs) with nano-sized etch pits formed by the surface chemical etching. In order to control the density and sizes of etch pits formed on top surface of green LEDs, H3PO4 solution is used as a etchant with different etching time. When the etching time was increased from 0 min to 20 min, both the etch pit size and density were gradually increased. The improvement of extraction efficiency of LEDs using surface etching method can be attributed to the enlarged escape angle of generated photon by roughened p-GaN surface. The finite-difference time-domain (FDTD) simulation results well agreed with experimentally observed results. Moreover, the LED with etched p-GaN surface for 5 min shows the lowest leakage current value and the further increase of etching time resulting in increase of densities of the large-sized etch pit makes the degradation of electrical properties of LEDs.
Development of braided rope engine seals
NASA Technical Reports Server (NTRS)
Ko, Frank K.; Cai, Zhong; Mutharasan, Rajakkannu; Steinetz, Bruce M.
1994-01-01
In this study, after reviewing current seal design concepts, the potential of textile structures for seal design is examined from the material, structural, and fabrication points of view. Braided structures are identified as potential candidates for hypersonic seal structures because of their conformability and design flexibility. A large family of braided structures using 2-D and 3-D architecture can be designed using well established methods to produce a wide range of braiding yarn orientation for wear resistance as well as seal porosity control. As a first demonstration of the approach, 2-D braided fiberglass seals were fabricated according to a factorial design experiment by varying braiding angles, fractional longitudinal fibers, and preload pressure levels. Factorial diagrams and response surfaces were constructed to elucidate the inter-relationship of the braiding parameters as well as the effect of preload pressures on leakage resistance of the seal. It was found that seal resistance is a strong function of fractional longitudinal fiber content. As braiding angle increases, seal leakage resistance increases, especially at high preload pressures and in seals having high proportion of longitudinal fibers.
Rojas, Eduardo; Taylor, Robert E.; Atwater, Illani; Bezanilla, Francisco
1969-01-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15–30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216
Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F
1969-10-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.
Possible management of near shore nonlinear surging waves through bottom boundary conditions
NASA Astrophysics Data System (ADS)
Mukherjee, Abhik; Janaki, M. S.; Kundu, Anjan
2017-03-01
We propose an alternative way for managing near shore surging waves, including extreme waves like tsunamis, going beyond the conventional passive measures like the warning system. We study theoretically the possibility of influencing the nonlinear surface waves through a leakage boundary effect at the bottom. It has been found through analytic result, that the controlled leakage at the bottom might regulate the amplitude of the surface solitary waves. This could lead to a possible decay of the surging waves to reduce its hazardous effects near the shore. Our theoretical results are estimated by applying it to a real coastal bathymetry of the Bay of Bengal in India.
III-V Ultra-Thin-Body InGaAs/InAs MOSFETs for Low Standby Power Logic Applications
NASA Astrophysics Data System (ADS)
Huang, Cheng-Ying
As device scaling continues to sub-10-nm regime, III-V InGaAs/InAs metal- oxide-semiconductor ?eld-e?ect transistors (MOSFETs) are promising candidates for replacing Si-based MOSFETs for future very-large-scale integration (VLSI) logic applications. III-V InGaAs materials have low electron effective mass and high electron velocity, allowing higher on-state current at lower VDD and reducing the switching power consumption. However, III-V InGaAs materials have a narrower band gap and higher permittivity, leading to large band-to-band tunneling (BTBT) leakage or gate-induced drain leakage (GIDL) at the drain end of the channel, and large subthreshold leakage due to worse electrostatic integrity. To utilize III-V MOSFETs in future logic circuits, III-V MOSFETs must have high on-state performance over Si MOSFETs as well as very low leakage current and low standby power consumption. In this dissertation, we will report InGaAs/InAs ultra-thin-body MOSFETs. Three techniques for reducing the leakage currents in InGaAs/InAs MOSFETs are reported as described below. 1) Wide band-gap barriers: We developed AlAs0.44Sb0.56 barriers lattice-match to InP by molecular beam epitaxy (MBE), and studied the electron transport in In0.53Ga0.47As/AlAs 0.44Sb0.56 heterostructures. The InGaAs channel MOSFETs using AlAs0.44Sb0.56 bottom barriers or p-doped In0.52 Al0.48As barriers were demonstrated, showing significant suppression on the back barrier leakage. 2) Ultra-thin channels: We investigated the electron transport in InGaAs and InAs ultra-thin quantum wells and ultra-thin body MOSFETs (t ch ~ 2-4 nm). For high performance logic, InAs channels enable higher on-state current, while for low power logic, InGaAs channels allow lower BTBT leakage current. 3) Source/Drain engineering: We developed raised InGaAs and recessed InP source/drain spacers. The raised InGaAs source/drain spacers improve electrostatics, reducing subthreshold leakage, and smooth the electric field near drain, reducing BTBT leakage. With further replacement of raised InGaAs spacers by recessed, doping-graded InP spacers at high field regions, BTBT leakage can be reduced ~100:1. Using the above-mentioned techniques, record high performance InAs MOSFETs with a 2.7 nm InAs channel and a ZrO2 gate dielectric were demonstrated with Ion = 500 microA/microm at Ioff = 100 nA/microm and VDS =0.5 V, showing the highest on-state performance among all the III-V MOSFETs and comparable performance to 22 nm Si FinFETs. Record low leakage InGaAs MOSFETs with recessed InP source/drain spacers were also demonstrated with minimum I off = 60 pA/microm at 30 nm-Lg , and Ion = 150 microA/microm at I off = 1 nA/microm and VDS =0.5 V. This recessed InP source/drain spacer technique improves device scalability and enables III-V MOSFETs for low standby power logic applications. Furthermore, ultra-thin InAs channel MOSFETs were fabricated on Si substrates, exhibiting high yield and high transconductance gm ~2.0 mS/microm at 20 nm- Lg and VDS =0.5 V. With further scaling of gate lengths, a 12 nm-Lg III-V MOSFET has shown maximum Ion/Ioff ratio ~8.3x105 , confirming that III-V MOSFETs are scalable to sub-10-nm technology nodes.
A case for bone canaliculi as the anatomical site of strain generated potentials
NASA Technical Reports Server (NTRS)
Cowin, S. C.; Weinbaum, S.; Zeng, Y.
1995-01-01
We address the question of determining the anatomical site that is the source of the experimentally observed strain generated potentials (SGPs) in bone tissue. There are two candidates for the anatomical site that is the SGP source, the collagen-hydroxyapatite porosity and the larger size lacunar-canalicular porosity. In the past it has been argued, on the basis of experimental data and a reasonable model, that the site of the SGPs in bone is the collagen-hydroxyapatite porosity. The theoretically predicted pore radius necessary for the SGPs to reside in this porosity is 16 nm, which is somewhat larger than the pore radii estimated from gas adsorption data where the preponderance of the pores were estimated to be in the range 5-12.5 nm. However, this pore size is significantly larger than the 2 nm size of the small tracer, microperoxidase, which appears to be excluded from the mineralized matrix. In this work a similar model, but one in which the effects of fluid dynamic drag of the cell surface matrix in the bone canaliculi are included, is used to show that it is possible for the generation of SGPs to be associated with the larger size lacunar-canalicular porosity when the hydraulic drag and electrokinetic contribution of the bone fluid passage through the cell coat (glycocalyx) is considered. The consistency of the SGP data with this model is demonstrated. A general boundary condition is introduced to allow for current leakage at the bone surface. The results suggest that the current leakage is small for the in vitro studies in which the strain generated potentials have been measured.
Harmonic curved shears system prevent of bile leakage after liver resection in a pig model.
Shimoda, Mitsugi; Iwasaki, Yoshimi; Kubota, Keiichi
2014-01-01
We evaluated the efficacy of TachoComb (TC) collagen fleece and Harmonic Focus (HF) shears in a pig liver resection model. Pigs were divided into 3 groups of 7, in which vessels were tied with silk and TC was applied to the cut surfaces (Silk+TC group), sealed and sheared with HF and TC (HF+TC group), or sealed using HF alone (HF-TC group). After 1 month, we conducted a histologic evaluation and recorded the incidence of bile leakage with infected collections at the liver cut surface. Six pigs were evaluated in each group. In the Silk+TC group, 4 of the 6 pigs had infected collections at the cut surface. Histologically, the silk had remained under the fibrotic tissue, which contained remnants of TC fragments. In the HF+TC group, 5 of the 6 pigs also had infected collections, and histologically, TC had remained in the hard fibrotic tissues. In the HF-TC group, none of the 6 pigs had infected collections, and the histologic findings were normal. Use of the HF alone may be an effective method for preventing bile leakage in infected collections after liver resection.
Li, Yong; Busoy, Joanna Marie; Zaman, Ben Alfyan Achirn; Tan, Queenie Shu Woon; Tan, Gavin Siew Wei; Barathi, Veluchamy Amutha; Cheung, Ning; Wei, Jay Ji-Ye; Hunziker, Walter; Hong, Wanjin; Wong, Tien Yin; Cheung, Chui Ming Gemmy
2018-05-28
Anti-vascular endothelial growth factor (VEGF) therapies lead to a major breakthrough in treatment of neovascular retinal diseases such as age-related macular degeneration or diabetic retinopathy. Current management of these conditions require regular and frequent intravitreal injections to prevent disease recurrence once the effect of the injected drug wears off. This has led to a pressing clinical need of developing sustained release formulations or therapies with longer duration. A major drawback in developing such therapies is that the currently available animal models show spontaneous regression of vascular leakage. They therefore not only fail to recapitulate retinal vascular disease in humans, but also prevent to discern if regression is due to prolonged therapeutic effect or simply reflects spontaneous healing. Here, we described the development of a novel rabbit model of persistent retinal neovascularization (PRNV). Retinal Müller glial are essential for maintaining the integrity of the blood-retinal barrier. Intravitreal injection of DL-alpha-aminoadipic acid (DL-AAA), a selective retinal glial (Müller) cell toxin, results in persistent vascular leakage for up to 48 weeks. We demonstrated that VEGF concentrations were significantly increased in vitreous suggesting VEGF plays a significant role in mediating the leakage observed. Intravitreal administration of anti-VEGF drugs (e.g. bevacizumab, ranibizumab and aflibercept) suppresses vascular leakage for 8-10 weeks, before recurrence of leakage to pre-treatment levels. All three anti-VEGF drugs are very effective in re-ducing angiographic leakage in PRNV model, and aflibercept demonstrated a longer duration of action compared with the others, reminiscent of what is observed with these drugs in human in the clinical setting. Therefore, this model provides a unique tool to evaluate novel anti-VEGF formulations and therapies with respect to their duration of action in comparison to the currently used drugs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Fumin; Jin, Jichun; Jiang, Hao; Wang, Shiyang; Gu, Hanbao; Jin, Xinglin
2015-01-01
To prevent the pancreatic fistulas, we designed a technique termed "no naked pancreatic surface in the cavity of jejunum" on pancreaticojejunostomy. We adopted pancreatic exocrine secretions following the pancreatic duct by drainage; there was no naked pancreatic surface in the cavity of jejunum, and entail 2-3 cm sheath of the jejunum to the pancreatic stump. Only 3 (2.27%) cases developed pancreatic fistulas, 1 patient had a grade A leak, and 2 patients had grade B leakage. The overall morbidity was 25.76%. There was no dilatation of pancreatic duct or pancreatic enzyme deficiency shown during followed-up. The duration for accomplishing the anastomosis was 20 minutes averagely. The technique of no naked pancreatic surface in the cavity of jejunum can be routinely used in any case with pancreaticojejunostomy. It is a safe, simple, and effective technique that avoids the primary complication of anastomotic leakage.
Reinforced glass-ionomer cements: the influence of conditioners on marginal leakage.
Yap, A U; Mok, B Y
1997-06-01
The purpose of this in vitro study was to evaluate the influence of conditioners on the enamel and dentine margin sealing ability of three different reinforced glass-ionomer cements. Two Class V preparations were made on the buccal and lingual surfaces of 36 freshly extracted molar teeth. Preparations were solely in enamel or dentine/cementum. The teeth were randomly divided into three groups of 12 and restored with either Ketac Silver (KS), Hi-Dense (HD) or Miracle-Mix (MM) with and without (-C) their respective conditioners. All materials were capsulated and were manipulated according to the manufacturers' instructions. The restorations were finished as recommended by the manufacturers and then stored in saline at 37 degrees C for 1 week, polished, thermally stressed, subjected to dye penetration, sectioned and scored. Rankings in the order of decreasing leakage were as follows: enamel margin KS > KS-C > HD-C > HD > MM > MM-C; dentine margin KS > HD-C > KS-C > HD > MM-C > MM. At the enamel margins, only HD showed a significant increase in leakage when conditioner was not used. At the dentine margin, however, KS had significantly more leakage than KS-C and HD-C had significantly more leakage than HD. There was no significant difference in leakage for MM both with and without conditioner. The influence of conditioners on marginal leakage appears to be both product and tissue specific.
NASA Astrophysics Data System (ADS)
Kim, Hyoungsub
With the continued scaling of transistors, leakage current densities across the SiO2 gate dielectric have increased enormously through direct tunneling. Presently, metal oxides having higher dielectric constants than SiO2 are being investigated to reduce the leakage current by increasing the physical thickness of the dielectric. Many possible techniques exist for depositing high-kappa gate dielectrics. Atomic layer deposition (ALD) has drawn attention as a method for preparing ultrathin metal oxide layers with excellent electrical characteristics and near-perfect film conformality due to the layer-by-layer nature of the deposition mechanism. For this research, an ALD system using ZrCl4/HfCl4 and H2O was built and optimized. The microstructural and electrical properties of ALD-ZrO2 and HfO2 grown on SiO2/Si substrates were investigated and compared using various characterization tools. In particular, the crystallization kinetics of amorphous ALD-HfO2 films were studied using in-situ annealing experiments in a TEM. The effect of crystallization on the electrical properties of ALD-HfO 2 was also investigated using various in-situ and ex-situ post-deposition anneals. Our results revealed that crystallization had little effect on the magnitude of the gate leakage current or on the conduction mechanisms. Building upon the results for each metal oxide separately, more advanced investigations were made. Several nanolaminate structures using ZrO2 and HfO2 with different sequences and layer thicknesses were characterized. The effects of the starting microstructure on the microstructural evolution of nanolaminate stacks were studied. Additionally, a promising new approach for engineering the thickness of the SiO2-based interface layer between the metal oxide and silicon substrate after deposition of the metal oxide layer was suggested. Through experimental measurements and thermodynamic analysis, it is shown that a Ti overlayer, which exhibits a high oxygen solubility, can effectively getter oxygen from the interface layer, thus decomposing SiO2 and reducing the interface layer thickness in a controllable fashion. As one of several possible applications, ALD-ZrO2 and HfO 2 gate dielectric films were deposited on Ge (001) substrates with different surface passivations. After extensive characterization using various microstructural, electrical, and chemical analyses, excellent MOS electrical properties of high-kappa gate dielectrics on Ge were successfully demonstrated with optimized surface nitridation of the Ge substrates.
Secondary migration and leakage of methane from a major tight-gas system
NASA Astrophysics Data System (ADS)
Wood, James M.; Sanei, Hamed
2016-11-01
Tight-gas and shale-gas systems can undergo significant depressurization during basin uplift and erosion of overburden due primarily to the natural leakage of hydrocarbon fluids. To date, geologic factors governing hydrocarbon leakage from such systems are poorly documented and understood. Here we show, in a study of produced natural gas from 1,907 petroleum wells drilled into a Triassic tight-gas system in western Canada, that hydrocarbon fluid loss is focused along distinct curvilinear pathways controlled by stratigraphic trends with superior matrix permeability and likely also structural trends with enhanced fracture permeability. Natural gas along these pathways is preferentially enriched in methane because of selective secondary migration and phase separation processes. The leakage and secondary migration of thermogenic methane to surficial strata is part of an ongoing carbon cycle in which organic carbon in the deep sedimentary basin transforms into methane, and ultimately reaches the near-surface groundwater and atmosphere.
Secondary migration and leakage of methane from a major tight-gas system
Wood, James M.; Sanei, Hamed
2016-01-01
Tight-gas and shale-gas systems can undergo significant depressurization during basin uplift and erosion of overburden due primarily to the natural leakage of hydrocarbon fluids. To date, geologic factors governing hydrocarbon leakage from such systems are poorly documented and understood. Here we show, in a study of produced natural gas from 1,907 petroleum wells drilled into a Triassic tight-gas system in western Canada, that hydrocarbon fluid loss is focused along distinct curvilinear pathways controlled by stratigraphic trends with superior matrix permeability and likely also structural trends with enhanced fracture permeability. Natural gas along these pathways is preferentially enriched in methane because of selective secondary migration and phase separation processes. The leakage and secondary migration of thermogenic methane to surficial strata is part of an ongoing carbon cycle in which organic carbon in the deep sedimentary basin transforms into methane, and ultimately reaches the near-surface groundwater and atmosphere. PMID:27874012
Electrical leakage detection circuit
Wild, Arthur
2006-09-05
A method is provided for detecting electrical leakage between a power supply and a frame of a vehicle or machine. The disclosed method includes coupling a first capacitor between a frame and a first terminal of a power supply for a predetermined period of time. The current flowing between the frame and the first capacitor is limited to a predetermined current limit. It is determined whether the voltage across the first capacitor exceeds a threshold voltage. A first output signal is provided when the voltage across the capacitor exceeds the threshold voltage.
Application of Arrester Simulation Device in Training
NASA Astrophysics Data System (ADS)
Baoquan, Zhang; Ziqi, Chai; Genghua, Liu; Wei, Gao; Kaiyue, Wu
2017-12-01
Combining with the arrester simulation device put into use successfully, this paper introduces the application of arrester test in the insulation resistance measurement, counter test, Leakage current test under DC 1mA voltage and leakage current test under 0.75U1mA. By comparing with the existing training, this paper summarizes the arrester simulation device’s outstanding advantages including real time monitoring, multi-type fault data analysis and acousto-optic simulation. It effectively solves the contradiction between authenticity and safety in the existing test training, and provides a reference for further training.
Vertical GaN merged PiN Schottky diode with a breakdown voltage of 2 kV
NASA Astrophysics Data System (ADS)
Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Yamamuka, Mikio
2017-06-01
In this study, we successfully fabricated vertical GaN merged PiN Schottky (MPS) diodes and comparatively investigated the cyclic p-GaN width (W p) dependence of their electrical characteristics, including turn-on voltage and reverse leakage current. The MPS diodes with W p of more than 6 µm can turn on at around 3 V. Increasing W p can suppress the reverse leakage current. Moreover, the vertical GaN MPS diode with the breakdown voltage of 2 kV was realized for the first time.
NASA Astrophysics Data System (ADS)
Samanta, Piyas
2017-10-01
The conduction mechanism of gate leakage current through thermally grown silicon dioxide (SiO2) films on (100) p-type silicon has been investigated in detail under negative bias on the degenerately doped n-type polysilicon (n+-polySi) gate. The analysis utilizes the measured gate current density J G at high oxide fields E ox in 5.4 to 12 nm thick SiO2 films between 25 and 300 °C. The leakage current measured up to 300 °C was due to Fowler-Nordheim (FN) tunneling of electrons from the accumulated n +-polySi gate in conjunction with Poole Frenkel (PF) emission of trapped-electrons from the electron traps located at energy levels ranging from 0.6 to 1.12 eV (depending on the oxide thickness) below the SiO2 conduction band (CB). It was observed that PF emission current I PF dominates FN electron tunneling current I FN at oxide electric fields E ox between 6 and 10 MV/cm and throughout the temperature range studied here. Understanding of the mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown (TDDB) of metaloxide-semiconductor (MOS) devices and to precisely predict the normal operating field or applied gate voltage for lifetime projection of the MOS integrated circuits.
NASA Astrophysics Data System (ADS)
Stoddart, Daniel
2014-05-01
Recent drilling and appraisal on the Southern Utsira High, Norwegian North Sea, has proved several large oil/gas discoveries, including the giant Johan Sverdrup, Edvard Grieg, Draupne, Ragnarrock and Apollo oil fields, making this a prolific petroleum area. The Southern Utsira High contains a variety of hydrocarbon density fluids found at several stratigraphic levels illustrating the compartmentalized nature of accumulations and charge history. The Southern Utsira High has been in a position to receive an oil/gas charge for a considerable period of time, with the basin towards the west most likely generating petroleum from early Eocene (50M Mabp) to its maximum present day burial depth. However, reservoir temperatures on the Southern Utsira High are just above the threshold for biodegradation (80°C). The Southern Utsira High oils are non-biodegraded suggesting that the majority of the oil charged relatively late - ca.3 million years ago to present day. The effects of the glaciation on the filling history of the Southern Utsira High are currently being assessed. It is clear that several erosional surfaces in the Pliocene can be identified, as well as glacial channels and moraine deposits, indicating that significant deposition and erosion occurred in the last five million years. Importantly, the effects of glacial rebound mean that the Southern Utsira High more than likely underwent tilting and possible leakage, not just once, but several times in the last 1 million years. The effects of tilting/leakage of geological areas on oil migration have been recognized by several authors. However, the detailed integration of geological mapping and geochemical evidence has not previously been published. The implications of a detailed assessment of tilting of a ''high' through time are; 1) opening up areas where oil migration is thought to be high risk or impossible; 2) identify possible paleo-oil columns aiding the de-risking of discovery appraisal strategies. The evidence of tilting/leakage of oil accumulations through time can be recognized in several oil fields on the Utsira High. The giant Johan Sverdrup discovery oil columns contain paleo-OWC, residual oil zones/paleo-oil columns, and oil shows considerably deeper than the current OWC or residual oil columns. Lundin has performed detailed mapping of the seabed and water column in the Alvheim/Utsira High areas in order to identify areas of gas leakage and its geological manifestations on the seabed and ultimately resulting in the collection of high quality samples. Results shows that gas leakage is prominent over the Alvheim and Utsira High areas and the implications of this to oil exploration will be discussed. In summary, Lundin's approach to oil migration is to better understand the fluid/gas movement throughout the whole basin through time. The talk will focus on the role of glaciations on the timing of charge from the South Viking Graben, fill-spill directions on the Southern Utsira High, the effects of late tilting/leakage on the charge/re-distribution of oil, and seabed / water column characterization and sampling. All placed in the context of oil exploration.
Oberg, K.A.; Schmidt, A.R.
1994-01-01
A total of 213 measurements of leakage were made at three control structures near Chicago, Ill.--the Chicago River Controlling Works (CRCW), Thomas J. O'Brien Lock and Dam (O'Brien), and Wilmette Pumping Station (Wilmette)--using acoustic Doppler current profilers (ADCP's) and dye-dilution techniques. The CRCW consists of the Chicago Lock and two sets of sluice gates connected by a network of harbor walls. Leakage measurements were made in April, May, July, September, and October 1993 using an ADCP. The mean and standard deviation of leakage measured by the ADCP for the Chicago Lock river gate were 133 and 39 cubic feet per second, respectively. The mean and standard deviation of the leakage measurements at CRCW were 204 and 70 cubic feet per second, respectively. The mean and standard deviation of leakage measurements at O'Brien on September 17, 1993, were 21 and 10 cubic feet per second, respectively. The mean and standard deviation leakage measured at Wilmette using the ADCP were 59 and 8 cubic feet per second, respectively, in April 1993. After the pump bays at Wilmette were sealed in July 1993, the leakage dropped to less than 15 cubic feet per second in September 1993. Discharge estimated by dye-dilution at the Chicago Lock on July 15, 1993, was 160 cubic feet per second, or within 8 percent of the discharge measured with the ADCP. (USGS)
T-drain reduces the incidence of biliary leakage after liver resection.
Eurich, Dennis; Henze, S; Boas-Knoop, S; Pratschke, J; Seehofer, D
2016-12-01
Biliary leakage is a serious complication after liver resection and represents the major cause of post-operative morbidity. In spite of already identified risk factors, little is known about the role of intra-biliary pressure following liver surgery in the development of biliary leakage. Biliary decompression may have a positive impact and reduce the incidence of biliary leakage at the parenchymal resection site. 397 patients undergoing liver resection without bilioenteric anastomosis were included in the retrospective analysis of the risk factors for the development of biliary leakage focusing on the intra-operative reduction of the biliary pressure by T-tube and liver histology. Among 397 analyzed patients after parenchymal resection, biliary leakage occurred in 39 cases (9.8 %). The extent of parenchymal resection was not associated with the total occurrence of biliary leak (p = 0.626). Lower incidence of biliary leakage from the resection surface was significantly associated with the use of T-tube (4.9 vs. 13.2 %; p = 0.006). In the subgroup analysis, insertion of a T-tube was not associated with a reduction of biliary leakage after anatomical hemihepatectomies (p = 0.103) and extraanatomical liver resection (p = 0.676). However, a high statistical significance could be detected in patients with extended hemihepatectomies (58.3 vs. 3.8 %; p < 0.001). Once biliary leak occurred without T-tube, median hospitalization duration significantly increased compared to patients with biliary decompression and without biliary leak (p < 0.001). The results of our retrospective data analysis suggest a significant beneficial impact of the T-tube on the development of biliary leakage in patients undergoing extended liver surgery.
Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch
Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui
2016-01-01
Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients. PMID:27294927
Effects of boundary-layer separation controllers on a desktop fume hood.
Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu
2016-10-02
A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s).
NASA Astrophysics Data System (ADS)
Burud, Ingunn; Moni, Christophe; Flø, Andreas; Rolstad Denby, Cecilie; Rasse, Daniel
2013-04-01
Facilities for the geological storage of carbon dioxide (CO2) as part of carbon capture and storage (CCS) schemes will be designed to prevent any leakage from the defined 'storage complex'. However, even though the risk is of low probability, the precautionary principle requires that near surface environments that might be at risk be thoroughly monitored to detect a leak, were it to happen. Among all currently proposed monitoring methods, only hyperspectral imaging of vegetation stress response allows one to scan large areas rapidly and in detail. Until now, however, only a handful of studies have been carried out on using this novel technology. The aim of the present communication was to characterize the impacts that a simulated CO2 leak might have on the hyperspectral signature of a Norwegian oats crop. In order to test the effects of different intensity of leakage, a CO2 exposure field experiment was designed to create a longitudinal CO2 gradient. For this purpose a gas supply pipe was inserted at one end of a 6m by 3m experimental plot at the base of a 45 cm thick layer of sand buried 40 cm below the surface under a silt loam plough layer. CO2 was then injected at a rate of 2l.min-1 just after the oats had germinated at the end of June, and Facilities for the geological storage of carbon dioxide (CO2) as part of carbon capture and storage (CCS) schemes will be designed to prevent any leakage from the defined 'storage complex'. However, even though the risk is of low probability, the precautionary principle requires that near surface environments that might be at risk be thoroughly monitored to detect a leak, were it to happen. Among all currently proposed monitoring methods, only hyperspectral imaging of vegetation stress response allows one to scan large areas rapidly and in detail. Until now, however, only a handful of studies have been carried out on using this novel technology. The aim of the present communication was to characterize the impacts that a simulated CO2 leak might have on the hyperspectral signature of a Norwegian oats crop. In order to test the effects of different intensity of leakage, a CO2 exposure field experiment was designed to create a longitudinal CO2 gradient. For this purpose a gas supply pipe was inserted at one end of a 6m by 3m experimental plot at the base of a 45 cm thick layer of sand buried 40 cm below the surface under a silt loam plough layer. CO2 was then injected at a rate of 2l.min-1 just after the oats had germinated at the end of June, and continued until it was harvested at the end of August. Then soil CO2 fluxes were recorded at the surface using a (60 x 60 cm) grid sampling pattern. Hyperspectral images of the experimental plot were taken at different dates during the gassing period using a SPECIM camera with 800 spectral bands, covering the wavelength range 400 - 1000 nm. The change in the reflectance spectra were characterized over time within the plot by the computation of various hyperspectral vegetation indices for small discretized spatial units (i.e. 10 cm by 10 cm square). The results showed that one month after injection, reduced plant growth, yellowing of the leaves and purple discoloration of the stems were observed just above the injection points were high CO2 fluxes had been identified. These high CO2 flux zones were further associated with an increase of the reflectance that occurred in the red region of the spectra indicating a decrease of the chlorophyll content in the plants. To conclude, plant health, as indicated by the hyperspectral signature, was closely related to the leakage pattern, indicating that hyperspectral imaging could be used to identify a CO2 seepage in an agricultural field. Acknowledgments This work is part of the RISCS project (Research into Impacts and Safety in CO2 Storage), funded by the EC 7th Framework Programme and by industry partners ENEL I&I, Statoil, Vattenfall AB, E.ON and RWE. R&D partners are BGS, CERTH, IMARES, OGS, PML, SINTEF, University of Nottingham, Sapienza Università di Roma, Quintessa, CO2 GeoNet, Bioforsk, BGR and ZERO. For more information please go to the website (www.riscs-co2.eu) or contact the project coordinator David Jones (e-mail: dgj@bgs.ac.uk tel. +44(0)115-936-3576).
NASA Astrophysics Data System (ADS)
Ni, Yi-Qiang; He, Zhi-Yuan; Yao, Yao; Yang, Fan; Zhou, De-Qiu; Zhou, Gui-Lin; Shen, Zhen; Zhong, Jian; Zheng, Yue; Zhang, Bai-Jun; Liu, Yang
2015-05-01
We report a novel structure of AlGaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair-doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped interlayers, the mobility of 2DEG increases by twice for the conventional structure under 5 K due to the improved crystalline quality of the conduction channel. The proposed HFET shows a four orders lower off-state leakage current, resulting in a much higher on/off ratio (˜ 109). Further temperature-dependent performance of Schottky diodes revealed that the inhibition of shallow surface traps in proposed HFETs should be the main reason for the suppression of leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 51177175 and 61274039), the National Basic Research Project of China (Grant Nos. 2010CB923200 and 2011CB301903), the Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Sci. & Tech. Collaboration Program of China (Grant No. 2012DFG52260), the National High-tech R&D Program of China (Grant No. 2014AA032606), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingyan, E-mail: l.y.wang@mail.xjtu.edu.cn, E-mail: wren@mail.xjtu.edu.cn; Ren, Wei, E-mail: l.y.wang@mail.xjtu.edu.cn, E-mail: wren@mail.xjtu.edu.cn; Shi, Peng
Lead-free ferroelectric un-doped and doped K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) films with different amounts of manganese (Mn) were prepared by a chemical solution deposition method. The thicknesses of all films are about 1.6 μm. Their phase, microstructure, leakage current behavior, and electrical properties were investigated. With increasing the amounts of Mn, the crystallinity became worse. Fortunately, the electrical properties were improved due to the decreased leakage current density after Mn-doping. The study on leakage behaviors shows that the dominant conduction mechanism at low electric field in the un-doped KNN film is ohmic mode and that at high electric field is space-charge-limitedmore » and Pool-Frenkel emission. After Mn doping, the dominant conduction mechanism at high electric field of KNN films changed single space-charge-limited. However, the introduction of higher amount of Mn into the KNN film would lead to a changed conduction mechanism from space-charge-limited to ohmic mode. Consequently, there exists an optimal amount of Mn doping of 2.0 mol. %. The 2.0 mol. % Mn doped KNN film shows the lowest leakage current density and the best electrical properties. With the secondary ion mass spectroscopies and x-ray photoelectron spectroscopy analyses, the homogeneous distribution in the KNN films and entrance of Mn element in the lattice of KNN perovskite structure were also confirmed.« less
Leakage effects in n-GaAs MESFET with n-GaAs buffer layer
NASA Technical Reports Server (NTRS)
Wang, Y. C.; Bahrami, M.
1983-01-01
Whereas improvement of the interface between the active layer and the buffer layer has been demonstrated, the leakage effects can be important if the buffer layer resistivity is not sufficiently high and/or the buffer layer thickness is not sufficiently small. It was found that two buffer leakage currents exist from the channel under the gate to the source and from drain to the channel in addition to the buffer leakage resistance between drain and source. It is shown that for a 1 micron gate-length n-GaAs MESFET, if the buffer layer resistivity is 12 OHM-CM and the buffer layer thickness h is 2 microns, the performance of the device degrades drastically. It is suggested that h should be below 2 microns.
Aerial ultrasonic micro Doppler sonar detection range in outdoor environments.
Bradley, Marshall; Sabatier, James M
2012-03-01
Current research demonstrates that micro Doppler sonar has the capability to uniquely identify the presence of a moving human, making it an attractive component in surveillance systems for border security applications. Primary environmental factors that limit sonar performance are two-way spreading losses, ultrasonic absorption, and backscattered energy from the ground that appears at zero Doppler shift in the sonar signal processor. Spectral leakage from the backscatter component has a significant effect on sonar performance for slow moving targets. Sonar performance is shown to rapidly decay as the sensor is moved closer to the ground due to increasing surface backscatter levels. © 2012 Acoustical Society of America
Barrier infrared detector research at the Jet Propulsion Laboratory
NASA Astrophysics Data System (ADS)
Ting, David Z.; Keo, Sam A.; Liu, John K.; Mumolo, Jason M.; Khoshakhlagh, Arezou; Soibel, Alexander; Nguyen, Jean; Höglund, Linda; Rafol, B., , Sir; Hill, Cory J.; Gunapala, Sarath D.
2012-10-01
The barrier infrared detector device architecture offers the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. The versatility of the antimonide material system, with the availability of three different types of band offsets for flexibility in device design, provides the ideal setting for implementing barrier infrared detectors. We describe the progress made at the NASA Jet Propulsion Laboratory in recent years in Barrier infrared detector research that resulted in high-performance quantum structure infrared detectors, including the type-II superlattice complementary barrier infrared detector (CBIRD), and the high operating quantum dot barrier infrared detector (HOT QD-BIRD).
Electrorheological fluid with an extraordinarily high yield stress
NASA Astrophysics Data System (ADS)
Zhang, Yuling; Lu, Kunquan; Rao, Guanghui; Tian, Yu; Zhang, Shaohua; Liang, Jingkui
2002-02-01
Surface modified complex strontium titanate microparticles are synthesized by means of a modified sol-gel technique. A suspension composed of these particles immersed in a silicone oil exhibits excellent electrorheological properties attractive to industry and technology applications: a yield stress as high as 27 kPa in an applied electric field of 3 kV/mm, a low leakage current, wide dynamic ranges in temperature and shear rate, and a long-term stability against sedimentation. In addition to the high dielectric constant of strontium titanate, surfactant and water-free character of the particles may be responsible for the dramatic improvement of the electrorheological properties of the suspension.
Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation
NASA Technical Reports Server (NTRS)
Woo, D. S.
1980-01-01
The double layer metallization technology applied on p type silicon gate CMOS/SOS integrated circuits is described. A smooth metal surface was obtained by using the 2% Si-sputtered Al. More than 10% probe yield was achieved on solar cell controller circuit TCS136 (or MSFC-SC101). Reliability tests were performed on 15 arrays at 150 C. Only three arrays failed during the burn in, and 18 arrays out of 22 functioning arrays maintained the leakage current below 100 milli-A. Analysis indicates that this technology will be a viable process if the metal short circuit problem between the two metals can be reduced.
NASA Astrophysics Data System (ADS)
Henry, Nathan C.; Knorr, Daniel B.; Williams, Kristen S.; Baril, Neil; Nallon, Eric; Lenhart, Joseph L.; Andzelm, Jan W.; Pellegrino, Joseph; Tidrow, Meimei; Cleveland, Erin; Bandara, Sumith
2015-05-01
The efficacy of solution deposition of thiolated self-assembled monolayers (SAMs) has been explored for the purpose of passivating III-V type II superlattice (T2SL) photodetectors, more specifically a p-type heterojunction device. Sulfur passivation has previously been achieved on T2SL devices. However, degradation over time, temperature sensitivity and inconsistent reproducibility necessitate a physical encapsulate that can chemically bond to the chemical passivant. Thus, this research investigates two passivation methods, surface passivation with a thiol monolayer and passivation with a polymer encapsulant with a view toward future combination of these techniques. Analysis of the physical and chemical condition of the surface prior to deposition assisted in the development of ideal processes for optimized film quality. Successful deposition was facilitated by in situ oxide removal. Various commercially available functional (cysteamine) and non-functional (alkane) thiolated monolayers were investigated. Dark current was reduced by 3 orders of magnitude and achieved negligible surface leakage at low bias levels. The lowest dark current result, 7.69 × 10-6 A/cm2 at 50 mV, was achieved through passivation with cysteamine.
In-Situ MVA of CO 2 Sequestration Using Smart Field Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohaghegh, Shahab D.
2014-09-01
Capability of underground carbon dioxide storage to confine and sustain injected CO 2 for a long period of time is the main concern for geologic CO 2 sequestration. If a leakage from a geological CO 2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak, in a timely manner, in order to implement proper remediation activities. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO 2 . This study aims to monitor themore » integrity of CO 2 storage at the reservoir level. This work proposes developing in-situ CO 2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO 2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered as the basis for this study. A reservoir simulation model for CO 2 sequestration in the Citronelle field was developed and history matched. PDGs were installed, and therefore were considered in the numerical model, at the injection well and an observation well. Upon completion of the history matching process, high frequency pressure data from PDGs were generated using the history matched numerical model using different CO 2 leakage scenarios. Since pressure signal behaviors were too complicated to de-convolute using any existing mathematical formulations, a Machine Learning-based technology was introduced for this purpose. An Intelligent Leakage Detection System (ILDS) was developed as the result of this effort using the machine learning and pattern recognition technologies. The ILDS is able to detect leakage characteristics in a short period of time (less than a day from its occurrence) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS is examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise in the pressure sensor and uncertainty in the reservoir model.« less
Influence of Sample Size of Polymer Materials on Aging Characteristics in the Salt Fog Test
NASA Astrophysics Data System (ADS)
Otsubo, Masahisa; Anami, Naoya; Yamashita, Seiji; Honda, Chikahisa; Takenouchi, Osamu; Hashimoto, Yousuke
Polymer insulators have been used in worldwide because of some superior properties; light weight, high mechanical strength, good hydrophobicity etc., as compared with porcelain insulators. In this paper, effect of sample size on the aging characteristics in the salt fog test is examined. Leakage current was measured by using 100 MHz AD board or 100 MHz digital oscilloscope and separated three components as conductive current, corona discharge current and dry band arc discharge current by using FFT and the current differential method newly proposed. Each component cumulative charge was estimated automatically by a personal computer. As the results, when the sample size increased under the same average applied electric field, the peak values of leakage current and each component current increased. Especially, the cumulative charges and the arc discharge length of dry band arc discharge increased remarkably with the increase of gap length.
Improved GaSb surfaces using a (NH4)2S/(NH4)2S04 solution
NASA Astrophysics Data System (ADS)
Murape, D. M.; Eassa, N.; Nyamhere, C.; Neethling, J. H.; Betz, R.; Coetsee, E.; Swart, H. C.; Botha, J. R.; Venter, A.
2012-05-01
Bulk (1 0 0) n-GaSb surfaces have been treated with a sulphur based solution ((NH4)2S/(NH4)2SO4) to which sulphur has been added, not previously reported for the passivation of GaSb surfaces. Au/n-GaSb Schottky barrier diodes (SBDs) fabricated on the treated material show significant improvement compared to that of the similar SBDs on the as-received material as evidenced by the lower ideality factor (n), higher barrier height (ϕb) and lower contact resistance obtained. Additionally, the reverse leakage current, although not saturating, has been reduced by almost an order of magnitude at -0.2 V. The sample surfaces were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The native oxide, Sb-O, present on the as-received material is effectively removed on treating with ([(NH4)2S/(NH4)2SO4]+S) and (NH4)2S. Analysis of the as-received surface by XPS, prior to and after argon sputtering, suggests that the native oxide layer is ≤8.5 nm.
Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC
NASA Astrophysics Data System (ADS)
Meier, D.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Foulon, F.; Friedl, M.; Jany, C.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Manfredi, P. F.; Marshall, R. D.; Mishina, M.; Le Normand, F.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration
1999-04-01
CVD diamond shows promising properties for use as a position-sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardness of diamond we exposed CVD diamond detector samples to 24 Gev/ c and 500 Mev protons up to a fluence of 5×10 15 p/cm 2. We measured the charge collection distance, the average distance electron-hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1×10 15 p/cm 2 and decreases by ≈40% at 5×10 15 p/cm 2. Leakage currents of diamond samples were below 1 pA before and after irradiation. The particle-induced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage current. We conclude that CVD diamond detectors are radiation hard to 24 GeV/ c and 500 MeV protons up to at least 1×10 15p/cm 2 without signal loss.
NASA Astrophysics Data System (ADS)
Xu, Runshen
Atomic layer deposition (ALD) utilizes sequential precursor gas pulses to deposit one monolayer or sub-monolayer of material per cycle based on its self-limiting surface reaction, which offers advantages, such as precise thickness control, thickness uniformity, and conformality. ALD is a powerful means of fabricating nanoscale features in future nanoelectronics, such as contemporary sub-45 nm metal-oxide-semiconductor field effect transistors, photovoltaic cells, near- and far-infrared detectors, and intermediate temperature solid oxide fuel cells. High dielectric constant, kappa, materials have been recognized to be promising candidates to replace traditional SiO2 and SiON, because they enable good scalability of sub-45 nm MOSFET (metal-oxide-semiconductor field-effect transistor) without inducing additional power consumption and heat dissipation. In addition to high dielectric constant, high-kappa materials must meet a number of other requirements, such as low leakage current, high mobility, good thermal and structure stability with Si to withstand high-temperature source-drain activation annealing. In this thesis, atomic layer deposited Er2O3 doped TiO2 is studied and proposed as a thermally stable amorphous high-kappa dielectric on Si substrate. The stabilization of TiO2 in its amorphous state is found to achieve a high permittivity of 36, a hysteresis voltage of less than 10 mV, and a low leakage current density of 10-8 A/cm-2 at -1 MV/cm. In III-V semiconductors, issues including unsatisfied dangling bonds and native oxides often result in inferior surface quality that yields non-negligible leakage currents and degrades the long-term performance of devices. The traditional means for passivating the surface of III-V semiconductors are based on the use of sulfide solutions; however, that only offers good protection against oxidation for a short-term (i.e., one day). In this work, in order to improve the chemical passivation efficacy of III-V semiconductors, ultra-thin layer of encapsulating ZnS is coated on the surface of GaSb and GaSb/InAs substrates. The 2 nm-thick ZnS film is found to provide a long-term protection against reoxidation for one order and a half longer times than prior reported passivation likely due to its amorphous structure without pinholes. Finally, a combination of binary ALD processes is developed and demonstrated for the growth of yttria-stabilized zirconia films using alkylamido-cyclopentadiengyls zirconium and tris(isopropyl-cyclopentadienyl)yttrium, as zirconium and yttrium precursors, respectively, with ozone being the oxidant. The desired cubic structure of YSZ films is apparently achieved after post-deposition annealing. Further, platinum is atomic layer deposited as electrode on YSZ (8 mol% of Yttria) within the same system. In order to control the morphology of as-deposited Pt thin structure, the nucleation behavior of Pt on amorphous and cubic YSZ is investigated. Three different morphologies of Pt are observed, including nanoparticle, porous and dense films, which are found to depend on the ALD cycle number and the structure and morphology of they underlying ALD YSZ films.
NASA Astrophysics Data System (ADS)
Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid
2018-03-01
We report on extremely low off-state leakage current in AlGaN/GaN-on-silicon metal–insulator–semiconductor high-electron-mobility transistors (MISHEMTs) up to a high blocking voltage. Remarkably low off-state gate and drain leakage currents below 1 µA/mm up to 3 kV have been achieved owing to the use of a thick in situ SiN gate dielectric under the gate, and a local Si substrate removal technique combined with a cost effective 15-µm-thick AlN dielectric layer followed by a Cu deposition. This result establishes a manufacturable state-of-the-art high-voltage GaN-on-silicon power transistors while maintaining a low specific on-resistance of approximately 10 mΩ·cm2.
Leakage and field emission in side-gate graphene field effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Bartolomeo, A., E-mail: dibant@sa.infn.it; Iemmo, L.; Romeo, F.
We fabricate planar graphene field-effect transistors with self-aligned side-gate at 100 nm from the 500 nm wide graphene conductive channel, using a single lithographic step. We demonstrate side-gating below 1 V with conductance modulation of 35% and transconductance up to 0.5 mS/mm at 10 mV drain bias. We measure the planar leakage along the SiO{sub 2}/vacuum gate dielectric over a wide voltage range, reporting rapidly growing current above 15 V. We unveil the microscopic mechanisms driving the leakage, as Frenkel-Poole transport through SiO{sub 2} up to the activation of Fowler-Nordheim tunneling in vacuum, which becomes dominant at higher voltages. We report a field-emission current densitymore » as high as 1 μA/μm between graphene flakes. These findings are important for the miniaturization of atomically thin devices.« less
NASA Astrophysics Data System (ADS)
Kiyota, Yuji; Itaka, Kenji; Iwashita, Yuta; Adachi, Tetsuya; Chikyow, Toyohiro; Ogura, Atsushi
2011-06-01
We investigated zirconia (ZrO2)-based material libraries in search of new dielectric materials for dynamic random-access memory (DRAM) by combinatorial-pulsed laser deposition (combi-PLD). We found that the substitution of yttrium (Y) to Zr sites in the ZrO2 system suppressed the leakage current effectively. The metal-insulator-metal (MIM) capacitor property of this system showed a leakage current density of less than 5×10-7 A/cm2 and the dielectric constant was 20. Moreover, the addition of titanium (Ti) or tantalum (Ta) to this system caused the dielectric constant to increase to ˜25 within the allowed leakage level of 5×10-7 A/cm2. Therefore, Zr-Y-Ti-O and Zr-Y-Ta-O systems have good potentials for use as new materials with high dielectric constants of DRAM capacitors instead of silicon dioxides (SiO2).
NASA Astrophysics Data System (ADS)
Meng, Xiao; Wang, Lai; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao
2016-01-01
Efficiency droop is currently one of the most popular research problems for GaN-based light-emitting diodes (LEDs). In this work, a differential carrier lifetime measurement system is optimized to accurately determine carrier lifetimes (τ) of blue and green LEDs under different injection current (I). By fitting the τ-I curves and the efficiency droop curves of the LEDs according to the ABC carrier rate equation model, the impact of Auger recombination and carrier leakage on efficiency droop can be characterized simultaneously. For the samples used in this work, it is found that the experimental τ-I curves cannot be described by Auger recombination alone. Instead, satisfactory fitting results are obtained by taking both carrier leakage and carriers delocalization into account, which implies carrier leakage plays a more significant role in efficiency droop at high injection level.
Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films
NASA Astrophysics Data System (ADS)
Abazari, M.; Safari, A.
2010-12-01
Conduction mechanisms in epitaxial (001)-oriented pure and 1 mol % Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrate were investigated. Temperature dependence of leakage current density was measured as a function of applied electric field in the range of 200-380 K. It was shown that the different transport mechanisms dominate in pure and Mn-doped thin films. In pure (KNN-LT-LS) thin films, Poole-Frenkel emission was found to be responsible for the leakage, while Schottky emission was the dominant mechanism in Mn-doped thin films at higher electric fields. This is a remarkable yet clear indication of effect of 1 mol % Mn on the resistive behavior of such thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovici, M., E-mail: Mihaela.Ioana.Popovici@imec.be; Swerts, J.; Redolfi, A.
2014-02-24
Improved metal-insulator-metal capacitor (MIMCAP) stacks with strontium titanate (STO) as dielectric sandwiched between Ru as top and bottom electrode are shown. The Ru/STO/Ru stack demonstrates clearly its potential to reach sub-20 nm technology nodes for dynamic random access memory. Downscaling of the equivalent oxide thickness, leakage current density (J{sub g}) of the MIMCAPs, and physical thickness of the STO have been realized by control of the Sr/Ti ratio and grain size using a heterogeneous TiO{sub 2}/STO based nanolaminate stack deposition and a two-step crystallization anneal. Replacement of TiN with Ru as both top and bottom electrodes reduces the amount of electricallymore » active defects and is essential to achieve a low leakage current in the MIM capacitor.« less
NASA Technical Reports Server (NTRS)
Mon, G. R.
1985-01-01
A general research approach was outlined toward understanding water-module interactions and the influence of temperature involving the need to: quantify module performance loss versus level of accumulated degradation, establish the dependence of the degradation reaction rate on module moisture and temperature levels, and determine module moisture and temperature levels in field environments. These elements were illustrated with examples drawn from studies of the now relatively well understood module electrochemical degradation process. Research data presented include temperature and humidity-dependent equilibrium leakage current values for multiparameter module material and design configurations. The contributions of surface, volume, and interfacial conductivities was demonstrated. Research directions were suggested to more fully understand the contributions to overall module conductivity of surface, volume, and interfacial conductivities over ranges of temperature and relative humidity characteristic of field environments.
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Liuan; Zhang, Tong; Liu, Xinke; Ao, Jin-Ping
2018-01-01
In this study, we evaluated the pH sensitivity enhancement of AlGaN/GaN ion-sensitive field-effect transistor (ISFET) coated by Al2O3 film on the sensing area utilizing atomic layer deposition (ALD). The presence of the Al2O3 film leads to an obvious reduction of surface state density as well as leakage current in the solution, which is beneficial for improving the stability of the ISFET. Furthermore, the sensitivity of the ISFET was improved to 57.8 mV/pH, which is very close to the Nernstian limit at room temperature. The pH sensitivity enhancement can be explained by the higher density of sensing site as well as better surface hydrophilicity.
NASA Astrophysics Data System (ADS)
Hashemi, Adeleh; Bahari, Ali; Ghasemi, Shahram
2018-03-01
A good cross-linking between a povidone-silicon oxide nanocomposite has been created using a polar solvent. Furthermore, the effect of annealing temperatures (150°C, 200°C, and 240°C) on the solution-processed povidone-silicon oxide dielectric films has been studied. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy were applied to identify the chemical interactions of the nanocomposite. Morphology of the thin films was examined using atomic force microscopy. Electrical parameters of field effect transistors (FETs) were calculated on the basis of the information obtained from current-voltage (I-V) and capacitance-voltage (C-V) measurements in the metal-insulator-semiconductor structure. Nanocomposite films had very low surface roughness (0.036-0.084 nm). Si-O-Si and Si-O-C covalent bonds as well as Si-OH hydrogen bonds were formed in the nanocomposite structure. High hole mobilities (1.15-3.87 cm2 V-1 s-1) and low leakage current densities were obtained for the p-type Si FETs. The decrease in the Si-OH hydrogen bonds in the dielectric film annealed at 150°C led to a decrease in capacitance and leakage current as well as threshold voltage, and resulted in an increase in mobility and on/off current ratio. By further increasing the annealing temperatures (200°C and 240°C), the binding energies of all the bonds were shifted toward lower values. Therefore, it was concluded that many bonds could have degraded and that defects might have formed in the dielectric film nanostructure leading to a decline in the electrical parameters of the FETs.
Biomass-Derived Porous Carbonaceous Aerogel as Sorbent for Oil-Spill Remediation.
Wang, Zhuqing; Jin, Pengxiang; Wang, Min; Wu, Genhua; Dong, Chen; Wu, Aiguo
2016-12-07
We prepared a cost-effective, environmentally friendly carbonaceuous oil sorbent with a lotus effect structure using a simple one-pot hydrothermal reaction and a mild modification process. The carbonaceous oil sorbent can rapidly, efficiently, and continuously collect oil in situ from a water surface. This sorbent was unlike traditional sorbents because it was not dependent on the weight and volume of the sorption material. The sorbent was also successfully used to separate and collect crude oil from the water surface and can collect organic solvents underwater. This novel oil sorbent and oil-collection device can be used in case of emergency for organic solvent leakages, as well as leakages in tankers and offshore drilling platforms.
Ehlers, Justis P.; Wang, Kevin; Vasanji, Amit; Hu, Ming; Srivastava, Sunil K.
2017-01-01
Summary Ultra-widefield fluorescein angiography (UWFA) is an emerging imaging modality used to characterize pathology in the retinal vasculature such as microaneurysms (MA) and vascular leakage. Despites its potential value for diagnosis and disease surveillance, objective quantitative assessment of retinal pathology by UWFA is currently limited because it requires laborious manual segmentation by trained human graders. In this report, we describe a novel fully automated software platform, which segments MAs and leakage areas in native and dewarped UWFA images with retinal vascular disease. Comparison of the algorithm to human grader generated gold standards demonstrated significant strong correlations for MA and leakage areas (ICC=0.78-0.87 and ICC=0.70-0.86, respectively, p=2.1×10-7 to 3.5×10-10 and p=7.8×10-6 to 1.3×10-9, respectively). These results suggest the algorithm performs similarly to human graders in MA and leakage segmentation and may be of significant utility in clinical and research settings. PMID:28432113
Impact of submesoscales on surface material distribution in a gulf of Mexico mesoscale eddy
NASA Astrophysics Data System (ADS)
Haza, A. C.; Özgökmen, T. M.; Hogan, P.
2016-11-01
Understanding material distribution at the ocean's surface is important for a number of applications, in particular for buoyant pollutants such as oil spills. The main tools to estimate surface flows are satellite altimeters, as well as data-assimilative ocean general circulation models (OGCMs). Current-generation altimeter products rely on the geostrophic approximation to derive surface currents. Recent modeling and experimental work revealed existence of ageostrophic submesoscale motions within the upper ocean boundary layer. The next frontier is how submesoscales influence transport pathways in the upper ocean, which is a multi-scale problem involving the interaction of submesoscale and mesoscale coherent structures. Here we focus on a mesoscale eddy that exhibits submesoscale fluctuations along its rim. The high-resolution OCGM fields are then treated with two filters. A Lanczos filter is applied to velocity fields to remove the kinetic energy over the submesoscales. Then a Gaussian filter is used for the modeled sea surface height to simulate a geostrophic velocity field that would be available from gridded satellite altimeter data. Lagrangian Coherent Structures (LCS) are then generated from full-resolution and filtered fields to compare Lagrangian characteristics corresponding to different realizations of the surface velocity fields. It is found that while mesoscale currents exert a general control over the pathways of the tracer initially launched in the mesoscale eddy, there is a leak across the mesoscale transport barriers, induced by submesoscale motions. This leak is quantified as 20% of the tracer when using the submesoscale filter over one month of advection, while it increases to 50% using the geostrophic velocity field. We conclude that LCS computed from mesoscale surface velocity fields can be considered as a good first-order proxy, but the leakage of material across them in the presence of submesoscales can be significant.
King, M. P.; Wu, X.; Eller, Manfred; ...
2016-12-07
Here, total ionizing dose results are provided, showing the effects of different threshold adjust implant processes and irradiation bias conditions of 14-nm FinFETs. Minimal radiation-induced threshold voltage shift across a variety of transistor types is observed. Off-state leakage current of nMOSFET transistors exhibits a strong gate bias dependence, indicating electrostatic gate control of the sub-fin region and the corresponding parasitic conduction path are the largest concern for radiation hardness in FinFET technology. The high-Vth transistors exhibit the best irradiation performance across all bias conditions, showing a reasonably small change in off-state leakage current and Vth, while the low-Vth transistors exhibitmore » a larger change in off-state leakage current. The “worst-case” bias condition during irradiation for both pull-down and pass-gate nMOSFETs in static random access memory is determined to be the on-state (Vgs = Vdd). We find the nMOSFET pull-down and pass-gate transistors of the SRAM bit-cell show less radiation-induced degradation due to transistor geometry and channel doping differences than the low-Vth transistor. Near-threshold operation is presented as a methodology for reducing radiation-induced increases in off-state device leakage current. In a 14-nm FinFET technology, the modeling indicates devices with high channel stop doping show the most robust response to TID allowing stable operation of ring oscillators and the SRAM bit-cell with minimal shift in critical operating characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, M. P.; Wu, X.; Eller, Manfred
Here, total ionizing dose results are provided, showing the effects of different threshold adjust implant processes and irradiation bias conditions of 14-nm FinFETs. Minimal radiation-induced threshold voltage shift across a variety of transistor types is observed. Off-state leakage current of nMOSFET transistors exhibits a strong gate bias dependence, indicating electrostatic gate control of the sub-fin region and the corresponding parasitic conduction path are the largest concern for radiation hardness in FinFET technology. The high-Vth transistors exhibit the best irradiation performance across all bias conditions, showing a reasonably small change in off-state leakage current and Vth, while the low-Vth transistors exhibitmore » a larger change in off-state leakage current. The “worst-case” bias condition during irradiation for both pull-down and pass-gate nMOSFETs in static random access memory is determined to be the on-state (Vgs = Vdd). We find the nMOSFET pull-down and pass-gate transistors of the SRAM bit-cell show less radiation-induced degradation due to transistor geometry and channel doping differences than the low-Vth transistor. Near-threshold operation is presented as a methodology for reducing radiation-induced increases in off-state device leakage current. In a 14-nm FinFET technology, the modeling indicates devices with high channel stop doping show the most robust response to TID allowing stable operation of ring oscillators and the SRAM bit-cell with minimal shift in critical operating characteristics.« less
Cyclic tests of P-bulb end-seal designs for a shuttle-type wing-elevon cove membrane seal
NASA Technical Reports Server (NTRS)
Hunt, L. R.
1979-01-01
Four P-bulb end seal designs were tested at room temperature in a cyclic seal test apparatus. Test results show that all the P-bulb end seals have the durability required for a 100 mission life (neglecting possible elevated-temperature effects) and three of the four P-bulbs provide an adequate seal against a 7.0-kPa air pressure differential. Antifriction material attached to the P-bulb rub surface reduced friction slightly but could degrade the sealing effectiveness. A flat rub surface molded into the P-bulb discouraged wrinkling and rolling and thereby reduced leakage. However, the P-bulbs lacked resilience, as indicated by increased leakage when P-bulb compression was reduced. The best P-bulb design tested included an antifriction interface bonded to a flat surface molded into the P-bulb.
Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, P.N.; Shehabi, A.; Chan, R.W.
We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematicmore » variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.« less
Magnon cotunneling through a quantum dot
NASA Astrophysics Data System (ADS)
Karwacki, Łukasz
2017-11-01
I consider a single-level quantum dot coupled to two reservoirs of spin waves (magnons). Such systems have been studied recently from the point of view of possible coupling between electronic and magnonic spin currents. However, usually weakly coupled systems were investigated. When coupling between the dot and reservoirs is not weak, then higher order processes play a role and have to be included. Here I consider cotunneling of magnons through a spin-occupied quantum dot, which can be understood as a magnon (spin) leakage current in analogy to leakage currents in charge-based electronics. Particular emphasis has been put on investigating the effect of magnetic field and temperature difference between the magnonic reservoirs.
Space-charge limited current in CdTe thin film solar cell
NASA Astrophysics Data System (ADS)
Li, Qiang; Shen, Kai; Li, Xun; Yang, Ruilong; Deng, Yi; Wang, Deliang
2018-04-01
In this study, we demonstrate that space-charge limited current (SCLC) is an intrinsic current shunting leakage in CdTe thin film solar cells. The SCLC leakage channel, which is formed by contact between the front electrode, CdTe, and the back electrode, acts as a metal-semiconductor-metal (MSM) like transport path. The presence of SCLC leaking microchannels in CdTe leads to a band bending at the MSM structure, which enhances minority carrier recombination and thus decreases the minority carrier lifetime in CdTe thin film solar cells. SCLC was found to be a limiting factor both for the fill factor and the open-circuit voltage of CdTe thin film solar cells.
NASA Astrophysics Data System (ADS)
Hanna, Mina J.; Zhao, Han; Lee, Jack C.
2012-10-01
We analyze the anomalous I-V behavior in SiN prepared by plasma enhanced chemical vapor deposition for use as a gate insulator in AlGaN/GaN metal insulator semiconductor heterostructure filed effect transistors (HFETs). We observe leakage current across the dielectric with opposite polarity with respect to the applied electric field once the voltage sweep reaches a level below a determined threshold. This is observed as the absolute minimum of the leakage current does not occur at minimum voltage level (0 V) but occurs earlier in the sweep interval. Curve-fitting analysis suggests that the charge-transport mechanism in this region is Poole-Frenkel current, followed by Schottky emission due to band bending. Despite the current anomaly, the sample devices have shown a notable reduction of leakage current of over 2 to 6 order of magnitudes compared to the standard Schottky HFET. We show that higher pressures and higher silane concentrations produce better films manifesting less trapping. This conforms to our results that we reported in earlier publications. We found that higher chamber pressure achieves higher sheet carrier concentration that was found to be strongly dependent on the trapped space charge at the SiN/GaN interface. This would suggest that a lower chamber pressure induces more trap states into the SiN/GaN interface.
NASA Astrophysics Data System (ADS)
Kim, Joo-Hyung; Ignatova, Velislava A.; Heitmann, Johannes; Oberbeck, Lars
2008-09-01
The electrical characteristics, i.e. leakage current and capacitance, of ZrO2 based metal-insulator-metal structures, grown at 225, 250 and 275 °C by atomic layer deposition, were studied. The lowest leakage current was obtained at 250 °C deposition temperature, while the highest dielectric constant (k ~ 43) was measured for the samples grown at 275 °C, most probably due to the formation of tetragonal/cubic phases in the ZrO2 layer. We have shown that the main leakage current of these ZrO2 capacitors is governed by the Poole-Frenkel conduction mechanism. It was observed by x-ray photoelectron spectroscopy depth profiling that at 275 °C deposition temperature the oxygen content at and beyond the ZrO2/TiN interface is higher than at lower deposition temperatures, most probably due to oxygen inter-diffusion towards the electrode layer, forming a mixed TiN-TiOxNy interface layer. At and above 275 °C the ZrO2 layer changes its structure and becomes crystalline as proven by XRD analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi, Ting; Tao, Tao; Liu, Bin, E-mail: bliu@nju.edu.cn, E-mail: rzhang@nju.edu.cn
Through investigating the temperature dependent current-voltage (T-I-V) properties of GaN based blue and green LEDs in this study, we propose an asymmetric tunneling model to understand the leakage current below turn-on voltage (V < 3.2 V): At the forward bias within 1.5 V ∼ 2.1 V (region 1), the leakage current is main attributed to electrons tunneling from the conduction band of n-type GaN layer to the valence band of p-type GaN layer via defect states in space-charge region (SCR); While, at the forward bias within 2 V ∼ 2.4 V (region 2), heavy holes tunneling gradually becomes dominant atmore » low temperature (T < 200K) as long as they can overcome the energy barrier height. The tunneling barrier for heavy holes is estimated to be lower than that for electrons, indicating the heavy holes might only tunnel to the defect states. This asymmetric tunneling model shows a novel carrier transport process, which provides better understanding of the leakage characteristics and is vital for future device improvements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, J.; School of Sciences, Anhui University of Science and Technology, Huainan 232001; He, G., E-mail: hegang@ahu.edu.cn
2015-10-15
Highlights: • ALD-derived HfO{sub 2} gate dielectrics have been deposited on Si substrates. • The leakage current mechanism for different deposition temperature was discussed. • Different emission at different field region has been determined precisely. - Abstract: The effect of deposition temperature on the growth rate, band gap energy and electrical properties of HfO{sub 2} thin film deposited by atomic layer deposition (ALD) has been investigated. By means of characterization of spectroscopy ellipsometry and ultraviolet–visible spectroscopy, the growth rate and optical constant of ALD-derived HfO{sub 2} gate dielectrics are determined precisely. The deposition temperature dependent electrical properties of HfO{sub 2}more » films were determined by capacitance–voltage (C–V) and leakage current density–voltage (J–V) measurements. The leakage current mechanism for different deposition temperature has been discussed systematically. As a result, the optimized deposition temperature has been obtained to achieve HfO{sub 2} thin film with high quality.« less
Effect of La substitution on structural and electrical properties of BiFeO3 thin film
NASA Astrophysics Data System (ADS)
Das, S. R.; Bhattacharya, P.; Choudhary, R. N. P.; Katiyar, R. S.
2006-03-01
The effect of La substitution on the structural and electrical properties of multiferroic BiFeO3 thin films grown on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition has been reported. X-ray diffraction data confirmed the substitutions of La into the Bi site with the elimination of all of the secondary phases. The dielectric constant of the films was systematically increased from 165 to ~350 and the films showed excellent dielectric loss behavior. We observed a gradual increase in the remnant polarization (2Pr) with lanthanum substitution obtaining a maximum value of ~42 μC/cm2 at 20 mol % La incorporation. The leakage current behavior at room temperature of the films was studied and it was found that the leakage current decreased from 10-4 to 10-7 A/cm2 for La-substituted films at a field strength of 50 kV/cm. The reduction of dc leakage current of La-substituted films is explained on the basis of relative phase stability and improved microstructure of the material.
NASA Astrophysics Data System (ADS)
Chen, Hone-Zern; Kao, Ming-Cheng; Young, San-Lin; Hwang, Jun-Dar; Chiang, Jung-Lung; Chen, Po-Yen
2015-05-01
Bi0.9Gd0.1FeO3 (BGFO) thin films were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates by using the sol-gel technology. The effects of annealing temperature (400-700 °C) on microstructure and multiferroic properties of thin films were investigated. The X-ray diffraction analysis showed that the BGFO thin films had an orthorhombic structure. The thin films showed ferroelectric and ferromagnetic properties with remanent polarization (2Pr) of 10 μC/cm2, remnant magnetization (2Mr) of 2.4 emu/g and saturation magnetization (Ms) of 5.3 emu/g. A small leakage current density (J) was 4.64×10-8 A/cm2 under applied field 100 kV/cm. It was found that more than one conduction mechanism is involved in the electric field range used in these experiments. The leakage current mechanisms were controlled by Poole-Frenkel emission in the low electric field region and by Schottky emission from the Pt electrode in the high field region.
NASA Technical Reports Server (NTRS)
Currie, D. G.
1982-01-01
Research toward practical implementation of the Intensified Charge Coupled Device (ICCD) as a photon-counting array detector for astronomy is reported. The first area of concentration was to determine the rate and extent of the lifetime limiting damage to the CCD caused by the impact of high energy electrons, and to find whether various methods of annealing the damage were productive. The second effort was to determine the performance of the ICCD in a photon-counting mode to produce extended dynamic range measurements. There are two main effects that appear as the practical results of the electron damage to the CCD. One is an increase in the leakage current, i.e., the normal thermal generation of charge carriers in the silicon that provides a background dark signal that adds to the light produced image. In an undamaged CCD, the leakage current is usually fairly uniform across the photosensitive area of the silicon chip, with the exception of various bright pixels which have an anomalous leakage current well above the overall level.
NASA Technical Reports Server (NTRS)
Hah, Chunill
2016-01-01
Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.
Lightning vulnerability of fiber-optic cables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Leonard E.; Caldwell, Michele
2008-06-01
One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very importantmore » case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.« less
Study of Improvement of Hydrogen Maser Frequency Standard
NASA Technical Reports Server (NTRS)
Crampton, S. B.
1977-01-01
The research work dealt primarily with reducing the atom leakage rate using as storage surfaces the FEP Teflon surfaces conventionally used in contemporary hydrogen maser frequency standards. Some work was also done on a possible alternative to the conventional surfaces, but the results here and elsewhere suggest that the alternative surface is not promising enough to warrant much further work.
2014-01-01
We present a method to couple surface plasmon polariton (SPP) guiding mode into dielectric-loaded SPP waveguide (DLSPPW) devices with spectral and mode selectivity. The method combined a transmission-mode near-field spectroscopy to excite the SPP mode and a leakage radiation optical microscope for direct visualization. By using a near-field fiber tip, incident photons with different wavelengths were converted into SPPs at the metal/dielectric interface. Real-time SPP radiation images were taken through leakage radiation images. The wavelength-dependent propagation lengths for silver- and gold-based DLSPPWs were measured and compared. It confirms that silver-based SPP has a propagation length longer than a gold-based one by 1.25, 1.38, and 1.52 times for red, green, and blue photons. The resonant coupling as a function of wavelength in dual DLSPPWs was measured. The coupling lengths measured from leakage radiation images were in good agreement with finite-difference time domain simulations. In addition, the propagation profile due to multi-SPP modes interference was studied by changing position of the fiber tip. In a multimode DLSPPW, SPP was split into two branches with a gap of 2.237 μm when the tip was at the center of the waveguide. It became a zigzag profile when the SPP was excited at the corner of the waveguide. PMID:25177228
40 CFR 270.4 - Effect of a permit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... regarding leak detection systems for new and replacement surface impoundment, waste pile, and landfill units, and lateral expansions of surface impoundment, waste pile, and landfill units. The leak detection system requirements include double liners, CQA programs, monitoring, action leakage rates, and response...
Wahby, M; Salama, A F; Elezaby, A F; Belgrami, F; Abd Ellatif, M E; El-Kaffas, H F; Al-Katary, M
2013-11-01
The current standard of care is to perform a postoperative gastrografin study following laparoscopic sleeve gastrectomy (LSG) to detect leakage or obstruction. This study evaluated the usefulness of this routine procedure. A retrospective chart review was performed in December 2012. All patients had routine intraoperative methylene blue testing to check for possible leakage from the staple line, and any leaking points were oversewn. We also performed postoperative contrast study (gastrografin) routinely in the first 24-48 h for all patients. From June 2007 to December 2012, 712 cases underwent LSG during the study period. Patients included in this study were 556 women (78.1%) and 156 men (21.9%). The mean age was 35 years. The mean BMI was 48 kg/m2. The operative time was 107 ± 29 min, and there were no conversions to open surgery. Intraoperative methylene blue test detected leakage in 28 cases (3.93%). Postoperative contrast study (gastrografin) was negative for leakage in all cases. Computed tomography (CT) scan with oral contrast study detected leakage in 1.4% (ten cases); none of these cases were detected by regular contrast study. Our study showed that intraoperative methylene blue test for leakage is a very sensitive and effective method for detecting leakage during sleeve gastrectomy and should be done routinely in all cases. Routine postoperative contrast study is not needed to detect leakage unless clinically indicated in selected cases, and in such cases contrast-enhanced CT scans are the modality of choice.
Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei
2016-12-01
Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.
Electrical properties of solution processed highly transparent ZnO TFT with organic gate dielectric
NASA Astrophysics Data System (ADS)
Pandya, Nirav C.; Joshi, Nikhil G.; Trivedi, U. N.; Joshi, U. S.
2013-02-01
All oxide thin film transistors (TFT) with zinc oxide active layer were fabricated by chemical solution deposition (CSD) using aqueous solutions on glass substrate. Thin film transistors (TFTs) with amorphous zinc oxide as channel layers and poly-vinyl alcohol as dielectric layers were fabricated at low temperatures by chemical solution deposition (CSD). Atomic force microscopy (AFM) confirmed nano grain size with fairly smooth surface topography. Very small leakage currents were achieved in the transfer curves, while soft saturation was observed in the output current voltage (I-V) characteristics of the device. Optical transmission of better than 87% in the visible region was estimated, which is better than the organic gate insulator based ZnO TFTs reported so far. Our results offer lot of promise to TFT based display and optoelectronics.
Dielectric property study of poly(4-vinylphenol)-graphene oxide nanocomposite thin film
NASA Astrophysics Data System (ADS)
Roy, Dhrubojyoti
2018-05-01
Thin film capacitor device having a sandwich structure of indium tin oxide (ITO)-coated glass/polymer or polymer nanocomposite /silver has been fabricated and their dielectric and leakage current properties has been studied. The dielectric properties of the capacitors were characterized for frequencies ranging from 1 KHz to 1 MHz. 5 wt% Poly(4-vinylphenol)(PVPh)-Graphene (GO) nanocomposite exhibited an increase in dielectric constant to 5.6 and small rise in dielectric loss to around˜0.05 at 10 KHz w.r.t polymer. The DC conductivity measurements reveal rise of leakage current in nanocomposite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majzoobi, A.; Joshi, R. P., E-mail: ravi.joshi@ttu.edu; Neuber, A. A.
Particle-in-cell simulations are performed to analyze the efficiency, output power and leakage currents in a 12-Cavity, 12-Cathode rising-sun magnetron with diffraction output (MDO). The central goal is to conduct a parameter study of a rising-sun magnetron that comprehensively incorporates performance enhancing features such as transparent cathodes, axial extraction, the use of endcaps, and cathode extensions. Our optimum results demonstrate peak output power of about 2.1 GW, with efficiencies of ∼70% and low leakage currents at a magnetic field of 0.45 Tesla, a 400 kV bias with a single endcap, for a range of cathode extensions between 3 and 6 centimeters.
Stroh, Christine; Köckerling, Ferdinand; Volker, Lange; Frank, Benedix; Stefanie, Wolff; Christian, Knoll; Christiane, Bruns; Thomas, Manger
2016-05-01
Laparoscopic sleeve gastrectomy (SG) is an upcoming procedure in bariatric surgery and is currently performed worldwide. Staple line leakage, as the most frequent and most feared complication, is still a major concern. Since 2005 data from patients undergoing bariatric procedures in Germany have been prospectively registered in an online database and analyzed. All patients who had undergone primary SG within a 7-year period were considered for analysis. Using the German Bariatric Surgery Registry, data from more than 11,800 SGs were collected between January 1, 2005, and December 31, 2013. Staple line leak rate decreased from 6.5% to 1.4%. Male sex, higher body mass index, concomitant sleep apnea, conversion to laparotomy, longer operation time, a combination of buttresses and oversewing, and the occurrence of intraoperative complications were associated with a significantly higher leakage rate compared with when using either buttresses or oversewing alone. On multivariable analysis, operation time and year of procedure only had a significant impact on staple line leakage rate. Owing to the growing experience a constant decrease in the leakage rate after SG has been observed. Staple line disruption may still lead to sepsis, multiorgan dysfunction, and increased mortality. The results of the current study demonstrated that there are factors that increase the risk of leakage and which would enable surgeons to define risk groups, select patients more carefully, and offer closer follow-up during the postoperative course with early recognition and adequate treatment.
NASA Astrophysics Data System (ADS)
Walukow, Stephy B.; Manjang, Salama; Zainuddin, Zahir; Samman, Faizal Arya
2018-03-01
This research is to analyze design of ceramic and polymer 150 kV insulators for the tropical area. The use of an insulator certainly requires an electric field. The leakage current and breakdown voltage this happens the contaminant on the surface of the insulator. This type of contaminant can be rain, dust, salt air, extreme weather (much in tropical climates), industrial pollutants and cracks on the surface resulting in collisions. The method used in this research is magnetic field and electric field isolator using Quicfield software. To get the test results variation ranges 20 kV, 70 kV and 150 kV. Side effects of magnetic and electric fields around the insulator. The simulation results show the accumulated contaminants on the surface. Planning should be done in insulator insulator on unstable insulator. Thus, the approach using this commercially available software can be applied to. Therefore, the development of further simulations on the different types of composite insulators used on.
Zinc Oxide-Based Schottky Diode Prepared Using Radio-Frequency Magnetron Cosputtering System
NASA Astrophysics Data System (ADS)
Lai, Bo-Ting; Lee, Ching-Ting; Hong, Jhen-Dong; Yao, Shiau-Lu; Liu, Day-Shan
2010-08-01
The rectifying property of a zinc oxide (ZnO)-based Schottky diode prepared using a radio-frequency (rf) magnetron cosputtering system was improved by enhancing the cosputtered ZnO crystal quality, thereby optimizing the ohmic contact resistance and compensating the Schottky contact surface states. An undoped ZnO layer with a high c-axis orientation and a low internal residual stress was achieved using a postannealing treatment. A homogeneous n-type ZnO-indium tin oxide (ITO) cosputtered film was deposited onto the undoped ZnO layer to optimize the ohmic contact behavior to the Al electrode. The Schottky contact surface of the undoped ZnO layer to the Ni/Au electrode was passivated using an oxygen plasma treatment. Owing to the compensation of the native oxygen vacancies (VO) on the undoped ZnO surface, the leakage current markedly decreased and subsequently led to a quality Schottky diode performance with an ideality factor of 1.23 and a Schottky barrier height of 0.82 eV.
Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hacke, Peter; Burton, Patrick; Hendrickson, Alex
2015-12-03
The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 order of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea saltmore » on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.« less
NASA Technical Reports Server (NTRS)
Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.;
2015-01-01
Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.
Passive electrical monitoring and localization of fluid leakages from wells
NASA Astrophysics Data System (ADS)
Revil, A.; Mao, D.; Haas, A. K.; Karaoulis, M.; Frash, L.
2015-02-01
Electrokinetic phenomena are a class of cross-coupling phenomena involving the relative displacement between the pore water (together with the electrical diffuse layer) with respect to the solid phase of a porous material. We demonstrate that electrical fields of electrokinetic nature can be associated with fluid leakages from wells. These leakages can be remotely monitored and the resulting signals used to localize their causative source distribution both in the laboratory and in field conditions. The first laboratory experiment (Experiment #1) shows how these electrical fields can be recorded at the surface of a cement block during the leakage of a brine from a well. The measurements were performed with a research-grade medical electroencephalograph and were inverted using a genetic algorithm to localize the causative source of electrical current and therefore, localize the leak in the block. Two snapshots of electrical signals were used to show how the leak evolved over time. The second experiment (Experiment #2) was performed to see if we could localize a pulse water injection from a shallow well in field conditions in the case of a heterogeneous subsurface. We used the same equipment as in Experiment #1 and processed the data with a trend removal algorithm, picking the amplitude from 24 receiver channels just after the water injection. The amplitude of the electric signals changed from the background level indicating that a volume of water was indeed flowing inside the well into the surrounding soil and then along the well. We used a least-square inversion algorithm to invert a snapshot of the electrical potential data at the injection time to localize the source of the self-potential signals. The inversion results show positive potential anomalies in the vicinity of the well. For both experiments, forward numerical simulations of the problem using a finite element package were performed in order to assess the underlying physics of the causative source of the observed electrical potential anomalies and how they are related to the flow of the water phase.
LCDRS FLOW FROM DOUBLE-LINED LANDFILLS AND SURFACE IMPOUNDMENTS
This report presents field data on the measured flows of liquid from the leakage detection, collection, and removal systems (LDCRSs) of 28 double-lined surface impoundment facilities. or each facility, information on design and operation is presented, as is an evaluation of the s...
li, Lin; Pian, Yaya; Chen, Shaolong; Hao, Huaijie; Zheng, Yuling; Zhu, Li; Xu, Bin; Liu, Keke; Li, Min; Jiang, Hua; Jiang, Yongqiang
2016-01-01
Vascular leakage frequently occurs in patients with severe Staphylococcus aureus infection. However, the mechanism underlying S. aureus infection-induced vascular leakage remains unclear. Here, we identified the S. aureus virulence factor phenol-soluble modulin (PSM)α4 from the culture supernatant of strain USA300 as a stimulator of heparin-binding protein (HBP) release from polymorphonuclear neutrophils (PMNs) and demonstrated that PSMα4-induced HBP release from PMNs leads to vascular leakage. PSMα4 appeared less cytolytic than PSMα1–3 and was insensitive to lipoproteins; it significantly increased myeloperoxidase and elastase release from PMNs and cell surface CD63 expression in PMNs. PSMα4-induced HBP release required formyl peptide receptor 2 (FPR2) and phosphoinositide 3-kinase (PI3K) and depended on Ca2+ influx and cytoskeleton rearrangement. Thus, PSMα4 may stimulate HBP release by activating FPR2 and PI3K to initiate PMN degranulation. PSMα4-induced HBP release from PMNs increased endothelial cell monolayer permeability in vitro and induced vascular leakage in mice. This novel function of PSMα4 may contribute to the pathogenesis of S. aureus and may be a potential therapeutic target. PMID:27383625
Frerichs, Janin; Oppermann, Birte I; Gwosdz, Simone; Möller, Ingo; Herrmann, Martina; Krüger, Martin
2013-04-01
CO2 capture and storage (CCS) in deep geological formations is one option currently evaluated to reduce greenhouse gas emissions. Consequently, the impact of a possible CO2 leakage from a storage site into surface environments has to be evaluated. During such a hypothetical leakage event, the CO2 migrates upwards along fractures entering surface soils, a scenario similar to naturally occurring CO2 vents. Therefore, such a natural analogue site at the Laacher See was chosen for an ecosystem study on the effects of high CO2 concentrations on soil chemistry and microbiology. The microbial activities revealed differences in their spatial distribution and temporal variability for CO2 -rich and reference soils. Furthermore, the abundance of several functional and group-specific gene markers revealed further differences, for example, a decrease in Geobacteraceae and an increase in sulphate-reducing prokaryotes in the vent centre. Molecular-biological fingerprinting of the microbial communities with DGGE indicated a shift in the environmental conditions within the Laacher See soil column leading to anaerobic and potentially acidic microenvironments. Furthermore, the distribution and phylogenetic affiliation of the archaeal 16S rRNA genes, the presence of ammonia-oxidizing Archaea and the biomarker analysis revealed a predominance of Thaumarchaeota as possible indicator organisms for elevated CO2 concentrations in soils. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
A Burke-Schumann analysis of diffusion-flame structures supported by a burning droplet
NASA Astrophysics Data System (ADS)
Nayagam, Vedha; Dietrich, Daniel L.; Williams, Forman A.
2017-07-01
A Burke-Schumann description of three different regimes of combustion of a fuel droplet in an oxidising atmosphere, namely the premixed-flame regime, the partial-burning regime and the diffusion-flame regime, is presented by treating the fuel and oxygen leakage fractions through the flame as known parameters. The analysis shows that the burning-rate constant, the flame-standoff ratio, and the flame temperature in these regimes can be obtained from the classical droplet-burning results by suitable definitions of an effective ambient oxygen mass fraction and an effective fuel concentration in the droplet interior. The results show that increasing oxygen leakage alone through the flame lowers both the droplet burning rate and the flame temperature, whereas leakage of fuel alone leaves the burning rate unaffected while reducing the flame temperature and moving the flame closer to the droplet surface. Solutions for the partial-burning regime are shown to exist only for a limited range of fuel and oxygen leakage fractions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... water surface elevation requirement, pursuant to Article 403 of the Hat Creek Hydroelectric Project. b... Electric Company (PG&E) is requesting a temporary variance of its water surface elevation requirement of... purpose of the water surface elevation of Cassel Pond is to mitigate the new water leakage found on the...
Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies.
Biastoch, A; Böning, C W; Schwarzkopf, F U; Lutjeharms, J R E
2009-11-26
The transport of warm and salty Indian Ocean waters into the Atlantic Ocean-the Agulhas leakage-has a crucial role in the global oceanic circulation and thus the evolution of future climate. At present these waters provide the main source of heat and salt for the surface branch of the Atlantic meridional overturning circulation (MOC). There is evidence from past glacial-to-interglacial variations in foraminiferal assemblages and model studies that the amount of Agulhas leakage and its corresponding effect on the MOC has been subject to substantial change, potentially linked to latitudinal shifts in the Southern Hemisphere westerlies. A progressive poleward migration of the westerlies has been observed during the past two to three decades and linked to anthropogenic forcing, but because of the sparse observational records it has not been possible to determine whether there has been a concomitant response of Agulhas leakage. Here we present the results of a high-resolution ocean general circulation model to show that the transport of Indian Ocean waters into the South Atlantic via the Agulhas leakage has increased during the past decades in response to the change in wind forcing. The increased leakage has contributed to the observed salinification of South Atlantic thermocline waters. Both model and historic measurements off South America suggest that the additional Indian Ocean waters have begun to invade the North Atlantic, with potential implications for the future evolution of the MOC.
Hovakeemian, Sara G.; Liu, Runhui; Gellman, Samuel H.; Heerklotz, Heiko
2015-01-01
Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity arises from permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer’s MIC, 3 μg/mL. At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, Poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of Poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, Poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to <100%) and graded, non-specific among zwitterionic and polar yeast lipid vesicles, additive with detergent action, and correlates poorly with biological activity. Based on these results, we conclude that comprehensive leakage experiments can provide a detailed description of the mode of action of membrane permeabilizing compounds. Without this thorough approach, it would have been logical to assume that the two nylon-3 polymers we examined act via similar mechanisms; it is surprising that their mechanisms are so distinct. Some, but not all mechanisms of vesicle permeabilization allow for antimicrobial activity. PMID:26234884
Hovakeemian, Sara G; Liu, Runhui; Gellman, Samuel H; Heerklotz, Heiko
2015-09-14
Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity correlates with the permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer's MIC, 3 μg mL(-1). At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to <100%) and graded, non-specific among zwitterionic and polar yeast lipid vesicles, additive with detergent action, and correlates poorly with biological activity. Based on these results, we conclude that comprehensive leakage experiments can provide a detailed description of the mode of action of membrane permeabilizing compounds. Without this thorough approach, it would have been logical to assume that the two nylon-3 polymers we examined act via similar mechanisms; it is surprising that their mechanisms are so distinct. Some, but not all mechanisms of vesicle permeabilization allow for antimicrobial activity.
NASA Astrophysics Data System (ADS)
Hourdakis, E.; Koutsoureli, M.; Papaioannou, G.; Nassiopoulou, A. G.
2018-06-01
Barrier-type anodic alumina thin films are interesting for use in high capacitance density metal-insulator-metal capacitors due to their excellent dielectric properties at small thickness. This thickness is easily controlled by the anodization voltage. In previous papers we studied the main parameters of interest of the Al/barrier-type anodic alumina/Al structure for use in RF applications and showed the great potential of barrier-type anodic alumina in this respect. In this paper, we investigated in detail charging/discharging processes and leakage current of the above dielectric material. Two different sets of metal-insulator-metal capacitors were studied, namely, with the top Al electrode being either e-gun deposited or sputtered. The dielectric constant of the barrier-type anodic alumina was found at 9.3. Low leakage current was observed in all samples studied. Furthermore, depending on the film thickness, field emission following the Fowler-Nordheim mechanism was observed above an applied electric field. Charging of the anodic dielectric was observed, occurring in the bulk of the anodic layer. The stored charge was of the order of few μC/cm2 and the calculated trap density ˜2 × 1018 states/cm3, the most probable origin of charge traps being, in our opinion, positive electrolyte ions trapped in the dielectric during anodization. We do not think that oxygen vacancies play an important role, since their existence would have a more important impact on the leakage current characteristics, such as resistive memory effects or significant changes during annealing, which were not observed. Finally, discharging characteristic times as high as 5 × 109 s were measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.
2012-09-24
Non-destructive and destructive testing methods were employed to evaluate a documented boric acid leakage path through an Alloy 600 control rod drive mechanism (CRDM) penetration from the North Anna Unit 2 reactor pressure vessel head that was removed from service in 2002. A previous ultrasonic in-service-inspection (ISI) conducted by industry prior to the head removal, identified a probable leakage path in Nozzle 63 located in the interference fit between the penetration tube and the vessel head. In this current examination, Nozzle 63 was examined using phased array (PA) ultrasonic testing with a 5.0-MHz, eight-element annular array; immersion data were acquiredmore » from the nozzle inner diameter (ID) surface. A variety of focal laws were employed to evaluate the signal responses from the interference fit region. These responses were compared to responses obtained from a mockup specimen that was used to determine detection limits and characterization capabilities for wastage and boric acid presence in the interference fit region. Nozzle 63 was destructively examined after the completion of the ultrasonic nondestructive evaluation (NDE) to visually assess the leak paths. These destructive and nondestructive results compared favorably« less
Estimation of steady-state leakage current in polycrystalline PZT thin films
NASA Astrophysics Data System (ADS)
Podgorny, Yury; Vorotilov, Konstantin; Sigov, Alexander
2016-09-01
Estimation of the steady state (or "true") leakage current Js in polycrystalline ferroelectric PZT films with the use of the voltage-step technique is discussed. Curie-von Schweidler (CvS) and sum of exponents (Σ exp ) models are studied for current-time J (t) data fitting. Σ exp model (sum of three or two exponents) gives better fitting characteristics and provides good accuracy of Js estimation at reduced measurement time thus making possible to avoid film degradation, whereas CvS model is very sensitive to both start and finish time points and give in many cases incorrect results. The results give rise to suggest an existence of low-frequency relaxation processes in PZT films with characteristic duration of tens and hundreds of seconds.
Buried structure for increasing fabrication performance of micromaterial by electromigration
NASA Astrophysics Data System (ADS)
Kimura, Yasuhiro; Saka, Masumi
2016-06-01
The electromigration (EM) technique is a physical synthetic growth method for micro/nanomaterials. EM causes atomic diffusion in a metal line by high-density electron flows. The intentional control of accumulation and relaxation of atoms by EM can lead to the fabrication of a micro/nanomaterial. TiN passivation has been utilized as a component of sample in the EM technique. Although TiN passivation can simplify the cumbersome processes for preparing the sample, the leakage of current naturally occurs because of the conductivity of TiN as a side effect and decreases the performance of micro/nanomaterial fabrication. In the present work, we propose a buried structure, which contributes to significantly decreasing the current for fabricating an Al micromaterial by confining the current flow in the EM technique. The fabrication performance was evaluated based on the threshold current for fabricating an Al micromaterial using the buried structure and the previous structure with the leakage of current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Euihan; Hwang, Gwangseok; Chung, Jaehun
2015-01-26
Performance degradation resulting from efficiency droop during high-power operation is a critical problem in the development of high-efficiency light-emitting diodes (LEDs). In order to resolve the efficiency droop and increase the external quantum efficiency of LEDs, the droop's origin should be identified first. To experimentally investigate the cause of efficiency droop, we used null-point scanning thermal microscopy to quantitatively profile the temperature distribution on the cross section of the epi-layers of an operating GaN-based vertical LED with nanoscale spatial resolution at four different current densities. The movement of temperature peak towards the p-GaN side as the current density increases suggestsmore » that more heat is generated by leakage current than by Auger recombination. We therefore suspect that at higher current densities, current leakage becomes the dominant cause of the droop problem.« less
Lee, Ke-Jing; Chang, Yu-Chi; Lee, Cheng-Jung; Wang, Li-Wen; Wang, Yeong-Her
2017-12-09
A one-transistor and one-resistor (1T1R) architecture with a resistive random access memory (RRAM) cell connected to an organic thin-film transistor (OTFT) device is successfully demonstrated to avoid the cross-talk issues of only one RRAM cell. The OTFT device, which uses barium zirconate nickelate (BZN) as a dielectric layer, exhibits favorable electrical properties, such as a high field-effect mobility of 5 cm²/Vs, low threshold voltage of -1.1 V, and low leakage current of 10 -12 A, for a driver in the 1T1R operation scheme. The 1T1R architecture with a TiO₂-based RRAM cell connected with a BZN OTFT device indicates a low operation current (10 μA) and reliable data retention (over ten years). This favorable performance of the 1T1R device can be attributed to the additional barrier heights introduced by using Ni (II) acetylacetone as a substitute for acetylacetone, and the relatively low leakage current of a BZN dielectric layer. The proposed 1T1R device with low leakage current OTFT and excellent uniform resistance distribution of RRAM exhibits a good potential for use in practical low-power electronic applications.
Detectability of Wellbore CO2 Leakage using the Magnetotelluric Method
NASA Astrophysics Data System (ADS)
Yang, X.; Buscheck, T. A.; Mansoor, K.; Carroll, S.
2016-12-01
We assessed the effectiveness of the magnetotelluric (MT) method in detecting CO2 and brine leakage through a wellbore, which penetrates a CO2 storage reservoir, into overlying aquifers, 0 to 1720 m in depth, in support of the USDOE National Risk Assessment Partnership (NRAP) monitoring program. Synthetic datasets based on the Kimberlina site in the southern San Joaquin Basin, California were created using CO2 storage reservoir models, wellbore leakage models, and groundwater/geochemical models of the overlying aquifers. The species concentrations simulated with the groundwater/geochemical models were converted into bulk electrical conductivity (EC) distributions as the MT model input. Brine and CO2 leakage into the overlying aquifers increases ion concentrations, and thus results in an EC increase, which may be detected by the MT method. Our objective was to estimate and maximize the probability of leakage detection using the MT method. The MT method is an electromagnetic geophysical technique that images the subsurface EC distribution by measuring natural electric and magnetic fields in the frequency range from 0.01 Hz to 1 kHz with sensors on the ground surface. The ModEM software was used to predict electromagnetic responses from brine and CO2 leakage and to invert synthetic MT data for recovery of subsurface conductivity distribution. We are in the process of building 1000 simulations for ranges of permeability, leakage flux, and hydraulic gradient to study leakage detectability and to develop an optimization method to answer when, where and how an MT monitoring system should be deployed to maximize the probability of leakage detection. This work was sponsored by the USDOE Fossil Energy, National Energy Technology Laboratory, managed by Traci Rodosta and Andrea McNemar. This work was performed under the auspices of the USDOE by LLNL under contract DE-AC52-07NA27344. LLNL IM release number is LLNL-ABS-699276.
Computational Investigation of Novel Tip Leakage Mitigation Methods for High Pressure Turbine Blades
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Gupta, Abhinav; Shyam, Vikram
2014-01-01
This paper presents preliminary findings on a possible approach to reducing tip leakage losses. In this paper a computational study was conducted on the Energy Efficient Engine (EEE) High Pressure Turbine (HPT) rotor tip geometry using the commercial numerical solver ANSYS FLUENT. The flow solver was validated against aerodynamic data acquired in the NASA Transonic Turbine Blade Cascade facility. The scope of the ongoing study is to computationally investigate how the tip leakage and overall blade losses are affected by (1) injection from the tip near the pressure side, (2) injection from the tip surface at the camber line, and (3) injection from the tip surface into the tip separation bubble. The objective is to identify the locations on the tip surface at which to place appropriately configured blowing keeping in mind the film cooling application of tip blowing holes. The validation was conducted at Reynolds numbers of 85,000, 343,000, and 685,000 and at engine realistic flow conditions. The coolant injection simulations were conducted at a Reynolds number of 343,000 based on blade chord and inlet velocity and utilized the SST turbulence model in FLUENT. The key parameters examined are the number of jets, jet angle and jet location. A coolant to inlet pressure ratio of 1.0 was studied for angles of +30 deg, -30 deg, and 90 deg to the local free stream on the tip. For the 3 hole configuration, 3 holes spaced 3 hole diameters apart with length to diameter ratio of 1.5 were used. A simulation including 11 holes along the entire mean camber line is also presented (30 deg toward suction side). In addition, the effect of a single hole is also compared to a flat tip with no injection. The results provide insight into tip flow control methods and can be used to guide further investigation into tip flow control. As noted in past research it is concluded that reducing leakage flow is not necessarily synonymous with reducing losses due to leakage.
Computational Investigation of Novel Tip Leakage Mitigation Methods for High Pressure Turbine Blades
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Gupta, Abhinav; Shyam, Vikram
2014-01-01
This paper presents preliminary findings on a possible approach to reducing tip leakage losses. In this paper a computational study was conducted on the EEE (Energy Efficient Engine) HPT (High Pressure Turbine) rotor tip geometry using the commercial numerical solver ANSYS FLUENT. The flow solver was validated against aerodynamic data acquired in the NASA Transonic Turbine Blade Cascade facility. The scope of the ongoing study is to computationally investigate how the tip leakage and overall blade losses are affected by 1. injection from the tip near the pressure side, 2. injection from the tip surface at the camber line, and 3. injection from the tip surface into the tip separation bubble. The objective is to identify the locations on the tip surface at which to place appropriately configured blowing keeping in mind the film cooling application of tip blowing holes. The validation was conducted at Reynolds numbers of 85,000, 343,000 and 685,000 and at engine realistic flow conditions. The coolant injection simulations were conducted at a Reynolds number of 343,000 based on blade chord and inlet velocity and utilized the SST turbulence model in FLUENT. The key parameters examined are the number of jets, jet angle and jet location. A coolant to inlet pressure ratio of 1.0 was studied for angles of +30 deg., -30 deg. and 90 deg. to the local free stream on the tip. For the 3 hole configuration, 3 holes spaced 3 hole diameters apart with length to diameter ratio of 1.5 were used. A simulation including 11 holes along the entire mean camber line is also presented (30 degrees toward suction side). In addition, the effect of a single hole is also compared to a flat tip with no injection. The results provide insight into tip flow control methods and can be used to guide further investigation into tip flow control. As noted in past research it is concluded that reducing leakage flow is not necessarily synonymous with reducing losses due to leakage.
A study to investigate the chemical stability of gallium phosphate oxide/gallium arsenide phosphide
NASA Technical Reports Server (NTRS)
Kuhlman, G. J.
1979-01-01
The elemental composition with depth into the oxide films was examined using secondary ion mass spectrometry. Results indicate that the layers are arsenic-deficient through the bulk of the oxide and arsenic-rich near both the oxide surface and the oxide-semiconductor interface region. Phosphorus is incorporated into the oxide in an approximately uniform manner. The MIS capacitor structures exhibited deep-depletion characteristics and hysteresis indicative of electron trapping at the oxide-semiconductor interface. Post-oxidation annealing of the films in argon or nitrogen generally results in slightly increased dielectric leakage currents and decreased C-V hysteresis effects, and is associated with arsenic loss at the oxide surface. The results of bias-temperature stress experiments indicate that the major instability effects are due to changes in the electron trapping behavior. No changes were observed in the elemental profiles following electrical stressing, indicating that the grown films are chemically stable under device operating conditions.
Geodesic detection of Agulhas rings
NASA Astrophysics Data System (ADS)
Beron-Vera, F. J.; Wang, Y.; Olascoaga, M. J.; Goni, G. J.; Haller, G.
2012-12-01
Mesoscale oceanic eddies are routinely detected from instantaneous velocities. While simple to implement, this Eulerian approach gives frame-dependent results and often hides true material transport by eddies. Building on the recent geodesic theory of transport barriers, we develop an objective (i.e., frame-independent) method for accurately locating coherent Lagrangian eddies. These eddies act as compact water bodies, with boundaries showing no leakage or filamentation over long periods of time. Applying the algorithm to altimetry-derived velocities in the South Atlantic, we detect, for the first time, Agulhas rings that preserve their material coherence for several months, while eddy candidates yielded by other approaches tend to disperse or leak within weeks. These findings suggest that current Eulerian estimates of the Agulhas leakage need significant revision.Temporal evolution of fluid patches identified as eddies by different methods. First column: eddies extracted using geodesic eddy identification [1,2]. Second column: eddies identified from sea surface height (SSH) using the methodology of Chelton et al. [2] with U/c > 1. Third column: eddies identified as elliptic regions by the Okubo-Weiss (OW) criterion [e.g., 3]. Fourth column: eddies identified as mesoelliptic (ME) regions by Mezic et al.'s [4] criterion. References: [1] Beron-Vera et al. (2012). Geodesic eddy detection suggests reassessment of Agulhas leakage. Proc. Nat. Acad. Sci. USA, submitted. [2] Haller & Beron-Vera (2012). Geodesic theory of transport barriers in two-dimensional flows. Physica D, in press. [2] Chelton et al. (2011). Prog. Oceanog. 91, 167. [3] Chelton et al. (2007). Geophys. Res. Lett. 34, L5606. [4] Mezic et al. (2010). Science 330, 486.
Improving Attachments of Non-Invasive (Type III) Electronic Data Loggers to Cetaceans
2011-09-30
Micro texturing of the suction cup to reduced leakage: Objective: Use microtexturing to create a superhydrophobic barrier between the lip and the...surface area of a solid, thereby amplifying the natural hydrophobicity of a surface. Superhydrophobicity is created by interfacial tension forces that
NASA Astrophysics Data System (ADS)
Joseph, Abhilash J.; Kumar, Binay
2018-03-01
The conventionally reported value of remanent polarization (Pr) contains contribution from non-remanent components which are not usable for memory device applications. This report presents techniques which extract the true-remanent (intrinsic) component of polarization after eliminating the non-remanent component in ferroelectric ceramics. For this, "remanent hysteresis task" and "positive-up-negative-down technique" were performed which utilized the switchable properties of polarizations to nullify the contributions from the non-remanent (non-switchable) components. The report also addresses the time-dependent leakage behavior of the ceramics focusing on the presence of resistive leakage (a time-dependent parameter) present in the ceramics. The techniques presented here are especially useful for polycrystalline ceramics where leakage current leads to an erroneous estimation of Pr.
Vail, III, William B.
1993-01-01
A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.
Carrier Transport of Silver Nanowire Contact to p-GaN and its Influence on Leakage Current of LEDs
NASA Astrophysics Data System (ADS)
Oh, Munsik; Kang, Jae-Wook; Kim, Hyunsoo
2018-03-01
The authors investigated the silver nanowires (AgNWs) contact formed on p-GaN. Transmission line model applied to the AgNWs contact to p-GaN produced near ohmic contact with a specific contact resistance (ρ sc) of 10-1˜10-4 Ω·cm2. Noticeably, the contact resistance had a strong bias-voltage (or current-density) dependence associated with a local joule heating effect. Current-voltage-temperature (I-V-T) measurement revealed a strong temperature dependence with respect to ρ sc, indicating that the temperature played a key role of an enhanced carrier transport. The local joule heating at AgNW/GaN interface, however, resulted in a generation of leakage current of light-emitting diodes (LEDs) caused by degradation of AgNW contact.
Vail, W.B. III.
1993-02-16
A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.
NASA Astrophysics Data System (ADS)
Kim, Heesang; Oh, Byoungchan; Kim, Kyungdo; Cha, Seon-Yong; Jeong, Jae-Goan; Hong, Sung-Joo; Lee, Jong-Ho; Park, Byung-Gook; Shin, Hyungcheol
2010-09-01
We generated traps inside gate oxide in gate-drain overlap region of recess channel type dynamic random access memory (DRAM) cell transistor through Fowler-Nordheim (FN) stress, and observed gate induced drain leakage (GIDL) current both in time domain and in frequency domain. It was found that the trap inside gate oxide could generate random telegraph signal (RTS)-like fluctuation in GIDL current. The characteristics of that fluctuation were similar to those of RTS-like fluctuation in GIDL current observed in the non-stressed device. This result shows the possibility that the trap causing variable retention time (VRT) in DRAM data retention time can be located inside gate oxide like channel RTS of metal-oxide-semiconductor field-effect transistors (MOSFETs).
Neutron-detecting apparatuses and methods of fabrication
Dahal, Rajendra P.; Huang, Jacky Kuan-Chih; Lu, James J. Q.; Danon, Yaron; Bhat, Ishwara B.
2015-10-06
Neutron-detecting structures and methods of fabrication are provided which include: a substrate with a plurality of cavities extending into the substrate from a surface; a p-n junction within the substrate and extending, at least in part, in spaced opposing relation to inner cavity walls of the substrate defining the plurality of cavities; and a neutron-responsive material disposed within the plurality of cavities. The neutron-responsive material is responsive to neutrons absorbed for releasing ionization radiation products, and the p-n junction within the substrate spaced in opposing relation to and extending, at least in part, along the inner cavity walls of the substrate reduces leakage current of the neutron-detecting structure.
Pentacene-based low voltage organic field-effect transistors with anodized Ta2O5 gate dielectric
NASA Astrophysics Data System (ADS)
Jeong, Yeon Taek; Dodabalapur, Ananth
2007-11-01
Pentacene-based low voltage organic field-effect transistors were realized using an anodized Ta2O5 gate dielectric. The Ta2O5 gate dielectric layer with a surface roughness of 1.3Å was obtained by anodizing an e-beam evaporated Ta film. The device exhibited values of saturation mobility, threshold voltage, and Ion/Ioff ratio of 0.45cm2/Vs, 0.56V, and 7.5×101, respectively. The gate leakage current was reduced by more than 70% with a hexamethyldisilazane (HMDS) treatment on the Ta2O5 layer. The HMDS treatment also resulted in enhanced mobility values and a larger pentacene grain size.
Relating Agulhas Leakage to the Agulhas Current Retroflection Location
2009-11-03
branch return flow of the Atlantic meridional overturning circulation (Gordon, 1986; Weijer et al., 1999; Peeters et al., 2004; Biastoch et al., 2008a...demonstrated that the mesoscale dynamics reflected in the decadal variability of the Atlantic meridional overturning circulation (Biastoch et al...Lutjeharms, J. R. E.: Agulhas leakage dynamics affects decadal variability in Atlantic overturn - ing circulation , Nature, 456, 489–492, 2008a. Biastoch, A
Design and fabrication of piezoresistive p-SOI Wheatstone bridges for high-temperature applications
NASA Astrophysics Data System (ADS)
Kähler, Julian; Döring, Lutz; Merzsch, Stephan; Stranz, Andrej; Waag, Andreas; Peiner, Erwin
2011-06-01
For future measurements while depth drilling, commercial sensors are required for a temperature range from -40 up to 300 °C. Conventional piezoresistive silicon sensors cannot be used at higher temperatures due to an exponential increase of leakage currents which results in a drop of the bridge voltage. A well-known procedure to expand the temperature range of silicon sensors and to reduce leakage currents is to employ Silicon-On-Insulator (SOI) instead of standard wafer material. Diffused resistors can be operated up to 200 °C, but show the same problems beyond due to leakage of the p-njunction. Our approach is to use p-SOI where resistors as well as interconnects are defined by etching down to the oxide layer. Leakage is suppressed and the temperature dependence of the bridges is very low (TCR = (2.6 +/- 0.1) μV/K@1 mA up to 400 °C). The design and process flow will be presented in detail. The characteristics of Wheatstone bridges made of silicon, n- SOI, and p-SOI will be shown for temperatures up to 300 °C. Besides, thermal FEM-simulations will be described revealing the effect of stress between silicon and the silicon-oxide layer during temperature cycling.
Aerodynamic tip desensitization in axial flow turbines
NASA Astrophysics Data System (ADS)
Dey, Debashis
The leakage flow near the tip of unshrouded rotor blades in axial turbines imposes significant thermal loads on the blade. It is also responsible for up to a third of aerodynamic losses in a turbine stage. The leakage flow, mainly induced by the pressure differential across the rotor tip section, usually rolls into a stream-wise vertical structure near the suction side part of the blade tip. The current study uses several concepts to reduce the severity of losses introduced by the leakage vortex. Three tip desensitization techniques, both active and passive, are examined. Coolant flow from a tip trench is used to counter the momentum of the leakage jet. Next, a very short winglet obtained by slightly extending the tip platform in the tangential direction is investigated. Lastly, the widely used concept of squealer tip is studied. The current investigation is performed in the Axial Flow Turbine Research Facility (AFTRF) of the Pennsylvania State University. Rotating frame five hole probe measurements as well as stationary frame phase averaged total pressure measurements downstream of a single stage turbine facility were taken. The study enables one to draw conclusions about the nature of the flowfield in the rotor tip region. It also shows that significant efficiency gains could be obtained by using some of these techniques.
NASA Astrophysics Data System (ADS)
Packeer, F.; Mohamad Isa, M.; Mat Jubadi, W.; Ian, K. W.; Missous, M.
2013-07-01
This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 µm gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Schottky contact barrier, an indium-rich channel and a double delta-doped structure, which significantly improves upon the conventional low-noise pHEMT which suffers from high gate current leakage and low breakdown voltage. The outstanding achievements of the new design approach are 99% less gate current leakage and a 73% increase in breakdown voltage, compared with the conventional design. Furthermore, no degradation in RF performance is observed in terms of the cut-off frequency in this new highly tensile strained design. The remarkable performance of this advanced pHEMT design facilitates the implementation of outstanding low-noise devices.
Detailed studies of full-size ATLAS12 sensors
NASA Astrophysics Data System (ADS)
Hommels, L. B. A.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia, M.; Klein, C. T.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.
2016-09-01
The "ATLAS ITk Strip Sensor Collaboration" R&D group has developed a second iteration of single-sided n+-in-p type micro-strip sensors for use in the tracker upgrade of the ATLAS experiment at the High-Luminosity (HL) LHC. The full size sensors measure approximately 97 × 97mm2 and are designed for tolerance against the 1.1 ×1015neq /cm2 fluence expected at the HL-LHC. Each sensor has 4 columns of 1280 individual 23.9 mm long channels, arranged at 74.5 μm pitch. Four batches comprising 120 sensors produced by Hamamatsu Photonics were evaluated for their mechanical, and electrical bulk and strip characteristics. Optical microscopy measurements were performed to obtain the sensor surface profile. Leakage current and bulk capacitance properties were measured for each individual sensor. For sample strips across the sensor batches, the inter-strip capacitance and resistance as well as properties of the punch-through protection structure were measured. A multi-channel probecard was used to measure leakage current, coupling capacitance and bias resistance for each individual channel of 100 sensors in three batches. The compiled results for 120 unirradiated sensors are presented in this paper, including summary results for almost 500,000 strips probed. Results on the reverse bias voltage dependence of various parameters and frequency dependence of tested capacitances are included for validation of the experimental methods used. Comparing results with specified values, almost all sensors fall well within specification.
NASA Astrophysics Data System (ADS)
Jain, Pushkar; Juneja, Jasbir S.; Bhagwat, Vinay; Rymaszewski, Eugene J.; Lu, Toh-Ming; Cale, Timothy S.
2005-05-01
The effects of substrate heating on the stoichiometry and the electrical properties of pulsed dc reactively sputtered tantalum oxide films over a range of film thickness (0.14 to 5.4 μm) are discussed. The film stoichiometry, and hence the electrical properties, of tantalum oxide films; e.g., breakdown field, leakage current density, dielectric constant, and dielectric loss are compared for two different cases: (a) when no intentional substrate/film cooling is provided, and (b) when the substrate is water cooled during deposition. All other operating conditions are the same, and the film thickness is directly related to deposition time. The tantalum oxide films deposited on the water-cooled substrates are stoichiometric, and exhibit excellent electrical properties over the entire range of film thickness. ``Noncooled'' tantalum oxide films are stoichiometric up to ~1 μm film thickness, beyond that the deposited oxide is increasingly nonstoichiometric. The presence of partially oxidized Ta in thicker (>~1 μm) noncooled tantalum oxide films causes a lower breakdown field, higher leakage current density, higher apparent dielectric constant, and dielectric loss. The growth of nonstoichiometric tantalum oxide in thicker noncooled films is attributed to decreased surface oxygen concentration due to oxygen recombination and desorption at higher film temperatures (>~100 °C). The quantitative results presented reflect experience with a specific piece of equipment; however, the procedures presented can be used to characterize deposition processes in which film stoichiometry can change.
NASA Astrophysics Data System (ADS)
Sekhar, M. Chandra; Uthanna, S.; Martins, R.; Jagadeesh Chandra, S. V.; Elangovan, E.
2012-04-01
Thin films of (Ta2O5)0.85(TiO2)0.15 were deposited on quartz and p-Si substrates by DC reactive magnetron sputtering at different substrate temperatures (Ts) in the range 303 - 873 K. The films deposited at 303 0K were in the amorphous and it transformed to crystalline at substrate temperatures >= 573 0K. The crystallite size was increased from 50 nm to 72 nm with the increase of substrate temperature. The surface morphology was significantly influenced with the substrate temperature. After deposition of the (Ta2O5)0.85(TiO2)0.15 films on Si, aluminium (Al) electrode was deposited to fabricate metal/oxide/semiconductor (MOS) capacitors with a configuration of Al/(Ta2O5)0.85(TiO2)0.15/Si. A low leakage current of 7.7 × 10-5 A/cm2 was obtained from the films deposited at 303 K. The leakage current was decreased to 9.3 × 10-8 A/cm2 with the increase of substrate temperature owing to structural changes. The conduction mechanism of the Al/(Ta2O5)0.85(TiO2)0.15/Si capacitors was analyzed and compared with mechanisms of Poole-Frenkel and Schottky emissions. The optical band gap (Eg) was decreased from 4.45 eV to 4.38 eV with the increase in substrate temperature.
On designing of a low leakage patient-centric provider network.
Zheng, Yuchen; Lin, Kun; White, Thomas; Pickreign, Jeremy; Yuen-Reed, Gigi
2018-03-27
When a patient in a provider network seeks services outside of their community, the community experiences a leakage. Leakage is undesirable as it typically leads to higher out-of-network cost for patient and increases barrier for care coordination, which is particularly problematic for Accountable Care Organization (ACO) as the in-network providers are financially responsible for quality of care and outcome. We aim to design a data-driven method to identify naturally occurring provider networks driven by diabetic patient choices, and understand the relationship among provider composition, patient composition, and service leakage pattern. By doing so, we learn the features of low service leakage provider networks that can be generalized to different patient population. Data used for this study include de-identified healthcare insurance administrative data acquired from Capital District Physicians' Health Plan (CDPHP) for diabetic patients who resided in four New York state counties (Albany, Rensselaer, Saratoga, and Schenectady) in 2014. We construct a healthcare provider network based on patients' historical medical insurance claims. A community detection algorithm is used to identify naturally occurring communities of collaborating providers. For each detected community, a profile is built using several new key measures to elucidate stakeholders of our findings. Finally, import-export analysis is conducted to benchmark their leakage pattern and identify further leakage reduction opportunity. The design yields six major provider communities with diverse profiles. Some communities are geographically concentrated, while others tend to draw patients with certain diabetic co-morbidities. Providers from the same healthcare institution are likely to be assigned to the same community. While most communities have high within-community utilization and spending, at 85% and 86% respectively, leakage still persists. Hence, we utilize a metric from import-export analysis to detect leakage, gaining insight on how to minimize leakage. We identify patient-driven provider organization by surfacing providers who share a large number of patients. By analyzing the import-export behavior of each identified community using a novel approach and profiling community patient and provider composition we understand the key features of having a balanced number of PCP and specialists and provider heterogeneity.
NASA Astrophysics Data System (ADS)
Chae, Sang Hoon; Yu, Woo Jong; Bae, Jung Jun; Duong, Dinh Loc; Perello, David; Jeong, Hye Yun; Ta, Quang Huy; Ly, Thuc Hue; Vu, Quoc An; Yun, Minhee; Duan, Xiangfeng; Lee, Young Hee
2013-05-01
Despite recent progress in producing transparent and bendable thin-film transistors using graphene and carbon nanotubes, the development of stretchable devices remains limited either by fragile inorganic oxides or polymer dielectrics with high leakage current. Here we report the fabrication of highly stretchable and transparent field-effect transistors combining graphene/single-walled carbon nanotube (SWCNT) electrodes and a SWCNT-network channel with a geometrically wrinkled inorganic dielectric layer. The wrinkled Al2O3 layer contained effective built-in air gaps with a small gate leakage current of 10-13 A. The resulting devices exhibited an excellent on/off ratio of ~105, a high mobility of ~40 cm2 V-1 s-1 and a low operating voltage of less than 1 V. Importantly, because of the wrinkled dielectric layer, the transistors retained performance under strains as high as 20% without appreciable leakage current increases or physical degradation. No significant performance loss was observed after stretching and releasing the devices for over 1,000 times. The sustainability and performance advances demonstrated here are promising for the adoption of stretchable electronics in a wide variety of future applications.
Electrical safety Q&A. A reference guide for the clinical engineer.
2005-02-01
This guide, which ECRI developed to answer the electrical safety questions most frequently asked by member hospitals, features practical advice for addressing electrical safety concerns in the healthcare environment. Questions addressed include: STANDARDS AND APPROVALS: What electrical safety standards apply? How do NFPA 99 and IEC 60601-1 differ? What organizations approve medical devices? LEAKAGE CURRENT LIMITS AND TESTING: How are leakage current limits established? What limits apply to equipment used in the hospital? And how should the limits be applied in special cases, such as the use of PCs in the patient care area or equipment used in the clinical laboratory? ISOLATED POWER: What are its advantages and disadvantages, and is isolated power needed in the operating room? Other topics addressed include double insulation, ground-fault circuit interrupters (GFCIs), and requirements for medical devices used in the home. Supplementary articles discuss acceptable alternatives to UL listing, the use of Hospital Grade plugs, the limitations of leakage current testing of devices connected to isolated power systems, and the debate about whether to designate ORs as wet locations. Experienced clinical engineers should find this guide to be a handy reference, while those new to the field should find it to be a helpful educational resource.
NASA Astrophysics Data System (ADS)
Wu, Chi-Chang; Hsiao, Yu-Ping; You, Hsin-Chiang; Lin, Guan-Wei; Kao, Min-Fang; Manga, Yankuba B.; Yang, Wen-Luh
2018-02-01
We have developed an organic-based resistive random access memory (ReRAM) by using spin-coated polyimide (PI) as the resistive layer. In this study, the chain distance and number of chain stacks of PI molecules are investigated. We employed different solid contents of polyamic acid (PAA) to synthesize various PI films, which served as the resistive layer of ReRAM, the electrical performance of which was evaluated. By tuning the PAA solid content, the intermolecular interaction energy of the PI films is changed without altering the molecular structure. Our results show that the leakage current in the high-resistance state and the memory window of the PI-based ReRAM can be substantially improved using this technique. The superior properties of the PI-based ReRAM are ascribed to fewer molecular chain stacks in the PI films when the PAA solid content is decreased, hence suppressing the leakage current. In addition, a device retention time of more than 107 s can be achieved using this technique. Finally, the conduction mechanism in the PI-based ReRAM was analyzed using hopping and conduction models.
Threshold-voltage modulated phase change heterojunction for application of high density memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Baihan; Tong, Hao, E-mail: tonghao@hust.edu.cn; Qian, Hang
2015-09-28
Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-raymore » photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.« less
Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soibel, Alexander; Rafol, Sir B.; Khoshakhlagh, Arezou
In this work, we investigated the effect of proton irradiation on the performance of long wavelength infrared InAs/GaSb photodiodes (λ{sub c} = 10.2 μm), based on the complementary barrier infrared detector design. We found that irradiation with 68 MeV protons causes a significant increase of the dark current from j{sub d} = 5 × 10{sup −5} A/cm{sup 2} to j{sub d} = 6 × 10{sup −3} A/cm{sup 2}, at V{sub b} = 0.1 V, T = 80 K and fluence 19.2 × 10{sup 11 }H{sup +}/cm{sup 2}. Analysis of the dark current as a function of temperature and bias showed that the dominant contributor to the dark current in these devices changes from diffusion current to tunneling current after proton irradiation.more » This change in the dark current mechanism can be attributed to the onset of surface leakage current, generated by trap-assisted tunneling processes in proton displacement damage areas located near the device sidewalls.« less
LCDRS FLOW FROM DOUBLE-LINED LANDFILLS AND SURFACE IMPOUNDMENTS. Project Summary (EPA/600/SR-93/070)
A study, sponsored by the U.S. Environmental Protection Agency (EPA), on measured flows from leakage detection, collection, and removal systems (LDCRSs) of 28 double-lined landfills and 8 double-lined surface impoundments indicated — all landfills with geomembrane top liners l...
Size-controlled InGaN/GaN nanorod LEDs with an ITO/graphene transparent layer
NASA Astrophysics Data System (ADS)
Shim, Jae-Phil; Seong, Won-Seok; Min, Jung-Hong; Kong, Duk-Jo; Seo, Dong-Ju; Kim, Hyung-jun; Lee, Dong-Seon
2016-11-01
We introduce ITO on graphene as a current-spreading layer for separated InGaN/GaN nanorod LEDs for the purpose of passivation-free and high light-extraction efficiency. Transferred graphene on InGaN/GaN nanorods effectively blocks the diffusion of ITO atoms to nanorods, facilitating the production of transparent ITO/graphene contact on parallel-nanorod LEDs, without filling the air gaps, like a bridge structure. The ITO/graphene layer sufficiently spreads current in a lateral direction, resulting in uniform and reliable light emission observed from the whole area of the top surface. Using KOH treatment, we reduce series resistance and reverse leakage current in nanorod LEDs by recovering the plasma-damaged region. We also control the size of the nanorods by varying the KOH treatment time and observe strain relaxation via blueshift in electroluminescence. As a result, bridge-structured LEDs with 8 min of KOH treatment show 15 times higher light-emitting efficiency than with 2 min of KOH treatment.
Modeling of Near-Surface Leakage and Seepage of CO2 for Risk Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.; Unger, Andre A.J.
2004-02-18
The injection of carbon dioxide (CO2) into deep geologic carbon sequestration sites entails risk that CO2 will leak away from the primary storage formation and migrate upwards to the unsaturated zone from which it can seep out of the ground. We have developed a coupled modeling framework called T2CA for simulating CO2 leakage and seepage in the subsurface and in the atmospheric surface layer. The results of model simulations can be used to calculate the two key health, safety, and environmental (HSE) risk drivers, namely CO2 seepage flux and nearsurface CO2 concentrations. Sensitivity studies for a subsurface system with amore » thick unsaturated zone show limited leakage attenuation resulting in correspondingly large CO2 concentrations in the shallow subsurface. Large CO2 concentrations in the shallow subsurface present a risk to plant and tree roots, and to humans and other animals in subsurface structures such as basements or utility vaults. Whereas CO2 concentrations in the subsurface can be high, surfacelayer winds reduce CO2 concentrations to low levels for the fluxes investigated. We recommend more verification and case studies be carried out with T2CA, along with the development of extensions to handle additional scenarios such as calm conditions, topographic effects, and catastrophic surface-layer discharge events.« less
Geochemical monitoring for detection of CO_{2} leakage from subsea storage sites
NASA Astrophysics Data System (ADS)
García-Ibáñez, Maribel I.; Omar, Abdirahman M.; Johannessen, Truls
2017-04-01
Carbon Capture and Storage (CCS) in subsea geological formations is a promising large-scale technology for mitigating the increases of carbon dioxide (CO2) in the atmosphere. However, detection and quantification of potential leakage of the stored CO2 remains as one of the main challenges of this technology. Geochemical monitoring of the water column is specially demanding because the leakage CO2 once in the seawater may be rapidly dispersed by dissolution, dilution and currents. In situ sensors capture CO2 leakage signal if they are deployed very close to the leakage point. For regions with vigorous mixing and/or deep water column, and for areas far away from the leakage point, a highly sensitive carbon tracer (Cseep tracer) was developed based on the back-calculation techniques used to estimate anthropogenic CO2 in the water column. Originally, the Cseep tracer was computed using accurate discrete measurements of total dissolved inorganic carbon (DIC) and total alkalinity (AT) in the Norwegian Sea to isolate the effect of natural submarine vents in the water column. In this work we assess the effect of measurement variables on the performance of the method by computing the Cseep tracer twice: first using DIC and AT, and second using partial pressure of CO2 (pCO2) and pH. The assessment was performed through the calculation of the signal to noise ratios (STNR). We found that the use of the Cseep tracer increases the STNR ten times compared to the raw measurement data, regardless of the variables used. Thus, while traditionally the pH-pCO2 pair generates the greatest uncertainties in the oceanic CO2 system, it seems that the Cseep technique is insensitive to that issue. On the contrary, the use of the pCO2-pH pair has the highest CO2 leakage detection and localization potential due to the fact that both pCO2 and pH can currently be measured at high frequency and in an autonomous mode.
Durable Airtightness in Single-Family Dwellings - Field Measurementsand Analysis
Chan, Wanyu R.; Walker, Iain S.; Sherman, Max H.
2015-06-01
Here, durability of the building envelope is important to new homes that are increasingly built with improved levels of airtightness. It is also important to weatherized homes such that energy savings from retrofit measures, such as air sealing, are persistent. This paper presents a comparison of air leakage measurements collected in November 2013 through March 2014, with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007- 2008. The purpose of the comparison is to determine if there are changes to the airtightnessmore » of building envelopes over time. The air leakage increased in all but one of the new homes, with a mean increase of about 25%. The weatherized homes also showed an increase in the mean air leakage (12%). A regression analysis was performed to describe the relationship between prior and current measurements in terms of normalized leakage (NL). The best estimate of the ageing factor predicts a 15% increase in NL over ten years. Further analysis using ResDB data (LBNL’s Residential Diagnostic Database) showed the expected changes in air leakage if ageing were modelled. These results imply the need to examine the causes of increased leakage and methods to avoid them. This increase in leakage with time should be accounted for in long-term population-wide energy savings estimates, such as those used in ratings or energy savings programs.« less
Quantitative Investigation of Room-Temperature Breakdown Effects in Pixelated TlBr Detectors
NASA Astrophysics Data System (ADS)
Koehler, Will; He, Zhong; Thrall, Crystal; O'Neal, Sean; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2014-10-01
Due to favorable material properties such as high atomic number (Tl: 81, Br: 35), high density ( 7.56 g/cm3), and a wide band gap (2.68 eV), thallium-bromide (TlBr) is currently under investigation for use as an alternative room-temperature semiconductor gamma-ray spectrometer. TlBr detectors can achieve less than 1% FWHM energy resolution at 662 keV, but these results are limited to stable operation at - 20°C. After days to months of room-temperature operation, ionic conduction causes these devices to fail. This work correlates the varying leakage current with alpha-particle and gamma-ray spectroscopic performances at various operating temperatures. Depth-dependent photopeak centroids exhibit time-dependent transient behavior, which indicates trapping sites form near the anode surface during room-temperature operation. After refabrication, similar performance and functionality of failed detectors returned.
NASA Astrophysics Data System (ADS)
Zhang, Kexiong; Liao, Meiyong; Imura, Masataka; Nabatame, Toshihide; Ohi, Akihiko; Sumiya, Masatomo; Koide, Yasuo; Sang, Liwen
2016-12-01
The electrical hysteresis in current-voltage (I-V) and capacitance-voltage characteristics was observed in an atomic-layer-deposited Al2O3/p-GaN metal-oxide-semiconductor capacitor (PMOSCAP). The absolute minimum leakage currents of the PMOSCAP for forward and backward I-V scans occurred not at 0 V but at -4.4 and +4.4 V, respectively. A negative flat-band voltage shift of 5.5 V was acquired with a capacitance step from +4.4 to +6.1 V during the forward scan. Mg surface accumulation on p-GaN was demonstrated to induce an Mg-Ga-Al-O oxidized layer with a trap density on the order of 1013 cm-2. The electrical hysteresis is attributed to the hole trapping and detrapping process in the traps of the Mg-Ga-Al-O layer via the Poole-Frenkel mechanism.
Structural and electrical properties of single crystalline SrZrO3 epitaxially grown on Ge (001)
NASA Astrophysics Data System (ADS)
Lim, Z. H.; Ahmadi-Majlan, K.; Grimley, E. D.; Du, Y.; Bowden, M.; Moghadam, R.; LeBeau, J. M.; Chambers, S. A.; Ngai, J. H.
2017-08-01
We present structural and electrical characterization of SrZrO3 that has been epitaxially grown on Ge(001) by oxide molecular beam epitaxy. Single crystalline SrZrO3 can be nucleated on Ge via deposition at low temperatures followed by annealing at 550 °C in ultra-high vacuum. Photoemission spectroscopy measurements reveal that SrZrO3 exhibits a type-I band arrangement with respect to Ge, with conduction and valence band offsets of 1.4 eV and 3.66 eV, respectively. Capacitance-voltage and current-voltage measurements on 4 nm thick films reveal low leakage current densities and an unpinned Fermi level at the interface that allows modulation of the surface potential of Ge. Ultra-thin films of epitaxial SrZrO3 can thus be explored as a potential gate dielectric for Ge.
Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.
Ferrari, Giorgio; Sampietro, Marco
2007-09-01
This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.
Design of a Miniaturized Langmuir Plasma Probe for the QuadSat/PnP
NASA Astrophysics Data System (ADS)
Landavazo, M.; Jorgensen, A. M.; Del Barga, C.; Ferguson, D.; Guillette, D.; Huynh, A.; Klepper, J.; Kuker, J.; Lyke, J. C.; Marohn, B.; Mason, J.; Quiroga, J.; Ravindran, V.; Yelton, C.; Zagrai, A. N.; Zufelt, B.
2011-12-01
We have developed a miniaturized Langmuir plasma probe for measuring plasma density in low-earth orbit. Measuring plasma density in the upper ionosphere is important as a diagnostic for the rest of the ionosphere and as an input to space weather forecasting models. Developing miniaturized instrumentation allows easier deployment of a large number of small satellites for monitoring space weather. Our instrument was designed for the Swedish QuadSat/PnP, with the following constraints: A volume constraint of 5x5x1.25cm for the electronics enclosure, a mass budget 100 g, and a power budget of 0.5 W. We met the volume and mass constraints and where able to use less power than budgeted, only 0.25 W. We designed the probe for a bias range of +/-15V and current measurements in the 1 nA to 1 mA range (6 orders of magnitude). Necessary voltage of +/- 15 V and 3.3 V were generated on-board from a single 5 V supply. The electronics suite is based off carefully selected yet affordable commercial components that exhibit low noise, low leakage currents and low power consumption. Size constraints, low noise and low leakage requirements called for a carefully designed four layer PCB with a properly guarded current path using surface mount components on both sides. An ultra-low power microcontroller handles instrument functionality and is fully controllable over i2c using SPA-1 space plug and play. We elected for a probe launched deployed, which required careful design to survive launch vibrations while staying within the mass budget. The QuadSat/PnP has not been launched at the time of writing. We will present details of the instrument design and initial calibration data.
H, Farhadpour; F, Sharafeddin; Sc, Akbarian; B, Azarian
2016-01-01
Statement of Problem: Hemostatic agents may affect the micro-leakage of different adhesive systems. Also, chlorhexidine has shown positive effects on micro-leakage. However, their interaction effect has not been reported yet. Objectives: To evaluate the effect of contamination with a hemostatic agent on micro-leakage of total- and self-etching adhesive systems and the effect of chlorhexidine application after the removal of the hemostatic agent. Materials and Methods: Standardized Class V cavity was prepared on each of the sixty caries free premolars at the cemento-enamel junction, with the occlusal margin located in enamel and the gingival margin in dentin. Then, the specimens were randomly divided into 6 groups (n = 10) according to hemostatic agent (H) contamination, chlorhexidine (CHX) application, and the type of adhesive systems (Adper Single Bond and Clearfil SE Bond) used. After filling the cavities with resin composite, the root apices were sealed with utility wax. Furthermore, all the surfaces, except for the restorations and 1mm from the margins, were covered with two layers of nail varnish. The teeth were immersed in a 0.5% basic fuschin dye for 24 hours, rinsed, blot-dried and sectioned longitudinally through the center of the restorations bucco- lingualy. The sections were examined using a stereomicroscope and the extension of dye penetration was analyzed according to a non-parametric scale from 0 to 3. Statistical analysis was performed using Kruskal-Wallis test and Mann-Whitney U-test. Results: While ASB group showed no micro-leakage in enamel, none of the groups showed complete elimination of micro-leakage from the dentin. Regarding micro-leakage at enamel, and dentin margins, there was no significant difference between groups 1 and 2, 1 and 3, and 2 and 3 (p > 0.05). A significantly lower micro-leakage at the enamel and dentin margins was observed in group 3, compared to group 6. No significant difference was observed between groups 4 and 5 in enamel (p = 0.35) and dentin (p = 0.34). Group 6 showed significantly higher micro-leakage, compared to group 4 and 5 (p < 0.05). Conclusions: Hemostatic agent contamination had no significant effect on micro-leakage of total- and self-etching adhesive systems. Application of chlorhexidine after the removal of hemostatic agent increased micro-leakage in self-etching adhesives but did not affect when total-etching was used. PMID:28959756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veselov, D. A., E-mail: dmitriy90@list.ru; Shashkin, I. S.; Bakhvalov, K. V.
Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswavemore » output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).« less
Fabrication of self-aligned, nanoscale, complex oxide varactors
NASA Astrophysics Data System (ADS)
Fu, Richard X.; Toonen, Ryan C.; Hirsch, Samuel G.; Ivill, Mathew P.; Cole, Melanie W.; Strawhecker, Kenneth E.
2015-01-01
Applications in ferroelectric random access memory and superparaelectric devices require the fabrication of ferroelectric capacitors at the nanoscale that exhibit extremely small leakage currents. To systematically study the material-size dependence of ferroelectric varactor performance, arrays of parallel-plate structures have been fabricated with nanoscale dielectric diameters. Electron beam lithography and inductively coupled plasma dry etching have been used to fabricate arrays of ferroelectric varactors using top electrodes as a self-aligned etch mask. Parallel-plate test structures using RF-sputtered Ba0.6Sr0.4TiO3 thin-films were used to optimize the fabrication process. Varactors with diameters down to 20 nm were successfully fabricated. Current-voltage (I-V) characteristics were measured to evaluate the significance of etch-damage and fabrication quality by ensuring low leakage currents through the structures.
Type-II Superlattice Avalanche Photodiodes
NASA Astrophysics Data System (ADS)
Huang, Jun
Type-II superlattice avalanche photodiodes have shown advantages compared to conventional mercury cadmium telluride photodiodes for infrared wavelength detection. However, surface or interface leakage current has been a major issue for superlattice avalanche photodiodes, especially in infrared wavelength region. First, passivation of the superlattice device with ammonium sulfide and thioacetamide was carried out, and its surface quality was studied by X-ray Photoelectron Spectroscopy. The study showed that both ammonium sulfide and thiacetamide passivation can actively remove the native oxide at the surface. Thiacetamide passivation combine more sulfur bonds with III-V elements than that of ammonium sulfide. Another X-ray photoelectron spectra of thiacetamide-treated atomic layer deposited zinc sulfide capped InAs/GaSb superlattice was performed to investigate the interface sulfur bond conditions. Sb--S and As--S bonds disappear while In-S bond gets enhanced, indicating that Indium Sulfide should be the major components at the interface after ZnS deposition. Second, the simulation of electrical characteristics for zinc sulfide, silicon nitride and silicon dioxide passivated superlattice devices was performed by SILVACO software to fit the experimental results and to discover the surface current mechanism. Different surface current mechanism strengths were found. Third, several novel dual-carrier avalanche photodiode structures were designed and simulated. The structures had alternate carrier multiplication regions, placed next to a wider electron multiplication region, creating dual-carrier multiplication feedback systems. Gain and excess noise factor of these structures were simulated and compared based on the dead space multiplication theory under uniform electric field. From the simulation, the applied bias can be greatly lowered or the thickness can be shrunk to achieve the same gain from the conventional device. The width of the thin region was the most critical parameter determining the device performance.
NASA Astrophysics Data System (ADS)
Jatiault, R.; Dhont, D.; Loncke, L.; Durrieu De Madron, X.; Dubucq, D.; Channelliere, C.; Bourrin, F.
2017-12-01
Key words: Hydrocarbon seepage, Oil Slick, Lower Congo Basin, Underwater deflection, Deep-water Pockmark, Ascent speedThe space-borne imagery provides a significant means to locate active oil seeps and to estimate the expelled volume in the marine environment. The analysis of numerous overlapping satellite images revealed an abundant volume of 4400 m3 of oil naturally reaching the sea surface per year, expelled from more than a hundred seep sites through the Lower Congo Basin. The active seepage area is located in the distal compressional province of the basin where salt napes and squeezed diapirs. The integration of current data was used to link accurately sea surface manifestations of natural oil leakages with active fluid flow features on the seafloor. A mooring with ADCPs (Acoustic Doppler Current Profilers) distributed throughout the water column provided an efficient calibration tool to evaluate the horizontal deflection of oil droplets. Using a Eulerian propagation model that considered a range of probable ascent speeds, we estimated the oil migration pathways through the water column using two different approaches. The first approach consisted in simulating the backwards trajectory of oil droplets using sea surface oil slicks locations and concomitant current measurements. The second method analyzed the spatial spreading of the surfacing signatures of natural oil slicks based on 21 years of satellite observations. The location of the surfacing points of oil droplets at the sea surface is restricted to a circle of 2.5 km radius around the release point at the seafloor. Both approaches provided a range of ascent speeds of oil droplets between 3 to 8 cm.s-1. The low deflection values validate the near-vertical links between the average surfacing area of oil slicks at the sea surface with specific seafloor disturbances (i.e. pockmarks or mounds) known to expel fluids.
Hydrogeologic Modeling for Monitoring, Reporting and Verification of Geologic Sequestration
NASA Astrophysics Data System (ADS)
Kolian, M.; De Figueiredo, M.; Lisa, B.
2011-12-01
In December 2010, EPA finalized Subpart RR of the Greenhouse Gas (GHG) Reporting Program, which requires facilities that conduct geologic sequestration (GS) of carbon dioxide (CO2) to report GHG data to EPA annually. The GHG Reporting Program requires reporting of GHGs and other relevant information from certain source categories in the United States, and information obtained through Subpart RR will inform Agency decisions under the Clean Air Act related to the use of carbon dioxide capture and sequestration for mitigating GHGs. This paper examines hydrogeologic modeling necessities and opportunities in the context of Subpart RR. Under Subpart RR, facilities that conduct GS by injecting CO2 for long-term containment in subsurface geologic formations are required to develop and implement an EPA-approved site-specific monitoring, reporting, and verification (MRV) plan; and report basic information on CO2 received for injection, annual monitoring activities and the amount of CO2 geologically sequestered using a mass balance approach. The major components of the MRV plan include: identification of potential surface leakage pathways for CO2 and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways; delineation of the monitoring areas; strategy for detecting and quantifying any surface leakage of CO2; and the strategy for establishing the expected baselines for monitoring CO2 surface leakage. Hydrogeologic modeling is an integral aspect of the design of an MRV plan. In order to prepare an adequate monitoring program that addresses site specific risks over the full life of the project the MRV plan must reflect the full spatial extent of the free phase CO2 over time. Facilities delineate the maximum area that the CO2 plume is predicted to cover and how monitoring can be phased in over this area. The Maximum Monitoring Area (MMA) includes the extent of the free phase CO2 plume over the lifetime of the project plus a buffer zone of one-half mile. The Active Monitoring Area (AMA) is the area that will be monitored over a specified time interval chosen by the reporter, which must be greater than one year. All of the area in the MMA will eventually be covered by one or more AMAs. This allows operators to phase in monitoring so that during any given time interval, only that part of the MMA in which surface leakage might occur needs to be monitored. EPA designed the MRV plan approach to be site-specific, flexible, and adaptive to future technology developments. This approach allows the reporter to leverage the site characterization, modeling, and monitoring approaches (e.g. monitoring of injection pressures, injection well integrity, groundwater quality and geochemistry, and CO2 plume location, etc.) developed for their Underground Injection Control (UIC) permit. UIC requirements provide the foundation for the safe sequestration of CO2 by helping to ensure that injected fluids remain isolated in the subsurface and away from underground sources of drinking water, thereby serving to reduce the risk of CO2 leakage to the atmosphere.
Granular superconductors and their intrinsic and extrinsic surface impedance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halbritter, J.
1995-12-01
High-frequency experiments depend sensitively on homogeneous and inhomogeneous {open_quotes}defects{close_quotes} in the normal and superconducting state. As homogeneous effects, the intrinsic scattering time is of great theoretical importance above 0.1 THz in the surface impedance Z. Of practical importance are the planar defects, {open_quotes}the weak links (WL),{close_quotes} which interrupt the rf shielding currents and thus enhance Z{sub eff}. In the superconducting state, the Josephson current j{sub cJ} crosses the WL in parallel with the normal, leakage current j{sub bl}. The latter explains the observed, finite rf residual losses R{sub res}(T{approx}0) quantitatively and as a function of material parameters, temperature T, fieldmore » H, and frequency {omega} for Nb, NbN, and cuprate superconductors. With increasing field, Z deteriorates like H{sup 2} up to H{sub c1J}{approx}0.1-10 mT, JF dynamics dominates Z with hysteresis losses and reactive components. The nonlinear JF effects are enforced by thinfilm edge enhancements limiting the performance of various devices by enhanced dissipation, reactance, and flux noise. A method is presented which is able to separate electron dynamics at the WL from their strength and distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyewon, E-mail: hyewon@ldeo.columbia.edu; Kim, Yong Hoon, E-mail: Yong.Kim@rpsgroup.com; Kang, Seong-Gil, E-mail: kangsg@kriso.re.kr
Offshore geologic storage of carbon dioxide (CO{sub 2}), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO{sub 2} levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO{sub 2} gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here,more » we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO{sub 2} leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS. - Highlights: • This paper synthesizes the current knowledge on environmental impact monitoring of offshore Carbon Capture and Sequestration (CCS). • Impacts of CO{sub 2} leakage (ocean acidification, hypercapnia) on marine organisms and ecosystems are discussed. • Insights and recommendations on EIA monitoring for CCS operations are proposed specifically in marine ecosystem perspective.« less
How far does the CO2 travel beyond a leaky point?
NASA Astrophysics Data System (ADS)
Kong, X.; Delshad, M.; Wheeler, M.
2012-12-01
Xianhui Kong, Mojdeh Delshad, Mary F. Wheeler The University of Texas at Austin Numerous research studies have been carried out to investigate the long term feasibility of safe storage of large volumes of CO2 in subsurface saline aquifers. The injected CO2 will undergo complex petrophysical and geochemical processes. During these processes, part of CO2 will be trapped while some will remain as a mobile phase, causing a leakage risk. The comprehensive and accurate characterizations of the trapping and leakage mechanisms are critical for accessing the safety of sequestration, and are challenges in this research area. We have studied different leakage scenarios using realistic aquifer properties including heterogeneity and put forward a comprehensive trapping model for CO2 in deep saline aquifer. The reservoir models include several geological layers and caprocks up to the near surface. Leakage scenarios, such as fracture, high permeability pathways, abandoned wells, are studied. In order to accurately model the fractures, very fine grids are needed near the fracture. Considering that the aquifer usually has a large volume and reservoir model needs large number of grid blocks, simulation would be computational expensive. To deal with this challenge, we carried out the simulations using our in-house parallel reservoir simulator. Our study shows the significance of capillary pressure and permeability-porosity variations on CO2 trapping and leakage. The improved understanding on trapping and leakage will provide confidence in future implementation of sequestration projects.
Low temperature solution processed high-κ ZrO2 gate dielectrics for nanoelectonics
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara
2016-05-01
The high-κ gate dielectrics, specifically amorphous films offer salient features such as exceptional mechanical flexibility, smooth surfaces and better uniformity associated with low leakage current density. In this work, ∼35 nm thick amorphous ZrO2 films were deposited on silicon substrate at low temperature (300 °C, 1 h) from facile spin-coating method and characterized by various analytical techniques. The X-ray diffraction and X-ray photoelectron spectroscopy reveal the formation of amorphous phase ZrO2, while ellipsometry analysis together with the Atomic Force Microscope suggest the formation of dense film with surface roughness of 1.5 Å, respectively. The fabricated films were integrated in metal-oxide-semiconductor (MOS) structures to check the electrical capabilities. The oxide capacitance (Cox), flat band capacitance (CFB), flat band voltage (VFB), dielectric constant (κ) and oxide trapped charges (Qot) extracted from high frequency (1 MHz) C-V curve are 186 pF, 104 pF, 0.37 V, 15 and 2 × 10-11 C, respectively. The small flat band voltage 0.37 V, narrow hysteresis and very little frequency dispersion between 10 kHz-1 MHz suggest an excellent a-ZrO2/Si interface with very less trapped charges in the oxide. The films exhibit a low leakage current density 4.7 × 10-9 A/cm2 at 1 V. In addition, the charge transport mechanism across the MOSC is analyzed and found to have a strong bias dependence. The space charge limited conduction mechanism is dominant in the high electric field region (1.3-5 V) due to the presence of traps, while the trap-supported tunneling is prevailed in the intermediate region (0.35-1.3 V). Low temperature solution processed ZrO2 thin films obtained are of high quality and find their importance as a potential dielectric layer on Si and polymer based flexible electronics.
Principles of a multistack electrochemical wastewater treatment design
NASA Astrophysics Data System (ADS)
Elsahwi, Essam S.; Dawson, Francis P.; Ruda, Harry E.
2018-02-01
Electrolyzer stacks in a bipolar architecture (cells connected in series) are desirable since power provided to a stack can be transferred at high voltages and low currents and thus the losses in the power bus can be reduced. The anode electrodes (active electrodes) considered as part of this study are single sided but there are manufacturing cost advantages to implementing double side anodes in the future. One of the main concerns with a bipolar stack implementation is the existence of leakage currents (bypass currents). The leakage current is associated with current paths that are not between adjacent anode and cathode pairs. This leads to non uniform current density distributions which compromise the electrochemical conversion efficiency of the stack and can also lead to unwanted side reactions. The objective of this paper is to develop modelling tools for a bipolar architecture consisting of two single sided cells that use single sided anodes. It is assumed that chemical reactions are single electron transfer rate limited and that diffusion and convection effects can be ignored. The design process consists of the flowing two steps: development of a large signal model for the stack, and then the extraction of a small signal model from the large signal model. The small signal model facilitates the design of a controller that satisfies current or voltage regulation requirements. A model has been developed for a single cell and two cells in series but can be generalized to more than two cells in series and to incorporate double sided anode configurations in the future. The developed model is able to determine the leakage current and thus provide a quantitative assessment on the performance of the cell.
NASA Astrophysics Data System (ADS)
Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi
2018-04-01
Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.
Schoeppler, Gita M; Buchner, Alexander; Zaak, Dirk; Khoder, Wael; Staehler, Michael; Stief, Christian G; Reiser, Maximilian F; Clevert, Dirk-Andre
2010-12-01
To prospectively evaluate the accuracy of transvesical contrast-enhanced ultrasound (CEUS) as an alternative method for the detection of anastomotic leakage after radical retropubic prostatectomy (RRP) in comparison with the current standard method of conventional retrograde cystography (CG). Forty-three patients underwent RRP for histologically proven localized prostate cancer. The vesico-urethral anastomosis was evaluated 8 days after RRP by CG and CEUS. Any peri-anastomotic leakage was assessed and determined in CG and CEUS as follows: no extravasation (EV), small leakage (≤0.5 cm), moderate leakage (>0.5 cm to ≤2 cm), large leakage (>2 cm diameter of EV seen). In total, 21 (49%) patients showed a watertight anastomosis. Ten (23%), two (4.7%) and ten (23%) patients showed a small, intermediate and large EV, respectively. In 31 cases (72%) there was 100% agreement of CG and CEUS for detection of no, moderate and large EV, respectively. In nine cases a small and in two cases a moderate EV was categorized as watertight anastomosis by CEUS. Only in one case did CG detect a small EV where a large EV was detected in CEUS. The agreement between both methods was 95% for detecting absence or large leakages. CEUS is a promising imaging modality that seems to be equivalent to CG for detecting the presence of a large anastomotic leakage that is clinically relevant for postoperative persistence of the indwelling catheter. CEUS could be a cheap and time-saving alternative to the CG without exposure of the patient to radiation. © 2010 THE AUTHORS. JOURNAL COMPILATION © 2010 BJU INTERNATIONAL.
Highly conducting leakage-free electrolyte for SrCoOx-based non-volatile memory device
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Suzuki, Yuki; Ohta, Hiromichi
2017-10-01
The electrochemical switching of SrCoOx-based non-volatile memory with a thin-film-transistor structure was examined by using liquid-leakage-free electrolytes with different conductivities (σ) as the gate insulator. We first examined leakage-free water, which is incorporated in the amorphous (a-) 12CaO.7Al2O3 film with a nanoporous structure (Calcium Aluminate with Nanopore), but the electrochemical oxidation/reduction of the SrCoOx layer required the application of a high gate voltage (Vg) up to 20 V for a very long current-flowing-time (t) ˜40 min, primarily due to the low σ [2.0 × 10-8 S cm-1 at room temperature (RT)] of leakage-free water. We then controlled the σ of the leakage-free electrolyte, infiltrated in the a-NaxTaO3 film with a nanopillar array structure, from 8.0 × 10-8 S cm-1 to 2.5 × 10-6 S cm-1 at RT by changing the x = 0.01-1.0. As the result, the t, required for the metallization of the SrCoOx layer under small Vg = -3 V, becomes two orders of magnitude shorter with increase of the σ of the a-NaxTaO3 leakage-free electrolyte. These results indicate that the ion migration in the leakage-free electrolyte is the rate-determining step for the electrochemical switching, compared to the other electrochemical process, and the high σ of the leakage-free electrolyte is the key factor for the development of the non-volatile SrCoOx-based electro-magnetic phase switching device.