Sample records for surface mass balance

  1. Surface Mass Balance of the Columbia Glacier, Alaska, 1978 and 2010 Balance Years

    USGS Publications Warehouse

    O'Neel, Shad

    2012-01-01

    Although Columbia Glacier is one of the largest sources of glacier mass loss in Alaska, surface mass balance measurements are sparse, with only a single data set available from 1978. The dearth of surface mass-balance data prohibits partitioning of the total mass losses between dynamics and surface forcing; however, the accurate inclusion of calving glaciers into predictive models requires both dynamic and climatic forcing of total mass balance. During 2010, the U.S. Geological Survey collected surface balance data at several locations distributed over the surface of Columbia Glacier to estimate the glacier-wide annual balance for balance year 2010 using the 2007 area-altitude distribution. This report also summarizes data collected in 1978, calculates the 1978 annual surface balance, and uses these observations to constrain the 2010 values, particularly the shape of the balance profile. Both years exhibit balances indicative of near-equilibrium surface mass-balance conditions, and demonstrate the importance of dynamic processes during the rapid retreat.

  2. Quantification of seasonal to annual mass balances from glacier surface albedo derived from optical satellite images, application on 30 glaciers in the French Alps for the period 2000-2015.

    NASA Astrophysics Data System (ADS)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2017-04-01

    Increasing the number of glaciers monitored for surface mass balance is very challenging, especially using laborious methods based on in situ data. Complementary methods are therefore required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, onboard of TERRA satellite. Recent studies performed on single glaciers in the French Alps, the Himalayas or the Southern Alps of New Zealand revealed substantial relationships between summer minimum glacier-wide surface albedo and annual mass balance, because this minimum surface albedo is directly related to accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. At the seasonal scale, the integrated summer surface albedo is significantly correlated with the summer mass balance of the six glaciers seasonally surveyed. For the winter season, four of the six glaciers showed a significant correlation when linking the winter surface mass balance and the integrated winter surface albedo, using glacier-dependent thresholds to filter the albedo signal. Sensitivity study on the computed cloud detection algorithm revealed high confidence in retrieved albedo maps. These results are promising to monitor both annual and seasonal glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images.

  3. Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data

    NASA Astrophysics Data System (ADS)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2018-01-01

    Less than 0.25 % of the 250 000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, on board the TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance data are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. For the ablation season, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. These results are promising to monitor both annual and summer glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadow correction algorithm, although inter-annual comparisons are not affected by systematic errors.

  4. A 30-year record of surface mass balance (1966-95) and motion and surface altitude (1975-95) at Wolverine Glacier, Alaska

    USGS Publications Warehouse

    Mayo, Lawrence R.; Trabant, Dennis C.; March, Rod S.

    2004-01-01

    Scientific measurements at Wolverine Glacier, on the Kenai Peninsula in south-central Alaska, began in April 1966. At three long-term sites in the research basin, the measurements included snow depth, snow density, heights of the glacier surface and stratigraphic summer surfaces on stakes, and identification of the surface materials. Calculations of the mass balance of the surface strata-snow, new firn, superimposed ice, and old firn and ice mass at each site were based on these measurements. Calculations of fixed-date annual mass balances for each hydrologic year (October 1 to September 30), as well as net balances and the dates of minimum net balance measured between time-transgressive summer surfaces on the glacier, were made on the basis of the strata balances augmented by air temperature and precipitation recorded in the basin. From 1966 through 1995, the average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), was -0.90 meters water equivalent; and at site C (1,290 meters altitude), was +1.45 meters water equivalent. Geodetic determination of displacements of the mass balance stake, and glacier surface altitudes was added to the data set in 1975 to detect the glacier motion responses to variable climate and mass balance conditions. The average surface speed from 1975 to 1996 was 50.0 meters per year at site A, 83.7 meters per year at site B, and 37.2 meters per year at site C. The average surface altitudes were 594 meters at site A, 1,069 meters at site B, and 1,293 meters at site C; the glacier surface altitudes rose and fell over a range of 19.4 meters at site A, 14.1 meters at site B, and 13.2 meters at site C.

  5. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 23.659 Section 23.659 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Surfaces § 23.659 Mass balance. The supporting structure and the attachment of concentrated mass balance...

  6. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 23.659 Section 23.659 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Surfaces § 23.659 Mass balance. The supporting structure and the attachment of concentrated mass balance...

  7. Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica

    NASA Technical Reports Server (NTRS)

    Das, Indrani; Bell, Robin E.; Scambos, Ted A.; Wolovick, Michael; Creyts, Timothy T.; Studinger, Michael; Fearson, Nicholas; Nicolas, Julien P.; Lenaerts, Jan T. M.; vandenBroeke, Michiel R.

    2013-01-01

    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (< or = 200 sq km) with reduced surface accumulation. Estimates of Antarctic surface mass balance rely on sparse point measurements or coarse atmospheric models that do not capture these local processes, and overestimate the net mass input in wind-scour zones. Here we combine airborne radar observations of unconformable stratigraphic layers with lidar-derived surface roughness measurements to identify extensive wind-scour zones over Dome A, in the interior of East Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations.

  8. Land motion due to 20th century mass balance of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kjeldsen, K. K.; Khan, S. A.

    2017-12-01

    Quantifying the contribution from ice sheets and glaciers to past sea level change is of great value for understanding sea level projections into the 21st century. However, quantifying and understanding past changes are equally important, in particular understanding the impact in the near-field where the signal is highest. We assess the impact of 20th century mass balance of the Greenland Ice Sheet on land motion using results from Kjeldsen et al, 2015. These results suggest that the ice sheet on average lost a minimum of 75 Gt/yr, but also show that the mass balance was highly spatial- and temporal variable, and moreover that on a centennial time scale changes were driven by a decreasing surface mass balance. Based on preliminary results we discuss land motion during the 20th century due to mass balance changes and the driving components surface mass balance and ice dynamics.

  9. The response of glaciers to climate change

    NASA Astrophysics Data System (ADS)

    Klok, Elisabeth Jantina

    2003-12-01

    The research described in this thesis addresses two aspects of the response of glaciers to climate change. The first aspect deals with the physical processes that govern the interaction between glaciers and climate change and was treated by (1) studying the spatial and temporal variation of the glacier albedo from satellite images, (2) investigating the spatial distribution of the surface energy and mass balance of a glacier, and (3) investigating the sensitivity of the mass balance to climate change. All of these studies are focused on Morteratschgletscher in Switzerland. The second aspect is the climatic interpretation of glacier length fluctuations. This was studied by developing a model that calculates historical mass balance records from global glacier length fluctuations. To increase our understanding of the variations in glacier albedo, we derived surface albedos from 12 Landsat images. This constituted a stringent test for the retrieval methodology applied because Morteratschgletscher is very steep and rugged, which strongly influences the satellite signal. We aimed to retrieve surface albedos while taking into account all important processes that influence the relationship between the satellite signal and the surface albedo, e.g. the topographic effects on incoming solar radiation, and the anisotropic nature of the reflection pattern of ice and snow surfaces. We then analysed the spatial and temporal pattern of the surface albedo. We developed a two-dimensional mass balance model based on the surface energy balance to study the spatial distribution of the energy and mass balance fluxes of Morteratschgletscher. Meteorological data from weather stations in the vicinity of Morteratschgletscher serve as input for the model. We corrected incoming solar radiation for shading, aspect, slope, reflection from surrounding slopes, and obstruction of the sky. Ignoring these effects results in an increase in solar radiation of 37%, causing a decrease in the mass balance of 0.34 m w.e. We modelled the mass balance for 1999 and 2000 and analysed the spatial distribution. We then ran the model for a period of 23 years and calculated the mass balance sensitivity to climate change by perturbing air temperature and precipitation. The mass balance sensitivity to temperature and precipitation are ˜0.59 m w.e. a-1 K-1 and 0.17 m w.e. a-1 per 10 percent respectively. We also used three other albedo parameterisations to calculate the mass balance sensitivity since albedo parameterisations are often regarded as a main source of error in mass balance models. We concluded that an accurate estimate of the mass balance sensitivity requires a parameterisation that captures the process of a decreasing snow albedo when a snow pack gets older or thinner. To extract a climate signal from worldwide glacier length fluctuations, we developed a simple model. The climate signal is represented as a reconstruction of the mass balance and the equilibrium line altitude (ELA). The model was tested on seventeen European glacier length records and then applied to nineteen glacier length records from different parts of the world. Between 1910 and 1959, the average increase in the reconstructed ELAs is 33 m. This implies that during the first half of the twentieth century, the climate was warmer or drier than before. The reconstructed ELAs decrease to lower elevations after 1960 and up till 1980, when most of the reconstructions end. The results can be translated into a global temperature increase of about 0.8 K for the period 1910-1959

  10. Properties of the surface snow in Princess Elizabeth Land, East Antarctica - climate and non-climate dependent variability of the surface mass balance and stable water isotopic composition

    NASA Astrophysics Data System (ADS)

    Vladimirova, D.; Ekaykin, A.; Lipenkov, V.; Popov, S. V.; Petit, J. R.; Masson-Delmotte, V.

    2017-12-01

    Glaciological and meteorological observations conducted during the past four decades in Princess Elizabeth Land, East Antarctica, are compiled. The database is used to investigate spatial patterns of surface snow isotopic composition and surface mass balance, including detailed information near subglacial lake Vostok. We show diverse relationships between snow isotopic composition and surface temperature. In the most inland part (elevation 3200-3400 m a.s.l.), surface snow isotopic composition varies independently from surface temperature, and is closely related to the distance to the open water source (with a slope of 0.98±0.17 ‰ per 100 km). Surface mass balance values are higher along the ice sheet slope, and relatively evenly distributed inland. The minimum values of snow isotopic composition and surface mass balance are identified in an area XX km southwestward from Vostok station. The spatial distribution of deuterium excess delineates regions influenced by the Indian Ocean and Pacific Ocean air masses, with Vostok area being situated close to their boundary. Anomalously high deuterium excess values are observed near Dome A, suggesting high kinetic fractionation for its moisture source, or specifically high post-deposition artifacts. The dataset is available for further studies such as the assessment of skills of general circulation or regional atmospheric models, and the search for the oldest ice.

  11. Glacier modeling in support of field observations of mass balance at South Cascade Glacier, Washington, USA

    USGS Publications Warehouse

    Josberger, Edward G.; Bidlake, William R.

    2010-01-01

    The long-term USGS measurement and reporting of mass balance at South Cascade Glacier was assisted in balance years 2006 and 2007 by a new mass balance model. The model incorporates a temperature-index melt computation and accumulation is modeled from glacier air temperature and gaged precipitation at a remote site. Mass balance modeling was used with glaciological measurements to estimate dates and magnitudes of critical mass balance phenomena. In support of the modeling, a detailed analysis was made of the "glacier cooling effect" that reduces summer air temperature near the ice surface as compared to that predicted on the basis of a spatially uniform temperature lapse rate. The analysis was based on several years of data from measurements of near-surface air temperature on the glacier. The 2006 and 2007 winter balances of South Cascade Glacier, computed with this new, model-augmented methodology, were 2.61 and 3.41 mWE, respectively. The 2006 and 2007 summer balances were -4.20 and -3.63 mWE, respectively, and the 2006 and 2007 net balances were -1.59 and -0.22 mWE. PDF version of a presentation on the mass balance of South Cascade Glacier in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  12. Continuous measurements of surface mass balance, firn compaction, and meltwater retention in Greenland for altimetry validation.

    NASA Astrophysics Data System (ADS)

    de la Peña, S.; Howat, I.; Behar, A.; Price, S. F.; Thanga, J.; Crowell, J. M.; Huseas, S.; Tedesco, M.

    2016-12-01

    Observations made in recent years by repeated altimetry from CryoSat-2 and NASA's Operation IceBridge reveal large fluctuations in the firn volume of the Greenland Ice Sheet. Although an order of magnitude smaller than ice thinning rates observed in some areas at the margins of the ice sheet, short-term departures in surface elevation trends occur over most of the accumulation zone of Greenland. Changes in the thickness of the firn column are influenced by variability in surface mass balance, firn compaction, and abrupt seasonal densification near the surface caused by refreezing at depth of variable amounts of surface meltwater in the summer. These processes and dynamic thinning cannot be differentiated from each other by altimetry alone. Until recently, nearly all information on density and surface mass balance changes over the firn layer came from ice core and snow pit stratigraphy that provided annual rates with relatively large uncertainties. Here we present direct, continuous measurements of firn density and surface mass balance along with annual estimates of firn ice content used to assess observed elevation change in the percolation zone of western Greenland in relation to firn processes. Since 2012, autonomous in-situ firn compaction sensors have monitored several sites in the catchment area of Jakobshavn Isbrae, and since 2015 surface mass balance and surface displacement has been measured continuously using a combination of sensors. In addition to identify the different components in the altimetry signal, The temporal resolution of the data acquired provide a means to monitor short-term changes in the near-surface firn, and identifying individual events causing surface elevation displacement.

  13. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  14. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849-2012 by forcing prescribed terminus positions in ISSM

    NASA Astrophysics Data System (ADS)

    Haubner, Konstanze; Box, Jason E.; Schlegel, Nicole J.; Larour, Eric Y.; Morlighem, Mathieu; Solgaard, Anne M.; Kjeldsen, Kristian K.; Larsen, Signe H.; Rignot, Eric; Dupont, Todd K.; Kjær, Kurt H.

    2018-04-01

    Tidewater glacier velocity and mass balance are known to be highly responsive to terminus position change. Yet it remains challenging for ice flow models to reproduce observed ice margin changes. Here, using the Ice Sheet System Model (ISSM; Larour et al. 2012), we simulate the ice velocity and thickness changes of Upernavik Isstrøm (north-western Greenland) by prescribing a collection of 27 observed terminus positions spanning 164 years (1849-2012). The simulation shows increased ice velocity during the 1930s, the late 1970s and between 1995 and 2012 when terminus retreat was observed along with negative surface mass balance anomalies. Three distinct mass balance states are evident in the reconstruction: (1849-1932) with near zero mass balance, (1932-1992) with ice mass loss dominated by ice dynamical flow, and (1998-2012), when increased retreat and negative surface mass balance anomalies led to mass loss that was twice that of any earlier period. Over the multi-decadal simulation, mass loss was dominated by thinning and acceleration responsible for 70 % of the total mass loss induced by prescribed change in terminus position. The remaining 30 % of the total ice mass loss resulted directly from prescribed terminus retreat and decreasing surface mass balance. Although the method can not explain the cause of glacier retreat, it enables the reconstruction of ice flow and geometry during 1849-2012. Given annual or seasonal observed terminus front positions, this method could be a useful tool for evaluating simulations investigating the effect of calving laws.

  15. Surface and basal ice shelf mass balance processes of the Southern McMurdo Ice Shelf determined through radar statistical reconnaissance

    NASA Astrophysics Data System (ADS)

    Grima, C.; Koch, I.; Greenbaum, J. S.; Soderlund, K. M.; Blankenship, D. D.; Young, D. A.; Fitzsimons, S.

    2017-12-01

    The McMurdo ice shelves (northern and southern MIS), adjacent to the eponymous station and the Ross Ice Shelf, Antarctica, are known for large gradients in surface snow accumulation and snow/ice impurities. Marine ice accretion and melting are important contributors to MIS's mass balance. Due to erosive winds, the southern MIS (SMIS) shows a locally negative surface mass balance. Thus, marine ice once accreted at the ice shelf base crops out at the surface. However, the exact processes that exert primary control on SMIS mass balance have remained elusive. Radar statistical reconnaissance (RSR) is a recent technique that has been used to characterize the surface properties of the Earth's cryosphere, Mars, and Titan from the stochastic character of energy scattered by the surface. Here, we apply RSR to map the surface density and roughness of the SMIS and extend the technique to derive the basal reflectance and scattering coefficients of the ice-ocean interface. We use an airborne radar survey grid acquired over the SMIS in the 2014-2015 austral summer by the University of Texas Institute for Geophysics with the High Capability Radar Sounder (HiCARS2; 60-MHz center frequency and 15-MHz bandwidth). The RSR-derived snow density values and patterns agree with directly -measured ice shelf surface accumulation rates. We also compare the composition of SMIS ice surface samples to test the ability of RSR to discriminate ices with varying dielectric properties (e.g., marine versus meteoric ice) and hypothesize relationships between the RSR-derived basal reflectance/scattered coefficients and accretion or melting at the ice-ocean interface. This improved knowledge of air-ice and ice-ocean boundaries provides a new perspective on the processes governing SMIS surface and basal mass balance.

  16. Improving Estimates of Greenland Ice Sheet Surface Mass Balance with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Briggs, K.

    2016-12-01

    Mass losses from the Greenland Ice Sheet have been accelerating over recent years (e.g. McMillan et al., 2016; Velicogna et al., 2014). This acceleration has predominantly been linked to increasing rates of negative surface mass balance, and in particular, increasing ice surface melt rates (e.g. McMillan et al., 2016; Velicogna et al., 2014). At the ice sheet scale, SMB is assessed using SMB model outputs, which in addition to enabling understanding of the origin of mass balance signals, are required as ancillary data in mass balance assessments from altimetry and the mass budget method. Due to the importance of SMB for mass balance over Greenland and the sensitivity of mass balance assessments to SMB model outputs, high accuracy of these models is crucial. A critical limiting factor in SMB modeling is however, a lack of in-situ data that is required for model constraint and evaluation. Such data is limited in time and space due to inherent logistical and financial constraints. Remote sensing datasets, being spatially extensive and relatively densely sampled in both space and time, do not suffer such constraints. Here, we show satellite observations of Greenland SMB. McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W.K., Hogg, A., Kuipers Munneke, P., van den Broeke, M., Noël, B., van de Berg, W., Ligtenberg, S., Horwath, M., Groh, A. , Muir, A. and Gilbert, L. 2016. A high resolution record of Greenland Mass Balance. Geophysical Research Letters. 43, doi:10.1002/2016GL069666 Velicogna, I., Sutterley, T. C. and van den Broeke, M. R. 2014. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters. 41, 8130-8137, doi:10.1002/2014GL061052

  17. A MASS BALANCE OF SURFACE WATER GENOTOXICITY IN PROVIDENCE RIVER (RHODE ISLAND USA)

    EPA Science Inventory

    White and Rasmussen (Mutation Res. 410:223-236) used a mass balance approach to demonstrate that over 85% of the total genotoxic loading to the St. Lawrence River at Montreal is non-industrial. To validate the mass balance approach and investigate the sources of genotoxins in sur...

  18. Surface melt effects on Cryosat-2 elevation retrievals in the ablation zone of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Slater, T.; McMillan, M.; Shepherd, A.; Leeson, A.; Cornford, S. L.; Hogg, A.; Gilbert, L.; Muir, A. S.; Briggs, K.

    2017-12-01

    Over the past two decades, there has been an acceleration in the rate of mass losses from the Greenland ice sheet. This acceleration is, in part, attributed to an increasingly negative surface mass balance (SMB), linked to increasing melt water runoff rates due to enhanced surface melting. Understanding the past, present and future evolution in surface melting is central to ongoing monitoring of ice sheet mass balance and, in turn, to building realistic future projections. Currently, regional climate models are commonly used for this purpose, because direct in-situ observations are spatially and temporally sparse due to the logistics and resources required to collect such data. In particular, modelled SMB is used to estimate the extent and magnitude of surface melting, which influences (1) many geodetic mass balance estimates, and (2) snowpack microwave scattering properties. The latter is poorly understood and introduces uncertainty into radar altimeter estimates of ice sheet evolution. Here, we investigate the changes in CryoSat-2 waveforms and elevation measurements caused by the onset of surface melt in the summer months over the ablation zone of the Greenland ice sheet. Specifically, we use CryoSat-2 SARIn mode data acquired between 2011 and 2016, to characterise the effect of high variability in surface melt during this period, and to assess the associated impact on estimates of ice mass balance.

  19. The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: Evaluating the surface energy budget in a Regional Climate Model with automatic weather station observations

    NASA Astrophysics Data System (ADS)

    Steffensen Schmidt, Louise; Aðalgeirsdóttir, Guðfinna; Guðmundsson, Sverrir; Langen, Peter L.; Pálsson, Finnur; Mottram, Ruth; Gascoin, Simon; Björnsson, Helgi

    2017-04-01

    The evolution of the surface mass balance of Vatnajökull ice cap, Iceland, from 1981 to the present day is estimated by using the Regional Climate Model HIRHAM5 to simulate the surface climate. A new albedo parametrization is used for the simulation, which describes the albedo with an exponential decay with time. In addition, it utilizes a new background map of the ice albedo created from MODIS data. The simulation is validated against observed daily values of weather parameters from five Automatic Weather Stations (AWSs) from 2001-2014, as well as mass balance measurements from 1995-2014. The modelled albedo is overestimated at the AWS sites in the ablation zone, which we attribute to an overestimation of the thickness of the snow layer and the model not accounting for dust and ash deposition during dust storms and volcanic eruptions. A comparison with the specific summer, winter, and annual mass balance for all Vatnajökull from 1995-2014 shows a good overall fit during the summer, with the model underestimating the balance by only 0.04 m w. eq. on average. The winter balance, on the other hand, is overestimated by 0.5 m w. eq. on average, mostly due to an overestimation of the precipitation at the highest areas of the ice cap. A simple correction of the accumulation at these points reduced the error to 0.15 m w. eq. The model captures the evolution of the specific mass balance well, for example it captures an observed shift in the balance in the mid-1990s, which gives us confidence in the results for the entire model run. Our results show the importance of bare ice albedo for modelled mass balance and that processes not currently accounted for in RCMs, such as dust storms, are an important source of uncertainty in estimates of the snow melt rate.

  20. Comparison of tropical and subtropical glacier surface energy balance in Africa and South America

    NASA Astrophysics Data System (ADS)

    Nicholson, L.; Prinz, R.; Kinnard, C.; Mölg, T.; Winkler, M.; Kaser, G.

    2010-05-01

    Tropical glaciers exist only at high altitude, and meteorological and surface energy balance studies of these glaciers can tell us much about the conditions and changes occurring in the mid troposphere. Understanding the surface energy balance and resultant mass balance regime of tropical glaciers is prerequisite to predicting glacier evolution, and future meltwater contributions to local hydrological resources, in response to future climate scenarios. Tropical glacier mass balance variability is strongly linked to precipitation and, via this, to multi-annual climate oscillations such as ENSO and IOZM, so it is useful to understand what role these differing regional influences play in comparison to the similarities imposed by the overarching tropical climate conditions and seasonality. New surface energy balance and mass balance data is available from Lewis glacier (Kenya, 0°09' S; 37°18' E), and here we use an energy and mass balance model to determine the surface energy flux characteristics at this site through a wet and dry season. Results are compared with those from Kersten glacier (Tanzania, 3°04' S; 37°21' E) to understand how conditions at these two glaciers compare and thus what coherent and contrasting climatic information glaciological records from these two sites can be expected to deliver. Meteorological data available from glacier stations on Antizana (Ecuador, 0°25' S; 78°09' W), Artesonraju (Peru, 8°28' S; 77°38' W) Zongo (Bolivia, 16°39' S; 67°47' W) and Guanaco (Chile, 29°20' S; 70°00' W) glaciers in South America offer the opportunity to examine how the surface fluxes and seasonal variability of the energy balance compares to those of the African glaciers. We include the extra-tropical Chilean example for comparison with the similarly high altitude, cold ice of Kersten glacier.

  1. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Falk, Ulrike; López, Damián A.; Silva-Busso, Adrián

    2018-04-01

    The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP). This region was subject to strong warming trends in the atmospheric surface layer. Surface air temperature increased about 3 K in 50 years, concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. The positive trend in surface air temperature has currently come to a halt. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0 K (100 m)-1) and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns. The increased mesocyclonic activity during the wintertime over the past decades in the study area results in intensified advection of warm, moist air with high temperatures and rain and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. Its impact on winter accumulation results in the observed negative mass balance estimates. Six years of continuous glaciological measurements on mass balance stake transects as well as 5 years of climatological data time series are presented and a spatially distributed glacier energy balance melt model adapted and run based on these multi-year data sets. The glaciological surface mass balance model is generally in good agreement with observations, except for atmospheric conditions promoting snow drift by high wind speeds, turbulence-driven snow deposition and snow layer erosion by rain. No drift in the difference between simulated mass balance and mass balance measurements can be seen over the course of the 5-year model run period. The winter accumulation does not suffice to compensate for the high variability in summer ablation. The results are analysed to assess changes in meltwater input to the coastal waters, specific glacier mass balance and the equilibrium line altitude (ELA). The Fourcade Glacier catchment drains into Potter cove, has an area of 23.6 km2 and is glacierized to 93.8 %. Annual discharge from Fourcade Glacier into Potter Cove is estimated to q ¯ = 25±6 hm3 yr-1 with the standard deviation of 8 % annotating the high interannual variability. The average ELA calculated from our own glaciological observations on Fourcade Glacier over the time period 2010 to 2015 amounts to 260±20 m. Published studies suggest rather stable conditions of slightly negative glacier mass balance until the mid-1980s with an ELA of approx. 150 m. The calculated accumulation area ratio suggests dramatic changes in the future extent of the inland ice cap for the South Shetland Islands.

  2. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong

    Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less

  3. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability

    DOE PAGES

    Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong

    2017-11-15

    Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less

  4. Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas Vikhamar; Loe, Even; Taurisano, Andrea; Eiken, Trond; Hagen, Jon Ove; Kohler, Jack

    2007-10-01

    Austfonna (8120 km2) is by far the largest ice mass in the Svalbard archipelago. There is considerable uncertainty about its current state of balance and its possible response to climate change. Over the 2004/05 period, we collected continuous meteorological data series from the ice cap, performed mass-balance measurements using a network of stakes distributed across the ice cap and mapped the distribution of snow accumulation using ground-penetrating radar along several profile lines. These data are used to drive and test a model of the surface mass balance. The spatial accumulation pattern was derived from the snow depth profiles using regression techniques, and ablation was calculated using a temperature-index approach. Model parameters were calibrated using the available field data. Parameter calibration was complicated by the fact that different parameter combinations yield equally acceptable matches to the stake data while the resulting calculated net mass balance differs considerably. Testing model results against multiple criteria is an efficient method to cope with non-uniqueness. In doing so, a range of different data and observations was compared to several different aspects of the model results. We find a systematic underestimation of net balance for parameter combinations that predict observed ice ablation, which suggests that refreezing processes play an important role. To represent these effects in the model, a simple PMAX approach was included in its formulation. Used as a diagnostic tool, the model suggests that the surface mass balance for the period 29 April 2004 to 23 April 2005 was negative (-318 mm w.e.).

  5. Quantifying Tropical Glacier Mass Balance Sensitivity to Climate Change Through Regional-Scale Modeling and The Randolph Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Malone, A.

    2017-12-01

    Quantifying mass balance sensitivity to climate change is essential for forecasting glacier evolution and deciphering climate signals embedded in archives of past glacier changes. Ideally, these quantifications result from decades of field measurement, remote sensing, and a hierarchy modeling approach, but in data-sparse regions, such as the Himalayas and tropical Andes, regional-scale modeling rooted in first principles provides a first-order picture. Previous regional-scaling modeling studies have applied a surface energy and mass balance approach in order to quantify equilibrium line altitude sensitivity to climate change. In this study, an expanded regional-scale surface energy and mass balance model is implemented to quantify glacier-wide mass balance sensitivity to climate change for tropical Andean glaciers. Data from the Randolph Glacier Inventory are incorporated, and additional physical processes are included, such as a dynamic albedo and cloud-dependent atmospheric emissivity. The model output agrees well with the limited mass balance records for tropical Andean glaciers. The dominant climate variables driving interannual mass balance variability differ depending on the climate setting. For wet tropical glaciers (annual precipitation >0.75 m y-1), temperature is the dominant climate variable. Different hypotheses for the processes linking wet tropical glacier mass balance variability to temperature are evaluated. The results support the hypothesis that glacier-wide mass balance on wet tropical glaciers is largely dominated by processes at the lowest elevation where temperature plays a leading role in energy exchanges. This research also highlights the transient nature of wet tropical glaciers - the vast majority of tropical glaciers and a vital regional water resource - in an anthropogenic warming world.

  6. Determination of Interannual to Decadal Changes in Ice Sheet Mass Balance from Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Busalacchi, Antonioa J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the +/- 25% uncertainty in current mass balance corresponds to +/- 2 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. Although the overall ice mass balance and seasonal and inter-annual variations can be derived from time-series of ice surface elevations from satellite altimetry, satellite radar altimeters have been limited in spatial coverage and elevation accuracy. Nevertheless, new data analysis shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. In addition, observed seasonal and interannual variations in elevation demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. From 2001, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86 deg latitude and to the margins of the ice sheets. During 3 to 5 years of ICESat-1 operation, an estimate of the overall ice sheet mass balance and sea level contribution will be obtained. The importance of continued ice monitoring after the first ICESat is illustrated by the variability in the area of Greenland surface melt observed over 17-years and its correlation with temperature. In addition, measurement of ice sheet changes, along with measurements of sea level change by a series of ocean altimeters, should enable direct detection of ice level and global sea level correlations.

  7. Sensitivity of glacier mass balance and equilibrium line altitude to climatic change on King George Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Falk, Ulrike; Lopez, Damian; Silva-Busso, Adrian

    2017-04-01

    The South Shetland Islands are located at the northern tip of the Antarctic Peninsula which is among the fastest warming regions on Earth. Surface air temperature increases (ca. 3 K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0 K/100 m), and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns especially during winter glacial mass accumulation periods. The increased mesocyclonic activity during the winter time in the study area results in intensified advection of warm, moist air with high temperatures and rain, and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. The impact on winter accumulation results in even more negative mass balance estimates. Six years of glaciological measurements on mass balance stake transects are used with a glacier melt model to assess changes in melt water input to the coastal waters, glacier surface mass balance and the equilibrium line altitude. The average equilibrium line altitude (ELA) calculated from own glaciological observations for KGI over the time period 2010 - 2015 amounts to ELA=330±100 m. Published studies suggest rather stable condition slightly negative glacier mass balance until the mid 80's with an ELA of approx. 150 m. The calculated accumulation area ratio suggests rather dramatic changes in extension of the inland ice cap for the South Shetland Islands until an equilibrium with concurrent climate conditions is reached.

  8. Laurentide ice-sheet instability during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Ullman, David J.; Carlson, Anders E.; Anslow, Faron S.; Legrande, Allegra N.; Licciardi, Joseph M.

    2015-07-01

    Changes in the amount of summer incoming solar radiation (insolation) reaching the Northern Hemisphere are the underlying pacemaker of glacial cycles. However, not all rises in boreal summer insolation over the past 800,000 years resulted in deglaciation to present-day ice volumes, suggesting that there may be a climatic threshold for the disappearance of land-based ice. Here we assess the surface mass balance stability of the Laurentide ice sheet--the largest glacial ice mass in the Northern Hemisphere--during the last deglaciation (24,000 to 9,000 years ago). We run a surface energy balance model with climate data from simulations with a fully coupled atmosphere-ocean general circulation model for key time slices during the last deglaciation. We find that the surface mass balance of the Laurentide ice sheet was positive throughout much of the deglaciation, and suggest that dynamic discharge was mainly responsible for mass loss during this time. Total surface mass balance became negative only in the early Holocene, indicating the transition to a new state where ice loss occurred primarily by surface ablation. We conclude that the Laurentide ice sheet remained a viable ice sheet before the Holocene and began to fully deglaciate only once summer temperatures and radiative forcing over the ice sheet increased by 6-7 °C and 16-20 W m-2, respectively, relative to full glacial conditions.

  9. New insights into the multi-scale climatic drivers of the "Karakoram anomaly"

    NASA Astrophysics Data System (ADS)

    Collier, S.; Moelg, T.; Nicholson, L. I.; Maussion, F.; Scherer, D.; Bush, A. B.

    2012-12-01

    Glacier behaviour in the Karakoram region of the northwestern Himalaya shows strong spatial and temporal heterogeneity and, in some basins, anomalous trends compared with glaciers elsewhere in High Asia. Our knowledge of the mass balance fluctuations of Karakoram glaciers as well as of the important driving factors and interactions between them is limited by a scarcity of in-situ measurements and other studies. Here we employ a novel approach to simulating atmosphere-cryosphere interactions - coupled high-resolution atmospheric and physically-based surface mass balance modelling - to examine the surface energy and mass fluxes of glaciers in this region. We discuss the mesoscale climatic drivers behind surface mass balance fluctuations as well as the influence of local forcing factors, such as debris cover and feedbacks from the glacier surface to the atmosphere. The coupled modelling approach therefore provides an innovative, multi-scale solution to the paucity of information we have to date on the much-debated "Karakoram anomaly."

  10. Mountain Glaciers and Ice Caps

    USGS Publications Warehouse

    Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.

    2011-01-01

    Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.

  11. Toward Surface Mass Balance Modeling over Antarctic Peninsula with Improved Snow/Ice Physics within WRF

    NASA Astrophysics Data System (ADS)

    Villamil-Otero, G.; Zhang, J.; Yao, Y.

    2017-12-01

    The Antarctic Peninsula (AP) has long been the focus of climate change studies due to its rapid environmental changes such as significantly increased glacier melt and retreat, and ice-shelf break-up. Progress has been continuously made in the use of regional modeling to simulate surface mass changes over ice sheets. Most efforts, however, focus on the ice sheets of Greenland with considerable fewer studies in Antarctica. In this study the Weather Research and Forecasting (WRF) model, which has been applied to the Antarctic region for weather modeling, is adopted to capture the past and future surface mass balance changes over AP. In order to enhance the capabilities of WRF model simulating surface mass balance over the ice surface, we implement various ice and snow processes within the WRF and develop a new WRF suite (WRF-Ice). The WRF-Ice includes a thermodynamic ice sheet model that improves the representation of internal melting and refreezing processes and the thermodynamic effects over ice sheet. WRF-Ice also couples a thermodynamic sea ice model to improve the simulation of surface temperature and fluxes over sea ice. Lastly, complex snow processes are also taken into consideration including the implementation of a snowdrift model that takes into account the redistribution of blowing snow as well as the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer. Intensive testing of these ice and snow processes are performed to assess the capability of WRF-Ice in simulating the surface mass balance changes over AP.

  12. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013

    NASA Astrophysics Data System (ADS)

    Seo, Ki-Weon; Wilson, Clark R.; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E.; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr2. Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr2. Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr2.

  13. Surface Mass Balance Contributions to Acceleration of Antarctic Ice Mass Loss during 2003- 2013

    NASA Astrophysics Data System (ADS)

    Seo, K. W.; Wilson, C. R.; Scambos, T. A.; Kim, B. M.; Waliser, D. E.; Tian, B.; Kim, B.; Eom, J.

    2015-12-01

    Recent observations from satellite gravimetry (the GRACE mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6±7.2 GTon/yr2. Of this total, we find that the surface mass balance component is -8.2±2.0 GTon/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8±5.8 GTon/yr2. Correcting for this yields an ice discharge acceleration of -15.1±6.5 GTon/yr2.

  14. Remote Sensing based modelling of Annual Surface Mass Balances of Chhota Shigiri Glacier, Western Himalayas, India

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, Anita; Ramsankaran, Raaj

    2017-04-01

    The current study aims at modelling glacier mass balances over Chhota Shigiri glacier (32.28o N; 77.58° E) in Himachal Pradesh, India using the Equilibrium Line Altitude (ELA) gradient approach proposed by Rabatel et al. (2005). The model requires yearly ELA, average mass balance and mass balance gradient to estimate annual mass balance of a glacier which can be obtained either through field measurements or remote sensing observations. However, in view of the general scenario of lack of field data for Himalayan glaciers, in this study the model has been applied only using the inputs derived through multi-temporal satellite remote sensing observations thus eliminating the need for any field measurements. Preliminary analysis show that the obtained results are comparable with the observed field mass balance. The results also demonstrate that this approach with remote sensing inputs has potential to be used for glacier mass balance estimations provided good quality multi-temporal remote sensing dataset are available.

  15. Mountain glaciers vs Ice sheet in Greenland - learning from a new monitoring site in West Greenland

    NASA Astrophysics Data System (ADS)

    Abermann, Jakob; van As, Dirk; Wacker, Stefan; Langley, Kirsty

    2017-04-01

    Only 5 out of the 20.000 peripheral glaciers and ice caps surrounding Greenland are currently monitored due to logistical challenges and despite their significance for sea level rise. Large spatial coast-to-icesheet mass and energy balance gradients limit simple upscaling methods from ice-sheet observations, which builds the motivation for this study. We present results from a new mass and energy balance time series at Qasigiannguit glacier (64°09'N; 51°21'W) in Southwest Greenland. Inter-annual variability is discussed and the surface energy balance over two summers is quantified and a ranking of the main drivers performed. We find that short-wave net radiation is by far the most dominant energy source during summer, followed by similar amounts of net longwave radiation and sensible heat, respectively. We then relate these observations to synchronous measurements at similar latitude on an outlet glacier of the ice sheet a mere 100 km away. We find very pronounced horizontal surface mass balance gradients, with generally more positive values closer to the coast. We conclude that despite minor differences of atmospheric parameters (i.e. humidity, radiation, and temperature) the main reason for the strongly different signal is a pronounced winter precipitation gradient that translates in a different duration of ice exposure and through that an albedo gradient. Modelled energy balance gradients converted into mass changes show good agreement to measured surface mass balance gradients and we explore a latitudinal signal of these findings.

  16. Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957-2014

    NASA Astrophysics Data System (ADS)

    Ims Østby, Torbjørn; Vikhamar Schuler, Thomas; Ove Hagen, Jon; Hock, Regine; Kohler, Jack; Reijmer, Carleen H.

    2017-01-01

    Estimating the long-term mass balance of the high-Arctic Svalbard archipelago is difficult due to the incomplete geodetic and direct glaciological measurements, both in space and time. To close these gaps, we use a coupled surface energy balance and snow pack model to analyse the mass changes of all Svalbard glaciers for the period 1957-2014. The model is forced by ERA-40 and ERA-Interim reanalysis data, downscaled to 1 km resolution. The model is validated using snow/firn temperature and density measurements, mass balance from stakes and ice cores, meteorological measurements, snow depths from radar profiles and remotely sensed surface albedo and skin temperatures. Overall model performance is good, but it varies regionally. Over the entire period the model yields a climatic mass balance of 8.2 cm w. e. yr-1, which corresponds to a mass input of 175 Gt. Climatic mass balance has a linear trend of -1.4 ± 0.4 cm w. e. yr-2 with a shift from a positive to a negative regime around 1980. Modelled mass balance exhibits large interannual variability, which is controlled by summer temperatures and further amplified by the albedo feedback. For the recent period 2004-2013 climatic mass balance was -21 cm w. e. yr-1, and accounting for frontal ablation estimated by Błaszczyk et al.(2009) yields a total Svalbard mass balance of -39 cm w. e. yr-1 for this 10-year period. In terms of eustatic sea level, this corresponds to a rise of 0.037 mm yr-1. Refreezing of water in snow and firn is substantial at 22 cm w. e. yr-1 or 26 % of total annual accumulation. However, as warming leads to reduced firn area over the period, refreezing decreases both absolutely and relative to the total accumulation. Negative mass balance and elevated equilibrium line altitudes (ELAs) resulted in massive reduction of the thick (> 2 m) firn extent and an increase in the superimposed ice, thin (< 2 m) firn and bare ice extents. Atmospheric warming also leads to a marked change in the thermal regime, with cooling of the glacier mid-elevation and warming in the ablation zone and upper firn areas. On the long-term, by removing the thermal barrier, this warming has implications for the vertical transfer of surface meltwater through the glacier and down to the base, influencing basal hydrology, sliding and thereby overall glacier motion.

  17. Quantifying the resolution level where the GRACE satellites can separate Greenland's glacial mass balance from surface mass balance

    NASA Astrophysics Data System (ADS)

    Bonin, J. A.; Chambers, D. P.

    2015-09-01

    Mass change over Greenland can be caused by either changes in the glacial dynamic mass balance (DMB) or the surface mass balance (SMB). The GRACE satellite gravity mission cannot directly separate the two physical causes because it measures the sum of the entire mass column with limited spatial resolution. We demonstrate one theoretical way to indirectly separate cumulative SMB from DMB with GRACE, using a least squares inversion technique with knowledge of the location of the glaciers. However, we find that the limited 60 × 60 spherical harmonic representation of current GRACE data does not provide sufficient resolution to adequately accomplish the task. We determine that at a maximum degree/order of 90 × 90 or above, a noise-free gravity measurement could theoretically separate the SMB from DMB signals. However, current GRACE satellite errors are too large at present to separate the signals. A noise reduction of a factor of 10 at a resolution of 90 × 90 would provide the accuracy needed for the interannual cumulative SMB and DMB to be accurately separated.

  18. Quantifying the resolution level where the GRACE satellites can separate Greenland's glacial mass balance from surface mass balance

    NASA Astrophysics Data System (ADS)

    Bonin, J. A.; Chambers, D. P.

    2015-02-01

    Mass change over Greenland can be caused by either changes in the glacial mass balance (GMB) or the precipitation-based surface mass balance (SMB). The GRACE satellite gravity mission cannot directly separate the two physical causes because it measures the sum of the entire mass column with limited spatial resolution. We demonstrate one theoretical way to indirectly separate SMB from GMB with GRACE, using a least squares inversion technique with knowledge of the location of the glacier. However, we find that the limited 60 × 60 spherical harmonic representation of current GRACE data does not provide sufficient resolution to adequately accomplish the task. We determine that at a maximum degree/order of 90 × 90 or above, a noise-free gravity measurement could theoretically separate the SMB from GMB signals. However, current GRACE satellite errors are too large at present to separate the signals. A noise reduction of a factor of 9 at a resolution of 90 × 90 would provide the accuracy needed for the interannual SMB and GMB to be accurately separated.

  19. Energy balance and runoff modelling of glaciers in the Kongsfjord basin in northwestern Svalbard

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Pramanik, A.; van Pelt, W.

    2016-12-01

    Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface energy-balance and firn model (Van Pelt et al. 2015) to calculate mass balance and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass balance data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass balance stake locations to match observed and modelled surface mass balance. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744. Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface energy-balance and firn model (Van Pelt et al. 2015) to calculate mass balance and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass balance data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass balance stake locations to match observed and modelled surface mass balance. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744.

  20. Surface melt dominates Alaska glacier mass balance

    USGS Publications Warehouse

    Larsen Chris F,; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  1. Mass and surface energy balance of A.P. Olsen ice cap, NE Greenland, from observations and modeling (1995-2011)

    NASA Astrophysics Data System (ADS)

    Hillerup Larsen, S.; Citterio, M.; Hock, R. M.; Ahlstrom, A. P.

    2012-12-01

    The A.P. Olsen Ice Cap (74.6 N, 21.5 W) in NE Greenland covers an area of 295 km2, is composed by two domes, of which the western is the largest, and spans an elevation range between 200 and 1450 m a.s.l. In this study we calculate the 2008-2011 annual glacier mass balance based on in situ observations, we model the surface energy balance over the same period, and we reconstruct annual glacier mass balance since 1995. We use GlacioBasis Monitoring Programme observations from a network of 15 ablation stakes and three automatic weather stations (AWS) at 600 m (ca. 100 m higher than the terminus) and at 840 m on the main glacier outlet of the western dome, and at 1430 m in the accumulation area. Accumulation is measured every year in springtime by snow radar surveys calibrated with manual probing and density profiles from snow pits. GlacioBasis data start in 2008, but a longer time series starting in 1995 is available from a weather station at 44 m a.s.l. close to Zackenberg Research Station, ca. 30 km further west. Shorter data series from three more AWS on land at 145 m, 410 m and 1283 m a.s.l. are used to estimate monthly average temperature lapse rates outside of the glacier boundary layer, and to detect the occurrence of temperature inversions. The surface energy mass balance is dominated by the radiative fluxes. We discuss the effect of shadows from the valley sides over parts of the tongue, especially early and late in the melt season when the sun is lower over the horizon, and analyze the modeled mass balance sensitivity to a 1 °C temperature increase. A temperature index model driven by the 1995-2008 time series and calibrated using post-2008 glacier mass balance measurements shows large interannual variability, with 5 of the most negative mass balance years of the entire 1995-2011period occurring between 2003 and 2008. In particular during 2008 the glacier experienced almost no net accumulation over the entire elevation range. This matches 2008 mass balance observations at Freya Glacier on Clavering Island, ca. 40 km SW of A.P. Olsen (WGMS Gl. Mass Bal. Bull. n. 11, 2011).

  2. GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Shean, David E.; Christianson, Knut; Larson, Kristine M.; Ligtenberg, Stefan R. M.; Joughin, Ian R.; Smith, Ben E.; Stevens, C. Max; Bushuk, Mitchell; Holland, David M.

    2017-11-01

    In the last 2 decades, Pine Island Glacier (PIG) experienced marked speedup, thinning, and grounding-line retreat, likely due to marine ice-sheet instability and ice-shelf basal melt. To better understand these processes, we combined 2008-2010 and 2012-2014 GPS records with dynamic firn model output to constrain local surface and basal mass balance for PIG. We used GPS interferometric reflectometry to precisely measure absolute surface elevation (zsurf) and Lagrangian surface elevation change (Dzsurf/ Dt). Observed surface elevation relative to a firn layer tracer for the initial surface (zsurf - zsurf0') is consistent with model estimates of surface mass balance (SMB, primarily snow accumulation). A relatively abrupt ˜ 0.2-0.3 m surface elevation decrease, likely due to surface melt and increased compaction rates, is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed Dzsurf/ Dt trends (-1 to -4 m yr-1) for the PIG shelf sites are all highly linear. Corresponding basal melt rate estimates range from ˜ 10 to 40 m yr-1, in good agreement with those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo digital elevation model (DEM) records. The GPS and DEM records document higher melt rates within and near features associated with longitudinal extension (i.e., transverse surface depressions, rifts). Basal melt rates for the 2012-2014 period show limited temporal variability despite large changes in ocean temperature recorded by moorings in Pine Island Bay. Our results demonstrate the value of long-term GPS records for ice-shelf mass balance studies, with implications for the sensitivity of ice-ocean interaction at PIG.

  3. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013.

    PubMed

    Seo, Ki-Weon; Wilson, Clark R; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr 2 . Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr 2 . However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr 2 . Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr 2 .

  4. How many stakes are required to measure the mass balance of a glacier?

    USGS Publications Warehouse

    Fountain, A.G.; Vecchia, A.

    1999-01-01

    Glacier mass balance is estimated for South Cascade Glacier and Maclure Glacier using a one-dimensional regression of mass balance with altitude as an alternative to the traditional approach of contouring mass balance values. One attractive feature of regression is that it can be applied to sparse data sets where contouring is not possible and can provide an objective error of the resulting estimate. Regression methods yielded mass balance values equivalent to contouring methods. The effect of the number of mass balance measurements on the final value for the glacier showed that sample sizes as small as five stakes provided reasonable estimates, although the error estimates were greater than for larger sample sizes. Different spatial patterns of measurement locations showed no appreciable influence on the final value as long as different surface altitudes were intermittently sampled over the altitude range of the glacier. Two different regression equations were examined, a quadratic, and a piecewise linear spline, and comparison of results showed little sensitivity to the type of equation. These results point to the dominant effect of the gradient of mass balance with altitude of alpine glaciers compared to transverse variations. The number of mass balance measurements required to determine the glacier balance appears to be scale invariant for small glaciers and five to ten stakes are sufficient.

  5. Spatial and Temporal Antarctic Ice Sheet Mass Trends, Glacio-Isostatic Adjustment, and Surface Processes from a Joint Inversion of Satellite Altimeter, Gravity, and GPS Data

    NASA Technical Reports Server (NTRS)

    Martin-Espanol, Alba; Zammit-Mangion, Andrew; Clarke, Peter J.; Flament, Thomas; Helm, Veit; King, Matt A.; Luthcke, Scott B.; Petrie, Elizabeth; Remy, Frederique; Schon, Nana; hide

    2016-01-01

    We present spatiotemporal mass balance trends for the Antarctic Ice Sheet from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003-2013. Our method simultaneously determines annual trends in ice dynamics, surface mass balance anomalies, and a time-invariant solution for glacio-isostatic adjustment while remaining largely independent of forward models. We establish that over the period 2003-2013, Antarctica has been losing mass at a rateof -84 +/- 22 Gt per yr, with a sustained negative mean trend of dynamic imbalance of -111 +/- 13 Gt per yr. West Antarctica is the largest contributor with -112 +/- 10 Gt per yr, mainly triggered by high thinning rates of glaciers draining into the Amundsen Sea Embayment. The Antarctic Peninsula has experienced a dramatic increase in mass loss in the last decade, with a mean rate of -28 +/- 7 Gt per yr and significantly higher values for the most recent years following the destabilization of the Southern Antarctic Peninsula around 2010. The total mass loss is partly compensated by a significant mass gain of 56 +/- 18 Gt per yr in East Antarctica due to a positive trend of surface mass balance anomalies.

  6. Surface terrain characteristics and monsoon season mass balance of debris-covered glaciers in the Khumbu Himal, Nepal, obtained from high resolution Pléiades imagery.

    NASA Astrophysics Data System (ADS)

    Klug, Christoph; Nicholson, Lindsey; Rieg, Lorenzo; Sailer, Rudolf; Wirbel, Anna

    2016-04-01

    Debris-covered glaciers in the eastern Himalaya have pronounced surface relief consisting of hummocks and hollows, ice cliffs, lakes and former lake beds. This relief and spatially variable surface properties are expected to influence the spatially distributed surface energy balance and related ice mass loss and atmospheric interactions, but only a few studies have so far explicitly examined the nature of the surface terrain and its textures . In this work we present a new high-resolution digital terrain model (DTM) of a portion of the Khumbu Himal in the eastern Nepalese Himalaya, derived from Pléiades satellite imagery sampled in spring 2015. We use this DTM to study the terrain characteristics of five sample glaciers and analyse the inter- and intra- glacier variability of terrain characteristics in the context of glacier flow velocities and surface changes presented in previous studies in the area. In parallel to this analysis we also present the seasonal geodetic mass balance between spring and fall 2015, and relate it to the terrain properties, surface velocity and limited knowledge of the local lapse rates in meteorological conditions during this monsoon season.

  7. Methods for Combination of GRACE Gravimetry and ICESat Altimetry over Antarctica on Monthly Timescales

    NASA Astrophysics Data System (ADS)

    Hardy, R. A.; Nerem, R. S.; Wiese, D. N.

    2017-12-01

    Gravity and surface elevation change data altimetry provide different perspectives on mass variability in Antarctica. In anticipation of the concurrent operation of the successors of GRACE and ICESat, GRACE Follow-On and ICESat-2, we approach the problem of combining these data for enhanced spatial resolution and disaggregation of Antarctica's major mass transport processes. Using elevation changes gathered from over 500 million overlapping ICESat laser shot pairs between 2003 and 2009, we construct gridded models of Antarctic elevation change for each ICESat operational period. Comparing these elevation grids with temporally registered JPL RL05M mascon solutions, we exploit the relationship between surface mass flux and elevation change to inform estimates of effective surface density. These density estimates enable solutions for glacial isostatic adjustment and monthly estimates of surface mass change. These are used alongside spatial statistics from both the data and models of surface mass balance to produce enhanced estimates of Antarctic mass balance. We validate our solutions by modeling the effects of elastic loading and GIA from these solutions on the vertical motion of Antarctica's GNSS sites.

  8. Very high resolution surface mass balance over Greenland modeled by the regional climate model MAR with a downscaling technique

    NASA Astrophysics Data System (ADS)

    Kittel, Christoph; Lang, Charlotte; Agosta, Cécile; Prignon, Maxime; Fettweis, Xavier; Erpicum, Michel

    2016-04-01

    This study presents surface mass balance (SMB) results at 5 km resolution with the regional climate MAR model over the Greenland ice sheet. Here, we use the last MAR version (v3.6) where the land-ice module (SISVAT) using a high resolution grid (5km) for surface variables is fully coupled while the MAR atmospheric module running at a lower resolution of 10km. This online downscaling technique enables to correct near-surface temperature and humidity from MAR by a gradient based on elevation before forcing SISVAT. The 10 km precipitation is not corrected. Corrections are stronger over the ablation zone where topography presents more variations. The model has been force by ERA-Interim between 1979 and 2014. We will show the advantages of using an online SMB downscaling technique in respect to an offline downscaling extrapolation based on local SMB vertical gradients. Results at 5 km show a better agreement with the PROMICE surface mass balance data base than the extrapolated 10 km MAR SMB results.

  9. Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Wagnon, Patrick; Vincent, Christian; Shea, Joseph M.; Immerzeel, Walter W.; Kraaijenbrink, Philip; Shrestha, Dibas; Soruco, Alvaro; Arnaud, Yves; Brun, Fanny; Berthier, Etienne; Futi Sherpa, Sonam

    2017-04-01

    Approximately 25% of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of debris-covered portions of these glaciers has not been measured directly. In this study, ground-based measurements of surface elevation and ice depth are combined with terrestrial photogrammetry, unmanned aerial vehicle (UAV) and satellite elevation models to derive the surface mass balance of the debris-covered tongue of Changri Nup Glacier, located in the Everest region. Over the debris-covered tongue, the mean elevation change between 2011 and 2015 is -0.93 m year-1 or -0.84 m water equivalent per year (w.e. a-1). The mean emergence velocity over this region, estimated from the total ice flux through a cross section immediately above the debris-covered zone, is +0.37mw.e. a-1. The debris-covered portion of the glacier thus has an area averaged mass balance of -1.21+/-0.2mw.e. a-1 between 5240 and 5525 m above sea level (m a.s.l.). Surface mass balances observed on nearby debris-free glaciers suggest that the ablation is strongly reduced (by ca. 1.8mw.e. a-1) by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs. This finding contradicts earlier geodetic studies and should be considered for modelling the future evolution of debris-covered glaciers.

  10. Use of a new ultra-long-range terrestrial LiDAR system to monitor the mass balance of very small glaciers in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Huss, M.; Hoelzle, M.

    2015-12-01

    Measuring glacier mass balance is important as it directly reflects the climatic forcing on the glacier surface. Today, repeated comparison of digital elevation models (DEMs) is a popular and widely used approach to derive surface elevation, volume and mass changes for a large number of glaciers. In high-mountain environments, airborne laser scanning (ALS) techniques currently provide the most accurate and highest resolution DEMs on the catchment scale, allowing the computation of glacier changes on an annual or even semi-annual basis. For monitoring individual glaciers though, terrestrial laser scanning (TLS) is easier and more cost-efficiently applied on the seasonal timescale compared to ALS. Since most recently, the application of the latest generation of ultra-long-range near infrared TLS systems allows the acquisition of surface elevation information over snow and ice of unprecedented quality and over larger zones than with previous near infrared TLS devices. Although very small glaciers represent the majority in number in most mountain ranges on Earth, their response to climatic changes is still not fully understood and field measurements are sparse. Therefore, a programme was set up in 2012 to monitor both the seasonal and annual surface mass balance of six very small glaciers across the Swiss Alps using the direct glaciological method. As often nearly the entire surface is visible from one single location, TLS is a highly promising technique to generate repeated high-resolution DEMs as well as to derive seasonal geodetic mass balances of very small ice masses. In this study, we present seasonal surface elevation, volume and geodetic mass changes for five very small glaciers in Switzerland (Glacier de Prapio, Glacier du Sex Rouge, St. Annafirn, Schwarzbachfirn and Pizolgletscher) derived from the comparison of seasonally repeated high-resolution DEMs acquired since autumn 2013 with the new ultra-long-range TLS device Riegl VZ-6000. We show the different processing steps necessary to derive geodetic glacier changes from the raw data (the TLS point clouds), comment on the accuracy of our results and compare them to very dense in-situ measurements, and thus investigate the potential of our approach to circumvent laborious and time consuming glaciological mass balance measurements of very small glaciers.

  11. The Martian climate: Energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1985-01-01

    Coupled equations are developed for mass and heat transport in a seasonal Mars model with condensation and sublimation of CO2 at the polar caps. Topics covered include physical considerations of planetary as mass and energy balance; effects of phase changes at the surface on mass and heat flux; atmospheric transport and governing equations; and numerical analysis.

  12. Mass-balance measurements in Alaska and suggestions for simplified observation programs

    USGS Publications Warehouse

    Trabant, D.C.; March, R.S.

    1999-01-01

    US Geological Survey glacier fieldwork in Alaska includes repetitious measurements, corrections for leaning or bending stakes, an ability to reliably measure seasonal snow as deep as 10 m, absolute identification of summer surfaces in the accumulation area, and annual evaluation of internal accumulation, internal ablation, and glacier-thickness changes. Prescribed field measurement and note-taking techniques help eliminate field errors and expedite the interpretative process. In the office, field notes are transferred to computerized spread-sheets for analysis, release on the World Wide Web, and archival storage. The spreadsheets have error traps to help eliminate note-taking and transcription errors. Rigorous error analysis ends when mass-balance measurements are extrapolated and integrated with area to determine glacier and basin mass balances. Unassessable errors in the glacier and basin mass-balance data reduce the value of the data set for correlations with climate change indices. The minimum glacier mass-balance program has at least three measurement sites on a glacier and the measurements must include the seasonal components of mass balance as well as the annual balance.

  13. Surface Mass Balance of the Greenland Ice Sheet Derived from Paleoclimate Reanalysis

    NASA Astrophysics Data System (ADS)

    Badgeley, J.; Steig, E. J.; Hakim, G. J.; Anderson, J.; Tardif, R.

    2017-12-01

    Modeling past ice-sheet behavior requires independent knowledge of past surface mass balance. Though models provide useful insight into ice-sheet response to climate forcing, if past climate is unknown, then ascertaining the rate and extent of past ice-sheet change is limited to geological and geophysical constraints. We use a novel data-assimilation framework developed under the Last Millennium Reanalysis Project (Hakim et al., 2016) to reconstruct past climate over ice sheets with the intent of creating an independent surface mass balance record for paleo ice-sheet modeling. Paleoclimate data assimilation combines the physics of climate models and the time series evidence of proxy records in an offline, ensemble-based approach. This framework allows for the assimilation of numerous proxy records and archive types while maintaining spatial consistency with known climate dynamics and physics captured by the models. In our reconstruction, we use the Community Climate System Model version 4, CMIP5 last millennium simulation (Taylor et al., 2012; Landrum et al., 2013) and a nearly complete database of ice core oxygen isotope records to reconstruct Holocene surface temperature and precipitation over the Greenland Ice Sheet on a decadal timescale. By applying a seasonality to this reconstruction (from the TraCE-21ka simulation; Liu et al., 2009), our reanalysis can be used in seasonally-based surface mass balance models. Here we discuss the methods behind our reanalysis and the performance of our reconstruction through prediction of unassimilated proxy records and comparison to paleoclimate reconstructions and reanalysis products.

  14. Devon Ice cap's future: results from climate and ice dynamics modelling via surface mass balance modelling

    NASA Astrophysics Data System (ADS)

    Rodehacke, C. B.; Mottram, R.; Boberg, F.

    2017-12-01

    The Devon Ice Cap is an example of a relatively well monitored small ice cap in the Canadian Arctic. Close to Greenland, it shows a similar surface mass balance signal to glaciers in western Greenland. Here we various boundary conditions, ranging from ERA-Interim reanalysis data via global climate model high resolution (5km) output from the regional climate model HIRHAM5, to determine the surface mass balance of the Devon ice cap. These SMB estimates are used to drive the PISM glacier model in order to model the present day and future prospects of this small Arctic ice cap. Observational data from the Devon Ice Cap in Arctic Canada is used to evaluate the surface mass balance (SMB) data output from the HIRHAM5 model for simulations forced with the ERA-Interim climate reanalysis data and the historical emissions scenario run by the EC-Earth global climate model. The RCP8.5 scenario simulated by EC-Earth is also downscaled by HIRHAM5 and this output is used to force the PISM model to simulate the likely future evolution of the Devon Ice Cap under a warming climate. We find that the Devon Ice Cap is likely to continue its present day retreat, though in the future increased precipitation partly offsets the enhanced melt rates caused by climate change.

  15. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Fischer, Mauro; Huss, Matthias; Kummert, Mario; Hoelzle, Martin

    2016-06-01

    Due to the relative lack of empirical field data, the response of very small glaciers (here defined as being smaller than 0.5 km2) to current atmospheric warming is not fully understood yet. Investigating their mass balance, e.g. using the direct glaciological method, is a prerequisite to fill this knowledge gap. Terrestrial laser scanning (TLS) techniques operating in the near infrared range can be applied for the creation of repeated high-resolution digital elevation models and consecutive derivation of annual geodetic mass balances of very small glaciers. This method is promising, as laborious and potentially dangerous field measurements as well as the inter- and extrapolation of point measurements can be circumvented. However, it still needs to be validated. Here, we present TLS-derived annual surface elevation and geodetic mass changes for five very small glaciers in Switzerland (Glacier de Prapio, Glacier du Sex Rouge, St. Annafirn, Schwarzbachfirn, and Pizolgletscher) and two consecutive years (2013/14-2014/15). The scans were acquired with a long-range Riegl -6000 especially designed for surveying snow- and ice-covered terrain. Zonally variable conversion factors for firn and bare ice surfaces were applied to convert geodetic volume to mass changes. We compare the geodetic results to direct glaciological mass balance measurements coinciding with the TLS surveys and assess the uncertainties and errors included in both methods. Average glacier-wide mass balances were negative in both years, showing stronger mass losses in 2014/15 (-1.65 m w.e.) compared to 2013/14 (-0.59 m w.e.). Geodetic mass balances were slightly less negative but in close agreement with the direct glaciological ones (R2 = 0.91). Due to the dense in situ measurements, the uncertainties in the direct glaciological mass balances were small compared to the majority of measured glaciers worldwide (±0.09 m w.e. yr-1 on average), and similar to uncertainties in the TLS-derived geodetic mass balances (±0.13 m w.e. yr-1).

  16. What do We Know the Snow Darkening Effect Over Himalayan Glaciers?

    NASA Technical Reports Server (NTRS)

    Yasunari, T. J.; Lau, K.-U.; Koster, R. D.; Suarez, M.; Mahanama, S. P.; Gautam, R.; Kim, K. M.; Dasilva, A. M.; Colarco, P. R.

    2011-01-01

    The atmospheric absorbing aerosols such as dust, black carbon (BC), organic carbon (OC) are now well known warming factors in the atmosphere. However, when these aerosols deposit onto the snow surface, it causes darkening of snow and thereby absorbing more energy at the snow surface leading to the accelerated melting of snow. If this happens over Himalayan glacier surface, the glacier meltings are expected and may contribute the mass balance changes though the mass balance itself is more complicated issue. Glacier has mainly two parts: ablation and accumulation zones. Those are separated by the Equilibrium Line Altitude (ELA). Above and below ELA, snow accumulation and melting are dominant, respectively. The change of ELA will influence the glacier disappearance in future. In the Himalayan region, many glacier are debris covered glacier at the terminus (i.e., in the ablation zone). Debris is pieces of rock from local land and the debris covered parts are probably not affected by any deposition of the absorbing aerosols because the snow surface is already covered by debris (the debris covered parts have different mechanism of melting). Hence, the contribution of the snow darkening effect is considered to be most important "over non debris covered part" of the Himalayan glacier (i.e., over the snow or ice surface area). To discuss the whole glacier retreat, mass balance of each glacier is most important including the discussion on glacier flow, vertical compaction of glacier, melting amount, etc. The contribution of the snow darkening is mostly associated with "the snow/ice surface melting". Note that the surface melting itself is not always directly related to glacier retreats because sometimes melt water refreezes inside of the glacier. We should discuss glacier retreats in terms of not only the snow darkening but also other contributions to the mass balance.

  17. Spatial and temporal Antarctic Ice Sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data.

    PubMed

    Martín-Español, Alba; Zammit-Mangion, Andrew; Clarke, Peter J; Flament, Thomas; Helm, Veit; King, Matt A; Luthcke, Scott B; Petrie, Elizabeth; Rémy, Frederique; Schön, Nana; Wouters, Bert; Bamber, Jonathan L

    2016-02-01

    We present spatiotemporal mass balance trends for the Antarctic Ice Sheet from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003-2013. Our method simultaneously determines annual trends in ice dynamics, surface mass balance anomalies, and a time-invariant solution for glacio-isostatic adjustment while remaining largely independent of forward models. We establish that over the period 2003-2013, Antarctica has been losing mass at a rate of -84 ± 22 Gt yr -1 , with a sustained negative mean trend of dynamic imbalance of -111 ± 13 Gt yr -1 . West Antarctica is the largest contributor with -112 ± 10 Gt yr -1 , mainly triggered by high thinning rates of glaciers draining into the Amundsen Sea Embayment. The Antarctic Peninsula has experienced a dramatic increase in mass loss in the last decade, with a mean rate of -28 ± 7 Gt yr -1 and significantly higher values for the most recent years following the destabilization of the Southern Antarctic Peninsula around 2010. The total mass loss is partly compensated by a significant mass gain of 56 ± 18 Gt yr -1 in East Antarctica due to a positive trend of surface mass balance anomalies.

  18. Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations

    NASA Astrophysics Data System (ADS)

    Barandun, Martina; Huss, Matthias; Usubaliev, Ryskul; Azisov, Erlan; Berthier, Etienne; Kääb, Andreas; Bolch, Tobias; Hoelzle, Martin

    2018-06-01

    Glacier surface mass balance observations in the Tien Shan and Pamir are relatively sparse and often discontinuous. Nevertheless, glaciers are one of the most important components of the high-mountain cryosphere in the region as they strongly influence water availability in the arid, continental and intensely populated downstream areas. This study provides reliable and continuous surface mass balance series for selected glaciers located in the Tien Shan and Pamir-Alay. By cross-validating the results of three independent methods, we reconstructed the mass balance of the three benchmark glaciers, Abramov, Golubin and Glacier no. 354 for the past 2 decades. By applying different approaches, it was possible to compensate for the limitations and shortcomings of each individual method. This study proposes the use of transient snow line observations throughout the melt season obtained from satellite optical imagery and terrestrial automatic cameras. By combining modelling with remotely acquired information on summer snow depletion, it was possible to infer glacier mass changes for unmeasured years. The model is initialized with daily temperature and precipitation data collected at automatic weather stations in the vicinity of the glacier or with adjusted data from climate reanalysis products. Multi-annual mass changes based on high-resolution digital elevation models and in situ glaciological surveys were used to validate the results for the investigated glaciers. Substantial surface mass loss was confirmed for the three studied glaciers by all three methods, ranging from -0.30 ± 0.19 to -0.41 ± 0.33 m w.e. yr-1 over the 2004-2016 period. Our results indicate that integration of snow line observations into mass balance modelling significantly narrows the uncertainty ranges of the estimates. Hence, this highlights the potential of the methodology for application to unmonitored glaciers at larger scales for which no direct measurements are available.

  19. Surface mass balance of Greenland mountain glaciers and ice caps

    NASA Astrophysics Data System (ADS)

    Benson, R. J.; Box, J. E.; Bromwich, D. H.; Wahr, J. M.

    2009-12-01

    Mountain glaciers and ice caps contribute roughly half of eustatic sea-level rise. Greenland has thousands of small mountain glaciers and several ice caps > 1000 sq. km that have not been included in previous mass balance calculations. To include small glaciers and ice caps in our study, we use Polar WRF, a next-generation regional climate data assimilation model is run at grid resolution less than 10 km. WRF provides surface mass balance data at sufficiently high resolution to resolve not only the narrow ice sheet ablation zone, but provides information useful in downscaling melt and accumulation rates on mountain glaciers and ice caps. In this study, we refine Polar WRF to simulate a realistic surface energy budget. Surface melting is calculated in-line from surface energy budget closure. Blowing snow sublimation is computed in-line. Melt water re-freeze is calculated using a revised scheme. Our results are compared with NASA's Gravity Recovery and Climate Experiment (GRACE) and associated error is calculated on a regional and local scale with validation from automated weather stations (AWS), snow pits and ice core data from various regions along the Greenland ice sheet.

  20. Calving fluxes and basal melt rates of Antarctic ice shelves.

    PubMed

    Depoorter, M A; Bamber, J L; Griggs, J A; Lenaerts, J T M; Ligtenberg, S R M; van den Broeke, M R; Moholdt, G

    2013-10-03

    Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. So far, however, no study has reliably quantified the calving flux and the basal mass balance (the balance between accretion and ablation at the ice-shelf base) for the whole of Antarctica. The distribution of fresh water in the Southern Ocean and its partitioning between the liquid and solid phases is therefore poorly constrained. Here we estimate the mass balance components for all ice shelves in Antarctica, using satellite measurements of calving flux and grounding-line flux, modelled ice-shelf snow accumulation rates and a regional scaling that accounts for unsurveyed areas. We obtain a total calving flux of 1,321 ± 144 gigatonnes per year and a total basal mass balance of -1,454 ± 174 gigatonnes per year. This means that about half of the ice-sheet surface mass gain is lost through oceanic erosion before reaching the ice front, and the calving flux is about 34 per cent less than previous estimates derived from iceberg tracking. In addition, the fraction of mass loss due to basal processes varies from about 10 to 90 per cent between ice shelves. We find a significant positive correlation between basal mass loss and surface elevation change for ice shelves experiencing surface lowering and enhanced discharge. We suggest that basal mass loss is a valuable metric for predicting future ice-shelf vulnerability to oceanic forcing.

  1. Surface mass balance model evaluation from satellite and airborne lidar mapping

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    We present estimates of Greenland Ice Sheet (GrIS) surface elevation change from a novel combination of satellite and airborne laser altimetry measurements. Our method combines measurements from the Airborne Topographic Mapper (ATM), the Land, Vegetation and Ice Sensor (LVIS) and ICESat-1 to generate elevation change rates at high spatial resolution. This method allows to extend the records of each instrument, increases the overall spatial coverage compared to a single instrument, and produces high-quality, coherent maps of surface elevation change. In addition by combining the lidar datasets, we are able to investigate seasonal and interannual surface elevation change for years where Spring and Fall Operation IceBridge campaigns are available. We validate our method by comparing with the standard NSIDC elevation change product calculated using overlapping Level-1B ATM data. We use the altimetry-derived mass changes to evaluate the uncertainty in surface mass balance, particularly in the runoff component, from two Regional Climate Models (RCM's), the Regional Atmospheric Climate Model (RACMO) and the Modéle Atmosphérique Régional (MAR), and one Global Climate Model (GCM), MERRA2/GEOS-5. We investigate locations with low ice sheet surface velocities that are within the estimated ablation zones of each regional climate model. We find that the surface mass balance outputs from RACMO and MAR show good correspondence with mass changes derived from surface elevation changes over long periods. At two sites in Northeast Greenland (NEGIS), the MAR model has better correspondence with the altimetry estimate. We find that the differences at these locations are primarily due to the characterization of meltwater refreeze within the ice sheet.

  2. Trends in ice sheet mass balance, 1992 to 2017

    NASA Astrophysics Data System (ADS)

    Shepherd, A.; Ivins, E. R.; Smith, B.; Velicogna, I.; Whitehouse, P. L.; Rignot, E. J.; van den Broeke, M. R.; Briggs, K.; Hogg, A.; Krinner, G.; Joughin, I. R.; Nowicki, S.; Payne, A. J.; Scambos, T.; Schlegel, N.; Moyano, G.; Konrad, H.

    2017-12-01

    The Ice Sheet Mass Balance Inter-Comparison Exercise (IMBIE) is a community effort, jointly supported by ESA and NASA, that aims to provide a consensus estimate of ice sheet mass balance from satellite gravimetry, altimetry and mass budget assessments, on an annual basis. The project has five experiment groups, one for each of the satellite techniques and two others to analyse surface mass balance (SMB) and glacial isostatic adjustment (GIA). The basic premise for the exercise is that individual ice sheet mass balance datasets are generated by project participants using common spatial and temporal domains to allow meaningful inter-comparison, and this controlled comparison in turn supports aggregation of the individual datasets over their full period. Participation is open to the full community, and the quality and consistency of submissions is regulated through a series of data standards and documentation requirements. The second phase of IMBIE commenced in 2015, with participant data submitted in 2016 and a combined estimate due for public release in 2017. Data from 48 participant groups were submitted to one of the three satellite mass balance technique groups or to the ancillary dataset groups. The individual mass balance estimates and ancillary datasets have been compared and combined within the respective groups. Following this, estimates of ice sheet mass balance derived from the individual techniques were then compared and combined. The result is single estimates of ice sheet mass balance for Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula. The participants, methodology and results of the exercise will be presented in this paper.

  3. Present and Future Surface Mass Budget of Small Arctic Ice Caps in a High Resolution Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Langen, Peter; Koldtoft, Iben; Midefelt, Linnea; Hesselbjerg Christensen, Jens

    2016-04-01

    Globally, small ice caps and glaciers make a substantial contribution to sea level rise; this is also true in the Arctic. Around Greenland small ice caps are surprisingly important to the total mass balance from the island as their marginal coastal position means they receive a large amount of precipitation and also experience high surface melt rates. Since small ice caps and glaciers have had a disproportionate number of long-term monitoring and observational schemes in the Arctic, likely due to their relative accessibility, they can also be a valuable source of data. However, in climate models the surface mass balance contributions are often not distinguished from the main ice sheet and the presence of high relief topography is difficult to capture in coarse resolution climate models. At the same time, the diminutive size of marginal ice masses in comparison to the ice sheet makes modelling their ice dynamics difficult. Using observational data from the Devon Ice Cap in Arctic Canada and the Renland Ice Cap in Eastern Greenland, we assess the success of a very high resolution (~5km) regional climate model, HIRHAM5 in capturing the surface mass balance (SMB) of these small ice caps. The model is forced with ERA-Interim and we compare observed mean SMB and the interannual variability to assess model performance. The steep gradient in topography around Renland is challenging for climate models and additional statistical corrections are required to fit the calculated surface mass balance to the high relief topography. Results from a modelling experiment at Renland Ice Cap shows that this technique produces a better fit between modelled and observed surface topography. We apply this statistical relationship to modelled SMB on the Devon Ice Cap and use the long time series of observations from this glacier to evaluate the model and the smoothed SMB. Measured SMB values from a number of other small ice caps including Mittivakkat and A.P. Olsen ice cap are also compared with model output. Finally we use climate simulations forced with two different RCP scenarios to examine the likely future evolution of SMB over these small ice masses.

  4. The changing impact of snow conditions and refreezing on the mass balance of an idealized Svalbard glacier

    NASA Astrophysics Data System (ADS)

    Van Pelt, Ward; Pohjola, Veijo; Reijmer, Carleen

    2016-11-01

    Glacier surface melt and runoff depend strongly on seasonal and perennial snow (firn) conditions. Not only does the presence of snow and firn directly affect melt rates by reflecting solar radiation, it may also act as a buffer against mass loss by storing melt water in refrozen or liquid form. In Svalbard, ongoing and projected amplified climate change with respect to the global mean change has severe implications for the state of snow and firn and its impact on glacier mass loss. Model experiments with a coupled surface energy balance - firn model were done to investigate the surface mass balance and the changing role of snow and firn conditions for an idealized Svalbard glacier. A climate forcing for the past, present and future (1984-2104) is constructed, based on observational data from Svalbard Airport and a seasonally dependent projection scenario. Results illustrate ongoing and future firn degradation in response to an elevational retreat of the equilibrium line altitude (ELA) of 31 m decade-1. The temperate firn zone is found to retreat and expand, while cold ice in the ablation zone warms considerably. In response to pronounced winter warming and an associated increase in winter rainfall, the current prevalence of refreezing during the melt season gradually shifts to the winter season in a future climate. Sensitivity tests reveal that in a present and future climate the density and thermodynamic structure of Svalbard glaciers are heavily influenced by refreezing. Refreezing acts as a net buffer against mass loss. However, the net mass balance change after refreezing is substantially smaller than the amount of refreezing itself, which can be ascribed to melt-enhancing effects after refreezing, which partly offset the primary mass-retaining effect of refreezing.

  5. Local topography increasingly influences the mass balance of a retreating cirque glacier

    USGS Publications Warehouse

    Florentine, Caitlyn; Harper, Joel T.; Fagre, Daniel B.; Moore, Johnnie; Peitzsch, Erich H.

    2018-01-01

    Local topographically driven processes – such as wind drifting, avalanching, and shading – are known to alter the relationship between the mass balance of small cirque glaciers and regional climate. Yet partitioning such local effects from regional climate influence has proven difficult, creating uncertainty in the climate representativeness of some glaciers. We address this problem for Sperry Glacier in Glacier National Park, USA, using field-measured surface mass balance, geodetic constraints on mass balance, and regional climate data recorded at a network of meteorological and snow stations. Geodetically derived mass changes during 1950–1960, 1960–2005, and 2005–2014 document average mass change rates during each period at −0.22 ± 0.12, −0.18 ± 0.05, and −0.10 ± 0.03 m w.e. yr−1, respectively. A correlation of field-measured mass balance and regional climate variables closely (i.e., within 0.08 m w.e. yr−1) predicts the geodetically measured mass loss from 2005 to 2014. However, this correlation overestimates glacier mass balance for 1950–1960 by +1.20 ± 0.95 m w.e. yr−1. Our analysis suggests that local effects, not represented in regional climate variables, have become a more dominant driver of the net mass balance as the glacier lost 0.50 km2 and retreated further into its cirque.

  6. Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps)

    NASA Astrophysics Data System (ADS)

    Réveillet, Marion; Six, Delphine; Vincent, Christian; Rabatel, Antoine; Dumont, Marie; Lafaysse, Matthieu; Morin, Samuel; Vionnet, Vincent; Litt, Maxime

    2018-04-01

    This study focuses on simulations of the seasonal and annual surface mass balance (SMB) of Saint-Sorlin Glacier (French Alps) for the period 1996-2015 using the detailed SURFEX/ISBA-Crocus snowpack model. The model is forced by SAFRAN meteorological reanalysis data, adjusted with automatic weather station (AWS) measurements to ensure that simulations of all the energy balance components, in particular turbulent fluxes, are accurately represented with respect to the measured energy balance. Results indicate good model performance for the simulation of summer SMB when using meteorological forcing adjusted with in situ measurements. Model performance however strongly decreases without in situ meteorological measurements. The sensitivity of the model to meteorological forcing indicates a strong sensitivity to wind speed, higher than the sensitivity to ice albedo. Compared to an empirical approach, the model exhibited better performance for simulations of snow and firn melting in the accumulation area and similar performance in the ablation area when forced with meteorological data adjusted with nearby AWS measurements. When such measurements were not available close to the glacier, the empirical model performed better. Our results suggest that simulations of the evolution of future mass balance using an energy balance model require very accurate meteorological data. Given the uncertainties in the temporal evolution of the relevant meteorological variables and glacier surface properties in the future, empirical approaches based on temperature and precipitation could be more appropriate for simulations of glaciers in the future.

  7. Opportunities and Challenges in Enhancing Value of Annual Glacier Mass Balance Monitoring Examples from Western North America

    NASA Astrophysics Data System (ADS)

    Pelto, M. S.

    2017-12-01

    Alpine glacier mass balance is the most accurate indicator of glacier response to climate and with retreat of alpine glaciers is one of the clearest signals of global climate change. Completion of long term, representative and homogenous mass balance field measurement of mass balance, compiled by WGMS, is a key climate data record. To ensure a monitoring program remains vital and funded local collaboration and connecting the research to local societal impacts is crucial. Working with local partners in collecting and providing the right data is critical whether their interest is in hydropower, irrigation, municipal supply, hazard reduction and/or aquatic ecosystems. The expansion of remote sensing and modeling capability provides both a challenge to continued relevance and an opportunity for field mass balance programs to expand relevance. In modelling studies of both glacier mass balance and glacier runoff transient balance data has equivalent value with annual balance data, for both calibration runs and as an input variable. This increases the utility of mid-season field observations. Remote sensing provides repeat imagery that often identifies the AAR and transient snowline of a glacier. For runoff assessment understanding the specific percent of glacier surface area that is glacier ice, older firn, and retained snowpack from the previous winter at frequent intervals during the melt season is vital since each region has a different melt factor. A denser field observation network combined with this imagery can provide additional point balance values of ablation that complement the mass balance record. Periodic measurement of mass balance at a denser network using GPR, LIDAR, TLS or probing is required to better understand long term point balance locations and is important at end of the melt season not just beginning, and has value mid-season for modelling. Applications of each of utility of field mass balance observations will be illustrated.

  8. Mass Balance of a Maritime Glacier on the Southeast Tibetan Plateau and Its Climatic Sensitivity

    NASA Astrophysics Data System (ADS)

    Yang, W.

    2014-12-01

    Based on glacio-meteorological measurements and mass-balance stake records during the five-year period of 2005-2010 on the southeast Tibetan Plateau, an energy-mass balance model was applied to study the surface mass balance of the Parlung No. 94 Glacier, as well as its response to regional climate conditions. The primary physical parameters involved in the model were locally calibrated by using relevant glacio-meteorological datasets. The good agreement between the snowpack height/mass balance simulations and the in-situ measurements available from a total of 12 monitoring stakes over this glacier confirmed the satisfactory performance of the energy-mass balance model. Results suggested that the recent state of the Parlung No. 94 Glacier was far removed from the 'ideal' climatic regime leading to zero mass balance, with its annual mass balance of approximately -0.9 m w.e. during 2005-2010. Climatic sensitivity experiments were also carried out to interpret the observed mass-balance changes, and the experiments demonstrated that the maritime glaciers concerned herein were theoretically more vulnerable to ongoing climate warming on the Tibetan Plateau than potential changes in the amount of precipitation. A plausible causal explanation for the recent glacier shrinkage in this region was concerned with the increasing air temperature. Moreover, both the mass balance simulations and the field measurements indicated that the mass accumulation over this maritime glacier occurred primarily in the boreal spring. Such "spring-accumulation type" glaciers are presumed to be distributed mainly within a narrow wedge-shaped region along the Brahmaputra River. Climatic sensitivities of the glacier mass balanceare also found to be closely linked to the regional precipitation seasonality that is simultaneously modulated by various atmospheric circulation patterns, such as the southern westerlies, the Bay of Bengal vortex in the spring season and the Indian monsoon in the summer season.

  9. Ice-sheet contributions to future sea-level change.

    PubMed

    Gregory, J M; Huybrechts, P

    2006-07-15

    Accurate simulation of ice-sheet surface mass balance requires higher spatial resolution than is afforded by typical atmosphere-ocean general circulation models (AOGCMs), owing, in particular, to the need to resolve the narrow and steep margins where the majority of precipitation and ablation occurs. We have developed a method for calculating mass-balance changes by combining ice-sheet average time-series from AOGCM projections for future centuries, both with information from high-resolution climate models run for short periods and with a 20km ice-sheet mass-balance model. Antarctica contributes negatively to sea level on account of increased accumulation, while Greenland contributes positively because ablation increases more rapidly. The uncertainty in the results is about 20% for Antarctica and 35% for Greenland. Changes in ice-sheet topography and dynamics are not included, but we discuss their possible effects. For an annual- and area-average warming exceeding 4.5+/-0.9K in Greenland and 3.1+/-0.8K in the global average, the net surface mass balance of the Greenland ice sheet becomes negative, in which case it is likely that the ice sheet would eventually be eliminated, raising global-average sea level by 7m.

  10. Thermal Characterization of the Air Force Institute of Technology Solar Simulation Thermal Vacuum Chamber

    DTIC Science & Technology

    2014-03-27

    mass and surface area, Equation 12 demonstrates an energy balance for the material, assuming the rest of the surfaces of the material are isothermal...radiation in order to dissipate heat from 18 the spacecraft [8]. As discussed in the system thermal energy balance defined previously, emission of IR... energy balance calculations will be utilized. The Monte Carlo/Ray Trace Radiation Method The Monte Carlo/Ray Trace method is utilized in order to

  11. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    NASA Technical Reports Server (NTRS)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  12. Spatiotemporal Variability of Meltwater Refreezing in Southwest Greenland Ice Sheet Firn

    NASA Astrophysics Data System (ADS)

    Rennermalm, A. K.; Hock, R.; Tedesco, M.; Corti, G.; Covi, F.; Miège, C.; Kingslake, J.; Leidman, S. Z.; Munsell, S.

    2017-12-01

    A substantial fraction of the summer meltwater formed on the surface of the Greenland ice sheet is retained in firn, while the remaining portion runs to the ocean through surface and subsurface channels. Refreezing of meltwater in firn can create impenetrable ice lenses, hence being a crucial process in the redistribution of surface runoff. To quantify the impact of refreezing on runoff and current and future Greenland surface mass balance, a three year National Science Foundation funded project titled "Refreezing in the firn of the Greenland ice sheet: Spatiotemporal variability and implications for ice sheet mass balance" started this past year. Here we present an overview of the project and some initial results from the first field season in May 2017 conducted in proximity of the DYE-2 site in the percolation zone of the Southwest Greenland ice sheet at elevations between 1963 and 2355 m a.s.l.. During this fieldwork two automatic weather stations were deployed, outfitted with surface energy balance sensors and 16 m long thermistor strings, over 300 km of ground penetrating radar data were collected, and five 20-26 m deep firn cores were extracted and analyzed for density and stratigraphy. Winter snow accumulation was measured along the radar tracks. Preliminary work on the firn-core data reveals increasing frequency and thickness of ice lenses at lower ice-sheet elevations, in agreement with other recent work in the area. Data collected within this project will facilitate advances in our understanding of the spatiotemporal variability of firn refreezing and its role in the hydrology and surface mass balance of the Greenland Ice Sheet.

  13. Sea level rise from the Greenland Ice Sheet during the Eemian interglacial: Review of previous work with focus on the surface mass balance

    NASA Astrophysics Data System (ADS)

    Plach, Andreas; Hestnes Nisancioglu, Kerim

    2016-04-01

    The contribution from the Greenland Ice Sheet (GIS) to the global sea level rise during the Eemian interglacial (about 125,000 year ago) was the focus of many studies in the past. A main reason for the interest in this period is the considerable warmer climate during the Eemian which is often seen as an equivalent for possible future climate conditions. Simulated sea level rise during the Eemian can therefore be used to better understand a possible future sea level rise. The most recent assessment report of the Intergovernmental Panel on Climate Change (IPCC AR5) gives an overview of several studies and discusses the possible implications for a future sea level rise. The report also reveals the big differences between these studies in terms of simulated GIS extent and corresponding sea level rise. The present study gives a more exhaustive review of previous work discussing sea level rise from the GIS during the Eemian interglacial. The smallest extents of the GIS simulated by various authors are shown and summarized. A focus is thereby given to the methods used to calculate the surface mass balance. A hypothesis of the present work is that the varying results of the previous studies can largely be explained due to the various methods used to calculate the surface mass balance. In addition, as a first step for future work, the surface mass balance of the GIS for a proxy-data derived forcing ("index method") and a direct forcing with a General Circulation Model (GCM) are shown and discussed.

  14. Fluctuations of a Temperate Mountain Glacier in Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Bidlake, W.

    2012-12-01

    Glacier mass balance is a fundamental parameter for understanding and predicting the evolution of glaciers on the landscape in response to climate change. The USGS Ice and Climate Project (ICP) continues to extend the longest-running USGS benchmark glacier mass-balance record at South Cascade Glacier, Washington. Due to the importance of South Cascade Glacier data sets for glaciological and climate research, ICP is releasing decades-old previously unpublished glacier surface and bed maps, mass balance data at individual sites, ice velocity data, and an updated ice inventory for the surrounding basin. The complete record includes a pre-Industrial Revolution reconstruction of the glacier and seasonal mass balance measurements for the past 54 years (1958-2012). Since 2000, the glacier has experienced four of the five most negative summer balances and two of the largest positive accumulation years, indicating that the glacier is continuing to respond to recent warming and precipitation changes. Recently, ICP has developed a temperature-index glacier melt model that extrapolates daily accumulation and melt rates from intermittent field observations based on regional meteorological data, and an expert system for mass balance that captures the strengths of both measurement and modeling for assessing mass balance. The models have been successfully calibrated at South Cascade Glacier, where ample observations are available, but are designed to be used with as few or as many glaciological field data as are available for a given ice mass.

  15. Mechanical Balance Laws for Boussinesq Models of Surface Water Waves

    NASA Astrophysics Data System (ADS)

    Ali, Alfatih; Kalisch, Henrik

    2012-06-01

    Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of these quantities are not known. This work presents a systematic derivation of mass, momentum and energy densities and fluxes associated with a general family of Boussinesq systems. The derivation is based on a reconstruction of the velocity field and the pressure in the fluid column below the free surface, and the derivation of differential balance equations which are of the same asymptotic validity as the evolution equations. It is shown that all these mechanical quantities can be expressed in terms of the principal dependent variables of the Boussinesq system: the surface excursion η and the horizontal velocity w at a given level in the fluid.

  16. An eleven-year record of mass balance of Brewster Glacier, New Zealand, determined using a geostatistical approach

    NASA Astrophysics Data System (ADS)

    Cullen, N. J.; Anderson, B.; Sirguey, P. J.; Stumm, D.; Mackintosh, A.; Conway, J. P.; Horgan, H. J.; Dadic, R.; Fitzsimons, S.; Lorrey, A.

    2016-12-01

    Recognizing the scarcity of glacier mass balance data in the Southern Hemisphere, a mass balance measurement program was started at Brewster Glacier in 2004. Evolution of the measurement regime over the 11 years of data recorded means there are differences in the spatial density of data obtained. To ensure the temporal integrity of the dataset a new, geostatistical approach has been developed to calculate mass balance. Spatial co-variance between elevation and snow depth has enabled a digital elevation model to be used in a co-kriging approach to develop a snow depth index (SDI). By capturing the observed spatial variability in snow depth, the SDI is a more reliable predictor than elevation and is used to adjust each year of measurements consistently despite variability in sampling spatial density. The SDI also resolves the spatial structure of summer balance better than elevation. Co-kriging is used again to spatially interpolate a derived mean summer balance index using SDI as a co-variate, which yields a spatial predictor for summer balance. A similar approach is also used to create a predictor for annual balance, which allows us to revisit years where summer balance was not obtained. The average glacier-wide surface winter, summer and annual mass balances over the period 2005-2015 are 2484, -2586, and -102 mm w.e., respectively, with changes in summer balance explaining most of the variability in annual balance. On the whole, there is good agreement between our ELA and AAR values and those derived from the end-of-summer snowline (EOSS) program, though discrepancies in some years cannot be fully accounted for. A mass balance map of Brewster Glacier in an equilibrium state, which by definition has a glacier-wide mass balance equal to zero (a balanced-budget), is used to calculate values of ELA (1923 ±25 m) and AAR (0.40) representative of the observational period. The relationships between mass balance and ELA/AAR are explored, demonstrating they are mostly linear. On average, the mass balance gradients are found to be equal to 14.5 and 7.4 mm we m-1 in the ablation and accumulation zones, respectively. However, there is considerable variability in the gradients from year to year, as well as variability between different elevation bands. The largest variability in the mass balance gradient is observed in the ablation zone.

  17. Closing the loop on elevation change at Summit, Greenland.

    NASA Astrophysics Data System (ADS)

    Hawley, R. L.; Brunt, K. M.; Neumann, T.; Waddington, E. D.

    2016-12-01

    Surface elevation on a large ice sheet changes due to multiplephysical processes, some of which imply mass change of the ice sheet,and some not. Accumulation of new snow, in absence of otherprocesses, will increase surface elevation as new mass is added to theice sheet. Compaction of snow and firn, both new and old, has atendency to decrease surface elevation, with no corresponding changein mass. As ice flows out to the sides on an ice sheet, conservationof mass dictates that the surface elevation will decrease,corresponding to mass loss. In response to long-term changes in mass,the continental crust on which the ice rests seeks isostatic balance,resulting (since the last glacial maximum) in an increase inelevation, with no associated mass change. The summation of theseprocesses results in net elevation change.We have measured elevation change along a 12 km transect at Summit,Greenland, monthly since 2007. Along the same transect we measuredthe burial rate of stakes to determine accumulation. We havepreviously measured firn compaction over a period of 4 years, and haverecently measured differential ice motion and the resulting strain.Over the course of the measurement period, we find no significantelevation change. We do, however, find intriguing periodicities inelevation. By combining our measurements of elevation, accumulation,firn compaction, and ice flow, we attempt to "close the loop" inattributing the long-term balance of surface elevation.

  18. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900.

    PubMed

    Kjeldsen, Kristian K; Korsgaard, Niels J; Bjørk, Anders A; Khan, Shfaqat A; Box, Jason E; Funder, Svend; Larsen, Nicolaj K; Bamber, Jonathan L; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S; Willerslev, Eske; Kjær, Kurt H

    2015-12-17

    The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to predict global sea level rise.

  19. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Kristian K.; Korsgaard, Niels J.; Bjørk, Anders A.; Khan, Shfaqat A.; Box, Jason E.; Funder, Svend; Larsen, Nicolaj K.; Bamber, Jonathan L.; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S.; Willerslev, Eske; Kjær, Kurt H.

    2015-12-01

    The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to predict global sea level rise.

  20. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; hide

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  1. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2014-09-30

    During cruise CU-B UAF UW Airborne expendable Ice Buoy (AXIB) Ahead, at and inside ice edge Surface meteorology T, SLP ~1 year CU-B UW...Balance (IMB) buoys Inside ice edge w/ >50cm thickness Ice mass balance T in snow-ice-ocean, T, SLP at surface ~1 year WHOI CRREL (SeaState DRI

  2. The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: evaluating the surface energy budget in a regional climate model with automatic weather station observations

    NASA Astrophysics Data System (ADS)

    Steffensen Schmidt, Louise; Aðalgeirsdóttir, Guðfinna; Guðmundsson, Sverrir; Langen, Peter L.; Pálsson, Finnur; Mottram, Ruth; Gascoin, Simon; Björnsson, Helgi

    2017-07-01

    A simulation of the surface climate of Vatnajökull ice cap, Iceland, carried out with the regional climate model HIRHAM5 for the period 1980-2014, is used to estimate the evolution of the glacier surface mass balance (SMB). This simulation uses a new snow albedo parameterization that allows albedo to exponentially decay with time and is surface temperature dependent. The albedo scheme utilizes a new background map of the ice albedo created from observed MODIS data. The simulation is evaluated against observed daily values of weather parameters from five automatic weather stations (AWSs) from the period 2001-2014, as well as in situ SMB measurements from the period 1995-2014. The model agrees well with observations at the AWS sites, albeit with a general underestimation of the net radiation. This is due to an underestimation of the incoming radiation and a general overestimation of the albedo. The average modelled albedo is overestimated in the ablation zone, which we attribute to an overestimation of the thickness of the snow layer and not taking the surface darkening from dirt and volcanic ash deposition during dust storms and volcanic eruptions into account. A comparison with the specific summer, winter, and net mass balance for the whole of Vatnajökull (1995-2014) shows a good overall fit during the summer, with a small mass balance underestimation of 0.04 m w.e. on average, whereas the winter mass balance is overestimated by on average 0.5 m w.e. due to too large precipitation at the highest areas of the ice cap. A simple correction of the accumulation at the highest points of the glacier reduces this to 0.15 m w.e. Here, we use HIRHAM5 to simulate the evolution of the SMB of Vatnajökull for the period 1981-2014 and show that the model provides a reasonable representation of the SMB for this period. However, a major source of uncertainty in the representation of the SMB is the representation of the albedo, and processes currently not accounted for in RCMs, such as dust storms, are an important source of uncertainty in estimates of snow melt rate.

  3. Studying the Effects of Amazonian Land Cover Change on Glacier Mass Balance in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Mark, B. G.; Fernandez, A.; Gabrielli, P.; Montenegro, A.; Postigo, J.; Hellstrom, R. A.

    2017-12-01

    Recent research has highlighted several ongoing environmental changes occurring across Tropical South America, including Andean glacier retreat, drought, as well as changes in land-use and land-cover. As the regional climate of the area is mostly characterized by land-ocean interactions, the atmospheric convection in the Amazon, and the effect of the Andes on circulation patterns, it follows that changes in one of those regions may affect the other. Most scholars who have studied the causes of tropical glaciers' fluctuations have not analyzed the linkages with changes in the Amazon with the same attention paid to the influence of Pacific sea surface temperature. Here we study the response of glacier surface mass balance in the Cordillera Blanca, Peru (10°S), to a scenario where the Amazonian rainforest is replaced by savannas. We ran climatic simulations at 2-km spatial resolution utilizing the Weather Research and Forecasting (WRF) model considering two scenarios: (a) control (CRTL), with today's rainforest extent; and (b) land cover change (LCC), where all the rainforest was replaced by savanna. WRF output was in turn ingested into a glacier energy and mass balance (GEMB) model that we validate by reconstructing both the accumulated mass balance from available observations, and the altitudinal distribution of mass balance in the region. Seasonal comparison between CRTL and LCC scenarios indicates that forest replacement by savanna results in more positive glacier mass balance. This shift to more positive mass balance contrasts with a (WRF) modeled rise in the elevation of the freezing line (0°C) between 30 to 120 m for the LCC scenario. Our results are surprising because most previous studies have shown that reducing Amazon forest cover diminishes rainfall and increases temperature, suggesting that glaciers should lose mass. We hypothesize and discuss implications of possible land-atmospheric processes that might drive this tropical glacier response to Amazonian forest change, including: the large-scale influence of Amazonian albedo change on the interaction between the Walker and Hadley cells and the effect of mountain meteorology dynamics.

  4. Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojian

    The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water production from CMIP5 data with the model by assuming that the Greenland Ice Sheet is covered in black carbon (lowering the albedo) and perpetually covered by optically thick clouds (increasing long wave radiation). This upper bound roughly triples surface meltwater production, resulting in 30 cm of sea level rise by 2100. These model estimates, combined with prior research suggesting an additional 40-100 cm of sea level rise associated with dynamical discharge, suggest that the Greenland Ice Sheet is poised to contribute significantly to sea level rise in the coming century.

  5. Glacier stagnant in central Karakorum during 2003 to 2008 derived from DEOS Mass Transport Model GRACE data and one monthly degree-day model

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Zhang, Shiqiang; Xu, Junli

    2016-10-01

    Glacier change in central Karakorum is known as `anomony' in the late 1990s, where many glaciers expanded and numbers of glacier surged while most of glaciers in the Greater Himalaya rapidly retreated. However, the understanding of glacier change in this region is still poor. Glacier changes for the Hunza river basin (HRB) in central Karakorum during 2003 to 2008 were investigated from different data sources. The mass variation in HRB were estimated from the DEOS Mass Transport Model (DMT-1) GRACE data and the Variable Infiltration Capacity (VIC) model, and compared with the simulated glacier mass balance by one monthly degree-day model. The surface elevation difference of glaciers between ASTER DEM and SRTM were calculated. The mass variations from GRACE data suggest that the glacier mass balance in HRB during 2003-2007 has no clear trend. The cumulative mass balance is positive during 2003-2008. The average glacier surface elevation difference between SRTM DEM and ASTER DEM is 11.8+/-3.2 m. The average differences of glacier surface elevation of Batura glaciers in accumulation zones is increased with 0.88m.a-1, These results indicate that there is no significant glacier retreat during 1999 to 2008. The seasonal amplitude of simulated mass variation of the monthly degree-day model agreed well with that estimated from DMT-1 GRACE data, but the simulated glacier accumulation is less than that calculated from GRACE data. The main reason probably lies in that the precipitation of glaciers and ungalciated areas were underestimated, especially in alpine areas.

  6. High-resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Hill, D. F.; Arendt, A.; Liston, G. E.

    2016-05-01

    A comprehensive study of the Gulf of Alaska (GOA) drainage basin was carried out to improve understanding of the coastal freshwater discharge (FWD) and glacier volume loss (GVL). Hydrologic processes during the period 1980-2014 were modeled using a suite of physically based, spatially distributed weather, energy-balance snow/ice melt, soil water balance, and runoff routing models at a high-resolution (1 km horizontal grid; daily time step). Meteorological forcing was provided by the North American Regional Reanalysis (NARR), Modern Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR) data sets. Streamflow and glacier mass balance modeled using MERRA and CFSR compared well with observations in four watersheds used for calibration in the study domain. However, only CFSR produced regional seasonal and long-term trends in water balance that compared favorably with independent Gravity Recovery and Climate Experiment (GRACE) and airborne altimetry data. Mean annual runoff using CFSR was 760 km3 yr-1, 8% of which was derived from the long-term removal of stored water from glaciers (glacier volume loss). The annual runoff from CFSR was partitioned into 63% snowmelt, 17% glacier ice melt, and 20% rainfall. Glacier runoff, taken as the sum of rainfall, snow, and ice melt occurring each season on glacier surfaces, was 38% of the total seasonal runoff, with the remaining runoff sourced from nonglacier surfaces. Our simulations suggests that existing GRACE solutions, previously reported to represent glacier mass balance alone, are actually measuring the full water budget of land and ice surfaces.

  7. On the Utilization of Ice Flow Models and Uncertainty Quantification to Interpret the Impact of Surface Radiation Budget Errors on Estimates of Greenland Ice Sheet Surface Mass Balance and Regional Estimates of Mass Balance

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Larour, E. Y.; Gardner, A. S.; Lang, C.; Miller, C. E.; van den Broeke, M. R.

    2016-12-01

    How Greenland ice flow may respond to future increases in surface runoff and to increases in the frequency of extreme melt events is unclear, as it requires detailed comprehension of Greenland surface climate and the ice sheet's sensitivity to associated uncertainties. With established uncertainty quantification tools run within the framework of Ice Sheet System Model (ISSM), we conduct decadal-scale forward modeling experiments to 1) quantify the spatial resolution needed to effectively force distinct components of the surface radiation budget, and subsequently surface mass balance (SMB), in various regions of the ice sheet and 2) determine the dynamic response of Greenland ice flow to variations in components of the net radiation budget. The Glacier Energy and Mass Balance (GEMB) software is a column surface model (1-D) that has recently been embedded as a module within ISSM. Using the ISSM-GEMB framework, we perform sensitivity analyses to determine how perturbations in various components of the surface radiation budget affect model output; these model experiments allow us predict where and on what spatial scale the ice sheet is likely to dynamically respond to changes in these parameters. Preliminary results suggest that SMB should be forced at at least a resolution of 23 km to properly capture dynamic ice response. In addition, Monte-Carlo style sampling analyses reveals that the areas with the largest uncertainty in mass flux are located near the equilibrium line altitude (ELA), upstream of major outlet glaciers in the North and West of the ice sheet. Sensitivity analysis indicates that these areas are also the most vulnerable on the ice sheet to persistent, far-field shifts in SMB, suggesting that continued warming, and upstream shift in the ELA, are likely to result in increased velocities, and consequentially SMB-induced thinning upstream of major outlet glaciers. Here, we extend our investigation to consider various components of the surface radiation budget separately, in order to determine how and where errors in these fields may independently impact ice flow. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere and Interdisciplinary Research in Earth Science Programs.

  8. Re-analysis of Alaskan benchmark glacier mass-balance data using the index method

    USGS Publications Warehouse

    Van Beusekom, Ashely E.; O'Nell, Shad R.; March, Rod S.; Sass, Louis C.; Cox, Leif H.

    2010-01-01

    At Gulkana and Wolverine Glaciers, designated the Alaskan benchmark glaciers, we re-analyzed and re-computed the mass balance time series from 1966 to 2009 to accomplish our goal of making more robust time series. Each glacier's data record was analyzed with the same methods. For surface processes, we estimated missing information with an improved degree-day model. Degree-day models predict ablation from the sum of daily mean temperatures and an empirical degree-day factor. We modernized the traditional degree-day model and derived new degree-day factors in an effort to match the balance time series more closely. We estimated missing yearly-site data with a new balance gradient method. These efforts showed that an additional step needed to be taken at Wolverine Glacier to adjust for non-representative index sites. As with the previously calculated mass balances, the re-analyzed balances showed a continuing trend of mass loss. We noted that the time series, and thus our estimate of the cumulative mass loss over the period of record, was very sensitive to the data input, and suggest the need to add data-collection sites and modernize our weather stations.

  9. Modelling the contribution of supraglacial ice cliffs to the mass-balance of glaciers in the Langtang catchment, Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Buri, P.; Steiner, J. F.; Miles, E.; Ragettli, S.; Pellicciotti, F.

    2017-12-01

    Supraglacial cliffs are typical surface features of debris-covered glaciers worldwide, affecting surface evolution, and mass balance by providing a direct ice-atmosphere interface where melt rates can be very high. As a result, ice cliffs act as windows of energy transfer from the atmosphere to the ice, and enhance melt and mass losses of otherwise insulated ice. However, their contribution to glacier mass balance has never been quantified at the glacier scale, and all inference has been obtained from upscaling results of point-scale models or observations at select individual cliffs. Here we use a 3D, physically-based backwasting model to estimate the volume losses associated with the melting and backwasting of supraglacial ice cliffs for the entire debris-covered glacier area of the Langtang catchment. We estimate mass losses for the 2014 melt season and compare them to recent values of glacier mass balance determined from geodetic and numerical modelling approached. Cliff outlines and topography are derived from high-resolution stereo SPOT6-imagery from April 2014. Meteorological data to force the model are provided by automatic weather stations on- and off-glacier within the valley. The model simulates ice cliff backwasting by considering the cliff-atmosphere energy-balance, reburial by debris and the effects of adjacent ponds. In the melt season of 2014, cliffs' distribution and patterns of mass losses vary considerably from glacier to glacier, and we relate rates of volume loss to both glaciers' and cliffs' characteristics. Only cliffs with a northerly aspect account for substantial losses. Uncertainty in our estimates is due to the quality of the stereo DEM, uncertainties in the cliff delineation and the fact that we use a conservative approach to cliff delineation and discard very small cliffs and those for which uncertainty in topography is high. Despite these uncertainties, our work presents the first estimate of the importance of supraglacial ice-cliffs to total glacier mass-balance, and shows that the volume lost by backwasting of ice cliffs is a non-negligible term in the total glacier mass balance of debris-covered glaciers, providing a partial explanation of the higher-than-expected mass losses of debris-covered glaciers of High Mountain Asia.

  10. Recent Changes in Ices Mass Balance of the Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Rignot, E. J.; Mouginot, J.; Flament, T.; van den Broeke, M. R.; van Wessem, M.; Reijmer, C.

    2014-12-01

    The glaciers flowing into the Amundsen Sea Embayment (ASE) sector of West Antarctica were confirmed in the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE) to be the dominant contributors to the current Antarctic ice mass loss, and recently recognized to be undergoing marine ice sheet instability. Here, we investigate their regional ice mass balance using a time series of satellite and airborne data combined with model output products from the Regional Atmospheric and Climate Model (RACMO). Our dataset includes laser altimetry from NASA's ICESat-1 satellite mission and from Operation IceBridge (OIB) airborne surveys, satellite radar altimetry data from ESA's Envisat mission, time-variable gravity data from NASA/DLR's GRACE mission, surface mass balance products from RACMO, ice velocity from a combination of international synthetic aperture radar satellites and ice thickness data from OIB. We find a record of ice mass balance for the ASE where all the analyzed techniques agree remarkably in magnitude and temporal variability. The mass loss of the region has been increasing continuously since 1992, with no indication of a slow down. The mass loss during the common period averaged 91 Gt/yr and accelerated 20 Gt/yr2. In 1992-2013, the ASE contributed 4.5 mm global sea level rise. Overall, our results demonstrate the synergy of multiple analysis techniques for examining Antarctic Ice Sheet mass balance at the regional scale. This work was performed at UCI and JPL under a contract with NASA.

  11. Dynamical adjustment of Scandinavian glacier mass-balance time series

    NASA Astrophysics Data System (ADS)

    Bonan, D.; Christian, J. E.; Christianson, K. A.

    2017-12-01

    Glacier mass wastage is often cited as one of the most visible manifestations of anthropogenic climate change. Annual glacier mass-balance is related to local climate and atmospheric circulation, as it is defined as the yearly sum of accumulation and ablation—processes that are strongly influenced by year-to-year fluctuations in precipitation and temperature. Glacier response to a climatic trend can, however, be masked by internal variability in atmospheric circulation, and by non-climatic factors (such as topographic control, wind deposition, and incident solar radiation). Thus, unambiguous attribution of a negative glacier mass-balance trend to anthropogenic forcing remains challenging. Maritime glacier mass-balance records may be especially difficult to interpret due to the high winter balances from decadal-scale climate oscillations and the relatively short time series. Here we examine the influence of climate and atmospheric circulation variability on 14 Norwegian glaciers that span 20° of latitude, from southern Norway to Svalbard. We use dynamical adjustment—a statistical method based on partial least squares regression—to identify the components of variability within the mass-balance records that are associated with the time-varying sea level pressure (SLP) and sea surface temperature (SST) fields. We find that 30-50% of the variance in the winter mass-balance records of the glaciers in southern Norway is explained by using sea level pressure as a predictor. The leading SLP predictor pattern mimics the spatial signature of the North Atlantic Oscillation (NAO), indicating that winter balance is strongly influenced by the NAO. Moreover, the adjusted mass-balance records indicate a geographic trend: the southern Norwegian glaciers have significant negative trends in the summer balance that remain negative after adjustment, while the more northern glaciers have negative winter balance trends that only become significant after adjustment. We look into anthropogenic warming to explain the trends after dynamical adjustment.

  12. Elevation and mass change of the Echaurren Norte Glacier (Central Andes, Chile) from 1955 to 2015.

    NASA Astrophysics Data System (ADS)

    Farías, David; Vivero, Sebastián; Casassa, Gino; Seehaus, Thorsten; Braun, Matthias H.

    2017-04-01

    The Echaurren Norte Glacier (33°34'S 70°07'W) is a small mountain glacier located at the upper Maipo basin, approximately 80 km to Santiago de Chile. The glacier has the longest surface mass balance record in South America (1975 to 2016). The measurements are carried out by DGA (water directory of Chile) using the direct glaciological method. The surface mass balance show continuous negative values, but exceptional positive mass balances were identified during ENSO periods. The aim of our study is complement the in-situ observations on Echaurren Norte Glacier with the geodetic mass balance measurements for the period 1955 to 2015. Our database comprises digital elevation models (DEM) from historical cartography based on aerial photographs (1955), SRTM (2000) and Lidar data. In addition, we mapped changes in glacier extent using aerial photography and multi-mission satellite data. TanDEM-X (2012-2015) and SRTM data will be used to investigate surrounding glaciers that have not such extensive and detailed coverage as Echaurren Norte Glacier. The aerial photographs from 1955 were scanned from the original negative using a photogrammetric scanner and processed on a digital photogrammetric workstation (DPW) and georeferenced with the aid of GCPs derived from the Lidar dataset. The TanDEM-X data was processed using differential interferometry using SRTM C-band DEM as reference. Differences resulting from X- and C-band penetration are considered comparing X- and C-band SRTM data. All DEMs were laterally and vertically co-registered to each other. Error assessment was done over stable ground. Our preliminary results indicate an elevation change of -42.2 m ± 4 m (1955-2015) for Echaurren Norte Glacier. The estimated averaged annual mass balance is -0.59 m water equivalent for the period 1955-2015 using a density of 0.85 kg/cm3 for volume to mass conversion. Significant changes of the surface cover were identified, with a considerable increase of the debris cover, in particular in the medial zone of the glacier with a layer approximately 0.35 m of thickness (2009-2015).

  13. Variable Basal Melt Rates of Antarctic Peninsula Ice Shelves, 1994-2016

    NASA Astrophysics Data System (ADS)

    Adusumilli, Susheel; Fricker, Helen Amanda; Siegfried, Matthew R.; Padman, Laurie; Paolo, Fernando S.; Ligtenberg, Stefan R. M.

    2018-05-01

    We have constructed 23-year (1994-2016) time series of Antarctic Peninsula (AP) ice-shelf height change using data from four satellite radar altimeters (ERS-1, ERS-2, Envisat, and CryoSat-2). Combining these time series with output from atmospheric and firn models, we partitioned the total height-change signal into contributions from varying surface mass balance, firn state, ice dynamics, and basal mass balance. On the Bellingshausen coast of the AP, ice shelves lost 84 ± 34 Gt a-1 to basal melting, compared to contributions of 50 ± 7 Gt a-1 from surface mass balance and ice dynamics. Net basal melting on the Weddell coast was 51 ± 71 Gt a-1. Recent changes in ice-shelf height include increases over major AP ice shelves driven by changes in firn state. Basal melt rates near Bawden Ice Rise, a major pinning point of Larsen C Ice Shelf, showed large increases, potentially leading to substantial loss of buttressing if sustained.

  14. Quantification of Changes for the Milne Ice Shelf, Nunavut, Canada, 1950 -- 2009

    NASA Astrophysics Data System (ADS)

    Mortimer, Colleen Adel

    This study presents a comprehensive overview of the current state of the Milne Ice Shelf and how it has changed over the last 59 years. The 205 +/-1 km2 ice shelf experienced a 28% (82 +/-0.8 km 2) reduction in area between 1950 -- 2009, and a 20% (2.5 +/-0.9km 3 water equivalent (w.e.)) reduction in volume between 1981 -- 2008/2009, suggesting a long-term state of negative mass balance. Comparison of mean annual specific mass balances (up to -0.34 m w.e. yr-1) with surface mass balance measurements for the nearby Ward Hunt Ice Shelf suggest that basal melt is a key contributor to total ice shelf thinning. The development and expansion of new and existing surface cracks, as well as ice-marginal and epishelf lake development, indicate significant ice shelf weakening. Over the next few decades it is likely that the Milne Ice Shelf will continue to deteriorate.

  15. A reconciled estimate of ice-sheet mass balance.

    PubMed

    Shepherd, Andrew; Ivins, Erik R; A, Geruo; Barletta, Valentina R; Bentley, Mike J; Bettadpur, Srinivas; Briggs, Kate H; Bromwich, David H; Forsberg, René; Galin, Natalia; Horwath, Martin; Jacobs, Stan; Joughin, Ian; King, Matt A; Lenaerts, Jan T M; Li, Jilu; Ligtenberg, Stefan R M; Luckman, Adrian; Luthcke, Scott B; McMillan, Malcolm; Meister, Rakia; Milne, Glenn; Mouginot, Jeremie; Muir, Alan; Nicolas, Julien P; Paden, John; Payne, Antony J; Pritchard, Hamish; Rignot, Eric; Rott, Helmut; Sørensen, Louise Sandberg; Scambos, Ted A; Scheuchl, Bernd; Schrama, Ernst J O; Smith, Ben; Sundal, Aud V; van Angelen, Jan H; van de Berg, Willem J; van den Broeke, Michiel R; Vaughan, David G; Velicogna, Isabella; Wahr, John; Whitehouse, Pippa L; Wingham, Duncan J; Yi, Donghui; Young, Duncan; Zwally, H Jay

    2012-11-30

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in Greenland and West Antarctica--and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 ± 49, +14 ± 43, -65 ± 26, and -20 ± 14 gigatonnes year(-1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year(-1) to the rate of global sea-level rise.

  16. Glacier mass balance and its potential impacts in the Altai Mountains over the period 1990-2011

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Enomoto, Hiroyuki; Ohata, Tetsuo; Kitabata, Hideyuki; Kadota, Tsutomu; Hirabayashi, Yukiko

    2017-10-01

    The Altai Mountains contain 1281 glaciers covering an area of 1191 km2. These glaciers have undergone significant changes in glacial length and area over the past decade. However, mass changes of these glaciers and their impacts remain poorly understood. Here we present surface mass balances of all glaciers in the region for the period 1990-2011, using a glacier mass-balance model forced by the outputs of a regional climate model. Our results indicate that the mean specific mass balance for the whole region is about -0.69 m w.e. yr-1 over the entire period, and about 81.3% of these glaciers experience negative net mass balance. We detect an accelerated wastage of these glaciers in recent years, and marked differences in mass change and its sensitivity to climate change for different regions and size classes. In particular, higher mass loss and temperature sensitivity are observed for glaciers smaller than 0.5 km2. In addition to temperature rise, a decrease in precipitation in the western part of the region and an increase in precipitation in the eastern part likely contribute to significant sub-region differences in mass loss. With significant glacier wastage, the contribution of all glaciers to regional water resources and sea-level change becomes larger than before, but may not be a potential threat to human populations through impacts on water availability.

  17. On the Meaning of Feedback Parameter, Transient Climate Response, and the Greenhouse Effect: Basic Considerations and the Discussion of Uncertainties

    NASA Astrophysics Data System (ADS)

    Kramm, Gerhard

    2010-07-01

    In this paper we discuss the meaning of feedback parameter, greenhouse effect and transient climate response usually related to the globally averaged energy balance model of Schneider and Mass. After scrutinizing this model and the corresponding planetary radiation balance we state that (a) the this globally averaged energy balance model is flawed by unsuitable physical considerations, (b) the planetary radiation balance for an Earth in the absence of an atmosphere is fraught by the inappropriate assumption of a uniform surface temperature, the so-called radiative equilibrium temperature of about 255 K, and (c) the effect of the radiative anthropogenic forcing, considered as a perturbation to the natural system, is much smaller than the uncertainty involved in the solution of the model of Schneider and Mass. This uncertainty is mainly related to the empirical constants suggested by various authors and used for predicting the emission of infrared radiation by the Earth's skin. Furthermore, after inserting the absorption of solar radiation by atmospheric constituents and the exchange of sensible and latent heat between the Earth and the atmosphere into the model of Schneider and Mass the surface temperatures become appreciably lesser than the radiative equilibrium temperature. Moreover, neither the model of Schneider and Mass nor the Dines-type two-layer energy balance model for the Earth-atmosphere system, both contain the planetary radiation balance for an Earth in the absence of an atmosphere as an asymptotic solution, do not provide evidence for the existence of the so-called atmospheric greenhouse effect if realistic empirical data are used.

  18. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  19. Quantifying time-varying ground-water discharge and recharge in wetlands of the northern Florida Everglades

    USGS Publications Warehouse

    Choi, J.; Harvey, J.W.

    2000-01-01

    Developing a more thorough understanding of water and chemical budgets in wetlands depends in part on our ability to quantify time-varying interactions between ground water and surface water. We used a combined water and solute mass balance approach to estimate time-varying ground-water discharge and recharge in the Everglades Nutrient Removal project (ENR), a relatively large constructed wetland (1544 hectare) built for removing nutrients from agricultural drainage in the norther Everglades in South Florida, USA. Over a 4-year period (1994 through 1998), ground-water recharge averaged 13.4 hectare-meter per day (ha-m/day) or 0.9 cm/day, which is approximately 31% of surface water pumped into the ENR for treatment. In contrast, ground-water discharge was much smaller (1.4 ha-m/day, or 0.09 cm/day, or 2.8% of water input to ENR for treatment). Using a water-balance approach alone only allowed net ground-water exchange (discharge - recharge) to be estimated (-12 ?? 2.4 ha-ma/day). Disharge and recharge were individually determined by combining a chloride mass balance with the water balance. For a variety of reasons, the ground-water discharge estimated by the combined mass balance approach was not reliable (1.4 ?? 37 ha-m/day). As a result, ground-water interactions could only be reliably estimated by comparing the mass-balance results with other independent approaches, including direct seepage-meter measurements and previous estimates using ground-water modeling. All three independent approaches provided similar estimates of average ground-water recharge, ranging from 13 to 14 ha-m/day. There was also relatively good agreement between ground-water discharge estimates for the mass balance and seepage meter methods, 1.4 and 0.9 ha-m/day, respectively. However, ground-water-flow modeling provided an average discharge estimate that was approximately a factor of four higher (5.4 ha-m/day) than the other two methods. Our study developed an initial understanding of how the design and operation of the ENR increases interactions between ground water and surface water. A considerable portion of recharged ground water (73%) was collected and returned to the ENR by a seepage canal. Additional recharge that was not captured by the seepage canal only occurred when pumped inflow rates to ENR (and ENR water levels) were relatively high. Management of surface water in the northern Everglades therefore clearly has the potential to increase interactions with ground water.

  20. Bayesian prediction of future ice sheet volume using local approximation Markov chain Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Davis, A. D.; Heimbach, P.; Marzouk, Y.

    2017-12-01

    We develop a Bayesian inverse modeling framework for predicting future ice sheet volume with associated formal uncertainty estimates. Marine ice sheets are drained by fast-flowing ice streams, which we simulate using a flowline model. Flowline models depend on geometric parameters (e.g., basal topography), parameterized physical processes (e.g., calving laws and basal sliding), and climate parameters (e.g., surface mass balance), most of which are unknown or uncertain. Given observations of ice surface velocity and thickness, we define a Bayesian posterior distribution over static parameters, such as basal topography. We also define a parameterized distribution over variable parameters, such as future surface mass balance, which we assume are not informed by the data. Hyperparameters are used to represent climate change scenarios, and sampling their distributions mimics internal variation. For example, a warming climate corresponds to increasing mean surface mass balance but an individual sample may have periods of increasing or decreasing surface mass balance. We characterize the predictive distribution of ice volume by evaluating the flowline model given samples from the posterior distribution and the distribution over variable parameters. Finally, we determine the effect of climate change on future ice sheet volume by investigating how changing the hyperparameters affects the predictive distribution. We use state-of-the-art Bayesian computation to address computational feasibility. Characterizing the posterior distribution (using Markov chain Monte Carlo), sampling the full range of variable parameters and evaluating the predictive model is prohibitively expensive. Furthermore, the required resolution of the inferred basal topography may be very high, which is often challenging for sampling methods. Instead, we leverage regularity in the predictive distribution to build a computationally cheaper surrogate over the low dimensional quantity of interest (future ice sheet volume). Continual surrogate refinement guarantees asymptotic sampling from the predictive distribution. Directly characterizing the predictive distribution in this way allows us to assess the ice sheet's sensitivity to climate variability and change.

  1. Climate, not atmospheric deposition, drives the biogeochemical mass-balance of a mountain watershed

    USGS Publications Warehouse

    Baron, Jill S.; Heath, Jared

    2014-01-01

    Watershed mass-balance methods are valuable tools for demonstrating impacts to water quality from atmospheric deposition and chemical weathering. Owen Bricker, a pioneer of the mass-balance method, began applying mass-balance modeling to small watersheds in the late 1960s and dedicated his career to expanding the literature and knowledge of complex watershed processes. We evaluated long-term trends in surface-water chemistry in the Loch Vale watershed, a 660-ha. alpine/subalpine catchment located in Rocky Mountain National Park, CO, USA. Many changes in surface-water chemistry correlated with multiple drivers, including summer or monthly temperature, snow water equivalent, and the runoff-to-precipitation ratio. Atmospheric deposition was not a significant causal agent for surface-water chemistry trends. We observed statistically significant increases in both concentrations and fluxes of weathering products including cations, SiO2, SO4 2−, and ANC, and in inorganic N, with inorganic N being primarily of atmospheric origin. These changes are evident in the individual months June, July, and August, and also in the combined June, July, and August summer season. Increasingly warm summer temperatures are melting what was once permanent ice and this may release elements entrained in the ice, stimulate chemical weathering with enhanced moisture availability, and stimulate microbial nitrification. Weathering rates may also be enhanced by sustained water availability in high snowpack years. Rapid change in the flux of weathering products and inorganic N is the direct and indirect result of a changing climate from warming temperatures and thawing cryosphere.

  2. Ultra-trace level determination of diquat and paraquat residues in surface and drinking water using ion-pair liquid chromatography with tandem mass spectrometry: a comparison of direct injection and solid-phase extraction methods.

    PubMed

    Oh, Jin-Aa; Lee, Jun-Bae; Lee, Soo-Hyung; Shin, Ho-Sang

    2014-10-01

    Direct injection and solid-phase extraction methods for the determination of diquat and paraquat in surface and drinking water were developed using liquid chromatography with tandem mass spectrometry. The signal intensities of analytes based on six ion-pairing reagents were compared with each other, and 12.5 mM nonafluoropentanoic acid was selected as the best suited amongst them. A clean-up method was developed using Oasis hydrophilic-lipophilic balance; this was compared to the direct injection method, with respect to limits of detection, interference, precision, and accuracy. Limits of quantification of diquat and paraquat were 0.03 and 0.01 μg/L using the direct injection method, and 0.002 and 0.001 μg/L using the hydrophilic-lipophilic balance method. When the hydrophilic-lipophilic balance method was used to analyze target compounds in 114 surface water and 30 drinking water samples, paraquat and diquat were detected within a concentration range of 0.001-0.12 and 0.002-0.038 μg/L in surface water, respectively. When the direct injection method was used to analyze target compounds in the same samples, the detected concentrations of paraquat and diquat were within 25% in samples being >0.015 μg/L using the hydrophilic-lipophilic balance method. The liquid chromatography with tandem mass spectrometry method using direct injection can thus be used for routine monitoring of paraquat and diquat in surface and drinking water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A test of fixed and moving reference point control in posture.

    PubMed

    Lee, I-Chieh; Pacheco, Matheus M; Newell, Karl M

    2017-01-01

    This study investigated two contrasting assumptions of the regulation of posture: namely, fixed and moving reference point control. These assumptions were tested in terms of time-dependent structure and data distribution properties when stability is manipulated. Fifteen male participants performed a tightrope simulated balance task that is, maintaining a tandem stance while holding a pole. Pole length (and mass) and the standing support surface (fixed surface/balance board) were manipulated so as to mechanically change the balance stability. The mean and standard deviation (SD) of COP length were reduced with pole length increment but only in the balance board surface condition. Also, the SampEn was lower with greater pole length for the balance board but not the fixed surface. More than one peak was present in the distribution of COP in the majority of trials. Collectively, the findings provide evidence for a moving reference point in the maintenance of postural stability for quiet standing. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Analysis of High Resolution Satellite imagery to acsees Glacier Mass Balance and Lake Hazards in Sikkim Himalayas

    NASA Astrophysics Data System (ADS)

    Bhushan, S.; Shean, D. E.; Haritashya, U. K.; Arendt, A. A.; Syed, T. H.; Setiawan, L.

    2017-12-01

    Glacial lake outburst floods can impact downstream communities due to the sudden outflux of huge quantities of stored water. In this study, we develop a hazard assessment of the moraine dammed glacial lakes in Sikkim Himalayas by analyzing the morphometry of proglacial features, and the surface velocity and mass balance of glaciers. We generated high-resolution digital elevation models (DEMs) using the open-source NASA Ames Stereo Pipeline (ASP) and use other open-source tools to calculate surface velocity and patterns of glacier downwasting over time. Geodetic glacier mass balance is obtained for three periods using high-resolution WorldView/GeoEye stereo DEMs (8 m posting, 2014-2016), Cartosat-1 stereo DEMs (10 m, 2006-2008) and SRTM (30 m, 2000). Initial results reveal a region-wide mass balance of -0.31±0.13 m w.eq.a-1 for the 2007-2015 period, with some debris covered glaciers showing a very low mass loss rate. Additionally, 12 annual glacier velocity fields spanning from 1991 to 2017.derived from Landsat imagery are used to explore the relationship between glacier dynamics and changes in proglacial lakes. Multi-temporal glacial lake mapping is conducted using Landsat and Cartosat imagery. Avalanche and rockfall modeling are combined with morphometric analysis of the proglacial lake area to assess the likelihood of glacial lake dam failure. The above parameters are integrated into a decision tree approach enabling categorization of moraine-dammed lakes according to their potential for outburst events.

  5. The physical basis of glacier volume-area scaling

    USGS Publications Warehouse

    Bahr, D.B.; Meier, M.F.; Peckham, S.D.

    1997-01-01

    Ice volumes are known for only a few of the roughly 160,000 glaciers worldwide but are important components of many climate and sea level studies which require water flux estimates. A scaling analysis of the mass and momentum conservation equations shows that glacier volumes can be related by a power law to more easily observed glacier surface areas. The relationship requires four closure choices for the scaling behavior of glacier widths, slopes, side drag and mass balance. Reasonable closures predict a volume-area scaling exponent which is consistent with observations, giving a physical and practical basis for estimating ice volumes. Glacier volume is insensitive to perturbations in the mass balance scaling, but changes in average accumulation area ratios reflect significant changes in the scaling of both mass balance and ice volume. Copyright 1997 by the American Geophysical Union.

  6. A Reconciled Estimate of Ice-Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Shepherd, Andrew; Ivins, Erik R.; Geruo, A.; Barletta, Valentia R.; Bentley, Mike J.; Bettadpur, Srinivas; Briggs, Kate H.; Bromwich, David H.; Forsberg, Rene; Galin, Natalia; hide

    2012-01-01

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods-especially in Greenland and West Antarctica-and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 plus or minus 49, +14 plus or minus 43, -65 plus or minus 26, and -20 plus or minus 14 gigatonnes year(sup -1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 plus or minus 0.20 millimeter year(sup -1) to the rate of global sea-level rise.

  7. Glaciological measurements and mass balances from Sperry Glacier, Montana, USA, years 2005–2015

    USGS Publications Warehouse

    Clark, Adam; Fagre, Daniel B.; Peitzsch, Erich H.; Reardon, Blase A.; Harper, Joel T.

    2017-01-01

    Glacier mass balance measurements help to provide an understanding of the behavior of glaciers and their response to local and regional climate. In 2005 the United States Geological Survey established a surface mass balance monitoring program on Sperry Glacier, Montana, USA. This project is the first quantitative study of mass changes of a glacier in the US northern Rocky Mountains and continues to the present. The following paper describes the methods used during the first 11 years of measurements and reports the associated results. From 2005 to 2015, Sperry Glacier had a cumulative mean mass balance loss of 4.37 m w.e. (water equivalent). The mean winter, summer, and annual glacier-wide mass balances were 2.92, −3.41, and −0.40 m w.e. yr−1 respectively. We derive these cumulative and mean results from an expansive data set of snow depth, snow density, and ablation measurements taken at selected points on the glacier. These data allow for the determination of mass balance point values and a time series of seasonal and annual glacier-wide mass balances for all 11 measurement years. We also provide measurements of glacier extent and accumulation areas for select years. All data have been submitted to the World Glacier Monitoring Service and are available at doi:10.5904/wgms-fog-2016-08. This foundational work provides valuable insight about Sperry Glacier and supplies additional data to the worldwide record of glaciers measured using the glaciological method. Future research will focus on the processes that control accumulation and ablation patterns across the glacier. Also we plan to examine the uncertainties related to our methods and eventually quantify a more robust estimate of error associated with our results.

  8. Glaciological measurements and mass balances from Sperry Glacier, Montana, USA, years 2005-2015

    NASA Astrophysics Data System (ADS)

    Clark, Adam M.; Fagre, Daniel B.; Peitzsch, Erich H.; Reardon, Blase A.; Harper, Joel T.

    2017-01-01

    Glacier mass balance measurements help to provide an understanding of the behavior of glaciers and their response to local and regional climate. In 2005 the United States Geological Survey established a surface mass balance monitoring program on Sperry Glacier, Montana, USA. This project is the first quantitative study of mass changes of a glacier in the US northern Rocky Mountains and continues to the present. The following paper describes the methods used during the first 11 years of measurements and reports the associated results. From 2005 to 2015, Sperry Glacier had a cumulative mean mass balance loss of 4.37 m w.e. (water equivalent). The mean winter, summer, and annual glacier-wide mass balances were 2.92, -3.41, and -0.40 m w.e. yr-1 respectively. We derive these cumulative and mean results from an expansive data set of snow depth, snow density, and ablation measurements taken at selected points on the glacier. These data allow for the determination of mass balance point values and a time series of seasonal and annual glacier-wide mass balances for all 11 measurement years. We also provide measurements of glacier extent and accumulation areas for select years. All data have been submitted to the World Glacier Monitoring Service and are available at doi:10.5904/wgms-fog-2016-08. This foundational work provides valuable insight about Sperry Glacier and supplies additional data to the worldwide record of glaciers measured using the glaciological method. Future research will focus on the processes that control accumulation and ablation patterns across the glacier. Also we plan to examine the uncertainties related to our methods and eventually quantify a more robust estimate of error associated with our results.

  9. Interannual variation of the Antarctic Ice Sheet from a combined analysis of satellite gravimetry and altimetry data

    NASA Astrophysics Data System (ADS)

    Mémin, A.; Flament, T.; Alizier, B.; Watson, C.; Rémy, F.

    2015-07-01

    Assessment of the long term mass balance of the Antarctic Ice Sheet, and thus the determination of its contribution to sea level rise, requires an understanding of interannual variability and associated causal mechanisms. We performed a combined analysis of surface-mass and elevation changes using data from the GRACE and Envisat satellite missions, respectively. Using empirical orthogonal functions and singular value decompositions of each data set, we find a quasi 4.7-yr periodic signal between 08/2002 and 10/2010 that accounts for ∼ 15- 30% of the time variability of the filtered and detrended surface-mass and elevation data. Computation of the density of this variable mass load corresponds to snow or uncompacted firn. Changes reach maximum amplitude within the first 100 km from the coast where it contributes up to 30-35% of the annual rate of accumulation. Extending the analysis to 09/2014 using surface-mass changes only, we have found anomalies with a periodicity of about 4-6 yrs that circle the AIS in about 9-10 yrs. These properties connect the observed anomalies to the Antarctic Circumpolar Wave (ACW) which is known to affect several key climate variables, including precipitation. It suggests that variability in the surface-mass balance of the Antarctic Ice Sheet may also be modulated by the ACW.

  10. Integrated firn elevation change model for glaciers and ice caps

    NASA Astrophysics Data System (ADS)

    Saß, Björn; Sauter, Tobias; Braun, Matthias

    2016-04-01

    We present the development of a firn compaction model in order to improve the volume to mass conversion of geodetic glacier mass balance measurements. The model is applied on the Arctic ice cap Vestfonna. Vestfonna is located on the island Nordaustlandet in the north east of Svalbard. Vestfonna covers about 2400 km² and has a dome like shape with well-defined outlet glaciers. Elevation and volume changes measured by e.g. satellite techniques are becoming more and more popular. They are carried out over observation periods of variable length and often covering different meteorological and snow hydrological regimes. The elevation change measurements compose of various components including dynamic adjustments, firn compaction and mass loss by downwasting. Currently, geodetic glacier mass balances are frequently converted from elevation change measurements using a constant conversion factor of 850 kg m-³ or the density of ice (917 kg m-³) for entire glacier basins. However, the natural conditions are rarely that static. Other studies used constant densities for the ablation (900 kg m-³) and accumulation (600 kg m-³) areas, whereby density variations with varying meteorological and climate conditions are not considered. Hence, each approach bears additional uncertainties from the volume to mass conversion that are strongly affected by the type and timing of the repeat measurements. We link and adapt existing models of surface energy balance, accumulation and snow and firn processes in order to improve the volume to mass conversion by considering the firn compaction component. Energy exchange at the surface is computed by a surface energy balance approach and driven by meteorological variables like incoming short-wave radiation, air temperature, relative humidity, air pressure, wind speed, all-phase precipitation, and cloud cover fraction. Snow and firn processes are addressed by a coupled subsurface model, implemented with a non-equidistant layer discretisation. On our poster we present a general view on the model structure, the input data (model forcing) and finally, an exemplary test case with basic approaches of validation.

  11. Hypsometric control on glacier mass balance sensitivity in Alaska

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Sass, L.; Arendt, A. A.; O'Neel, S.; Kienholz, C.; Larsen, C.; Burgess, E. W.

    2015-12-01

    Mass loss from glaciers in Alaska is dominated by strongly negative surface balances, particularly on small, continental glaciers but can be highly variable from glacier to glacier. Glacier hypsometry can exert significant control on mass balance sensitivity, particularly if the equilibrium line altitude (ELA) is in a broad area of low surface slope. In this study, we explore the spatial variability in glacier response to future climate forcings on the basis of hypsometry. We first derive mass balance sensitivities (30-70 m ELA / 1° C and 40-90 m ELA / 50% decrease in snow accumulation) from the ~50-year USGS Benchmark glaciers mass balance record. We subsequently assess mean climate fields in 2090-2100 derived from the IPCC AR5/CMIP5 RCP 6.0 5-model mean. Over glaciers in Alaska, we find 2-4° C warming and 10-20% increase in precipitation relative to 2006-2015, but a corresponding 0-50% decrease in snow accumulation due to rising temperatures. We assess changes in accumulation area ratios (AAR) to a rising ELA using binned individual glacier hypsometries. For an ELA increase of 150 m, the mean statewide AAR drops by 0.45, representing a 70% reduction in accumulation area on an individual glacier basis. Small, interior glaciers are the primary drivers of this reduction and for nearly 25% of all glaciers, the new ELA exceeds the glacier's maximum elevation, portending eventual loss. The loss of small glaciers, particularly in the drier interior of Alaska will significantly modify streamflow properties (flashy hydrographs, earlier and reduced peak flows, increased interannual variability, warmer temperatures) with poorly understood downstream ecosystem and oceanographic impacts.

  12. Modelling distributed mountain glacier volumes: A sensitivity study in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Huss, Matthias; Fischer, Andrea; Otto, Jan Christoph

    2017-04-01

    Knowledge about the spatial ice thickness distribution in glacier covered mountain regions and the elevation of the bedrock underneath the glaciers yields the basis for numerous applications in geoscience. Applications include the modelling of glacier dynamics, natural risk analyses and studies on mountain hydrology. Especially in recent times of accelerating and unprecedented changes of glacier extents, the remaining ice volume is of interest regarding future glacier and sea level scenarios. Subglacial depressions concern because of their hazard potential in case of sudden releases of debris or water. A number of approaches with different level of complexity have been developed in the past years to infer glacier ice thickness from surface characteristics. Within the FUTURELAKES project, the ice thickness estimation method presented by Huss and Farinotti (2012) was applied to all glaciers in the Austrian Alps based on glacier extents and surface topography corresponding to the three Austrian glacier inventories (1969 - 1997 - 2006) with the aim to predict size and location of future proglacial lakes. The availability of measured ice thickness data and a time series of glacier inventories of Austrian glaciers, allowed carrying out a sensitivity study of the key parameter, the apparent mass balance gradient. First, the parameters controlling the apparent mass balance gradient of 58 glaciers where calibrated glacier-wise with the aim to minimize mean deviations and mean absolute deviations to measured ice thickness. The results were analysed with respect to changes of the mass balance gradient with time. Secondly, we compared the observed to modelled ice thickness changes. For doing so, glacier-wise as well as regional means of mass balance gradients have been used. The results indicate that the initial values for the apparent mass balance gradient have to be adapted to the changing conditions within the four decades covered by the glacier inventories. The gradients flatten from the first to last inventory. This is consistent with the decreasing deviation between glaciological and geodetical glacier mass balance when a period with negative mass balances results in decreasing ice dynamics. The comparison of mean ice thickness changes between the Inventories reveals the effect of changes in glacier mass transport in addition to changes in glacier area and topography. 93% of the mean observed ice thickness change could be reproduced using the glacier-wise optimized mass balance gradients. More than 85% of mean ice thickness change was calculated from modelled ice thickness distributions with inventory mean optimized mass balance gradients. The ratio decreases to 60% the same parameters for all three glacier inventories and can be attributed to changes in glacier extent. Thus, the actual glacier mass turnover has to be considered to model glacier volumes based on glacier topography more realistically. Huss, M., and D. Farinotti (2012), Distributed ice thickness and volume of all glaciers around the globe, J. Geophys. Res., 117, F04010, doi:10.1029/2012JF002523.

  13. Field-calibrated model of melt, refreezing, and runoff for polar ice caps: Application to Devon Ice Cap

    NASA Astrophysics Data System (ADS)

    Morris, Richard M.; Mair, Douglas W. F.; Nienow, Peter W.; Bell, Christina; Burgess, David O.; Wright, Andrew P.

    2014-09-01

    Understanding the controls on the amount of surface meltwater that refreezes, rather than becoming runoff, over polar ice masses is necessary for modeling their surface mass balance and ultimately for predicting their future contributions to global sea level change. We present a modified version of a physically based model that includes an energy balance routine and explicit calculation of near-surface meltwater refreezing capacity, to simulate the evolution of near-surface density and temperature profiles across Devon Ice Cap in Arctic Canada. Uniquely, our model is initiated and calibrated using high spatial resolution measurements of snow and firn densities across almost the entire elevation range of the ice cap for the summer of 2004 and subsequently validated with the same type of measurements obtained during the very different meteorological conditions of summer 2006. The model captures the spatial variability across the transect in bulk snowpack properties although it slightly underestimates the flow of meltwater into the firn of previous years. The percentage of meltwater that becomes runoff is similar in both years; however, the spatial pattern of this melt-runoff relationship is different in the 2 years. The model is found to be insensitive to variation in the depth of impermeable layers within the firn but is very sensitive to variation in air temperature, since the refreezing capacity of firn decreases with increasing temperature. We highlight that the sensitivity of the ice cap's surface mass balance to air temperature is itself dependent on air temperature.

  14. The Greenland Ice Sheet's surface mass balance in a seasonally sea ice-free Arctic

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Bamber, J. L.; Valdes, P. J.

    2013-09-01

    General circulation models predict a rapid decrease in sea ice extent with concurrent increases in near-surface air temperature and precipitation in the Arctic over the 21st century. This has led to suggestions that some Arctic land ice masses may experience an increase in accumulation due to enhanced evaporation from a seasonally sea ice-free Arctic Ocean. To investigate the impact of this phenomenon on Greenland Ice Sheet climate and surface mass balance (SMB), a regional climate model, HadRM3, was used to force an insolation-temperature melt SMB model. A set of experiments designed to investigate the role of sea ice independently from sea surface temperature (SST) forcing are described. In the warmer and wetter SI + SST simulation, Greenland experiences a 23% increase in winter SMB but 65% reduced summer SMB, resulting in a net decrease in the annual value. This study shows that sea ice decline contributes to the increased winter balance, causing 25% of the increase in winter accumulation; this is largest in eastern Greenland as the result of increased evaporation in the Greenland Sea. These results indicate that the seasonal cycle of Greenland's SMB will increase dramatically as global temperatures increase, with the largest changes in temperature and precipitation occurring in winter. This demonstrates that the accurate prediction of changes in sea ice cover is important for predicting Greenland SMB and ice sheet evolution.

  15. Detailed comparison of the geodetic and direct glaciological mass balances on an annual time scale at Hintereisferner, Austria

    NASA Astrophysics Data System (ADS)

    Klug, Christoph; Bollmann, Erik; Galos, Stephan; Kaser, Georg; Prinz, Rainer; Rieg, Lorenzo; Sailer, Rudolf

    2016-04-01

    The quantification of glacier mass changes is fundamental for glacier monitoring and provides important information for climate change assessments, hydrological applications and sea-level changes. On Alpine glaciers two methods of measuring glacier mass changes are widely applied: the direct glaciological method and the geodetic method. Over the last decades several studies compared the mass balance estimates obtained by both methods to identify and correct stochastic and systematic errors. In almost all of these studies, the time span for comparison between the two methods is about one decade or longer. On Hintereisferner (HEF; Ötztal Alps, Austria) mass balance measurements were initiated in the glaciological year 1952/53, resulting in a consistent mass balance data set with an estimated accuracy of ±0.2 m w.e. a-1. Furthermore, 11 airborne laser scanning (ALS) campaigns were conducted between 2001 and 2011 at HEF, all consistent in accuracy as well as in precision (± 0.04 to 0.10 m for slopes ≤ 50°). This is a world-wide unique ALS dataset of a glacierized alpine catchment. Flight campaigns were performed close to the end of the hydrological year (30th September). Resulting data provide high quality topographic information to derive glacier mass changes by applying the geodetic method. On sub-decadal time-scales such method comparisons are rare, or reveal unexplainable large discrepancies between both mass balance methods. In this study we estimate stochastic and systematic uncertainties of the ALS data for processing volume changes, and quantify methodological differences, such as density assumptions, unequal measurement dates, crevasses and glacier dynamics. Hence, we present a method to compare direct glaciological and geodetic mass balances on an annual basis. In a first step, we calculate the annual geodetic mass balance of HEF between 2001 and 2011, resulting in a thickness change map of the glacier. In a second step, the snow cover, which has eventually built up before the ALS acquisition, is corrected. As snow cover biases are particular uncertain, a statistical approach has been applied to assess combined DTM errors by using the population of DTM differences over stable terrain. This method incorporates all known and unknown error sources from the surface difference in stable areas and uses its median thickness for correction in all altitudinal belts. In addition, intensity data of the ALS surveys are used to classify the optical surface properties into ice and firn zones. The resulting grids with according conversion factors (900 and 700 kg/m³ for ice and firn, respectively) are combined to calculate mass changes. In a last step, the survey dates are adjusted, using numerous field observations. On an annual time scale, the geodetic mass balances of HEF corrected using this approach, correlate well with the results from the homogenized direct glaciological method. Significant deviations occur in years with few measurements in the uppermost areas applying the direct glaciological method, due to strong melt in areas not equipped with ablation stakes (cf. Figure 2 for 2002/03) or inaccessibility due to weather conditions. On the basis of these results, the conventional error risk (e.g. confidence levels), was adopted in order to test the null hypothesis and to check if unexplained discrepancies suggest reanalyses of glaciological mass balances. Regarding the cumulative mass balance, the deviations between the two methods tend to become smaller the longer the period of comparison extends. Averaged between 2001 and 2011 the largest sources of differences are snow cover and density assumptions having high uncertainties in their estimates and/or leading to higher error ranges in the geodetic mass balances. Some errors were found to have a minor impact and are not treated explicitly, such as uncertainties in different glacier outlines used in both methods or the influence of snow covered and snow free crevasses in successive years on the geodetic mass balance.

  16. Firn Thickness Changes (1982-2015) Driven by SMB from MERRA-2, RACMO2.3, ERA-Int and AVHRR Surface Temperature and the Impacts to Greenland Ice Sheet Mass Balance

    NASA Astrophysics Data System (ADS)

    Li, J.; Medley, B.; Neumann, T.; Smith, B. E.; Luthcke, S. B.; Zwally, H. J.

    2016-12-01

    Surface mass balance (SMB) data are essential in the derivation of ice sheet mass balance. This is because ice sheet mass change consists of short-term and long-term variations. The short-term variations are directly given by the SMB data. For altimetry based ice sheet mass balance studies, these short-term mass changes are converted to firn thickness changes by using a firn densification-elevation model, and then the variations are subtracted from the altimetry measurements to give the long-term ice thickness changes that are associated with the density of ice. So far various SMB data sets such as ERA-Interim, RACMO and MERRA are available and some have been widely used in large number of ice sheet mass balance studies. However theses data sets exhibit the clear discrepancies in both random and systematic manner. In this study, we use our time dependent firn densification- elevation model, driven by the SMB data from MERRA-2, RACMO2.3 and ERA-Int for the period of 1982-2015 and the temperature variations from AVHRR for the same period to examine the corresponding firn thickness variations and the impacts to the mass changes over the Greenland ice sheet. The model was initialized with the1980's climate. Our results show that the relative smaller (centimeter level) differences in the firn thickness driven by the different data set occur at the early stage (1980's) of the model run. As the time progressing, the discrepancies between the SMB data sets accumulate, and the corresponding firn thickness differences quickly become larger with the value > 2m at the end of the period. Although the overall rates for the whole period driven by each of the three data sets are small ranging -0.2 - 0.2 cm a-1 (-3.0-2.7 Gt a-1), the decadal rates can vary greatly with magnitude > 3 cm a-1 and the impact to the Greenland mass change exceeds 30 Gt a-1.

  17. Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2012-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.

  18. 50 years of mass balance observations at Vernagtferner, Eastern Alps

    NASA Astrophysics Data System (ADS)

    Braun, Ludwig; Mayer, Christoph

    2016-04-01

    The determination and monitoring of the seasonal and annual glacier mass balances of Vernagtferner, Austria, started in 1964 by the Commission of Glaciology, Bavarian Academy of Sciences. Detailed and continuous climate- and runoff measurements complement this mass balance series since 1974. Vernagtferner attracted the attention of scientists since the beginning of the 17th century due to its rapid advances and the resulting glacier lake outburst floods in the Ötztal valley. This is one reason for the first photogrammetric survey in 1889, which was followed by frequent topographic surveys, adding up to more than ten digital elevation models of the glacier until today. By including the known maximum glacier extent at the end of the Little Ice Age in 1845, the geodetic glacier volume balances cover a time span of almost 170 years. The 50 years of glacier mass balance and 40 years of water balance in the drainage basin are therefore embedded in a considerably longer period of glacier evolution, allowing an interpretation within an extended frame of climatology and ice dynamics. The direct mass balance observations cover not only the period of alpine-wide strong glacier mass loss since the beginning of the 1990s. The data also contain the last period of glacier advances between 1970 and 1990. The combination of the observed surface mass exchange and the determined periodic volumetric changes allows a detailed analysis of the dynamic reaction of the glacier over the period of half a century. The accompanying meteorological observations are the basis for relating these reactions to the climatic changes during this period. Vernagtferner is therefore one of the few glaciers in the world, where a very detailed glacier-climate reaction was observed for many decades and can be realistically reconstructed back to the end of the Little Ice Age.

  19. The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China

    NASA Astrophysics Data System (ADS)

    Sun, Weijun; Qin, Xiang; Wang, Yetang; Chen, Jizu; Du, Wentao; Zhang, Tong; Huai, Baojuan

    2017-08-01

    To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010-2015, keeping the clean ice albedo fixed in the range of 0.3-0.4, LAIs caused an increase of +7.1 to +16 W m-2 of net shortwave radiation and an removal of 1101-2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively.

  20. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 2: Antarctica (1979-2016)

    NASA Astrophysics Data System (ADS)

    Melchior van Wessem, Jan; van de Berg, Willem Jan; Noël, Brice P. Y.; van Meijgaard, Erik; Amory, Charles; Birnbaum, Gerit; Jakobs, Constantijn L.; Krüger, Konstantin; Lenaerts, Jan T. M.; Lhermitte, Stef; Ligtenberg, Stefan R. M.; Medley, Brooke; Reijmer, Carleen H.; van Tricht, Kristof; Trusel, Luke D.; van Ulft, Lambertus H.; Wouters, Bert; Wuite, Jan; van den Broeke, Michiel R.

    2018-04-01

    We evaluate modelled Antarctic ice sheet (AIS) near-surface climate, surface mass balance (SMB) and surface energy balance (SEB) from the updated polar version of the regional atmospheric climate model, RACMO2 (1979-2016). The updated model, referred to as RACMO2.3p2, incorporates upper-air relaxation, a revised topography, tuned parameters in the cloud scheme to generate more precipitation towards the AIS interior and modified snow properties reducing drifting snow sublimation and increasing surface snowmelt. Comparisons of RACMO2 model output with several independent observational data show that the existing biases in AIS temperature, radiative fluxes and SMB components are further reduced with respect to the previous model version. The model-integrated annual average SMB for the ice sheet including ice shelves (minus the Antarctic Peninsula, AP) now amounts to 2229 Gt y-1, with an interannual variability of 109 Gt y-1. The largest improvement is found in modelled surface snowmelt, which now compares well with satellite and weather station observations. For the high-resolution ( ˜ 5.5 km) AP simulation, results remain comparable to earlier studies. The updated model provides a new, high-resolution data set of the contemporary near-surface climate and SMB of the AIS; this model version will be used for future climate scenario projections in a forthcoming study.

  1. Uncovering glacier dynamics beneath a debris mantle

    NASA Astrophysics Data System (ADS)

    Lefeuvre, P.-M.; Ng, F. S. L.

    2012-04-01

    Debris-covered glaciers (DCGs) have an extensive sediment mantle whose low albedo influences their surface energy balance to cause a buffering effect that could enhance or reduce ablation rates depending on the sediment thickness. The last effect suggests that some DCGs may be less sensitive to climate change and survive for longer than debris-free (or 'clean') glaciers under sustained climatic warming. However, the origin of DCGs is debated and the precise impact of the debris mantle on their flow dynamics and surface geometry has not been quantified. Here we investigate these issues with a numerical model that encapsulates ice-flow physics and surface debris evolution and transport along a glacier flow-line, as well as couples these with glacier mass balance. We model the impact of surface debris on ablation rates by a mathematical function based on published empirical data (including Ostrem's curve). A key interest is potential positive feedback of ablation on debris thickening and lowering of surface albedo. Model simulations show that when DCGs evolve to attain steady-state profiles, they reach lower elevations than clean glaciers do for the same initial and climatic conditions. Their mass-balance profile at steady state displays an inversion near the snout (where the debris cover is thickest) that is not observed in the clean-glacier simulations. In these cases, where the mantle causes complete buffering to inhibit ablation, the DCG does not reach a steady-state profile, and the sediment thickness evolves to a steady value that depends sensitively on the glacier surface velocities. Variation in the assumed englacial debris concentration in our simulations also determines glacier behaviour. With low englacial debris concentration, the DCG retreats initially while its mass-balance gradient steepens, but the glacier re-advances if it subsequently builds up a thick enough debris cover to cause complete buffering. We identify possible ways and challenges of testing this model with field observations of DCGs, given the inherent difficulty that such glaciers may not be in steady state.

  2. Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z.

    2006-01-01

    Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.

  3. Is the difference between chemical and numerical estimates of baseflow meaningful?

    NASA Astrophysics Data System (ADS)

    Cartwright, Ian; Gilfedder, Ben; Hofmann, Harald

    2014-05-01

    Both chemical and numerical techniques are commonly used to calculate baseflow inputs to gaining rivers. In general the chemical methods yield lower estimates of baseflow than the numerical techniques. In part, this may be due to the techniques assuming two components (event water and baseflow) whereas there may also be multiple transient stores of water. Bank return waters, interflow, or waters stored on floodplains are delayed components that may be geochemically similar to the surface water from which they are derived; numerical techniques may record these components as baseflow whereas chemical mass balance studies are likely to aggregate them with the surface water component. This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. While more sophisticated techniques exist, these methods of estimating baseflow are readily applied with the available data and have been used widely elsewhere. During the early stages of high-discharge events, chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those from chemical mass balance using Cl calculated from continuous electrical conductivity. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of annual discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of annual discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge). These differences most probably reflect how the different techniques characterise the transient water sources in this catchment. The local minimum and recursive digital filters aggregate much of the water from delayed sources as baseflow. However, as many of these delayed transient water stores (such as bank return flow, floodplain storage, or interflow) have Cl concentrations that are similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low-salinity water from the transient stores as discharge falls. The use of complementary techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.

  4. Gulkana Glacier, Alaska-Mass balance, meteorology, and water measurements, 1997-2001

    USGS Publications Warehouse

    March, Rod S.; O'Neel, Shad

    2011-01-01

    The measured winter snow, maximum winter snow, net, and annual balances for 1997-2001 in the Gulkana Glacier basin are determined at specific points and over the entire glacier area using the meteorological, hydrological, and glaciological data. We provide descriptions of glacier geometry to aid in estimation of conventional and reference surface mass balances and descriptions of ice motion to aid in the understanding of the glacier's response to its changing geometry. These data provide annual estimates for area altitude distribution, equilibrium line altitude, and accumulation area ratio during the study interval. New determinations of historical area altitude distributions are given for 1900 and annually from 1966 to 2001. As original weather instrumentation is nearing the end of its deployment lifespan, we provide new estimates of overlap comparisons and precipitation catch efficiency. During 1997-2001, Gulkana Glacier showed a continued and accelerated negative mass balance trend, especially below the equilibrium line altitude where thinning was pronounced. Ice motion also slowed, which combined with the negative mass balance, resulted in glacier retreat under a warming climate. Average annual runoff augmentation by glacier shrinkage for 1997-2001 was 25 percent compared to the previous average of 13 percent, in accordance with the measured glacier volume reductions.

  5. Analysis of difference between direct and geodetic mass balance measurements at South Cascade Glacier, Washington

    USGS Publications Warehouse

    Krimmel, R.M.

    1999-01-01

    Net mass balance has been measured since 1958 at South Cascade Glacier using the 'direct method,' e.g. area averages of snow gain and firn and ice loss at stakes. Analysis of cartographic vertical photography has allowed measurement of mass balance using the 'geodetic method' in 1970, 1975, 1977, 1979-80, and 1985-97. Water equivalent change as measured by these nearly independent methods should give similar results. During 1970-97, the direct method shows a cumulative balance of about -15 m, and the geodetic method shows a cumulative balance of about -22 m. The deviation between the two methods is fairly consistent, suggesting no gross errors in either, but rather a cumulative systematic error. It is suspected that the cumulative error is in the direct method because the geodetic method is based on a non-changing reference, the bedrock control, whereas the direct method is measured with reference to only the previous year's summer surface. Possible sources of mass loss that are missing from the direct method are basal melt, internal melt, and ablation on crevasse walls. Possible systematic measurement errors include under-estimation of the density of lost material, sinking stakes, or poorly represented areas.

  6. Estimating Temporal Redistribution of Surface Melt Water into Upper Stratigraphy of the Juneau Icefield, Alaska

    NASA Astrophysics Data System (ADS)

    Wilner, J.; Smith, B.; Moore, T.; Campbell, S. W.; Slavin, B. V.; Hollander, J.; Wolf, J.

    2015-12-01

    The redistribution of winter accumulation from surface melt into firn or deeper layers (i.e. internal accumulation) remains a poorly understood component of glacier mass balance. Winter accumulation is usually quantified prior to summer melt, however the time window between accumulation and the onset of melt is minimal so this is not always possible. Studies which are initiated following the onset of summer melt either neglect sources of internal accumulation or attempt to estimate melt (and therefore winter accumulation uncertainty) through a variety of modeling methods. Here, we used ground-penetrating radar (GPR) repeat common midpoint (CMP) surveys with supporting common offset surveys, mass balance snow pits, and probing to estimate temporal changes in water content within the winter accumulation and firn layers of the southern Juneau Icefield, Alaska. In temperate glaciers, radio-wave velocity is primarily dependent on water content and snow or firn density. We assume density changes are temporally slow relative to water flow through the snow and firn pack, and therefore infer that changing radio-wave velocities measured by successive CMP surveys result from flux in surface melt through deeper layers. Preliminary CMP data yield radio-wave velocities of 0.15 to 0.2 m/ns in snowpack densities averaging 0.56 g cm-3, indicating partially to fully saturated snowpack (4-9% water content). Further spatial-temporal analysis of CMP surveys is being conducted. We recommend that repeat CMP surveys be conducted over a longer time frame to estimate stratigraphic water redistribution between the end of winter accumulation and maximum melt season. This information could be incorporated into surface energy balance models to further understanding of the influence of internal accumulation on glacier mass balance.

  7. Investigating ice cliff evolution and contribution to glacier mass-balance using a physically-based dynamic model

    NASA Astrophysics Data System (ADS)

    Buri, Pascal; Miles, Evan; Ragettli, Silvan; Brun, Fanny; Steiner, Jakob; Pellicciotti, Francesca

    2016-04-01

    Supraglacial cliffs are a surface feature typical of debris-covered glaciers, affecting surface evolution, glacier downwasting and mass balance by providing a direct ice-atmosphere interface. As a result, melt rates can be very high and ice cliffs may account for a significant portion of the total glacier mass loss. However, their contribution to glacier mass balance has rarely been quantified through physically-based models. Most cliff energy balance models are point scale models which calculate energy fluxes at individual cliff locations. Results from the only grid based model to date accurately reflect energy fluxes and cliff melt, but modelled backwasting patterns are in some cases unrealistic, as the distribution of melt rates would lead to progressive shallowing and disappearance of cliffs. Based on a unique multitemporal dataset of cliff topography and backwasting obtained from high-resolution terrestrial and aerial Structure-from-Motion analysis on Lirung Glacier in Nepal, it is apparent that cliffs exhibit a range of behaviours but most do not rapidly disappear. The patterns of evolution cannot be explained satisfactorily by atmospheric melt alone, and are moderated by the presence of supraglacial ponds at the base of cliffs and by cliff reburial with debris. Here, we document the distinct patterns of evolution including disappearance, growth and stability. We then use these observations to improve the grid-based energy balance model, implementing periodic updates of the cliff geometry resulting from modelled melt perpendicular to the ice surface. Based on a slope threshold, pixels can be reburied by debris or become debris-free. The effect of ponds are taken into account through enhanced melt rates in horizontal direction on pixels selected based on an algorithm considering distance to the water surface, slope and lake level. We use the dynamic model to first study the evolution of selected cliffs for which accurate, high resolution DEMs are available, and then apply the model to the entirety of Lirung and Langtang glaciers to quantify the total contributions of cliffs to glacier mass balance. Observations and model results suggest a strong dependency of the cliffs' life cycle on supraglacial ponds, as the water body keeps the cliff geometry constant through a combination of backwasting and calving at the bottom and maintenance of steep slopes in the lowest sections. The absence of ponds causes the progressive flattening of the cliff, which finally leads to complete disappearance. Modelled volume losses from May to October 2013 range from 2650 to 9415 m3 w.e., in agreement with the estimates with the SfM-approach. Mean error of modelled elevation within the cliff outline ranges from -1.3 to 0.6m. This work sheds light on mechanisms of cliffs' changes by quantifying them for the first time with a physically-based, dynamic model, and presents the first complete estimate of the relevance of supraglacial ice-cliffs to total glacier mass-balance for two distinct glaciers.

  8. Estimates of Ice Sheet Mass Balance from Satellite Altimetry: Past and Future

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the 20% uncertainty in current mass balance corresponds to 1.6 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. A principal purpose of obtaining ice sheet elevation changes from satellite altimetry has been estimation of the current ice sheet mass balance. Limited information on ice sheet elevation change and their implications about mass balance have been reported by several investigators from radar altimetry (Seasat, Geosat, ERS-1&2). Analysis of ERS-1&2 data over Greenland for 7 years from 1992 to 1999 shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. Observed seasonal and interannual variations in ice surface elevation are larger than previously expected because of seasonal and interannUal variations in precipitation, melting, and firn compaction. In the accumulation zone, the variations in firn compaction are modeled as a function of temperature leaving variations in precipitation and the mass balance trend. Significant interannual variations in elevation in some locations, in particular the difference in trends from 1992 to 1995 compared to 1995 to 1999, can be explained by changes in precipitation over Greenland. Over the 7 years, trends in elevation are mostly positive at higher elevations and negative at lower elevations. In addition, trends for the winter seasons (from a trend analysis through the average winter elevations) are more positive than the corresponding trends for the summer. At lower elevations, the 7-year trends in some locations are strongly negative for summer and near zero or slightly positive for winter. These observations also demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. Beginning in January 2002, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86E latitude and to the margins of the ice sheets.

  9. Inferring unknow boundary conditions of the Greenland Ice Sheet by assimilating ICESat-1 and IceBridge altimetry intothe Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Khazendar, A.; Seroussi, H. L.; Schlegel, N.; Csatho, B. M.; Schenk, A. F.; Rignot, E. J.; Morlighem, M.

    2014-12-01

    Altimetry signals from missions such as ICESat-1, CryoSat, EnviSat, as well as altimeters onboard Operation IceBridge provide vital insights into processes such as surface mass balance, mass transport and ice-flow dynamics. Historically however, ice-flow models have been focused on assimilating surface velocities from satellite-based radar observations, to infer properties such as basal friction or the position of the bedrock. Here, we leverage a new methodology based on automatic differentation of the Ice Sheet System Model to assimilate surface altimetry data into a reconstruction of the past decade of ice flow on the North Greenland area. We infer corrections to boundary conditions such as basal friction and surface mass balance, as well as corrections to the ice hardness, to best-match the observed altimetry record. We compare these corrections between glaciers such as Petermann Glacier, 79 North and Zacchariae Isstrom. The altimetry signals exhibit very different patterns between East and West, which translate into very different signatures for the inverted boundary conditions. This study gives us greater insights into what differentiates different basins, both in terms of mass transport and ice-flow dynamics, and what could bethe controlling mechanisms behind the very different evolutions of these basins.

  10. Human Metabolite Lamotrigine-N(2)-glucuronide Is the Principal Source of Lamotrigine-Derived Compounds in Wastewater Treatment Plants and Surface Water.

    PubMed

    Zonja, Bozo; Pérez, Sandra; Barceló, Damià

    2016-01-05

    Wastewater and surface water samples, extracted with four solid-phase extraction cartridges of different chemistries, were suspect-screened for the anticonvulsant lamotrigine (LMG), its metabolites, and related compounds. LMG, three human metabolites, and a LMG synthetic impurity (OXO-LMG) were detected. Preliminary results showed significantly higher concentrations of OXO-LMG in wastewater effluent, suggesting its formation in the wastewater treatment plants (WWTPs). However, biodegradation experiments with activated sludge demonstrated that LMG is resistant to degradation and that its human metabolite lamotrigine-N(2)-glucuronide (LMG-N2-G) is the actual source of OXO-LMG in WWTPs. In batch reactors, LMG-N2-G was transformed, following pseudo-first-order kinetics to OXO-LMG and LMG, but kinetic experiments suggested an incomplete mass balance. A fragment ion search applied to batch-reactor and environmental samples revealed another transformation product (TP), formed by LMG-N2-G oxidation, which was identified by high-resolution mass spectrometry. Accounting for all TPs detected, a total mass balance at two concentration levels in batch reactors was closed at 86% and 102%, respectively. In three WWTPs, the total mass balance of LMG-N2-G ranged from 71 to 102%. Finally, LMG-N2-G and its TPs were detected in surface water samples with median concentration ranges of 23-139 ng L(-1). The results of this study suggest that glucuronides of pharmaceuticals might also be sources of yet undiscovered, but environmentally relevant, transformation products.

  11. Experimental Determination of Air Density Using a 1 kg Mass Comparator in Vacuum

    NASA Astrophysics Data System (ADS)

    Gläser, M.; Schwartz, R.; Mecke, M.

    1991-01-01

    The density of ambient air has been determined by a straightforward experimental method. The apparent masses of two artefacts having about the same mass and surface, but different well-known volumes, have been compared by using a 1 kg balance in vacuum and in air. The differences of apparent masses and volumes yield the air density with a relative uncertainty (1σ) of 5 × 10-5. From measurements made using a third artefact, surface sorption effects caused by the change between vacuum and air conditions gave a coefficient of about 0,2 μg cm-2.

  12. Can we detect national-scale under-reporting of CO2 emissions using OCO-2 XCO2 observations in a carbon-weather data assimilation system?

    NASA Astrophysics Data System (ADS)

    Wuerth, S. M.; Fung, I. Y.; Anderson, J. L.; Raeder, K.

    2016-12-01

    A long-standing challenge in carbon cycle science is the inference of surface fluxes from atmospheric CO2 observations. Here we present initial results from our carbon-weather data assimilation system coupled to a mass-balance inversion . Our system combines the Community Atmosphere Model (CAM 5FV) with state-of-the-art ensemble data assimilation techniques from the Data Assimilation Research Testbed (DART), and assimilates OCO-2 XCO2 observations together with raw meteorological observations. The system uses a mass balance of the optimized atmospheric state to calculate CO2 sources and sinks throughout the globe. We present results from observing system simulation experiments (OSSE) aimed at comparing two different mass-balance approaches' abilities to detect under-reporting of national-scale CO2 emissions. In both experiments, we define a true state as the atmospheric state resulting from running CAM with a prognostic carbon cycle and CO2 emissions from CarbonTracker CT2015. Meteorological and OCO-2-like observations are harvested from this true state for assimilation. We create a hypothetical scenario in which fossil fuel CO2 emissions of a large emitter are scaled to half of their true values. Surface fluxes are then estimated using one of two approaches. The first approach computes, at every 6-hourly assimilation window, surface fluxes as the residual in the mass balance equation after divergence has been accounted for. The updated surface fluxes are then used as forcing in the ensuing CAM forecast. The second approach uses the initial false emissions for two weeks of model integration, then computes improved emissions by adding the time-averaged analysis increment in near-surface CO2 mixing ratio to the initial false emissions. The two weeks are re-run with these updated fluxes, and the process is then repeated for further refinement of fluxes. The advantages and disadvantages of the two approaches are discussed, and the system's ability to recover the true fluxes is assessed.

  13. Switch of flow direction in an Antarctic ice stream.

    PubMed

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  14. Satellite remote sensing of surface energy and mass balance - Results from FIFE

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Markham, B. J.; Wang, J. R.; Huemmrich, F.; Sellers, P. J.; Strebel, D. E.; Kanemasu, E. T.; Kelly, Robert D.; Blad, Blaine L.

    1991-01-01

    Results obtained from the FIFE experiments conducted in 1987 and 1989 are summarized. Data analyses indicate that the hypotheses linking energy balance components to surface biology and remote sensing are reasonable at a point level, and that satellite remote sensing can potentially provide useful estimates of the surface energy budget. An investigation of atmospheric scattering and absorption effects on satellite remote sensing of surface radiance shows that the magnitude of atmospheric opacity variations within the FIFE site and with season can have a large effect on satellite measured values of surface radiances. Comparisons of atmospherically corrected TM radiances with surface measured radiances agreed to within about two percent at the visible and near-infrared wavelengths and to 6 percent in the midinfrared.

  15. Micromachined force-balance feedback accelerometer with optical displacement detection

    DOEpatents

    Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert

    2014-07-22

    An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.

  16. Distributed modeling of ablation (1996–2011) and climate sensitivity on the glaciers of Taylor Valley, Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Matthew J.; Fountain, Andrew G.; Liston, Glen E.

    Here, the McMurdo Dry Valleys of Antarctica host the coldest and driest ecosystem on Earth, which is acutely sensitive to the availability of water coming from glacial runoff. We modeled the spatial variability in ablation and assessed climate sensitivity of the glacier ablation zones using 16 years of meteorological and surface mass-balance observations collected in Taylor Valley. Sublimation was the primary form of mass loss over much of the ablation zones, except for near the termini where melt, primarily below the surface, dominated. Microclimates in ~10 m scale topographic basins generated melt rates up to ten times higher than overmore » smooth glacier surfaces. In contrast, the vertical terminal cliffs on the glaciers can have higher or lower melt rates than the horizontal surfaces due to differences in incoming solar radiation. The model systematically underpredicted ablation for the final 5 years studied, possibly due to an increase of windblown sediment. Surface mass-balance sensitivity to temperature was ~–0.02 m w.e. K –1, which is among the smallest magnitudes observed globally. We also identified a high sensitivity to ice albedo, with a decrease of 0.02 having similar effects as a 1 K increase in temperature, and a complex sensitivity to wind speed.« less

  17. Distributed modeling of ablation (1996–2011) and climate sensitivity on the glaciers of Taylor Valley, Antarctica

    DOE PAGES

    Hoffman, Matthew J.; Fountain, Andrew G.; Liston, Glen E.

    2016-02-24

    Here, the McMurdo Dry Valleys of Antarctica host the coldest and driest ecosystem on Earth, which is acutely sensitive to the availability of water coming from glacial runoff. We modeled the spatial variability in ablation and assessed climate sensitivity of the glacier ablation zones using 16 years of meteorological and surface mass-balance observations collected in Taylor Valley. Sublimation was the primary form of mass loss over much of the ablation zones, except for near the termini where melt, primarily below the surface, dominated. Microclimates in ~10 m scale topographic basins generated melt rates up to ten times higher than overmore » smooth glacier surfaces. In contrast, the vertical terminal cliffs on the glaciers can have higher or lower melt rates than the horizontal surfaces due to differences in incoming solar radiation. The model systematically underpredicted ablation for the final 5 years studied, possibly due to an increase of windblown sediment. Surface mass-balance sensitivity to temperature was ~–0.02 m w.e. K –1, which is among the smallest magnitudes observed globally. We also identified a high sensitivity to ice albedo, with a decrease of 0.02 having similar effects as a 1 K increase in temperature, and a complex sensitivity to wind speed.« less

  18. Analysis of a GRACE Global Mascon Solution for Gulf of Alaska Glaciers

    NASA Technical Reports Server (NTRS)

    Arendt, Anthony; Luthcke, Scott B.; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed

    2013-01-01

    We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of -6511 Gt a(exp.-1) for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of -6111 Gt a(exp. -1) from GRACE, which compares well with -6512 Gt a(exp. -1) from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June-August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements atWolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.

  19. Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers

    USGS Publications Warehouse

    Arendt, Anthony; Luthcke, Scott; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed

    2013-01-01

    We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of –65 ± 11 Gt a–1 for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of –61 ± 11 Gt a–1 from GRACE, which compares well with –65 ± 12 Gt a–1 from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June–August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements at Wolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.

  20. Mass balance approaches to understanding evolution of dripwater chemistry

    NASA Astrophysics Data System (ADS)

    Fairchild, I. J.; Baker, A.; Andersen, M. S.; Treble, P. C.

    2015-12-01

    Forward and inverse modelling of dripwater chemistry is a fast-developing area in speleothem science. Such approaches can incorporate theoretical, parameterized or observed relationships between forcing factors and water composition, but at the heart is mass balance: a fundamental principle that provides important constraints. Mass balance has been used in speleothem studies to trace the evolution of dissolved inorganic carbon and carbon isotopes from soil to cave, and to characterize the existence and quantification of prior calcite precipitation (PCP) based on ratios of Mg and Sr to Ca. PCP effects can dominate slow drips, whereas fast drips are more likely to show a residual variability linked to soil-biomass processes. A possible configuration of a more complete mass balance model is illustrated in the figure. Even in humid temperate climates, evapotranspiration can be 50% of total atmospheric precipitation leading to substantially raised salt contents and there can be significant exchange with biomass. In more arid settings, at least seasonal soil storage of salts is likely. Golgotha Cave in SW Australia is in a Mediterranean climate with a strong summer soil moisture deficit. The land surface is forested leading to large ion fluxes related to vegetation. There are also periodic disturbances related to fire. Mass balance approaches have been applied to an 8-year monitoring record. Inter-annual trends of elements coprecipitated in speleothems from fast drips are predicted to be dominated by biomass effects.

  1. Topographic forcing and related uncertainties on glacier surface energy balance in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Olson, M.; Rupper, S.; Shean, D. E.

    2017-12-01

    Topography directly influences the amount of global radiation, as well as other key energy flux terms, arriving on a glacier surface. This is particularly important in regions of variable and complex topography such as High Mountain Asia (HMA). In this region surface energy and mass balance estimates often rely heavily on modeling, and thus require accurate accounting of topography through available remote sensing platforms. Our previous work shows that topographic shading from surrounding terrain can alter the mean daily potential direct shortwave radiation by upwards of 20% for some valley glaciers. In this work, we find in regions of high topographic relief that shading frequently dominates in the ablation zone rather than the accumulation zone, contrary to the findings of some previous studies. This however, is largely dependent on the valley aspect and relative relief of nearby terrain. In addition, we examine the impact of topography, primarily topographic shading, on components of surface energy balance for a large sample of glaciers across different regions in HMA. Our results show that while the impact of topographic shading is highly variable throughout HMA, the magnitude of influence can often be predicted based on simple characteristics such as latitude, valley aspect, and orientation of the immediate surrounding topography. We also explore the uncertainty in topographic shading and in calculated surface energy due to the spatial resolution and accuracy of DEMs. In particular, we compare the shading and energy balance results utilizing a suite of DEMs, including 2 m, 8 m, and 30 m World View DEMs, 30 m ASTER GDEM, 30 m SRTM DEM, and 30 m ALOS DEM. These results will help us improve glacier energy and mass balance modeling accuracy, and demonstrate limitations and uncertainties when modeling changes in surface energy fluxes due to surrounding topography for mountain glaciers.

  2. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 1: Greenland (1958-2016)

    NASA Astrophysics Data System (ADS)

    Noël, Brice; van de Berg, Willem Jan; Melchior van Wessem, J.; van Meijgaard, Erik; van As, Dirk; Lenaerts, Jan T. M.; Lhermitte, Stef; Kuipers Munneke, Peter; Smeets, C. J. P. Paul; van Ulft, Lambertus H.; van de Wal, Roderik S. W.; van den Broeke, Michiel R.

    2018-03-01

    We evaluate modelled Greenland ice sheet (GrIS) near-surface climate, surface energy balance (SEB) and surface mass balance (SMB) from the updated regional climate model RACMO2 (1958-2016). The new model version, referred to as RACMO2.3p2, incorporates updated glacier outlines, topography and ice albedo fields. Parameters in the cloud scheme governing the conversion of cloud condensate into precipitation have been tuned to correct inland snowfall underestimation: snow properties are modified to reduce drifting snow and melt production in the ice sheet percolation zone. The ice albedo prescribed in the updated model is lower at the ice sheet margins, increasing ice melt locally. RACMO2.3p2 shows good agreement compared to in situ meteorological data and point SEB/SMB measurements, and better resolves the spatial patterns and temporal variability of SMB compared with the previous model version, notably in the north-east, south-east and along the K-transect in south-western Greenland. This new model version provides updated, high-resolution gridded fields of the GrIS present-day climate and SMB, and will be used for projections of the GrIS climate and SMB in response to a future climate scenario in a forthcoming study.

  3. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control... weights used on control surfaces must be designed for— (a) 24 g normal to the plane of the control surface; (b) 12 g fore and aft; and (c) 12 g parallel to the hinge line. Control Systems ...

  4. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control... weights used on control surfaces must be designed for— (a) 24 g normal to the plane of the control surface; (b) 12 g fore and aft; and (c) 12 g parallel to the hinge line. Control Systems ...

  5. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control... weights used on control surfaces must be designed for— (a) 24 g normal to the plane of the control surface; (b) 12 g fore and aft; and (c) 12 g parallel to the hinge line. Control Systems ...

  6. Improved estimate of accelerated Antarctica ice mass loses from GRACE, Altimetry and surface mass balance from regional climate model output

    NASA Astrophysics Data System (ADS)

    Velicogna, I.; Sutterley, T. C.; A, G.; van den Broeke, M. R.; Ivins, E. R.

    2016-12-01

    We use Gravity Recovery and Climate Experiment (GRACE) monthly gravity fields to determine the regional acceleration in ice mass loss in Antarctica for 2002-2016. We find that the total mass loss is controlled by only a few regions. In Antarctica, the Amundsen Sea (AS) sector and the Antarctic Peninsula account for 65% and 18%, respectively, of the total loss (186 ± 10 Gt/yr) mainly from ice dynamics. The AS sector contributes most of the acceleration in loss (9 ± 1 Gt/yr2 ), and Queen Maud Land, East Antarctica, is the only sector with a significant mass gain due to a local increase in SMB (57 ± 5 Gt/yr). We compare GRACE regional mass balance estimates with independent estimates from ICESat-1 and Operation IceBridge laser altimetry, CryoSat-2 radar altimetry, and surface mass balance outputs from RACMO2.3. In the Amundsen Sea Embayment of West Antarctica, an area experiencing rapid retreat and mass loss to the sea, we find good agreement between GRACE and altimetry estimates. Comparison of GRACE with these independent techniques in East Antarctic shows that GIA estimates from the new regional ice deglaciation models underestimate the GIA correction in the EAIS interior, which implies larger losses of the Antarctica ice sheet by about 70 Gt/yr. Sectors where we are observing the largest losses are closest to warm circumpolar water, and with polar constriction of the westerlies enhanced by climate warming, we expect these sectors to contribute more and more to sea level as the ice shelves that protect these glaciers will melt faster in contact with more heat from the surrounding oc

  7. Evapotranspiration Measurement and Estimation: Weighing Lysimeter and Neutron Probe Based Methods Compared with Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Evett, S. R.; Gowda, P. H.; Marek, G. W.; Alfieri, J. G.; Kustas, W. P.; Brauer, D. K.

    2014-12-01

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP) and soil core sampling techniques), and can be biased with respect to ET from the surrounding area. The area represented by flux sensing methods such as eddy covariance (EC) is typically estimated with a flux footprint/source area model. The dimension, position of, and relative contribution of upwind areas within the source area are mainly influenced by sensor height, wind speed, atmospheric stability and wind direction. Footprints for EC sensors positioned several meters above the canopy are often larger than can be economically covered by mass balance methods. Moreover, footprints move with atmospheric conditions and wind direction to cover different field areas over time while mass balance methods are static in space. Thus, EC systems typically sample a much greater field area over time compared with mass balance methods. Spatial variability of surface cover can thus complicate interpretation of flux estimates from EC systems. The most commonly used flux estimation method is EC; and EC estimates of latent heat energy (representing ET) and sensible heat fluxes combined are typically smaller than the available energy from net radiation and soil heat flux (commonly referred to as lack of energy balance closure). Reasons for this are the subject of ongoing research. We compare ET from LYS, NP and EC methods applied to field crops for three years at Bushland, Texas (35° 11' N, 102° 06' W, 1170 m elevation above MSL) to illustrate the potential problems with and comparative advantages of all three methods. In particular, we examine how networks of neutron probe access tubes can be representative of field areas large enough to be equivalent in size to EC footprints, and how the ET data from these methods can address bias and accuracy issues.

  8. Effect of manure application on abundance of antibiotic resistance genes and their attenuation rates in soil: field-scale mass balance approach.

    PubMed

    Fahrenfeld, Nicole; Knowlton, Katharine; Krometis, Leigh Anne; Hession, W Cully; Xia, Kang; Lipscomb, Emily; Libuit, Kevin; Green, Breanna Lee; Pruden, Amy

    2014-01-01

    The development of models for understanding antibiotic resistance gene (ARG) persistence and transport is a critical next step toward informing mitigation strategies to prevent the spread of antibiotic resistance in the environment. A field study was performed that used a mass balance approach to gain insight into the transport and dissipation of ARGs following land application of manure. Soil from a small drainage plot including a manure application site, an unmanured control site, and an adjacent stream and buffer zone were sampled for ARGs and metals before and after application of dairy manure slurry and a dry stack mixture of equine, bovine, and ovine manure. Results of mass balance suggest growth of bacterial hosts containing ARGs and/or horizontal gene transfer immediately following slurry application with respect to ermF, sul1, and sul2 and following a lag (13 days) for dry-stack-amended soils. Generally no effects on tet(G), tet(O), or tet(W) soil concentrations were observed despite the presence of these genes in applied manure. Dissipation rates were fastest for ermF in slurry-treated soils (logarithmic decay coefficient of -3.5) and for sul1 and sul2 in dry-stack-amended soils (logarithmic decay coefficients of -0.54 and -0.48, respectively), and evidence for surface and subsurface transport was not observed. Results provide a mass balance approach for tracking ARG fate and insights to inform modeling and limiting the transport of manure-borne ARGs to neighboring surface water.

  9. Spatio-temporal variation in microclimate, the surface energy balance and ablation over a cirque glacier

    NASA Astrophysics Data System (ADS)

    Hannah, David M.; Gurnell, Angela M.; McGregor, Glenn R.

    2000-06-01

    Climatic processes, operating at a range of scales, drive energy fluxes at the glacier surface which control meltwater generation and ultimately runoff. Nevertheless, to date, most glacier microclimate research has been both temporally (short-term) and spatially (single station) restricted. This paper addresses this knowledge gap by reporting on a detailed, empirical study which characterizes spatio-temporal variations in and linkages between glacier microclimate, surface energy and mass exchanges within a small glacierized cirque (Taillon Glacier, French Pyrénées) over two melt seasons. Data collected at five automatic weather stations (AWSs) and over ablation stake networks suggest that topoclimates, altitude and transient snowline position primarily determine the distribution of glacier energy receipt and, in turn, snow- and ice-melt patterns. Generally net radiation is the dominant energy source, followed by sensible heat, while latent heat is an energy sink. However, the magnitude and partitioning of energy balance terms, and consequently ablation, vary across the glacier both seasonally and with prevailing weather conditions. Importantly, this paper demonstrates that such monitoring programmes are required to truly represent and provide a sound basis for modelling glacier energy and mass-balances in both space and time.

  10. Geodetic mass balance measurements on debris and clean-ice tropical glaciers in Ecuador

    NASA Astrophysics Data System (ADS)

    La Frenierre, J.; Decker, C. R.; Jordan, E.; Wigmore, O.; Hodge, B. E.; Niederriter, C.; Michels, A.

    2017-12-01

    Glaciers are recognized as highly sensitive indicators of climate change in high altitude, low latitude environments. In the tropical Andes, various analyses of glacier surface area change have helped illuminate the manifestation of climate change in this region, however, information about actual glacier mass balance behavior is much more limited given the relatively small glaciers, difficult access, poor weather, and/or limited local resources common here. Several new technologies, including aerial and terrestrial LIDAR and structure-from-motion photogrammetry using small unmanned aerial vehicles (UAVs), make mass balance measurements using geodetic approaches increasingly feasible in remote mountain locations, which can both further our understanding of changing climatic conditions, and improve our ability to evaluate the downstream hydrologic impacts of ice loss. At Volcán Chimborazo, Ecuador, these new technologies, combined with a unique, 5-meter resolution digital elevation model derived from 1997 aerial imagery, make possible an analysis of the magnitude and spatial patterns of mass balance behavior over the past two decades. Here, we evaluate ice loss between 1997 and 2017 at the tongues of two adjacent glaciers, one debris-covered and detached from its accumulation area (Reschreiter Glacier), and one debris-free and intact (Hans Meyer Glacier). Additionally, we incorporate data from 2012 and 2013 terrestrial LIDAR surveys to evaluate the behavior of the Reschreiter at a finer temporal resolution. We find that on the Hans Meyer, the mean surface deflation rate since 1997 at the present-day tongue has been nearly 3 m yr-1, while on the lower-elevation Reschreiter, the mean deflation rate has been approximately 1 m yr-1. However, the processes by which debris-covered ice becomes exposed results in highly heterogeneous patterns of ice loss, with some areas experiencing surface deflation rates approaching 15 m yr-1 when energy absorption is unimpeded.

  11. Measured and modelled sublimation on the tropical Glaciar Artesonraju, Perú

    NASA Astrophysics Data System (ADS)

    Winkler, M.; Juen, I.; Mölg, T.; Wagnon, P.; Gómez, J.; Kaser, G.

    2009-02-01

    Sublimation plays a decisive role in the surface energy and mass balance of tropical glaciers. During the dry season (May-September) low specific humidity and high surface roughness favour the direct transition from ice to vapour and drastically reduce the energy available for melting. However, field measurements are scarce and little is known about the performance of sublimation parameterisations in glacier mass balance and runoff models. During 15 days in August 2005 sublimation was measured on the tongue of Glaciar Artesonraju (8°58' S, 77°38' W) in the Cordillera Blanca, Perú, using simple lysimeters. Indicating a strong dependence on surface roughness, daily totals of sublimation range from 1-3 kg m-2 for smooth to 2-5 kg m-2 for rough conditions. (The 15-day means at that time of wind speed and specific humidity were 4.3 m s-1 and 3.8 g kg-1, respectively.) Measured sublimation was related to characteristic surface roughness lengths for momentum (zm) and for the scalar quantities of temperature and water vapour (zs), using a process-based mass balance model. Input data were provided by automatic weather stations, situated on the glacier tongue at 4750 m a.s.l. and 4810 m a.s.l., respectively. Under smooth conditions the combination zm=2.0 mm and zs=1.0 mm appeared to be most appropriate, for rough conditions zm=20.0 mm and zs=10.0 mm fitted best. Extending the sublimation record from April 2004 to December 2005 with the process-based model confirms, that sublimation shows a clear seasonality. 60-90% of the energy available for ablation is consumed by sublimation in the dry season, but only 10-15% in the wet season (October-April). The findings are finally used to evaluate the parameterisation of sublimation in the lower-complexity mass balance model ITGG, which has the advantage of requiring precipitation and air temperature as only input data. It turns out that the implementation of mean wind speed is a possible improvement for the representation of sublimation in the ITGG model.

  12. Energy and mass balance observations on La Mare Glacier (Ortles-Cevedale, European Alps)

    NASA Astrophysics Data System (ADS)

    Carturan, L.; Cazorzi, F.; Dalla Fontana, G.

    2009-04-01

    An experimental site was setup in 2005 on the ablation area of La Mare Glacier, at 2990 m a.s.l., to study the energy and mass balance exchanges between the glacier surface and the atmosphere and to investigate the climatic sensitivity of this particular glacier. An Automatic Weather Station was operated, in the framework of a monitoring network which has been implemented in the Upper Val de La Mare experimental watershed (Trentino, Italy). This basin was selected for a study of climate change effects on cryosphere and hydrology at high-altitude catchments. The 36.2 km2 wide basin has an average altitude of 2906 m a.s.l. and at present the 25% of its surface is glacierized; the annual runoff regime is dominated by snow and ice melt. Direct mass balance measurements have been performed since 1967 on Careser glacier (2.83 km2) and since 2003 on La Mare glacier (3.97 km2). The AWS is mounted on a tripod which stands freely on the glacier surface and is solar-powered. The variables measured are: air temperature and relative humidity, wind speed and direction, shortwave and longwave incoming and outgoing radiation, precipitation and surface height. All the data are sampled at five-minute intervals as average values, with the exception of surface height which is sampled at hourly intervals, as instantaneous values. The collected data were used to calculate the point energy and mass balance and to compare the results with similar investigations carried out on glaciers and available in literature. In particular, our attention has been focussed on some processes which regulate the response to climate changes. The relative importance of the energy balance components was examined and a clear predominance of shortwave radiation inputs was found to exist during melt conditions. Given the relevance of the shortwave net balance, the ice albedo temporal variability (values ranging from 0.1 to 0.5) has been investigated and correlated with meteorological variables. Furthermore, a distinct diurnal cycle of cloud cover was found to control the actual radiation received by the surface, with a minimum coverage at morning and a maximum at late afternoon, due to thermal convection. In addition, the energy available for melt is affected by the glacier cooling effect, which produces a persistent katabatic wind and lead to a reduced climatic sensitivity with respect to the "free atmosphere". The magnitude of the cooling effect has proved to be comparable with the findings of similar studies conducted in other European glaciers. Finally, the data of the first winter highlighted a very low accumulation on the AWS site, due to strong wind erosion of freshly fallen dry and cold snow. Accumulation became significant only in spring, with the deposition of snow in higher temperature conditions and absence of post-event strong northerly winds.

  13. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity. Because water is 'heavier' than ice, water-filled cracks have unlimited capacity to hydraulically ';jack' open fractures, penetrating, fracturing and disaggregating a solid ice body. This process promotes iceberg calving at more than 150, 1km wide marine terminating Greenland glacier fronts. Resulting from a rising trend of surface melting and sea water temperature, meltwater ejection at the underwater front of marine glaciers drives a an increasing turbulent heat exchange between the glacier front and relatively warm sea water melting it faster. Underwater melting promotes an undercutting of the glacier front leading to ice berg calving. Calving through hydrofracture or marine undercutting provide a direct and immediate ice flow speed response mechanism for surface meltwater production. Ice flow speed reacts because calving reduces flow resistance. The above physical processes interact. Cooling shuts these processes down. Negative feedbacks dampen the warming impulse. Live 21 June, 2013 is a new Danish Web site1 that exploits total mass balance rate of decline as a function of albedo to predict GRACE mass rate of change with 80% explained variance. While surface mass balance explains the mass rate of change slightly higher, surface albedo is an observable quantity as is gravity change.

  14. Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Berger, Sophie; Drews, Reinhard; Helm, Veit; Sun, Sainan; Pattyn, Frank

    2017-11-01

    Ice shelves control the dynamic mass loss of ice sheets through buttressing and their integrity depends on the spatial variability of their basal mass balance (BMB), i.e. the difference between refreezing and melting. Here, we present an improved technique - based on satellite observations - to capture the small-scale variability in the BMB of ice shelves. As a case study, we apply the methodology to the Roi Baudouin Ice Shelf, Dronning Maud Land, East Antarctica, and derive its yearly averaged BMB at 10 m horizontal gridding. We use mass conservation in a Lagrangian framework based on high-resolution surface velocities, atmospheric-model surface mass balance and hydrostatic ice-thickness fields (derived from TanDEM-X surface elevation). Spatial derivatives are implemented using the total-variation differentiation, which preserves abrupt changes in flow velocities and their spatial gradients. Such changes may reflect a dynamic response to localized basal melting and should be included in the mass budget. Our BMB field exhibits much spatial detail and ranges from -14.7 to 8.6 m a-1 ice equivalent. Highest melt rates are found close to the grounding line where the pressure melting point is high, and the ice shelf slope is steep. The BMB field agrees well with on-site measurements from phase-sensitive radar, although independent radar profiling indicates unresolved spatial variations in firn density. We show that an elliptical surface depression (10 m deep and with an extent of 0.7 km × 1.3 km) lowers by 0.5 to 1.4 m a-1, which we tentatively attribute to a transient adaptation to hydrostatic equilibrium. We find evidence for elevated melting beneath ice shelf channels (with melting being concentrated on the channel's flanks). However, farther downstream from the grounding line, the majority of ice shelf channels advect passively (i.e. no melting nor refreezing) toward the ice shelf front. Although the absolute, satellite-based BMB values remain uncertain, we have high confidence in the spatial variability on sub-kilometre scales. This study highlights expected challenges for a full coupling between ice and ocean models.

  15. Measured and modelled sublimation on the tropical Glaciar Artesonraju, Perú

    NASA Astrophysics Data System (ADS)

    Winkler, M.; Juen, I.; Mölg, T.; Kaser, G.

    2008-09-01

    Sublimation plays a decisive role in the surface energy balance of tropical glaciers. During the dry season low specific humidity and high surface roughness favour the direct transition from ice to vapour and drastically reduce the energy available for melting. However, field measurements are scarce and little is known about the performance of sublimation parametrisations in glacier mass balance and runoff models. During 15 days in August 2005 sublimation was measured on the tongue of Glaciar Artesonraju (8°58' S, 77°38' W) in the Cordillera Blanca, Perú, using simple lysimeters. Indicating a strong dependence on surface roughness, daily totals of sublimation range from 1 3 kg m-2 for smooth to 2 5 kg m-2 for rough conditions. Measured sublimation was related to characteristic surface roughness lengths for momentum (zm) and for the scalar quantities of temperature and water vapour (zs), using a process-based mass balance model. Input data were provided by automatic weather stations, situated on the glacier tongue at 4750 m ASL and 4810 m ASL, respectively. Under smooth conditions the combination zm=2.0 mm and zs=1.0 mm appeared to be most appropriate, for rough conditions zm=20.0 mm and zs=10.0 mm fitted best. Extending the sublimation record from April 2004 to December 2005 with the process-based model confirms, that sublimation shows a clear seasonality. 60 90% of the energy available for ablation is consumed by sublimation in the dry season, but only 10 15% in the wet season. The findings are finally used to evaluate the parametrisation of sublimation in the lower-complexity mass balance model ITGG, which has the advantage of requiring precipitation and air temperature as only input data. It turns out that the implementation of mean wind speed is a possible improvement for the representation of sublimation in the ITGG model.

  16. Extent of Low-accumulation 'Wind Glaze' Areas on the East Antarctic Plateau: Implications for Continental Ice Mass Balance

    NASA Technical Reports Server (NTRS)

    Scambos, Theodore A.; Frezzotti, Massimo; Haran, T.; Bohlander, J.; Lenaerts, J. T. M.; Van Den Broeke, M. R.; Jezek, K.; Long, D.; Urbini, S.; Farness, K.; hide

    2012-01-01

    Persistent katabatic winds form widely distributed localized areas of near-zero net surface accumulation on the East Antarctic ice sheet (EAIS) plateau. These areas have been called 'glaze' surfaces due to their polished appearance. They are typically 2-200 square kilometers in area and are found on leeward slopes of ice-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze areas resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 plus or minus 1.7%, or 950 plus or minus 143 x 10(exp 3) square kilometers, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46-82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze.

  17. Mass balance model parameter transferability on a tropical glacier

    NASA Astrophysics Data System (ADS)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer these combinations to the other year. We show that multi-site and multi-year analyses are crucial before extrapolating ablation modeling to larger glacier areas. So far tested surface albedo schemes and respective parameterizations can obviously not satisfyingly reproduce the dynamics of glacier surface conditions at our study site and new solutions to the problem have to be explored.

  18. The Role of the North Atlantic Oscillation (NAO) on Recent Greenland Surface Mass Loss and Mass Partitioning

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Alexander, P.; Porter, D. F.; Fettweis, X.; Luthcke, S. B.; Mote, T. L.; Rennermalm, A.; Hanna, E.

    2017-12-01

    Despite recent changes in Greenland surface mass losses and atmospheric circulation over the Arctic, little attention has been given to the potential role of large-scale atmospheric processes on the spatial and temporal variability of mass loss and partitioning of the GrIS mass loss. Using a combination of satellite gravimetry measurements, outputs of the MAR regional climate model and reanalysis data, we show that changes in atmospheric patterns since 2013 over the North Atlantic region of the Arctic (NAA) modulate total mass loss trends over Greenland together with the spatial and temporal distribution of mass loss partitioning. For example, during the 2002 - 2012 period, melting persistently increased, especially along the west coast, as a consequence of increased insulation and negative NAO conditions characterizing that period. Starting in 2013, runoff along the west coast decreased while snowfall increased substantially, when NAO turned to a more neutral/positive state. Modeled surface mass balance terms since 1950 indicate that part of the GRACE-period, specifically the period between 2002 and 2012, was exceptional in terms of snowfall over the east and northeast regions. During that period snowfall trend decreased to almost 0 Gt/yr from a long-term increasing trend, which presumed again in 2013. To identify the potential impact of atmospheric patterns on mass balance and its partitioning, we studied the spatial and temporal correlations between NAO and snowfall/runoff. Our results indicate that the correlation between summer snowfall and NAO is not stable during the 1950 - 2015 period. We further looked at changes in patterns of circulation using self organizing maps (SOMs) to identify the atmospheric patterns characterizing snowfall during different periods. We discuss potential implications for past changes and future GCM and RCM simulations.

  19. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849-2017 with ISSM

    NASA Astrophysics Data System (ADS)

    Haubner, K.; Box, J.; Schlegel, N.; Larour, E. Y.; Morlighem, M.; Solgaard, A.; Kjeldsen, K. K.; Larsen, S. H.; Rignot, E. J.; Dupont, T. K.; Kjaer, K. H.

    2017-12-01

    Tidewater terminus changes have a significant influence on glacier velocity and mass balance and impact therefore Greenland's ice mass balance. Improving glacier front changes in ice sheet models helps understanding the processes that are driving glacier mass changes and improves predictions on Greenland's mass loss. We use the level set based moving boundary capability (Bondzio et al., 2016) included in the Ice Sheet System Model ISSM to reconstruct velocity and thickness changes on Upernavik Isstrøm, Greenland from 1849 to 2017. During the simulation, we use various data sets. For the model initialization, trim line data and an observed calving front position determine the shape of the ice surface elevation. The terminus changes are prescribed by observations. Data sets like the GIMP DEM, ArcticDEM, IceBridge surface elevation and ice surface velocities from the ESA project CCI and NASA project MEaSUREs help evaluating the simulation performance. The simulation is sensitive to the prescribed terminus changes, showing an average acceleration along the three flow lines between 50% and 190% from 1849 to 2017. Simulated ice surface velocity and elevation between 1990 and 2012 are within +/-20% of observations (GIMP, ArcticDEM, IceBridge, CCI and MEaSUREs). Simulated mass changes indicate increased dynamical ice loss from 1932 onward, amplified by increased negative SMB anomalies after 1998. More detailed information about methods and findings can be found in Haubner et al., 2017 (in TC discussion, describing simulation results between 1849-2012). Future goals are the comparison of ice surface velocity changes simulated with prescribed terminus retreat against other retreat schemes (Morlighem et al., 2016; Levermann et al., 2012; Bondzio et al., 2017) and applying the method onto other tidewater glaciers.

  20. Columbia Glacier stake location, mass balance, glacier surface altitude, and ice radar data, 1978 measurement year

    USGS Publications Warehouse

    Mayo, L.R.; Trabant, D.C.; March, Rod; Haeberli, Wilfried

    1979-01-01

    A 1 year data-collection program on Columbia Glacier, Alaska has produced a data set consisting of near-surface ice kinematics, mass balance, and altitude change at 57 points and 34 ice radar soundings. These data presented in two tables, are part of the basic data required for glacier dynamic analysis, computer models, and predictions of the number and size of icebergs which Columbia Glacier will calve into shipping lanes of eastern Prince William Sound. A metric, sea-level coordinate system was developed for use in surveying throughout the basin. Its use is explained and monument coordinates listed. A series of seven integrated programs for calculators were used in both the field and office to reduce the surveying data. These programs are thoroughly documented and explained in the report. (Kosco-USGS)

  1. The Influence of Intensifying Irrigation on Glacier Mass Balances in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    de Kok, R.; Tuinenburg, O.; Bonekamp, P. N. J.; Immerzeel, W. W.

    2017-12-01

    Melt water from snow and glaciers in High Mountain Asia provide a major source of water for millions of inhabitants in the downstream low lying plains. This densely populated region also hosts some of the largest areas of irrigated land in the world. Not only is the water from High Mountain Asia important as a source of irrigation water, the irrigation itself might also change the regional, and even global, climate by increasing atmospheric moisture and by cooling the surface through evapotranspiration. We explore the effect of irrigation in the region on the synoptic climate patterns in High Mountain Asia using the WRF regional climate model. By studying the changes in the energy balance, temperatures and precipitation, we assess how the changes in irrigation patterns may have contributed to the observed trends in mountain climates and associated glacier mass balances. Initial results show that the intensifying irrigation during the last decades causes an increase in summer snowfall in the mountains in Central Karakoram and Kunlun Shan, which are the regions where slight positive mass balances have been observed in recent years. A moisture tracking model confirms that the irrigated areas are a significant moisture source for summer precipitation in High Mountain Asia. These results thus suggest that irrigation may significantly influence glaciers in High Mountain Asia, especially in the regions of observed anomalous mass balance.

  2. A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change.

    PubMed

    Bigg, G R; Wei, H L; Wilton, D J; Zhao, Y; Billings, S A; Hanna, E; Kadirkamanathan, V

    2014-06-08

    Iceberg calving is a major component of the total mass balance of the Greenland ice sheet (GrIS). A century-long record of Greenland icebergs comes from the International Ice Patrol's record of icebergs (I48N) passing latitude 48° N, off Newfoundland. I48N exhibits strong interannual variability, with a significant increase in amplitude over recent decades. In this study, we show, through a combination of nonlinear system identification and coupled ocean-iceberg modelling, that I48N's variability is predominantly caused by fluctuation in GrIS calving discharge rather than open ocean iceberg melting. We also demonstrate that the episodic variation in iceberg discharge is strongly linked to a nonlinear combination of recent changes in the surface mass balance (SMB) of the GrIS and regional atmospheric and oceanic climate variability, on the scale of the previous 1-3 years, with the dominant causal mechanism shifting between glaciological (SMB) and climatic (ocean temperature) over time. We suggest that this is a change in whether glacial run-off or under-ice melting is dominant, respectively. We also suggest that GrIS calving discharge is episodic on at least a regional scale and has recently been increasing significantly, largely as a result of west Greenland sources.

  3. 40 Years of Glacier Change across the Himalayas

    NASA Astrophysics Data System (ADS)

    Maurer, J. M.; Schaefer, J. M.; Rupper, S.

    2017-12-01

    Himalayan glaciers are central to societies, ecologies, and landscapes in South Asia. Retreating glaciers have been observed in the Himalayas from in-situ and satellite remote sensing measurements, yet different approaches provide a wide range of mass budget estimates. As glaciers respond dynamically to climate over decades and centuries, more observations of past glacier states are needed to gain perspective on existing shorter-timespan ice loss estimates, minimize effects of interannual variability, and to robustly evaluate glacier dynamics. Here we use a new suite of DEMs (digital elevation models) to estimate geodetic mass balance for over 1000 Himalayan glaciers spanning a 2000 km transect, during the years 1975-2000 and 2001-2016. Recent advances in DEM extraction from declassified Hexagon filmstrips, along with new public access to the global ASTER database have allowed for this large-scale analysis of regional ice loss. An average trendline (using a 30-glacier moving-window) reveals a spatially coherent ice loss signal across the entire transect during both periods, consistent with atmospheric warming as the primary Himalaya-wide driver of change. Our estimate of mean annual ice losses during the more recent period is approximately twice as negative (-0.39 ± 0.1 m.w.e. a-1) compared to the 1975-2000 baseline (-0.18 ± 0.1 m.w.e. a-1). This two-fold acceleration of ice loss during the 21st century agrees with the global average, parallel with recent observations of increasing rates of sea level rise. These surface-integrated geodetic mass balances are negligibly influenced by ice flow dynamics, thus are indicative of climate-driven glacier responses. Further analyses utilizing satellite-derived ice surface velocities will afford deconvolution of the surface mass balance and ice fluxes, providing additional insights into the dynamic responses of the glaciers.

  4. Impacts of Topographic Shading on Surface Energy Balance of High Mountain Asia Glaciers

    NASA Astrophysics Data System (ADS)

    Olson, M.; Rupper, S.

    2016-12-01

    Topographic shading plays an important role in the energy balance of valley glaciers. While previous studies incorporate shading of varying complexity in surface energy balance models, to date, no large-scale studies have explored in depth the effects of topographic shading on glacier surface energy balance, and how these vary geographically within High Mountain Asia (HMA). Here we develop a model to examine the variability in potential insolation during the summer melt season using the ASTER GDEM and multi-hour solar geometry to simulate topographic shading on an idealized glacier. Shading is calculated in simulations utilizing a range of slopes, aspects, and latitudes. We test glacier mass balance sensitivity to these parameters for a suite of glaciers throughout HMA. Our results show that shading impacts on glaciers in HMA are highly variable across different geographic regions, but that they are largely predictable based on topographic characteristics such as slope and aspect. For example, we find in regions with steep topography and high relief that shading frequently dominates in the ablation zone rather than the accumulation zone, contrary to the findings of some previous studies. In these regions, topographic shading may play a more significant role in glacier energy balance. These results will better define the effects of topographic shading on surface energy balance, and improve model accuracy within HMA. Additionally, this topographic shading model provides a framework to quantify how shading effects vary for advancing or retreating glaciers as they respond to fluctuations in climate across HMA.

  5. Ice sheet topography by satellite altimetry

    USGS Publications Warehouse

    Brooks, R.L.; Campbell, W.J.; Ramseier, R.O.; Stanley, H.R.; Zwally, H.J.

    1978-01-01

    The surface elevation of the southern Greenland ice sheet and surface features of the ice flow are obtained from the radar altimeter on the GEOS 3 satellite. The achieved accuracy in surface elevation is ???2 m. As changes in surface elevation are indicative of changes in ice volume, the mass balance of the present ice sheets could be determined by repetitive mapping of the surface elevation and the surface could be monitored to detect surging or significant changes in ice flow. ?? 1978 Nature Publishing Group.

  6. Temporal variability of the Antarctic Ice sheet observed from space-based geodesy

    NASA Astrophysics Data System (ADS)

    Memin, A.; King, M. A.; Boy, J. P.; Remy, F.

    2017-12-01

    Quantifying the Antarctic Ice Sheet (AIS) mass balance still remains challenging as several processes compete to differing degrees at the basin scale with regional variations, leading to multiple mass redistribution patterns. For instance, analysis of linear trends in surface-height variations from 1992-2003 and 2002-2006 shows that the AIS is subject to decimetric scale variability over periods of a few years. Every year, snowfalls in Antarctica represent the equivalent of 6 mm of the mean sea level. Therefore, any fluctuation in precipitation can lead to changes in sea level. Besides, over the last decade, several major glaciers have been thinning at an accelerating rate. Understanding the processes that interact on the ice sheet is therefore important to precisely determine the response of the ice sheet to a rapid changing climate and estimate its contribution to sea level changes. We estimate seasonal and interannual changes of the AIS between January 2003 and October 2010 and to the end of 2016 from a combined analysis of surface-elevation and surface-mass changes derived from Envisat data and GRACE solutions, and from GRACE solutions only, respectively. While we obtain a good correlation for the interannual signal between the two techniques, important differences (in amplitude, phase, and spatial pattern) are obtained for the seasonal signal. We investigate these discrepancies by comparing the crustal motion observed by GPS and those predicted using monthly surface mass balance derived from the regional atmospheric climate model RACMO.

  7. Geenland Glacier Albedo Variability

    NASA Astrophysics Data System (ADS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  8. Greenland Glacier Albedo Variability

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  9. VX fate on common matrices: evaporation versus degradation.

    PubMed

    Columbus, Ishay; Waysbort, Daniel; Marcovitch, Itzhak; Yehezkel, Lea; Mizrahi, Dana M

    2012-04-03

    A study of the volatilization rate of the nerve agent VX (O-ethyl S-2-(N,N-diisopropylamino)ethyl methylphosphonothiolate) from various urban matrices in a specially designed climatic chamber (model system) is described. The performance of the model system combined with the analytical procedure produced profiles of vapor concentration obtained from samples of VX dispersed as small droplets on the surfaces of the matrices. The results indicated that the bitumen-containing surfaces such as asphalt blocks and bitumen sheets conserve VX and slow-release part of it over a long period of time. No complete mass balance could be obtained for these surfaces. Influence of environmental and experimental parameters as well as the efficacy of decontamination procedure were also measured. From smooth surface tiles a fast release of VX was measured and almost a complete mass balance was obtained, which characterizes the behavior of inert surfaces. Experiments carried out on concrete blocks showed fast decay of the concentration profile along with a very poor reconstruction of the initial quantity of VX, implying that this matrix degraded VX actively due to its multiple basic catalytic sites. To complement this study, solid-state NMR measurements were compared to add data concerning agent-fate within the matrices.

  10. Sensitivity of the Antarctic surface mass balance to oceanic perturbations

    NASA Astrophysics Data System (ADS)

    Kittel, C.; Amory, C.; Agosta, C.; Fettweis, X.

    2017-12-01

    Regional climate models (RCMs) are suitable numerical tools to study the surface mass balance (SMB) of the wide polar ice sheets due to their high spatial resolution and polar-adapted physics. Nonetheless, RCMs are driven at their boundaries and over the ocean by reanalysis or global climate model (GCM) products and are thus influenced by potential biases in these large-scale fields. These biases can be significant for both the atmosphere and the sea surface conditions (i.e. sea ice concentration and sea surface temperature). With the RCM MAR, a set of sensitivity experiments has been realized to assess the direct response of the SMB of the Antarctic ice sheet to oceanic perturbations. MAR is forced by ERA-Interim and anomalies based on mean GCM biases are introduced in sea surface conditions. Results show significant increases (decreases) of liquid and solid precipitation due to biases related to warm (cold) oceans. As precipitation is mainly caused by low-pressure systems that intrude into the continent and do not penetrate far inland, coastal areas are more sensitive than inland regions. Furthermore, warm ocean representative biases lead to anomalies as large as anomalies simulated by other RCMs or GCMs for the end of the 21st century.

  11. Numerical modeling of Drangajökull Ice Cap, NW Iceland

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Jarosch, Alexander H.; Flowers, Gwenn E.; Aðalgeirsdóttir, Guðfinna; Magnússon, Eyjólfur; Pálsson, Finnur; Muñoz-Cobo Belart, Joaquín; Þorsteinsson, Þorsteinn; Jóhannesson, Tómas; Sigurðsson, Oddur; Harning, David; Miller, Gifford H.; Geirsdóttir, Áslaug

    2016-04-01

    Over the past century the Arctic has warmed twice as fast as the global average. This discrepancy is likely due to feedbacks inherent to the Arctic climate system. These Arctic climate feedbacks are currently poorly quantified, but are essential to future climate predictions based on global circulation modeling. Constraining the magnitude and timing of past Arctic climate changes allows us to test climate feedback parameterizations at different times with different boundary conditions. Because Holocene Arctic summer temperature changes have been largest in the North Atlantic (Kaufman et al., 2004) we focus on constraining the paleoclimate of Iceland. Glaciers are highly sensitive to changes in temperature and precipitation amount. This sensitivity allows for the estimation of paleoclimate using glacier models, modern glacier mass balance data, and past glacier extents. We apply our model to the Drangajökull ice cap (~150 sq. km) in NW Iceland. Our numerical model is resolved in two-dimensions, conserves mass, and applies the shallow-ice-approximation. The bed DEM used in the model runs was constructed from radio echo data surveyed in spring 2014. We constrain the modern surface mass balance of Drangajökull using: 1) ablation and accumulation stakes; 2) ice surface digital elevation models (DEMs) from satellite, airborne LiDAR, and aerial photographs; and 3) full-stokes model-derived vertical ice velocities. The modeled vertical ice velocities and ice surface DEMs are combined to estimate past surface mass balance. We constrain Holocene glacier geometries using moraines and trimlines (e.g., Brynjolfsson, etal, 2014), proglacial-lake cores, and radiocarbon-dated dead vegetation emerging from under the modern glacier. We present a sensitivity analysis of the model to changes in parameters and show the effect of step changes of temperature and precipitation on glacier extent. Our results are placed in context with local lacustrine and marine climate proxies as well as with glacier extent and volume changes across the North Atlantic.

  12. Body Segment Differences in Surface Area, Skin Temperature and 3D Displacement and the Estimation of Heat Balance during Locomotion in Hominins

    PubMed Central

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-01-01

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached. PMID:18560580

  13. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    PubMed

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-06-18

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.

  14. Debris-covered Himalayan glaciers under a changing climate: observations and modelling of Khumbu Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Rowan, Ann; Quincey, Duncan; Egholm, David; Gibson, Morgan; Irvine-Fynn, Tristram; Porter, Philip; Glasser, Neil

    2016-04-01

    Many mountain glaciers are characterised in their lower reaches by thick layers of rock debris that insulate the glacier surface from solar radiation and atmospheric warming. Supraglacial debris modifies the response of these glaciers to climate change compared to glaciers with clean-ice surfaces. However, existing modelling approaches to predicting variations in the extent and mass balance of debris-covered glaciers have relied on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. Moreover, few data exist describing the mass balance of debris-covered glaciers and many observations are only made over short periods of time, but these data are needed to constrain and validate numerical modelling experiments. To investigate the impact of supraglacial debris on the response of a glacier to climate change, we developed a numerical model that couples the flow of ice and debris to include important feedbacks between mass balance, ice flow and debris accumulation. We applied this model to a large debris-covered Himalayan glacier - Khumbu Glacier in the Everest region of Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming air temperatures and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, the volume of Khumbu Glacier has reduced by 34%, while glacier area has reduced by only 6%. We predict a further decrease in glacier volume of 8-10% by AD2100 accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 years. For five months during the 2014 summer monsoon, we measured temperature profiles through supraglacial debris and proglacial discharge on Khumbu Glacier. We found that temperatures at the ice surface beneath 0.4-0.7 m of debris were sufficient to promote considerable amounts of ablation. Moreover, although temperatures within the debris layer decreased with depth at the start of the monsoon, later in the monsoon season thicker debris (0.7 m) appeared to retain more heat close to the glacier surface than thin debris (0.4 m). Remote sensing observations indicate that Khumbu Glacier is losing mass more rapidly than is predicted by our model, particularly as ice cliffs and supraglacial ponds enhance ablation locally, and our field observations suggest an additional mechanism for enhanced mass loss.

  15. Deriving mass balance and calving variations from reanalysis data and sparse observations, Glaciar San Rafael, northern Patagonia, 1950-2005

    NASA Astrophysics Data System (ADS)

    Koppes, M.; Conway, H.; Rasmussen, L. A.; Chernos, M.

    2011-09-01

    Mass balance variations of Glaciar San Rafael, the northernmost tidewater glacier in the Southern Hemisphere, are reconstructed over the period 1950-2005 using NCEP-NCAR reanalysis climate data together with sparse, local historical observations of air temperature, precipitation, accumulation, ablation, thinning, calving, and glacier retreat. The combined observations over the past 50 yr indicate that Glaciar San Rafael has thinned and retreated since 1959, with a total mass loss of ~22 km3 of ice eq. Over that period, except for a short period of cooling from 1998-2003, the climate has become progressively warmer and drier, which has resulted primarily in pervasive thinning of the glacier surface and a decrease in calving rates, with only minor acceleration in retreat of the terminus. A comparison of calving fluxes derived from the mass balance variations and from theoretical calving and sliding laws suggests that calving rates are inversely correlated with retreat rates, and that terminus geometry is more important than balance fluxes to the terminus in driving calving dynamics. For Glaciar San Rafael, regional climate warming has not yet resulted in the significant changes in glacier length seen in other calving glaciers in the region, emphasizing the complex dynamics between climate inputs, topographic constraints and glacier response in calving glacier systems.

  16. Sensitivity of Glacier Mass Balance Estimates to the Selection of WRF Cloud Microphysics Parameterization in the Indus River Watershed

    NASA Astrophysics Data System (ADS)

    Johnson, E. S.; Rupper, S.; Steenburgh, W. J.; Strong, C.; Kochanski, A.

    2017-12-01

    Climate model outputs are often used as inputs to glacier energy and mass balance models, which are essential glaciological tools for testing glacier sensitivity, providing mass balance estimates in regions with little glaciological data, and providing a means to model future changes. Climate model outputs, however, are sensitive to the choice of physical parameterizations, such as those for cloud microphysics, land-surface schemes, surface layer options, etc. Furthermore, glacier mass balance (MB) estimates that use these climate model outputs as inputs are likely sensitive to the specific parameterization schemes, but this sensitivity has not been carefully assessed. Here we evaluate the sensitivity of glacier MB estimates across the Indus Basin to the selection of cloud microphysics parameterizations in the Weather Research and Forecasting Model (WRF). Cloud microphysics parameterizations differ in how they specify the size distributions of hydrometeors, the rate of graupel and snow production, their fall speed assumptions, the rates at which they convert from one hydrometeor type to the other, etc. While glacier MB estimates are likely sensitive to other parameterizations in WRF, our preliminary results suggest that glacier MB is highly sensitive to the timing, frequency, and amount of snowfall, which is influenced by the cloud microphysics parameterization. To this end, the Indus Basin is an ideal study site, as it has both westerly (winter) and monsoonal (summer) precipitation influences, is a data-sparse region (so models are critical), and still has lingering questions as to glacier importance for local and regional resources. WRF is run at a 4 km grid scale using two commonly used parameterizations: the Thompson scheme and the Goddard scheme. On average, these parameterizations result in minimal differences in annual precipitation. However, localized regions exhibit differences in precipitation of up to 3 m w.e. a-1. The different schemes also impact the radiative budgets over the glacierized areas. Our results show that glacier MB estimates can differ by up to 45% depending on the chosen cloud microphysics scheme. These findings highlight the need to better account for uncertainties in meteorological inputs into glacier energy and mass balance models.

  17. Contrasts between estimates of baseflow help discern multiple sources of water contributing to rivers

    NASA Astrophysics Data System (ADS)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.

    2014-01-01

    This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. During the early stages of high-discharge events, the chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those based on chemical mass balance using Cl calculated from continuous electrical conductivity measurements. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of the annual discharge with a net baseflow contribution of 16% of total discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of discharge annually with a net baseflow contribution between 2001 and 2011 of 35% of total discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge and 26% of total discharge). These differences most probably reflect how the different techniques characterise baseflow. The local minimum and recursive digital filters probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow, floodplain storage, or interflow) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low-salinity water from the transient stores as discharge falls. The joint use of complementary techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.

  18. Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery

    NASA Astrophysics Data System (ADS)

    Maurer, Joshua M.; Rupper, Summer B.; Schaefer, Joerg M.

    2016-09-01

    Himalayan glaciers are important natural resources and climate indicators for densely populated regions in Asia. Remote sensing methods are vital for evaluating glacier response to changing climate over the vast and rugged Himalayan region, yet many platforms capable of glacier mass balance quantification are somewhat temporally limited due to typical glacier response times. We here rely on declassified spy satellite imagery and ASTER data to quantify surface lowering, ice volume change, and geodetic mass balance during 1974-2006 for glaciers in the eastern Himalayas, centered on the Bhutan-China border. The wide range of glacier types allows for the first mass balance comparison between clean, debris, and lake-terminating (calving) glaciers in the region. Measured glaciers show significant ice loss, with an estimated mean annual geodetic mass balance of -0.13 ± 0.06 m w.e. yr-1 (meters of water equivalent per year) for 10 clean-ice glaciers, -0.19 ± 0.11 m w.e. yr-1 for 5 debris-covered glaciers, -0.28 ± 0.10 m w.e. yr-1 for 6 calving glaciers, and -0.17 ± 0.05 m w.e. yr-1 for all glaciers combined. Contrasting hypsometries along with melt pond, ice cliff, and englacial conduit mechanisms result in statistically similar mass balance values for both clean-ice and debris-covered glacier groups. Calving glaciers comprise 18 % (66 km2) of the glacierized area yet have contributed 30 % (-0.7 km3) to the total ice volume loss, highlighting the growing relevance of proglacial lake formation and associated calving for the future ice mass budget of the Himalayas as the number and size of glacial lakes increase.

  19. A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps

    NASA Astrophysics Data System (ADS)

    Noël, B.; van de Berg, W. J.; Lhermitte, S.; Wouters, B.; Machguth, H.; Howat, I.; Citterio, M.; Moholdt, G.; Lenaerts, J. T. M.; van den Broeke, M. R.

    2017-03-01

    Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (+/-5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36+/-16 Gt-1, or ~14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming.

  20. Antarctic Ice-Sheet Mass Balance from Satellite Altimetry 1992 to 2001

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Cornejo, Helen; Giovinetto, Mario; Saba, Jack L.; Yi, Donghui

    2003-01-01

    A major uncertainty in understanding the causes of the current rate of sea level rise is the potential contributions from mass imbalances of the Greenland and Antarctic ice sheets. Estimates of the current mass balance of the Antarctic ice sheet are derived from surface- elevation changes obtained from 9 years of ERS - 1 & 2 radar altimeter data. Elevation time-series are created from altimeter crossovers among 90-day data periods on a 50 km grid to 81.5 S. The time series are fit with a multivariate linear/sinusoidal function to give the average rate of elevation change (dH/dt). On the major Rome-Filchner, Ross, and Amery ice shelves, the W d t are small or near zero. In contrast, the ice shelves of the Antarctic Peninsula and along the West Antarctic coast appear to be thinning significantly, with a 23 +/- 3 cm per year surface elevation decrease on the Larsen ice shelf and a 65 +/- 4 cm per year decrease on the Dotson ice shelf. On the grounded ice, significant elevation decreases are obtained over most of the drainage basins of the Pine Island and Thwaites glaciers in West Antarctica and inland of Law Dome in East Antarctica. Significant elevation increases are observed within about 200 km of the coast around much of the rest of the ice sheet. Farther inland, the changes are a mixed pattern of increases and decreases with increases of a few centimeters per year at the highest elevations of the East Antarctic plateau. The derived elevation changes are combined with estimates of the bedrock uplift from several models to provide maps of ice thickness change. The ice thickness changes enable estimates of the ice mass balances for the major drainage basins, the overall mass balance, and the current contribution of the ice sheet to global sea level change.

  1. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  2. Representativeness of regional and global mass-balance measurement networks (Invited)

    NASA Astrophysics Data System (ADS)

    Cogley, J. G.; Moholdt, G.; Gardner, A. S.

    2013-12-01

    We showed in a recent publication that regional estimates of glacier mass budgets, obtained by interpolation from in-situ measurements, were markedly more negative than corresponding estimates by satellite gravimetry (GRACE) and satellite altimetry (ICESat) during 2003-2009. Examining the ICESat data in more detail, we found that in-situ records tend to be located in areas where glaciers are thinning more rapidly than as observed in their regional surroundings. Because neither GRACE nor ICESat can provide information for times before 2002-2003, and may not operate without interruption in the future, we explore possible explanations of and remedies for the identified bias in the in-situ network. Sparse spatial sampling, coupled with previously undetected spatial variability of mass balance at scales between the 10-km in-situ scale and the 350-km gravimetric scale, appears to be the leading explanation. Satisfactory remedies are not obvious. Selecting glaciers for in-situ measurement that are more representative will yield only incremental improvements. There appears to be no alternative to mass-balance modelling as a versatile tool for estimation of regional mass balance. However the meteorological data for forcing the surface components of glacier models have coarser resolution than is desirable and are themselves uncertain, especially in the remote regions where much of the glacier ice is found. Measurements of frontal (dynamic) mass changes are still difficult, and modelling of these changes remains underdeveloped in spite of recent advances. Thus research on a broad scale is called for in order to meet the challenge of producing more accurate hindcasts and projections of glacier mass budgets with fine spatial and temporal resolution.

  3. Isotopic Estimation of Water Balance and Groundwater-Surface Water Interactions of Tropical Wetland Lakes in the Pantanal, Brazil

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, J.; Johnson, M. S.; Weiler, M.; Couto, E. G.

    2009-12-01

    The Pantanal is the largest and most pristine wetland of the world, yet hydrological research there is still in its infancy. In particular the water balance of the millions of lakes and ponds and their interaction with the groundwater and the rivers are not known. The aim of this study was to assess the hydrological behaviour between different water bodies in the dry season of the northern Pantanal wetland, Brazil, to provide a more general understanding of the hydrological functioning of tropical floodplain lakes and surface water-groundwater interactions of wetlands. In the field 6-9 water sample of seven different lakes were taken during 3 months and were analyzed for stable water isotopes and chloride. In addition meteorological data from a nearby station was used to estimate daily evaporation from the water surface. This information was then used to predict the hydrological dynamics to determine whether the lakes are evaporation-controlled or throughflow-dominated systems. A chloride mass balance served to evaluate whether Cl- enrichment took place due to evaporation only, or whether the system has significant inflow and/or outflow rates. The results of those methods showed that for all lakes the water budget in the dry season, output was controlled by strong evaporation while significant inflow rates were also apparent. Inflow rates and their specific concentrations in stable isotopes and chloride were successfully estimated using the simple mass balance model MINA TrêS. This approach enabled us to calculate the water balance for the lakes as well as providing an information on source water flowing into the lakes.

  4. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation

    NASA Astrophysics Data System (ADS)

    Ingalls, Miquela; Rowley, David B.; Currie, Brian; Colman, Albert S.

    2016-11-01

    Continental crust is buoyant compared with its oceanic counterpart and resists subduction into the mantle. When two continents collide, the mass balance for the continental crust is therefore assumed to be maintained. Here we use estimates of pre-collisional crustal thickness and convergence history derived from plate kinematic models to calculate the crustal mass balance in the India-Asia collisional system. Using the current best estimates for the timing of the diachronous onset of collision between India and Eurasia, we find that about 50% of the pre-collisional continental crustal mass cannot be accounted for in the crustal reservoir preserved at Earth's surface today--represented by the mass preserved in the thickened crust that makes up the Himalaya, Tibet and much of adjacent Asia, as well as southeast Asian tectonic escape and exported eroded sediments. This implies large-scale subduction of continental crust during the collision, with a mass equivalent to about 15% of the total oceanic crustal subduction flux since 56 million years ago. We suggest that similar contamination of the mantle by direct input of radiogenic continental crustal materials during past continent-continent collisions is reflected in some ocean crust and ocean island basalt geochemistry. The subduction of continental crust may therefore contribute significantly to the evolution of mantle geochemistry.

  5. 2011 Updates on the Long-term Glacier Monitoring Program in Denali National Park and Preserve

    NASA Astrophysics Data System (ADS)

    Burrows, R. A.; Adema, G. W.; Herreid, S. J.; Arendt, A. A.; Larsen, C. F.

    2011-12-01

    The area of Denali National Park and Preserve (DENA) dominated by ice is vast, with glaciers covering 3,780 km^2, approximately one sixth of the park's area. They are integral components of the region's hydrologic, ecologic, and geologic systems - with changes to the glacier systems driving the dependent ecosystems. The National Park Service (NPS) conducts long term monitoring of glaciers in Denali with a variety of methods at a range of spatial and temporal scales. This includes seasonal mass balance and surface movement data collection, annual searches for surging glaciers, and decadal areal extent mapping and volume change estimates of all glaciers in the park. If a glacier surge is detected, the event is documented via photography and surface measurements, when possible. In addition, more intensive ground-based GPS surveys of termini and ice surface elevations are conducted on ten study glaciers every 5-10 years, on a rotating basis. Many of the glaciers are located in designated Wilderness, hence the use of mechanized transport is reduced as much as possible. Monitoring objectives are accomplished by park staff and with cooperative agreements with other agencies and universities. Research to understand the context of the long term data is encouraged and supported as much as possible by the NPS and has recently yielded significant results. The year 2011 marks the 20th anniversary of glacier mass balance monitoring on Kahiltna and Traleika Glaciers, located on the south and north sides of Mt. McKinley respectively. A single "index" site near the ELA of each glacier provides an index of winter, summer, and net balances each year as well as flow velocities and changes in surface elevation. Long-term net balance trends are positive from 1991-2003, and negative since 2003, including the 2009-2010 balance year. The average flow velocity at the Kahiltna index site is 200 +/- 21 m/year with a neutral to slightly negative trend, while on Traleika average velocity is 67 +/- 29 m/year with a positive trend. Monitoring glacier behavior and trends using a variety of techniques provides insight to the complexity of glacier change and increases our ability to distinguish local effects from regional and global trends. Parkwide analysis of glacier extent change since the 1950's shows a consistent trend of retreat, except for glaciers that have surged. Longitudinal surface elevation profiling and comparative photography shows relative stability in larger glaciers, but dramatic long-term mass loss on small, relatively low elevation, valley glaciers characteristic of the eastern portion of DENA. These patterns of ice loss are somewhat unique to the Alaska Range and contrast with big losses of ice mass from large glaciers that border the Gulf of Alaska.

  6. Low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream

    NASA Astrophysics Data System (ADS)

    DeTemple, B.; Wilcock, P.

    2011-12-01

    In an alluvial, gravel-bed stream governed by a plane-bed bedload transport regime, the physicochemical properties, size distribution, and granular architecture of the sediment grains that constitute the streambed surface influence many hydrodynamic, geomorphic, chemical, and ecological processes. Consequently, the abilities to accurately characterize the morphology and model the morphodynamics of the streambed surface and its interaction with the bedload above and subsurface below are necessary for a more complete understanding of how sediment, flow, organisms, and biogeochemistry interact. We report on our progress in the bottom-up development of low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream. These balance laws are assembled in a four stage process. First, the stream sediment-water system is conceptually abstracted as a nested, multi-phase, multi-species, structured continuum. Second, the granular surface of an aggregate of sediment grains is mathematically defined. Third, an integral approach to mass balance, founded in the continuum theory of multiphase flow, is used to formulate primordial, differential, instantaneous, local, continuum, mass balance laws applicable at any material point within a gravel-bed stream. Fourth, area averaging and time-after-area averaging, employing planform, low-pass filtering expressed as correlation or convolution integrals and based on the spatial and temporal filtering techniques found in the fields of multiphase flow, porous media flow, and large eddy simulation of turbulent fluid flow, are applied to smooth the primordial equations while maximizing stratigraphic resolution and preserving the definitions of relevant morphodynamic surfaces. Our approach unifies, corrects, contextualizes, and generalizes prior efforts at developing stream sediment continuity equations, including the top-down derivations of the surface layer (or "active layer") approach of Hirano [1971a,b] and probabilistic approach of Parker et al. [2000], as well as the bottom-up, low-pass filtered continuum approach of Coleman & Nikora [2009] which employed volume and volume-after-time averaging. It accommodates partial transport (e.g., Wilcock & McArdell [1997], Wilcock [1997a,b]). Additionally, it provides: (1) precise definitions of the geometry and kinematics of sediment in a gravel-bed stream required to collect and analyze the high resolution spatial and temporal datasets that are becoming ever more present in both laboratory and field investigations, (2) a mathematical framework for the use of tracer grains in gravel-bed streams, including the fate of streambed-emplaced tracers as well as the dispersion of tracers in the bedload, (3) spatial and temporal averaging uncompromised by the Reynolds rules necessary to assess the nature of scale separation, and (4) a kinematic foundation for hybrid Langrangian-Eulerian models of sediment morphodynamics.

  7. Perceptual Aspects of Postural Control: Does Pure Proprioceptive Training Exist?

    PubMed

    Nagy, Edit; Posa, Gabriella; Finta, Regina; Szilagyi, Levente; Sziver, Edit

    2018-06-01

    As proprioceptive training is popular for injury prevention and rehabilitation, we evaluated its effect on balance parameters and assessed the frequency spectra of postural sway linked with the various sensory channels. We recorded the Center of Mass displacement of 30 healthy student research participants (mean age = 21.63; SD = 1.29 years) with a single force plate under eyes open (EO) and eyes closed (EC) positions while standing on either a firm or foam surface, both before and after an 8-week balance training intervention on a foam surface with EC. We subjected the data to frequency power spectral analysis to find any differences between the frequency bands, linked with various sensory data. On the foam surface in the EC condition, the sway path decreased significantly after proprioceptive training, but, on the firm surface in the EC condition, there was no change. On the foam surface in the EC condition, there was also a significant decrease in frequency power postproprioceptive training in the medium-to-low frequency band. While our data indicate better posttraining balance skills, improvements were task specific to the trained condition, with no transfer of the acquired skill, even to a similar, easier condition. As training improved the middle-low frequency band, linked with vestibular signals, this intervention is better described as balance than "proprioceptive" training.

  8. Electromyographic activity and 6RM strength in bench press on stable and unstable surfaces.

    PubMed

    Saeterbakken, Atle H; Fimland, Marius S

    2013-04-01

    The purpose of the study was to compare 6-repetition maximum (6RM) loads and muscle activity in bench press on 3 surfaces, namely, stable bench, balance cushion, and Swiss ball. Sixteen healthy, resistance-trained men (age 22.5 ± 2.0 years, stature 1.82 ± 6.6 m, and body mass 82.0 ± 7.8 kg) volunteered for 3 habituation/strength testing sessions and 1 experimental session. In randomized order on the 3 surfaces, 6RM strength and electromyographic activity of pectoralis major, deltoid anterior, biceps brachii, triceps brachii, rectus abdominis, oblique external and erector spinae were assessed. Relative to stable bench, the 6RM strength was approximately 93% for balance cushion (p ≤ 0.001) and approximately 92% for Swiss ball (p = 0.008); the pectoralis major electromyographic (EMG) activity was approximately 90% using the balance cushion (p = 0.080) and approximately 81% using Swiss ball (p = 0.006); the triceps EMG was approximately 79% using the balance cushion (p = 0.028) and approximately 69% using the Swiss ball (p = 0.002). Relative to balance cushion, the EMG activity in pectoralis, triceps, and erector spinae using Swiss ball was approximately 89% (p = 0.016), approximately 88% (p = 0.014) and approximately 80% (p = 0.020), respectively. In rectus abdominis, the EMG activity relative to Swiss ball was approximately 69% using stable bench (p = 0.042) and approximately 65% using the balance cushion (p = 0.046). Similar EMG activities between stable and unstable surfaces were observed for deltoid anterior, biceps brachii, and oblique external. In conclusion, stable bench press had greater 6RM strength and triceps and pectoralis EMG activity compared with the unstable surfaces. These findings have implications for athletic training and rehabilitation, because they demonstrate an inferior effect of unstable surfaces on muscle activation of prime movers and strength in bench press. If an unstable surface in bench press is desirable, a balance cushion should be chosen instead of a Swiss ball.

  9. Summary of the SeaRISE Project's Experiments on Modeled Ice-Sheet Contributions to Future Sea Level: Linearities and Non-linearities

    NASA Astrophysics Data System (ADS)

    Bindschadler, Robert

    2013-04-01

    The SeaRISE (Sea-level Response to Ice Sheet Evolution) project achieved ice-sheet model ensemble responses to a variety of prescribed changes to surface mass balance, basal sliding and ocean boundary melting. Greenland ice sheet models are more sensitive than Antarctic ice sheet models to likely atmospheric changes in surface mass balance, while Antarctic models are most sensitive to basal melting of its ice shelves. An experiment approximating the IPCC's RCP8.5 scenario produces first century contributions to sea level of 22.3 and 7.3 cm from Greenland and Antarctica, respectively, with a range among models of 62 and 17 cm, respectively. By 200 years, these projections increase to 53.2 and 23.4 cm, respectively, with ranges of 79 and 57 cm. The considerable range among models was not only in the magnitude of ice lost, but also in the spatial pattern of response to identical forcing. Despite this variation, the response of any single model to a large range in the forcing intensity was remarkably linear in most cases. Additionally, the results of sensitivity experiments to single types of forcing (i.e., only one of the surface mass balance, or basal sliding, or ocean boundary melting) could be summed to accurately predict any model's result for an experiment when multiple forcings were applied simultaneously. This suggests a limited amount of feedback through the ice sheet's internal dynamics between these types of forcing over the time scale of a few centuries (SeaRISE experiments lasted 500 years).

  10. Novel safety floors do not influence early compensatory balance reactions in older adults.

    PubMed

    Wright, Alexander D; Heckman, George A; McIlroy, William E; Laing, Andrew C

    2014-01-01

    Novel safety flooring systems are a promising approach for reducing fall-related injuries in seniors, as they have been demonstrated to substantially reduce impact severity during falls, while minimally impairing balance control in community-dwelling older women. This pilot study aimed to characterize the potential effects of flooring conditions on dynamic balance control in retirement home-dwellers with more limited mobility. A tether-release paradigm was used to simulate a trip-type perturbation in 15 seniors across five flooring surfaces (three novel safety floors and one carpet compared to institutional-grade resilient rolled-sheeting). Kinetic and kinematic data tracked the displacement profiles of the underfoot centre-of-pressure and whole-body centre-of-mass, which were used to characterize compensatory balance reactions. Difference tests (ANOVA) found that the onset of the compensatory balance reaction was not associated with floor condition, nor were the timing and magnitude of peak centre-of-pressure excursion (minimum margin of safety) and velocity. Accordingly, the minimum margin of safety of the centre-of-mass was not significantly different across floors. Equivalence tests supported these findings. This study provides evidence that the carpet and novel safety floors tested do not negatively influence characteristics of initial dynamic balance responses following a lean-and-release perturbation compared to an institutional-grade resilient rolled-sheeting surface. In combination with reports of substantial force attenuative properties during fall-related impacts, these findings support the promise of novel safety floors as a biomechanically effective strategy for reducing fall-related injuries. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  11. Mass balances of dissolved gases at river network scales across biomes.

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Stewart, R. J.; Sheehan, K.

    2016-12-01

    Estimating aquatic metabolism and gas fluxes at broad spatial scales is needed to evaluate the role of aquatic ecosystems in continental carbon cycles. We applied a river network model, FrAMES, to quantify the mass balances of dissolved oxygen at river network scales across five river networks in different biomes. The model accounts for hydrology; spatially varying re-aeration rates due to flow, slope, and water temperature; gas inputs via terrestrial runoff; variation in light due to canopy cover and water depth; benthic gross primary production; and benthic respiration. The model was parameterized using existing groundwater information and empirical relationships of GPP, R, and re-aeration, and was tested using dissolved oxygen patterns measured throughout river networks. We found that during summers, internal aquatic production dominates the river network mass balance of Kings Cr., Konza Prairie, KS (16.3 km2), whereas terrestrial inputs and aeration dominate the network mass balance at Coweeta Cr., Coweeta Forest, NC (15.7 km2). At network scales, both river networks are net heterotrophic, with Coweeta more so than Kings Cr. (P:R 0.6 vs. 0.7, respectively). The river network of Kings Creek showed higher network-scale GPP and R compared to Coweeta, despite having a lower drainage density because streams are on average wider so cumulative benthic surface areas are similar. Our findings suggest that the role of aquatic systems in watershed carbon balances will depend on interactions of drainage density, channel hydraulics, terrestrial vegetation, and biological activity.

  12. Transient bright "halos" on the South Polar Residual Cap of Mars: Implications for mass-balance

    NASA Astrophysics Data System (ADS)

    Becerra, Patricio; Byrne, Shane; Brown, Adrian J.

    2015-05-01

    Spacecraft imaging of Mars' south polar region during mid-southern summer of Mars year 28 (2007) observed bright halo-like features surrounding many of the pits, scarps and slopes of the heavily eroded carbon dioxide ice of the South Polar Residual Cap (SPRC). These features had not been observed before, and have not been observed since. We report on the results of an observational study of these halos, and spectral modeling of the SPRC surface at the time of their appearance. Image analysis was performed using data from MRO's Context Camera (CTX), and High Resolution Imaging Science Experiment (HiRISE), as well as images from Mars Global Surveyor's (MGS) Mars Orbiter Camera (MOC). Data from MRO's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) were used for the spectral analysis of the SPRC ice at the time of the halos. These data were compared with a Hapke reflectance model of the surface to constrain their formation mechanism. We find that the unique appearance of the halos is intimately linked to a near-perihelion global dust storm that occurred shortly before they were observed. The combination of vigorous summertime sublimation of carbon dioxide ice from sloped surfaces on the SPRC and simultaneous settling of dust from the global storm, resulted in a sublimation wind that deflected settling dust particles away from the edges of these slopes, keeping these areas relatively free of dust compared to the rest of the cap. The fact that the halos were not exhumed in subsequent years indicates a positive mass-balance for flat portions of the SPRC in those years. A net accumulation mass-balance on flat surfaces of the SPRC is required to preserve the cap, as it is constantly being eroded by the expansion of the pits and scarps that populate its surface.

  13. The Thermal Circulation on Kilimanjaro, Tanzania and its Relevance to Summit Ice-Field Mass Balance.

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.; Duane, W. J.

    2008-12-01

    It is well known that mountains create their own climates. On Kilimanjaro, which is the tallest free standing mountain in Africa, the intense tropical sunlight generates a strong diurnal mountain circulation which transports moisture up the mountain during the day and back downslope at night. This process has strong consequences for development of cloud cover, precipitation, and hence ice-field mass balance on the summit crater. We compare surface climate (temperature, moisture and wind) measured at ten elevations on Kilimanjaro, with equivalent observations in the free atmosphere from NCEP/NCAR reanalysis data for September 2004 to July 2008. There are no simple temporal trends over this period in either surface of free- air data. Correlations between daily surface and free air temperatures are greatest below 2500 metres, meaning that synoptic (inter-diurnal) variability is the major control here. In contrast, temperatures and moisture on the higher slopes above treeline (about 3000 m) are strongly decoupled from the free atmosphere, showing intense heating/cooling by day/night (more than 5°C). The sparsely vegetated upper slopes are the focus for the most intense heating and upslope winds develop by mid-morning. The forest on the lower slopes acts as a moisture source, with large vapour pressure excesses reported (5 mb) which move upslope reaching the crater in the afternoon before subsiding downslope at night. The montane thermal circulation is more effective at upslope moisture transport during January as compared with July. Fluctuations in upper air flow strength and direction (at 500 mb) surprisingly have limited influence on the strength of surface heating and upslope moisture advection. This finding suggests that local changes in surface characteristics such as deforestation could have a strong influence on the mountain climate and the summit ice fields on Kilimanjaro, and make mass-balance somewhat divorced from larger-scale advective changes associated with global warming.

  14. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  15. Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study

    NASA Astrophysics Data System (ADS)

    Rogge, Wolfgang F.; Medeiros, Patricia M.; Simoneit, Bernd R. T.

    Fugitive dust from the erosion of arid and fallow land, after harvest and during agricultural activities, can at times be the dominant source of airborne particulate matter. In order to assess the source contributions to a given site, chemical mass balance (CMB) modeling is typically used together with source-specific profiles for organic and inorganic constituents. Yet, the mass balance closure can be achieved only if emission profiles for all major sources are considered. While a higher degree of mass balance closure has been achieved by adding individual organic marker compounds to elements, ions, EC, and organic carbon (OC), major source profiles for fugitive dust are not available. Consequently, neither the exposure of the population living near fugitive dust sources from farm land, nor its chemical composition is known. Surface soils from crop fields are enriched in plant detritus from both above and below ground plant parts; therefore, surface soil dust contains natural organic compounds from the crops and soil microbiota. Here, surface soils derived from fields growing cotton, safflower, tomato, almonds, and grapes have been analyzed for more than 180 organic compounds, including natural lipids, saccharides, pesticides, herbicides, and polycyclic aromatic hydrocarbon (PAH). The major result of this study is that selective biogenically derived organic compounds are suitable markers of fugitive dust from major agricultural crop fields in the San Joaquin Valley. Aliphatic homologs exhibit the typical biogenic signatures of epicuticular plant waxes and are therefore indicative of fugitive dust emissions and mechanical abrasion of wax protrusions from leaf surfaces. Saccharides, among which α- and β-glucose, sucrose, and mycose show the highest concentrations in surface soils, have been proposed to be generic markers for fugitive dust from cultivated land. Similarly, steroids are strongly indicative of fugitive dust. Yet, triterpenoids reveal the most pronounced distribution differences for all types of cultivated soils examined here and are by themselves powerful markers for fugitive dust that allow differentiation between the types of crops cultivated. PAHs are also found in some surface soils, as well as persistent pesticides, e.g., DDE, Fosfall, and others.

  16. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model

    DOE PAGES

    Lenaerts, Jan T. M.; Vizcaino, Miren; Fyke, Jeremy Garmeson; ...

    2016-02-01

    Here, we present climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS) as simulated by the global, coupled ocean–atmosphere–land Community Earth System Model (CESM) with a horizontal resolution of ~1° in the past, present and future (1850–2100). CESM correctly simulates present-day Antarctic sea ice extent, large-scale atmospheric circulation and near-surface climate, but fails to simulate the recent expansion of Antarctic sea ice. The present-day Antarctic ice sheet SMB equals 2280 ± 131Gtyear –1, which concurs with existing independent estimates of AIS SMB. When forced by two CMIP5 climate change scenarios (high mitigation scenario RCP2.6 and high-emission scenariomore » RCP8.5), CESM projects an increase of Antarctic ice sheet SMB of about 70 Gtyear –1 per degree warming. This increase is driven by enhanced snowfall, which is partially counteracted by more surface melt and runoff along the ice sheet’s edges. This intensifying hydrological cycle is predominantly driven by atmospheric warming, which increases (1) the moisture-carrying capacity of the atmosphere, (2) oceanic source region evaporation, and (3) summer AIS cloud liquid water content.« less

  17. Clouds enhance Greenland ice sheet mass loss

    NASA Astrophysics Data System (ADS)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  18. Effect of pressure on the sorption correction to stainless steel, platinum/iridium and silicon mass artefacts

    NASA Astrophysics Data System (ADS)

    Berry, James; Davidson, Stuart

    2014-04-01

    This paper reports work undertaken to evaluate the change in mass of platinum/iridium, stainless steel and silicon artefacts measured at atmospheric pressure and in vacuum at a range of pressures typical of those used in vacuum mass comparators and watt balances and for x-ray crystal density (XRCD) measurements. The sets of platinum/iridium, stainless steel and silicon artefacts used in this work have different surface areas and the effect of transferring them between atmospheric pressure and different levels of vacuum was evaluated by measuring the relative changes in mass between them. Reversible variations in the mass differences between the artefacts were found over the pressure range from 0.1 Pa to 100 000 Pa (atmospheric pressure). At lower pressures (0.001 Pa to 0.1 Pa) the mass differences between all the artefacts were stable and no evidence for hysteresis over this range was found when going down in pressure compared with increasing pressure. Therefore consistent results between watt balance, XRCD measurements and vacuum mass measurements can be realized providing the measurements are performed within this pressure range.

  19. Volatile organic compounds in storm water from a parking lot

    USGS Publications Warehouse

    Lopes, T.J.; Fallon, J.D.; Rutherford, D.W.; Hiatt, M.H.

    2000-01-01

    A mass balance approach was used to determine the most important nonpoint source of volatile organic compounds (VOCs) in storm water from an asphalt parking lot without obvious point sources (e.g., gasoline stations). The parking lot surface and atmosphere are important nonpoint sources of VOCs, with each being important for different VOCs. The atmosphere is an important source of soluble, oxygenated VOCs (e.g., acetone), and the parking lot surface is an important source for the more hydrophobic VOCs (e.g., benzene). VOCs on the parking lot surface appear to be concentrated in oil and grease and organic material in urban particles (e.g., vehicle soot). Except in the case of spills, asphalt does not appear to be an important source of VOCs. The uptake isotherm of gaseous methyl tert-butyl ether on urban particles indicates a mechanism for dry deposition of VOCs from the atmosphere. This study demonstrated that a mass balance approach is a useful means of understanding non-point-source pollution, even for compounds such as VOCs, which are difficult to sample.

  20. Changes in ice dynamics along the northern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Seehaus, Thorsten; Marinsek, Sebastian; Cook, Alison; Van Wessem, Jan-Melchior; Braun, Matthias

    2017-04-01

    The climatic conditions along the Antarctic Peninsula have undergone considerable changes during the last 50 years. A period of pronounced air temperature rise, increasing ocean temperatures as well as changes in the precipitation pattern have been reported by various authors. Consequently, the glacial systems showed changes including widespread retreat, surface lowering as well as variations in flow speeds. During the last decades numerous ice shelves along the Antarctic Peninsula retreated, started to break-up or disintegrated completely. The loss of the buttressing effect caused tributary glaciers to accelerate with increasing ice discharge along the Antarctic Peninsula. Quantification of the mass changes is still subject to considerable errors although numbers derived from the different methods are converging. The aim is to study the reaction of glaciers at the northern Antarctic Peninsula to the changing climatic conditions and the readjustments of tributary glaciers to ice shelf disintegration, as well as to better quantify the ice mass loss and its temporal changes. We analysed time series of various satellite sensors (ERS-1/2 SAR, ENVISAT ASAR, RADARSAT-1, ALOS PALSAR, TerraSAR-X/TanDEM-X, ASTER, Landsat) to detect changes in ice dynamics of 74 glacier basins along the northern Antarctic Peninsula (<65°). Intensity feature tracking techniques were applied on data stacks from different SAR satellites over the last 20 years to infer temporal trends in glacier surface velocities. In combination with ice thickness reconstructions and modeled climatic mass balance fields regional imbalances were calculated. Variations in ice front position were mapped based on optical and SAR satellite data sets. Along the west coast of the northern Antarctic Peninsula an increase in flow speeds by 40% between 1992 and 2014 was observed, whereas glaciers on the east side (north of former Prince-Gustav Ice Shelf) showed a strong deceleration. Nearly all former ice shelf tributaries showed similar reactions to ice shelf disintegration, with a significant acceleration and frontal retreat after ice shelf break-up and a subsequent deceleration and front stabilization. In total an ice discharge of 17.93±6.22 Gt/a was estimated for the study region in the period 2010-2014. Regional mass balance estimates indicate nearly balanced mass budgets in the period 1992-1996 and positive imbalances in more recent years (2010-2014), dominated by the clearly positive mass balances along the west coast due to high climatic mass balances. The detailed multi-mission time series analysis of glacier changes supports the interpretation of the ongoing processes in this region and allows multi temporal imbalance estimates.

  1. Orion Flight Performance Design Trades

    NASA Technical Reports Server (NTRS)

    Jackson, Mark C.; Straube, Timothy

    2010-01-01

    A significant portion of the Orion pre-PDR design effort has focused on balancing mass with performance. High level performance metrics include abort success rates, lunar surface coverage, landing accuracy and touchdown loads. These metrics may be converted to parameters that affect mass, such as ballast for stabilizing the abort vehicle, propellant to achieve increased lunar coverage or extended missions, or ballast to increase the lift-to-drag ratio to improve entry and landing performance. The Orion Flight Dynamics team was tasked to perform analyses to evaluate many of these trades. These analyses not only provide insight into the physics of each particular trade but, in aggregate, they illustrate the processes used by Orion to balance performance and mass margins, and thereby make design decisions. Lessons learned can be gleaned from a review of these studies which will be useful to other spacecraft system designers. These lessons fall into several categories, including: appropriate application of Monte Carlo analysis in design trades, managing margin in a highly mass-constrained environment, and the use of requirements to balance margin between subsystems and components. This paper provides a review of some of the trades and analyses conducted by the Flight Dynamics team, as well as systems engineering lessons learned.

  2. Deriving mass balance and calving variations from reanalysis data and sparse observations, Glaciar San Rafael, northern Patagonia, 1950-2005

    NASA Astrophysics Data System (ADS)

    Koppes, M.; Conway, H.; Rasmussen, L. A.; Chernos, M.

    2011-04-01

    Mass balance variations of Glaciar San Rafael, the most equatorial tidewater glacier in the North Patagonian Icefield, are reconstructed over the period 1950-2005 using NCEP-NCAR reanalysis climate data together with sparse, local historical observations of air temperature, precipitation, accumulation, ablation, thinning, calving, and glacier retreat. The combined observations over the past 50 yr indicate that Glaciar San Rafael has thinned and retreated since 1959, with a total mass loss of ~22 km3 of ice equivalent. Over that period, except for a short period of cooling from 1998-2003, the climate has become progressively warmer and drier, which has resulted primarily in pervasive thinning of the glacier surface and a decrease in calving rates, with only minor acceleration in retreat of the terminus. A comparison of calving fluxes derived from the mass balance variations and from theoretical calving and sliding laws suggest that calving rates are inversely correlated with retreat rates, and that terminus geometry is more important than changes in balance fluxes to the terminus in driving calving dynamics. For Glaciar San Rafael, regional climate warming has not yet resulted in the significant changes in glacier length seen in other calving glaciers in the region, emphasizing the complex dynamics between climate inputs, topographic constraints and glacier response in calving glacier systems.

  3. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    NASA Astrophysics Data System (ADS)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  4. Estimation of air-water gas exchange coefficient in a shallow lagoon based on 222Rn mass balance.

    PubMed

    Cockenpot, S; Claude, C; Radakovitch, O

    2015-05-01

    The radon-222 mass balance is now commonly used to quantify water fluxes due to Submarine Groundwater Discharge (SGD) in coastal areas. One of the main loss terms of this mass balance, the radon evasion to the atmosphere, is based on empirical equations. This term is generally estimated using one among the many empirical equations describing the gas transfer velocity as a function of wind speed that have been proposed in the literature. These equations were, however, mainly obtained from areas of deep water and may be less appropriate for shallow areas. Here, we calculate the radon mass balance for a windy shallow coastal lagoon (mean depth of 6m and surface area of 1.55*10(8) m(2)) and use these data to estimate the radon loss to the atmosphere and the corresponding gas transfer velocity. We present new equations, adapted to our shallow water body, to express the gas transfer velocity as a function of wind speed at 10 m height (wind range from 2 to 12.5 m/s). When compared with those from the literature, these equations fit particularly well with the one of Kremer et al. (2003). Finally, we emphasize that some gas transfer exchange may always occur, even for conditions without wind. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Gaussian Process Model for Antarctic Surface Mass Balance and Ice Core Site Selection

    NASA Astrophysics Data System (ADS)

    White, P. A.; Reese, S.; Christensen, W. F.; Rupper, S.

    2017-12-01

    Surface mass balance (SMB) is an important factor in the estimation of sea level change, and data are collected to estimate models for prediction of SMB on the Antarctic ice sheet. Using Favier et al.'s (2013) quality-controlled aggregate data set of SMB field measurements, a fully Bayesian spatial model is posed to estimate Antarctic SMB and propose new field measurement locations. Utilizing Nearest-Neighbor Gaussian process (NNGP) models, SMB is estimated over the Antarctic ice sheet. An Antarctic SMB map is rendered using this model and is compared with previous estimates. A prediction uncertainty map is created to identify regions of high SMB uncertainty. The model estimates net SMB to be 2173 Gton yr-1 with 95% credible interval (2021,2331) Gton yr-1. On average, these results suggest lower Antarctic SMB and higher uncertainty than previously purported [Vaughan et al. (1999); Van de Berg et al. (2006); Arthern, Winebrenner and Vaughan (2006); Bromwich et al. (2004); Lenaerts et al. (2012)], even though this model utilizes significantly more observations than previous models. Using the Gaussian process' uncertainty and model parameters, we propose 15 new measurement locations for field study utilizing a maximin space-filling, error-minimizing design; these potential measurements are identied to minimize future estimation uncertainty. Using currently accepted Antarctic mass balance estimates and our SMB estimate, we estimate net mass loss [Shepherd et al. (2012); Jacob et al. (2012)]. Furthermore, we discuss modeling details for both space-time data and combining field measurement data with output from mathematical models using the NNGP framework.

  6. Antarctic Ice Mass Balance from GRACE

    NASA Astrophysics Data System (ADS)

    Boening, C.; Firing, Y. L.; Wiese, D. N.; Watkins, M. M.; Schlegel, N.; Larour, E. Y.

    2014-12-01

    The Antarctic ice mass balance and rates of change of ice mass over the past decade are analyzed based on observations from the Gravity Recovery and Climate Experiment (GRACE) satellites, in the form of JPL RL05M mascon solutions. Surface mass balance (SMB) fluxes from ERA-Interim and other atmospheric reanalyses successfully account for the seasonal GRACE-measured mass variability, and explain 70-80% of the continent-wide mass variance at interannual time scales. Trends in the residual (GRACE mass - SMB accumulation) mass time series in different Antarctic drainage basins are consistent with time-mean ice discharge rates based on radar-derived ice velocities and thicknesses. GRACE also resolves accelerations in regional ice mass change rates, including increasing rates of mass gain in East Antarctica and accelerating ice mass loss in West Antarctica. The observed East Antarctic mass gain is only partially explained by anomalously large SMB events in the second half of the record, potentially implying that ice discharge rates are also decreasing in this region. Most of the increasing mass loss rate in West Antarctica, meanwhile, is explained by decreasing SMB (principally precipitation) over this time period, part of the characteristic decadal variability in regional SMB. The residual acceleration of 2+/-1 Gt/yr, which is concentrated in the Amundsen Sea Embayment (ASE) basins, represents the contribution from increasing ice discharge rates. An Ice Sheet System Model (ISSM) run with constant ocean forcing and stationary grounding lines both underpredicts the largest trends in the ASE and produces negligible acceleration or interannual variability in discharge, highlighting the potential importance of ocean forcing for setting ice discharge rates at interannual to decadal time scales.

  7. Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016

    NASA Astrophysics Data System (ADS)

    Rott, Helmut; Abdel Jaber, Wael; Wuite, Jan; Scheiblauer, Stefan; Floricioiu, Dana; Melchior van Wessem, Jan; Nagler, Thomas; Miranda, Nuno; van den Broeke, Michiel R.

    2018-04-01

    We analysed volume change and mass balance of outlet glaciers on the northern Antarctic Peninsula over the periods 2011 to 2013 and 2013 to 2016, using high-resolution topographic data from the bistatic interferometric radar satellite mission TanDEM-X. Complementary to the geodetic method that applies DEM differencing, we computed the net mass balance of the main outlet glaciers using the mass budget method, accounting for the difference between the surface mass balance (SMB) and the discharge of ice into an ocean or ice shelf. The SMB values are based on output of the regional climate model RACMO version 2.3p2. To study glacier flow and retrieve ice discharge we generated time series of ice velocity from data from different satellite radar sensors, with radar images of the satellites TerraSAR-X and TanDEM-X as the main source. The study area comprises tributaries to the Larsen A, Larsen Inlet and Prince Gustav Channel embayments (region A), the glaciers calving into the Larsen B embayment (region B) and the glaciers draining into the remnant part of the Larsen B ice shelf in Scar Inlet (region C). The glaciers of region A, where the buttressing ice shelf disintegrated in 1995, and of region B (ice shelf break-up in 2002) show continuing losses in ice mass, with significant reduction of losses after 2013. The mass balance numbers for the grounded glacier area of region A are -3.98 ± 0.33 Gt a-1 from 2011 to 2013 and -2.38 ± 0.18 Gt a-1 from 2013 to 2016. The corresponding numbers for region B are -5.75 ± 0.45 and -2.32 ± 0.25 Gt a-1. The mass balance in region C during the two periods was slightly negative, at -0.54 ± 0.38 Gt a-1 and -0.58 ± 0.25 Gt a-1. The main share in the overall mass losses of the region was contributed by two glaciers: Drygalski Glacier contributing 61 % to the mass deficit of region A, and Hektoria and Green glaciers accounting for 67 % to the mass deficit of region B. Hektoria and Green glaciers accelerated significantly in 2010-2011, triggering elevation losses up to 19.5 m a-1 on the lower terminus during the period 2011 to 2013 and resulting in a mass balance of -3.88 Gt a-1. Slowdown of calving velocities and reduced calving fluxes in 2013 to 2016 coincided with years in which ice mélange and sea ice cover persisted in proglacial fjords and bays during summer.

  8. Environmental control and life support system selection for the first Lunar outpost habitat

    NASA Technical Reports Server (NTRS)

    Adams, Alan

    1993-01-01

    The planning for and feasibility study of an early human return mission to the lunar surface has been undertaken. The First Lunar Outpost (FLO) Mission philosophy is to use existing or near-term technology to achieve a human landing on the lunar surface in the year 2000. To support the crew the lunar habitat for the FLO mission incorporates an environmental control/life support system (ECLSS) design which meets the mission requirements and balances fixed mass and consumable mass. This tradeoff becomes one of regenerable life support systems versus open-loop systems.

  9. A new skin friction balance and selected measurements

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.

    1992-01-01

    A new skin friction balance with moving belt has been developed for measurement of the surface shear stress component in the direction of belt motion. The device is described in this paper with typical measurement results. This instrument is symmetric in design with small moving mass negligible internal friction. It is 3.8 cm high, 3.8 cm long and 2.1 cm wide, with the sensing surface 0.7 cm wide and 1.5 cm long, and it can be made in various sizes. The unique design of this instrument has reduced some of the errors associated with conventional floating-element balances. The instrument can use various sensing systems and the output signal is a linear function of the wall shear stress. Measurements show good agreement with data obtained by the floating element balances and flat plate prediction techniques. Dynamic measurements have been made in a limited range. The overall uncertainty of measurement is estimated to be +/- 2 percent.

  10. Ice sheet radar altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The surface topography of the Greenland and Antarctic ice sheets between 72 degrees north and south was mapped using radar altimetry data from the U.S. Navy GEOSAT. The glaciological objectives of this activity were to study the dynamics of the ice flow, changes in the position of floating ice-shelf fronts, and ultimately to measure temporal changes in ice surface elevation indicative of ice sheet mass balance.

  11. Nitrate retention in a sand plains stream and the importance of groundwater discharge

    Treesearch

    Robert S. Stelzer; Damion R. Drover; Susan L. Eggert; Maureen A. Muldoon

    2011-01-01

    We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and ground-water fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and...

  12. Surface elevation and mass changes of all Swiss glaciers 1980-2010

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Huss, M.; Hoelzle, M.

    2015-03-01

    Since the mid-1980s, glaciers in the European Alps have shown widespread and accelerating mass losses. This article presents glacier-specific changes in surface elevation, volume and mass balance for all glaciers in the Swiss Alps from 1980 to 2010. Together with glacier outlines from the 1973 inventory, the DHM25 Level 1 digital elevation models (DEMs) for which the source data over glacierized areas were acquired from 1961 to 1991 are compared to the swissALTI3D DEMs from 2008 to 2011 combined with the new Swiss Glacier Inventory SGI2010. Due to the significant differences in acquisition dates of the source data used, mass changes are temporally homogenized to directly compare individual glaciers or glacierized catchments. Along with an in-depth accuracy assessment, results are validated against volume changes from independent photogrammetrically derived DEMs of single glaciers. Observed volume changes are largest between 2700 and 2800 m a.s.l. and remarkable even above 3500 m a.s.l. The mean geodetic mass balance is -0.62 ± 0.07 m w.e. yr-1 for the entire Swiss Alps over the reference period 1980-2010. For the main hydrological catchments, it ranges from -0.52 to -1.07 m w.e. yr-1. The overall volume loss calculated from the DEM differencing is -22.51 ± 1.76 km3.

  13. Surface elevation and mass changes of all Swiss glaciers 1980-2010

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Huss, M.; Hoelzle, M.

    2014-08-01

    Since the mid-1980s, glaciers in the European Alps have shown widespread and accelerating mass losses. This article presents glacier-specific changes in surface elevation, volume and mass balance for all glaciers in the Swiss Alps from 1980 to 2010. Together with glacier outlines from the 1973 inventory, the DHM25 Level 1 Digital Elevation Models (DEMs) for which the source data over glacierized areas was acquired from 1961 to 1991 are compared to the swissALTI3D DEMs from 2008-2011 combined with the new Swiss Glacier Inventory SGI2010. Due to the significant differences in acquisition date of the source data used, resulting mass changes are temporally homogenized to directly compare individual glaciers or glacierized catchments. Along with an in-depth accuracy assessment, results are validated against volume changes from independent photogrammetrically derived DEMs of single glaciers. Observed volume changes are largest between 2700-2800 m a.s.l. and remarkable even above 3500 m a.s.l. The mean geodetic mass balance is -0.62 ± 0.03 m w.e. yr-1 for the entire Swiss Alps over the reference period 1980-2010. For the main hydrological catchments, it ranges from -0.52 to -1.07 m w.e. yr-1. The overall volume loss calculated from the DEM differencing is -22.51 ± 0.97 km3.

  14. A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps.

    PubMed

    Noël, B; van de Berg, W J; Lhermitte, S; Wouters, B; Machguth, H; Howat, I; Citterio, M; Moholdt, G; Lenaerts, J T M; van den Broeke, M R

    2017-03-31

    Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (±5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36±16 Gt -1 , or ∼14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming.

  15. A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps

    PubMed Central

    Noël, B.; van de Berg, W. J; Lhermitte, S.; Wouters, B.; Machguth, H.; Howat, I.; Citterio, M.; Moholdt, G.; Lenaerts, J. T. M.; van den Broeke, M. R.

    2017-01-01

    Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (±5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36±16 Gt−1, or ∼14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming. PMID:28361871

  16. Greenland Ice Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Reeh, N.

    1984-01-01

    Mass balance equation for glaciers; areal distribution and ice volumes; estimates of actual mass balance; loss by calving of icebergs; hydrological budget for Greenland; and temporal variations of Greenland mass balance are examined.

  17. Quantifying Uncertainty in the Greenland Surface Mass Balance Elevation Feedback

    NASA Astrophysics Data System (ADS)

    Edwards, T.

    2015-12-01

    As the shape of the Greenland ice sheet responds to changes in surface mass balance (SMB) and dynamics, it affects the surface mass balance through the atmospheric lapse rate and by altering atmospheric circulation patterns. Positive degree day models include simplified representations of this feedback, but it is difficult to simulate with state-of-the-art models because it requires coupling of regional climate models with dynamical ice sheet models, which is technically challenging. This difficulty, along with the high computational expense of regional climate models, also drastically limits opportunities for exploring the impact of modelling uncertainties on sea level projections. We present a parameterisation of the SMB-elevation feedback in the MAR regional climate model that provides a far easier and quicker estimate than atmosphere-ice sheet model coupling, which can be used with any ice sheet model. This allows us to use ensembles of different parameter values and ice sheet models to assess the effect of uncertainty in the feedback and ice sheet model structure on future sea level projections. We take a Bayesian approach to uncertainty in the feedback parameterisation, scoring the results from multiple possible "SMB lapse rates" according to how well they reproduce a MAR simulation with altered ice sheet topography. We test the impact of the resulting parameterisation on sea level projections using five ice sheet models forced by MAR (in turned forced by two different global climate models) under the emissions scenario A1B. The estimated additional sea level contribution due to the SMB-elevation feedback is 4.3% at 2100 (95% credibility interval 1.8-6.9%), and 9.6% at 2200 (3.6-16.0%).

  18. Glacial Inception in north-east Canada: The Role of Topography and Clouds

    NASA Astrophysics Data System (ADS)

    Birch, Leah; Tziperman, Eli; Cronin, Timothy

    2016-04-01

    Over the past 0.8 million years, ice ages have dominated Earth's climate on a 100 thousand year cycle. Interglacials were brief, sometimes lasting only a few thousand years, leading to the next inception. Currently, state-of-the-art global climate models (GCMs) are incapable of simulating the transition of Earth's climate from interglacial to glaciated. We hypothesize that this failure may be related to their coarse spatial resolution, which does not allow resolving the topography of inception areas, and their parameterized representation of clouds and atmospheric convection. To better understand the small scale topographic and cloud processes mis-represented by GCMs, we run the Weather Research and Forecasting model (WRF), which is a regional, cloud-resolving atmospheric model capable of a realistic simulation of the regional mountain climate and therefore of surface ice and snow mass balance. We focus our study on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred at 115kya. We examine the sensitivity of mountain glaciers to Milankovitch Forcing, topography, and meteorology, while observing impacts of a cloud resolving model. We first verify WRF's ability to simulate present day climate in the region surrounding the Penny Ice Cap, and then investigate how a GCM-like biased representation of topography affects sensitivity of this mountain glacier to Milankovitch forcing. Our results show the possibility of ice cap growth on an initially snow-free landscape with realistic topography and insolation values from the last glacial inception. Whereas, smoothed topography as seen in GCMs has a negative surface mass balance, even with the relevant orbital parameter configuration. We also explore the surface mass balance feedbacks from an initially ice-covered Baffin Island and discuss the role of clouds and convection.

  19. Modelling Greenland Outlet Glaciers

    NASA Technical Reports Server (NTRS)

    vanderVeen, Cornelis; Abdalati, Waleed (Technical Monitor)

    2001-01-01

    The objective of this project was to develop simple yet realistic models of Greenland outlet glaciers to better understand ongoing changes and to identify possible causes for these changes. Several approaches can be taken to evaluate the interaction between climate forcing and ice dynamics, and the consequent ice-sheet response, which may involve changes in flow style. To evaluate the icesheet response to mass-balance forcing, Van der Veen (Journal of Geophysical Research, in press) makes the assumption that this response can be considered a perturbation on the reference state and may be evaluated separately from how this reference state evolves over time. Mass-balance forcing has an immediate effect on the ice sheet. Initially, the rate of thickness change as compared to the reference state equals the perturbation in snowfall or ablation. If the forcing persists, the ice sheet responds dynamically, adjusting the rate at which ice is evacuated from the interior to the margins, to achieve a new equilibrium. For large ice sheets, this dynamic adjustment may last for thousands of years, with the magnitude of change decreasing steadily over time as a new equilibrium is approached. This response can be described using kinematic wave theory. This theory, modified to pertain to Greenland drainage basins, was used to evaluate possible ice-sheet responses to perturbations in surface mass balance. The reference state is defined based on measurements along the central flowline of Petermann Glacier in north-west Greenland, and perturbations on this state considered. The advantage of this approach is that the particulars of the dynamical flow regime need not be explicitly known but are incorporated through the parameterization of the reference ice flux or longitudinal velocity profile. The results of the kinematic wave model indicate that significant rates of thickness change can occur immediately after the prescribed change in surface mass balance but adjustments in flow rapidly diminish these rates to a few cm/yr at most. The time scale for adjustment is of the order of a thousand years or so.

  20. Mars Surface Tunnel Element Concept

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Mary, Natalie; Howe, A. Scott; Jeffries, Sharon

    2016-01-01

    How Mars surface crews get into their ascent vehicle has profound implications for Mars surface architecture. To meet planetary protection protocols, the architecture has get Intravehicular Activity (IVA)-suited crew into a Mars Ascent Vehicle (MAV) without having to step outside into the Mars environment. Pushing EVA suit don/doff and EVA operations to an element that remains on the surface also helps to minimize MAV cabin volume, which in turn can reduce MAV cabin mass. Because the MAV will require at least seven kilograms of propellant to ascend each kilogram of cabin mass, minimal MAV mass is desired. For architectures involving more than one surface element-such as an ascent vehicle and a pressurized rover or surface habitat-a retractable tunnel is an attractive solution. Beyond addressing the immediate MAV access issue, a reusable tunnel may be useful for other surface applications once its primary mission is complete. A National Aeronautics and Space Administration (NASA) team is studying the optimal balance between surface tunnel functionality, mass, and stowed volume as part of the Evolvable Mars Campaign (EMC). The "Minimum Functional Tunnel" is a conceptual design that performs a single function. Having established this baseline configuration, the next step is to trade design options, evaluate other applications, and explore alternative solutions.

  1. Climate dependent contrast in surface mass balance in East Antarctica over the past 216 kyr

    NASA Astrophysics Data System (ADS)

    Parrenin, Frédéric; Fujita, Shuji; Abe-Ouchi, Ayako; Kawamura, Kenji; Masson-Delmotte, Valérie; Motoyama, Hideaki; Saito, Fuyuki; Severi, Mirko; Stenni, Barbara; Uemura, Ryu; Wolff, Eric

    2016-04-01

    Documenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice sheet contribution to global mean sea level change. Here we reconstruct the past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronisation of the two ice cores and on corrections for the vertical thinning of layers. During the past 216,000 years, this SMB ratio, denoted SMB_EDC/SMB_DF, varied between 0.7 and 1.1, being small during cold periods and large during warm periods. While past climatic changes have been depicted as homogeneous along the East Antarctic Plateau, our results reveal larger amplitudes of changes in SMB at EDC compared to DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared to DF. Within the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 20% from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends. These SMB ratio changes not reflected in the isotope profiles are one of the possible causes of the observed differences between the ice core chronologies at DF and EDC. Such changes in SMB ratio may have been caused by (i) climatic processes related to changes in air mass trajectories and local climate, (ii) glaciological processes associated with relative elevation changes, or (iii) a combination of climatic and glaciological processes, such as the interaction between changes in accumulation and in the position of the domes. Our inferred SMB ratio history has important implications for ice sheet modeling (for which SMB is a boundary condition) or atmospheric modeling (our inferred SMB ratio could serve as a test).

  2. Climate dependent contrast in surface mass balance in East Antarctica over the past 216 kyr

    NASA Astrophysics Data System (ADS)

    Parrenin, F.; Fujita, S.; Abe-Ouchi, A.; Kawamura, K.; Masson-Delmotte, V.; Motoyama, H.; Saito, F.; Severi, M.; Stenni, B.; Uemura, R.; Wolff, E.

    2015-02-01

    Documenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice sheet contribution to global mean sea level. Here we reconstruct the past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronisation of the two ice cores and on corrections for the vertical thinning of layers. During the past 216 000 years, this SMB ratio, denoted SMBEDC/SMBDF, varied between 0.7 and 1.1, decreasing during cold periods and increasing during warm periods. While past climatic changes have been depicted as homogeneous along the East Antarctic Plateau, our results reveal larger amplitudes of changes in SMB at EDC compared to DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared to DF. Within interglacial periods and during the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 30% from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends. These SMB ratio changes not closely related to isotopic changes are one of the possible causes of the observed gaps between the ice core chronologies at DF and EDC. Such changes in SMB ratio may have been caused by (i) climatic processes related to changes in air mass trajectories and local climate, (ii) glaciological processes associated with relative elevation changes, or (iii) a combination of climatic and glaciological processes, such as the interaction between changes in accumulation and in the position of the domes. Our inferred SMB ratio history has important implications for ice sheet modeling (for which SMB is a boundary condition) or atmospheric modeling (our inferred SMB ratio could serve as a test).

  3. Ice-atmosphere interactions in the Canadian High Arctic: Implications for the thermo-mechanical evolution of terrestrial ice masses

    NASA Astrophysics Data System (ADS)

    Wohlleben, Trudy M. H.

    Canadian High Arctic terrestrial ice masses and the polar atmosphere evolve codependently, and interactions between the two systems can lead to feedbacks, positive and negative. The two primary positive cryosphere-atmosphere feedbacks are: (1) The snow/ice-albedo feedback (where area changes in snow and/or ice cause changes in surface albedo and surface air temperatures, leading to further area changes in snow/ice); and (2) The elevation - mass balance feedback (where thickness changes in terrestrial ice masses cause changes to atmospheric circulation and precipitation patterns, leading to further ice thickness changes). In this thesis, numerical experiments are performed to: (1) quantify the magnitudes of the two feedbacks for chosen Canadian High Arctic terrestrial ice masses; and (2) to examine the direct and indirect consequences of surface air temperature changes upon englacial temperatures with implications for ice flow, mass flux divergence, and topographic evolution. Model results show that: (a) for John Evans Glacier, Ellesmere Island, the magnitude of the terrestrial snow/ice-albedo feedback can locally exceed that of sea ice on less than decadal timescales, with implications for glacier response times to climate perturbations; (b) although historical air temperature changes might be the direct cause of measured englacial temperature anomalies in various glacier and ice cap accumulation zones, they can also be the indirect cause of their enhanced diffusive loss; (c) while the direct result of past air temperature changes has been to cool the interior of John Evans Glacier, and its bed, the indirect result has been to create and maintain warm (pressure melting point) basal temperatures in the ablation zone; and (d) for Devon Ice Cap, observed mass gains in the northwest sector of the ice cap would be smaller without orographic precipitation and the mass balance---elevation feedback, supporting the hypothesis that this feedback is playing a role in the evolution of the ice cap.

  4. Antarctic mass balance changes from GRACE

    NASA Astrophysics Data System (ADS)

    Kallenberg, B.; Tregoning, P.

    2012-04-01

    The Antarctic ice sheet contains ~30 million km3 of ice and constitutes a significant component of the global water balance with enough freshwater to raise global sea level by ~60 m. Altimetry measurements and climate models suggest variable behaviour across the Antarctic ice sheet, with thickening occurring in a vast area of East Antarctica and substantial thinning in West Antarctica caused by increased temperature gradients in the surrounding ocean. However, the rate at which the polar ice cap is melting is still poorly constrained. To calculate the mass loss of an ice sheet it is necessary to separate present day mass balance changes from glacial isostatic adjustment (GIA), the response of the Earth's crust to mass loss, wherefore it is essential to undertake sufficient geological and geomorphological sampling. As there is only a limited possibility for this in Antarctica, all models (i.e. geological, hydrological as well as atmospheric) are very poorly constrained. Therefore, space-geodetic observations play an important role in detecting changes in mass and spatial variations in the Earth's gravity field. The Gravity Recovery And Climate Experiment (GRACE) observed spatial variations in the Earth's gravity field over the past ten years. The satellite detects mass variations in the Earth system including geophysical, hydrological and atmospheric shifts. GRACE itself is not able to separate the GIA from mass balance changes and, due to the insufficient geological and geomorphological database, it is not possible to model the GIA effect accurately for Antarctica. However, the results from GRACE can be compared with other scientific results, coming from other geodetic observations such as satellite altimetry and GPS or by the use of geological observations. In our contribution we compare the GRACE data with recorded precipitation patterns and mass anomalies over East Antarctica to separate the observed GRACE signal into its two components: GIA as a result of mass loss and present day surface load changes due to possible snow/ice accumulation.

  5. Physically-based distributed mass balance modeling of a tropical glacier: An application to backward modeling of past climate

    NASA Astrophysics Data System (ADS)

    Moelg, T.; Cullen, N. J.; Hardy, D. R.; Winkler, M.; Kaser, G.

    2009-04-01

    The use of spatially distributed (2-D) mass balance models has increased in recent years, but mostly focuses on extratropical glacier surfaces. Here we present the first application of a process-based 2-D model to an African glacier: Kersten Glacier on Kilimanjaro. Multi-year data from an automatic weather station (AWS) at 5873 m a.s.l. (500 hPa) serve to force the model. Validation variables comprise surface temperature, surface height change, snow depth, and incoming radiation - all of which indicate a good model performance. Analyses of the interannual variability in the most significant total mass budget terms (surface accumulation, melt, and sublimation), as well as in the related energy fluxes, exhibit a strong link to atmospheric moisture of a particular year. This is because net shortwave radiation (a result of both cloudiness and surface albedo) is the most variable energy flux on monthly to annual time scales. Internal accumulation (refreezing of melt water), however, shows a time lag and is strongest after a very wet year. Due to the limited validation data at lower elevations, we also perform a detailed sensitivity study by varying 17 model parameters - which yields a total mass loss estimate of 522 +/- 105 kg/m2/year under present climate conditions. Moreover, the verified model allows us to perform backward modeling of the last maximum extent of Kersten Glacier in the 1880s, which is indicated by a well preserved terminal moraine. This step reveals decreases in precipitation (30-45%), water vapor pressure (0.1-0.3 hPa) and cloud cover (2-4 percentage units) as the most likely local climate change between late 19th century and present. Thus, the study also demonstrates how 2-D modeling can help reconstruct past climate for a remote place prior to the availability of measurements. In our case these findings have great relevance for the debate of surface versus mid-tropospheric climate change in the tropics.

  6. Using ATM laser altimetry to constrain surface mass balance estimates and supraglacial hydrology of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Medley, B.; Manizade, S.; Linkswiler, M. A.

    2016-12-01

    Repeat airborne laser altimetry measurements can provide large-scale field observations to better quantify spatial and temporal variability of surface processes contributing to seasonal elevation change and therefore surface mass balance. As part of NASA's Operation IceBridge the Airborne Topographic Mapper (ATM) laser altimeter measured the surface elevation of the Greenland Ice Sheet during spring (March - May) and fall (September - October) of 2015. Comparison of the two surveys reveals a general trend of thinning for outlet glaciers and for the ice sheet in a manner related to elevation and latitude. In contrast, some thickening is observed on the west (but not on the east) side of the ice divide above 2200 m elevation in the southern half, below latitude 69°N.The observed magnitude and spatial patterns of the summer melt signal can be utilized as input into ice sheet models and for validating reanalysis of regional climate models such as RACMO and MAR. We use seasonal anomalies in MERRA-2 climate fields (temperature, precipitation) to understand the observed spatial signal in seasonal change. Aside from surface elevation change, runoff from meltwater pooling in supraglacial lakes and meltwater channels accounts for at least half of the total mass loss. The ability of the ATM laser altimeters to image glacial hydrological features in 3-D and determine the depth of supraglacial lakes could be used for process studies and for quantifying melt processes over large scales. The 1-meter footprint diameter of ATM laser on the surface, together with a high shot density, allows for the production of large-scale, high-resolution, geodetic quality DEMs (50 x 50 cm) suitable for fine-scale glacial hydrology research and as input to hydrological models quantifying runoff.

  7. Model-based calculations of surface mass balance of mountain glaciers for the purpose of water consumption planning: focus on Djankuat Glacier (Central Caucasus)

    NASA Astrophysics Data System (ADS)

    Rybak, O. O.; Rybak, E. A.

    2018-01-01

    Mountain glaciers act as regulators of run-off in the summer period, which is very crucial for economy especially in dynamically developing regions with rapidly growing population, such as Central Asia or the Northern Caucasus in Russia. In overall, glaciers stabilize water consumption in comparatively arid areas and provide conditions for sustainable development of the economy in mountainous regions and in the surrounding territories. A proper prediction of the glacial run-off is required to elaborate strategies of the regional development. This goal can be achieved by implementation of mathematical modeling methods into planning methodologies. In the paper, we consider one of the first steps in glacier dynamical modeling - surface mass balance simulation. We focus on the Djankuat Glacier in the Central Caucasus, where regular observations have been conducted during the last fifty years providing an exceptional opportunity to calibrate and to validate a mathematical model.

  8. Brief Communication: Upper Air Relaxation in RACMO2 Significantly Improves Modelled Interannual Surface Mass Balance Variability in Antarctica

    NASA Technical Reports Server (NTRS)

    van de Berg, W. J.; Medley, B.

    2016-01-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.

  9. Obliquity-paced climate change recorded in Antarctic debris-covered glaciers

    PubMed Central

    Mackay, Sean L.; Marchant, David R.

    2017-01-01

    The degree to which debris-covered glaciers record past environmental conditions is debated. Here we describe a novel palaeoclimate archive derived from the surface morphology and internal debris within cold-based debris-covered glaciers in Antarctica. Results show that subtle changes in mass balance impart major changes in the concentration of englacial debris and corresponding surface topography, and that over the past ∼220 ka, at least, the changes are related to obliquity-paced solar radiation, manifest as variations in total summer energy. Our findings emphasize solar radiation as a significant driver of mass balance changes in high-latitude mountain systems, and demonstrate that debris-covered glaciers are among the most sensitive recorders of obliquity-paced climate variability in interior Antarctica, in contrast to most other Antarctic archives that favour eccentricity-paced forcing over the same time period. Furthermore, our results open the possibility that similar-appearing debris-covered glaciers on Mars may likewise hold clues to environmental change. PMID:28186094

  10. Atmospheric deposition, retention, and stream export of dioxins and PCBs in a pristine boreal catchment.

    PubMed

    Bergknut, Magnus; Laudon, Hjalmar; Jansson, Stina; Larsson, Anna; Gocht, Tilman; Wiberg, Karin

    2011-06-01

    The mass-balance between diffuse atmospheric deposition of organic pollutants, amount of pollutants retained by the terrestrial environment, and levels of pollutants released to surface stream waters was studied in a pristine northern boreal catchment. This was done by comparing the input of atmospheric deposition of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and PCBs with the amounts exported to surface waters. Two types of deposition samplers were used, equipped with a glass fibre thimble and an Amberlite sampler respectively. The measured fluxes showed clear seasonality, with most of the input and export occurring during winter and spring flood, respectively. The mass balance calculations indicates that the boreal landscape is an effective sink for PCDD/Fs and PCBs, as 96.0-99.9 % of received bulk deposition was retained, suggesting that organic pollutants will continue to impact stream water in the region for an extended period of time. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. South Cascade (USA/North Cascades)

    USGS Publications Warehouse

    Bidlake, William R.

    2011-01-01

    The U.S. Geological Survey has closely monitored this temperate mountain glacier since the late 1950s. During 1958-2007, the glacier retreated about 0.7 km and shrank in area from 2.71 to 1.73 km2, although part of the area change was due to separation of contributing ice bodies from the main glacier. Maximum and average glacier thicknesses are about 170 and 80 m, respectively. Year-to-year variations of snow accumulation amounts on the glacier are largely attributable to the regional maritime climate and fluctuating climate conditions of the North Pacific Ocean. Long-term-average precipitation is about 4500 mm and most of that falls as snow during October through May. Average annual air temperature at 1,900 m altitude (the approximate ELA0) was estimated to be 1.6°C during 2000-2009. Mass balances are computed yearly by the direct glaciological method. Mass balances measured at selected locations are used in an interpolation and extrapolation procedure that computes the mass balance at each point in the glacier surface altitude grid. The resulting mass balance grid is averaged to obtain glacier mass balances. Additionally, the geodetic method has been applied to compute glacier net balances in 1970, 1975, 1977, 1979-80, and 1985-97. Winter snow accumulation on the glacier during 2007/08 and 2008/09 was larger than the long-term (1959-2009) average. The 2007/08 preliminary summer balance (-3510 mm w.e.) was slightly more negative than the long-term average and this yielded a preliminary 2007/08 net balance (-290 mm w.e.), which was less negative than the average for the period of record (-600 mm w.e.). Summer 2009 was uncommonly warm and the preliminary 2008/09 summer balance (-4980 mm w.e.) was more negative than any on record for the glacier. The 2008/09 glacier net balance (-1860 mm w.e.) was among the 10 most negative for the period of net balance record (1953-2009). Material presented here is preliminary in nature and presented prior to final review. These data and information are provided with the understanding that they are not guaranteed to be correct or complete. Users are cautioned to consider carefully the provisional nature of these data and information before using them for decisions that concern personal or public safety or the conduct of business that involves substantial monetary or operational consequences. Conclusions drawn from, or actions undertaken on the basis of, such data and information are the sole responsibility of the user.

  12. Variations in debris distribution and thickness on Himalayan debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil

    2016-04-01

    Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1 to 2 m. Temporal variability was a result of differential surface lowering, spatial variability in glacier surface velocities and intermittent input of debris to the glacier surface through mass movement. Most debris thickening is seen in initially thin areas of debris (< 0.4 m) or within ~1 km of the glacier terminus. Surface energy balance modelling is currently underway to determine the effect of these variations in debris thickness, and other parameters mentioned previously. Future work will be to calculate debris transport flux on the surface of Khumbu Glacier using the time series of debris thickness maps. Debris flux and refined energy balance calculations will then be incorporated into a 3-D ice flow model to determine the response of Khumbu Glacier to debris transport and climatic changes.

  13. Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya

    NASA Astrophysics Data System (ADS)

    Rowan, Ann V.; Egholm, David L.; Quincey, Duncan J.; Glasser, Neil F.

    2015-11-01

    Many Himalayan glaciers are characterised in their lower reaches by a rock debris layer. This debris insulates the glacier surface from atmospheric warming and complicates the response to climate change compared to glaciers with clean-ice surfaces. Debris-covered glaciers can persist well below the altitude that would be sustainable for clean-ice glaciers, resulting in much longer timescales of mass loss and meltwater production. The properties and evolution of supraglacial debris present a considerable challenge to understanding future glacier change. Existing approaches to predicting variations in glacier volume and meltwater production rely on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. We developed a numerical model that couples the flow of ice and debris and includes important feedbacks between debris accumulation and glacier mass balance. To investigate the impact of debris transport on the response of a glacier to recent and future climate change, we applied this model to a large debris-covered Himalayan glacier-Khumbu Glacier in Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, Khumbu Glacier has lost 34% of its volume while its area has reduced by only 6%. We predict a decrease in glacier volume of 8-10% by AD2100, accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 yr. This detachment will accelerate rates of glacier decay, and similar changes are likely for other debris-covered glaciers in the Himalaya.

  14. Snow specific surface area simulation using the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS)

    NASA Astrophysics Data System (ADS)

    Roy, A.; Royer, A.; Montpetit, B.; Bartlett, P. A.; Langlois, A.

    2012-12-01

    Snow grain size is a key parameter for modeling microwave snow emission properties and the surface energy balance because of its influence on the snow albedo, thermal conductivity and diffusivity. A model of the specific surface area (SSA) of snow was implemented in the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) version 3.4. This offline multilayer model (CLASS-SSA) simulates the decrease of SSA based on snow age, snow temperature and the temperature gradient under dry snow conditions, whereas it considers the liquid water content for wet snow metamorphism. We compare the model with ground-based measurements from several sites (alpine, Arctic and sub-Arctic) with different types of snow. The model provides simulated SSA in good agreement with measurements with an overall point-to-point comparison RMSE of 8.1 m2 kg-1, and a RMSE of 4.9 m2 kg-1 for the snowpack average SSA. The model, however, is limited under wet conditions due to the single-layer nature of the CLASS model, leading to a single liquid water content value for the whole snowpack. The SSA simulations are of great interest for satellite passive microwave brightness temperature assimilations, snow mass balance retrievals and surface energy balance calculations with associated climate feedbacks.

  15. Mass balance of Mars' residual south polar cap from CTX images and other data

    NASA Astrophysics Data System (ADS)

    Thomas, P. C.; Calvin, W.; Cantor, B.; Haberle, R.; James, P. B.; Lee, S. W.

    2016-04-01

    Erosion of pits in the residual south polar cap (RSPC) of Mars concurrent with deposition and fluctuating cap boundaries raises questions about the mass balance and long term stability of the cap. Determining a mass balance by measurement of a net gain or loss of atmospheric CO2 by direct pressure measurements (Haberle, R.M. et al. [2014]. Secular climate change on Mars: An update using one Mars year of MSL pressure data. American Geophysical Union (Fall). Abstract 3947), although perhaps the most direct method, has so far given ambiguous results. Estimating volume changes from imaging data faces challenges, and has previously been attempted only in isolated areas of the cap. In this study we use 6 m/pixel Context Imager (CTX) data from Mars year 31 to map all the morphologic units of the RSPC, expand the measurement record of pit erosion rates, and use high resolution images to place limits on vertical changes in the surface of the residual cap. We find the mass balance in Mars years 9-31 to be -6 to +4 km3/♂y, or roughly -0.039% to +0.026% of the mean atmospheric CO2 mass/♂y. The indeterminate sign results chiefly from uncertainty in the amounts of deposition or erosion on the upper surfaces of deposits (as opposed to scarp retreat). Erosion and net deposition in this period appear to be controlled by summertime planetary scale dust events, the largest occurring in MY 9, another, smaller one in MY 28. The rates of erosion and the deposition observed since MY 9 appear to be consistent with the types of deposits and erosional behavior found in most of the residual cap. However, small areas (<10%) of the cap are distinguished by their greater thickness, polygonal troughs, and embayed contacts with thinner units. These deposits may require extended periods (>100 ♂y) of depositional and/or erosional conditions different from those occurring in the period since MY 9, although these environmental differences could be subtle.

  16. [Measurement and estimation methods and research progress of snow evaporation in forests].

    PubMed

    Li, Hui-Dong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Yuan, Feng-Hui; Wu, Jia-Bing

    2013-12-01

    Accurate measurement and estimation of snow evaporation (sublimation) in forests is one of the important issues to the understanding of snow surface energy and water balance, and it is also an essential part of regional hydrological and climate models. This paper summarized the measurement and estimation methods of snow evaporation in forests, and made a comprehensive applicability evaluation, including mass-balance methods (snow water equivalent method, comparative measurements of snowfall and through-snowfall, snow evaporation pan, lysimeter, weighing of cut tree, weighing interception on crown, and gamma-ray attenuation technique) and micrometeorological methods (Bowen-ratio energy-balance method, Penman combination equation, aerodynamics method, surface temperature technique and eddy covariance method). Also this paper reviewed the progress of snow evaporation in different forests and its influencal factors. At last, combining the deficiency of past research, an outlook for snow evaporation rearch in forests was presented, hoping to provide a reference for related research in the future.

  17. Response of glacier mass on recent temperature cooling in northeastern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Láska, Kamil; Engel, Zbyněk; Nývlt, Daniel; Stachoň, Zdeněk; Lippl, Stefan; Braun, Matthias

    2017-04-01

    The Antarctic Peninsula (AP) region has been often recognized as one of the most rapidly warming parts of our planet during the second half of the 20th century (Turner and others, 2014). However, recent study of Oliva and others (2016) has documented that significant warming trend was shifted to a prominent cooling trend during 2006-2015. The recent cooling is particularly pronounced in the northeastern part of the AP, with the largest temperature drops of 0.7-0.9 ˚ C between 1996-2005 and 2006-2015. Therefore, we aim to study response of small glaciers on James Ross Island, north-eastern part of the AP, that are considered to be sensitive to recent temperature fluctuations. We have studied annual changes of mass balance and equilibrium line altitude of Whisky Glacier, a cold-bases land-terminating valley glacier (˜2.4 km2), in the northern part of James Ross Island. The surface mass balance changes were estimated based on ablation stake measurements, carried out in late summer over the five years period (2009/10-2013/14). In addition, glacier surface velocity and area changes were determined for this period from aerial and satellite imageries based digital elevation models. Automatic weather stations in the northern part of James Ross Island reflect the recent cold period and indicate a prominent cooling by 1.2 ˚ C over the period 2006-2015. A response of glaciers on colder conditions can be observed throughout the area where negative mass changes turned to predominantly positive values after 2009. The total mass of Whisky Glacier has increased by 0.8 m w.e. in 2009/10-2013/14 and the annual mass changes were positive except for 2011 (-0.1 m w.e.). A comparison of annual mass balance changes with the data reported from glaciers on nearby Vega Island (Marinsek and Ermolin, 2015) indicates similar values of glacier mass changes in northeastern AP. Acknowledgments: This research was supported by the Czech Science Foundation (project GC 16-14122J) and Czech Ministry of Education (LM2015078).

  18. Maintaining Atmospheric Mass and Water Balance Within Reanalysis

    NASA Technical Reports Server (NTRS)

    Takacs, Lawrence L.; Suarez, Max; Todling, Ricardo

    2015-01-01

    This report describes the modifications implemented into the Goddard Earth Observing System Version-5 (GEOS-5) Atmospheric Data Assimilation System (ADAS) to maintain global conservation of dry atmospheric mass as well as to preserve the model balance of globally integrated precipitation and surface evaporation during reanalysis. Section 1 begins with a review of these global quantities from four current reanalysis efforts. Section 2 introduces the modifications necessary to preserve these constraints within the atmospheric general circulation model (AGCM), the Gridpoint Statistical Interpolation (GSI) analysis procedure, and the Incremental Analysis Update (IAU) algorithm. Section 3 presents experiments quantifying the impact of the new procedure. Section 4 shows preliminary results from its use within the GMAO MERRA-2 Reanalysis project. Section 5 concludes with a summary.

  19. Projections of glacier change in the Altai Mountains under twenty-first century climate scenarios

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Enomoto, Hiroyuki; Ohata, Tetsuo; Kitabata, Hideyuki; Kadota, Tsutomu; Hirabayashi, Yukiko

    2016-11-01

    We project glacier surface mass balances of the Altai Mountains over the period 2006-2100 for the representative concentration pathway (RCP) 4.5 and RCP8.5 scenarios using daily near-surface air temperature and precipitation from 12 global climate models in combination with a surface mass balance model. The results indicate that the Altai glaciers will undergo sustained mass loss throughout the 21st for both RCPs and reveal the future fate of glaciers of different sizes. By 2100, glacier area in the region will shrink by 26 ± 10 % for RCP4.5, while it will shrink by 60 ± 15 % for RCP8.5. According to our simulations, most disappearing glaciers are located in the western part of the Altai Mountains. For RCP4.5, all glaciers disappearing in the twenty-first century have a present-day size smaller than 5.0 km2, while for RCP8.5, an additional 7 % of glaciers in the initial size class of 5.0-10.0 km2 also vanish. We project different trends in the total meltwater discharge of the region for the two RCPs, which does not peak before 2100, with important consequences for regional water availability, particular for the semi-arid and arid regions. This further highlights the potential implications of change in the Altai glaciers on regional hydrology and environment.

  20. A fugacity-based indoor residential pesticide fate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Deborah H.; Furtaw, Edward J.; McKone, Thomas E.

    Dermal and non-dietary pathways are potentially significant exposure pathways to pesticides used in residences. Exposure pathways include dermal contact with residues on surfaces, ingestion from hand- and object-to-mouth activities, and absorption of pesticides into food. A limited amount of data has been collected on pesticide concentrations in various residential compartments following an application. But models are needed to interpret this data and make predictions about other pesticides based on chemical properties. In this paper, we propose a mass-balance compartment model based on fugacity principles. We include air (both gas phase and aerosols), carpet, smooth flooring, and walls as model compartments.more » Pesticide concentrations on furniture and toys, and in food, are being added to the model as data becomes available. We determine the compartmental fugacity capacity and mass transfer-rate coefficient for wallboard as an example. We also present the framework and equations needed for a dynamic mass-balance model.« less

  1. Fluxes of 13 selected pharmaceuticals in the water cycle of Stockholm, Sweden.

    PubMed

    Wahlberg, C; Björlenius, B; Paxéus, N

    2011-01-01

    Mass flows of 13 pharmaceutical active ingredients (APIS) found in drinking water were studied in the water cycle of Stockholm. Data were collected by analyzing samples of surface water, raw water and drinking water as well as influents, effluents and sludges from waste water treatment plants (WWTPs) in Stockholm area. A mass balance was performed, based on sold amounts of pharmaceuticals and the measured concentrations in water and sludge. The selected APls were all present in WWTP effluents and the removal rates for many of them were poor. Mass balance calculations showed that the three studied WWTPs in Stockholm release considerable amounts of the selected APIs into the Baltic Sea while the portions ending up in WWTP sludge were significantly lower. The levels of APIs found in drinking water are low at present, but may increase in the future unless the releases from WWTPs in the catchment of Lake Mälären are mitigated.

  2. Evaluation of a distributed energy balance model for a high-altitude glacier on the Tibetan Plateau using a time lapse camera system

    NASA Astrophysics Data System (ADS)

    Huintjes, Eva; Sauter, Tobias; Krenscher, Tobias; Maussion, Fabien; Kropacek, Jan; Yang, Wei; Zhang, Guoshuai; Kang, Shichang; Buchroithner, Manfred; Scherer, Dieter; Schneider, Christoph

    2013-04-01

    In the remote and high-altitude mountain areas of the Tibetan Plateau, climate observations as well as glacier-wide mass and energy balance determinations are scarce. Therefore, the application of models to determine reliable information on mass balance and runoff is important. Simultaneously, these circumstances make it difficult to evaluate the models. Since 2009, we operate an automatic weather station (AWS) in the ablation zone of Zhadang Glacier (5.665 m a.s.l.). The glacier is easily accessible. It is situated in the southern-central part of the Tibetan Plateau (30.5°N) in the Nam Co drainage basin and ranges between 5.400 and 5.900 m a.s.l. Based on these measurements over 2009-2012, we run and evaluate a physically based, distributed energy and mass balance model. The applied model couples an energy balance to a multilayer snow model and therefore accounts for subsurface processes like refreezing, subsurface melt and densification of the snowpack. First, the model is evaluated at point scale against measurements from the AWS. The results show that modelled accumulation and ablation patterns reproduce the observed changes in surface height very well. To evaluate the distributed model, we use daily images of a time lapse camera system installed nearby the glacier over 2010-2012. Therefore the non calibrated slope images had to be orthorectified using ground control points measured during field campaigns. The temporally and spatially highly resolved time series allows a detailed evaluation of the distributed energy balance model by analyzing the spatial and temporal heterogeneity of the snow line during the ablation season. First results show that the model captures the observed spatial heterogeneity of melt on the glacier surface. Subsequently to the evaluation the model will be applied on several glaciers and small ice caps in remote areas on the Tibetan Plateau to determine the linkages between climate fluctuations and glacier variability. The work is part of research projects funded by the DFG Priority Programme 1372: "Tibetan Plateau: Formation-Climate-Ecosystems" (TiP) and the BMBF research program "Central Asia and Tibet: Monsoon dynamics and geo-ecosystems" (CAME).

  3. Nutrient and salt mass balance on the Lower Arkansas River and a contributing tributary in an irrigated agricultural setting

    Treesearch

    Alexander Hulzenga; Ryan T. Bailey; Timothy K. Gates

    2016-01-01

    The Lower Arkansas River Basin is an irrigated, agricultural valley suffering from high concentrations of nutrients and salts in the coupled groundwater-surface water system. The majority of water quality data collection and associated spatial analysis of concentrations and mass loadings from the aquifer to the stream network has been performed at the regional scale (...

  4. Upper Rio Grande Simulation Model (URGSIM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Jesse; & Tidwell, Vincent

    2010-08-05

    URGSIM estimates the location of surface water and groundwater resources in the upper Rio Grande Basin between the Colorado-New Mexico state line, and Caballo Reservoir from 1975 - 2045. It is a mass balance hydrology model of the Upper Rio Grande surface water, groundwater, and water demand systems which runs at a monthly timestep from 1975-1999 in calibration mode, 2000-2004 in validation mode, and 2005-2045 in scenario analysis mode.

  5. The influence of novel compliant floors on balance control in elderly women--A biomechanical study.

    PubMed

    Wright, Alexander D; Laing, Andrew C

    2011-07-01

    Novel compliant floors aim to decrease the risk for fall-related injury by providing substantial force attenuation during the impact phase of falls. Certain models of compliant flooring have been shown to have limited influence on postural sway and successful completion of dynamic balance tasks. However, the effects of these products on balance recovery mechanisms following an externally induced perturbation have yet to be quantified. We used a floor translation paradigm to induce a balance perturbation to thirteen elderly community-dwelling women. Outcome measures included the displacement rates and margins of safety for both the underfoot centre-of-pressure and whole-body centre-of-mass across two novel compliant floors (SmartCell, SofTile), two basic foam surfaces (Firm-Foam, Soft-Foam) and a standard 'Rigid' floor as a control condition. The centre-of-mass and centre-of-pressure margins of safety, and all centre-of-mass displacement rates, were not significantly lower for the two novel compliant flooring systems compared to the control floor. The centre-of-pressure displacement rates were similar to the control floor for the SmartCell floor condition. The majority of the margin of safety and displacement rate variables for the foam floors were significantly lower than the control condition. This study illustrates that the SmartCell and SofTile novel compliant floors have minimal influences on balance and balance control responses following externally induced perturbations in older community-dwelling women, and supports pilot installations of these floors to inform decisions regarding the development of clinical trials. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  6. The influence of novel compliant floors on balance control in elderly women—A biomechanical study

    PubMed Central

    Wright, Alexander D.; Laing, Andrew C.

    2012-01-01

    Novel compliant floors aim to decrease the risk for fall-related injury by providing substantial force attenuation during the impact phase of falls. Certain models of compliant flooring have been shown to have limited influence on postural sway and successful completion of dynamic balance tasks. However, the effects of these products on balance recovery mechanisms following an externally induced perturbation have yet to be quantified. We used a floor translation paradigm to induce a balance perturbation to thirteen elderly community-dwelling women. Outcome measures included the displacement rates and margins of safety for both the underfoot centre-of-pressure and whole-body centre-of-mass across two novel compliant floors (Smart-Cell, SofTile), two basic foam surfaces (Firm-Foam, Soft-Foam) and a standard ‘Rigid’ floor as a control condition. The centre-of-mass and centre-of-pressure margins of safety, and all centre-of-mass displacement rates, were not significantly lower for the two novel compliant flooring systems compared to the control floor. The centre-of-pressure displacement rates were similar to the control floor for the SmartCell floor condition. The majority of the margin of safety and displacement rate variables for the foam floors were significantly lower than the control condition. This study illustrates that the SmartCell and SofTile novel compliant floors have minimal influences on balance and balance control responses following externally induced perturbations in older community-dwelling women, and supports pilot installations of these floors to inform decisions regarding the development of clinical trials. PMID:21545881

  7. Longest time series of glacier mass changes in the Himalaya based on stereo imagery

    NASA Astrophysics Data System (ADS)

    Bolch, T.; Pieczonka, T.; Benn, D. I.

    2010-12-01

    Mass loss of Himalayan glaciers has wide-ranging consequences such as declining water resources, sea level rise and an increasing risk of glacial lake outburst floods (GLOFs). The assessment of the regional and global impact of glacier changes in the Himalaya is, however, hampered by a lack of mass balance data for most of the range. Multi-temporal digital terrain models (DTMs) allow glacier mass balance to be calculated since the availability of stereo imagery. Here we present the longest time series of mass changes in the Himalaya and show the high value of early stereo spy imagery such as Corona (years 1962 and 1970) aerial images and recent high resolution satellite data (Cartosat-1) to calculate a time series of glacier changes south of Mt. Everest, Nepal. We reveal that the glaciers are significantly losing mass with an increasing rate since at least ~1970, despite thick debris cover. The specific mass loss is 0.32 ± 0.08 m w.e. a-1, however, not higher than the global average. The spatial patterns of surface lowering can be explained by variations in debris-cover thickness, glacier velocity, and ice melt due to exposed ice cliffs and ponds.

  8. High Resolution Modeling of the Water Cycle to Refine GRACE Signal Analysis in the Gulf of Alaska Drainage

    NASA Astrophysics Data System (ADS)

    Beamer, J.; Hill, D. F.; Arendt, A. A.; Luthcke, S. B.; Liston, G. E.

    2015-12-01

    A comprehensive study of the Gulf of Alaska (GOA) drainage basin was carried out to improve understanding of the coastal freshwater discharge (FWD) and surface mass balance (SMB) of glaciers. Coastal FWD and SMB for all glacier surfaces were modeled using a suite of physically based, spatially distributed weather, energy-balance snow/ice melt, soil water balance, and runoff routing models at a high resolution (1 km horizontal grid; daily time step). A 35 year hind cast was performed, providing complete records of precipitation, runoff, snow water equivalent (SWE) depth, evapotranspiration, coastal FWD and glacier SMB. Meteorological forcing was provided by the North American Regional Reanalysis (NARR), Modern Era Retrospective Analysis for Research and Applications (MERRA), and NCEP Climate Forecast System Reanalysis (CFSR) datasets. A fourth dataset was created by bias-correcting the NARR data to recently-developed monthly weather grids based on PRISM climatologies (NARR-BC). Each weather dataset and model combination was individually calibrated using PRISM climatologies, streamflow, and glacier mass balance measurements from four locations in the study domain. Simulated mean annual FWD into the GOA ranged from 600 km3 yr-1 using NARR to 850 km3 yr-1 from NARR-BC. The CFSR-forced simulations with optimized model parameters produced a simulated regional water storage that compared favorably to data from the NASA/DLR Gravity Recovery and Climate Experiment (GRACE) high resolution mascon solutions (Figure). Glacier runoff, taken as the sum of rainfall, snow and ice melt occurring on glacier surfaces, ranged from 260 km3 yr-1 from MERRA to 400 km3 yr-1 from NARR-BC, approximately one half of the signal from both glaciers and surrounding terrain. The large contribution from non-glacier surfaces to the seasonal water balance is likely not being fully removed from GRACE solutions aimed at isolating the glacier signal alone. We will discuss methods to use our simulations to forward-model the hydrology of the Gulf of Alaska region and minimize uncertainty in the partitioning of the hydrological signal. This study provides significant insight into the linkages between hydrological modeling and gravimetric measurements in mountain environments.

  9. Tibetan Plateau glacier and hydrological change under stratospheric aerosol injection

    NASA Astrophysics Data System (ADS)

    Ji, D.

    2017-12-01

    As an important inland freshwater resource, mountain glaciers are highly related to human life, they provide water for many large rivers and play a very important role in regional water cycles. The response of mountain glaciers to future climate change is a topic of concern especially to the many people who rely on glacier-fed rivers for purposes such as irrigation. Geoengineering by stratospheric aerosol injection is a method of offsetting the global temperature rise from greenhouse gases. How the geoengineering by stratospheric aerosol injection affects the mass balance of mountain glaciers and adjacent river discharge is little understood. In this study, we use regional climate model WRF and catchment-based river model CaMa-Flood to study the impacts of stratospheric aerosol injection to Tibetan Plateau glacier mass balance and adjacent river discharge. To facilitate mountain glacier mass balance study, we improve the description of mountain glacier in the land surface scheme of WRF. The improvements include: (1) a fine mesh nested in WRF horizontal grid to match the highly non-uniform spatial distribution of the mountain glaciers, (2) revising the radiation flux at the glacier surface considering the surrounding terrain. We use the projections of five Earth system models for CMIP5 rcp45 and GeoMIP G4 scenarios to drive the WRF and CaMa-Flood models. The G4 scenario, which uses stratospheric aerosols to reduce the incoming shortwave while applying the rcp4.5 greenhouse gas forcing, starts stratospheric sulfate aerosol injection at a rate of 5 Tg per year over the period 2020-2069. The ensemble projections suggest relatively slower glacier mass loss rates and reduced river discharge at Tibetan Plateau and adjacent regions under geoengineering scenario by stratospheric aerosol injection.

  10. Effect of Surface Nonequilibrium Thermochemistry in Simulation of Carbon Based Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kang; Gokcen, Tahir

    2012-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver using finite-rate gas/surface interaction model provides time-accurate solutions for multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal Response and Ablation Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas momentum conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of gas/surface interaction chemistry between air and carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was a Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.

  11. Peak water from glaciers: advances and challenges in a global perspective (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Huss, Matthias; Hock, Regine

    2014-05-01

    Mountain glaciers show a high sensitivity to changes in climate forcing. In a global perspective, their anticipated retreat will pose far-reaching challenges to the manage- ment of fresh water resources and will raise sea levels significantly within only a few decades. Different model frameworks have been applied to simulate melt water con- tributions of glaciers outside the two ice sheets for the recent IPCC report. However, these models depend on strongly simplified, and often empirical descriptions of the driving processes hampering the reliability of the results. For example, glacier retreat is parameterized with volume-area scaling thus neglecting the glacier's actual geome- try and the surface elevation feedback. Frontal ablation of tidewater and lake-calving glaciers, an important mass loss component for a third of the world's glacier area, is not accounted for. Thus, a transition from the physically-based mass balance-ice flow models developed for single glaciers to the application at the global scale is urgently needed. The chal- lenges are manifold but can be tackled with the new data sets, methods and process- understanding that have emerged during the last years. Here, we present a novel glacier model for calculating the response of surface mass balance and 3D glacier geometry for each individual glacier around the globe. Our approach accounts for feedbacks due to glacier retreat and includes models for mass loss due to frontal ablation and the refreezing of water in the snow/firn. The current surface geometry and thickness distribution for each of the world's roughly 200'000 glaciers is extracted from the Randolph Glacier Inventory v3.2 and terrain models. Our simulations are driven with 14 Global Circulation Models from the CMIP5 project using the RCP4.5, RCP8.5 and RCP2.6 scenarios. Regionally specified cumulative global sea level rise due to glacier mass loss until 2100 is discussed in the light of model uncertainties and the advantages of using a physically- based approach. In particular, we focus on the timing of peak water from glacierized catchments in all climatic regions of the earth. The maximum rate of water release from glacial storage is subject to a high spatio-temporal variability. Peak water represents a crucial tipping point for sustained water supply even for regions with only a minor glacier coverage, and is relevant to the dynamics of sea level rise. Furthermore, we address the ratio between surface mass balance and frontal ablation of tidewater glaciers at the global scale.

  12. Mass reduction patterning of silicon-on-oxide-based micromirrors

    NASA Astrophysics Data System (ADS)

    Hall, Harris J.; Green, Andrew; Dooley, Sarah; Schmidt, Jason D.; Starman, LaVern A.; Langley, Derrick; Coutu, Ronald A.

    2016-10-01

    It has long been recognized in the design of micromirror-based optical systems that balancing static flatness of the mirror surface through structural design with the system's mechanical dynamic response is challenging. Although a variety of mass reduction approaches have been presented in the literature to address this performance trade, there has been little quantifiable comparison reported. In this work, different mass reduction approaches, some unique to the work, are quantifiably compared with solid plate thinning in both curvature and mass using commercial finite element simulation of a specific square silicon-on-insulator-based micromirror geometry. Other important considerations for micromirror surfaces, including surface profile and smoothness, are also discussed. Fabrication of one of these geometries, a two-dimensional tessellated square pattern, was performed in the presence of a 400-μm-tall central post structure using a simple single mask process. Limited experimental curvature measurements of fabricated samples are shown to correspond well with properly characterized simulation results and indicate ˜67% improvement in radius of curvature in comparison to a solid plate design of equivalent mass.

  13. Effect of specific pathways to 1.5°C global warming on the contribution of Greenland to sea level rise

    NASA Astrophysics Data System (ADS)

    Humbert, A.; Rückamp, M.; Falk, U.; Frieler, K.

    2017-12-01

    Sea level rise associated with changing climate is expected to pose a major challenge for societies. Here, we estimate the future contribution of the Greenland ice sheet (GrIS) to sea level change in terms of different emission scenarios. We investigate the effect of different pathways of global warming on the dynamics and mass balance of the GrIS with a focus on scenarios in line with limiting global warming to 2.0° or even 1.5° by the end of 2100 (Paris Agreement). We particularly address the issue of peak and decline scenarios temporarily exceeding a given temperature limit. This kind of overshooting might have strong effects on the evolution of the GrIS. Furthermore, we investigate the long-term effects of different levels of climate change to estimate the threshold for stabilizing the GrIS. For modeling the flow dynamics and future evolution of the GrIS, we apply the thermo-mechanical coupled Ice Sheet System Model (ISSM). The model is forced with anomalies for temperature and surface mass balance derived from different GCM data from the CMIP5 RCP2.6 scenario provided from the ISIMIP2b project. In order to obtain these anomalies from the GCM data, a surface energy balance model is applied.

  14. Export of excess Cl by river systems indicates long-term changes to groundwater-surface water interaction

    NASA Astrophysics Data System (ADS)

    Cartwright, Ian; Hofmann, Harald; Gilfedder, Ben

    2013-04-01

    Understanding whether catchments are in chemical mass balance is important in understand long-term groundwater-surface water interactions. The mass balance of a conservative solute such as Cl in a catchment is: P*Cl(P) = SW*Cl(SW) + GW*Cl(GW) + dST*Cl(ST) where P, SW, and GW, are net precipitation, surface water outflows, and groundwater outflows and dST accounts for changes to water held in storage, primarily in the groundwater system. Cl() is the concentration of Cl in the various water components. Precipitation and river discharges are commonly well constrained and in many regions there are also rainfall, groundwater, and surface water geochemistry data. Groundwater fluxes and changes to water in storage are less well known meaning that it is difficult to perform accurate solute balances. However, if the flux of a conservative solute out of a catchment via the river system is larger than the input from rainfall (i.e., if SW*Cl(SW) > P*Cl(P)), the catchment is a net exporter of solutes. In turn this implies a change to the amount of water stored in the catchment and/or a change in chemistry of water in storage. We apply this technique to several regional-scale catchments (areas up to 15,000 km2) from Victoria, southeast Australia. Cl/Br ratios indicate that the Cl in groundwater and surface water in this region is derived from evapotranspiration of rainfall. Rivers from several catchments in Victoria are saline (Cl >500 mg/L) due mainly to groundwater inflows. Cl concentrations and EC values are well correlated allowing a long-term (up to 25 years) continual record of Cl fluxes to be estimated from sub-daily river discharge and EC data. Many of the rivers export significantly higher volumes of Cl than is delivered via rainfall (up to 1800%). Two scenarios may explain this chemical imbalance. Firstly, saline marshes and lakes developed on young (<1 Ma) basaltic lava plains have gradually drained as blocked river systems re-established. Evapotranspiration and repeated recharge-discharge cycles within these lakes and wetlands produced shallow groundwater with high Cl concentrations that is currently being exported via the re-established river systems. Secondly, in many catchments land-clearing over the last 200 years has resulted in lower evapotranspiration rates and increased recharge. The increased recharge has resulted in a rise of regional water tables and increased baseflow to the rivers. As a consequence, Cl from the groundwater that has relatively long residence time is now being exported. In both cases, the catchments are adjusting to a new hydrological balance and the Cl mass balance indicates that the present patterns of groundwater-surface water interaction are transitory. Both scenarios involve a decrease in evapotranspiration in the catchments that results in groundwater salinities decreasing. Thus, over time, the Cl concentrations in these rivers will decrease as fresher groundwater increasingly forms the baseflow to the rivers and the catchments will tend toward chemical balance; the timescale of change however may be several ka.

  15. Balance Mass Flux and Velocity Across the Equilibrium Line in Ice Drainage Systems of Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Estimates of balance mass flux and the depth-averaged ice velocity through the cross-section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. (The equilibrium line, which lies at approximately 1200 m elevation on the ice sheet, is the boundary between the area of net snow accumulation at higher elevations and the areas of net melting at lower elevations around the ice sheet.) Ice drainage divides and six major drainage systems are delineated using surface topography from ERS (European Remote Sensing) radar altimeter data. The net accumulation rate in the accumulation zone bounded by the equilibrium line is 399 Gt/yr and net ablation rate in the remaining area is 231 Gt/yr. (1 GigaTon of ice is 1090 kM(exp 3). The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt kM(exp -2)/yr and 0.111 km/yr, respectively, with little variation in these values from system to system. The ratio of the ice mass above the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6000 years for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.

  16. California's Snow Gun and its implications for mass balance predictions under greenhouse warming

    NASA Astrophysics Data System (ADS)

    Howat, I.; Snyder, M.; Tulaczyk, S.; Sloan, L.

    2003-12-01

    Precipitation has received limited treatment in glacier and snowpack mass balance models, largely due to the poor resolution and confidence of precipitation predictions relative to temperature predictions derived from atmospheric models. Most snow and glacier mass balance models rely on statistical or lapse rate-based downscaling of general or regional circulation models (GCM's and RCM's), essentially decoupling sub-grid scale, orographically-driven evolution of atmospheric heat and moisture. Such models invariably predict large losses in the snow and ice volume under greenhouse warming. However, positive trends in the mass balance of glaciers in some warming maritime climates, as well as at high elevations of the Greenland Ice Sheet, suggest that increased precipitation may play an important role in snow- and glacier-climate interactions. Here, we present a half century of April snowpack data from the Sierra Nevada and Cascade mountains of California, USA. This high-density network of snow-course data indicates that a gain in winter snow accumulation at higher elevations has compensated loss in snow volume at lower elevations by over 50% and has led to glacier expansion on Mt. Shasta. These trends are concurrent with a region-wide increase in winter temperatures up to 2° C. They result from the orographic lifting and saturation of warmer, more humid air leading to increased precipitation at higher elevations. Previous studies have invoked such a "Snow Gun" effect to explain contemporaneous records of Tertiary ocean warming and rapid glacial expansion. A climatological context of the California's "snow gun" effect is elucidated by correlation between the elevation distribution of April SWE observations and the phase of the Pacific Decadal Oscillation and the El Nino Southern Oscillation, both controlling the heat and moisture delivered to the U.S. Pacific coast. The existence of a significant "Snow Gun" effect presents two challenges to snow and glacier mass balance modeling. Firstly, the link between amplification of orographic precipitation and the temporal evolution of ocean-climate oscillations indicates that prediction of future mass balance trends requires consideration of the timing and amplitude of such oscillations. Only recently have ocean-atmosphere models begun to realistically produce such temporal variability. Secondly, the steepening snow mass-balance elevation-gradient associated with the "Snow Gun" implies greater spatial variability in balance with warming. In a warming climate, orographic processes at a scale finer that the highest resolution RCM (>20km grid) become increasingly important and predictions based on lower elevations become increasingly inaccurate for higher elevations. Therefore, thermodynamic interaction between atmospheric heat, moisture and topography must be included in downscaling techniques. In order to demonstrate the importance of the thermodynamic downscaling in mass balance predictions, we nest a high-resolution (100m grid), coupled Orographic Precipitation and Surface Energy balance Model (OPSEM) into the RegC2.5 RCM (40 km grid) and compare results. We apply this nesting technique to Mt. Shasta, California, an area of high topography (~4000m) relative to its RegCM2.5 grid elevation (1289m). These models compute average April snow volume under present and doubled-present Atmospheric CO2 concentrations. While the RegCM2.5 regional model predicts an 83% decrease in April SWE, OPSEM predicts a 16% increase. These results indicate that thermodynamic interactions between the atmosphere and topography at sub- RCM grid resolution must be considered in mass balance models.

  17. Automated methodology for selecting hot and cold pixel for remote sensing based evapotranspiration mapping

    USDA-ARS?s Scientific Manuscript database

    Surface energy fluxes, especially the latent heat flux from evapotranspiration (ET), determine exchanges of energy and mass between the hydrosphere, atmosphere, and biosphere. There are numerous remote sensing-based energy balance approaches such as METRIC and SEBAL that use hot and cold pixels from...

  18. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming

    DOE PAGES

    de la Peña, S.; Howat, I. M.; Nienow, P. W.; ...

    2015-06-11

    Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone,more » which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, when compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging -0.80 ± 0.39 m yr -1 between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. Furthermore, if current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.« less

  19. Trunk repositioning errors are increased in balance-impaired older adults.

    PubMed

    Goldberg, Allon; Hernandez, Manuel Enrique; Alexander, Neil B

    2005-10-01

    Controlling the flexing trunk is critical in recovering from a loss of balance and avoiding a fall. To investigate the relationship between trunk control and balance in older adults, we measured trunk repositioning accuracy in young and balance-impaired and unimpaired older adults. Young adults (N = 8, mean age 24.3 years) and two groups of community-dwelling older adults defined by unipedal stance time (UST)-a balance-unimpaired group (UST > 30 seconds, N = 7, mean age 73.9 years) and a balance-impaired group (UST < 5 seconds, N = 8, mean age 79.6 years)-were tested in standing trunk control ability by reproducing a approximately 30 degrees trunk flexion angle under three visual-surface conditions: eyes opened and closed on the floor, and eyes opened on foam. Errors in reproducing the angle were defined as trunk repositioning errors (TREs). Clinical measures related to balance, trunk extensor strength, and self-reported disability were obtained. TREs were significantly greater in the balance-impaired group than in the other groups, even when controlling for trunk extensor strength and body mass. In older adults, there were significant correlations between TREs and three clinical measures of balance and fall risk, UST and maximum step length (-0.65 to -0.75), and Timed Up & Go score (0.55), and between TREs and age (0.63-0.76). In each group TREs were similar under the three visual-surface conditions. Test-retest reliability for TREs was good to excellent (intraclass correlation coefficients > or =0.74). Older balance-impaired adults have larger TREs, and thus poorer trunk control, than do balance-unimpaired older individuals. TREs are reliable and valid measures of underlying balance impairment in older adults, and may eventually prove to be useful in predicting the ability to recover from losses of balance and to avoid falls.

  20. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  1. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  2. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  3. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  4. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor and blades must be mass balanced as necessary to— (1) Prevent excessive vibration; and (2) Prevent... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Mass balance. 29.659 Section 29.659...

  5. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors and blades must be mass balanced as necessary to— (1) Prevent excessive vibration; and (2) Prevent... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Mass balance. 27.659 Section 27.659...

  6. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor and blades must be mass balanced as necessary to— (1) Prevent excessive vibration; and (2) Prevent... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Mass balance. 29.659 Section 29.659...

  7. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors and blades must be mass balanced as necessary to— (1) Prevent excessive vibration; and (2) Prevent... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Mass balance. 27.659 Section 27.659...

  8. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors and blades must be mass balanced as necessary to— (1) Prevent excessive vibration; and (2) Prevent... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Mass balance. 27.659 Section 27.659...

  9. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor and blades must be mass balanced as necessary to— (1) Prevent excessive vibration; and (2) Prevent... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Mass balance. 29.659 Section 29.659...

  10. Feasibility Analysis of Liquefying Oxygen Generated from Water Electrolysis Units on Lunar Surface

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.

    2009-01-01

    Concepts for liquefying oxygen (O2) generated from water electrolysis subsystems on the Lunar surface were explored. Concepts for O2 liquefaction units capable of generating 1.38 lb/hr (0.63 kg/hr) liquid oxygen (LOX) were developed. Heat and mass balance calculations for the liquefaction concepts were conducted. Stream properties, duties of radiators, heat exchangers and compressors for the selected concepts were calculated and compared.

  11. Water, ice, and meteorological measurements at South Cascade Glacier, Washington, 1986-1991 balance years

    USGS Publications Warehouse

    Krimmel, Robert M.

    2000-01-01

    Mass balance and climate variables are reported for South Cascade Glacier, Washington, for the years 1986-91. These variables include air temperature, precipitation, water runoff, snow accumulation, snow and ice melt terminus position, surface level, and ice speed. Data are reduced to daily and monthly values where appropriate. The glacier-averaged values of spring snow accumulation and fall net balance given in this report differ from previous results because amore complete analysis is made. Snow accumulation values for the1986-91 period ranged from 3.54 (water equivalent) meters in 1991 to2.04 meters in 1987. Net balance values ranged from 0.07 meters in1991 to -2.06 meters in 1987. The glacier became much smaller during the 1986-91 period and retreated a cumulative 50 meters.

  12. Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada, from 1991 to 2015

    NASA Astrophysics Data System (ADS)

    Millan, Romain; Mouginot, Jeremie; Rignot, Eric

    2017-02-01

    Recent studies indicate that the glaciers and ice caps in Queen Elizabeth Islands (QEI), Canada have experienced an increase in ice mass loss during the last two decades, but the contribution of ice dynamics to this loss is not well known. We present a comprehensive mapping of ice velocity using a suite of satellite data from year 1991 to 2015, combined with ice thickness data from NASA Operation IceBridge, to calculate ice discharge. We find that ice discharge increased significantly after 2011 in Prince of Wales Icefield, maintained or decreased in other sectors, whereas glacier surges have little impact on long-term trends in ice discharge. During 1991-2005, the QEI mass loss averaged 6.3 ± 1.1 Gt yr-1, 52% from ice discharge and the rest from surface mass balance (SMB). During 2005-2014, the mass loss from ice discharge averaged 3.5 ± 0.2 Gt yr-1 (10%) versus 29.6 ± 3.0 Gt yr-1 (90%) from SMB. SMB processes therefore dominate the QEI mass balance, with ice dynamics playing a significant role only in a few basins.

  13. Mass balancing of hollow fan blades

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.

    1986-01-01

    A typical section model is used to analytically investigate the effect of mass balancing as applied to hollow, supersonic fan blades. A procedure to determine the best configuration of an internal balancing mass to provide flutter alleviation is developed. This procedure is applied to a typical supersonic shroudless fan blade which is unstable in both the solid configuration and when it is hollow with no balancing mass. The addition of an optimized balancing mass is shown to stabilize the blade at the design condition.

  14. Mass balance assessment for mercury in Lake Champlain

    USGS Publications Warehouse

    Gao, N.; Armatas, N.G.; Shanley, J.B.; Kamman, N.C.; Miller, E.K.; Keeler, G.J.; Scherbatskoy, T.; Holsen, T.M.; Young, T.; McIlroy, L.; Drake, S.; Olsen, Bill; Cady, C.

    2006-01-01

    A mass balance model for mercury in Lake Champlain was developed in an effort to understand the sources, inventories, concentrations, and effects of mercury (Hg) contamination in the lake ecosystem. To construct the mass balance model, air, water, and sediment were sampled as a part of this project and other research/monitoring projects in the Lake Champlain Basin. This project produced a STELLA-based computer model and quantitative apportionments of the principal input and output pathways of Hg for each of 13 segments in the lake. The model Hg concentrations in the lake were consistent with measured concentrations. Specifically, the modeling identified surface water inflows as the largest direct contributor of Hg into the lake. Direct wet deposition to the lake was the second largest source of Hg followed by direct dry deposition. Volatilization and sedimentation losses were identified as the two major removal mechanisms. This study significantly improves previous estimates of the relative importance of Hg input pathways and of wet and dry deposition fluxes of Hg into Lake Champlain. It also provides new estimates of volatilization fluxes across different lake segments and sedimentation loss in the lake. ?? 2006 American Chemical Society.

  15. Contributions to lateral balance control in ambulatory older adults.

    PubMed

    Sparto, Patrick J; Newman, A B; Simonsick, E M; Caserotti, P; Strotmeyer, E S; Kritchevsky, S B; Yaffe, K; Rosano, C

    2018-06-01

    In older adults, impaired control of standing balance in the lateral direction is associated with the increased risk of falling. Assessing the factors that contribute to impaired standing balance control may identify areas to address to reduce falls risk. To investigate the contributions of physiological factors to standing lateral balance control. Two hundred twenty-two participants from the Pittsburgh site of the Health, Aging and Body Composition Study had lateral balance control assessed using a clinical sensory integration balance test (standing on level and foam surface with eyes open and closed) and a lateral center of pressure tracking test using visual feedback. The center of pressure was recorded from a force platform. Multiple linear regression models examined contributors of lateral control of balance performance, including concurrently measured tests of lower extremity sensation, knee extensor strength, executive function, and clinical balance tests. Models were adjusted for age, body mass index, and sex. Larger lateral sway during the sensory integration test performed on foam was associated with longer repeated chair stands time. During the lateral center of pressure tracking task, the error in tracking increased at higher frequencies; greater error was associated with worse executive function. The relationship between sway performance and physical and cognitive function differed between women and men. Contributors to control of lateral balance were task-dependent. Lateral standing performance on an unstable surface may be more dependent upon general lower extremity strength, whereas visual tracking performance may be more dependent upon cognitive factors. Lateral balance control in ambulatory older adults is associated with deficits in strength and executive function.

  16. Muscle force output and electromyographic activity in squats with various unstable surfaces.

    PubMed

    Saeterbakken, Atle H; Fimland, Marius S

    2013-01-01

    The purpose of the study was to compare force output and muscle activity of leg and trunk muscles in isometric squats executed on stable surface (i.e., floor), power board, BOSU ball, and balance cone. Fifteen healthy men (23.3 ± 2.7 years, mass: 80.5 ± 8.5 kg, height: 1.81 ± 0.09 m) volunteered. The force output and electromyographic (EMG) activities of the rectus femoris, vastus medialis, vastus lateralis, biceps femoris, soleus, rectus abdominis, oblique external, and erector spinae were assessed. The order of the surfaces was randomized. One familiarization session was executed before the experimental test. Compared with stable surface (749 ± 222 N), the force output using power board was similar (-7%, p = 0.320) but lower for BOSU ball (-19%, p = 0.003) and balance cone (-24%, p ≤ 0.001). The force output using BOSU ball and balance cone was approximately 13% (p = 0.037) and approximately 18% (p = 0.001) less than the power board. There were similar EMG activities between the surfaces in all muscles except for rectus femoris, in which stable squat provided greater EMG activity than did the other exercises (p = 0.004-0.030). Lower EMG activity was observed in the rectus femoris using balance cone compared with the BOSU ball (p = 0.030). In conclusion, increasing the instability of the surface during maximum effort isometric squats usually maintains the muscle activity of lower-limb and superficial trunk muscles although the force output is reduced. This suggests that unstable surfaces in the squat may be beneficial in rehabilitation and as a part of periodized training programs, because similar muscle activity can be achieved with reduced loads.

  17. Groundwater discharge to wetlands driven by storm and flood events: Quantification using continuous Radon-222 and electrical conductivity measurements and dynamic mass-balance modelling

    NASA Astrophysics Data System (ADS)

    Gilfedder, B. S.; Frei, S.; Hofmann, H.; Cartwright, I.

    2015-09-01

    The dynamic response of groundwater discharge to external influences such as rainfall is an often neglected part of water and solute balances in wetlands. Here we develop a new field platform for long-term continuous 222Rn and electrical conductivity (EC) measurements at Sale Wetland, Australia to study the response of groundwater discharge to storm and flood events. The field measurements, combined with dynamic mass-balance modelling, demonstrate that the groundwater flux can increase from 3 to ∼20 mm d-1 following storms and up to 5 mm d-1 on the receding limb of floods. The groundwater pulses are likely produced by activation of local groundwater flow paths by water ponding on the surrounding flood plains. While 222Rn is a sensitive tracer for quantifying transient groundwater discharge, the mass-balance used to estimate fluxes is sensitive to parameterisation of gas exchange (k) with the atmosphere. Comparison of six equations for calculating k showed that, based on parameterisation of k alone, the groundwater flux estimate could vary by 58%. This work shows that neglecting transient processes will lead to errors in water and solute flux estimates based on infrequent point measurements. This could be particularly important for surface waters connected to contaminated or saline groundwater systems.

  18. DEVELOPMENT OF A CONTAMINANT TRANSPORT AND FATE MASS BALANCE CALIBRATION MODEL FOR LAKE MICHIGAN MASS BALANCE PROJECT (LMMBP)

    EPA Science Inventory

    Lake Michigan Mass Balance Project (LMMBP) was initiated to directly support the development of a lakewide management plan (LaMP) for Lake Michigan. A mass balance modeling approach is proposed for the project to addrss the realtionship between sources of toxic chemicals and thei...

  19. Remote Sensing of Cryosphere: Estimation of Mass Balance Change in Himalayan Glaciers

    NASA Astrophysics Data System (ADS)

    Ambinakudige, Shrinidhi; Joshi, Kabindra

    2012-07-01

    Glacial changes are an important indicator of climate change. Our understanding mass balance change in Himalayan glaciers is limited. This study estimates mass balance of some major glaciers in the Sagarmatha National Park (SNP) in Nepal using remote sensing applications. Remote sensing technique to measure mass balance of glaciers is an important methodological advance in the highly rugged Himalayan terrain. This study uses ASTER VNIR, 3N (nadir view) and 3B (backward view) bands to generate Digital Elevation Models (DEMs) for the SNP area for the years 2002, 2003, 2004 and 2005. Glacier boundaries were delineated using combination of boundaries available in the Global land ice measurement (GLIMS) database and various band ratios derived from ASTER images. Elevation differences, glacial area, and ice densities were used to estimate the change in mass balance. The results indicated that the rate of glacier mass balance change was not uniform across glaciers. While there was a decrease in mass balance of some glaciers, some showed increase. This paper discusses how each glacier in the SNP area varied in its annual mass balance measurement during the study period.

  20. Snow contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; Rösel, Anja; Dodd, Paul A.; Divine, Dmitry; Gerland, Sebastian; Martma, Tõnu; Leng, Melanie J.

    2017-03-01

    The salinity and water oxygen isotope composition (δ18O) of 29 first-year (FYI) and second-year (SYI) Arctic sea ice cores (total length 32.0 m) from the drifting ice pack north of Svalbard were examined to quantify the contribution of snow to sea ice mass. Five cores (total length 6.4 m) were analyzed for their structural composition, showing variable contribution of 10-30% by granular ice. In these cores, snow had been entrained in 6-28% of the total ice thickness. We found evidence of snow contribution in about three quarters of the sea ice cores, when surface granular layers had very low δ18O values. Snow contributed 7.5-9.7% to sea ice mass balance on average (including also cores with no snow) based on δ18O mass balance calculations. In SYI cores, snow fraction by mass (12.7-16.3%) was much higher than in FYI cores (3.3-4.4%), while the bulk salinity of FYI (4.9) was distinctively higher than for SYI (2.7). We conclude that oxygen isotopes and salinity profiles can give information on the age of the ice and enables distinction between FYI and SYI (or older) ice in the area north of Svalbard.Plain Language SummaryThe role of snow in sea ice mass balance is largely two fold. Firstly, it can slow down growth and melt due to its high insulation and high reflectance, but secondly it can actually contribute to sea ice growth if the snow cover is turned into ice. The latter is largely a consequence of high mass of snow on top of sea ice that can push the surface of the sea ice below sea level and seawater can flood the ice. This mixture of seawater and snow can then freeze and add to the growth of sea ice. This is very typical in the Antarctic but not believed to be so important in the Arctic. In this work we show, for the first time, that snow actually contributes significantly to the growth of Arctic sea ice. This is likely a consequence of the thinning of the Arctic sea ice. The conditions in the Arctic, with thinner and more seasonal ice thus resemble the ice pack in the Antarctic. Studies on the role of snow in the Arctic are critical to be able to understand the ongoing changes of the Arctic sea ice pack.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRF..118..667S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRF..118..667S"><span>Decadal-scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schlegel, N.-J.; Larour, E.; Seroussi, H.; Morlighem, M.; Box, J. E.</p> <p>2013-06-01</p> <p>The behavior of the Greenland Ice Sheet, which is considered a major contributor to sea level changes, is best understood on century and longer time scales. However, on decadal time scales, its response is less predictable due to the difficulty of modeling surface climate, as well as incomplete understanding of the dynamic processes responsible for ice flow. Therefore, it is imperative to understand how modeling advancements, such as increased spatial resolution or more comprehensive ice flow equations, might improve projections of ice sheet response to climatic trends. Here we examine how a finely resolved climate forcing influences a high-resolution ice stream model that considers longitudinal stresses. We simulate ice flow using a two-dimensional Shelfy-Stream Approximation implemented within the Ice Sheet System Model (ISSM) and use uncertainty quantification tools embedded within the model to calculate the sensitivity of ice flow within the Northeast Greenland Ice Stream to errors in surface mass balance (SMB) forcing. Our results suggest that the model tends to smooth ice velocities even when forced with extreme errors in SMB. Indeed, errors propagate linearly through the model, resulting in discharge uncertainty of 16% or 1.9 Gt/yr. We find that mass flux is most sensitive to local errors but is also affected by errors hundreds of kilometers away; thus, an accurate SMB map of the entire basin is critical for realistic simulation. Furthermore, sensitivity analyses indicate that SMB forcing needs to be provided at a resolution of at least 40 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6251B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6251B"><span>Quantifying ice cliff contribution to debris-covered glacier mass balance from multiple sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brun, Fanny; Wagnon, Patrick; Berthier, Etienne; Kraaijenbrink, Philip; Immerzeel, Walter; Shea, Joseph; Vincent, Christian</p> <p>2017-04-01</p> <p>Ice cliffs on debris-covered glaciers have been recognized as a hot spot for glacier melt. Ice cliffs are steep (even sometimes overhanging) and fast evolving surface features, which make them challenging to monitor. We surveyed the topography of Changri Nup Glacier (Nepalese Himalayas, Everest region) in November 2015 and 2016 using multiple sensors: terrestrial photogrammetry, Unmanned Aerial Vehicle (UAV) photogrammetry, Pléiades stereo images and ASTER stereo images. We derived 3D point clouds and digital elevation models (DEMs) following a Structure-from-Motion (SfM) workflow for the first two sets of data to monitor surface elevation changes and calculate the associated volume loss. We derived only DEMs for the two last data sets. The derived DEMs had resolutions ranging from < 5 cm to 30 m. The derived point clouds and DEMs are used to quantify the ice melt of the cliffs at different scales. The very high resolution SfM point clouds, together with the surface velocity field, will be used to calculate the volume losses of 14 individual cliffs, depending on their size, aspect or the presence of supra glacial lake. Then we will extend this analysis to the whole glacier to quantify the contribution of ice cliff melt to the overall glacier mass balance, calculated with the UAV and Pléiades DEMs. This research will provide important tools to evaluate the role of ice cliffs in regional mass loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41C0688K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41C0688K"><span>Evaluating Interannual Variability of Accumulation Gradients on the Juneau Icefield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koncewicz, E.; Bollen, K.; Burkhart, A.; Cabrera, V.; Rovzar, T.; Truax, O.; McNeil, C.; Nicholson, L. I.; O'Neel, S.</p> <p>2016-12-01</p> <p>The Juneau Icefield Research Program has collected mass balance data over the last 70 years on the Taku and Lemon Creek glaciers. We analyze data from 2004-2016 to investigate the interannual variability in the accumulation gradients of these two glaciers from ground penetrating radar (GPR), probing, and snow pits. Understanding interannual variability of accumulation gradients on the Juneau Icefield will help us to interpret its long-term mass balance record. The Lemon Creek Glacier is a small valley glacier on the southwest edge of the Icefield. GPR data was collected over the glacier surface in March 2015 and 2016. In July of 2014 and 2016, the accumulation area was probed for snow depth, and two snow pits were dug for snow depth and density. The accumulation gradients resulting from each method are compared between years to assess the interannnual variability of the accumulation gradient and the resulting glacier wide mass balance. The Taku Glacier is the largest outlet glacier on the Juneau Icefield. We use three snow pits dug each year along the longitudinal profile of the glacier between 1000m and 1115m, the region that typically reflects the ELA. In 2004, 2005, 2010, 2011, and 2016, snow probing was continued in the central region of the Taku and the resulting gradients are compared to each other and to the gradients derived from the snow pits. We assess the resulting impact on glacier wide mass balance furthering our understanding of the state of these two well-monitored glaciers on the Juneau Icefield.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28782014','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28782014"><span>Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hofer, Stefan; Tedstone, Andrew J; Fettweis, Xavier; Bamber, Jonathan L</p> <p>2017-06-01</p> <p>The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160008248&hterms=Balancing+equations&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DBalancing%2Bequations','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160008248&hterms=Balancing+equations&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DBalancing%2Bequations"><span>A Simple Analytic Model for Estimating Mars Ascent Vehicle Mass and Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Woolley, Ryan C.</p> <p>2014-01-01</p> <p>The Mars Ascent Vehicle (MAV) is a crucial component in any sample return campaign. In this paper we present a universal model for a two-stage MAV along with the analytic equations and simple parametric relationships necessary to quickly estimate MAV mass and performance. Ascent trajectories can be modeled as two-burn transfers from the surface with appropriate loss estimations for finite burns, steering, and drag. Minimizing lift-off mass is achieved by balancing optimized staging and an optimized path-to-orbit. This model allows designers to quickly find optimized solutions and to see the effects of design choices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1256391-sorption-atmospheric-gases-bulk-lithium-metal','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1256391-sorption-atmospheric-gases-bulk-lithium-metal"><span>Sorption of atmospheric gases by bulk lithium metal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hart, C. A.; Skinner, C. H.; Capece, A. M.; ...</p> <p>2016-01-01</p> <p>Lithium conditioning of plasma facing components has enhanced the performance of several fusion devices. Elemental lithium will react with air during maintenance activities and with residual gases (H 2O, CO, CO 2) in the vacuum vessel during operations. We have used a mass balance (microgram sensitivity) to measure the mass gain of lithium samples during exposure of a ~1 cm 2 surface to ambient and dry synthetic air. For ambient air, we found an initial mass gain of several mg/h declining to less than 1 mg/h after an hour and decreasing by an order of magnitude after 24 h. Amore » 9 mg sample achieved a final mass gain corresponding to complete conversion to Li 2CO 3 after 5 days. Exposure to dry air resulted in a 30 times lower initial rate of mass gain. The results have implications for the chemical state of lithium plasma facing surfaces and for safe handling of lithium coated components.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3173N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3173N"><span>New Mass-Conserving Bedrock Topography for Pine Island Glacier Impacts Simulated Decadal Rates of Mass Loss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nias, I. J.; Cornford, S. L.; Payne, A. J.</p> <p>2018-04-01</p> <p>High-resolution ice flow modeling requires bedrock elevation and ice thickness data, consistent with one another and with modeled physics. Previous studies have shown that gridded ice thickness products that rely on standard interpolation techniques (such as Bedmap2) can be inconsistent with the conservation of mass, given observed velocity, surface elevation change, and surface mass balance, for example, near the grounding line of Pine Island Glacier, West Antarctica. Using the BISICLES ice flow model, we compare results of simulations using both Bedmap2 bedrock and thickness data, and a new interpolation method that respects mass conservation. We find that simulations using the new geometry result in higher sea level contribution than Bedmap2 and reveal decadal-scale trends in the ice stream dynamics. We test the impact of several sliding laws and find that it is at least as important to accurately represent the bedrock and initial ice thickness as the choice of sliding law.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/20069','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/20069"><span>Soil carbon changes: comparing flux monitoring and mass balance in a box lysimeter experiment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>S.M. Nay; B.T. Bormann</p> <p>2000-01-01</p> <p>Direct measures of soil-surface respiration are needed to evaluate belowground biological processes, forest productivity, and ecosystem responses to global change. Although infra-red gas analyzer {IRGA) methods track reference CO2 flows in lab studies, questions remain for extrapolating IRGA methods to field conditions. We constructed 10 box...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=338180&Lab=NERL&keyword=Control+AND+design&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=338180&Lab=NERL&keyword=Control+AND+design&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Water Quality Assessment Simulation Program (WASP8): Upgrades to the Advanced Toxicant Module for Simulating Dissolved Chemicals, Nanomaterials, and Solids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The Water Quality Analysis Simulation Program (WASP) is a dynamic, spatially-resolved, differential mass balance fate and transport modeling framework. WASP is used to develop models to simulate concentrations of environmental contaminants in surface waters and sediments. As a mo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016TCry...10.2361N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016TCry...10.2361N"><span>A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; Lhermitte, Stef; Howat, Ian; Fettweis, Xavier; van den Broeke, Michiel R.</p> <p>2016-10-01</p> <p>This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958-2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015TCry....9..945L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015TCry....9..945L"><span>Future climate and surface mass balance of Svalbard glaciers in an RCP8.5 climate scenario: a study with the regional climate model MAR forced by MIROC5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lang, C.; Fettweis, X.; Erpicum, M.</p> <p>2015-05-01</p> <p>We have performed a future projection of the climate and surface mass balance (SMB) of Svalbard with the MAR (Modèle Atmosphérique Régional) regional climate model forced by MIROC5 (Model for Interdisciplinary Research on Climate), following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of melt around 2050, with a larger melt increase in the south compared to the north of the archipelago. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to a cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a stronger winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. By 2085, SMB is projected to become negative over all of Svalbard's glaciated regions, leading to the rapid degradation of the firn layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/2000/4074/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/2000/4074/report.pdf"><span>Mass balance, meteorological, ice motion, surface altitude, runoff, and ice thickness data at Gulkana Glacier, Alaska, 1995 balance year</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>March, Rod S.</p> <p>2000-01-01</p> <p>The 1995 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data obtained in the basin. Averaged over the glacier, the measured winter snow balance was 0.94 meter on April 19, 1995, 0.6 standard deviation below the long-term average; the maximum winter snow balance, 0.94 meter, was reached on April 25, 1995; the net balance (from September 18, 1994 to August 29, 1995) was -0.70 meter, 0.76 standard deviation below the long-term average. The annual balance (October 1, 1994, to September 30, 1995) was -0.86 meter. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier-thickness changes. Annual stream runoff was 2.05 meters averaged over the basin, approximately equal to the long-term average. The 1976 ice-thickness data are reported from a single site near the highest measurement site (180 meters thick) and from two glacier cross profiles near the mid-glacier (270 meters thick on centerline) and low glacier (150 meters thick on centerline) measurement sites. A new area-altitude distribution determined from 1993 photogrammetry is reported. Area-averaged balances are reported from both the 1967 and 1993 area-altitude distribution so the reader may directly see the effect of the update. Briefly, loss of ablation area between 1967 and 1993 results in a larger weighting being applied to data from the upper glacier site and hence, increases calculated area-averaged balances. The balance increase is of the order of 15 percent for net balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4160R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4160R"><span>Mass balance of Djankuat Glacier, Central Caucasus: observations, modeling and prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rybak, Oleg; Mariia, Kaminskaia; Stanislav, Kutuzov; Ivan, Lavrentiev; Polina, Morozova; Victor, Popovnin; Elena, Rybak</p> <p>2017-04-01</p> <p>Djankuat is a typical valley glacier on the northern slope of the main Caucasus chain. Its present day area is approximately 2.5 square km with the characteristic ice thickness of several tens of meters. As well as other glaciers in the region, Djankuat has been shrinking during the last several decades, its cumulative mass balance in 1968-2016 was equal to -13.6 m w.e. In general, Caucasus' glaciers lost approximately one-third of their area and half of the volume. Prediction of further deradation of glaciers in changing environment is a challenging task because rivers fed by glacier melt water provide from 40 to 70% of the total river run-off in the adjacent piedmont territories. Growing demand in fresh water is rather critical for the local economy development and for growing population, motivating elaboration of an effitient instrument for evaluation and forecasting of the glaciation in the Greater Caucasus. Unfortunately, systematic observations are sparse limiting possibilities for proper model development for the most of the glaciers. Under these circumstances, we have to rely on the models developed for the few well-studied ones, like Djankuat, which is probably one of the most explored glaciers in the world. Accumulation and ablation rates have been observed here systematically and uninterruptedly since mid 60-ies using dense stake network. Together with the mass balance components, changes in flow velocity, ice thickness and geometry were regularly evaluated. During the last several ablation seasons, direct meteorological observations were carried out using an AMS. Long series of meteorological observations at the nearest weather station allow making assessment of the glacier response to climate change in the second half of the 20th century. Abundant observation data gave us the opportunity to elaborate, calibrate and validate an efficient mathematical model of surface mass balance of a typical glacier in the region. Since many glaciers in the Caucasus are partially covered with debris, the model allows distinguishing between clear and debris-covered surfaces when describing heat exchange of the glacier with the atmosphere. Evaluation of the future state of the glacier is carried out using a hybrid downscaling technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C53C0787S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C53C0787S"><span>Development of a multi-sensor elevation time series pole-ward of 86°S in support of altimetry validation and ice sheet mass balance studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Studinger, M.; Brunt, K. M.; Casey, K.; Medley, B.; Neumann, T.; Manizade, S.; Linkswiler, M. A.</p> <p>2015-12-01</p> <p>In order to produce a cross-calibrated long-term record of ice-surface elevation change for input into ice sheet models and mass balance studies it is necessary to "link the measurements made by airborne laser altimeters, satellite measurements of ICESat, ICESat-2, and CryoSat-2" [IceBridge Level 1 Science Requirements, 2012] and determine the biases and the spatial variations between radar altimeters and laser altimeters using different wavelengths. The convergence zones of all ICESat tracks (86°S) and all ICESat-2 and CryoSat-2 tracks (88°S) are in regions of relatively low accumulation, making them ideal for satellite altimetry calibration. In preparation for ICESat-2 validation, the IceBridge and ICESat-2 science teams have designed IceBridge data acquisitions around 86°S and 88°S. Several aspects need to be considered when comparing and combining elevation measurements from different radar and laser altimeters, including: a) foot print size and spatial sampling pattern; b) accuracy and precision of each data sets; c) varying signal penetration into the snow; and d) changes in geodetic reference frames over time, such as the International Terrestrial Reference Frame (ITRF). The presentation will focus on the analysis of several IceBridge flights around 86 and 88°S with the LVIS and ATM airborne laser altimeters and will evaluate the accuracy and precision of these data sets. To properly interpret the observed elevation change (dh/dt) as mass change, however, the various processes that control surface elevation fluctuations must be quantified and therefore future work will quantify the spatial variability in snow accumulation rates pole-ward of 86°S and in particular around 88°S. Our goal is to develop a cross-validated multi-sensor time series of surface elevation change pole-ward of 86°S that, in combination with measured accumulation rates, will support ICESat-2 calibration and validation and ice sheet mass balance studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411463S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411463S"><span>Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.</p> <p>2017-11-01</p> <p>Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PolSc..10..111N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PolSc..10..111N"><span>Net mass balance calculations for the Shirase Drainage Basin, east Antarctica, using the mass budget method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakamura, Kazuki; Yamanokuchi, Tsutomu; Doi, Koichiro; Shibuya, Kazuo</p> <p>2016-06-01</p> <p>We quantify the mass budget of the Shirase drainage basin (SHI), Antarctica, by separately estimating snow accumulation (surface mass balance; SMB) and glacier ice mass discharge (IMD). We estimated the SMB in the SHI, using a regional atmospheric climate model (RACMO2.1). The SMB of the mainstream A flow region was 12.1 ± 1.5 Gt a-1 for an area of 1.985 × 105 km2. Obvious overestimation of the model round the coast, ∼0.5 Gt a-1, was corrected for. For calculating the IMD, we employed a 15-m resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with a digital elevation model (DEM) to determine the heights at the grounding line (GL), after comparison with the interpolated Bamber DEM grid heights; the results of this are referred to as the measured heights. Ice thickness data at the GL were inferred by using a free-board relationship between the measured height and the ice thickness, and considering the measured firn depth correction (4.2 m with the reference ice density of 910 kg m-3) for the nearby blue-ice area. The total IMD was estimated to be 14.0 ± 1.8 Gt a-1. Semi-empirical firn densification model gives the estimate within 0.1-0.2 Gt a-1 difference. The estimated net mass balance, -1.9 Gt a-1, has a two-σ uncertainty of ±3.3 Gt a-1, and probable melt water discharge strongly suggests negative NMB, although the associated uncertainty is large.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011TCry....5..349B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011TCry....5..349B"><span>Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bolch, T.; Pieczonka, T.; Benn, D. I.</p> <p>2011-04-01</p> <p>Mass loss of Himalayan glaciers has wide-ranging consequences such as changing runoff distribution, sea level rise and an increasing risk of glacial lake outburst floods (GLOFs). The assessment of the regional and global impact of glacier changes in the Himalaya is, however, hampered by a lack of mass balance data for most of the range. Multi-temporal digital terrain models (DTMs) allow glacier mass balance to be calculated. Here, we present a time series of mass changes for ten glaciers covering an area of about 50 km2 south and west of Mt. Everest, Nepal, using stereo Corona spy imagery (years 1962 and 1970), aerial images and recent high resolution satellite data (Cartosat-1). This is the longest time series of mass changes in the Himalaya. We reveal that the glaciers have been significantly losing mass since at least 1970, despite thick debris cover. The specific mass loss for 1970-2007 is 0.32 ± 0.08 m w.e. a-1, however, not higher than the global average. Comparisons of the recent DTMs with earlier time periods indicate an accelerated mass loss. This is, however, hardly statistically significant due to high uncertainty, especially of the lower resolution ASTER DTM. The characteristics of surface lowering can be explained by spatial variations of glacier velocity, the thickness of the debris-cover, and ice melt due to exposed ice cliffs and ponds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H31A1103S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H31A1103S"><span>The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stwertka, C.; Strong, C.</p> <p>2012-12-01</p> <p>A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4930273','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4930273"><span>Mass Balance Assessment for Six Neonicotinoid Insecticides During Conventional Wastewater and Wetland Treatment: Nationwide Reconnaissance in United States Wastewater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2016-01-01</p> <p>Occurrence and removal of six high-production high-volume neonicotinoids was investigated in 13 conventional wastewater treatment plants (WWTPs) and one engineered wetland. Flow-weighted daily composites were analyzed by isotope dilution liquid chromatography tandem mass spectrometry, revealing the occurrence of imidacloprid, acetamiprid, and clothianidin at ng/L concentrations in WWTP influent (60.5 ± 40.0; 2.9 ± 1.9; 149.7 ± 289.5, respectively) and effluent (58.5 ± 29.1; 2.3 ± 1.4; 70.2 ± 121.8, respectively). A mass balance showed insignificant removal of imidacloprid (p = 0.09, CI = 95%) and limited removal of the sum of acetamiprid and its degradate, acetamiprid-N-desmethyl (18 ± 4%, p = 0.01, CI = 95%). Clothianidin was found only intermittently, whereas thiamethoxam, thiacloprid, and dinotefuran were never detected. In the wetland, no removal of imidacloprid or acetamiprid was observed. Extrapolation of data from 13 WWTPs to the nation as a whole suggests annual discharges on the order of 1000–3400 kg/y of imidacloprid contained in treated effluent to surface waters nationwide. This first mass balance and first United States nationwide wastewater reconnaissance identified imidacloprid, acetamiprid, and clothianidin as recalcitrant sewage constituents that persist through wastewater treatment to enter water bodies at significant loadings, potentially harmful to sensitive aquatic invertebrates. PMID:27196423</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160001028','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160001028"><span>Mars Surface Tunnel Element Concept</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rucker, Michelle A.; Jefferies, Sharon; Howe, A. Scott; Howard, Robert; Mary, Natalie; Watson, Judith; Lewis, Ruthan</p> <p>2016-01-01</p> <p>When the first human visitors on Mars prepare to return to Earth, they will have to comply with stringent planetary protection requirements. Apollo Program experience warns that opening an EVA hatch directly to the surface will bring dust into the ascent vehicle. To prevent inadvertent return of potential Martian contaminants to Earth, careful consideration must be given to the way in which crew ingress their Mars Ascent Vehicle (MAV). For architectures involving more than one surface element-such as an ascent vehicle and a pressurized rover or surface habitat-a retractable tunnel that eliminates extravehicular activity (EVA) ingress is an attractive solution. Beyond addressing the immediate MAV access issue, a reusable tunnel may be useful for other surface applications, such as rover to habitat transfer, once its primary mission is complete. A National Aeronautics and Space Administration (NASA) team is studying the optimal balance between surface tunnel functionality, mass, and stowed volume as part of the Evolvable Mars Campaign (EMC). The study team began by identifying the minimum set of functional requirements needed for the tunnel to perform its primary mission, as this would presumably be the simplest design, with the lowest mass and volume. This Minimum Functional Tunnel then becomes a baseline against which various tunnel design concepts and potential alternatives can be traded, and aids in assessing the mass penalty of increased functionality. Preliminary analysis indicates that the mass of a single-mission tunnel is about 237 kg, not including mass growth allowance.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2878B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2878B"><span>Modelling large-scale ice-sheet-climate interactions at the last glacial inception</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Browne, O. J. H.; Gregory, J. M.; Payne, A. J.; Ridley, J. K.; Rutt, I. C.</p> <p>2010-05-01</p> <p>In order to investigate the interactions between coevolving climate and ice-sheets on multimillenial timescales, a low-resolution atmosphere-ocean general circulation model (AOGCM) has been coupled to a three-dimensional thermomechanical ice-sheet model. We use the FAMOUS AOGCM, which is almost identical in formulation to the widely used HadCM3 AOGCM, but on account of its lower resolution (7.5° longitude × 5° latitude in the atmosphere, 3.75°× 2.5° in the ocean) it runs about ten times faster. We use the community ice-sheet model Glimmer at 20 km resolution, with the shallow ice approximation and an annual degree-day scheme for surface mass balance. With the FAMOUS-Glimmer coupled model, we have simulated the growth of the Laurentide and Fennoscandian ice sheets at the last glacial inception, under constant orbital forcing and atmospheric composition for 116 ka BP. Ice grows in both regions, totalling 5.8 m of sea-level equivalent in 10 ka, slower than proxy records suggest. Positive climate feedbacks reinforce this growth at local scales (order hundreds of kilometres), where changes are an order of magnitude larger than on the global average. The albedo feedback (higher local albedo means a cooler climate) is important in the initial expansion of the ice-sheet area. The topography feedback (higher surface means a cooler climate) affects ice-sheet thickness and is not noticeable for the first 1 ka. These two feedbacks reinforce each other. Without them, the ice volume is ~90% less after 10 ka. In Laurentia, ice expands initially on the Canadian Arctic islands. The glaciation of the islands eventually cools the nearby mainland climate sufficiently to produce a positive mass balance there. Adjacent to the ice-sheets, cloud feedbacks tend to reduce the surface mass balance and restrain ice growth; this is an example of a local feedback whose simulation requires a model that includes detailed atmospheric physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..143a2009T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..143a2009T"><span>Influence of foundation mass and surface roughness on dynamic response of beam on dynamic foundation subjected to the moving load</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tran Quoc, Tinh; Khong Trong, Toan; Luong Van, Hai</p> <p>2018-04-01</p> <p>In this paper, Improved Moving Element Method (IMEM) is used to analyze the dynamic response of Euler-Bernoulli beam structures on the dynamic foundation model subjected to the moving load. The effects of characteristic foundation model parameters such as Winkler stiffness, shear layer based on the Pasternak model, viscoelastic dashpot and characteristic parameter of mass on foundation. Beams are modeled by moving elements while the load is fixed. Based on the principle of the publicly virtual balancing and the theory of moving element method, the motion differential equation of the system is established and solved by means of the numerical integration based on the Newmark algorithm. The influence of mass on foundation and the roughness of the beam surface on the dynamic response of beam are examined in details.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019549','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019549"><span>Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.</p> <p>1997-01-01</p> <p>In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [18O/16O (??18O), 2H/1H (??D), 13C/12C (??13C), tritium(3H), and strontium-87/strontium-86(87Sr/86Sr)]along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Floridan aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes (??18O and ??D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in ??18O and ??D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to Lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in 18O and D from five of 12 sampled municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, ??13C and 87Sr/86Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions. In ground water downgradient from Lake Bradford, the dominant processes controlling carbon cycling in ground water were dissolution of carbonate minerals, aerobic degradation of organic matter, and hydrolysis of silicate minerals. In the deeper parts of the Upper Floridan aquifer, the major processes controlling the concentrations of major dissolved species included dissolution of calcite and dolomite, and degradation of organic matter under oxic conditions. The Upper Floridan aquifer is highly susceptible to contamination from activities at the land surface in the Tallahassee area. The presence of post-1950s concentrations of 3H in ground water from depths greater than 100 m below land surface indicates that water throughout much of the Upper Floridan aquifer has been recharged during the last 40 years. Even though mixing is likely between ground water and surface water in many parts of the study area, the Upper Floridan aquifer produces good quality water, which due to dilution effects shows little if any impact from trace elements or nutrients that are present in surface waters.The water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface water. Chemical and isotopic analyses, tritium, and strontium-87/strontium-86 along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of groundwater. Differences in the composition of water isotopes in rainfall, groundwater and surface water were used to develop mixing models of surface water and groundwater. Even though mixing is likely between groundwater and surface water in many parts of the study area, the Upper Floridan aquifer produces good quality water, showing little impact from trace elements present in surface waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930081400','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930081400"><span>Considerations affecting the additional weight required in mass balance of ailerons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Diehl, W S</p> <p>1937-01-01</p> <p>This paper is essentially a consideration of mass balance of ailerons from a preliminary design standpoint, in which the extra weight of the mass counterbalance is the most important phase of the problem. Equations are developed for the required balance weight for a simple aileron and this weight is correlated with the mass-balance coefficient. It is concluded the location of the c.g. of the basic aileron is of paramount importance and that complete mass balance imposes no great weight penalty if the aileron is designed to have its c.g. inherently near to the hinge axis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25811969','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25811969"><span>Greenland ice sheet mass balance: a review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khan, Shfaqat A; Aschwanden, Andy; Bjørk, Anders A; Wahr, John; Kjeldsen, Kristian K; Kjær, Kurt H</p> <p>2015-04-01</p> <p>Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance and to ice discharge, which are forced by internal or external (atmospheric/oceanic/basal) fluctuations. Regardless of the measurement method, observations over the last two decades show an increase in ice loss rate, associated with speeding up of glaciers and enhanced melting. However, both ice discharge and melt-induced mass losses exhibit rapid short-term fluctuations that, when extrapolated into the future, could yield erroneous long-term trends. In this paper we review the GrIS mass loss over more than a century by combining satellite altimetry, airborne altimetry, interferometry, aerial photographs and gravimetry data sets together with modelling studies. We revisit the mass loss of different sectors and show that they manifest quite different sensitivities to atmospheric and oceanic forcing. In addition, we discuss recent progress in constructing coupled ice-ocean-atmosphere models required to project realistic future sea-level changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C12B..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C12B..06B"><span>North Atlantic Oscillation Drives Regional Greenland Glacier Volume During the 20th Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bjork, A. A.; Aagaard, S.; Hallander, A. M.; Khan, S. A.; Box, J. E.; Kjeldsen, K. K.; Larsen, N. K.; Korsgaard, N. J.; Cappelen, J.; Colgan, W. T.; Machguth, H.; Andresen, C. S.; Kjaer, K. H.</p> <p>2016-12-01</p> <p>While most areas of the Greenland ice sheet have undergone rapid mass loss since c. 1990, the central eastern section of the ice sheet has advanced and gained mass. This contrasting regional trend has been attributed to positive surface mass balance (SMB) in the absence of significant dynamic mass loss. To constrain the atypical behavior in this region, we mapped glacier length fluctuations of nearly 200 peripheral glaciers and ice caps (PGICs) over a 103-year period, and compare the results with c. 150 new glacier length records from central west Greenland. We demonstrate that the regional response in ice volume is closely correlated to changes in precipitation, governed by circulation patterns associated with the North Atlantic Oscillation (NAO) and secondarily influenced by temperature forcing in certain periods. More broadly, we find that the NAO contributes to contrasting precipitation variability in East and West Greenland, where it appears to be responsible for at least 10% and more than 25%, respectively, of the variability in ice sheet accumulation rate. This east-west asymmetry, which influences both LGICs and the ice sheet, illustrates how substantial uncertainty in NAO projections directly contributes to uncertainty in mass balance projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6301L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6301L"><span>Comparative glacio-climatological analysis of mass balance variability along the geographical margin of Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehoczky, Annamária; Kern, Zoltán; Pongrácz, Rita</p> <p>2014-05-01</p> <p>Glacio-climatological studies recognise glacier mass balance changes as high-confident climate indicators. The climatic sensitivity of a glacier does not simply depend on regional climate variability but also influenced via large- and mesoscale atmospheric circulation patterns. This study focuses on recent changes in the mass balance using records from three border regions of Europe, and investigates the relationships between the seasonal mass balance components, regional climatic conditions, and distant atmospheric forcing. Since glaciers in different macro-climatological conditions (i.e., mid-latitudes or high-latitudes, dry-continental or maritime regions) may present strongly diverse mass balance characteristics, the three analysed regions were selected from different glacierised macroregions (using the database of the World Glacier Monitoring Service). These regions belong to the Caucasus Mountains (Central Europe macroregion), the Polar Ural (Northern Asia macroregion), and Svalbard (Arctic Islands macroregion). The analysis focuses on winter, summer, and annual mass balance series of eight glaciers. The climatic variables (atmospheric pressure, air temperature, precipitation) and indices of teleconnection patterns (e.g., North Atlantic Oscillation, Pacific Decadal Oscillation) are used from the gridded databases of the University of East Anglia, Climatic Research Unit and the National Oceanic and Atmospheric Administration, National Center for Environmental Prediction. However, the period and length of available mass balance data in the selected regions vary greatly (the first full record is in 1958, Polar Ural; the last is in 2010, Caucasus Mountains), a comparative analysis can be carried out for the period of 1968-1981. Since glaciers from different regions respond to large- and mesoscale climatic forcings differently, and because the mass balance of glaciers within a region often co-vary, our specific objectives are (i) to examine the variability and the integrative climatic signal in the averaged mass balance records of the selected regions; (ii) to analyse the possible coupling between the mass balance and climatic variables, including the dominant patterns of Northern Hemisphere climate variability; and (iii) to compare the main characteristics of the three regions. Furthermore, (iv) a short discussion is given considering the significant decreasing trend of the cumulative annual mass balances in every region under the detected climatic changes in the second half of the 20th century. Preliminary results suggest that the strongest teleconnection links could be between winter mass balance and winter NAO for the Polar Ural (r=0.46, p<0.05), and between annual mass balance and PDO for Svalbard (r=-0.43, p<0.05). Neither seasonal, nor annual mass balance records showed significant correlation with any of the examined circulation indices for the Caucasus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT........68E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT........68E"><span>The present-day climate of Greenland : a study with a regional climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ettema, J.</p> <p>2010-04-01</p> <p>Present-day climate of Greenland Over the past 20 years, the Greenland ice sheet (GrIS) has warmed. This temperature increase can be explained by an increase in downwelling longwave radiation due to a warmer overlying atmosphere. These temperature changes are strongly correlated to changes in the large scale circulation over the ice sheet. Since 1990, the melt has also strongly increased along the ice margins, inducing significant increase in runoff. With no significant change found in the total precipitation, the GrIS surface mass balance (SMB) decreased by 12 Gt yr-1 or 7 kg m-2 yr-1 since 1990. Locally, the SMB trend reaches -90 kg m-2 yr-1 at the western and eastern ice margins. These conclusions are drawn from a modelling study by Janneke Ettema, which discusses the present-day climate and surface mass balance of the GrIS. The emphasis of this research is on understanding the underlying physical processes. Using the regional atmospheric climate model RACMO2/GR at high horizontal resolution (11km) has resulted in unprecedented detail in the ice sheet climatology and SMB. By incorporating processes such as percolation, retention and refreezing of meltwater in the surface parameterisation, the model explicitly calculates how these processes affect snow pack temperature, density and surface albedo. RACMO2/GR shows that the GrIS climate is spatially very variable. Characteristic for the ice sheet climate are the persistent katabatic winds and a quasi-permanent surface temperature deficit. Due to strong radiative cooling and turbulent heat transport towards the surface, the atmospheric boundary layer cools, providing optimal conditions for strong katabatic winds to occur. The strongest temperature deficit and wind speeds are found in the northeastern part of the ice sheet, whereas in the lower ablation zone the temperatures are more moderate due to surface melt and warm air advection. The high-resolution climate model revealed that the surface mass balance of the GrIS is 469 Gt yr-1, much higher than previously thought. Mass gain is dominated by snowfall (697 Gt yr-1) over rain (46 Gt yr-1), whereas mass loss is mainly controlled by runoff (248 Gt yr-1) and to a smaller extent by evaporation/sublimation (26 Gt yr-1). The largest accumulation rates are found at elevations below 2000 m in southeast Greenland, where local peaks occur of over 4000 kg m-2 yr-1. The ablation zone locally exhibits very strong SMB gradients with local mass loss of over 3000 kg m-2 yr-1 along the western ice margins. The results of RACMO2 for the Greenland ice sheet as presented in this thesis have greatly furthered our understanding of the coupling between atmospheric processes and the SMB of the GrIS. By using a high horizontal resolution of 11 km, RACMO2/GR displayed numerous interesting features that have not yet been addressed in this study, but which are definitely worth looking into. Examples are the regional momentum and heat budgets and the effect of the snow-free tundra on the ablation zone. If the horizontal model resolution could be downscaled to e.g. 5.5 km, it would open doors to apply RACMO2/GR to smaller ice caps, e.g. on Svalbard, Canada and Patagonia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C53A0767E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C53A0767E"><span>The North Water Polynya and Velocity, Calving Front and Mass Change in Surrounding Glaciers in Greenland and Canada Over the Last 30 Years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, L.</p> <p>2015-12-01</p> <p>Major uncertainties surround future estimates of sea level rise attributable to mass loss from Greenland and the surrounding ice caps in Canada. Understanding changes across these regions is vital as their glaciers have experienced dramatic changes in recent times. Attention has focused on the periphery of these regions where land ice meets the ocean and where ice acceleration, thinning and increased calving have been observed. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~85,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas strongly impact regional oceanography and play a vital role in heat and moisture exchange between the polar oceans and atmosphere. Where polynyas are present adjacent to tidewater glaciers their influence on ocean circulation and water temperatures has the potential to play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. They also have the potential to influence air masses reaching nearby glaciers and ice caps by creating a maritime climate which may impact on the glaciers' accumulation and surface melt and hence their thickness and mass balance. Polynya presence and size also have implications for sea ice extent and therefore may influence the buttressing effect on neighbouring tidewater glaciers. The work presented uses remote sensing and mass balance model data to study changes in the North Water polynya (extent, ice concentration, duration) and neighbouring glaciers and ice caps (velocities, calving front positions and mass balance) in Canada and Greenland over a period of approximately 30 years from the mid-1980s through to 2015.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29524852','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29524852"><span>Light touch leads to increased stability in quiet and perturbed balance: Equivalent effects between post-stroke and healthy older individuals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martinelli, Alessandra Rezende; Coelho, Daniel Boari; Teixeira, Luis Augusto</p> <p>2018-04-01</p> <p>Cerebral damage provoked by stroke may lead to deficits of quiet balance control and of the recovery of body equilibrium following an unanticipated postural perturbation. In this investigation we aimed to evaluate the effect of light touch (LT) of an earth-fixed surface on balance stability in individuals with post-stroke hemiparesis, taking performance of age-matched healthy participants as reference. Evaluations were made in conditions of full and no visual information. Analysis of quiet balance showed that LT induced higher balance stability, with reduced amplitude and velocity of postural sway. Evaluation of the effect of LT on automatic postural responses was made in the task of recovering body equilibrium following a mechanical perturbation of balance leading to fast forward body sway. Results showed that LT led to reduced amplitude of center of mass displacement following the perturbation, in addition to reduced amplitude and velocity of center of pressure under the feet, and lower activation of the lower legs muscles. Those effects of LT were observed in both the post-stroke and control groups, and did not interact with vision availability. Our results indicated then that individuals who suffered a cerebral stroke can stabilize perturbed and non-perturbed postural responses by lightly touching a stable surface to a similar extent of healthy older individuals. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911992K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911992K"><span>Mass balance of a highly active rock glacier during the period 1954 and 2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kellerer-Pirklbauer, Andreas; Kaufmann, Viktor; Rieckh, Matthias</p> <p>2017-04-01</p> <p>Active rock glaciers are creep phenomena of permafrost in high-relief terrain moving slowly downwards and are often characterised by distinct flow structures with ridges and furrows. Active rock glaciers consist of ice and rock material. The ice component might be either congelation (refreezing of liquid water) or sedimentary ('glacier') ice whereas the rock material might be either of periglacial or glacial origin. The formation period of rock glaciers lasts for centuries to millennia as judged from relative or absolute dating approaches. The input of ice and debris onto the rock glacier mass transport system over such long periods might change substantially over time. Long-term monitoring of mass transport, mass changes and nourishment processes of rock glaciers are rare. In this study we analysed on a decadal-scale mass transport (based on photogrammetric and geodetic data; series 1969-2016), mass changes (geodetically-based mass balance quantification; series 1954-2012), and mass input (based on optical data from an automatic digital camera; series 2006-2016) onto the Hinteres Langtal Rock Glacier. This rock glacier is 900 m long, up to 300 m wide, covers an area of 0.17 km2 and is one of the most active ones in the Eastern European Alps. Mass transport rates at the surface indicate relatively low mean annual surface velocities until the beginning of this millennium. A first peak in the horizontal surface velocity was reached in 2003/04 followed by a period of deceleration until 2007/08. Afterwards the rates increased again substantially from year to year with maximum values in 2014/15 (exceeding 6 m/a). This increase in surface velocities during the last decades was accompanied by crevasse formation and landslide activities at its front. Mass changes show for all six analysed periods between 1954 and 2012 a clear negative surface elevation change with mean annual values ranging from -0.016 to -0.058 m/a. This implies a total volume decrease of -435,895 m3 (averaging to -7515 m3/a) over the 58-year period at the rock glacier system. The only area of substantial surface elevation gain was during all periods the rock glacier front indicating a rock glacier advance. Mass input onto the rock glacier transport system was assessed analysing 2044 terrestrial images taken automatically between September 2006 and August 2016 from the main rooting zone of the rock glacier. Results indicate that neither snow and ice nor rock material have been transported in large quantities to the rock glacier system during the 10 year monitoring period. Notable mass movement events have been detected only six times. Perennial snow patches in the rooting zone of the rock glacier only survived on average every second summer. We conclude that the rates of rock glacier mass transport and volumetric losses of the rock glacier are far higher than debris and ice input. This rock glacier is clearly in a state of detachment from its nourishment area and prone to starvation which will eventually lead to rock glacier inactivation. This is a feasible fate for many currently active rock glaciers in the European Alps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvE..96a3116Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvE..96a3116Y"><span>Molecular-dynamics study on characteristics of energy and tangential momentum accommodation coefficients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamaguchi, Hiroki; Matsuda, Yu; Niimi, Tomohide</p> <p>2017-07-01</p> <p>Gas-surface interaction is studied by the molecular dynamics method to investigate qualitatively characteristics of accommodation coefficients. A large number of trajectories of gas molecules colliding to and scattering from a surface are statistically analyzed to calculate the energy (thermal) accommodation coefficient (EAC) and the tangential momentum accommodation coefficient (TMAC). Considering experimental measurements of the accommodation coefficients, the incident velocities are stochastically sampled to represent a bulk condition. The accommodation coefficients for noble gases show qualitative coincidence with experimental values. To investigate characteristics of these accommodation coefficients in detail, the gas-surface interaction is parametrically studied by varying the molecular mass of gas, the gas-surface interaction strength, and the molecular size of gas, one by one. EAC increases with increasing every parameter, while TMAC increases with increasing the interaction strength, but decreases with increasing the molecular mass and the molecular size. Thus, contradictory results in experimentally measured TMAC for noble gases could result from the difference between the surface conditions employed in the measurements in the balance among the effective parameters of molecular mass, interaction strength, and molecular size, due to surface roughness and/or adsorbed molecules. The accommodation coefficients for a thermo-fluid dynamics field with a temperature difference between gas and surface and a bulk flow at the same time are also investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/60028-mass-balance-computation-saguaro','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/60028-mass-balance-computation-saguaro"><span>Mass balance computation in SAGUARO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Baker, B.L.; Eaton, R.R.</p> <p>1986-12-01</p> <p>This report describes the development of the mass balance subroutines used with the finite-element code, SAGUARO, which models fluid flow in partially saturated porous media. Derivation of the basic mass storage and mass flux equations is included. The results of the SAGUARO mass-balance subroutine, MASS, are shown to compare favorably with the linked results of FEMTRAN. Implementation of the MASS option in SAGUARO is described. Instructions for use of the MASS option are demonstrated with the three sample cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7931G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7931G"><span>Incorporating moisture content in modeling the surface energy balance of debris-covered Changri Nup Glacier, Nepal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giese, Alexandra; Boone, Aaron; Morin, Samuel; Lejeune, Yves; Wagnon, Patrick; Dumont, Marie; Hawley, Robert</p> <p>2016-04-01</p> <p>Glaciers whose ablation zones are covered in supraglacial debris comprise a significant portion of glaciers in High Mountain Asia and two-thirds in the South Central Himalaya. Such glaciers evade traditional proxies for mass balance because they are difficult to delineate remotely and because they lose volume via thinning rather than via retreat. Additionally, their surface energy balance is significantly more complicated than their clean counterparts' due to a conductive heat flux from the debris-air interface to the ice-debris boundary, where melt occurs. This flux is a function of the debris' thickness; thermal, radiative, and physical properties; and moisture content. To date, few surface energy balance models have accounted for debris moisture content and phase changes despite the fact that they are well-known to affect fluxes of mass, latent heat, and conduction. In this study, we introduce a new model, ISBA-DEB, which is capable of solving not only the heat equation but also moisture transport and retention in the debris. The model is based upon Meteo-France's Interactions between Soil, Biosphere, and Atmosphere (ISBA) soil and vegetation model, significantly adapted for debris and coupled with the snowpack model Crocus within the SURFEX platform. We drive the model with continuous ERA-Interim reanalysis data, adapted to the local topography (i.e. considering local elevation and shadowing) and downscaled and de-biased using 5 years of in-situ meteorological data at Changri Nup glacier [(27.859N, 86.847E)] in the Khumbu Himal. The 1-D model output is then evaluated through comparison with measured temperature in and ablation under a 10-cm thick debris layer on Changri Nup. We have found that introducing a non-equilibrium model for water flow, rather than using the mixed-form Richard's equation alone, promotes greater consistency with moisture observations. This explicit incorporation of moisture processes improves simulation of the snow-debris-ice column's temperature gradient - and, thus, energy fluxes - through time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22643408','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22643408"><span>SSUIS - a research model for predicting suspended solids loads in stormwater runoff from urban impervious surfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brodie, Ian M</p> <p>2012-01-01</p> <p>Suspended solids from urban impervious surfaces (SSUIS) is a spreadsheet-based model that predicts the mass loading of suspended solids (SS) in stormwater runoff generated from impervious urban surfaces. The model is intended to be a research tool and incorporates several particle accumulation and washoff processes. Development of SSUIS is based on interpretation of storm event data obtained from a galvanised iron roof, a concrete car park and a bitumen road located in Toowoomba, Australia. SSUIS is a source area model that tracks the particle mass balance on the impervious surface and within its lateral drain to a point of discharge. Particles are separated into two groups: free and detained, depending on the rainfall energy required for surface washoff. Calibration and verification of SSUIS against the Toowoomba SS data yielded R(2) values ranging from 0.60 to 0.98. Parameter sensitivity analysis and an example of how SSUIS can be applied to predict the treatment efficiency of a grass swale are also provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740027821&hterms=1586&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2526%25231586','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740027821&hterms=1586&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2526%25231586"><span>Shooting method for solution of boundary-layer flows with massive blowing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, T.-M.; Nachtsheim, P. R.</p> <p>1973-01-01</p> <p>A modified, bidirectional shooting method is presented for solving boundary-layer equations under conditions of massive blowing. Unlike the conventional shooting method, which is unstable when the blowing rate increases, the proposed method avoids the unstable direction and is capable of solving complex boundary-layer problems involving mass and energy balance on the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=116234&keyword=viscosity&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=116234&keyword=viscosity&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>EFFECTS OF REVERSE OSMOSIS ISOLATION ON REACTIVITY OF NATURALLY OCCURRING DISSOLVED ORGANIC MATTER IN PHYSICOCHEMICAL PROCESSES. (R828045)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><p>A field reverse osmosis system was used to isolate dissolved organic matter (DOM) from two lacustrine and two riverine surface water sources. The rejection of DOM was on the order of 99% and did not vary significantly with pressure. A simple mass balance model using a single m...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015528','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015528"><span>Mass balance and sliding velocity of the Puget lobe of the cordilleran ice sheet during the last glaciation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Booth, D.B.</p> <p>1986-01-01</p> <p>An estimate of the sliding velocity and basal meltwater discharge of the Puget lobe of the Cordilleran ice sheet can be calculated from its reconstructed extent, altitude, and mass balance. Lobe dimensions and surface altitudes are inferred from ice limits and flow-direction indicators. Net annual mass balance and total ablation are calculated from relations empirically derived from modern maritime glaciers. An equilibrium-line altitude between 1200 and 1250 m is calculated for the maximum glacial advance (ca. 15,000 yr B.P.) during the Vashon Stade of the Fraser Glaciation. This estimate is in accord with geologic data and is insensitive to plausible variability in the parameters used in the reconstruction. Resultant sliding velocities are as much as 650 m/a at the equilibrium line, decreasing both up- and downglacier. Such velocities for an ice sheet of this size are consistent with nonsurging behavior. Average meltwater discharge increases monotonically downglacier to 3000 m3/sec at the terminus and is of a comparable magnitude to ice discharge over much of the glacier's ablation area. Palcoclimatic inferences derived from this reconstruction are consistent with previous, independently derived studies of late Pleistocene temperature and precipitation in the Pacific Northwest. ?? 1986.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28396434','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28396434"><span>Tectonic controls on the long-term carbon isotope mass balance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shields, Graham A; Mills, Benjamin J W</p> <p>2017-04-25</p> <p>The long-term, steady-state marine carbon isotope record reflects changes to the proportional burial rate of organic carbon relative to total carbon on a global scale. For this reason, times of high δ 13 C are conventionally interpreted to be oxygenation events caused by excess organic burial. Here we show that the carbon isotope mass balance is also significantly affected by tectonic uplift and erosion via changes to the inorganic carbon cycle that are independent of changes to the isotopic composition of carbon input. This view is supported by inverse covariance between δ 13 C and a range of uplift proxies, including seawater 87 Sr/ 86 Sr, which demonstrates how erosional forcing of carbonate weathering outweighs that of organic burial on geological timescales. A model of the long-term carbon cycle shows that increases in δ 13 C need not be associated with increased organic burial and that alternative tectonic drivers (erosion, outgassing) provide testable and plausible explanations for sustained deviations from the long-term δ 13 C mean. Our approach emphasizes the commonly overlooked difference between how net and gross carbon fluxes affect the long-term carbon isotope mass balance, and may lead to reassessment of the role that the δ 13 C record plays in reconstructing the oxygenation of earth's surface environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5410774','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5410774"><span>Tectonic controls on the long-term carbon isotope mass balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mills, Benjamin J. W.</p> <p>2017-01-01</p> <p>The long-term, steady-state marine carbon isotope record reflects changes to the proportional burial rate of organic carbon relative to total carbon on a global scale. For this reason, times of high δ13C are conventionally interpreted to be oxygenation events caused by excess organic burial. Here we show that the carbon isotope mass balance is also significantly affected by tectonic uplift and erosion via changes to the inorganic carbon cycle that are independent of changes to the isotopic composition of carbon input. This view is supported by inverse covariance between δ13C and a range of uplift proxies, including seawater 87Sr/86Sr, which demonstrates how erosional forcing of carbonate weathering outweighs that of organic burial on geological timescales. A model of the long-term carbon cycle shows that increases in δ13C need not be associated with increased organic burial and that alternative tectonic drivers (erosion, outgassing) provide testable and plausible explanations for sustained deviations from the long-term δ13C mean. Our approach emphasizes the commonly overlooked difference between how net and gross carbon fluxes affect the long-term carbon isotope mass balance, and may lead to reassessment of the role that the δ13C record plays in reconstructing the oxygenation of earth’s surface environment. PMID:28396434</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..308...15B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..308...15B"><span>On the icy edge at Louth and Korolev craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bapst, Jonathan; Byrne, Shane; Brown, Adrian J.</p> <p>2018-07-01</p> <p>The modern climate of Mars has been well characterized from over a decade of orbiting spacecraft, in situ measurements via landers/rovers, and theoretical advances in climate modeling. Nonetheless, important questions remain unanswered, including the present-day mass balance of the north polar residual cap and its icy outliers. Exposed water-ice mounds are found in craters, and extend as far equatorward as 70.2°N. Due to their southerly location, these ice mounds are likely more sensitive to ongoing changes in climate. We analyze high-resolution images of the Louth crater ice mound, and employ a coupled 1-D thermal and atmospheric model to estimate annual mass balance of both Louth and Korolev water ice. We incorporate the effects of shallowly-sloping surfaces and seasonally-dependent water ice albedo. No clear trend in the advance or retreat of Louth crater water ice is observed in over 4 Mars years of repeat, high-resolution images. Secular changes are either sufficiently small as to not be detected, or the ice is in equilibrium. Modeled mass balance ranges from -6 to +2 mm of water ice per Mars year at both sites, with nominal cases being in near-equilibrium (<0.5 mm of ice loss per Mars year).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23688223','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23688223"><span>The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: proof of widespread export to surface waters. Part II: the role of infiltration and surface runoff.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf</p> <p>2013-01-01</p> <p>Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196680','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196680"><span>The role of the upper tidal estuary in wetland blue carbon storage and flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Krauss, Ken W.; Noe, Gregory B.; Duberstein, Jamie A.; Conner, William H.; Stagg, Camille L.; Cormier, Nicole; Jones, Miriam C.; Bernhardt, Christopher E.; Lockaby, B. Graeme; From, Andrew S.; Doyle, Thomas W.; Day, Richard H.; Ensign, Scott H.; Pierfelice, Katherine N.; Hupp, Cliff R.; Chow, Alex T.; Whitbeck, Julie L.</p> <p>2018-01-01</p> <p>Carbon (C) standing stocks, C mass balance, and soil C burial in tidal freshwater forested wetlands (TFFW) and TFFW transitioning to low‐salinity marshes along the upper estuary are not typically included in “blue carbon” accounting, but may represent a significant C sink. Results from two salinity transects along the tidal Waccamaw and Savannah rivers of the US Atlantic Coast show total C standing stocks were 321‐1264 Mg C ha‐1 among all sites, generally shifting to greater soil storage as salinity increased. Carbon mass balance inputs (litterfall, woody growth, herbaceous growth, root growth, surface accumulation) minus C outputs (surface litter and root decomposition, gaseous C) over a period of up to 11 years were 340‐900 g C m‐2 yr‐1. Soil C burial was variable (7‐337 g C m‐2 yr‐1), and lateral C export was estimated as C mass balance minus soil C burial as 267‐849 g C m‐2yr‐1. This represents a large amount of C export to support aquatic biogeochemical transformations. Despite reduced C persistence within emergent vegetation, decomposition of organic matter, and higher lateral C export, total C storage increased as forests converted to marsh with salinization. These tidal river wetlands exhibited high N mineralization in salinity‐stressed forested sites and considerable P mineralization in low salinity marshes. Large C standing stocks and rates of C sequestration suggest that TFFW and oligohaline marshes are considerably important globally to coastal C dynamics and in facilitating energy transformations in areas of the world in which they occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150012198','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150012198"><span>Method of Calibrating a Force Balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)</p> <p>2015-01-01</p> <p>A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25950136','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25950136"><span>Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L</p> <p>2015-09-01</p> <p>There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1510233G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1510233G"><span>On the impact of using downscaled reanalysis data instead of direct measurements for modeling the mass balance of a tropical glacier (Cordillera Blanca, Peru)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galos, Stephan; Hofer, Marlis; Marzeion, Ben; Mölg, Thomas; Großhauser, Martin</p> <p>2013-04-01</p> <p>Due to their setting, tropical glaciers are sensitive indicators of mid-tropospheric meteorological variability and climate change. Furthermore these glaciers are of particular interest because they respond faster to climatic changes than glaciers located in mid- or high-latitudes. As long-term direct meteorological measurements in such remote environments are scarce, reanalysis data (e.g. ERA-Interim) provide a highly valuable source of information. Reanalysis datasets (i) enable a temporal extension of data records gained by direct measurements and (ii) provide information from regions where direct measurements are not available. In order to properly derive the physical exchange processes between glaciers and atmosphere from reanalysis data, downscaling procedures are required. In the present study we investigate if downscaled atmospheric variables (air temperature and relative humidity) from a reanalysis dataset can be used as input for a physically based, high resolution energy and mass balance model. We apply a well validated empirical-statistical downscaling model, fed with ERA-Interim data, to an automated weather station (AWS) on the surface of Glaciar Artesonraju (8.96° S | 77.63° W). The downscaled data is then used to replace measured air temperature and relative humidity in the input for the energy and mass balance model, which was calibrated using ablation data from stakes and a sonic ranger. In order to test the sensitivity of the modeled mass balance to the downscaled data, the results are compared to a reference model run driven solely with AWS data as model input. We finally discuss the results and present future perspectives for further developing this method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997SPIE.3242..181H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997SPIE.3242..181H"><span>Area-variable capacitive microaccelerometer with force-balancing electrodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ha, Byeoungju; Lee, Byeungleul; Sung, Sangkyung; Choi, Sangon; Shinn, Meenam; Oh, Yong-Soo; Song, Ci M.</p> <p>1997-11-01</p> <p>A surface micromachined accelerometer which senses an inertial motion with an area variation and a force balancing electrodes is developed. The grid-type planar mass of a 7 micrometers thick polysilicon is supported by four thin beams and suspended above a silicon substrate with a 1.5 micrometers air gap. The motion sensing electrodes are formed on the substrate. The sensor is designed as an interdigital rib structure that has a differential capacitor arrangement. The moveable electrodes are mounted on the mass and the pairs of the stationary electrodes are patterned on the substrate. In the accelerometer that has comb-type movable electrodes, the mechanical stress and the electrical pulling effects between a moveable electrodes and the fixed electrodes occur. However this grid-type structure can have a large area variation in a small area relatively without stress and pulling, high sensitivity can be achieved. In order to improve the dynamic rang and a linearity, a pair of comb shape force-balancing electrodes are implemented on both sides of the mass. The force-balancing electrodes are made of the same layer as the mass and anchored on a silicon substrate. When acceleration is applied in the lateral direction, the difference of capacitance results from the area variation between the two capacitors and is measured using a charge amplifier. As AC coupled complimentary pick- off signals are applied in paris of stationary electrodes, the undesirable effects due to temperature and electrical noise are reduced effectively. The accelerometer has a sensitivity of 28mV/g and a bandwidth of DC-120Hz. A resolution of 3mg and a non-linearity of 1.3 percent is achieved for a measurement range of +/- 9 g.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41E0713C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41E0713C"><span>Evaluation of a 12-km Satellite-Era Reanalysis of Surface Mass Balance for the Greenland Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cullather, R. I.; Nowicki, S.; Zhao, B.; Max, S.</p> <p>2016-12-01</p> <p>The recent contribution to sea level change from the Greenland Ice Sheet is thought to be strongly driven by surface processes including melt and runoff. Global reanalyses are potential means of reconstructing the historical time series of ice sheet surface mass balance (SMB), but lack spatial resolution needed to resolve ablation areas along the periphery of the ice sheet. In this work, the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) is used to examine the spatial and temporal variability of surface melt over the Greenland Ice Sheet. MERRA-2 is produced for the period 1980 to the present at a grid spacing of ½° latitude by ⅝° longitude, and includes snow hydrology processes including compaction, meltwater percolation and refreezing, runoff, and a prognostic surface albedo. The configuration of the MERRA-2 system allows for the background model - the Goddard Earth Observing System model, version 5 (GEOS-5) - to be carried in phase space through analyzed states via the computation of analysis increments, a capability referred to as "replay". Here, a MERRA-2 replay integration is conducted in which atmospheric forcing fields are interpolated and adjusted to sub- atmospheric grid-scale resolution. These adjustments include lapse-rate effects on temperature, humidity, precipitation, and other atmospheric variables that are known to have a strong elevation dependency over ice sheets. The surface coupling is performed such that mass and energy are conserved. The atmospheric forcing influences the surface representation, which operates on land surface tiles with an approximate 12-km spacing. This produces a high-resolution, downscaled SMB which is interactively coupled to the reanalysis model. We compare the downscaled SMB product with other reanalyses, regional climate model values, and a second MERRA-2 replay in which the background model has been replaced with a 12-km, non-hydrostatic version of GEOS-5. The assessment focuses on regional changes in SMB and SMB components, the identification of changes and temporal variability in the SMB equilibrium line, and the relation between SMB and other climate variables related to general circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP33A2273K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP33A2273K"><span>Developing a Validated Long-Term Satellite-Based Albedo Record in the Central Alaska Range to Improve Regional Hydroclimate Reconstructions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kreutz, K. J.; Godaire, T. P.; Burakowski, E. A.; Winski, D.; Campbell, S. W.; Wang, Z.; Sun, Q.; Hamilton, G. S.; Birkel, S. D.; Wake, C. P.; Osterberg, E. C.; Schaaf, C.</p> <p>2015-12-01</p> <p>Mountain glaciers around the world, particularly in Alaska, are experiencing significant surface mass loss from rapid climatic shifts and constitute a large proportion of the cryosphere's contribution to sea level rise. Surface albedo acts as a primary control on a glacier's mass balance, yet it is difficult to measure and quantify spatially and temporally in steep, mountainous settings. During our 2013 field campaign in Denali National Park to recover two surface to bedrock ice cores, we used an Analytical Spectral Devices (ASD) FieldSpec4 Standard Resolution spectroradiometer to measure incoming solar radiation, outgoing surface reflectance and optical grain size on the Kahiltna Glacier and at the Kahiltna Base Camp. A Campbell Scientific automatic weather station was installed on Mount Hunter (3900m) in June 2013, complementing a longer-term (2008-present) station installed at Kahiltna Base Camp (2100m). Use of our in situ data aids in the validation of surface albedo values derived from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite imagery. Comparisons are made between ASD FieldSpec4 ground measurements and 500m MODIS imagery to assess the ability of MODIS to capture the variability of surface albedo across the glacier surface. The MODIS MCD43A3 BRDF/Albedo Product performs well at Kahiltna Base Camp (<5% difference from ASD shortwave broadband data), but low biases in MODIS albedo (10-28% relative to ASD data) appear to occur along the Kahiltna Glacier due to the snow-free valley walls being captured in the 500m MODIS footprint. Incorporating Landsat imagery will strengthen our interpretations and has the potential to produce a long-term (1982-present) validated satellite albedo record for steep and mountainous terrain. Once validation is complete, we will compare the satellite-derived albedo record to the Denali ice core accumulation rate, aerosol records (i.e. volcanics and biomass burning), and glacier mass balance data. This research will ultimately contribute to an improved understanding of the relationship between glacier albedo, surface processes, and regional glacier hydroclimate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714078M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714078M"><span>Annual and seasonal mass balances of Chhota Shigri Glacier (benchmark glacier, Western Himalaya), India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mandal, Arindan; Ramanathan, Alagappan; Farooq Azam, Mohd; Wagnon, Patrick; Vincent, Christian; Linda, Anurag; Sharma, Parmanand; Angchuk, Thupstan; Bahadur Singh, Virendra; Pottakkal, Jose George; Kumar, Naveen; Soheb, Mohd</p> <p>2015-04-01</p> <p>Several studies on Himalayan glaciers have been recently initiated as they are of particular interest in terms of future water supply, regional climate change and sea-level rise. In 2002, a long-term monitoring program was initiated on Chhota Shigri Glacier (15.7 square km, 9 km long, 6263-4050 m a.s.l.) located in Lahaul and Spiti Valley, Himachal Pradesh, India. This glacier lies in the monsoon-arid transition zone (western Himalaya) and is a representative glacier in Lahaul and Spiti Valley. While annual mass balances have been measured continuously since 2002 using the glaciological method, seasonal scale observations began in 2009. The annual and seasonal mass balances were then analyzed along with meteorological conditions in order to understand the role of winter and summer balances on annual glacier-wide mass balance of Chhota Shigri glacier. During the period 2002-2013, the glacier experienced a negative glacier-wide mass balance of -0.59±0.40 m w.e. a-1 with a cumulative glaciological mass balance of -6.45 m w.e. Annual glacier-wide mass balances were negative except for four years (2004/05, 2008/09, 2009/10 and 2010/11) where it was generally close to balanced conditions. Equilibrium line altitude (ELA) for steady state condition is calculated as 4950 m a.s.l. corresponding to an accumulation area ratio (AAR) of 62% using annual glacier-wide mass balance, ELA and AAR data between 2002 and 2013. The winter glacier-wide mass balance between 2009 and 2013 ranges from a maximum value of 1.38 m w.e. in 2009/10 to a minimum value of 0.89 in 2012/13 year whereas the summer glacier-wide mass balance varies from the highest value of -0.95 m w.e. in 2010/11 to the lowest value of -1.72 m w.e. in 2011/12 year. The mean vertical mass balance gradient between 2002 and 2013 was 0.66 m w.e. (100 m)-1 quite similar to Alps, Nepalese Himalayas etc. Over debris covered area, the gradients are highly variable with a negative mean value of -2.15 m w.e. (100 m)-1 over 2002-2013 observation period. The negative gradients can be explained by the thickness of debris cover that increases with decrease in altitude, thus protecting the glacier more efficiently at lower altitudes. Mass balance is strongly dependent on debris cover, exposure (solar radiation) and the shading effect of surrounding steep slopes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4898V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4898V"><span>Reconstruction of past equilibrium line altitude using ice extent data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Visnjevic, Vjeran; Herman, Frederic; Podladchikov, Yuri</p> <p>2017-04-01</p> <p>With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. This last glacial advance left a strong observable imprint on the landscape, such as abandoned moraines, trimlines and other glacial geomorphic features. These features provide a valuable record of past continental climate. In particular, terminal moraines reflect the extent of glaciers and ice-caps, which itself reflects past temperature and precipitation conditions. Here we present an inverse approach, based on a Tikhonov regularization, we have recently developed to reconstruct the LGM mass balance from observed ice extent data. The ice flow model is developed using the shallow ice approximation and solved explicitly using Graphical Processing Units (GPU). The mass balance field, b, is the constrained variable defined by the ice surface S, balance rate β and the spatially variable equilibrium line altitude field (ELA): b = min (β ṡ(S(x,y)- ELA (x,y)),c). (1) where c is a maximum accumulation rate. We show that such a mass balance, and thus the spatially variable ELA field, can be inferred from the observed past ice extent and ice thickness at high resolution and very efficiently. The GPU implementation allows us solve one 1024x1024 grid points forward model run under 0.5s, which significantly reduces the time needed for our inverse method to converge. We start with synthetic test to demonstrate the method. We then apply the method to LGM ice extents of South Island of New Zealand, the Patagonian Andes, where we can see a clear influence of Westerlies on the ELA, and the European Alps. These examples show that the method is capable of constraining spatial variations in mass balance at the scale of a mountain range, and provide us with information on past continental climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C23C..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C23C..03S"><span>Surface water hydrology and the Greenland Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.</p> <p>2016-12-01</p> <p>Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......197G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......197G"><span>Regional Climate Modeling over the Glaciated Regions of the Canadian High Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gready, Benjamin P.</p> <p></p> <p>The Canadian Arctic Islands (CAI) contain the largest concentration of terrestrial ice outside of the continental ice sheets. Mass loss from this region has recently increased sharply due to above average summer temperatures. Thus, increasing the understanding of the mechanisms responsible for mass loss from this region is critical. Previously, Regional Climate Models (RCMs) have been utilized to estimate climatic balance over Greenland and Antarctica. This method offers the opportunity to study a full suite of climatic variables over extensive spatially distributed grids. However, there are doubts of the applicability of such models to the CAI, given the relatively complex topography of the CAI. To test RCMs in the CAI, the polar version of the regional climate model MM5 was run at high resolution over Devon Ice Cap. At low altitudes, residuals (computed through comparisons with in situ measurements) in the net radiation budget were driven primarily by residuals in net shortwave (NSW) radiation. Residuals in NSW are largely due to inaccuracies in modeled cloud cover and modeled albedo. Albedo on glaciers and ice sheets is oversimplified in Polar MM5 and its successor, the Polar version of the Weather Research and Forecast model (Polar WRF), and is an obvious place for model improvement. Subsequently, an inline parameterization of albedo for Polar WRF was developed as a function of the depth, temperature and age of snow. The parameterization was able to reproduce elevation gradients of seasonal mean albedo derived from satellite albedo measurements (MODIS MOD10A1 daily albedo), on the western slope of the Greenland Ice Sheet for three years. Feedbacks between modelled albedo and modelled surface energy budget components were identified. The shortwave radiation flux feeds back positively with changes to albedo, whereas the longwave, turbulent and ground energy fluxes all feed back negatively, with a maximum combined magnitude of two thirds of the shortwave feedback magnitude. These strong feedbacks demonstrate that an accurate albedo parameterization must be run inline within an RCM, to accurately quantify the net surface energy budget of an ice sheet. Finally, Polar WRF, with the improved albedo parameterization, was used to simulate climatic balance over the Queen Elizabeth Islands for the summers of 2001 to 2008. Climatic balance was derived from the output using energy balance and temperature index melt models. Regional mass balance was calculated by combining climatic balance with estimates of iceberg discharge. Mass balance estimates from the model agreed, within the bounds of uncertainty, with estimates from previous studies, thus supporting the assertion that mass loss from the QEI accelerated during the first decade of the 21st century. Melt rates on the seven major icecaps of the QEI became more correlated to one another during the period 2001-2008. However, precipitation became less correlated from 2003-2008. These observations are coincident with dramatic increases in melt on all of the ice caps, and it is speculated that both are caused by decreases in the scale of disturbances delivering precipitation to the region over time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28681134','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28681134"><span>Effect of body mass index and fat mass on balance force platform measurements during a one-legged stance in older adults.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pereira, Camila; Silva, Rubens A da; de Oliveira, Marcio R; Souza, Rejane D N; Borges, Renata J; Vieira, Edgar R</p> <p>2018-05-01</p> <p>The purpose of this study was to evaluate the impact of body mass index (BMI) and fat mass on balance force platform measurements in older adults. The sample consisted of 257 participants who were stratified into four groups by BMI: low weight, normal weight, pre-obesity and obesity. For fat mass variables, older individuals were classified into low and high-fat mass. All groups investigated performed three trials of one-legged stance balance on a force platform. Center of pressure (COP) domain parameters were computed from the mean across trials. Analysis of variance results revealed no significant interactions for groups and sexes for all COP parameters. Comparable balance results were found for BMI and fat groups for all COP parameters. A statistical effect (P < 0.05) was only reported for sex differences for COP parameters, regardless of BMI and fat mass variables. Overall, women presented better balance than men. In conclusion, BMI and fat mass do not seem to influence the balance of older adults during a one-leg stance task.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160000297','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160000297"><span>Thermal Ablation Modeling for Silicate Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Yih-Kanq</p> <p>2016-01-01</p> <p>A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913594F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913594F"><span>Surface elevation change over the Patagonia Ice Fields using CryoSat-2 swath altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foresta, Luca; Gourmelen, Noel; José Escorihuela, MarÍa; Garcia Mondejar, Albert; Wuite, Jan; Shepherd, Andrew; Roca, Mònica; Nagler, Thomas; Brockley, David; Baker, Steven; Nienow, Pete</p> <p>2017-04-01</p> <p>Satellite altimetry has been traditionally used in the past few decades to infer elevation of land ice, quantify changes in ice topography and infer mass balance estimates over large and remote areas such as the Greenland and Antarctic ice sheets. Radar Altimetry (RA) is particularly well suited to this task due to its all-weather year-round capability of observing the ice surface. However, monitoring of ice caps (area < 104 km^2) as well as mountain glaciers has proven more challenging. The large footprint of a conventional radar altimeter and relatively coarse ground track coverage are less suited to monitoring comparatively small regions with complex topography, so that mass balance estimates from RA rely on extrapolation methods to regionalize elevation change. Since 2010, the European Space Agency's CryoSat-2 (CS-2) satellite has collected ice elevation measurements over ice caps with its novel radar altimeter. CS-2 provides higher density of observations w.r.t. previous satellite altimeters, reduces the along-track footprint using Synthetic Aperture Radar (SAR) processing and locates the across-track origin of a surface reflector in the presence of a slope with SAR Interferometry (SARIn). Here, we exploit CS-2 as a swath altimeter [Hawley et al., 2009; Gray et al., 2013; Christie et al., 2016; Ignéczi et al., 2016, Foresta et al., 2016] over the Southern and Northern Patagonian Ice Fields (SPI and NPI, respectively). The SPI and NPI are the two largest ice masses in the southern hemisphere outside of Antarctica and are thinning very rapidly in recent decades [e.g Rignot et al., 2003; Willis et al, 2012]. However, studies of surface, volume and mass change in the literature, covering the entire SPI and NPI, are limited in number due to their remoteness, extremely complex topography and wide range of slopes. In this work, we present rates of surface elevation change for five glaciological years between 2011-2016 using swath-processed CS-2 SARIn heights and discuss the spatial and temporal coverage of elevation and its rate of change over the two regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS42C..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS42C..03L"><span>Spacebased Observation of Water Balance Over Global Oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, W.; Xie, X.</p> <p>2008-12-01</p> <p>We demonstrated that ocean surface fresh water flux less the water discharge into the ocean from river and ice melt balances the mass loss in the ocean both in magnitude and in the phase of annual variation. The surface water flux was computed from the divergence of the water transport integrated over the depth of the atmosphere. The atmospheric water transport is estimated from the precipitable water measured by Special Sensor Microwave Imager, the surface wind vector by QuikSCAT, and the NOAA cloud drift wind through a statistical model. The transport has been extensively validated using global radiosonde and data and operational numerical weather prediction results. Its divergence has been shown to agree with the difference between evaporation estimated from the Advanced Microwave Scanning Radiometer data and the precipitation measured by Tropical Rain Measuring Mission over the global tropical and subtropical oceans both in magnitude and geographical distribution for temporal scales ranging from intraseasonal to interannual. The water loss rate in the ocean is estimated by two methods, one is from Gravity Recovery and Climate Experiment and the other is by subtracting the climatological steric change from the sea level change measured by radar altimeter on Jason. Only climatological river discharge and ice melt from in situ measurements are available and the lack of temporal variation may contribute to discrepancies in the balance. We have successfully used the spacebased surface fluxes to estimate to climatological mean heat transport in the Atlantic ocean and is attempting to estimate the meridional fresh water (or salt) transport from the surface flux. The approximate closure of the water balance gives a powerful indirect validation of the spacebased products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5489271','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5489271"><span>Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hofer, Stefan; Tedstone, Andrew J.; Fettweis, Xavier; Bamber, Jonathan L.</p> <p>2017-01-01</p> <p>The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation. PMID:28782014</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012OcMod..51...19G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012OcMod..51...19G"><span>An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodwin, Philip</p> <p>2012-07-01</p> <p>To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813180M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813180M"><span>Constraining East Antarctic mass trends using a Bayesian inference approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin-Español, Alba; Bamber, Jonathan L.</p> <p>2016-04-01</p> <p>East Antarctica is an order of magnitude larger than its western neighbour and the Greenland ice sheet. It has the greatest potential to contribute to sea level rise of any source, including non-glacial contributors. It is, however, the most challenging ice mass to constrain because of a range of factors including the relative paucity of in-situ observations and the poor signal to noise ratio of Earth Observation data such as satellite altimetry and gravimetry. A recent study using satellite radar and laser altimetry (Zwally et al. 2015) concluded that the East Antarctic Ice Sheet (EAIS) had been accumulating mass at a rate of 136±28 Gt/yr for the period 2003-08. Here, we use a Bayesian hierarchical model, which has been tested on, and applied to, the whole of Antarctica, to investigate the impact of different assumptions regarding the origin of elevation changes of the EAIS. We combined GRACE, satellite laser and radar altimeter data and GPS measurements to solve simultaneously for surface processes (primarily surface mass balance, SMB), ice dynamics and glacio-isostatic adjustment over the period 2003-13. The hierarchical model partitions mass trends between SMB and ice dynamics based on physical principles and measures of statistical likelihood. Without imposing the division between these processes, the model apportions about a third of the mass trend to ice dynamics, +18 Gt/yr, and two thirds, +39 Gt/yr, to SMB. The total mass trend for that period for the EAIS was 57±20 Gt/yr. Over the period 2003-08, we obtain an ice dynamic trend of 12 Gt/yr and a SMB trend of 15 Gt/yr, with a total mass trend of 27 Gt/yr. We then imposed the condition that the surface mass balance is tightly constrained by the regional climate model RACMO2.3 and allowed height changes due to ice dynamics to occur in areas of low surface velocities (<10 m/yr) , such as those in the interior of East Antarctica (a similar condition as used in Zwally 2015). The model must find a solution that satisfies all the input data, given these constraints. By imposing these conditions, over the period 2003-13 we obtained a mass gain due to ice dynamics of 103±15 Gt/yr but this was offset by a negative trend in SMB of 47 Gt/yr, resulting in an overall positive trend of 56±15 Gt/yr. Over 2003-08, the ice dynamics trend is 96 Gt/yr, offset by a strong negative SMB trend of -81 Gt/yr, with a total mass trend of 15±13Gt/yr. Even after relaxing the ice dynamics constraint over East Antarctica, we are unable to reproduce the large positive trend obtained in Zwally2015. We conclude that this result is inconsistent with the combined observations, irrespective of any assumption made about the density of surface elevation changes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3761614','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3761614"><span>Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shannon, Sarah R.; Payne, Antony J.; Bartholomew, Ian D.; van den Broeke, Michiel R.; Edwards, Tamsin L.; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J.; Huybrechts, Philippe; Mair, Douglas W. F.; Nienow, Peter W.; Perego, Mauro; Price, Stephen F.; Smeets, C. J. P. Paul; Sole, Andrew J.; van de Wal, Roderik S. W.; Zwinger, Thomas</p> <p>2013-01-01</p> <p>We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet’s contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone. PMID:23940337</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23940337','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23940337"><span>Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shannon, Sarah R; Payne, Antony J; Bartholomew, Ian D; van den Broeke, Michiel R; Edwards, Tamsin L; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J; Huybrechts, Philippe; Mair, Douglas W F; Nienow, Peter W; Perego, Mauro; Price, Stephen F; Smeets, C J P Paul; Sole, Andrew J; van de Wal, Roderik S W; Zwinger, Thomas</p> <p>2013-08-27</p> <p>We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet's contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015TCD.....9..115L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015TCD.....9..115L"><span>Future projections of the climate and surface mass balance of Svalbard with the regional climate model MAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lang, C.; Fettweis, X.; Erpicum, M.</p> <p>2015-01-01</p> <p>We have performed future projections of the climate and surface mass balance (SMB) of Svalbard with the MAR regional climate model forced by the MIROC5 global model, following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of the melt around 2050, with a larger melt increase in the south compared to the north of the archipelago and the ice caps. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a strong winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. At the end of the century (2070-2099 mean), SMB is projected to be negative over the entire Svalbard and, by 2085, all glaciated regions of Svalbard are predicted to undergo net ablation, meaning that, under the RCP8.5 scenario, all the glaciers and ice caps are predicted to start their irreversible retreat before the end of the 21st century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/971306','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/971306"><span>Greenland ice sheet surface mass-balance modeling in a 131-year perspective, 1950-2080</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mernild, Sebastian Haugard; Liston, Glen; Hiemstra, Christopher</p> <p>2009-01-01</p> <p>Fluctuations in the Greenland Ice Sheet (GrIS) surface mass-balance (SMB) and freshwater influx to the surrounding oceans closely follow climate fluctuations and are of considerable importance to the global eustatic sea level rise. SnowModel, a state-of-the-art snow-evolution modeling system, was used to simulate variations in the GrIS melt extent, surface water balance components, changes in SMB, and freshwater influx to the ocean. The simulations are based on the IPCC scenario AlB modeled by the HIRHAM4 RCM (using boundary conditions from ECHAM5 AOGCM) from 1950 through 2080. In-situ meteorological station (GC-Net and WMO DMI) observations from inside and outside the GrISmore » were used to validate and correct RCM output data before it was used as input for SnowModel. Satellite observations and independent SMB studies were used to validate the SnowModel output and confirm the model's robustness. We simulated a {approx}90% increase in end-of-summer surface melt extent (0.483 x 10{sup 6} km{sup 2}) from 1950 to 2080, and a melt index (above 2,000-m elevation) increase of 138% (1.96 x 10{sup 6} km{sup 2} x days). The greatest difference in melt extent occured in the southern part of the GrIS, and the greatest changes in the number of melt days was seen in the eastern part of the GrIS ({approx}50-70%) and was lowest in the west ({approx}20-30%). The rate of SMB loss, largely tied to changes in ablation processes, lead to an enhanced average loss of 331 km{sup 3} from 1950 to 2080, an average 5MB level of -99 km{sup 3} for the period 2070-2080. GrIS surface freshwater runoff yielded an eustatic rise in sea level from 0.8 {+-} 0.1 (1950-1959) to 1.9 {+-} 0.1 mm (2070-2080) sea level equivalent (SLE) y{sup -1}. The accumulated GrIS freshwater runoff contribution from surface melting equaled 160 mm SLE from 1950 through 2080.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080004981','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080004981"><span>Engine balance apparatus and accessory drive device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Egleston, Robert W. (Inventor)</p> <p>2002-01-01</p> <p>A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons. The balancing mechanism comprises a primary balance mass assembly non-rotatably and removably affixed to the crankshaft. The primary mass assembly comprises a primary mass affixed to a primary hub portion and a primary cap portion removably affixed to the primary hub portion to clamp a portion of the crankshaft therebetween. A secondary balance mass assembly may be rotatably and removably supported on the crankshaft. A driver assembly is affixed to the crankshaft to cause the secondary balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components. The gears are readily detachable from the apparatus to facilitate inspection and repair operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26878257','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26878257"><span>Comparative Effects of Different Balance-Training-Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik</p> <p>2016-02-01</p> <p>Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training-progression styles. To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Randomized controlled trial. Research laboratory. A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33D1223C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33D1223C"><span>Critical discussion on the "observed" water balances of five sub-basins in the Everest region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chevallier, P.; Eeckman, J.; Nepal, S.; Delclaux, F.; Wagnon, P.; Brun, F.; Koirala, D.</p> <p>2017-12-01</p> <p>The hydrometeorological components of five Dudh Koshi River sub-basins on the Nepalese side of the Mount Everest have been monitored during four hydrological years (2013-2017), with altitudes ranging from 2000 m to Everest top, areas between 4.65 and 1207 km², and proportions of glaciated areas between nil and 45%. This data set is completed with glacier mass balance observations. The analysis of the observed data and the resulting water balances show large uncertainties of different types: aleatory, epistemic or semantic, following the classification proposed by Beven (2016). The discussion is illustrated using results from two modeling approaches, physical (ISBA, Noilhan and Planton, 1996) and conceptual (J2000, Krause, 2001), as well as large scale glacier mass balances obtained by the way of a recent remote sensing processing method. References: Beven, K., 2016. Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal 61, 1652-1665. doi:10.1080/02626667.2015.1031761 Krause, P., 2001. Das hydrologische Modellsystem J2000: Beschreibung und Anwendung in groen Flueinzugsgebieten, Schriften des Forschungszentrum Jülich. Reihe Umwelt/Environment; Band 29. Noilhan, J., Planton, S., 1989. A single parametrization of land surface processes for meteorological models. Monthly Weather Review 536-549.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910064170&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbalance%2Bsheet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910064170&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbalance%2Bsheet"><span>State of balance of the cryosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Van Der Veen, C. J.</p> <p>1991-01-01</p> <p>Available observations and mass balance estimates of the cryosphere are summarized. Problems discussed include mountain glaciers, the Greenland ice sheet, the Antarctic ice sheet, conventional glacier measurement techniques, and satellite applications in glacier mass balance studies. It is concluded that the interior part of the Greenland ice sheet is thickening or in near equilibrium. Estimates of the mass balance of the Antarctic ice sheet suggest that it is positive, although the error limits allow for a slightly negative balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3248527','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3248527"><span>Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Xiao-Ming; Rudnick, Roberta L.</p> <p>2011-01-01</p> <p>Chemical weathering, as well as physical erosion, changes the composition and shapes the surface of the continental crust. However, the amount of continental material that has been lost over Earth’s history due to chemical weathering is poorly constrained. Using a mass balance model for lithium inputs and outputs from the continental crust, we find that the mass of continental crust that has been lost due to chemical weathering is at least 15% of the original mass of the juvenile continental crust, and may be as high as 60%, with a best estimate of approximately 45%. Our results suggest that chemical weathering and subsequent subduction of soluble elements have major impacts on both the mass and the compositional evolution of the continental crust. PMID:22184221</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C11C0785G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C11C0785G"><span>Modelled and observed mass balance of Rikha Samba Glacier, Nepal, Central Himalaya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gurung, T. R.; Kayastha, R. B.; Fujita, K.; Sinisalo, A. K.; Stumm, D.; Joshi, S.; Litt, M.</p> <p>2016-12-01</p> <p>Glacier mass balance variability has an implication for the regional water resources and it helps to understand the response of glacier to climate change in the Himalayan region. Several mass balance studies have been started in the Himalayan region since 1970s, but they are characterized by frequent temporal gaps and a poor spatial representatively. This study aims at bridging the temporal gaps in a long term mass balance series of the Rikha Samba glacier (5383 - 6475 m a.s.l.), a benchmark glacier located in the Hidden Valley, Mustang, Nepal. The ERA Interim reanalysis data for the period 2011-2015 is calibrated with the observed meteorological variables from an AWS installed near the glacier terminus. We apply an energy mass balance model, validated with the available in-situ measurements for the years 1998 and 2011-2015. The results show that the glacier is shrinking at a moderate negative mass balance rate for the period 1995 to 2015 and the high altitude location of Rikha Samba also prevents a bigger mass loss compared to other small Himalayan glaciers. Precipitation from July to January and the mean air temperature from June to October are the most influential climatic parameters of the annual mass balance variability of Rikha Samba glacier.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.3658F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.3658F"><span>An observation of sea-spray microphysics by airborne Doppler radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fairall, C. W.; Pezoa, S.; Moran, K.; Wolfe, D.</p> <p>2014-05-01</p> <p>This paper describes observations and analysis of Doppler radar data from a down-looking 94 GHz (W-Band) system operated from a NOAA WP-3 Orion research aircraft in Tropical Storm (TS) Karen. The flight took place on 5 October 2013; Karen had weakened with maximum winds around 20 m s-1. Doppler spectral moments from the radar were processed to retrieve sea-spray microphysical properties (drop size and liquid water mass concentration) profiles in the height range 75-300 m above the sea surface. In the high wind speed regions of TS Karen (U10 > 15 m s-1), sea spray was observed with a nominal mass-mode radius of about 40 µm, a radar-weighted gravitational fall velocity of about 1 m s-1, and a mass concentration of about 10-3 gm-3 at 75 m. Spray-drop mass concentration declined with height to values of about 10-4 gm-3 at 300 m. Drop mass decreased slightly more slowly with increasing height than predicted by surface-layer similarity theory for a balance of turbulent diffusion vs fall velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813243V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813243V"><span>Insight into glacier climate interaction: reconstruction of the mass balance field using ice extent data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar</p> <p>2016-04-01</p> <p>With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915674M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915674M"><span>The future of the Devon Ice cap: results from climate and ice dynamics modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mottram, Ruth; Rodehacke, Christian; Boberg, Fredrik</p> <p>2017-04-01</p> <p>The Devon Ice Cap is an example of a relatively well monitored small ice cap in the Canadian Arctic. Close to Greenland, it shows a similar surface mass balance signal to glaciers in western Greenland. Here we use high resolution (5km) simulations from HIRHAM5 to drive the PISM glacier model in order to model the present day and future prospects of this small Arctic ice cap. Observational data from the Devon Ice Cap in Arctic Canada is used to evaluate the surface mass balance (SMB) data output from the HIRHAM5 model for simulations forced with the ERA-Interim climate reanalysis data and the historical emissions scenario run by the EC-Earth global climate model. The RCP8.5 scenario simulated by EC-Earth is also downscaled by HIRHAM5 and this output is used to force the PISM model to simulate the likely future evolution of the Devon Ice Cap under a warming climate. We find that the Devon Ice Cap is likely to continue its present day retreat, though in the future increased precipitation partly offsets the enhanced melt rates caused by climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24383330','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24383330"><span>Solubilizing properties of new surface-active agents, products of catalytic oxyethylation of cholic acid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kołodziejczyk, Michał Krzysztof; Nachajski, Michal Jakub; Lukosek, Marek; Zgoda, Marian Mikołaj</p> <p>2013-01-01</p> <p>Solubilizing properties of aqueous solutions of a series of surface-active agents, products of oxyethylation of cholic acid, were examined in the present study. The content of oxyethylated segments determined by means of the 1H NMR method enabled the verification of the molecular mass of surfactants along with the calculation of the structural hydrophilic-lipophilic balance (HLB), the solubility parameter delta1/2, and the required solubility level of balance HLB(R). Viscosimetric measurements enabled the calculation of the limiting viscosity number, the content-average molecular mass, the effective volume, the hydrodynamic radius of the surfactant micelle and their equilibrium adducts with rutin, diclofenac and loratadine (BCS Class II and III). By means of the spectrophotometric method (UV) the amount of the solubilized diclofenac, loratadine and rutin (rutoside) was determined in the equilibrium system (saturated solution) in the environment of aqueous solutions of cholic acid derivatives of n(TE) = 20-70. The obtained results serve as a basis for determining the solubilization mechanism of lipophilic therapeutic products and indirectly for estimating the influence of the above process on pharmaceutical as well as biological availability of a micellar adduct from model drug forms (Lindbladt lithogenolitic index).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020050517','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020050517"><span>Surface Deformation and Gravity Changes from Surface and Internal Loads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hager, Bradford H.; Fang, Ming</p> <p>2002-01-01</p> <p>Air and space borne remote sensing have made it possible to monitor the mass and energy transport at various scales within the cryosphere-hydrosphere-atmosphere system. The recent surface mass balance (the rate of net gain of snow and ice at a geographic point) map for the Antarctic ice sheet is constructed by interpolating sparse in situ observations (about 1,800 points) with empirically calibrated satellite data of passive back emission of microwaves. The digital elevation model obtained from satellite radar altimetry is used to improve the delineation of the ice flow drainage basins. As important as these results are, the uncertainty remains up to about 2 mm/yr of eustatic sea level change with the net imbalance. In other words, we are still unable to determine even the sign of the contribution of the Antarctic ice sheet to contemporary sea level change. The problem is more likely with the discharge rather than accumulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930022699&hterms=stream+box&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dstream%2Bbox','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930022699&hterms=stream+box&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dstream%2Bbox"><span>The mass balance of the ice plain of Ice Stream B and Crary Ice Rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bindschadler, Robert</p> <p>1993-01-01</p> <p>The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/556595-use-chemical-isotopic-tracers-characterize-interactions-between-ground-water-surface-water-mantled-karst','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/556595-use-chemical-isotopic-tracers-characterize-interactions-between-ground-water-surface-water-mantled-karst"><span>Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Katz, B.G.; Davis, J.H.; Coplen, T.B.</p> <p>1997-11-01</p> <p>In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [{sup 18}O/{sup 16}O ({delta}{sup 18}O), {sup 2}H/{sup 1}H ({delta}D), {sup 13}C/{sup 12}C ({delta}{sup 13}C), tritium ({sup 3}H), and strontium-87/strontium-86 ({sup 87}Sr/{sup 86}Sr)] along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Florida aquifer through a sinkhole located in the Northern Highlandsmore » physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes ({delta}{sup 18}O and {delta}D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in {delta}{sup 18}O and {delta}D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in {sup 18}O and D from five of 12 samples municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, {delta}{sup 13}C and {sup 87}Sr/{sup 86}Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70040394','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70040394"><span>Sensitivity analysis of lake mass balance in discontinuous permafrost: the example of disappearing Twelvemile Lake, Yukon Flats, Alaska (USA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jepsen, S.M.; Voss, C.I.; Walvoord, Michelle Ann; Rose, J.R.; Minsley, B.J.; Smith, B.D.</p> <p>2013-01-01</p> <p>Many lakes in northern high latitudes have undergone substantial changes in surface area over the last four decades, possibly as a result of climate warming. In the discontinuous permafrost of Yukon Flats, interior Alaska (USA), these changes have been non-uniform across adjacent watersheds, suggesting local controls on lake water budgets. Mechanisms that could explain the decreasing mass of one lake in Yukon Flats since the early 1980s, Twelvemile Lake, are identified via a scoping analysis that considers plausible changes in snowmelt mass and infiltration, permafrost distribution, and climate warming. Because predicted changes in evaporation (2 cmyr-1) are inadequate to explain the observed 17.5 cmyr-1 reduction in mass balance, other mechanisms are required. The most important potential mechanisms are found to involve: (1) changes in shallow, lateral groundwater flow to the lake possibly facilitated by vertical freeze-thaw migration of the permafrost table in gravel; (2) increased loss of lake water as downward groundwater flow through an open talik to a permeable subpermafrost flowpath; and (3) reduced snow meltwater inputs due to decreased snowpack mass and increased infiltration of snowmelt into, and subsequent evaporation from, fine-grained sediment mantling the permafrost-free lake basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914046W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914046W"><span>Bayesian inference of ice thickness from remote-sensing data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Werder, Mauro A.; Huss, Matthias</p> <p>2017-04-01</p> <p>Knowledge about ice thickness and volume is indispensable for studying ice dynamics, future sea-level rise due to glacier melt or their contribution to regional hydrology. Accurate measurements of glacier thickness require on-site work, usually employing radar techniques. However, these field measurements are time consuming, expensive and sometime downright impossible. Conversely, measurements of the ice surface, namely elevation and flow velocity, are becoming available world-wide through remote sensing. The model of Farinotti et al. (2009) calculates ice thicknesses based on a mass conservation approach paired with shallow ice physics using estimates of the surface mass balance. The presented work applies a Bayesian inference approach to estimate the parameters of a modified version of this forward model by fitting it to both measurements of surface flow speed and of ice thickness. The inverse model outputs ice thickness as well the distribution of the error. We fit the model to ten test glaciers and ice caps and quantify the improvements of thickness estimates through the usage of surface ice flow measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7964C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7964C"><span>Reassessment of the mass balance of the Abbot and Getz sectors of West Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chuter, Stephen; Martín-Español, Alba; Wouters, Bert; Bamber, Jonathan</p> <p>2017-04-01</p> <p>Large discrepancies exist in mass balance estimates for the Getz and Abbot drainage basins, primarily due to previous poor knowledge of ice thickness at the grounding line, poor coverage by previous altimetry missions and signal leakage issues for GRACE. This is particularly the case for the Abbot region, where previously there have been contrasting positive ice sheet basin elevation rates from altimetry and negative mass budget estimates. Large errors arise when using ice thickness measurements derived from ERS-1 and/or ICESat altimetry data due to poor track spacing, 'loss of lock' issues near the grounding line and the complex morphology of these shelves, requiring fine resolution to derive robust and accurate elevations close to the grounding line. This was exemplified with the manual adjustments of up to 100 m required at the grounding line during the creation of Bedmap2. However, the advent of CryoSat-2 with its unique orbit and SARIn mode of operation has overcome these issues and enabled the determination of ice shelf thickness at a much higher accuracy than possible from previous satellites, particularly within the grounding zone. We present a reassessment of mass balance estimates for the 2007-2009 epoch using improved CryoSat-2 ice thicknesses. We find that CryoSat-2 ice thickness estimates are systematically thinner by 30% and 16.5% for the Abbot and Getz sectors respectively. Our new mass balance estimate of 8 ± 6 Gt yr-1for the Abbot region resolves the previous discrepancy with altimetry. Over the Getz region, the new mass balance estimate of 7.56 ± 16.6 Gt yr-1is in better agreement with other geodetic techniques. We also find there has been an increase in grounding line velocity of up to 20% since the 2007-2009 epoch, coupled with mean ice sheet thinning rates of -0.67 ± 0.13 m yr-1 derived from CryoSat-2 in fast flow regions. This is in addition to mean snowfall trends of -0.33 m yr-1w.e. since 2006. This suggests the onset of a dynamic instability in the region and the possibility of grounding line retreat, driven by both surface processes and ice dynamics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11H1970W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11H1970W"><span>Examining Model Atmospheric Particles Inside and Out</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wingen, L. M.; Zhao, Y.; Fairhurst, M. C.; Perraud, V. M.; Ezell, M. J.; Finlayson-Pitts, B. J.</p> <p>2017-12-01</p> <p>Atmospheric particles scatter incoming solar radiation and act as cloud condensation nuclei (CCN), thereby directly and indirectly affecting the earth's radiative balance and reducing visibility. These atmospheric particles may not be uniform in composition. Differences in the composition of a particle's outer surface from its core can arise during particle growth, (photo)chemical aging, and exchange of species with the gas phase. The nature of the surface on a molecular level is expected to impact growth mechanisms as well as their ability to act as CCN. Model laboratory particle systems are explored using direct analysis in real time-mass spectrometry (DART-MS), which is sensitive to surface composition, and contrasted with average composition measurements using high resolution, time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Results include studies of the heterogeneous reactions of amines with solid dicarboxylic acid particles, which are shown to generate aminium dicarboxylate salts at the particle surface, leaving an unreacted core. Combination of both mass spectrometric techniques reveals a trend in reactivity of C3-C7 dicarboxylic acids with amines and allows calculation of the DART probe depth into the particles. The results of studies on additional model systems that are currently being explored will also be reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=198404&Lab=NHEERL&keyword=herbicide&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=198404&Lab=NHEERL&keyword=herbicide&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Results of the Lake Michigan Mass Balance Project: Atrazine Modeling Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This report covers an overview of chemical properties, measurements in air and water, model construct and assumptions, and results of mathematical mass balance modeling of the herbicide atrazine in the Lake Michigan basin. Within the context of the mass balance, an overview of a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080004035','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080004035"><span>Engine balance apparatus and accessory drive device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brogdon, James William (Inventor); Gill, David Keith (Inventor)</p> <p>2000-01-01</p> <p>A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons such as those engines used in automobiles, aircrafts, boats, piston-driven compressors, piston-driven slider crank mechanisms, etc. The present balancing mechanism may comprise a first balance mass non-rotatably affixed to the crankshaft and a second balance mass rotatably supported on the crankshaft. A driver assembly is affixed to crankshaft to cause the second balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813160S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813160S"><span>Snow and glaciers in the tropics: the importance of snowfall level and snow line altitude in the Peruvian Cordilleras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schauwecker, Simone; Rohrer, Mario; Huggel, Christian; Salzmann, Nadine; Montoya, Nilton; Endries, Jason; Perry, Baker</p> <p>2016-04-01</p> <p>The snow line altitude, defined as the line separating snow from ice or firn surfaces, is among the most important parameters in the glacier mass and energy balance of tropical glaciers, since it determines net shortwave radiation via surface albedo. Therefore, hydroglaciological models require estimations of the melting layer during precipitation events, as well as parameterisations of the transient snow line. Typically, the height of the melting layer is implemented by simple air temperature extrapolation techniques, using data from nearby meteorological stations and constant lapse rates. Nonetheless, in the Peruvian mountain ranges, stations at the height of glacier tongues (>5000 m asl.) are scarce and the extrapolation techniques must use data from distant and much lower elevated stations, which need prior careful validation. Thus, reliable snowfall level and snow line altitude estimates from multiple data sets are necessary. Here, we assemble and analyse data from multiple sources (remote sensing, in-situ station data, reanalysis data) in order to assess their applicability in estimating both, the melting layer and snow line altitude. We especially focus on the potential of radar bright band data from TRMM and CloudSat satellite data for its use as a proxy for the snow/rain transition height. As expected for tropical regions, the seasonal and regional variability in the snow line altitude is comparatively low. During the course of the dry season, Landsat satellite as well as webcam images show that the transient snow line is generally increasing, interrupted by light snowfall or graupel events with low precipitation amounts and fast decay rates. We show limitations and possibilities of different data sources as well as their applicability to validate temperature extrapolation methods. Further on, we analyse the implications of the relatively low variability in seasonal snow line altitude on local glacier mass balance gradients. We show that the snow line altitude - ranging within only few hundreds of meters within one year - determines the observed high mass balance gradients. An increase in air temperature by for example 1°C during precipitation events may have even stronger impacts on glacier mass balances of tropical glacier than it would have on those of mid-latitude glaciers. This is an important reason for the high sensitivity of tropical glaciers on past and current climatic changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EPJWC..7700005P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EPJWC..7700005P"><span>Characterization of flexure hinges for the French watt balance experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pinot, Patrick; Genevès, Gérard</p> <p>2014-08-01</p> <p>In the French watt balance experiment, the translation and rotation functions must have no backlash, no friction, nor the need for lubricants. In addition errors in position and movement must be below 100 nm. Flexure hinges can meet all of these criteria. Different materials, profile shapes and machining techniques have been studied. The flexure pivots have been characterized using three techniques: 1) an optical microscope and, if necessary, a SEM to observe the surface inhomogeneities; 2) a mass comparator to determine the bending stiffness of unloaded pivots; 3) a loaded beam oscillating freely under vacuum to study the dynamic behavior of loaded pivots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70178661','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70178661"><span>Comparison of methods for quantifying surface sublimation over seasonally snow-covered terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sexstone, Graham A.; Clow, David W.; Stannard, David I.; Fassnacht, Steven R.</p> <p>2016-01-01</p> <p>Snow sublimation can be an important component of the snow-cover mass balance, and there is considerable interest in quantifying the role of this process within the water and energy balance of snow-covered regions. In recent years, robust eddy covariance (EC) instrumentation has been used to quantify snow sublimation over snow-covered surfaces in complex mountainous terrain. However, EC can be challenging for monitoring turbulent fluxes in snow-covered environments because of intensive data, power, and fetch requirements, and alternative methods of estimating snow sublimation are often relied upon. To evaluate the relative merits of methods for quantifying surface sublimation, fluxes calculated by the EC, Bowen ratio–energy balance (BR), bulk aerodynamic flux (BF), and aerodynamic profile (AP) methods and their associated uncertainty were compared at two forested openings in the Colorado Rocky Mountains. Biases between methods are evaluated over a range of environmental conditions, and limitations of each method are discussed. Mean surface sublimation rates from both sites ranged from 0.33 to 0.36 mm day−1, 0.14 to 0.37 mm day−1, 0.10 to 0.17 mm day−1, and 0.03 to 0.10 mm day−1 for the EC, BR, BF and AP methods, respectively. The EC and/or BF methods are concluded to be superior for estimating surface sublimation in snow-covered forested openings. The surface sublimation rates quantified in this study are generally smaller in magnitude compared with previously published studies in this region and help to refine sublimation estimates for forested openings in the Colorado Rocky Mountains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870053663&hterms=worlds+oceans&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dworlds%2Boceans','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870053663&hterms=worlds+oceans&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dworlds%2Boceans"><span>Mass, heat and freshwater fluxes in the South Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fu, Lee-Lueng</p> <p>1986-01-01</p> <p>Six hydrographic sections were used to examine the circulation and property fluxes in the South Indian Ocean from 10 to 32 deg S. The calculations were made by applying an inverse method to the data. In the interior of the South Indian Ocean, the geostrophic flow is generally northward. At 18 deg S, the northward interior mass flux is balanced by the southward Ekman mass flux at the surface, whereas at 32 deg S the northward interior mass flux is balanced by the southward mass flux of the Agulhas Current. There is a weak, southward mass flux of 6 x 10 to the 9th kg/s in the Mozambique Channel. The rate of water exchange between the Pacific Ocean and the Indian Ocean is dependent on the choice of the initial reference level used in the inverse calculation. The choice of 1500 m, the depth of the deep oxygen minimum, has led to a flux of water from the Pacific Ocean to the Indian Ocean at a rate of 6.6 x 10 to the 9th kg/s. Heat flux calculations indicate that the Indian Ocean is exporting heat to the rest of the world's oceans at a rate of -0.69 x 10 to the 15th W at 18 deg S and -0.25 x 10 to the 15th W at 32 deg S (negative values being southward).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol22/pdf/CFR-2012-title40-vol22-sec98-123.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol22/pdf/CFR-2012-title40-vol22-sec98-123.pdf"><span>40 CFR 98.123 - Calculating GHG emissions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol21/pdf/CFR-2014-title40-vol21-sec98-123.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol21/pdf/CFR-2014-title40-vol21-sec98-123.pdf"><span>40 CFR 98.123 - Calculating GHG emissions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol22/pdf/CFR-2013-title40-vol22-sec98-123.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol22/pdf/CFR-2013-title40-vol22-sec98-123.pdf"><span>40 CFR 98.123 - Calculating GHG emissions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol21/pdf/CFR-2011-title40-vol21-sec98-123.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol21/pdf/CFR-2011-title40-vol21-sec98-123.pdf"><span>40 CFR 98.123 - Calculating GHG emissions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23065870','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23065870"><span>Steady state phosphorus mass balance model during hemodialysis based on a pseudo one-compartment kinetic model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leypoldt, John K; Agar, Baris U; Akonur, Alp; Gellens, Mary E; Culleton, Bruce F</p> <p>2012-11-01</p> <p>Mathematical models of phosphorus kinetics and mass balance during hemodialysis are in early development. We describe a theoretical phosphorus steady state mass balance model during hemodialysis based on a novel pseudo one-compartment kinetic model. The steady state mass balance model accounted for net intestinal absorption of phosphorus and phosphorus removal by both dialysis and residual kidney function. Analytical mathematical solutions were derived to describe time-dependent intradialytic and interdialytic serum phosphorus concentrations assuming hemodialysis treatments were performed symmetrically throughout a week. Results from the steady state phosphorus mass balance model are described for thrice weekly hemodialysis treatment prescriptions only. The analysis predicts 1) a minimal impact of dialyzer phosphorus clearance on predialysis serum phosphorus concentration using modern, conventional hemodialysis technology, 2) variability in the postdialysis-to-predialysis phosphorus concentration ratio due to differences in patient-specific phosphorus mobilization, and 3) the importance of treatment time in determining the predialysis serum phosphorus concentration. We conclude that a steady state phosphorus mass balance model can be developed based on a pseudo one-compartment kinetic model and that predictions from this model are consistent with previous clinical observations. The predictions from this mass balance model are theoretical and hypothesis-generating only; additional prospective clinical studies will be required for model confirmation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C53E0718A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C53E0718A"><span>Remote Sensing Estimates of Glacier Mass Balance Changes in the Himalayas of Nepal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ambinakudige, S.; Joshi, K.</p> <p>2011-12-01</p> <p>Mass balance changes of glaciers are important indicators of climate change. There are only 30 'reference' glaciers in the world that have continuous mass balance data with world glacier monitoring service since 1976. Especially, Himalayan glaciers are conspicuously absent from global mass balance records. This shows the urgent need for mass balance data for glaciers throughout the world. In this study, we estimated mass balance of some major glaciers in the Sagarmatha National Park (SNP) in Nepal using remote sensing applications. The SNP is one of the densest glaciated regions in the Himalayan range consisting approximately 296 glacial lakes. The region has experienced several glacial lake outburst floods (GLOFs) in recent years, causing extensive damage to local infrastructure and loss of human life. In general, mass balance is determined at seasonal or yearly intervals. Because of the rugged and difficult terrain of the Himalayan region, there are only a few field based measurements of mass balance available. Moreover, there are only few cases where the applications of remote sensing methods were used to calculate mass balance of the Himalayan glaciers due to the lack of accurate elevation data. Studies have shown that estimations of mass balance using remote sensing applications were within the range of field-based mass balance measurements from the same period. This study used ASTER VNIR, 3N (nadir view) and 3B (backward view) bands to generate Digital Elevation Models (DEMs) for the SNP area. 3N and 3B bands generate an along track stereo pair with a base-to-height (B/H) ratio of about 0.6. Accurate measurement of ground control points (GCPs), their numbers and distribution are important inputs in creating accurate DEMs. Because of the availability of topographic maps for this area, we were able to provide very accurate GCPs, in sufficient numbers and distribution. We created DEMs for the years 2002, 2003, 2004 and 2005 using ENVI DEM extraction tool. Bands 3N and 3B were used as left and right images respectively in the process of creating the DEM. Minimum elevation in these images was 1500m and maximum elevation was 8550m. Coordinates and elevation values from topographic maps in the non-glaciated region were used as GCPs while creating absolute DEMs. Considering the high terrain of the study area, we used large number of GCPs, tie points, higher windows search area, and high terrain parameters to improve DEM accuracy. Since these images were acquired in September, the accumulation area was clearly visible. The Global land ice measurement (GLIMS) database which is maintained at the National Snow and Ice Data Center (NSIDC) was used to delineate glacier boundaries. The differences between the elevations in consecutive years in the accumulation area were calculated using raster calculator. The total elevation differences were then multiplied by the area to estimate the change in volume. Density of ice used in mass balance calculation was 900kg per sq. meters. The result indicated that while there was a decrease in mass balance of some glaciers, some showed an increase in mass balance during the study period. The study helped to develop a data on mass balance change in some major glaciers in the Himalayas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005APS..APRR10002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005APS..APRR10002S"><span>Acceleration Noise Measurements for LISA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schlamminger, Stephan; Gundlach, Jens</p> <p>2005-04-01</p> <p>The close spacing between the proof mass and the housing in the LISA (Laser Interferometer Space Antenna) spacecraft has been a concern as there may be spurious feeble forces. Such forces may limit the performance of the gravity wave detector at frequencies below 3 mHz and must be studied experimentally. We are performing ultra sensitive torsion balance tests to investigate such effects. Our torsion pendulum and a nearby plate are designed to simulate the LISA proof mass with its adjacent housing surface. We study torque noise on the pendulum as a function of separation between the surfaces. In order to exceed the LISA requirement we are probing the acceleration noise at much closer separations, than those planned for LISA. We have taken data at separations as small as 0.15 mm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160000290','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160000290"><span>Thermal Ablation Modeling for Silicate Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Yih-Kanq</p> <p>2016-01-01</p> <p>A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28756626','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28756626"><span>Myths and methodologies: Making sense of exercise mass and water balance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheuvront, Samuel N; Montain, Scott J</p> <p>2017-09-01</p> <p>What is the topic of this review? There is a need to revisit the basic principles of exercise mass and water balance, the use of common equations and the practice of interpreting outcomes. What advances does it highlight? We propose use of the following equation as a way of simplifying exercise mass and water balance calculations in conditions where food is not consumed and waste is not excreted: ∆body mass - 0.20 g/kcal -1  = ∆body water. The relative efficacy of exercise drinking behaviours can be judged using the following equation: percentage dehydration = [(∆body mass - 0.20 g kcal -1 )/starting body mass] × 100. Changes in body mass occur because of flux in liquids, solids and gases. This knowledge is crucial for understanding metabolism, health and human water needs. In exercise science, corrections to observed changes in body mass to estimate water balance are inconsistently applied and often misinterpreted, particularly after prolonged exercise. Although acute body mass losses in response to exercise can represent a close surrogate for body water losses, the discordance between mass and water balance equivalence becomes increasingly inaccurate as more and more energy is expended. The purpose of this paper is briefly to clarify the roles that respiratory water loss, gas exchange and metabolic water production play in the correction of body mass changes for fluid balance determinations during prolonged exercise. Computations do not include waters of association with glycogen because any movement of water among body water compartments contributes nothing to water or mass flux from the body. Estimates of sweat loss from changes in body mass should adjust for non-sweat losses when possible. We propose use of the following equation as a way of simplifying the study of exercise mass and water balance: ∆body mass - 0.20 g kcal -1  = ∆body water. This equation directly controls for the influence of energy expenditure on body mass balance and the approximate offsetting equivalence of respiratory water loss and metabolic water production on body water balance. The relative efficacy of exercise drinking behaviours can be judged using the following equation: percentage dehydration = [(∆body mass - 0.20 g kcal -1 )/starting body mass] × 100. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G31B0907M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G31B0907M"><span>Regionally Optimized GRACE Processing and Inter-comparison on the Antarctic Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohajerani, Y.; Velicogna, I.; Sutterley, T. C.; Rignot, E. J.</p> <p>2017-12-01</p> <p>The Antarctic ice sheet is losing mass at an accelerating rate, with a sea level contribution that changed from 0.08mm/yr from 1992 to 2001 to 0.4mm/yr from 2002 to 2011. While most of this contribution comes from West Antarctica, Totten Glacier has the largest discharge of ice in East Antarctica, with a sea level rise potential of 3.9 m. Furthermore, the drainage basin of Totten Glacier, along the neighboring Moscow University Glacier are below sea level, extending hundreds of kilometers inland. Therefore, obtaining regional estimates of both western and eastern Antarctic basins are of critical importance. The GRACE (Gravity Recovery and Climate Experiment) satellite has been providing mass balance time-series from geoid changes since 2002. Several mascon and harmonic GRACE solutions are available from different processing centers. Here, we evaluate the various solutions across the ice sheet and a new set of regionally optimized mascons to study the mass balance of Totten and Moscow University glaciers. We obtain a trend of -16.5±4.1Gt/yr with an acceleration of -2.0±1.8Gt/yr2 for the two glaciers for the period April 2002 to December 2016 using the Ivins et al (2013) GIA model (errors include leakage, GIA, and regression errors). We compare the results with the Mass Budget Method that combines ice discharge (D) and surface mass balance (SMB) from two models: 1) RACMO2.3, and 2) MAR3.6.4. MBM/RACMO2.3 shows the best agreement with the GRACE estimates. Within the common period from April 2002 to December 2015, the MBM/RACMO2.3 and MAR3.6.4 results are -15.6±1.8Gt/yr and -6.7±1.5Gt/yr respectively, while the GRACE time-series has a trend of -14.8±2.7 Gt/yr. We extend the study to the Getz Ice Shelf, the third largest ice shelf in West Antarctica after Ronne and Ross West ice shelves. We compare our gravity-derived mass estimates, the mass budget estimates, and the volume changes from altimetry data to compare the estimates and obtain a multi-sensor assessment of ice sheet mass balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C53D..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C53D..07W"><span>A semi-automated approach to derive elevation time-series and calculate glacier mass balance from historical aerial imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whorton, E.; Headman, A.; Shean, D. E.; McCann, E.</p> <p>2017-12-01</p> <p>Understanding the implications of glacier recession on water resources in the western U.S. requires quantifying glacier mass change across large regions over several decades. Very few glaciers in North America have long-term continuous field measurements of glacier mass balance. However, systematic aerial photography campaigns began in 1957 on many glaciers in the western U.S. and Alaska. These historical, vertical aerial stereo-photographs documenting glacier evolution have recently become publically available. Digital elevation models (DEM) of the transient glacier surface preserved in each imagery timestamp can be derived, then differenced to calculate glacier volume and mass change to improve regional geodetic solutions of glacier mass balance. In order to batch process these data, we use Python-based algorithms and Agisoft Photoscan structure from motion (SfM) photogrammetry software to semi-automate DEM creation, and orthorectify and co-register historical aerial imagery in a high-performance computing environment. Scanned photographs are rotated to reduce scaling issues, cropped to the same size to remove fiducials, and batch histogram equalization is applied to improve image quality and aid pixel-matching algorithms using the Python library OpenCV. Processed photographs are then passed to Photoscan through the Photoscan Python library to create DEMs and orthoimagery. To extend the period of record, the elevation products are co-registered to each other, airborne LiDAR data, and DEMs derived from sub-meter commercial satellite imagery. With the exception of the placement of ground control points, the process is entirely automated with Python. Current research is focused on: one, applying these algorithms to create geodetic mass balance time series for the 90 photographed glaciers in Washington State and two, evaluating the minimal amount of positional information required in Photoscan to prevent distortion effects that cannot be addressed during co-registration. Feature tracking and identification utilities in OpenCV have the potential to automate the georeferencing process. We aim to develop an algorithm suite that is flexible enough to enable its use for many landscape change detection and analysis problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C13D0861C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C13D0861C"><span>High Artic Glaciers and Ice Caps Ice Mass Change from GRACE, Regional Climate Model Output and Altimetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ciraci, E.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.</p> <p>2016-12-01</p> <p>The Arctic hosts more than the 75% of the ice covered regions outside from Greenland and Antarctica. Available observations show that increased atmospheric temperatures during the last century have contributed to a substantial glaciers retreat in all these regions. We use satellite gravimetry by the NASA's Gravity Recovery and Climate Experiment (GRACE), and apply a least square fit mascon approach to calculate time series of ice mass change for the period 2002-2016. Our estimates show that arctic glaciers have constantly contributed to the sea level rise during the entire observation period with a mass change of -170+/-20 Gt/yr equivalent to the 80% of the total ice mass change from the world Glacier and Ice Caps (GIC) excluding the Ice sheet peripheral GIC, which we calculated to be -215+/-32 GT/yr, with an acceleration of 9+/-4 Gt/yr2. The Canadian Archipelago is the main contributor to the total mass depletion with an ice mass trend of -73+/-9 Gt/yr and a significant acceleration of -7+/-3 Gt/yr2. The increasing mass loss is mainly determined by melting glaciers located in the northern part of the archipelago.In order to investigate the physical processes driving the observed ice mass loss we employ satellite altimetry and surface mass balance (SMB) estimates from Regional climate model outputs available for the same time period covered by the gravimetry data. We use elevation data from the NASA ICESat (2003-2009) and ESA CryoSat-2 (2010-2016) missions to estimate ice elevation changes. We compare GRACE ice mass estimates with time series of surface mass balance from the Regional Climate Model (RACMO-2) and the Modèle Atmosphérique Régional (MAR) and determine the portion of the total mass change explained by the SMB signal. We find that in Iceland and in the and the Canadian Archipelago the SMB signal explains most of the observed mass changes, suggesting that ice discharge may play a secondary role here. In other region, e.g. in Svalbar, the SMB signal explain only a portion of the observed mass loss, here elevation changes from altimetry observations suggest the presence of ice dynamic contribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C41A0582D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C41A0582D"><span>Using Airborne Radar Stratigraphy to Model Surface Accumulation Anomaly and Basal Control over Deformed Basal Ice in Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Das, I.; Bell, R. E.; Creyts, T. T.; Wolovick, M.</p> <p>2013-12-01</p> <p>Large deformed ice structures have been imaged at the base of northern Greenland ice sheet by IceBridge airborne radar. Numerous deformed structures lie along the base of both Petermann Glacier and Northeast Ice stream catchments covering 10-13% of the catchment area. These structures may be combinations of basal freeze-on and folded ice that overturns and inverts stratigraphy. In the interior, where the ice velocity is low, the radar imaged height of the deformed structures are frequently a significant fraction of the ice thickness. They are related to basal freeze on and stick-slip at the base of the ice sheet and may be triggered by subglacial water, sediments or local geological conditions. The larger ones (at times up to 700 m thick and 140 km long) perturb the ice stratigraphy and create prominent undulations on the ice surface and modify the local surface mass balance. Here, we investigate the relationship between the deformed structures and surface processes using shallow and deep ice radar stratigraphy. The surface undulations caused by the deformed structures modulate the pattern of local surface snow accumulation. Using normalized differences of several near-surface stratigraphic layers, we have calculated the accumulation anomaly over these deformed structures. The accumulation anomalies can be as high as 20% of the local surface accumulation over some of the larger surface depressions caused by these deformed structures. We observe distinct differences in the phases of the near-surface internal layers on the Petermann and Northeast catchments. These differences indicate that the deformed bodies over Petermann are controlled by conditions at the bed different from the Northeast Ice stream. The distinctly different near-surface stratigraphy over the deformed structures in the Petermann and Northeast catchments have opened up a number of questions including their formation and how they influence the ice dynamics, ice stratigraphy and surface mass balance. In this study we will model the different physical conditions at the bed and ice rheology from their distinct signatures in the near-surface strata. The results will identify the distinct mechanisms that form these bodies and their control over the surface morphology and snow accumulation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034952','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034952"><span>Implications for the dynamic health of a glacier from comparison of conventional and reference-surface balances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harrison, W.D.; Cox, L.H.; Hock, R.; March, R.S.; Pettit, E.C.</p> <p>2009-01-01</p> <p>Conventional and reference-surface mass-balance data from Gulkana and Wolverine Glaciers, Alaska, USA, are used to address the questions of how rapidly these glaciers are adjusting (or 'responding') to climate, whether their responses are stable, and whether the glaciers are likely to survive in today's climate. Instability means that a glacier will eventually vanish, or at least become greatly reduced in volume, if the climate stabilizes at its present state. A simple non-linear theory of response is presented for the analysis. The response of Gulkana Glacier is characterized by a timescale of several decades, but its stability and therefore its survival in today's climate are uncertain. Wolverine seems to be responding to climate more slowly, on the timescale of one to several centuries. Its stability is also uncertain, but a slower response time would make it more susceptible to climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5756660','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5756660"><span>Increased fluxes of shelf-derived materials to the central Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kipp, Lauren E.; Charette, Matthew A.; Moore, Willard S.; Henderson, Paul B.; Rigor, Ignatius G.</p> <p>2018-01-01</p> <p>Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water exchange processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A mass balance model for 228Ra suggests that this increase is due to an intensification of shelf-derived material inputs to the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients. Therefore, we suggest that significant changes in the nutrient, carbon, and trace metal balances of the Arctic Ocean are underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters. PMID:29326980</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050000518&hterms=balance+general&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dbalance%2Bgeneral','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050000518&hterms=balance+general&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dbalance%2Bgeneral"><span>Mass balance approaches for estimating the intestinal absorption and metabolism of peptides and analogues: theoretical development and applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sinko, P. J.; Leesman, G. D.; Amidon, G. L.</p> <p>1993-01-01</p> <p>A theoretical analysis for estimating the extent of intestinal peptide and peptide analogue absorption was developed on the basis of a mass balance approach that incorporates convection, permeability, and reaction. The macroscopic mass balance analysis (MMBA) was extended to include chemical and enzymatic degradation. A microscopic mass balance analysis, a numerical approach, was also developed and the results compared to the MMBA. The mass balance equations for the fraction of a drug absorbed and reacted in the tube were derived from the general steady state mass balance in a tube: [formula: see text] where M is mass, z is the length of the tube, R is the tube radius, Pw is the intestinal wall permeability, kr is the reaction rate constant, C is the concentration of drug in the volume element over which the mass balance is taken, VL is the volume of the tube, and vz is the axial velocity of drug. The theory was first applied to the oral absorption of two tripeptide analogues, cefaclor (CCL) and cefatrizine (CZN), which degrade and dimerize in the intestine. Simulations using the mass balance equations, the experimental absorption parameters, and the literature stability rate constants yielded a mean estimated extent of CCL (250-mg dose) and CZN (1000-mg dose) absorption of 89 and 51%, respectively, which was similar to the mean extent of absorption reported in humans (90 and 50%). It was proposed previously that 15% of the CCL dose spontaneously degraded systematically; however, our simulations suggest that significant CCL degradation occurs (8 to 17%) presystemically in the intestinal lumen.(ABSTRACT TRUNCATED AT 250 WORDS).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoJI.189.1457S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoJI.189.1457S"><span>Greenland uplift and regional sea level changes from ICESat observations and GIA modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spada, G.; Ruggieri, G.; Sørensen, L. S.; Nielsen, K.; Melini, D.; Colleoni, F.</p> <p>2012-06-01</p> <p>We study the implications of a recently published mass balance of the Greenland ice sheet (GrIS), derived from repeated surface elevation measurements from NASA's ice cloud and land elevation satellite (ICESat) for the time period between 2003 and 2008. To characterize the effects of this new, high-resolution GrIS mass balance, we study the time-variations of various geophysical quantities in response to the current mass loss. They include vertical uplift and subsidence, geoid height variations, global patterns of sea level change (or fingerprints), and regional sea level variations along the coasts of Greenland. Long-wavelength uplifts and gravity variations in response to current or past ice thickness variations are obtained solving the sea level equation, which accounts for both the elastic and the viscoelastic components of deformation. To capture the short-wavelength components of vertical uplift in response to current ice mass loss, which is not resolved by satellite gravity observations, we have specifically developed a high-resolution regional elastic rebound (ER) model. The elastic component of vertical uplift is combined with estimates of the viscoelastic displacement fields associated with the process of glacial-isostatic adjustment (GIA), according to a set of published ice chronologies and associated mantle rheological profiles. We compare the sensitivity of global positioning system (GPS) observations along the coasts of Greenland to the ongoing ER and GIA. In notable contrast with past reports, we show that vertical velocities obtained by GPS data from five stations with sufficiently long records and from one tide gauge at the GrIS margins can be reconciled with model predictions based on the ICE-5G deglaciation model and the ER associated with the new ICESat-derived mass balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100033560','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100033560"><span>Miniature Piezoelectric Macro-Mass Balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert G.; Bar-Cohen, Yoseph</p> <p>2010-01-01</p> <p>Mass balances usually use a strain gauge that requires an impedance measurement and is susceptible to noise and thermal drift. A piezoelectric balance can be used to measure mass directly by monitoring the voltage developed across the piezoelectric balance, which is linear with weight or it can be used in resonance to produce a frequency change proportional to the mass change (see figure). The piezoelectric actuator/balance is swept in frequency through its fundamental resonance. If a small mass is added to the balance, the resonance frequency shifts down in proportion to the mass. By monitoring the frequency shift, the mass can be determined. This design allows for two independent measurements of mass. Additionally, more than one sample can be verified because this invention allows for each sample to be transported away from the measuring device upon completion of the measurement, if required. A piezoelectric actuator, or many piezoelectric actuators, was placed between the collection plate of the sampling system and the support structure. As the sample mass is added to the plate, the piezoelectrics are stressed, causing them to produce a voltage that is proportional to the mass and acceleration. In addition, a change in mass delta m produces a change in the resonance frequency with delta f proportional to delta m. In a microgravity environment, the spacecraft could be accelerated to produce a force on the piezoelectric actuator that would produce a voltage proportional to the mass and acceleration. Alternatively, the acceleration could be used to force the mass on the plate, and the inertial effects of the mass on the plate would produce a shift in the resonance frequency with the change in frequency related to the mass change. Three prototypes of the mass balance mechanism were developed. These macro-mass balances each consist of a solid base and an APA 60 Cedrat flextensional piezoelectric actuator supporting a measuring plate. A similar structure with 3 APA 120 Cedrat flextensional piezoelectric actuators spaced equidistantly at 120 degrees supporting the plate and a softer macro balance with an APA 150 actuator/sensor were developed. These flextensional actuators were chosen because they increase the sensitivity of the actuator to stress, allow the piezoelectric to be pre-stressed, and the piezoelectric element is a stacked multilayer actuator, which has a considerably lower input impedance than a monolithic element that allows for common instruments (e.g., input impedance of 10 megohms) to measure the voltage without rapidly discharging the charge/voltage on the piezoelectric actuator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41B1217V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41B1217V"><span>Comparison of Glaciological and Gravimetric Glacier Mass Balance Measurements of Taku and Lemon Creek Glaciers, Southeast Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogler, K.; McNeil, C.; Bond, M.; Getraer, B.; Huxley-Reicher, B.; McNamara, G.; Reinhardt-Ertman, T.; Silverwood, J.; Kienholz, C.; Beedle, M. J.</p> <p>2017-12-01</p> <p>Glacier-wide annual mass balances (Ba) have been calculated for Taku (726 km2) and Lemon Creek glaciers (10.2 km2) since 1946 and 1953 respectively. These are the longest mass balance records in North America, and the only Ba time-series available for Southeast Alaska, making them particularly valuable for the global glacier mass balance monitoring network. We compared Ba time-series from Taku and Lemon Creek glaciers to Gravity Recovery and Climate Experiment (GRACE) mascon solutions (1352 and 1353) during the 2004-2015 period to assess how well these gravimetric solutions reflect individual glaciological records. Lemon Creek Glacier is a challenging candidate for this comparison because it is small compared to the 12,100 km2 GRACE mascon solutions. Taku Glacier is equally challenging because its mass balance is stable compared to the negative balances dominating its neighboring glaciers. Challenges notwithstanding, a high correlation between the glaciological and gravimetrically-derived Ba for Taku and Lemon Creek glaciers encourage future use of GRACE to measure glacier mass balance. Additionally, we employed high frequency ground penetrating radar (GPR) to measure the variability of accumulation around glaciological sites to assess uncertainty in our glaciological measurements, and the resulting impact to Ba. Finally, we synthesize this comparison of glaciological and gravimetric mass balance solutions with a discussion of potential sources of error in both methods and their combined utility for measuring regional glacier change during the 21st century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023007','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023007"><span>Improving Simulated Soil Moisture Fields Through Assimilation of AMSR-E Soil Moisture Retrievals with an Ensemble Kalman Filter and a Mass Conservation Constraint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian</p> <p>2011-01-01</p> <p>Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090016248','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090016248"><span>Dynamic Stability and Gravitational Balancing of Multiple Extended Bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Quadrelli, Marco</p> <p>2008-01-01</p> <p>Feasibility of a non-invasive compensation scheme was analyzed for precise positioning of a massive extended body in free fall using gravitational forces influenced by surrounding source masses in close proximity. The N-body problem of classical mechanics is a paradigm used to gain insight into the physics of the equivalent N-body problem subject to control forces. The analysis addressed how a number of control masses move around the proof mass so that the proof mass position can be accurately and remotely compensated when exogenous disturbances are acting on it, while its sensitivity to gravitational waves remains unaffected. Past methods to correct the dynamics of the proof mass have considered active electrostatic or capacitive methods, but the possibility of stray capacitances on the surfaces of the proof mass have prompted the investigation of other alternatives, such as the method presented in this paper. While more rigorous analyses of the problem should be carried out, the data show that, by means of a combined feedback and feed-forward control approach, the control masses succeeded in driving the proof mass along the specified trajectory, which implies that the proof mass can, in principle, be balanced via gravitational forces only while external perturbations are acting on it. This concept involves the dynamic stability of a group of massive objects interacting gravitationally under active control, and can apply to drag-free control of spacecraft during missions, to successor gravitational wave space borne sensors, or to any application requiring flying objects to be precisely controlled in position and attitude relative to another body via gravitational interactions only.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910327R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910327R"><span>Mass-balance modelling of Ak-Shyirak massif Glaciers, Inner Tian Shan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rets, Ekaterina; Barandun, Martina; Belozerov, Egor; Petrakov, Dmitry; Shpuntova, Alena</p> <p>2017-04-01</p> <p>Tian Shan is a water tower of Central Asia. Rapid and accelerating glacier downwasting is typical for this region. Study sites - Sary-Tor glacier and Glacier No.354 are located in Ak-Shyirak massif, Naryn headwaters. Sary-Tor was chosen as representative for Ak-Shyirak (Ushnurtsev, 1991; Oledeneniye TianShanya, 1995) for direct mass-balance measurements in 1985-1991. Glacier No.354 was an object of direct mass-balance measurements for 2011-2016. An energy-balance distributed A-Melt model (Rets et al, 2010) was used to reconstruct mass-balance for the glaciers for 2003-2015. Verification of modelingresults showed a good reproduction of direct melting measurements data on ablation stakes and mass loss according to geodetic method. Modeling results for Glacier No. 354 were compared to different modeling approach: distributed accumulation and temperature-index melt (Kronenberg et al, 2016)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.C31A0309E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.C31A0309E"><span>Variations in Below Canopy Turbulent Flux From Snow in North American Mountain Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Essery, R.; Marks, D.; Pomeroy, J.; Grangere, R.; Reba, M.; Hedstrom, N.; Link, T.; Winstral, A.</p> <p>2004-12-01</p> <p>Sensible and latent heat and mass fluxes from the snow surface are modulated by site canopy density and structure. Forest and shrub canopies reduce wind speeds and alter the radiation and thermal environment which will alter the below canopy energetics that control the magnitude of turbulent fluxes between the snow surface and the atmosphere. In this study eddy covariance (EC) systems were located in three experimental catchments along a mountain transect through the North American Cordillera. Within each catchment, a variety of sites representing the local range of climate, weather, and canopy conditions were selected for measurement of sensible and latent heat and mass flux from the snow surface. EC measurements were made 1) below a uniform pine canopy (2745m) in the Fraser Experimental Forest in Colorado from February through June melt-out in 2003; 2) at an open, unforested site (2100m), and below an Aspen canopy (2055m) within a small headwater catchment in the Reynolds Creek Experimental Watershed, Owyhee Mts., Idaho from October, 2003, through June melt-out, 2004; and 3) at five sites, representing a range of conditions: a) below a dense spruce forest (750m); b) a north-facing shrub-tundra slope (1383m); c) a south-facing shrub-tundra slope; d) the valley bottom between b) and c) (1363m); and e) a tundra site (1402m) in the Wolf Creek Research Basin (WCRB) in the Yukon, Canada during the 2001 and 2002 snow seasons. Summary data from all sites are presented and compared including the relative significance of sublimation losses at each site, the importance of interception losses to the snowcover mass balance, and the occurrence of condensation events. Site and weather conditions that inhibit or enhance flux from the snow surface are discussed. This research will improve snow modeling by allowing better representation of turbulent fluxes from snow in forested regions, and improved simulation of the snowcover mass balance over low deposition, high latitude sites such as WCRB, and during drought conditions at mid-latitude sites such as Fraser, Colorado, and RCEW in Idaho.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12..635N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12..635N"><span>NHM-SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niwano, Masashi; Aoki, Teruo; Hashimoto, Akihiro; Matoba, Sumito; Yamaguchi, Satoru; Tanikawa, Tomonori; Fujita, Koji; Tsushima, Akane; Iizuka, Yoshinori; Shimada, Rigen; Hori, Masahiro</p> <p>2018-02-01</p> <p>To improve surface mass balance (SMB) estimates for the Greenland Ice Sheet (GrIS), we developed a 5 km resolution regional climate model combining the Japan Meteorological Agency Non-Hydrostatic atmospheric Model and the Snow Metamorphism and Albedo Process model (NHM-SMAP) with an output interval of 1 h, forced by the Japanese 55-year reanalysis (JRA-55). We used in situ data to evaluate NHM-SMAP in the GrIS during the 2011-2014 mass balance years. We investigated two options for the lower boundary conditions of the atmosphere: an offline configuration using snow, firn, and ice albedo, surface temperature data from JRA-55, and an online configuration using values from SMAP. The online configuration improved model performance in simulating 2 m air temperature, suggesting that the surface analysis provided by JRA-55 is inadequate for the GrIS and that SMAP results can better simulate physical conditions of snow/firn/ice. It also reproduced the measured features of the GrIS climate, diurnal variations, and even a strong mesoscale wind event. In particular, it successfully reproduced the temporal evolution of the GrIS surface melt area extent as well as the record melt event around 12 July 2012, at which time the simulated melt area extent reached 92.4 %. Sensitivity tests showed that the choice of calculation schemes for vertical water movement in snow and firn has an effect as great as 200 Gt year-1 in the GrIS-wide accumulated SMB estimates; a scheme based on the Richards equation provided the best performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476..771C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476..771C"><span>The effects of magnetic fields and protostellar feedback on low-mass cluster formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cunningham, Andrew J.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.</p> <p>2018-05-01</p> <p>We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes - magnetohydrodynamics, radiative transfer, and protostellar outflows - and span a wide range of virial parameters and magnetic field strengths. Comparing the outcomes of our simulations to observations, we find that simulations remaining close to virial balance throughout their history produce star formation efficiencies and initial mass function (IMF) peaks that are stable in time and in reasonable agreement with observations. Our results indicate that small-scale dissipation effects near the protostellar surface provide a feedback loop for stabilizing the star formation efficiency. This is true regardless of whether the balance is maintained by input of energy from large-scale forcing or by strong magnetic fields that inhibit collapse. In contrast, simulations that leave virial balance and undergo runaway collapse form stars too efficiently and produce an IMF that becomes increasingly top heavy with time. In all cases, we find that the competition between magnetic flux advection towards the protostar and outward advection due to magnetic interchange instabilities, and the competition between turbulent amplification and reconnection close to newly formed protostars renders the local magnetic field structure insensitive to the strength of the large-scale field, ensuring that radiation is always more important than magnetic support in setting the fragmentation scale and thus the IMF peak mass. The statistics of multiple stellar systems are similarly insensitive to variations in the initial conditions and generally agree with observations within the range of statistical uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950031289&hterms=climate+exchange&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dclimate%2Bexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950031289&hterms=climate+exchange&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dclimate%2Bexchange"><span>Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fitzjarrald, David R.; Moore, Kathleen E.</p> <p>1994-01-01</p> <p>Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat balance. Diurnal and seasonal scale heat budget imbalances were found. We suggest that unmeasured surface heat storage may be responsible for some of the observed imbalance. The presence of the unexplained residual in this and other studies of energy balance over forests casts a note of caution on the interpretation of energy balance components obtained using heat residual methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3773S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3773S"><span>A better GRACE solution for improving the regional Greenland mass balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schrama, E.; Xu, Z.</p> <p>2012-04-01</p> <p>In most GRACE based researches, a variety of smoothing methods is employed to remove alternating bands of positive and negative stripes stretching in the north-south direction. Many studies have suggested to smooth the GRACE maps, on which mass variations are represented as equivalent water height (EWH). Such maps are capable of exposing the redistribution of earth surface mass over time. In Greenland the shrinking of the ice cap becomes significant in the last decade. Our present study confirms that the dominating melting trends are in the east and southeast coastal zones, however, the smoothed signals along the coastline in these areas do not represent the original but averaged measurements from GRACE satellites which means the signal strength indicating that negative mass variations are mixed with some positive signals that are very close to this area. An exact identification of the topographic edge is not possible and visually the EWH maps appear to be blurred. To improve this, we firstly used spherical harmonic coefficients of GRACE level-2 data from CSR-RL04 and produced a smoothed EWH map. Empirical Orthogonal Functions(EOF)/Principal Component Analysis(PCA) have been introduced as well, in order to extract the melting information associated with the recent warming climate. Next, the Greenland area is redefined by 16 basins and the corresponding melting zones are quantified respectively. Least Squares methods are invoked to interpolate the mass distribution function on each basin. In this way we are able to estimate more accurately regional ice melting rate and we sharpen the EWH map. After comparing our results with a hydrological model the combination SMB - D is established which contains the surface mass balance (SMB) and ice-discharge (D). A general agreement can be reached and it turns out this method is capable to enhance our understanding of the shrinking global cryosphere</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14...65S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14...65S"><span>Geometrical and gravimetrical observations of the Aral Sea and its tributaries along with hydrological models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, A.; Seitz, F.; Schwatke, C.; Güntner, A.</p> <p>2012-04-01</p> <p>Satellite altimetry is capable of measuring surface water level changes of large water bodies. This is especially interesting for regions where in-situ gauges are sparse or not available. Temporal variations of coastline and horizontal extent of a water body can be derived from optical remote sensing data. A joint analysis of both data types together with a digital elevation model allows for the estimation of water volume changes. Related variations of water mass map into the observations of the satellite gravity field mission GRACE. In this presentation, we demonstrate the application of heterogeneuous remote sensing methods for studying chages of water volume and mass of the Aral Sea and compare the results with respect to their consistency. Our analysis covers the period 2002-2011. In particular we deal with data from multi-mission radar and laser satellite altimetry that are analyzed in combination with coastlines from Landsat images. The resultant vertical and horizontal variations of the lake surface are geometrically intersected with the bathymetry of the Aral Sea in order to compute volumetric changes. These are transformed into variations of water mass that are subsequently compared with storage changes derived from GRACE satellite gravimetry. Hence we obtain a comprehensive picture of the hydrological changes in the region. Observations from all datasets correspond quite well with each other with respect to their temporal development. However, geometrically determined volume changes and mass changes observed by GRACE agree less well during years of heavy water inflow in to the Aral Sea from its southern tributary 'Amu Darya' since the GRACE signals are contaminated by the large mass of water stored in the river delta and prearalie region On the other hand, GRACE observations of the river basins of Syr Darya and Amu Dayra correspond very well with hydrological models and mass changes computed from the balance of precipitation, evaporation and runoff determined from the atmospheric-terrestrial water balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27991482','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27991482"><span>The effects of unstable surface balance training on postural sway, stability, functional ability and flexibility in women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nepocatych, Svetlana; Ketcham, Caroline J; Vallabhajosula, Srikant; Balilionis, Gytis</p> <p>2018-01-01</p> <p>This study examined the effects of balance training routine, using both sides utilized balance trainer (BOSU) and aerobic step (STEP) on postural sway and functional ability in middle-aged women. Twenty-seven females participated in the study, age 40.6±12.0 years, body mass 72.0±14.0 kg, height 164.0±7.7 cm, BMI 26.5±4.5 kg/m2, and relative body fat 33.1±7.4%. Participants were divided into two groups and performed progressive exercise routine on either STEP or BOSU for three weeks. Pre- and post-test consisted of Postural Sway Test performed on the Biodex Balance System, Functional Ability Test, Sit and Reach Test and Plank. A significant time effect was observed for both groups for sway index(P=0.029) and center of pressure antero-posterior (AP) displacement (P=0.038) but not for sway area or medio-lateral (ML) displacement (P>0.05). In addition, BOSU group had significantly lower Sway Index(P=0.048) and ML range (P=0.035) scores when vision and surface was altered compared to STEP group. A significant time effect was observed in walking-up the stairs (P=0.020), sit and reach test (P=0.035), and plank (P<0.001), but not for walking down the stairs. However, no other significant interactions were observed. Programs that incorporate multisensory balance training have a potential to induce adaptive responses in neuromuscular system that enhances postural control, balance and functional ability of women. The training using BOSU may help improve static balance and functional ability in women.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1112296M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1112296M"><span>Calculating distributed glacier mass balance for the Swiss Alps from RCM output: Development and testing of downscaling and validation methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Machguth, H.; Paul, F.; Kotlarski, S.; Hoelzle, M.</p> <p>2009-04-01</p> <p>Climate model output has been applied in several studies on glacier mass balance calculation. Hereby, computation of mass balance has mostly been performed at the native resolution of the climate model output or data from individual cells were selected and statistically downscaled. Little attention has been given to the issue of downscaling entire fields of climate model output to a resolution fine enough to compute glacier mass balance in rugged high-mountain terrain. In this study we explore the use of gridded output from a regional climate model (RCM) to drive a distributed mass balance model for the perimeter of the Swiss Alps and the time frame 1979-2003. Our focus lies on the development and testing of downscaling and validation methods. The mass balance model runs at daily steps and 100 m spatial resolution while the RCM REMO provides daily grids (approx. 18 km resolution) of dynamically downscaled re-analysis data. Interpolation techniques and sub-grid parametrizations are combined to bridge the gap in spatial resolution and to obtain daily input fields of air temperature, global radiation and precipitation. The meteorological input fields are compared to measurements at 14 high-elevation weather stations. Computed mass balances are compared to various sets of direct measurements, including stake readings and mass balances for entire glaciers. The validation procedure is performed separately for annual, winter and summer balances. Time series of mass balances for entire glaciers obtained from the model run agree well with observed time series. On the one hand, summer melt measured at stakes on several glaciers is well reproduced by the model, on the other hand, observed accumulation is either over- or underestimated. It is shown that these shifts are systematic and correlated to regional biases in the meteorological input fields. We conclude that the gap in spatial resolution is not a large drawback, while biases in RCM output are a major limitation to model performance. The development and testing of methods to reduce regionally variable biases in entire fields of RCM output should be a focus of pursuing studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MeScT..28l5802N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MeScT..28l5802N"><span>Experimental aspects of buoyancy correction in measuring reliable high-pressure excess adsorption isotherms using the gravimetric method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, Huong Giang T.; Horn, Jarod C.; Thommes, Matthias; van Zee, Roger D.; Espinal, Laura</p> <p>2017-12-01</p> <p>Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO2 and supercritical N2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29503511','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29503511"><span>Experimental aspects of buoyancy correction in measuring reliable highpressure excess adsorption isotherms using the gravimetric method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nguyen, Huong Giang T; Horn, Jarod C; Thommes, Matthias; van Zee, Roger D; Espinal, Laura</p> <p>2017-12-01</p> <p>Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO 2 and supercritical N 2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C12C..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C12C..07H"><span>From Drought to Flood: An Analysis of the Water Balance of the Tuolumne River Basin During Extreme Conditions (2015 - 2017)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hedrick, A. R.; Marks, D. G.; Havens, S.; Robertson, M.; Johnson, M.; Sandusky, M.; Bormann, K. J.; Painter, T. H.</p> <p>2017-12-01</p> <p>Closing the water balance of a snow-dominated mountain basin has long been a focal point of the hydrologic sciences. This study attempts to more precisely quantify the solid precipitation inputs to a basin using the iSnobal energy balance snowmelt model and assimilated snow depth information from the Airborne Snow Observatory (ASO). Throughout the ablation seasons of three highly dissimilar consecutive water years (2015 - 2017), the ASO captured high resolution snow depth snapshots over the Tuolumne River Basin in California's Central Sierra Nevada. These measurements were used to periodically update the snow depth state variable of iSnobal, thereby nudging the estimates of water storage (snow water equivalent, or SWE) and melt (surface water input, or SWI) toward a more accurate solution. Once precipitation inputs and streamflow outputs are better constrained, the additional loss terms of the water mass balance equation (i.e. groundwater recharge and evapotranspiration) can be estimated with less uncertainty.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1107490-uncertainty-modeling-dust-mass-balance-radiative-forcing-from-size-parameterization','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1107490-uncertainty-modeling-dust-mass-balance-radiative-forcing-from-size-parameterization"><span>Uncertainty in Modeling Dust Mass Balance and Radiative Forcing from Size Parameterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, Chun; Chen, Siyu; Leung, Lai-Yung R.</p> <p>2013-11-05</p> <p>This study examines the uncertainties in simulating mass balance and radiative forcing of mineral dust due to biases in the aerosol size parameterization. Simulations are conducted quasi-globally (180oW-180oE and 60oS-70oN) using the WRF24 Chem model with three different approaches to represent aerosol size distribution (8-bin, 4-bin, and 3-mode). The biases in the 3-mode or 4-bin approaches against a relatively more accurate 8-bin approach in simulating dust mass balance and radiative forcing are identified. Compared to the 8-bin approach, the 4-bin approach simulates similar but coarser size distributions of dust particles in the atmosphere, while the 3-mode pproach retains more finemore » dust particles but fewer coarse dust particles due to its prescribed og of each mode. Although the 3-mode approach yields up to 10 days longer dust mass lifetime over the remote oceanic regions than the 8-bin approach, the three size approaches produce similar dust mass lifetime (3.2 days to 3.5 days) on quasi-global average, reflecting that the global dust mass lifetime is mainly determined by the dust mass lifetime near the dust source regions. With the same global dust emission (~6000 Tg yr-1), the 8-bin approach produces a dust mass loading of 39 Tg, while the 4-bin and 3-mode approaches produce 3% (40.2 Tg) and 25% (49.1 Tg) higher dust mass loading, respectively. The difference in dust mass loading between the 8-bin approach and the 4-bin or 3-mode approaches has large spatial variations, with generally smaller relative difference (<10%) near the surface over the dust source regions. The three size approaches also result in significantly different dry and wet deposition fluxes and number concentrations of dust. The difference in dust aerosol optical depth (AOD) (a factor of 3) among the three size approaches is much larger than their difference (25%) in dust mass loading. Compared to the 8-bin approach, the 4-bin approach yields stronger dust absorptivity, while the 3-mode approach yields weaker dust absorptivity. Overall, on quasi-global average, the three size parameterizations result in a significant difference of a factor of 2~3 in dust surface cooling (-1.02~-2.87 W m-2) and atmospheric warming (0.39~0.96 W m-2) and in a tremendous difference of a factor of ~10 in dust TOA cooling (-0.24~-2.20 W m-2). An uncertainty of a factor of 2 is quantified in dust emission estimation due to the different size parameterizations. This study also highlights the uncertainties in modeling dust mass and number loading, deposition fluxes, and radiative forcing resulting from different size parameterizations, and motivates further investigation of the impact of size parameterizations on modeling dust impacts on air quality, climate, and ecosystem.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12..833K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12..833K"><span>Geodetic reanalysis of annual glaciological mass balances (2001-2011) of Hintereisferner, Austria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klug, Christoph; Bollmann, Erik; Galos, Stephan Peter; Nicholson, Lindsey; Prinz, Rainer; Rieg, Lorenzo; Sailer, Rudolf; Stötter, Johann; Kaser, Georg</p> <p>2018-03-01</p> <p>This study presents a reanalysis of the glaciologically obtained annual glacier mass balances at Hintereisferner, Ötztal Alps, Austria, for the period 2001-2011. The reanalysis is accomplished through a comparison with geodetically derived mass changes, using annual high-resolution airborne laser scanning (ALS). The grid-based adjustments for the method-inherent differences are discussed along with associated uncertainties and discrepancies of the two methods of mass balance measurements. A statistical comparison of the two datasets shows no significant difference for seven annual, as well as the cumulative, mass changes over the 10-year record. Yet, the statistical view hides significant differences in the mass balance years 2002/03 (glaciological minus geodetic records = +0.92 m w.e.), 2005/06 (+0.60 m w.e.), and 2006/07 (-0.45 m w.e.). We conclude that exceptional meteorological conditions can render the usual glaciological observational network inadequate. Furthermore, we consider that ALS data reliably reproduce the annual mass balance and can be seen as validation or calibration tools for the glaciological method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3167354','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3167354"><span>Postural Compensation for Unilateral Vestibular Loss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Peterka, Robert J.; Statler, Kennyn D.; Wrisley, Diane M.; Horak, Fay B.</p> <p>2011-01-01</p> <p>Postural control of upright stance was investigated in well-compensated, unilateral vestibular loss (UVL) subjects compared to age-matched control subjects. The goal was to determine how sensory weighting for postural control in UVL subjects differed from control subjects, and how sensory weighting related to UVL subjects’ functional compensation, as assessed by standardized balance and dizziness questionnaires. Postural control mechanisms were identified using a model-based interpretation of medial–lateral center-of-mass body-sway evoked by support-surface rotational stimuli during eyes-closed stance. The surface-tilt stimuli consisted of continuous pseudorandom rotations presented at four different amplitudes. Parameters of a feedback control model were obtained that accounted for each subject’s sway response to the surface-tilt stimuli. Sensory weighting factors quantified the relative contributions to stance control of vestibular sensory information, signaling body-sway relative to earth-vertical, and proprioceptive information, signaling body-sway relative to the surface. Results showed that UVL subjects made significantly greater use of proprioceptive, and therefore less use of vestibular, orientation information on all tests. There was relatively little overlap in the distributions of sensory weights measured in UVL and control subjects, although UVL subjects varied widely in the amount they could use their remaining vestibular function. Increased reliance on proprioceptive information by UVL subjects was associated with their balance being more disturbed by the surface-tilt perturbations than control subjects, thus indicating a deficiency of balance control even in well-compensated UVL subjects. Furthermore, there was some tendency for UVL subjects who were less able to utilize remaining vestibular information to also indicate worse functional compensation on questionnaires. PMID:21922014</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24998744','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24998744"><span>The effects of a high-intensity free-weight back-squat exercise protocol on postural stability in resistance-trained males.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thiele, R M; Conchola, E C; Palmer, T B; DeFreitas, J M; Thompson, B J</p> <p>2015-01-01</p> <p>The purpose of this study was to investigate the effects of a high-intensity free-weight back-squat exercise on postural stability characteristics in resistance-trained males. Eighteen college-aged (mean ± SD: age = 22.9 ± 2.9 years; height = 175.8 ± 6.4 cm; mass = 86.3 ± 9.3 kg), resistance-trained males performed postural stability testing before and after completing five sets of eight repetitions of back-squat exercises at 80% of one-repetition maximum. A commercial balance testing device was used to assess sway index at pre- and at 0, 5, 10, 15 and 20 min post-exercise. Each balance assessment consisted of four, 20-s static stance conditions: eyes-open firm surface, eyes-closed firm surface, eyes-open soft surface and eyes-closed soft surface. Sway index was greater (P = 0.001-0.020) at Post 0 than at all other time points. No differences (P > 0.05) were observed between any other time phases. Sway index was greater (P < 0.001) for eyes-closed soft surface than all other conditions. These findings revealed sway index for all conditions significantly increased following completion of the back-squat; however, sway index recovered within 5 min of exercise. Higher sway index values as a result of neuromuscular fatigue induced by a back-squat exercise may have performance and injury risk consequences to subsequent activities that rely on postural stability. However, these findings suggest balance impairments may recover in ~5 min following high-intensity lower body resistance exercise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr41B8..481B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr41B8..481B"><span>Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babonis, G. S.; Csatho, B.; Schenk, T.</p> <p>2016-06-01</p> <p>During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21084833','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21084833"><span>Improved postural control after dynamic balance training in older overweight women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bellafiore, Marianna; Battaglia, Giuseppe; Bianco, Antonino; Paoli, Antonio; Farina, Felicia; Palma, Antonio</p> <p>2011-01-01</p> <p>Many studies have reported a greater frequency of falls among older women than men in conditions which stress balance. Previously, we found an improvement in static balance in older women with an increased support surface area and equal load redistribution on both feet, in response to a dynamic balance training protocol. The aim of the present study was to examine whether the same training program and body composition would have effects on the postural control of older overweight women. Ten healthy women (68.67 ± 5.50 yrs; 28.17 ± 3.35 BMI) participated in a five-week physical activity program. This included dynamic balance exercises, such as heel-to-toe walking in different directions, putting their hands on their hips, eyes open (EO) or closed (EC), with a tablet on their heads, going up and down one step, and walking on a mat. Postural stability was assessed before and after training with an optoelectronic platform and a uni-pedal balance performance test. Body composition of the trunk, upper limbs and lower limbs was measured by bio-impedance analysis. The mean speed (MS), medial-lateral MS (MS-x), anterior-posterior MS (MS-y), sway path (SP) and ellipse surface area (ESA) of the pressure center was reduced after training in older women. However, only MS, MS-x, MS-y and SP significantly decreased in bipodalic conditions with EO and MS-y also with EC (p<0.05). Instead, in monopodalic conditions, we found a significant reduction in the ESA of both feet with EO and EC. These data were associated with a significant increase in the lean mass of lower limbs and a higher number of participants who improved their ability to maintain unipedal static balance. Our dynamic balance training protocol appears to be feasible, safe and repeatable for older overweight women and to have positive effects in improving their lateral and anterior-posterior postural control, mainly acting on the visual and skeletal muscle components of the balance control system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri034095/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri034095/"><span>Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>March, Rod S.</p> <p>2003-01-01</p> <p>The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H11F1256R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H11F1256R"><span>Assessment of attenuation processes in a chlorinated ethene plume by use of stream bed Passive Flux Meters, streambed Point Velocity Probes and contaminant mass balances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rønde, V.; McKnight, U. S.; Annable, M. D.; Devlin, J. F.; Cremeans, M.; Sonne, A. T.; Bjerg, P. L.</p> <p>2017-12-01</p> <p>Chlorinated ethenes (CE) are abundant groundwater contaminants and pose risk to both groundwater and surface water bodies, as plumes can migrate through aquifers to streams. After release to the environment, CE may undergo attenuation. The hyporheic zone is believed to enhance CE attenuation, however studies contradicting this have also been reported. Since dilution commonly reduces contaminant concentrations in streams to below quantification limits, use of mass balances along the pathway from groundwater to stream is unusual. Our study is conducted at the low-land Grindsted stream, Denmark, which is impacted by a contaminant plume. CE have been observed in the stream water; hence our study site provides an unusual opportunity to study attenuation processes in a CE plume as it migrates through the groundwater at the stream bank, through the stream bed and further to the point of fully mixed conditions in the stream. The study undertook the determination of redox conditions and CE distribution from bank to stream; streambed contaminant flux estimation using streambed Passive Flux Meters (sPFM); and quantification of streambed water fluxes using temperature profiling and streambed Point Velocity Probes (SBPVP). The advantage of the sPFM is that it directly measures the contaminant flux without the need for water samples, while the advantage of the SBPVP is its ability to measure the vertical seepage velocity without the need for additional geological parameters. Finally, a mass balance assessment along the plume pathway was conducted to account for any losses or accumulations. The results show consistencies in spatial patterns between redox conditions and extent of dechlorination; between contaminant fluxes from sPFM and concentrations from water samples; and between seepage velocities from SBPVP and temperature-based water fluxes. Mass balances and parent-metabolite compound ratios indicate limited degradation between the bank and the point of fully mixed stream water. Since the plume at the bank mainly consists of cis-DCE and vinyl chloride, this implies high and persistent stream water concentrations of these compounds. Finally, this study demonstrates the usefulness and complementary nature of sPFM and SBPVP measurements for assessing the attenuation processes through mass balance calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170011083','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170011083"><span>Atmospheric Collapse on Early Mars: The Role of CO2 Clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kahre, M. A.; Haberle, R. M.; Steakley, K. E.; Murphy, J. R.; Kling, A.</p> <p>2017-01-01</p> <p>The abundance of evidence that liquid water flowed on the surface early in Mars' history strongly implies that the early Martian atmosphere was significantly more massive than it is today. While it seems clear that the total CO2 inventory was likely substantially larger in the past, the fundamental question about the physical state of that CO2 is not completely understood. Because the temperature at which CO2 condenses increases with surface pressure, surface CO2 ice is more likely to form and persist as the atmospheric mass increases. For the atmosphere to remain stable against collapse, there must be enough energy, distributed planet wide, to stave off the formation of permanent CO2 caps that leads to atmospheric collapse. The presence of a "faint young sun" that was likely about 25 percent less luminous 3.8 billion years ago than the sun today makes this even more difficult. Several physical processes play a role in the ultimate stability of a CO2 atmosphere. The system is regulated by the energy balance between solar insolation, the radiative effects of the atmosphere and its constituents, atmospheric heat transport, heat exchange between the surface and the atmosphere, and latent heating/cooling. Specific considerations in this balance for a given orbital obliquity/eccentricity and atmospheric mass are the albedo of the caps, the dust content of the atmosphere, and the presence of water and/or CO2 clouds. Forget et al. show that, for Mars' current obliquity (in a circular orbit), CO2 atmospheres ranging in surface pressure from 500 hectopascals to 3000 hectopascals would have been stable against collapsing into permanent surface ice reservoirs. Soto et al. examined a similar range in initial surface pressure to investigate atmospheric collapse and to compute collapse rates. CO2 clouds and their radiative effects were included in Forget et al. but they were not included in Soto et al. Here we focus on how CO2 clouds affect the stability of the atmosphere against collapse.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23404697','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23404697"><span>Probabilistic framework for assessing the ice sheet contribution to sea level change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Little, Christopher M; Urban, Nathan M; Oppenheimer, Michael</p> <p>2013-02-26</p> <p>Previous sea level rise (SLR) assessments have excluded the potential for dynamic ice loss over much of Greenland and Antarctica, and recently proposed "upper bounds" on Antarctica's 21st-century SLR contribution are derived principally from regions where present-day mass loss is concentrated (basin 15, or B15, drained largely by Pine Island, Thwaites, and Smith glaciers). Here, we present a probabilistic framework for assessing the ice sheet contribution to sea level change that explicitly accounts for mass balance uncertainty over an entire ice sheet. Applying this framework to Antarctica, we find that ongoing mass imbalances in non-B15 basins give an SLR contribution by 2100 that: (i) is comparable to projected changes in B15 discharge and Antarctica's surface mass balance, and (ii) varies widely depending on the subset of basins and observational dataset used in projections. Increases in discharge uncertainty, or decreases in the exceedance probability used to define an upper bound, increase the fractional contribution of non-B15 basins; even weak spatial correlations in future discharge growth rates markedly enhance this sensitivity. Although these projections rely on poorly constrained statistical parameters, they may be updated with observations and/or models at many spatial scales, facilitating a more comprehensive account of uncertainty that, if implemented, will improve future assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185384','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185384"><span>Eolian transport, saline lake basins, and groundwater solutes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wood, Warren W.; Sanford, Ward E.</p> <p>1995-01-01</p> <p>Eolian processes associated with saline lakes are shown to be important in determining solute concentration in groundwater in arid and semiarid areas. Steady state mass balance analyses of chloride in the groundwater at Double Lakes, a saline lake basin in the southern High Plains of Texas, United States, suggest that approximately 4.5 × 105 kg of chloride is removed from the relatively small (4.7 km2) basin floor each year by deflation. This mass enters the groundwater down the wind gradient from the lake, degrading the water quality. The estimates of mass transport were independently determined by evaluation of solutes in the unsaturated zone and by solute mass balance calculations of groundwater flux. Transport of salts from the lake was confirmed over a short term (2 years) by strategically placed dust collectors. Results consistent with those at Double Lake were obtained from dune surfaces collected upwind and downwind from a sabkha near the city of Abu Dhabi in the United Arab Emirates. The eolian transport process provides an explanation of the degraded groundwater quality associated with the 30–40 saline lake basins on the southern half of the southern High Plains of Texas and New Mexico and in many other arid and semiarid areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030545','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030545"><span>Glacier mass-balance fluctuations in the Pacific Northwest and Alaska, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Josberger, E.G.; Bidlake, W.R.; March, R.S.; Kennedy, B.W.</p> <p>2007-01-01</p> <p>The more than 40 year record of net and seasonal mass-balance records from measurements made by the United States Geological Survey on South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska, shows annual and interannual fluctuations that reflect changes in the controlling climatic conditions at regional and global scales. As the mass-balance record grows in length, it is revealing significant changes in previously described glacier mass-balance behavior, and both inter-glacier and glacier-climate relationships. South Cascade and Wolverine Glaciers are strongly affected by the warm and wet maritime climate of the northeast Pacific Ocean. Their net balances have generally been controlled by winter accumulation, with fluctuations that are strongly related to the Pacific Decadal Oscillation (PDO). Recently, warm dry summers have begun to dominate the net balance of the two maritime glaciers, with a weakening of the correlation between the winter balance fluctuations and the PDO. Non-synchronous periods of positive and negative net balance for each glacier prior to 1989 were followed by a 1989-2004 period of synchronous and almost exclusively negative net balances that averaged -0.8 m for the three glaciers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RCD....22..677C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RCD....22..677C"><span>Are nonsymmetric balanced configurations of four equal masses virtual or real?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chenciner, Alain</p> <p>2017-11-01</p> <p>Balanced configurations of N point masses are the configurations which, in a Euclidean space of high enough dimension, i. e., up to 2( N - 1), admit a relative equilibrium motion under the Newtonian (or similar) attraction. Central configurations are balanced and it has been proved by Alain Albouy that central configurations of four equal masses necessarily possess a symmetry axis, from which followed a proof that the number of such configurations up to similarity is finite and explicitly describable. It is known that balanced configurations of three equal masses are exactly the isosceles triangles, but it is not known whether balanced configurations of four equal masses must have some symmetry. As balanced configurations come in families, it makes sense to look for possible branches of nonsymmetric balanced configurations bifurcating from the subset of symmetric ones. In the simpler case of a logarithmic potential, the subset of symmetric balanced configurations of four equal masses is easy to describe as well as the bifurcation locus, but there is a grain of salt: expressed in terms of the squared mutual distances, this locus lies almost completely outside the set of true configurations (i. e., generalizations of triangular inequalities are not satisfied) and hence could lead most of the time only to the bifurcation of a branch of virtual nonsymmetric balanced configurations. Nevertheless, a tiny piece of the bifurcation locus lies within the subset of real balanced configurations symmetric with respect to a line and hence has a chance to lead to the bifurcation of real nonsymmetric balanced configurations. This raises the question of the title, a question which, thanks to the explicit description given here, should be solvable by computer experts even in the Newtonian case. Another interesting question is about the possibility for a bifurcating branch of virtual nonsymmetric balanced configurations to come back to the domain of true configurations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/36088','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/36088"><span>Comparison among model estimates of critical loads of acidic deposition using different sources and scales of input data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>T.C. McDonnell; B.J. Cosby; T.J. Sullivan; S.G. McNulty; E.C. Cohen</p> <p>2010-01-01</p> <p>The critical load (CL) of acidic atmospheric deposition represents the load of acidity deposited from the atmosphere to the earth’s surface at which harmful acidification effects on sensitive biological receptors are thought to occur. In this study, the CL for forest soils was estimated for 27 watersheds throughout the United States using a steady-state mass balance...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1176828-regional-modeling-dust-mass-balance-radiative-forcing-over-east-asia-using-wrf-chem','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1176828-regional-modeling-dust-mass-balance-radiative-forcing-over-east-asia-using-wrf-chem"><span>Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Siyu; Zhao, Chun; Qian, Yun</p> <p></p> <p>The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust massmore » balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP41F..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP41F..05F"><span>A new statistical model to find bedrock, a prequel to geochemical mass balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisher, B.; Rendahl, A. K.; Aufdenkampe, A. K.; Yoo, K.</p> <p>2016-12-01</p> <p>We present a new statistical model to assess weathering trends in deep weathering profiles. The Weathering Trends (WT) model is presented as an extension of the geochemical mass balance model (Brimhall & Dietrich, 1987), and is available as an open-source R library on GitHub (https://github.com/AaronRendahl/WeatheringTrends). WT uses element concentration data to determine the depth to fresh bedrock by assessing the maximum extent of weathering for all elements and the model applies confidence intervals on the depth to bedrock. WT models near-surface features and the shape of the weathering profile using a log transformation of data to capture the magnitude of changes that are relevant to geochemical kinetics and thermodynamics. The WT model offers a new, enhanced opportunity to characterize and understand biogeochemical weathering in heterogeneous rock types. We apply the model to two 21-meter drill cores in the Laurels Schist bedrock in the Christina River Basin Critical Zone Observatory in the Pennsylvania Piedmont. The Laurels Schist had inconclusive weathering indicators prior to development and application of WT model. The model differentiated between rock variability and weathering to delineate the maximum extent of weathering at 12.3 (CI 95% [9.2, 21.3]) meters in Ridge Well 1 and 7.2 (CI 95% [4.3, 13.0]) meters in Interfluve Well 2. The modeled extent to weathering is decoupled from the water table at the ridge, but coincides with the water table at the interfluve. These depths were applied as the parent material for the geochemical mass balance for the Laurels Schist. We test statistical approaches to assess the variability and correlation of immobile elements to facilitate the selection of the best immobile element for use in both models. We apply the model to other published data where the geochemical mass balance was applied, to demonstrate how the WT model provides additional information about weathering depth and weathering trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://link.springer.com/article/10.1007/s10584-013-1042-7/fulltext.html','USGSPUBS'); return false;" href="http://link.springer.com/article/10.1007/s10584-013-1042-7/fulltext.html"><span>Assessing streamflow sensitivity to variations in glacier mass balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>O'Neel, Shad; Hood, Eran; Arendt, Anthony; Sass, Louis</p> <p>2014-01-01</p> <p>The purpose of this paper is to evaluate relationships among seasonal and annual glacier mass balances, glacier runoff and streamflow in two glacierized basins in different climate settings. We use long-term glacier mass balance and streamflow datasets from the United States Geological Survey (USGS) Alaska Benchmark Glacier Program to compare and contrast glacier-streamflow interactions in a maritime climate (Wolverine Glacier) with those in a continental climate (Gulkana Glacier). Our overall goal is to improve our understanding of how glacier mass balance processes impact streamflow, ultimately improving our conceptual understanding of the future evolution of glacier runoff in continental and maritime climates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986Metro..23...87Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986Metro..23...87Q"><span>A 1 kg Mass Comparator Using Flexure-Strip Suspensions: Preliminary Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quinn, T. J.; Speake, C. C.; Davis, R. S.</p> <p>1986-01-01</p> <p>This paper describes the design and construction of a novel form of equal-arm balance. The balance has been designed to study the performance of flexure strips for use as pivots in a 1 kg mass comparator working at the highest accuracy. The beam of the balance is servo controlled using optical detection of angular position and electromagnetic control. Small mass differences are measured in terms of the differences in the servo currents required to reproduce the same position of the beam. Preliminary results using this prototype balance indicate that an accuracy in mass comparison of about 5 parts in 1010 can be achieved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4852315','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4852315"><span>Comparative Effects of Different Balance-Training–Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik</p> <p>2016-01-01</p> <p>Context:  Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training–progression styles. Objective:  To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Design:  Randomized controlled trial. Setting:  Research laboratory. Patients or Other Participants:  A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). Intervention(s):  All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Main Outcome Measure(s):  Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Results:  Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. Conclusions:  A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults. PMID:26878257</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C51G..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C51G..07M"><span>Forecasting Glacier Evolution and Hindcasting Paleoclimates In Light of Mass Balance Nonlinearities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malone, A.; Doughty, A. M.; MacAyeal, D. R.</p> <p>2016-12-01</p> <p>Glaciers are commonly used barometers of present and past climate change, with their variations often being linked to shifts in the mean climate. Climate variability within a unchanging mean state, however, can produce short term mass balance and glacier length anomalies, complicating this linkage. Also, the mass balance response to this variability can be nonlinear, possibly impacting the longer term state of the glacier. We propose a conceptual model to understand these nonlinearities and quantify their impacts on the longer term mass balance and glacier length. The relationship between mass balance and elevation, i.e. the vertical balance profile (VBP), illuminates these nonlinearities (Figure A). The VBP, given here for a wet tropical glacier, is piecewise, which can lead to different mass balance responses to climate anomalies of similar magnitude but opposite sign. We simulate the mass balance response to climate variability by vertically (temperature anomalies) and horizontally (precipitation anomalies) transposing the VBP for the mean climate (Figure A). The resulting anomalous VBP is the superposition of the two translations. We drive a 1-D flowline model with 10,000 years of anomalous VBPs. The aggregate VBP for the mean climate including variability differs from the VBP for the mean climate excluding variability, having a higher equilibrium line altitude (ELA) and a negative mass balance (Figure B). Accordingly, the glacier retreats, and the equilibrium glacier length for the aggregate VBP is the same as the mean length from the 10,000 year flowline simulation (Figure C). The magnitude of the VBP shift and glacier retreat increases with greater temperature variability and larger discontinuities in the VBP slope. These results highlight the importance of both the climate mean and variability in determining the longer term state of the glacier. Thus, forecasting glacier evolution or hindcasting past climates should also include representation of climate variability.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C13F1017M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C13F1017M"><span>Atmospheric river impacts on Greenland Ice Sheet surface melt and mass balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mattingly, K.; Mote, T. L.</p> <p>2017-12-01</p> <p>Mass loss from the Greenland Ice Sheet (GrIS) has accelerated during the early part of the 21st Century. Several episodes of widespread GrIS melt in recent years have coincided with intense poleward moisture transport by atmospheric rivers (ARs), suggesting that variability in the frequency and intensity of these events may be an important driver of the surface mass balance (SMB) of the GrIS. ARs may contribute to GrIS surface melt through the greenhouse effect of water vapor, the radiative effects of clouds, condensational latent heating within poleward-advected air masses, and the energy provided by liquid precipitation. However, ARs may also provide significant positive contributions to GrIS SMB through enhanced snow accumulation. Prior research on the role of ARs in Arctic climate has consisted of case studies of ARs associated with major GrIS melt events or examined the effects of poleward moisture flux on Arctic sea ice. In this study, a long-term (1979-2016) record of intense moisture transport events affecting Greenland is compiled using a conventional AR identification algorithm as well as a self-organizing map (SOM) classification applied to integrated water vapor transport (IVT) data from several atmospheric reanalysis datasets. An analysis of AR effects on GrIS melt and SMB is then performed with GrIS surface melt data from passive microwave satellite observations and the Modèle Atmosphérique Régional (MAR) regional climate model. Results show that meltwater production is above normal during and after AR impact days throughout the GrIS during all seasons, with surface melt enhanced most by strong (> 85th percentile IVT) and extreme (> 95th percentile IVT) ARs. This relationship holds at the seasonal scale, as the total amount of water vapor transported to the GrIS by ARs is significantly greater during above-normal melt seasons. ARs exert a more complex influence on SMB. Normal (< 85th percentile IVT) ARs generally do not have a substantial impact on SMB, while strong and extreme ARs result in reduced SMB in the ablation zone for several days following the event during summer. Conversely, strong and extreme ARs increased SMB in the ablation zone during spring, autumn, and winter, and AR impacts on SMB are positive in the accumulation zone during all seasons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080046255','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080046255"><span>Greenland Ice Sheet Surface Temperature, Melt, and Mass Loss: 2000-2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, Dorothy K.; Williams, Richard S., Jr.; Luthcke, Scott B.; DiGirolamo, Nocolo</p> <p>2007-01-01</p> <p>Extensive melt on the Greenland Ice Sheet has been documented by a variety of ground and satellite measurements in recent years. If the well-documented warming continues in the Arctic, melting of the Greenland Ice Sheet will likely accelerate, contributing to sea-level rise. Modeling studies indicate that an annual or summer temperature rise of 1 C on the ice sheet will increase melt by 20-50% therefore, surface temperature is one of the most important ice-sheet parameters to study for analysis of changes in the mass balance of the ice-sheet. The Greenland Ice Sheet contains enough water to produce a rise in eustatic sea level of up to 7.0 m if the ice were to melt completely. However, even small changes (centimeters) in sea level would cause important economic and societal consequences in the world's major coastal cities thus it is extremely important to monitor changes in the ice-sheet surface temperature and to ultimately quantify these changes in terms of amount of sea-level rise. We have compiled a high-resolution, daily time series of surface temperature of the Greenland Ice Sheet, using the I-km resolution, clear-sky land-surface temperature (LST) standard product from the Moderate-Resolution Imaging Spectroradiometer (MODIS), from 2000 - 2006. We also use Gravity Recovery and Climate Experiment (GRACE) data, averaged over 10-day periods, to measure change in mass of the ice sheet as it melt and snow accumulates. Surface temperature can be used to determine frequency of surface melt, timing of the start and the end of the melt season, and duration of melt. In conjunction with GRACE data, it can also be used to analyze timing of ice-sheet mass loss and gain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5055/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5055/"><span>Water, Ice, and Meteorological Measurements at South Cascade Glacier, Washington, Balance Years 2004 and 2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.</p> <p>2007-01-01</p> <p>Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance years 2004 and 2005. The North Cascade Range in the vicinity of South Cascade Glacier accumulated smaller than normal winter snowpacks during water years 2004 and 2005. Correspondingly, the balance years 2004 and 2005 maximum winter snow balances of South Cascade Glacier, 2.08 and 1.97 meters water equivalent, respectively, were smaller than the average of such balances since 1959. The 2004 glacier summer balance (-3.73 meters water equivalent) was the eleventh most negative during 1959 to 2005 and the 2005 glacier summer balance (-4.42 meters water equivalent) was the third most negative. The relatively small winter snow balances and unusually negative summer balances of 2004 and 2005 led to an overall loss of glacier mass. The 2004 and 2005 glacier net balances, -1.65 and -2.45 meters water equivalent, respectively, were the seventh and second most negative during 1953 to 2005. For both balance years, the accumulation area ratio was less than 0.05 and the equilibrium line altitude was higher than the glacier. The unusually negative 2004 and 2005 glacier net balances, combined with a negative balance previously reported for 2003, resulted in a cumulative 3-year net balance of -6.20 meters water equivalent. No equal or greater 3-year mass loss has occurred previously during the more than 4 decades of U.S. Geological Survey mass-balance measurements at South Cascade Glacier. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 17 meters per year during balance year 2004 and 15 meters per year during balance year 2005. Glacier area near the end of balance years 2004 and 2005 was 1.82 and 1.75 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was gaged during all or parts of water years 2004 and 2005. Air temperature, wind speed, precipitation, and incoming solar radiation were measured at selected locations on and near the glacier.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013HESSD..10.5943C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013HESSD..10.5943C"><span>Contrasts between chemical and physical estimates of baseflow help discern multiple sources of water contributing to rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cartwright, I.; Gilfedder, B.; Hofmann, H.</p> <p>2013-05-01</p> <p>This study compares geochemical and physical methods of estimating baseflow in the upper reaches of the Barwon River, southeast Australia. Estimates of baseflow from physical techniques such as local minima and recursive digital filters are higher than those based on chemical mass balance using continuous electrical conductivity (EC). Between 2001 and 2011 the baseflow flux calculated using chemical mass balance is between 1.8 × 103 and 1.5 × 104 ML yr-1 (15 to 25% of the total discharge in any one year) whereas recursive digital filters yield baseflow fluxes of 3.6 × 103 to 3.8 × 104 ML yr-1 (19 to 52% of discharge) and the local minimum method yields baseflow fluxes of 3.2 × 103 to 2.5 × 104 ML yr-1 (13 to 44% of discharge). These differences most probably reflect how the different techniques characterise baseflow. Physical methods probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow or floodplain storage) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The mismatch between geochemical and physical estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months. Consistent with these interpretations, modelling of bank storage indicates that bank return flows provide water to the river for several weeks after flood events. EC vs. discharge variations during individual flow events also imply that an inflow of low EC water stored within the banks or on the floodplain occurs as discharge falls. The joint use of physical and geochemical techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2016/5006/sir20165006.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2016/5006/sir20165006.pdf"><span>Variability of surface-water quantity and quality and shallow groundwater levels and quality within the Rio Grande Project Area, New Mexico and Texas, 2009–13</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Driscoll, Jessica M.; Sherson, Lauren R.</p> <p>2016-03-15</p> <p>Drought conditions during the study period of January 1, 2009, to September 30, 2013, caused a reduction in surface-water releases from water-supply storage infrastructure of the Rio Grande Project, which led to changes in surface-water and groundwater (conjunctive) use in downstream agricultural alluvial valleys. Surface water and groundwater in the agriculturally dominated alluvial Rincon and Mesilla Valleys were investigated in this study to measure the influence of drought and subsequent change in conjunctive water use on quantity and quality of these water resources. In 2013, the U.S. Geological Survey, in cooperation with the New Mexico Environment Department and the New Mexico Interstate Stream Commission, began a study to (1) calculate dissolved-solids loads over the study period at streamgages in the study area where data are available, (2) assess the temporal variability of dissolved-solids loads at and between each streamgage where data are available, and (3) relate the spatiotemporal variability of shallow groundwater data (groundwater levels and quality) within the alluvial valleys of the study area to spatiotemporal variability of surface-water data over the study period. This assessment included the calculation of surface-water dissolved-solids loads at streamgages as well as a mass-balance approach to measure the change in salt load between these streamgages. Bimodal surface-water discharge data led to a temporally-dynamic volumetric definition of release and nonrelease seasons. Continuous surface-water discharge and water-quality data from three streamgages on the Rio Grande were used to calculate daily dissolved-solids loads over the study period, and the results were aggregated annually and seasonally. Results show the majority of dissolved-solids loading occurs during release season; however, decreased duration of the release season over the 5-year study period has resulted in a decrease of the total annual loads at each streamgage. Calculation of the change of salt loads using a mass-balance approach was applied between streamgages. Results from these calculations suggest differing responses to releases in the Rincon and Mesilla Valleys over the period of study; there is a decreasing sink of salt in the Rincon Valley whereas there is an increasing sink of salt in the Mesilla Valley. Daily groundwater-level and water-quality data from shallow wells within the two alluvial valleys show spatial heterogeneity of water quality over the study period. Mass-balance salt-loading trends during the study period are similar to previous trends during the 1950s drought as well as a wet period in the 1980s. The similarity of salt-loading trends from the 1950s, 1980s, and 2000s independent of the climate indicates salt loading in this hydrologic setting may be driven by water-use practices rather than a single climatic variable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740026681','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740026681"><span>A note on the annual cycles of surface heat balance and temperature over a continent. [North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spar, J.; Crane, G.</p> <p>1974-01-01</p> <p>A surface heating function, defined as the ratio of the time derivative of the mean annual temperature curve to the surface heat balance, is computed from the annual temperature range and heat balance data for the North American continent. An annual cycle of the surface heat balance is then reconstructed from the surface heating function and the annual temperature curve, and an annual cycle of evaporative plus turbulent heat loss is recomputed from the annual cycles of radiation balance and surface heat balance for the continent. The implications of these results for long range weather forecasting are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AIPC.1447..729A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AIPC.1447..729A"><span>A direct evidence of floating-off mechanism of Ag surfactant in Cu/Co multilayers probed by secondary ion mass spectrometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amir, S. M.; Gupta, Mukul; Gupta, Ajay</p> <p>2012-06-01</p> <p>In this work we have investigated the floating-off mechanism of Ag surfactant added during the growth of Cu/Co multilayers. It was found that Ag surfactant added at the bottom of the multilayer floats towards the surface making Co-on-Cu and Cu-on-Co interfaces smooth and symmetric which are otherwise rough and asymmetric. The addition of Ag surfactant in Cu/Co multilayer balances the difference of the surface free energies of Cu and Co as a result smooth interfaces are obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JSG....66..237Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JSG....66..237Y"><span>Distribution of active faulting along orogenic wedges: Minimum-work models and natural analogue</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yagupsky, Daniel L.; Brooks, Benjamin A.; Whipple, Kelin X.; Duncan, Christopher C.; Bevis, Michael</p> <p>2014-09-01</p> <p>Numerical 2-D models based on the principle of minimum work were used to examine the space-time distribution of active faulting during the evolution of orogenic wedges. A series of models focused on thin-skinned thrusting illustrates the effects of arid conditions (no erosion), unsteady state conditions (accretionary influx greater than erosional efflux) and steady state conditions (accretionary influx balances erosional efflux), on the distribution of fault activity. For arid settings, a general forward accretion sequence prevails, although a significant amount of internal deformation is registered: the resulting fault pattern is a rather uniform spread along the profile. Under fixed erosional efficiency settings, the frontal advance of the wedge-front is inhibited, reaching a steady state after a given forward propagation. Then, the applied shortening is consumed by surface ruptures over a narrow frontal zone. Under a temporal increase in erosional efficiency (i.e., transient non-steady state mass balance conditions), a narrowing of the synthetic wedge results; a rather diffuse fault activity distribution is observed during the deformation front retreat. Once steady balanced conditions are reached, a single long-lived deformation front prevails. Fault activity distribution produced during the deformation front retreat of the latter scenario, compares well with the structural evolution and hinterlandward deformation migration identified in southern Bolivian Subandes (SSA) from late Miocene to present. This analogy supports the notion that the SSA is not in steady state, but is rather responding to an erosional efficiency increase since late Miocene. The results shed light on the impact of different mass balance conditions on the vastly different kinematics found in mountain ranges, suggesting that those affected by growing erosion under a transient unbalanced mass flux condition tend to distribute deformation along both frontal and internal faults, while others under balanced conditions would display focused deformation on a limited number of steady structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C33E0866P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C33E0866P"><span>Sensitivity of annual mass balance gradient and Hypsometry to the changing climate: the case of Dokriani Glacier, central Himalaya, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pratap, B.</p> <p>2015-12-01</p> <p>The glacier mass balance is undelayed, unfiltered and direct method to assess the impact of climate change on the glaciers. Many studies suggest that some of the Himalayan glaciers have lost their mass at an increased rate during the past few decades. Furthermore, the mass balance gradient and hypsometric analysis are important to understand the glacier response towards climatic perturbations. Our long term in-situ monitoring on the Dokriani Glacier provides great insights to understand the variability in central Himalayan glaciers. We report the relationship between glacier hypsometry and annual mass balance gradient (12 years) to understand the glacier's response towards climate change. Dokriani Glacier in the Bhagirathi basin is a small (7 km2) NNW exposed glacier in the western part of central Himalaya, India. The study analysed the annual balance, mass balance gradient and length changes observed during first decade of 21st century (2007-2013) and compare with the previous observations of 1990s (1992-2000). A large spatial variability in the mass balance gradients of two different periods has been observed. The equilibrium-line altitude (ELA) was fluctuated between 5000 and 5100 m a.s.l. and the derived time averaged ELA (ELAn) and balance budget ELA (ELA0) were 5075 and 4965 m a.s.l respectively during 1992-2013. The observed time-averaged accumulation-area ratio (AARn) and balance budget AAR (AAR0) were 0.67 and 0.72 respectively during 1992-2013. The higher value of AAR comprises due to flat and broader accumulation area (4.50 km2) of the glacier. Although, having larger accumulation area, the glacier has faced strong mass wasting with average annual ablation of -1.82 m w.e. a-1 in the ablation zone as compare to residual average annual accumulation of 0.41 m w.e. a-1. Based on the annual mass balance series (12 years) Dokriani Glacier has continuous negative annual balances with monotonically negative cumulative mass loss of -3.86 m w.e with the average loss of -0.32 m w.e a-1. Dokriani Glacier also showed continues recession from 1992 to present. Snout was ascended 95 m a.s.l. from an elevation of 3870 m a.s.l. in 1992 to an elevation of 3965 m a.s.l. in 2013. The progressive retreat of the glacier affects its extension and volume and covered by continuous enhancement of debris in the lower ablation zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....6249N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....6249N"><span>Nighttime water absorption by a bare loess soil in a coastal desert</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ninari, N.; Berliner, P. R.</p> <p>2003-04-01</p> <p>The role of dew in arid and semi-arid ecosystems is considered to be of great importance. It can serve as a water source for the bacteria of biological crust, for plants and for small insects. The Negev Desert is a semiarid region characterized by winter rainfall with a very large inter-annual variability. Reports on measurements carried out in this area mention that up to 180 nights a year with dew were registered by a conventional Hiltner Dew Balance, with intensities that ranged from 0.1 to 0.2 mm per night (yielding a total of 15 mm per year, which is more than 10% of the total rainfall). The Hiltner dew balance is based on the continuous weighing of an artificial condensation plate that has a completely different energy balance from that of the soil surface above which it is installed. The Hiltner dew balance could, therefore, be considered as a ``potential dew" gauge, whose results are probably mainly correlated to atmospheric conditions. The prime objective of this work was, therefore, to quantify the amounts of dew deposition on the soil surface, and to compare these amounts to those measured by the Hiltner balance. Measurements were carried out at the Wadi Mashash Experimental Farm in the Negev. To estimate deposition and evaporation of dew, a micro-lysimeter (diameter: 20 cm; soil depth: 50 cm) with an undisturbed soil sample was installed flush with the soil surface. The following were continuously monitored: micro-lysimeter weight, incoming and reflected short wave radiation, net radiation, dry and wet bulb temperatures, wind speed, and soil heat flux. A Hiltner Dew Balance was placed close by as a reference to compare with previous measurements. Throughout the ``dew period" (spring, summer and fall), and at random intervals, soil samples were taken hourly during the whole night. The uppermost 10 cm of the soil was divided into 1 cm intervals, and the soil moisture content was measured (oven dry). During the above-mentioned night campaigns, no dew deposition could be visually detected on the soil surface. A mass gain was however registered with the ML and an increase in moisture content was observed. The Hiltner balance clearly underestimated dew deposition amounts. These results indicate that although no visual signs of dew deposition could be detected, moisture did penetrate into the soil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25404','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25404"><span>Rates and time scales of clay-mineral formation by weathering in saprolitic regoliths of the southern Appalachians from geochemical mass balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jason R. Price; Michael A. Velbel; Lina C. Patino</p> <p>2005-01-01</p> <p>Rates of clay formation in three watersheds located at the Coweeta Hydrologic Laboratory, western North Carolina, have been determined from solute flux-based mass balance methods. A system of mass balance equations with enough equations and unknowns to allow calculation of secondary mineral formation rates as well as the more commonly determined primary-...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.295..572G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.295..572G"><span>Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gibson, Morgan J.; Glasser, Neil F.; Quincey, Duncan J.; Mayer, Christoph; Rowan, Ann V.; Irvine-Fynn, Tristram D. L.</p> <p>2017-10-01</p> <p>Distribution of supraglacial debris in a glacier system varies spatially and temporally due to differing rates of debris input, transport and deposition. Supraglacial debris distribution governs the thickness of a supraglacial debris layer, an important control on the amount of ablation that occurs under such a debris layer. Characterising supraglacial debris layer thickness on a glacier is therefore key to calculating ablation across a glacier surface. The spatial pattern of debris thickness on Baltoro Glacier has previously been calculated for one discrete point in time (2004) using satellite thermal data and an empirically based relationship between supraglacial debris layer thickness and debris surface temperature identified in the field. Here, the same empirically based relationship was applied to two further datasets (2001, 2012) to calculate debris layer thickness across Baltoro Glacier for three discrete points over an 11-year period (2001, 2004, 2012). Surface velocity and sediment flux were also calculated, as well as debris thickness change between periods. Using these outputs, alongside geomorphological maps of Baltoro Glacier produced for 2001, 2004 and 2012, spatiotemporal changes in debris distribution for a sub-decadal timescale were investigated. Sediment flux remained constant throughout the 11-year period. The greatest changes in debris thickness occurred along medial moraines, the locations of mass movement deposition and areas of interaction between tributary glaciers and the main glacier tongue. The study confirms the occurrence of spatiotemporal changes in supraglacial debris layer thickness on sub-decadal timescales, independent of variation in surface velocity. Instead, variation in rates of debris distribution are primarily attributed to frequency and magnitude of mass movement events over decadal timescales, with climate, regional uplift and erosion rates expected to control debris inputs over centurial to millennial timescales. Inclusion of such spatiotemporal variations in debris thickness in distributed surface energy balance models would increase the accuracy of calculated ablation, leading to a more accurate simulation of glacier mass balance through time, and greater precision in quantification of the response of debris-covered glaciers to climatic change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070018777','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070018777"><span>Imaging Thermal He(+)in Geospace from the Lunar Surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gallagher, D. L.; Sandel, B. R.; Adrian, Mark L.; Goldstein, Jerry; Jahn, Joerg-Micha; Spasojevic, Maria; Griffin, Brand</p> <p>2007-01-01</p> <p>By mass, thermal plasma dominates near-earth space and strongly influences the transport of energy and mass into the earth's atmosphere. It is proposed to play an important role in modifying the strength of space weather storms by its presence in regions of magnetic reconnection in the dayside magnetopause and in the near to mid-magnetotail. Ionospheric-origin thermal plasma also represents the most significant potential loss of atmospheric mass from our planet over geological time. Knowledge of the loss of convected thermal plasma into the solar wind versus its recirculation across high latitudes and through the magnetospheric flanks into the magnetospheric tail will enable determination of the mass balance for this mass-dominant component of the Geospace system and of its influence on global magnetospheric processes that are critical to space weather prediction and hence to the impact of space processes on human technology in space and on Earth. Our proposed concept addresses this basic issue of Geospace dynamics by imaging thermal He(+) ions in extreme ultraviolet light with an instrument on the lunar surface. The concept is derived from the highly successful Extreme Ultraviolet imager (EUV) flown on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. From the lunar surface an advanced EUV imager is anticipated to have much higher sensitivity, lower background noise, and higher communication bandwidth back to Earth. From the near-magnetic equatorial location on the lunar surface, such an imager would be ideally located to follow thermal He(+) ions to high latitudes, into the magnetospheric flanks, and into the magnetotail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JGR...10327621A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JGR...10327621A"><span>Simulation of heat storages and associated heat budgets in the Pacific Ocean: 2. Interdecadal timescale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Auad, Guillermo; Miller, Arthur J.; White, Warren B.</p> <p>1998-11-01</p> <p>We use a primitive equation isopycnal model of the Pacific Ocean to simulate and diagnose the anomalous heat balance on interdecadal timescales associated with heat storage changes observed from 1970-1988 in the expendable bathythermograph (XBT) data set. Given the smallness of the interdecadal signals compared to the El Niño-Southern Oscillation (ENSO) signal, the agreement between model and observations is remarkably good. The total anomalous heat balance is made up of two parts, the diabatic part (from the model temperature equation) and the adiabatic part (from the model mass conservation equation) due to thermocline heave. We therefore describe our analysis of both the total and diabatic anomalous heat balances in four areas of the tropical and subtropical North Pacific Ocean in the upper 400 m. The interdecadal total (diabatic plus adiabatic) heat balance in the North Pacific Ocean is characterized by a complicated interplay of different physical processes, especially revealed in basin-scale averages of the heat budget components that have comparable amounts of variance. In smaller subregions, simpler balances hold. For example, in the western equatorial Pacific (area 1) the total heat content tendency term is nearly zero, so that a simple balance exists between surface heat flux, vertical heat transport, and horizontal mixing. In the western subtropical Pacific the total heat content tendency balances the three-dimensional divergence of the heat flux. We speculate that this complexity is indicative of multiple physical mechanisms involved in the generation of North Pacific interdecadal variability. The diabatic heat balance north of 24°N, a region of special interest to The World Ocean Circulation Experiment (WOCE), can be simplified to a balance between the tendency term, surface heat flux, and meridional advection, the last term dominated by anomalous advection of mean temperature gradients. For the western equatorial region the diabatic heat content tendency is nearly zero and the steady balance involves simply horizontal advection and the surface heat flux, which at these latitudes has a damping role in the model. An important finding of this study is the identification of two interdecadal timescales, roughly 10 and 20 years, both similar to those reported by other investigators in recent years. [Tourre et al., 1998; Latif and Barnett, 1994; Robertson, 1995; White et al, 1997; Gu and Philander, 1997; Jacobs et al., 1994]. The 20-year timescale is only present in diabatic heat budget components, while the 10-year timescale is present in both diabatic and adiabatic components. The 10-year timescale can also be seen in the surface heat flux time series, but it occurs in the ocean adiabatic components which demonstrates the importance of oceanic adjustment through Rossby wave dynamics on decadal timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C13D0644S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C13D0644S"><span>Energy balance-based distributed modeling of snow and glacier melt runoff for the Hunza river basin in the Pakistan Karakoram Himalayan region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y.; Ahmad, S.</p> <p>2012-12-01</p> <p>A spatially distributed biosphere hydrological model with energy balance-based multilayer snow physics and multilayer glacier model, including debris free and debris covered surface (enhanced WEB-DHM-S) has been developed and applied to the Hunza river basin in the Pakistan Karakoram Himalayan region, where about 34% of the basin area is covered by glaciers. The spatial distribution of seasonal snow and glacier cover, snow and glacier melt runoff along with rainfall-contributed runoff, and glacier mass balances are simulated. The simulations are carried out at hourly time steps and at 1-km spatial resolution for the two hydrological years (2002-2003) with the use of APHRODITE precipitation dataset, observed temperature, and other atmospheric forcing variables from the Global Land Data Assimilation System (GLDAS). The pixel-to-pixel comparisons for the snow-free and snow-covered grids over the region reveal that the simulation agrees well with the Moderate Resolution Imaging Spectroradiometer (MODIS) eight-day maximum snow-cover extent data (MOD10A2) with an accuracy of 83% and a positive bias of 2.8 %. The quantitative evaluation also shows that the model is able to reproduce the river discharge satisfactorily with Nash efficiency of 0.92. It is found that the contribution of rainfall to total streamflow is small (about 10-12%) while the contribution of snow and glacier is considerably large (35-40% for snowmelt and 50-53% for glaciermelt, respectively). The model simulates the state of snow and glaciers at each model grid prognostically and thus can estimate the net annual mass balance. The net mass balance varies from -2 m to +2 m water equivalent. Additionally, the hypsography analysis for the equilibrium line altitude (ELA) suggests that the average ELA in this region is about 5700 m with substantial variation from glacier to glacier and region to region. This study is the first to adopt a distributed biosphere hydrological model with the energy balance- based multilayer snow and glacier module to estimate the spatial distribution of snow/glacier cover and snow and glacier melt runoff for a river basin in the Karakoram Himalayan region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140005552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140005552"><span>Implicit Coupling Approach for Simulation of Charring Carbon Ablators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Yih-Kanq; Gokcen, Tahir</p> <p>2013-01-01</p> <p>This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhyW...22e..23J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhyW...22e..23J"><span>That gravity thing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jewess, Mike</p> <p>2009-05-01</p> <p>Your news article "New probe plots Earth's gravity field" (March p11) reports on the European Space Agency's Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) - a satellite that will measure the Earth's gravitational field. It describes the way that g, the acceleration of free fall at the Earth's surface, varies with latitude; this variation is great enough to require adjustment of pendulum clocks between latitudes and also the recalibration of all balances that do not directly compare one mass with a reference mass. The article also notes that the spin of the (effectively fluid) Earth causes it to bulge at the equator, a realization that goes back to Newton's Principia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT..........1Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT..........1Y"><span>Determining the Ability of Terrestrial Time-Lapse Microgravity Surveying on a Glacier to Find Summer Mass Balance Using Gravitational Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Young, Emma V.</p> <p></p> <p>Mass loss of alpine glaciers presently account for about half of the cryospheric contribution to the global sea-level rise. Mass balance of alpine glaciers has predominantly been monitored by; (1) glaciological and hydrological methods, and (2) satellite gravimetric methods using data from NASA's Gravity Recovery and Climate Experiment (GRACE) satellite mission. However, the former can be logistically costly and have large extrapolation errors: measurements taken at monthly temporal scales are expensive and have a spatial resolution of roughly one kilometer. The latter provides monthly mass-balance estimates of aggregates of alpine glaciers, although the spatial resolution ( 300 km) is far too coarse for assessing individual glaciers' mass balance. Ground-based, time-lapse microgravity measurements can potentially overcome some of the disadvantages of the glaciological, hydrological, and satellite gravitational methods for assessing mass changes and their spatial distribution on a single glacier. Gravity models were utilized to predict the gravity signals of the summer-time mass balance, changes in the seasonal snow cover outside of the glacier, and the vertical gravity gradient (VGG) needed for the free-air correction on Wolverine Glacier, AK. The modeled gravity signal of the summer-time mass balance (average of -0.237 mGal) is more than an order of magnitude larger than the uncertainty of conventional relative gravimeters (+/- 0.007 mGal). Therefore, modeling predict that the time-lapse gravitational method could detect the summer-time mass balance on Wolverine Glacier. The seasonal snow effect was shown to have the greatest influence ( -0.15 mGal) on the outer 100 m boundary of the glacier and minimal effect ( -0.02 mGal) towards the center, both larger than the uncertainty of relative gravimeters. The VGG has a positive deviation, about -0.1 to -0.2 mGal/m, from the normal VGG (-0.309 mGal/m). Thus, seasonal snow effect and VGG need to be correctly accounted for when processing gravity measurements to derive the residual gravity signal of the glacier mass balance. Accurate measurements of elevation changes, seasonal snow depth, and the VGG should be performed in future gravity surveys of glaciers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C31C..04J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C31C..04J"><span>Mechanisms that Amplify, Attenuate and Deviate Glacier Response to Climate Change in Central East Greenland. (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiskoot, H.</p> <p>2013-12-01</p> <p>A multidecadal review of glacier fluctuations and case-studies of glacier processes and environments in central East Greenland will be used to demonstrate Mechanisms that Amplify, Attenuate and Deviate glacier response to climate forcings (MAAD). The different spatial and temporal scales at which MAAD affect mass balance and ice flow may complicate interpretation and longterm extrapolation of glacier response to climate change. A framework of MAAD characterisation and best-practice for interpreting climate signals while taking into account MAAD will be proposed. Glaciers in the Watkins Bjerge, Geikie Plateau and Stauning Alps regions of central East Greenland (68°-72°N) contain about 50000 km2 of glacierized area peripheral to the Greenland Ice Sheet. Within the region, large north-south and coast-inland climatic gradients, as well as complicated topography and glacier dynamics, result in discrepant glacier behaviour. Average retreat rates have doubled from about 2 to 4 km2 a-1 between the late 20th and early 21st centuries. However, glaciers terminating along the Atlantic coast display two times the retreat, thinning, and acceleration rates compared to glaciers terminating in inland fjords or on land. Despite similar climatic forcing variable glacier behaviour is apparent: individual glacier length change ranges from +57 m a-1 to -428 m a-1, though most retreat -20 to -100 m a-1. Interacting dynamic, mass balance and glacio-morphological mechanisms can amplify, attenuate or deviate glacier response (MAAD) to climate change, thus complicating the climatological interpretation of glacier length, area, and thickness changes. East Greenland MAAD include a range of common positive and negative feedback mechanisms in surface mass balance and terminus and subglacial boundary conditions affecting ice flow, but also mechanisms that have longterm or delayed effects. Certain MAAD may affect glacier change interpretation on multiple timescales: e.g. surging glaciers do not only pose problems for the direct interpretation of climate change from length and volume changes due to their dynamically-driven advance and retreat regimes, but also for the reconstruction of LIA extents from trimlines and moraines, and the reconstruction of surface mass balance due to crevasses, potholes or debris-cover. This presentation will address a range of MAAD, including thermal regime transitions; ocean influences on tidewater-terminating glaciers; glacier fragmentation and tributary-trunk interaction; glacier surging and tidewater behaviour; seasonal variations; glacier hypsometry and morphology; terrain and substrate; melt-albedo and melt-ice flow feedbacks; and ice marginal lakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/51060','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/51060"><span>Impacts of invasive earthworms on soil mercury cycling: Two mass balance approaches to an earthworm invasion in a northern Minnesota forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Sona Psarska; Edward A. Nater; Randy Kolka</p> <p>2016-01-01</p> <p>Invasive earthworms perturb natural forest ecosystems that initially developed without them, mainly by consuming the forest floor (an organic rich surficial soil horizon) and by mixing the upper parts of the soil. The fate of mercury (Hg) formerly contained in the forest floor is largely unknown. We used two mass balance approaches (simple mass balance and geochemical...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C21D1150M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C21D1150M"><span>Improved climate model evaluation using a new, 750-year Antarctic-wide snow accumulation product</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Medley, B.; Thomas, E. R.</p> <p>2017-12-01</p> <p>Snow that accumulates over the cold, dry grounded ice of Antarctica is an important component of its mass balance, mitigating the ice sheet's contribution to sea level. Secular trends in accumulation not only result trends in the mass balance of the Antarctic Ice Sheet, but also directly and indirectly impact surface height changes. Long-term and spatiotemporally complete records of snow accumulation are needed to understand part and present Antarctic-wide mass balance, to convert from altimetry derived volume change to mass change, and to evaluate the ability of climate models to reproduce the observed climate change. We need measurements in both time and space, yet they typically sample one dimension at the expense of the other. Here, we develop a spatially complete, annually resolved snow accumulation product for the Antarctic Ice Sheet over the past 750 years by combining a newly compiled database of ice core accumulation records with climate model output. We mainly focus on climate model evaluation. Because the product spans several centuries, we can evaluate model ability in representing the preindustrial as well as present day accumulation change. Significant long-term trends in snow accumulation are found over the Ross and Bellingshausen Sea sectors of West Antarctica, the Antarctic Peninsula, and several sectors in East Antarctica. These results suggest that change is more complex over the Antarctic Ice Sheet than a simple uniform change (i.e., more snowfall in a warming world), which highlights the importance of atmospheric circulation as a major driver of change. By evaluating several climate models' ability to reproduce the observed trends, we can deduce whether their projections are reasonable or potentially biased where the latter would result in a misrepresentation of the Antarctic contribution to sea level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007GPC....59...17S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007GPC....59...17S"><span>Recent evolution and mass balance of Cordón Martial glaciers, Cordillera Fueguina Oriental</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strelin, Jorge; Iturraspe, Rodolfo</p> <p>2007-10-01</p> <p>Past and present glacier changes have been studied at Cordón Martial, Cordillera Fueguina Oriental, Tierra del Fuego, providing novel data for the Holocene deglaciation history of southern South America and extrapolating as well its future behavior based on predicted climatic changes. Regional geomorphologic and stratigraphic correlations indicate that the last glacier advance deposited the ice-proximal ("internal") moraines of Cordón Martial, around 330 14C yr BP, during the Late Little Ice Age (LLIA). Since then glaciers have receded slowly, until 60 years ago, when major glacier retreat started. There is a good correspondence for the past 100 years between the surface area variation of four small cirque glaciers at Cordón Martial and the annual temperature and precipitation data of Ushuaia. Between 1984 and 1998, Martial Este Glacier lost 0.64 ± 0.02 × 10 6 m 3 of ice mass (0.59 ± 0.02 × 10 6 m 3 w.e.), corresponding to an average ice thinning of 7.0 ± 0.2 m (6.4 ± 0.2 m w.e), according to repeated topographic mapping. More detailed climatic data have been obtained since 1998 at the Martial Este Glacier, including air temperature, humidity and solar radiation. These records, together with the monthly mass balance measured since March 2000, document the annual response of the Martial Este Glacier to the climate variation. Mass balances during hydrological years were positive in 2000, negative in 2001 and near equilibrium in 2002. Finally, using these data and the regional temperature trend projections, modeled for different future scenarios by the Atmosphere-Ocean Model (GISS-NASA/GSFC), potential climatic-change effects on this mountain glacier were extrapolated. The analysis shows that only the Martial Este Glacier may survive this century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28968535','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28968535"><span>Comparison of posture and balance in cancer survivors and age-matched controls.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schmitt, Abigail C; Repka, Chris P; Heise, Gary D; Challis, John H; Smith, Jeremy D</p> <p>2017-12-01</p> <p>The combination of peripheral neuropathy and other treatment-associated side effects is likely related to an increased incidence of falls in cancer survivors. The purpose of this study was to quantify differences in postural stability between healthy age-matched controls and cancer survivors. Quiet standing under four conditions (eyes open/closed, rigid/compliant surface) was assessed in 34 cancer survivors (2 males, 32 females; age: 54(13) yrs., height: 1.62(0.07) m; mass: 78.5(19.5) kg) and 34 age-matched controls (5 males, 29 females; age: 54(15) yrs.; height: 1.62(0.08) m; mass: 72.8(21.1) kg). Center of pressure data were collected for 30s and the trajectories were analyzed (100Hz). Three-factor (group*surface*vision) mixed model MANOVAs with repeated measures were used to determine the effect of vision and surface on postural steadiness between groups. Cancer survivors exhibited larger mediolateral root-mean square distance and velocity of the center of pressure, as well as increased 95% confidence ellipse area (P<0.01) when compared with their age-matched counterparts. For example, when removing visual input, cancer survivors had an average increase in 95% confidence ellipse area of 91.8mm 2 while standing on a rigid surface compared to a 68.6mm 2 increase for the control group. No frequency-based center of pressure measures differed between groups. Cancer survivors exhibit decreased postural steadiness when compared with age-matched controls. For cancer survivors undergoing rehabilitation focused on existing balance deficits, a small subset of the center of pressure measures presented here can be used to track progress throughout the intervention and potentially mitigate fall risk. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H53G1022O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H53G1022O"><span>An Analysis of the Energy, Water, and Salt Balance of a Saline Lake in the Sandhills Region of Semi-Arid Western Nebraska (USA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ong, J.; Lenters, J. D.; Zlotnik, V. A.; Jones, S.</p> <p>2009-12-01</p> <p>The Sandhills region of western Nebraska comprises the largest stabilized dune field in the western hemisphere. Although situated in a semi-arid climate, the sandy soils allow a significant fraction of the ambient precipitation to drain through and recharge the underlying Ogallala aquifer. As part of the larger High Plains aquifer that extends from South Dakota down to Texas, the Sandhills region provides an abundant groundwater resource for the surrounding area and is heavily utilized for irrigation. Located within a semi-arid climate, fluctuations in groundwater recharge in the Sandhills are likely to be highly sensitive to changes in climate and the regional water balance. Important to this water balance are the numerous seepage lakes which exist throughout the region. Where present, however, these lakes evaporate rapidly as a result of the warm, dry, sunny, and windy conditions. Many of the lakes are highly saline and often support a diverse wetland ecosystem. A field study of one of these lakes was initiated in 2007 to examine the effects of climate variability on the energy and water balance of the lake. In particular, we measured incoming and outgoing solar and longwave radiation over the surface of the lake, as well as lake and sediment temperatures, salinity, water levels, and ancillary meteorological variables. The lake is shallow, with a depth of roughly 30 cm, but is observed to undergo significant variations in water level relative to its mean depth and is almost completely drying up during some periods. Salinity values undergo similarly large variations and are found to respond relatively rapidly to precipitation and evaporation “events.” Energy balance estimates of lake evaporation yield values that are well in excess of the ambient precipitation, suggesting significant inputs from groundwater. These evaporation measurements correspond closely with mass-transfer estimates, except during periods when the lake becomes dry enough to elevate surface temperatures, causing the mass transfer formulation to break down. Finally, we find that interannual variations in the energy, water, and salt balance of the lake are significant, suggesting that long-term monitoring of lakes in the Sandhills (and similar semi-arid regions) is required in order to establish a “representative” record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP31D2318K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP31D2318K"><span>Coupling Stable Water Isotopes in Vapor and Precipitation to Raindrop Size Distributions at a Mid-latitude Tall-tower Site to Evaluate the Role of Rain Evaporation in Boundary Layer Moisture Recycling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaushik, A.; Noone, D.</p> <p>2016-12-01</p> <p>The continental boundary layer moisture balance plays an important role in regulating water and energy exchange between the surface and the atmosphere, yet the mechanisms associated with moistening and drying are both poorly observed and modeled. Stable water isotope ratio measurements can provide insights into air mass origins, convection dynamics and mechanisms dominating atmosphere-land surface water fluxes. Profiles can be exploited to improve estimates of boundary layer moistening associated with evaporation of falling precipitation and contributions from surface evapotranspiration. We present two years of in situ tower-based measurements of isotope ratios of water vapor and precipitation (δD and δ18O) and raindrop size distributions from the Boulder Atmospheric Observatory (BAO) tall-tower site in Erie, Colorado. Isotope vapor measurements were made at 1 Hz with a full cycle from the surface to 300 meters recorded every 80 minutes. At the surface and 300m, water samples were collected during precipitation events and raindrop sizes were measured continuously using Parsivel instruments. We use this unique suite of measurements and, in particular, exploit the differences between the surface and 300m observations to constrain the surface layer hydrological mass balance during and after rain events, and evaluate parameterization choices for rain evaporation and moisture recycling in current isotope-enabled climate models. Aggregate raindrop size measurements showed shifts from populations of smaller raindrops at 300m to larger raindrops at the surface, contrary to what is expected for rain evaporation. Convective storms resulted in more uniform signatures between the surface and 300m, as well as longer isotope equilibration and adjustment time scales, whereas low Dexcess signatures (<9 to negative) during stratiform drizzle events were indicative of a greater degree of rain evaporation. Our observational results suggest that water vapor-rain equilibration is rarely achieved, and modification of the kinetic fractionation factor is necessary to better capture drop-size related isotope changes. This has implications not only for refining current global climate models, but also for interpreting proxy records connected to rainfall signatures that aid in understanding past hydrology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C12B..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C12B..07S"><span>In-situ GPS records of surface mass balance, firn compaction rates, and ice-shelf basal melt rates for Pine Island Glacier, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shean, D. E.; Christianson, K.; Larson, K. M.; Ligtenberg, S.; Joughin, I. R.; Smith, B.; Stevens, C.</p> <p>2016-12-01</p> <p>In recent decades, Pine Island Glacier (PIG) has experienced marked retreat, speedup and thinning due to ice-shelf basal melt, internal ice-stream instability and feedbacks between these processes. In an effort to constrain recent ice-stream dynamics and evaluate potential causes of retreat, we analyzed 2008-2010 and 2012-2014 GPS records for PIG. We computed time series of horizontal velocity, strain rate, multipath-based antenna height, surface elevation, and Lagrangian elevation change (Dh/Dt). These data provide validation for complementary high-resolution WorldView stereo digital elevation model (DEM) records, with sampled DEM vertical error of 0.7 m. The GPS antenna height time series document a relative surface elevation increase of 0.7-1.0 m/yr, which is consistent with estimated surface mass balance (SMB) of 0.7-0.9 m.w.e./yr from RACMO2.3 and firn compaction rates from the IMAU-FDM dynamic firn model. An abrupt 0.2-0.3 m surface elevation decrease due to surface melt and/or greater near-surface firn compaction is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed surface Dh/Dt for all PIG shelf sites is highly linear with trends of -1 to -4 m/yr and <0.4 m residuals. Similar Dh/Dt estimates with reduced variability are obtained after removing expected downward GPS pole base velocity from observed GPS antenna Dh/Dt. Estimated Dh/Dt basal melt rates are 10 to 40 m/yr for the outer PIG shelf and 4 m/yr for the South shelf. These melt rates are similar to those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo DEM records. The GPS/DEM records document higher melt rates within and near transverse surface depressions and rifts associated with longitudinal extension. Basal melt rates for the 2012-2014 period show limited temporal variability, despite significant change in ocean heat content. This suggests that sub-shelf melt rates are less sensitive to ocean heat content than previously reported, at least for these locations and time periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27386524','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27386524"><span>Monitoring southwest Greenland's ice sheet melt with ambient seismic noise.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mordret, Aurélien; Mikesell, T Dylan; Harig, Christopher; Lipovsky, Bradley P; Prieto, Germán A</p> <p>2016-05-01</p> <p>The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth's crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197221','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197221"><span>Enhancement of a parsimonious water balance model to simulate surface hydrology in a glacierized watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Valentin, Melissa M.; Viger, Roland J.; Van Beusekom, Ashley E.; Hay, Lauren E.; Hogue, Terri S.; Foks, Nathan Leon</p> <p>2018-01-01</p> <p>The U.S. Geological Survey monthly water balance model (MWBM) was enhanced with the capability to simulate glaciers in order to make it more suitable for simulating cold region hydrology. The new model, MWBMglacier, is demonstrated in the heavily glacierized and ecologically important Copper River watershed in Southcentral Alaska. Simulated water budget components compared well to satellite‐based observations and ground measurements of streamflow, evapotranspiration, snow extent, and total water storage, with differences ranging from 0.2% to 7% of the precipitation flux. Nash Sutcliffe efficiency for simulated and observed streamflow was greater than 0.8 for six of eight stream gages. Snow extent matched satellite‐based observations with Nash Sutcliffe efficiency values of greater than 0.89 in the four Copper River ecoregions represented. During the simulation period 1949 to 2009, glacier ice melt contributed 25% of total runoff, ranging from 12% to 45% in different tributaries, and glacierized area was reduced by 6%. Statistically significant (p < 0.05) decreasing and increasing trends in annual glacier mass balance occurred during the multidecade cool and warm phases of the Pacific Decadal Oscillation, respectively, reinforcing the link between climate perturbations and glacier mass balance change. The simulations of glaciers and total runoff for a large, remote region of Alaska provide useful data to evaluate hydrologic, cryospheric, ecologic, and climatic trends. MWBM glacier is a valuable tool to understand when, and to what extent, streamflow may increase or decrease as glaciers respond to a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C53C0799H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C53C0799H"><span>Validation of Modelled Ice Dynamics of the Greenland Ice Sheet using Historical Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoffman, M. J.; Price, S. F.; Howat, I. M.; Bonin, J. A.; Chambers, D. P.; Tezaur, I.; Kennedy, J. H.; Lenaerts, J.; Lipscomb, W. H.; Neumann, T.; Nowicki, S.; Perego, M.; Saba, J. L.; Salinger, A.; Guerber, J. R.</p> <p>2015-12-01</p> <p>Although ice sheet models are used for sea level rise projections, the degree to which these models have been validated by observations is fairly limited, due in part to the limited duration of the satellite observation era and the long adjustment time scales of ice sheets. Here we describe a validation framework for the Greenland Ice Sheet applied to the Community Ice Sheet Model by forcing the model annually with flux anomalies at the major outlet glaciers (Enderlin et al., 2014, observed from Landsat/ASTER/Operation IceBridge) and surface mass balance (van Angelen et al., 2013, calculated from RACMO2) for the period 1991-2012. The ice sheet model output is compared to ice surface elevation observations from ICESat and ice sheet mass change observations from GRACE. Early results show promise for assessing the performance of different model configurations. Additionally, we explore the effect of ice sheet model resolution on validation skill.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008MMTA...39.2424S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008MMTA...39.2424S"><span>Two-Dimensional Mathematical Modeling of the Pack Carburizing Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarkar, S.; Gupta, G. S.</p> <p>2008-10-01</p> <p>Pack carburization is the oldest method among the case-hardening treatments, and sufficient attempts have not been made to understand this process in terms of heat and mass transfer, effect of alloying elements, dimensions of the sample, etc. Thus, a two-dimensional mathematical model in cylindrical coordinate is developed for simulating the pack carburization process for chromium-bearing steel in this study. Heat and mass balance equations are solved simultaneously, where the surface temperature of the sample varies with time, but the carbon potential at the surface during the process remains constant. The fully implicit finite volume technique is used to solve the governing equations. Good agreement has been found between the predicted and published data. The effect of temperature, carburizing time, dimensions of the sample, etc. on the pack carburizing process shows some interesting results. It is found that the two-dimensional model gives better insight into understanding the carburizing process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.7361B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.7361B"><span>Quantification of methane sources in the Athabasca Oil Sands Region of Alberta by aircraft mass balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baray, Sabour; Darlington, Andrea; Gordon, Mark; Hayden, Katherine L.; Leithead, Amy; Li, Shao-Meng; Liu, Peter S. K.; Mittermeier, Richard L.; Moussa, Samar G.; O'Brien, Jason; Staebler, Ralph; Wolde, Mengistu; Worthy, Doug; McLaren, Robert</p> <p>2018-05-01</p> <p>Aircraft-based measurements of methane (CH4) and other air pollutants in the Athabasca Oil Sands Region (AOSR) were made during a summer intensive field campaign between 13 August and 7 September 2013 in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring. Chemical signatures were used to identify CH4 sources from tailings ponds (BTEX VOCs), open pit surface mines (NOy and rBC) and elevated plumes from bitumen upgrading facilities (SO2 and NOy). Emission rates of CH4 were determined for the five primary surface mining facilities in the region using two mass-balance methods. Emission rates from source categories within each facility were estimated when plumes from the sources were spatially separable. Tailings ponds accounted for 45 % of total CH4 emissions measured from the major surface mining facilities in the region, while emissions from operations in the open pit mines accounted for ˜ 50 %. The average open pit surface mining emission rates ranged from 1.2 to 2.8 t of CH4 h-1 for different facilities in the AOSR. Amongst the 19 tailings ponds, Mildred Lake Settling Basin, the oldest pond in the region, was found to be responsible for the majority of tailings ponds emissions of CH4 ( > 70 %). The sum of measured emission rates of CH4 from the five major facilities, 19.2 ± 1.1 t CH4 h-1, was similar to a single mass-balance determination of CH4 from all major sources in the AOSR determined from a single flight downwind of the facilities, 23.7 ± 3.7 t CH4 h-1. The measured hourly CH4 emission rate from all facilities in the AOSR is 48 ± 8 % higher than that extracted for 2013 from the Canadian Greenhouse Gas Reporting Program, a legislated facility-reported emissions inventory, converted to hourly units. The measured emissions correspond to an emissions rate of 0.17 ± 0.01 Tg CH4 yr-1 if the emissions are assumed as temporally constant, which is an uncertain assumption. The emission rates reported here are relevant for the summer season. In the future, effort should be devoted to measurements in different seasons to further our understanding of the seasonal parameters impacting fugitive emissions of CH4 and to allow for better estimates of annual emissions and year-to-year variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=balance&id=EJ1142549','ERIC'); return false;" href="https://eric.ed.gov/?q=balance&id=EJ1142549"><span>A Smartphone Inertial Balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Barrera-Garrido, Azael</p> <p>2017-01-01</p> <p>In order to measure the mass of an object in the absence of gravity, one useful tool for many decades has been the inertial balance. One of the simplest forms of inertial balance is made by two mass holders or pans joined together with two stiff metal plates, which act as springs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H51F0675W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H51F0675W"><span>Comparison of evaporative fluxes from porous surfaces resolved by remotely sensed and in-situ temperature and soil moisture data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wallen, B.; Trautz, A.; Smits, K. M.</p> <p>2014-12-01</p> <p>The estimation of evaporation has important implications in modeling climate at the regional and global scale, the hydrological cycle and estimating environmental stress on agricultural systems. In field and laboratory studies, remote sensing and in-situ techniques are used to collect thermal and soil moisture data of the soil surface and subsurface which is then used to estimate evaporative fluxes, oftentimes using the sensible heat balance method. Nonetheless, few studies exist that compare the methods due to limited data availability and the complexity of many of the techniques, making it difficult to understand flux estimates. This work compares different methods used to quantify evaporative flux based on remotely sensed and in-situ temperature and soil moisture data. A series of four laboratory experiments were performed under ambient and elevated air temperature conditions with homogeneous and heterogeneous soil configurations in a small two-dimensional soil tank interfaced with a small wind tunnel apparatus. The soil tank and wind tunnel were outfitted with a suite of sensors that measured soil temperature (surface and subsurface), air temperature, soil moisture, and tank weight. Air and soil temperature measurements were obtained using infrared thermography, heat pulse sensors and thermistors. Spatial and temporal thermal data were numerically inverted to obtain the evaporative flux. These values were then compared with rates of mass loss from direct weighing of the samples. Results demonstrate the applicability of different methods under different surface boundary conditions; no one method was deemed most applicable under every condition. Infrared thermography combined with the sensible heat balance method was best able to determine evaporative fluxes under stage 1 conditions while distributed temperature sensing combined with the sensible heat balance method best determined stage 2 evaporation. The approaches that appear most promising for determining the surface energy balance incorporates soil moisture rate of change over time and atmospheric conditions immediately above the soil surface. An understanding of the fidelity regarding predicted evaporation rates based upon stages of evaporation enables a more deliberate selection of the suite of sensors required for data collection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.212..345O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.212..345O"><span>Numerical modelling of multiphase multicomponent reactive transport in the Earth's interior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oliveira, Beñat; Afonso, Juan Carlos; Zlotnik, Sergio; Diez, Pedro</p> <p>2018-01-01</p> <p>We present a conceptual and numerical approach to model processes in the Earth's interior that involve multiple phases that simultaneously interact thermally, mechanically and chemically. The approach is truly multiphase in the sense that each dynamic phase is explicitly modelled with an individual set of mass, momentum, energy and chemical mass balance equations coupled via interfacial interaction terms. It is also truly multicomponent in the sense that the compositions of the system and its constituent phases are expressed by a full set of fundamental chemical components (e.g. SiO2, Al2O3, MgO, etc.) rather than proxies. These chemical components evolve, react with and partition into different phases according to an internally consistent thermodynamic model. We combine concepts from Ensemble Averaging and Classical Irreversible Thermodynamics to obtain sets of macroscopic balance equations that describe the evolution of systems governed by multiphase multicomponent reactive transport (MPMCRT). Equilibrium mineral assemblages, their compositions and physical properties, and closure relations for the balance equations are obtained via a `dynamic' Gibbs free-energy minimization procedure (i.e. minimizations are performed on-the-fly as needed by the simulation). Surface tension and surface energy contributions to the dynamics and energetics of the system are taken into account. We show how complex rheologies, that is, visco-elasto-plastic, and/or different interfacial models can be incorporated into our MPMCRT ensemble-averaged formulation. The resulting model provides a reliable platform to study the dynamics and nonlinear feedbacks of MPMCRT systems of different nature and scales, as well as to make realistic comparisons with both geophysical and geochemical data sets. Several numerical examples are presented to illustrate the benefits and limitations of the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C23D..02K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C23D..02K"><span>Disentangling the Roles of Atmospheric and Oceanic Forcing on the Last Deglaciation of the Greenland Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keisling, B. A.; Deconto, R. M.</p> <p>2017-12-01</p> <p>Today the Greenland Ice Sheet loses mass via both oceanic and atmospheric processes. However, the relative importance of these mass balance components is debated, especially their potential impact on ongoing and future mass imbalance. Discerning the impact of oceanic versus atmospheric forcing during past periods of mass loss provides potential insight into the future behavior of the ice sheet. Here we present an ensemble of Greenland Ice Sheet simulations of the last deglaciation, designed to assess separately the roles of the ocean and the atmosphere in driving mass loss over the last twenty thousand years. We use twenty-eight different ocean forcing scenarios along with a cutting-edge reconstruction of time-evolving atmospheric conditions based on climate model output and δ15N-based temperature reconstructions to generate a range of ice-sheet responses during the deglaciation. We then compare the simulated timing of ice-retreat in individual catchments with estimates based on both 10Be (exposure) and 14C (minimum-limiting) dates. These experiments allow us to identify the ocean forcing scenario that best match the data on a local-to-regional (i.e., 100-1000 km) scales, providing an assessment of the relative importance of ocean and atmospheric forcing components around the periphery of Greenland. We use these simulations to quantify the importance of the three major mass balance terms (calving, oceanic melting, and surface melting) and assess the uncertainty of the relative influence of these factors during the most recent periods of major ice loss. Our results show that mass balance components around different sectors of the ice sheet respond differently to forcing, with oceanic components driving the majority of retreat in south and east Greenland and atmospheric forcing dominating in west and north Greenland In addition, we target three areas at high spatial resolution ( 1 km) around Greenland currently undergoing substantial change (Jakobshavn, Petermann, and Nioghalvfjerdsfjord/Zakariae) to directly compare simulated deglacial retreat rates with those implied by submarine and subaerial moraine systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001270','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001270"><span>Antarctica, Greenland and Gulf of Alaska Land-ice Evolution from an Iterated GRACE Global Mascon Solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Luthcke, Scott B.; Sabaka, T. J.; Loomis, B. D.; Arendt, A. A.; McCarthy, J. J.; Camp, J.</p> <p>2013-01-01</p> <p>We have determined the ice mass evolution of the Antarctica and Greenland ice sheets (AIS and GIS) and Gulf of Alaska (GOA) glaciers from a new GRACE global solution of equal-area surface mass concentration parcels (mascons) in equivalent height of water. The mascons were estimated directly from the reduction of the inter-satellite K-band range-rate (KBRR) observations, taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons were estimated with 10 day and 1 arc degree equal-area sampling, applying anisotropic constraints. An ensemble empirical mode decomposition adaptive filter was applied to the mascon time series to compute annual mass balances. The details and causes of the spatial and temporal variability of the land-ice regions studied are discussed. The estimated mass trend over the total GIS, AIS and GOA glaciers for the time period 1 December 2003 to 1 December 2010 is -380 plus or minus 31 Gt a(exp -1), equivalent to -1.05 plus or minus 0.09 mma(exp -1) sea-level rise. Over the same time period we estimate the mass acceleration to be -41 plus or minus 27 Gt a(exp -2), equivalent to a 0.11 plus or minus 0.08 mm a(exp -2) rate of change in sea level. The trends and accelerations are dependent on significant seasonal and annual balance anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160003526','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160003526"><span>Antarctica, Greenland and Gulf of Alaska Land-Ice Evolution from an Iterated GRACE Global Mascon Solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Luthcke, Scott B.; Sabaka, T. J.; Loomis, B. D.; Arendt, A. A.; McCarthy, J. J.; Camp, J.</p> <p>2013-01-01</p> <p>We have determined the ice mass evolution of the Antarctica and Greenland ice sheets (AIS and GIS) and Gulf of Alaska (GOA) glaciers from a new GRACE global solution of equal-area surface mass concentration parcels (mascons) in equivalent height of water. The mascons were estimated directly from the reduction of the inter-satellite K-band range-rate (KBRR) observations, taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons were estimated with 10 day and 1 arc degree equal-area sampling, applying anisotropic constraints. An ensemble empirical mode decomposition adaptive filter was applied to the mascon time series to compute annual mass balances. The details and causes of the spatial and temporal variability of the land-ice regions studied are discussed. The estimated mass trend over the total GIS, AIS and GOA glaciers for the time period 1 December 2003 to 1 December 2010 is -380 plus or minus 31 Gt a(exp -1), equivalent to -1.05 plus or minus 0.09 mma(exp -1) sea-level rise. Over the same time period we estimate the mass acceleration to be -41 plus or minus 27 Gt a(exp -2), equivalent to a 0.11 plus or minus 0.08 mm a(exp -2) rate of change in sea level. The trends and accelerations are dependent on significant seasonal and annual balance anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2010/5092/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2010/5092/"><span>A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.</p> <p>2010-01-01</p> <p>Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water represented somewhat diluted groundwater. Streamflow conductivity integrates the concentrations of the major ions, and the logistics of acquiring specific conductance at frequent time intervals are less complicated than data collection, sample processing, shipment, and analysis of water samples in a laboratory. The acquisition of continuous specific conductance data reduces uncertainty associated with less-frequently collected geochemical point data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49077','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49077"><span>A 350-year reconstruction of the response of south Cascade Glacier to interannual and interdecadal climatic variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Kailey W. Marcinkowski; David L. Peterson</p> <p>2015-01-01</p> <p>Mountain hemlock growth chronologies were used to reconstruct the mass balance of South Cascade Glacier, an alpine glacier in the North Cascade Range of Washington State. The net balance reconstruction spans 350 years, from 1659 to 2009. Summer and winter balances were reconstructed for 1346–2009 and 1615–2009, respectively. Relationships between mass balance and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.4718C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.4718C"><span>Comparing mass balance and adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cooper, Matthew; Martin, Randall V.; Padmanabhan, Akhila; Henze, Daven K.</p> <p>2017-04-01</p> <p>Satellite observations offer information applicable to top-down constraints on emission inventories through inverse modeling. Here we compare two methods of inverse modeling for emissions of nitrogen oxides (NOx) from nitrogen dioxide (NO2) columns using the GEOS-Chem chemical transport model and its adjoint. We treat the adjoint-based 4D-Var modeling approach for estimating top-down emissions as a benchmark against which to evaluate variations on the mass balance method. We use synthetic NO2 columns generated from known NOx emissions to serve as "truth." We find that error in mass balance inversions can be reduced by up to a factor of 2 with an iterative process that uses finite difference calculations of the local sensitivity of NO2 columns to a change in emissions. In a simplified experiment to recover local emission perturbations, horizontal smearing effects due to NOx transport are better resolved by the adjoint approach than by mass balance. For more complex emission changes, or at finer resolution, the iterative finite difference mass balance and adjoint methods produce similar global top-down inventories when inverting hourly synthetic observations, both reducing the a priori error by factors of 3-4. Inversions of simulated satellite observations from low Earth and geostationary orbits also indicate that both the mass balance and adjoint inversions produce similar results, reducing a priori error by a factor of 3. As the iterative finite difference mass balance method provides similar accuracy as the adjoint method, it offers the prospect of accurately estimating top-down NOx emissions using models that do not have an adjoint.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1290L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1290L"><span>Evaluation of three methods of different levels of complexity to represent the interactions between the Greenland ice sheet and the atmosphere at the century time scale.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le clec'h, Sébastien; Fettweis, Xavier; Quiquet, Aurelien; Dumas, Christophe; Kageyama, Masa; Charbit, Sylvie; Ritz, Catherine</p> <p>2017-04-01</p> <p>Based on numerous studies showing implications of polar ice sheets on the climate system, the climate community recommended the development of methods to account for feedbacks between polar ice sheets and the other climate components. In this study we used three methods of different levels of complexity to represent the interactions between a Greenland ice sheet model (GRISLI) and a regional atmospheric model (MAR) under the RCP8.5 scenario. The simplest method, i.e. uncoupled, does not account for interactions between both models. In this method MAR computes varying atmospheric conditions using the same present-day observed Greenland ice sheet topography and extent. The outputs are then used to force GRISLI. The second method is a one-way coupling method in which the MAR outputs are corrected to account for topography changes before their transfer to GRISLI. The third method is a fully coupled method allowing the full representation of interactions between MAR and GRISLI. In this case, the ice sheet topography and its extent as seen by the atmospheric model is updated for each ice sheet model time step. The three methods are evaluated regarding the Greenland ice sheet response from 2000 to 2150. As expected, the uncoupled method shows a coastal thinning of the ice sheet due to a decreasing surface mass balance for coastal regions related to increased mean surface temperature. The one-way coupling and the full coupling methods tend to amplify the surface mass balance due to surface elevation feedback. The uncoupled method tends to underestimate the Greenland ice sheet volume reduction compared to both coupling methods over 150 years. This underestimation is of the same order of magnitude of the ice loss from the Greenland peripheral glaciers at the end of the 21st century. As for the uncoupled method, the thinning of the ice sheet occurs in coastal regions for both coupling methods. However compared to the one-way coupling method, the fully coupled method tends to increase the spatial variability of the surface mass balance changes through time. Our results also indicate that differences between the two coupling methods increase with time, which suggests that the choice of the method should depend on the timescale considered. Beyond century scale projections the fully coupled method is necessary in order to avoid underestimation of the ice sheet volume reduction, whilst the one-way method seems to be sufficient to represent the interactions between the atmosphere and the GrIS for projections by the end of the century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SPIE.6790E..25X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SPIE.6790E..25X"><span>Algorithm of regional surface evaporation using remote sensing: A case study of Haihe basin, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiong, Jun; Wu, Bingfang; Yan, Nana; Hu, Minggang</p> <p>2007-11-01</p> <p>Evapotranspiration (ET, or latent heat flux) is the most essential and uncertain factor in water resource management. Remote sensing is a promising tool for estimation of spatial distribution of ET at regional scale with limited ground observations. We developed an algorithm for estimating regional evapotranspiration from MODIS 1b data and ancillary meteorological data. The algorithm is an integration of Penman-Monteith equation and SEBS (Surface Energy Balance System) model. The former is a combination of the energy balance theory and the mass transfer method to compute the evaporation from cropped surfaces from standard climatological records of sunshine, temperature, humidity and wind speed by introducing resistance factors, and the latter determines the spatio-temporal variability of regional evaporative condition. First, we characterized key land surface parameters on satellite over passing days, including fractional vegetation cover (fc), roughness height for momentum (z0m), net radiation (Rn) and soil heat flux (G0); Second, SEBS was applied to partition the sensible heat (H) from latent heat (LE) in combination with Planetary Boundary Layer (PBL) information from seven meteorological stations. A parameterization of surface roughness was applied at mountainous area considering topographic influence; third, we chose available surface resistance (RS) as the temporal-scaling factor. With bulk surface resistance is properly defined, P-M methods is valid for both soil and vegetation canopy. We validated ET from this algorithm with limited actual observations of ET including 2 eddy covariance system dataset and 1 lysimeter sites. Water balance equation is used as a trend-analysis tool to show the consistency between rainfall and ET on four drainage area. As a result, the prototype products showed different accuracy and applicability on different underlying and time scale, which demonstrates the potential of this approach for estimating ET from 1-km to regional spatial scale in North China Plain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840028748&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dplanetary%2Bboundaries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840028748&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dplanetary%2Bboundaries"><span>Atmospheric tides on Venus. III - The planetary boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dobrovolskis, A. R.</p> <p>1983-01-01</p> <p>Diurnal solar heating of Venus' surface produces variable temperatures, winds, and pressure gradients within a shallow layer at the bottom of the atmosphere. The corresponding asymmetric mass distribution experiences a tidal torque tending to maintain Venus' slow retrograde rotation. It is shown that including viscosity in the boundary layer does not materially affect the balance of torques. On the other hand, friction between the air and ground can reduce the predicted wind speeds from about 5 to about 1 m/sec in the lower atmosphere, more consistent with the observations from Venus landers and descent probes. Implications for aeolian activity on Venus' surface and for future missions are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29347515','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29347515"><span>Transient response in granular quasi-two-dimensional bounded heap flow.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xiao, Hongyi; Ottino, Julio M; Lueptow, Richard M; Umbanhowar, Paul B</p> <p>2017-10-01</p> <p>We study the transition between steady flows of noncohesive granular materials in quasi-two-dimensional bounded heaps by suddenly changing the feed rate. In both experiments and simulations, the primary feature of the transition is a wedge of flowing particles that propagates downstream over the rising free surface with a wedge front velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The entire transition is well modeled as a moving boundary problem with a diffusionlike equation derived from local mass balance and a local relation between the flux and the surface slope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRD..11212106M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRD..11212106M"><span>An up-to-date quality-controlled surface mass balance data set for the 90°-180°E Antarctica sector and 1950-2005 period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magand, O.; Genthon, C.; Fily, M.; Krinner, G.; Picard, G.; Frezzotti, M.; Ekaykin, A. A.</p> <p>2007-06-01</p> <p>On the basis of thousands of surface mass balance (SMB) field measurements over the entire Antarctic ice sheet it is currently estimated that more than 2 Gt of ice accumulate each year at the surface of Antarctica. However, these estimates suffer from large uncertainties. Various problems affect Antarctic SMB measurements, in particular, limited or unwarranted spatial and temporal representativeness, measurement inaccuracy, and lack of quality control. We define quality criteria on the basis of (1) an up-to-date review and quality rating of the various SMB measurement methods and (2) essential information (location, dates of measurements, time period covered by the SMB values, and primary data sources) related to each SMB data. We apply these criteria to available SMB values from Queen Mary to Victoria lands (90°-180°E Antarctic sector) from the early 1950s to present. This results in a new set of observed SMB values for the 1950-2005 time period with strong reduction in density and coverage but also expectedly reduced inaccuracies and uncertainties compared to other compilations. The quality-controlled SMB data set also contains new results from recent field campaigns (International Trans-Antarctic Scientific Expedition (ITASE), Russian Antarctic Expedition (RAE), and Australian National Antarctic Research Expeditions (ANARE) projects) which comply with the defined quality criteria. A comparative evaluation of climate model results against the quality-controlled updated SMB data set and other widely used ones illustrates that such Antarctic SMB studies are significantly affected by the quality of field SMB values used as reference.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...860...27I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...860...27I"><span>Signatures of Young Planets in the Continuum Emission from Protostellar Disks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Isella, Andrea; Turner, Neal J.</p> <p>2018-06-01</p> <p>Many protostellar disks show central cavities, rings, or spiral arms likely caused by low-mass stellar or planetary companions, yet few such features are conclusively tied to bodies embedded in the disks. We note that even small features on the disk surface cast shadows, because the starlight grazes the surface. We therefore focus on accurately computing the disk thickness, which depends on its temperature. We present models with temperatures set by the balance between starlight heating and radiative cooling, which are also in vertical hydrostatic equilibrium. The planet has 20, 100, or 1000 M ⊕, ranging from barely enough to perturb the disk significantly, to clearing a deep tidal gap. The hydrostatic balance strikingly alters the appearance of the model disk. The outer walls of the planet-carved gap puff up under starlight heating, throwing a shadow across the disk beyond. The shadow appears in scattered light as a dark ring that could be mistaken for a gap opened by another more distant planet. The surface brightness contrast between outer wall and shadow for the 1000 M ⊕ planet is an order of magnitude greater than a model neglecting the temperature disturbances. The shadow is so deep that it largely hides the planet-launched outer arm of the spiral wave. Temperature gradients are such that outer low-mass planets undergoing orbital migration will converge within the shadow. Furthermore, the temperature perturbations affect the shape, size, and contrast of features at millimeter and centimeter wavelengths. Thus radiative heating and cooling are key to the appearance of protostellar disks with embedded planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2010/5143/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2010/5143/"><span>Modeled and measured glacier change and related glaciological, hydrological, and meteorological conditions at South Cascade Glacier, Washington, balance and water years 2006 and 2007</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.</p> <p>2010-01-01</p> <p>Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 13 meters per year during balance year 2006 and at a rate of about 8 meters per year during balance year 2007. Glacier area near the end of balance years 2006 and 2007 was 1.74 and 1.73 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was gaged during all or parts of water years 2006 and 2007. Air temperature, wind speed, precipitation, and incoming solar radiation were measured at selected locations on and near the glacier. Air-temperature over the glacier at a height of 2 meters generally was less than at the same altitude in the air mass away from the glacier. Cooling of the air by the glacier increased systematically with increasing ambient air temperature. Empirically based equations were developed to estimate 2-meter-height air temperature over the glacier at five sites from site altitude and temperature at a non-glacier reference site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Icar..225..869H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Icar..225..869H"><span>An examination of Mars' north seasonal polar cap using MGS: Composition and infrared radiation balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, Gary B.</p> <p>2013-08-01</p> <p>A detailed analysis of data from one revolution of the Mars Global Surveyor (MGS) is presented. Approximately 80% of this revolution observes the mid-winter northern seasonal polar cap, which covers the surface to <60°N, and which is predominantly within polar night. The surface composition and temperature are determined through analysis of 6-50 μm infrared spectra from the Thermal Emission Spectrometer (TES). The infrared radiative balance, which is the entire heat balance in the polar night except for small subsurface and atmospheric advection terms, is calculated for the surface and atmospheric column. The primary constituent, CO2 ice, also dominates the infrared spectral properties by variations in its grain size and by admixtures of dust and water ice, which cause large variations in the 20-50 μm emissivity. This is modified by incomplete areal coverage, and clouds or hazes. This quantitative analysis reveals CO2 grain radii ranging from ˜100 μm in isolated areas, to 1-5 mm in more widespread regions. The water ice content varies from none to about one part per thousand by mass, with a clear increase towards the periphery of the polar cap. The dust content is typically a few parts per thousand by mass, but is as much as an order of magnitude less abundant in "cold spot" regions, where the low emissivity of pure CO2 ice is revealed. This is the first quantitative analysis of thermal spectra of the seasonal polar cap and the first to estimate water ice content. Our models show that the cold spots represent cleaner, dust-free ice rather than finer grained ice than the background. Our guess is that the dust in cold spots is hidden in the center of the CO2 frost particles rather than not present. The fringes of the cap have more dust and water ice, and become patchy, with warmer water snow filling the gaps on the night side, and warmer bare soil on the day side. A low optical depth (<1 in the visible) water ice atmospheric haze is apparent on the night side, and appears with smaller optical depth on the day side. The infrared radiative balance at the surface is typically 20-25 W m-2 in the central polar cap, with ˜25% dips in the regions of dust-free CO2. The atmospheric radiative terms are typically 1-3 W m-2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1358439','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1358439"><span>High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wilton, David J.; Jowett, Amy; Hanna, Edward</p> <p></p> <p>Here, we show results from a positive degree-day (PDD) model of Greenland ice sheet (GrIS) surface mass balance (SMB), 1870–2012, forced with reanalysis data. The model includes an improved daily temperature parameterization as compared with a previous version and is run at 1 km rather than 5 km resolution. The improvements lead overall to higher SMB with the same forcing data. We also compare our model with results from two regional climate models (RCMs). While there is good qualitative agreement between our PDD model and the RCMs, it usually results in lower precipitation and lower runoff but approximately equivalent SMB:more » mean 1979–2012 SMB (± standard deviation), in Gt a –1, is 382 ± 78 in the PDD model, compared with 379 ± 101 and 425 ± 90 for the RCMs. Comparison with in situ SMB observations suggests that the RCMs may be more accurate than PDD at local level, in some areas, although the latter generally compares well. Dividing the GrIS into seven drainage basins we show that SMB has decreased sharply in all regions since 2000. Finally we show correlation between runoff close to two calving glaciers and either calving front retreat or calving flux, this being most noticeable from the mid-1990s.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C51E..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C51E..03M"><span>Ice shelf snow accumulation rates from the Amundsen-Bellingshausen Sea sector of West Antarctica derived from airborne radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Medley, B.; Kurtz, N. T.; Brunt, K. M.</p> <p>2015-12-01</p> <p>The large ice shelves surrounding the Antarctic continent buttress inland ice, limiting the grounded ice-sheet flow. Many, but not all, of the thick ice shelves located along the Amundsen-Bellingshausen Seas are experiencing rapid thinning due to enhanced basal melting driven by the intrusion of warm circumpolar deep water. Determination of their mass balance provides an indicator as to the future of the shelves buttressing capability; however, measurements of surface accumulation are few, limiting the precision of the mass balance estimates. Here, we present new radar-derived measurements of snow accumulation primarily over the Getz and Abbott Ice Shelves, as well as the Dotson and Crosson, which have been the focus of several of NASA's Operation IceBridge airborne surveys between 2009 and 2014. Specifically, we use the Center for Remote Sensing of Ice Sheets (CReSIS) snow radar to map the near-surface (< 30 m) internal stratigraphy to measure snow accumulation. Due to the complexities of the local topography (e.g., ice rises and rumples) and their relative proximity to the ocean, the spatial pattern of accumulation can be equally varied. Therefore, atmospheric models might not be able to reproduce these small-scale features because of their limited spatial resolution. To evaluate whether this is the case over these narrow shelves, we will compare the radar-derived accumulation rates with those from atmospheric models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1358439-high-resolution-km-positive-degree-day-modelling-greenland-ice-sheet-surface-mass-balance-using-reanalysis-data','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1358439-high-resolution-km-positive-degree-day-modelling-greenland-ice-sheet-surface-mass-balance-using-reanalysis-data"><span>High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wilton, David J.; Jowett, Amy; Hanna, Edward; ...</p> <p>2016-12-15</p> <p>Here, we show results from a positive degree-day (PDD) model of Greenland ice sheet (GrIS) surface mass balance (SMB), 1870–2012, forced with reanalysis data. The model includes an improved daily temperature parameterization as compared with a previous version and is run at 1 km rather than 5 km resolution. The improvements lead overall to higher SMB with the same forcing data. We also compare our model with results from two regional climate models (RCMs). While there is good qualitative agreement between our PDD model and the RCMs, it usually results in lower precipitation and lower runoff but approximately equivalent SMB:more » mean 1979–2012 SMB (± standard deviation), in Gt a –1, is 382 ± 78 in the PDD model, compared with 379 ± 101 and 425 ± 90 for the RCMs. Comparison with in situ SMB observations suggests that the RCMs may be more accurate than PDD at local level, in some areas, although the latter generally compares well. Dividing the GrIS into seven drainage basins we show that SMB has decreased sharply in all regions since 2000. Finally we show correlation between runoff close to two calving glaciers and either calving front retreat or calving flux, this being most noticeable from the mid-1990s.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=242443&Lab=NHEERL&keyword=nitrogen+AND+balance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=242443&Lab=NHEERL&keyword=nitrogen+AND+balance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Mass-balance approach for assessing nitrate flux intidal wetlands -- lessons learned</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Field experiments were carried out in 2010 and 2011 to assess the nitrate balance in a small tidal slough located in the Yaquina Estuary, Oregon. In 2010 we used a whole-slough, mass-balance approach, while a smaller scale, flume-like experiment in a tidal channel with a dense ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29293588','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29293588"><span>Rhodotorula taiwanensis MD1149 produces hypoacetylated PEFA compounds with increased surface activity compared to Rhodotorula babjevae MD1169.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lyman, Mathew; Rubinfeld, Bonnee; Leif, Roald; Mulcahy, Heather; Dugan, Lawrence; Souza, Brian</p> <p>2018-01-01</p> <p>Biosurfactants have several desirable characteristics in the industrial sector: detergency, antimicrobial effects, skin hydration, and emulsibility. Several yeast glycolipids are currently being utilized in these capacities: sophorolipids, ustilagic acid, and mannosylerythritol lipids (MELs). An emerging class of glycolipids, termed polyol esters of fatty acids (PEFA), have recently been reported for Rhodotorula babjevae, a basidiomycetous yeast species that secretes hyperacetylated congeners of PEFA (typically with 3-6 acetylation modifications). While screening Rhodotorula species for surfactant production, we identified a new environmental isolate identified as Rhodotorula taiwanensis MD1149 that dropped the surface tension of the liquid medium, indicating that it produced a potent biosurfactant. Acid depolymerization of the purified biosurfactants, followed by gas chromatography-mass spectrometry (GC-MS) analysis revealed that the biosurfactants were composed of PEFA compounds composed mainly of mannitol and arabitol esters of 3-hydroxy fatty acid, 3-methoxy fatty acid, and fatty acids with a single double bond; chain lengths were mainly C16 and C18. Liquid chromatography-mass spectrometry (LC-MS) confirmed the predicted accurate mass of these compounds. Interestingly, PEFA compounds produced by Rhodotorula taiwanensis MD1149 were more surface active due to their hypoacetylation profile (0-4 acetylation modifications) compared to Rhodotorula babjevae MD1169. These disparate surface active properties, based on acetylation, change the hydrophilic-lipophilic balance (HLB) of these compounds, and their potential utility within industrial applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23406093','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23406093"><span>Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schaefer, C; Jansen, A P J</p> <p>2013-02-07</p> <p>We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESASP.724...96F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESASP.724...96F"><span>Improving the XAJ Model on the Basis of Mass-Energy Balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fang, Yuanhao; Corbari, Chiara; Zhang, Xingnan; Mancini, Marco</p> <p>2014-11-01</p> <p>Introduction: The Xin'anjiang(XAJ) model is a conceptual model developed by the group led by Prof. Ren-Jun Zhao, which takes the pan evaporation as one of its input and then computes the effective evapotranspiration (ET) of the catchment by mass balance. Such scheme can ensure a good performance of discharge simulation but has obvious defects, one of which is that the effective ET is spatially-constant over the computation unit, neglecting the spatial variation of variables that influence the effective ET and therefore the simulation of ET and SM by the XAJ model, comparing with discharge, is less reliable. In this study, The XAJ model was improved to employ both energy and mass balance to compute the ET following the energy-mass balance scheme of FEST-EWB. model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESASP.724E..96F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESASP.724E..96F"><span>Improving the XAJ Model on the Basis of Mass-Energy Balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fang, Yuanghao; Corbari, Chiara; Zhang, Xingnan; Mancini, Marco</p> <p>2014-11-01</p> <p>The Xin’anjiang(XAJ) model is a conceptual model developed by the group led by Prof. Ren-Jun Zhao, which takes the pan evaporation as one of its input and then computes the effective evapotranspiration (ET) of the catchment by mass balance. Such scheme can ensure a good performance of discharge simulation but has obvious defects, one of which is that the effective ET is spatially-constant over the computation unit, neglecting the spatial variation of variables that influence the effective ET and therefore the simulation of ET and SM by the XAJ model, comparing with discharge, is less reliable. In this study, The XAJ model was improved to employ both energy and mass balance to compute the ET following the energy-mass balance scheme of FEST-EWB. model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....9515959H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....9515959H"><span>One hundred years of Arctic ice cover variations as simulated by a one-dimensional, ice-ocean model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hakkinen, S.; Mellor, G. L.</p> <p>1990-09-01</p> <p>A one-dimensional ice-ocean model consisting of a second moment, turbulent closure, mixed layer model and a three-layer snow-ice model has been applied to the simulation of Arctic ice mass and mixed layer properties. The results for the climatological seasonal cycle are discussed first and include the salt and heat balance in the upper ocean. The coupled model is then applied to the period 1880-1985, using the surface air temperature fluctuations from Hansen et al. (1983) and from Wigley et al. (1981). The analysis of the simulated large variations of the Arctic ice mass during this period (with similar changes in the mixed layer salinity) shows that the variability in the summer melt determines to a high degree the variability in the average ice thickness. The annual oceanic heat flux from the deep ocean and the maximum freezing rate and associated nearly constant minimum surface salinity flux did not vary significantly interannually. This also implies that the oceanic influence on the Arctic ice mass is minimal for the range of atmospheric variability tested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4752521','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4752521"><span>Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cheng, Chi-Yung; Huang, Shih-Shen; Yang, Chia-Min; Tang, Kea-Tiong</p> <p>2016-01-01</p> <p>Third-hand smoke (THS) is a new cigarette-related issue defined as the residual contamination from cigarette smoke after a cigarette is extinguished. To detect THS on three commonly used clothing fibers—wool, cotton, and polyester, we applied two methods to measure the adsorption of THS: one was the gain of mass with an analytical balance after exposure to cigarette smoke; and the other was to detect the THS chemical compounds such as nicotine and 3-ethenylpyridine with a surface acoustic wave (SAW) sensor composed of coated oxidized hollow mesoporous carbon nanospheres. In the mass measurement, the gain of mass decreased in the order wool, cotton, and polyester; the latter gain was about one tenth that of wool. In the SAW detection, the frequency shift decreased in the same order—wool, cotton, and polyester. The residence period of THS on natural fiber (wool and cotton) is greater than on synthetic polyester fiber. These two tests provide quantitative results of THS on varied clothing fibers, to assess their risk after exposure to cigarette smoke. PMID:26909119</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25074716','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25074716"><span>Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne</p> <p>2014-11-01</p> <p>In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24735992','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24735992"><span>Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne</p> <p>2014-08-01</p> <p>This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2013/5220/pdf/sir20135220.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2013/5220/pdf/sir20135220.pdf"><span>Evaluation of total phosphorus mass balance in the lower Boise River and selected tributaries, southwestern Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Etheridge, Alexandra B.</p> <p>2013-01-01</p> <p>he U.S. Geological Survey (USGS), in cooperation with Idaho Department of Environmental Quality, developed spreadsheet mass-balance models for total phosphorus using results from three synoptic sampling periods conducted in the lower Boise River watershed during August and October 2012, and March 2013. The modeling reach spanned 46.4 river miles (RM) along the Boise River from Veteran’s Memorial Parkway in Boise, Idaho (RM 50.2), to Parma, Idaho (RM 3.8). The USGS collected water-quality samples and measured streamflow at 14 main-stem Boise River sites, two Boise River north channel sites, two sites on the Snake River upstream and downstream of its confluence with the Boise River, and 17 tributary and return-flow sites. Additional samples were collected from treated effluent at six wastewater treatment plants and two fish hatcheries. The Idaho Department of Water Resources quantified diversion flows in the modeling reach. Total phosphorus mass-balance models were useful tools for evaluating sources of phosphorus in the Boise River during each sampling period. The timing of synoptic sampling allowed the USGS to evaluate phosphorus inputs to and outputs from the Boise River during irrigation season, shortly after irrigation ended, and soon before irrigation resumed. Results from the synoptic sampling periods showed important differences in surface-water and groundwater distribution and phosphorus loading. In late August 2012, substantial streamflow gains to the Boise River occurred from Middleton (RM 31.4) downstream to Parma (RM 3.8). Mass-balance model results indicated that point and nonpoint sources (including groundwater) contributed phosphorus loads to the Boise River during irrigation season. Groundwater exchange within the Boise River in October 2012 and March 2013 was not as considerable as that measured in August 2012. However, groundwater discharge to agricultural tributaries and drains during non-irrigation season was a large source of discharge and phosphorus in the lower Boise River in October 2012 and March 2013. Model results indicate that point sources represent the largest contribution of phosphorus to the Boise River year round, but that reductions in point and nonpoint source phosphorus loads may be necessary to achieve seasonal total phosphorus concentration targets at Parma (RM 3.8) from May 1 through September 30, as set by the 2004 Snake River-Hells Canyon Total Maximum Daily Load document. The mass-balance models do not account for biological or depositional instream processes, but are useful indicators of locations where appreciable phosphorus uptake or release by aquatic plants may occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12.1987S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12.1987S"><span>How does the ice sheet surface mass balance relate to snowfall? Insights from a ground-based precipitation radar in East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Souverijns, Niels; Gossart, Alexandra; Gorodetskaya, Irina V.; Lhermitte, Stef; Mangold, Alexander; Laffineur, Quentin; Delcloo, Andy; van Lipzig, Nicole P. M.</p> <p>2018-06-01</p> <p>Local surface mass balance (SMB) measurements are crucial for understanding changes in the total mass of the Antarctic Ice Sheet, including its contribution to sea level rise. Despite continuous attempts to decipher mechanisms controlling the local and regional SMB, a clear understanding of the separate components is still lacking, while snowfall measurements are almost absent. In this study, the different terms of the SMB are quantified at the Princess Elisabeth (PE) station in Dronning Maud Land, East Antarctica. Furthermore, the relationship between snowfall and accumulation at the surface is investigated. To achieve this, a unique collocated set of ground-based and in situ remote sensing instrumentation (Micro Rain Radar, ceilometer, automatic weather station, among others) was set up and operated for a time period of 37 months. Snowfall originates mainly from moist and warm air advected from lower latitudes associated with cyclone activity. However, snowfall events are not always associated with accumulation. During 38 % of the observed snowfall cases, the freshly fallen snow is ablated by the wind during the course of the event. Generally, snow storms of longer duration and larger spatial extent have a higher chance of resulting in accumulation on a local scale, while shorter events usually result in ablation (on average 17 and 12 h respectively). A large part of the accumulation at the station takes place when preceding snowfall events were occurring in synoptic upstream areas. This fresh snow is easily picked up and transported in shallow drifting snow layers over tens of kilometres, even when wind speeds are relatively low ( < 7 ms-1). Ablation events are mainly related to katabatic winds originating from the Antarctic plateau and the mountain ranges in the south. These dry winds are able to remove snow and lead to a decrease in the local SMB. This work highlights that the local SMB is strongly influenced by synoptic upstream conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JESS..127...28R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JESS..127...28R"><span>Incorporation of ice sheet models into an Earth system model: Focus on methodology of coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rybak, Oleg; Volodin, Evgeny; Morozova, Polina; Nevecherja, Artiom</p> <p>2018-03-01</p> <p>Elaboration of a modern Earth system model (ESM) requires incorporation of ice sheet dynamics. Coupling of an ice sheet model (ICM) to an AOGCM is complicated by essential differences in spatial and temporal scales of cryospheric, atmospheric and oceanic components. To overcome this difficulty, we apply two different approaches for the incorporation of ice sheets into an ESM. Coupling of the Antarctic ice sheet model (AISM) to the AOGCM is accomplished via using procedures of resampling, interpolation and assigning to the AISM grid points annually averaged meanings of air surface temperature and precipitation fields generated by the AOGCM. Surface melting, which takes place mainly on the margins of the Antarctic peninsula and on ice shelves fringing the continent, is currently ignored. AISM returns anomalies of surface topography back to the AOGCM. To couple the Greenland ice sheet model (GrISM) to the AOGCM, we use a simple buffer energy- and water-balance model (EWBM-G) to account for orographically-driven precipitation and other sub-grid AOGCM-generated quantities. The output of the EWBM-G consists of surface mass balance and air surface temperature to force the GrISM, and freshwater run-off to force thermohaline circulation in the oceanic block of the AOGCM. Because of a rather complex coupling procedure of GrIS compared to AIS, the paper mostly focuses on Greenland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JHyd..373..545S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JHyd..373..545S"><span>Effects of meteorological models on the solution of the surface energy balance and soil temperature variations in bare soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saito, Hirotaka; Šimůnek, Jiri</p> <p>2009-07-01</p> <p>SummaryA complete evaluation of the soil thermal regime can be obtained by evaluating the movement of liquid water, water vapor, and thermal energy in the subsurface. Such an evaluation requires the simultaneous solution of the system of equations for the surface water and energy balance, and subsurface heat transport and water flow. When only daily climatic data is available, one needs not only to estimate diurnal cycles of climatic data, but to calculate the continuous values of various components in the energy balance equation, using different parameterization methods. The objective of this study is to quantify the impact of the choice of different estimation and parameterization methods, referred together to as meteorological models in this paper, on soil temperature predictions in bare soils. A variety of widely accepted meteorological models were tested on the dataset collected at a proposed low-level radioactive-waste disposal site in the Chihuahua Desert in West Texas. As the soil surface was kept bare during the study, no vegetation effects were evaluated. A coupled liquid water, water vapor, and heat transport model, implemented in the HYDRUS-1D program, was used to simulate diurnal and seasonal soil temperature changes in the engineered cover installed at the site. The modified version of HYDRUS provides a flexible means for using various types of information and different models to evaluate surface mass and energy balance. Different meteorological models were compared in terms of their prediction errors for soil temperatures at seven observation depths. The results obtained indicate that although many available meteorological models can be used to solve the energy balance equation at the soil-atmosphere interface in coupled water, vapor, and heat transport models, their impact on overall simulation results varies. For example, using daily average climatic data led to greater prediction errors, while relatively simple meteorological models may significantly improve soil temperature predictions. On the other hand, while models for the albedo and soil emissivity had little impact on soil temperature predictions, the choice of the atmospheric emissivity models had a greater impact. A comparison of all the different models indicates that the error introduced at the soil atmosphere interface propagates to deeper layers. Therefore, attention needs to be paid not only to the precise determination of the soil hydraulic and thermal properties, but also to the selection of proper meteorological models for the components involved in the surface energy balance calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA472625','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA472625"><span>The Temporal Dynamics of Terrestrial Organic Matter Transfer to the Oceans: Initial Assessment and Application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-06-01</p> <p>2.2.4 A QUALITATIVE VIEW OF OC CYCLING 44 2.2.5 COUPLED ISOTOPE MASS BALANCE CALCULATIONS 47 2.3 CONCLUSIONS 56 ACKNOWLEDGEMENTS 57 REFERENCES 58...METHODS 71 3.2 RESULTS & DISCUSSION 73 3.2.1 CHRONOLOGY DEVELOPMENT 73 3.2.2 ELEMENTAL AND ISOTOPIC PROFILES 77 3.2.3 MASS BALANCE CALCULATIONS 80 3.3...2005). Within this framework, isotopic mass balance calculations used to assess the fractional abundance of modem and ancient OC (Blair et al., 2003</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22751046','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22751046"><span>Capacity of biochar application to maintain energy crop productivity: soil chemistry, sorghum growth, and runoff water quality effects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schnell, Ronnie W; Vietor, Donald M; Provin, Tony L; Munster, Clyde L; Capareda, Sergio</p> <p>2012-01-01</p> <p>Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.) Moench] treatments were installed in box lysimeters under greenhouse conditions. Treatments comprised increasing rates (0, 1.5, and 3.0 Mg ha) of topdressed or incorporated biochar supplemented with N fertilizer or N, P, and K fertilizer. Simulated rain was applied at 21 and 34 d after planting, and mass runoff loss of N, P, and K was measured. A mass balance of total N, P, and K was performed after 45 d. Returning 3.0 Mg ha of biochar did not affect sorghum biomass, soil total, or Mehlich-3-extractable nutrients compared to control soil. Yet, biochar contributed to increased concentration of dissolved reactive phosphorus (DRP) and mass loss of total phosphorus (TP) in simulated runoff, especially if topdressed. It was estimated that up to 20% of TP in topdressed biochar was lost in surface runoff after two rain events. Poor recovery of nutrients during pyrolysis and excessive runoff loss of nutrients for topdressed biochar, especially K, resulted in negative nutrient balances. Efforts to conserve nutrients during pyrolysis and incorporation of biochar at rates derived from annual biomass yields will be necessary for biochar use in sustainable energy crop production. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3141X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3141X"><span>The Development in modeling Tibetan Plateau Land/Climate Interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xue, Yongkang; Liu, Ye; li, qian; Maheswor Shrestha, Maheswor; Ma, Hsi-Yen; Cox, Peter; Sun, shufen; Koike, Toshio</p> <p>2015-04-01</p> <p>Tibetan Plateau (TP) plays an important role in influencing the continental and planetary scale climate, including East Asian and South Asian monsoon, circulation and precipitation over West Pacific and Indian Oceans. The numerical study has identified TP as the area with strongest land/atmosphere interactions over the midlatitude land. The land degradation there has also affected the monsoon precipitation in TP along the monsoon pathway. The water cycle there affects water sources for major Asian river systems, which include the Tarim, Amu Darya, Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yellow, and Yangtze Rivers. Despite the importance of TP land process in the climate system, the TP land surface processes are poorly modeled due to lack of data available for model validation. To better understand, simulate, and project the role of Tibetan Plateau land surface processes, better parameterization of the Tibetan Land surface processes have been developed and evaluated. The recently available field measurement there and satellite observation have greatly helped this development. This paper presents these new developments and preliminary results using the newly developed biophysical/dynamic vegetation model, frozen soil model, and glacier model. In recent CMIP5 simulation, the CMIP5 models with dynamic vegetation model show poor performance in simulating the TP vegetation and climate. To better simulate the TP vegetation condition and its interaction with climate, we have developed biophysical/dynamic vegetation model, the Simplified Simple Biosphere Model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID), based on water, carbon, and energy balance. The simulated vegetation variables are updates, driven by carbon assimilation, allocation, and accumulation, as well as competition between plant functional types. The model has been validated with the station data, including those measured over the TP. The offline SSiB4/TRIFFID is integrated using the observed precipitation and reanalysis-based meteorological forcing from 1948 to 2008 with 1 degree horizontal resolution. The simulated vegetation conditions and surface hydrology are compared well with observational data with some bias, and shows strong decadal and interannual variabilities with a linear trend associated with the global warming. The TP region is covered by both discontinuous and sporadic permafrost with irregular snow layers above. A frozen soil model is developed to take the coupling effect of mass and heat transport into consideration and includes a detailed description of mass balances of volumetric liquid water, ice, as well as vapor content. It also considers contributions' of heat conduction to the energy balance. The model has been extensively tested using a number of TP station data, which included soil temperature and soil water measurements. The results suggest that it is important to include the frozen sol process to adequately simulate the surface energy balance during the freezing and thawing periods and surface temperature variability, including its diurnal variation. Issues in simulating permafrost process will also be addressed. To better understand the glacier variations under climate change scenarios, an integrated modeling system with an energy budget-based multilayer scheme for clean glaciers, a single-layer scheme for debris-covered glaciers and multilayer scheme for seasonal snow over glacier, soil and forest are developed within a distributed biosphere hydrological modeling framework (WEB-DHM-S model). Discharge simulations using this model show good agreement with observations for Hunza River Basin (13,733 km2) in the Karakoram region of Pakistan for three hydrologic years (2002-2004). Flow composition analysis reveals that the runoff regime is strongly controlled by the snow and glacier melt runoff (50% snowmelt and 33% glacier melt) and suggests that both topography and glacier hypsometry play key roles in glacier mass balance. This study provides a basis for potential application of such an integrated model to the entire Hindu-Kush-Karakoram-Himalaya region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930062576&hterms=chemical+solution&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dchemical%2Bsolution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930062576&hterms=chemical+solution&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dchemical%2Bsolution"><span>Chemical nonequilibrium Navier-Stokes solutions for hypersonic flow over an ablating graphite nosetip</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Y. K.; Henline, W. D.</p> <p>1993-01-01</p> <p>The general boundary conditions including mass and energy balances of chemically equilibrated or nonequilibrated gas adjacent to ablating surfaces have been derived. A computer procedure based on these conditions was developed and interfaced with the Navier-Stokes solver for predictions of the flow field, surface temperature, and surface ablation rates over re-entry space vehicles with ablating Thermal Protection Systems (TPS). The Navier-Stokes solver with general surface thermochemistry boundary conditions can predict more realistic solutions and provide useful information for the design of TPS. A test case with a proposed hypersonic test vehicle configuration and associated free stream conditions was developed. Solutions with various surface boundary conditions were obtained, and the effect of nonequilibrium gas as well as surface chemistry on surface heating and ablation rate were examined. The solutions of the GASP code with complete ablating surface conditions were compared with those of the ASC code. The direction of future work is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..257..324M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..257..324M"><span>Evolution of Titan's atmosphere during the Late Heavy Bombardment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marounina, Nadejda; Tobie, Gabriel; Carpy, Sabrina; Monteux, Julien; Charnay, Benjamin; Grasset, Olivier</p> <p>2015-09-01</p> <p>The mass and composition of Titan's massive atmosphere, which is dominated by N2 and CH4 at present, have probably varied all along its history owing to a combination of exogenous and endogenous processes. In the present study, we investigate its fate during the Late Heavy Bombardment (LHB) by modeling the competitive loss and supply of volatiles by cometary impacts and their consequences on the atmospheric balance. For surface albedos ranging between 0.1 and 0.7, we examine the emergence of an atmosphere during the LHB as well as the evolution of a primitive atmosphere with various masses and compositions prior to this event, accounting for impact-induced crustal NH3-N2 conversion and subsequent outgassing as well as impact-induced atmospheric erosion. By considering an impactor population characteristic of the LHB, we show that the generation of a N2-rich atmosphere with a mass equivalent to the present-day one requires ammonia mass fraction of 2-5%, depending on surface albedos, in an icy layer of at least 50 km below the surface, implying an undifferentiated interior at the time of LHB. Except for high surface albedos (AS ⩾ 0.7) where most of the released N2 remain frozen at the surface, our calculations indicate that the high-velocity impacts led to a strong atmospheric erosion. For a differentiated Titan with a thin ammonia-enriched crust (⩽5 km) and AS < 0.6 , any atmosphere preexisting before the LHB should be more than 5 times more massive than at present, in order to sustain an atmosphere equivalent to the present-day one. This implies that either a massive atmosphere was formed on Titan during its accretion or that the nitrogen-rich atmosphere was generated after the LHB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001745','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001745"><span>The Effect of Shock on the Amorphous Component in Altered Basalt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eckley, S. A.; Wright, S. P.; Rampe, E. B.; Niles, P. B.</p> <p>2017-01-01</p> <p>Investigation of the geochemical and mineralogical composition of the Martian surface provides insight into the geologic history of the predominantly basaltic crust. The Chemistry and Mineralogy (CheMin) instrument onboard the Curiosity rover has returned the first X-Ray diffraction data from the Martian surface. However, large proportions (27 +/- 14 with some estimates as high as 50 weight percentage) of an amorphous component have been reported. As a remedy to this problem, mass balance equations using geochemistry, volatile chemistry, and mineralogy have been employed to constrain the geochemistry of the amorphous component. However, "the nature and number of amorphous phases that constitute the amorphous component is not unequivocally known". Multiple hypotheses have been proposed to explain the origin of this amorphous component: Allophane (Al2O); Basaltic glass (Volcanic and impact); Palagonite (Altered basaltic glass); Hisingerite (Fe (sup 3 plus)-bearing phyllosilicate); S/Cl-rich component (sulfates and/or akaganeite); Nanophase ferric oxide component (npOx). Establishing a multi-phase amorphous component from a basaltic precursor that has undergone physical and chemical weathering within geochemical constraints is of paramount importance to better understand the composition of a large portion of the Martian surface (up to 50 weight percentage). Shocked basalts from Lonar Crater in India are valuable analogs for the Martian surface because it is a well-preserved impact crater in a basaltic target. Having undergone pre- and post-shock aqueous alteration, these rocks provide crucial data regarding the effect of shock on the amorphous component in altered basalt. By conducting mass balance equations similar to what has been performed for Gale crater materials, we attempt to calculate the geochemistry of the amorphous component in altered basalts ranging from unshocked to Class 5 (Table 1). This has the potential to reveal the nature and origin (i.e. primary igneous, shock metamorphic, and/or aqueous alteration occurring before or after the impact event) of the amorphous component in shocked basalt with the goal of unravelling the history of the Martian surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC54B..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC54B..07C"><span>Getting the Lead Out of Bermuda; The Legacy of a Forty Year Record in the North Atlantic Using a Transient Experiment in the Atmosphere and Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Church, T. M.; Alleman, L. Y.; Veron, A. J. J.; Boyle, E. A.; Zurbrick, C.; Patterson, C. C.; Flegal, A. R., Jr.</p> <p>2015-12-01</p> <p>Some forty years ago, Schaule and Patterson established the first accurate profile of lead in waters off Bermuda. In evidence was a massive environmental insult from lead emissions being carried seaward by the atmosphere over the Sargasso Sea. Further documentation was possible using contiguous time series in the atmosphere on Bermuda, surface sea water nearby and recorded in local corals. Lead had then an overwhelming source from the combustion of gasoline, primarily in the USA and secondarily in Europe. These were carried to Bermuda on seasonally alternating temperate and trade winds from the west and east, respectively. The anthropogenic sources were well distinguished based on the unique radiogenic nature of stable lead isotopes in the gasoline being used by these countries. Subsequently, decreasing use in the west (USA) followed by that in the east (Europe) was isotopically evident. As such, the two signatures were subjected to transient mixing in the atmosphere and subsequently with depth in ocean. A transient experiment uses data during 1996-1998, a period of transition in leaded gasoline use in the USA and Europe. Here are complimentary records of lead concentration and stable isotopes in atmospheric deposition and surface waters. The results allow an isotopic mass balance, indicating much of the lead in Bermuda surface water at that time may not have been deposited locally. As such, it may be presumed to reflect easterly advection of some lead at the surface under limited scavenging via the prevailing subtropical gyre circulation. These annual circulation periods are consistent with both physical data and another lead isotopic mass balance in the east. Going forward, Bermuda time series of trace elements and isotopes such as lead could continue to record climatological (e.g. NAO) transients in atmospheric scavenging, potential impact on surface ecosystems, and changes in mixing into deeper waters of the Sargasso Sea and points further afield.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhyA..291...89M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhyA..291...89M"><span>The surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. (I). General expression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>M. C. Sagis, Leonard</p> <p>2001-03-01</p> <p>In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.891a2006P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.891a2006P"><span>The Heat and Mass Transfer Processes at the Cooling of Strong Heated Sphere in a Cold Liquid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puzina, Yu Yu</p> <p>2017-10-01</p> <p>Some new experimental results of continuum mechanics problems in two-phase systems are described. The processes of heat and mass transfer during cooling of strong heated sphere in the subcooled liquid are studied. Due to high level of heater temperature the stable vapor film is formed on the sphere surface. Calculation of steady-state transport processes at vapor - water interface is carried out using methods of molecular-kinetic theory. Heat transfer in vapor by thermal conductivity and natural convection in liquid are considered. Pressure balance is provided by hydrostatic pressure and non-equilibrium boundary condition. The results of the calculations are analyzed by comparison with previous data and experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41E..05D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41E..05D"><span>Multi-Decadal Averages of Basal Melt for Ross Ice Shelf, Antarctica Using Airborne Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Das, I.; Bell, R. E.; Tinto, K. J.; Frearson, N.; Kingslake, J.; Padman, L.; Siddoway, C. S.; Fricker, H. A.</p> <p>2017-12-01</p> <p>Changes in ice shelf mass balance are key to the long term stability of the Antarctic Ice Sheet. Although the most extensive ice shelf mass loss currently is occurring in the Amundsen Sea sector of West Antarctica, many other ice shelves experience changes in thickness on time scales from annual to ice age cycles. Here, we focus on the Ross Ice Shelf. An 18-year record (1994-2012) of satellite radar altimetry shows substantial variability in Ross Ice Shelf height on interannual time scales, complicating detection of potential long-term climate-change signals in the mass budget of this ice shelf. Variability of radar signal penetration into the ice-shelf surface snow and firn layers further complicates assessment of mass changes. We investigate Ross Ice Shelf mass balance using aerogeophysical data from the ROSETTA-Ice surveys using IcePod. We use two ice-penetrating radars; a 2 GHz unit that images fine-structure in the upper 400 m of the ice surface and a 360 MHz radar to identify the ice shelf base. We have identified internal layers that are continuous along flow from the grounding line to the ice shelf front. Based on layer continuity, we conclude that these layers must be the horizons between the continental ice of the outlet glaciers and snow accumulation once the ice is afloat. We use the Lagrangian change in thickness of these layers, after correcting for strain rates derived using modern day InSAR velocities, to estimate multidecadal averaged basal melt rates. This method provides a novel way to quantify basal melt, avoiding the confounding impacts of spatial and short-timescale variability in surface accumulation and firn densification processes. Our estimates show elevated basal melt rates (> -1m/yr) around Byrd and Mullock glaciers within 100 km from the ice shelf front. We also compare modern InSAR velocity derived strain rates with estimates from the comprehensive ground-based RIGGS observations during 1973-1978 to estimate the potential magnitude of strain-driven thickness changes over four decades. Combining maps of basal melt rate with radar derived basal reflectivity, we identify regions that are undergoing melting and freezing and provide a comprehensive understanding of how ocean processes may be changing the base of Ross Ice Shelf in recent decades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..154a2002Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..154a2002Z"><span>Estimation of the Heat Balance of the Liquid Hydrocarbons Evaporation Process from the Open Surface During Geotechnical Monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zemenkova, M. Yu; Zemenkov, Yu D.</p> <p>2016-10-01</p> <p>Researchers in Tyumen State Oil and Gas University (TSOGU) have conducted a complex research of the heat and mass transfer processes and thermophysical properties of hydrocarbons, taking into account their impact on the reliability and safety of the hydrocarbon transport and storage processes. It has been shown that the thermodynamic conditions on the surface and the color of oil influence the degree of temperature rise in the upper layers of oil when exposed to direct solar radiation. In order to establish the nature of solar radiation impact on the surface temperature the experimental studies were conducted in TSOGU on the hydrocarbon evaporation and the temperature change of various petroleum and petroleum products on the free surface with varying degrees of thermal insulation of the side walls and bottom of the vessel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C31A0614C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C31A0614C"><span>A moderate resolution inventory of small glaciers and ice caps surrounding Greenland and the Antarctic peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, C.; Box, J. E.; Hock, R. M.; Cogley, J. G.</p> <p>2011-12-01</p> <p>Current estimates of global Mountain Glacier and Ice Caps (MG&IC) mass changes are subject to large uncertainties due to incomplete inventories and uncertainties in land surface classification. This presentation features mitigative efforts through the creation of a MODIS dependent land ice classification system and its application for glacier inventory. Estimates of total area of mountain glaciers [IPCC, 2007] and ice caps (including those in Greenland and Antarctica) vary 15%, that is, 680 - 785 10e3 sq. km. To date only an estimated 40% of glaciers (by area) is inventoried in the World Glacier Inventory (WGI) and made available through the World Glacier Monitoring System (WGMS) and the National Snow and Ice Data Center [NSIDC, 1999]. Cogley [2009] recently compiled a more complete version of WGI, called WGI-XF, containing records for just over 131,000 glaciers, covering approximately half of the estimated global MG&IC area. The glaciers isolated from the conterminous Antarctic and Greenland ice sheets remain incompletely inventoried in WGI-XF but have been estimated to contribute 35% to the MG&IC sea-level equivalent during 1961-2004 [Hock et al., 2009]. Together with Arctic Canada and Alaska these regions alone make up almost 90% of the area that is missing in the global WGI-XF inventory. Global mass balance projections tend to exclude ice masses in Greenland and Antarctica due to the paucity of data with respect to basic inventory base data such as area, number of glaciers or size distributions. We address the need for an accurate Greenland and Antarctic peninsula land surface classification with a novel glacier surface classification and inventory based on NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data gridded at 250 m pixel resolution. The presentation includes a sensitivity analysis for surface mass balance as it depends on the land surface classification. Works Cited +Cogley, J. G. (2009), A more complete version of the World Glacier Inventory, Ann. Glaciol. 50(53). +Hock, R., M. de Woul, V. Radi and M. Dyurgerov, 2009. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett. 36, L07501, doi:10.1029/2008GL037020. +IPCC, Climate Change 2007 The Physical Science Basis, 2007. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S. et al.) Cambridge University Press, Cambridge, UK.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AmJPh..83..913C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AmJPh..83..913C"><span>A LEGO Watt balance: An apparatus to determine a mass based on the new SI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chao, L. S.; Schlamminger, S.; Newell, D. B.; Pratt, J. R.; Seifert, F.; Zhang, X.; Sineriz, G.; Liu, M.; Haddad, D.</p> <p>2015-11-01</p> <p>A global effort to redefine our International System of Units (SI) is underway, and the change to the new system is expected to occur in 2018. Within the newly redefined SI, the present base units will still exist but be derived from fixed numerical values of seven reference constants. In particular, the unit of mass (the kilogram) will be realized through a fixed value of the Planck constant h. A so-called watt balance, for example, can then be used to realize the kilogram unit of mass within a few parts in 108. Such a balance has been designed and constructed at the National Institute of Standards and Technology. For educational outreach and to demonstrate the principle, we have constructed a LEGO tabletop watt balance capable of measuring a gram-level masses to 1% relative uncertainty. This article presents the design, construction, and performance of the LEGO watt balance and its ability to determine h.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/803683','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/803683"><span>Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>KLEM, M.J.</p> <p>2000-05-11</p> <p>The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.468.2803S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.468.2803S"><span>Bayesian evidence for the prevalence of waterworlds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simpson, Fergus</p> <p>2017-07-01</p> <p>Should we expect most habitable planets to share the Earth's marbled appearance? For a planetary surface to boast extensive areas of both land and water, a delicate balance must be struck between the volume of water it retains and the capacity of its perturbations. These two quantities may show substantial variability across the full spectrum of water-bearing worlds. This would suggest that, barring strong feedback effects, most surfaces are heavily dominated by either water or land. Why is the Earth so finely poised? To address this question, we construct a simple model for the selection bias that would arise within an ensemble of surface conditions. Based on the Earth's ocean coverage of 71 per cent, we find substantial evidence (Bayes factor K ≃ 6) supporting the hypothesis that anthropic selection effects are at work. Furthermore, due to the Earth's proximity to the waterworld limit, this model predicts that most habitable planets are dominated by oceans spanning over 90 per cent of their surface area (95 per cent credible interval). This scenario, in which the Earth has a much greater land area than most habitable planets, is consistent with results from numerical simulations and could help explain the apparently low-mass transition in the mass-radius relation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812774B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812774B"><span>Sensitivity experiments with a one-dimensional coupled plume - iceflow model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beckmann, Johanna; Perette, Mahé; Alexander, David; Calov, Reinhard; Ganopolski, Andrey</p> <p>2016-04-01</p> <p>Over the last few decades Greenland Ice sheet mass balance has become increasingly negative, caused by enhanced surface melting and speedup of the marine-terminating outlet glaciers at the ice sheet margins. Glaciers speedup has been related, among other factors, to enhanced submarine melting, which in turn is caused by warming of the surrounding ocean and less obviously, by increased subglacial discharge. While ice-ocean processes potentially play an important role in recent and future mass balance changes of the Greenland Ice Sheet, their physical understanding remains poorly understood. In this work we performed numerical experiments with a one-dimensional plume model coupled to a one-dimensional iceflow model. First we investigated the sensitivity of submarine melt rate to changes in ocean properties (ocean temperature and salinity), to the amount of subglacial discharge and to the glacier's tongue geometry itself. A second set of experiments investigates the response of the coupled model, i.e. the dynamical response of the outlet glacier to altered submarine melt, which results in new glacier geometry and updated melt rates.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>