Araújo, Célio U; Basting, Roberta T
2018-03-01
To perform an in situ evaluation of surface roughness and micromorphology of two soft liner materials for dentures at different time intervals. The surface roughness of materials may influence the adhesion of micro-organisms and inflammation of the mucosal tissues. The in situ evaluation of surface roughness and the micromorphology of soft liner materials over the course of time may present results different from those of in vitro studies, considering the constant presence of saliva and food, the changes in temperature and the pH level in the oral cavity. Forty-eight rectangular specimens of each of the two soft liner materials were fabricated: a silicone-based material (Mucopren Soft) and an acrylic resin-based material (Trusoft). The specimens were placed in the dentures of 12 participants (n = 12), and the materials were evaluated for surface roughness and micromorphology at different time intervals: 0, 7, 30 and 60 days. Roughness (Ra) was evaluated by means of a roughness tester. Surface micromorphology was evaluated by scanning electron microscopy. Analysis of variance for randomised block design and Tukey's test showed that surface roughness values were lower in the groups using the silicone-based material at all the time intervals (P < .0001). The average surface roughness was higher at time interval 0 than at the other intervals, for both materials (P < .0001). The surface micromorphology showed that the silicone material presented a more regular and smoother surface than the acrylic resin-based material. The surface roughness of acrylic resin-based and silicone-based denture soft liner materials decreased after 7 days of evaluation, leading to a smoother surface over time. The silicone-based material showed lower roughness values and a smoother surface than the acrylic resin-based material, thereby making it preferred when selecting more appropriate material, due its tendency to promote less biofilm build-up. © 2017 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yang, Sijie
Since the discovery of graphene, two dimensional materials (2D materials) have become a focus of interest for material research due to their many unique physical properties embedded in their 2D structure. While they host many exciting potential applications, some of these 2D materials are subject to environmental instability issues induced by interaction between material and gas molecules in air, which poses a barrier to further application and manufacture. To overcome this, it is necessary to understand the origin of material instability and interaction with molecules commonly found in air, as well as developing a reproducible and manufacturing compatible method to post-process these materials to extend their lifetime. In this work, the very first investigation on environmental stability on Te containing anisotropic 2D materials such as GaTe and ZrTe 3 is reported. Experimental results have demonstrated that freshly exfoliated GaTe quickly deteriorate in air, during which the Raman spectrum, surface morphology, and surface chemistry undergo drastic changes. Environmental Raman spectroscopy and XPS measurements demonstrate that H2O molecules in air interact strongly on the surface while O2, N 2, and inert gases don't show any detrimental effects on GaTe surface. Moreover, the anisotropic properties of GaTe slowly disappear during the aging process. To prevent this gas/material interaction based surface transformation, diazonium based surface functionalization is adopted on these Te based 2D materials. Environmental Raman spectroscopy results demonstrate that the stability of functionalized Te based 2D materials exhibit much higher stability both in ambient and extreme conditions. Meanwhile, PL spectroscopy, angle resolved Raman spectroscopy, atomic force microscopy measurements confirm that many attractive physical properties of the material are not affected by surface functionalization. Overall, these findings unveil the degradation mechanism of Te based 2D materials as well as provide a way to significantly enhance their environmental stability through an inexpensive and reproducible surface chemical functionalization route.
Oxidation Resistance of Materials Based on Ti3AlC2 Nanolaminate at 600 °C in Air
NASA Astrophysics Data System (ADS)
Ivasyshyn, Andrij; Ostash, Orest; Prikhna, Tatiana; Podhurska, Viktoriya; Basyuk, Tatiana
2016-08-01
The oxidation behavior of Ti3AlC2-based materials had been investigated at 600 °C in static air for 1000 h. It was shown that the intense increase of weight gain per unit surface area for sintered material with porosity of 22 % attributed to oxidation of the outer surface of the specimen and surfaces of pores in the bulk material. The oxidation kinetics of the hot-pressed Ti3AlC2-based material with 1 % porosity remarkably increased for the first 15 h and then slowly decreased. The weight gain per unit surface area for this material was 1.0 mg/cm2 after exposition for 1000 h. The intense initial oxidation of Ti3AlC2-based materials can be eliminated by pre-oxidation treatment at 1200 °C in air for 2 h. As a result, the weight gain per unit surface area for the pre-oxidized material did not exceed 0.11 mg/cm2 after 1000 h of exposition at 600 °C in air. It was demonstrated that the oxidation resistance of Ti3AlC2-based materials can be significantly improved by niobium addition.
Laser Surface Treatment of Sintered Alumina
NASA Astrophysics Data System (ADS)
Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.
Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C. (Inventor); Roberts, Scott N. (Inventor)
2017-01-01
Systems and methods in accordance with embodiments of the invention fabricate objects including metallic glass-based materials using ultrasonic welding. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: ultrasonically welding at least one ribbon to a surface; where at least one ribbon that is ultrasonically welded to a surface has a thickness of less than approximately 150.mu.m; and where at least one ribbon that is ultrasonically welded to a surface includes a metallic glass-based material.
Polyphosphazine-based polymer materials
Fox, Robert V.; Avci, Recep; Groenewold, Gary S.
2010-05-25
Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.
McKee, Rodney Allen; Walker, Frederick Joseph
1998-01-01
A structure including a film of a desired perovskite oxide which overlies and is fully commensurate with the material surface of a semiconductor-based substrate and an associated process for constructing the structure involves the build up of an interfacial template film of perovskite between the material surface and the desired perovskite film. The lattice parameters of the material surface and the perovskite of the template film are taken into account so that during the growth of the perovskite template film upon the material surface, the orientation of the perovskite of the template is rotated 45.degree. with respect to the orientation of the underlying material surface and thereby effects a transition in the lattice structure from fcc (of the semiconductor-based material) to the simple cubic lattice structure of perovskite while the fully commensurate periodicity between the perovskite template film and the underlying material surface is maintained. The film-growth techniques of the invention can be used to fabricate solid state electrical components wherein a perovskite film is built up upon a semiconductor-based material and the perovskite film is adapted to exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic or large dielectric properties during use of the component.
Nanocluster-based white-light-emitting material employing surface tuning
Wilcoxon, Jess P [Albuquerque, NM; Abrams, Billie L [Albuquerque, NM; Thoma, Steven G [Albuquerque, NM
2007-06-26
A method for making a nanocrystal-based material capable of emitting light over a sufficiently broad spectral range to appear white. Surface-modifying ligands are used to shift and broaden the emission of semiconductor nanocrystals to produce nanoparticle-based materials that emit white light.
Oxidation Resistance of Materials Based on Ti3AlC2 Nanolaminate at 600 °C in Air.
Ivasyshyn, Andrij; Ostash, Orest; Prikhna, Tatiana; Podhurska, Viktoriya; Basyuk, Tatiana
2016-12-01
The oxidation behavior of Ti3AlC2-based materials had been investigated at 600 °C in static air for 1000 h. It was shown that the intense increase of weight gain per unit surface area for sintered material with porosity of 22 % attributed to oxidation of the outer surface of the specimen and surfaces of pores in the bulk material. The oxidation kinetics of the hot-pressed Ti3AlC2-based material with 1 % porosity remarkably increased for the first 15 h and then slowly decreased. The weight gain per unit surface area for this material was 1.0 mg/cm(2) after exposition for 1000 h. The intense initial oxidation of Ti3AlC2-based materials can be eliminated by pre-oxidation treatment at 1200 °C in air for 2 h. As a result, the weight gain per unit surface area for the pre-oxidized material did not exceed 0.11 mg/cm(2) after 1000 h of exposition at 600 °C in air. It was demonstrated that the oxidation resistance of Ti3AlC2-based materials can be significantly improved by niobium addition.
Pyrolyzed-parylene based sensors and method of manufacture
NASA Technical Reports Server (NTRS)
Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Miserendino, Scott (Inventor); Konishi, Satoshi (Inventor)
2007-01-01
A method (and resulting structure) for fabricating a sensing device. The method includes providing a substrate comprising a surface region and forming an insulating material overlying the surface region. The method also includes forming a film of carbon based material overlying the insulating material and treating to the film of carbon based material to pyrolyzed the carbon based material to cause formation of a film of substantially carbon based material having a resistivity ranging within a predetermined range. The method also provides at least a portion of the pyrolyzed carbon based material in a sensor application and uses the portion of the pyrolyzed carbon based material in the sensing application. In a specific embodiment, the sensing application is selected from chemical, humidity, piezoelectric, radiation, mechanical strain or temperature.
The IRGen infrared data base modeler
NASA Technical Reports Server (NTRS)
Bernstein, Uri
1993-01-01
IRGen is a modeling system which creates three-dimensional IR data bases for real-time simulation of thermal IR sensors. Starting from a visual data base, IRGen computes the temperature and radiance of every data base surface with a user-specified thermal environment. The predicted gray shade of each surface is then computed from the user specified sensor characteristics. IRGen is based on first-principles models of heat transport and heat flux sources, and it accurately simulates the variations of IR imagery with time of day and with changing environmental conditions. The starting point for creating an IRGen data base is a visual faceted data base, in which every facet has been labeled with a material code. This code is an index into a material data base which contains surface and bulk thermal properties for the material. IRGen uses the material properties to compute the surface temperature at the specified time of day. IRGen also supports image generator features such as texturing and smooth shading, which greatly enhance image realism.
NASA Technical Reports Server (NTRS)
Chapman, A. J.
1973-01-01
Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.
Effect of artificial aging on the surface roughness and microhardness of resin-based materials.
Santos, M Jacinta M C; Rêgo, Heleine Maria Chagas; Mukhopadhyay, Anuradha; El Najjar, Mai; Santos, Gildo C
2016-01-01
This study sought to verify the effects of aging on the surface roughness (Ra) and microhardness (Knoop hardness number [KHN]) of resin-based restorative materials protected with a surface sealer. Disc specimens of 2 resin-modified glass ionomers (RMGIs) and 1 composite resin (CR) were fabricated in a metal mold. Specimens of each material were divided into 1 group that was covered with surface sealer and 1 group that was not. Both groups of each material were then subdivided according to whether they were stored (aged) in cola or distilled water. Surface roughness and KHN values were obtained from each specimen before and after storage. After aging of the specimens, significantly higher Ra values were observed in the 2 RMGIs when they were not covered with a surface sealer, while the CR was not affected. The KHN values varied by materials and storage conditions (with and without a surface sealer). All the groups with a surface sealer exhibited increased Ra values after aging.
NASA Astrophysics Data System (ADS)
Yu, Huadong; Lian, Zhongxu; Xu, Jinkai; Wan, Yanling; Wang, Zuobin; Li, Yiquan; Yu, Zhanjiang; Weng, Zhankun
2018-04-01
Despite the success of previous methods for fabricating underwater superoleophobic surfaces, most of the surfaces based on soft materials are prone to collapse and deformation due to their mechanically fragile nature, and they fail to perform their designed functions after the surface materials are damaged in water. In this work, the nanosecond laser-induced oxide coatings on hydrophilic bulk metals are reported which overcomes the limitation and shows the robust underwater superoleophobicity to a mechanical challenge encountered by surfaces deployed in water environment. The results show that the surface materials have the advantage that the underwater superoleophobicity is still preserved after the surfaces are scratched by knife or sandpaper and even completely destroyed because of the hydrophilic property of damaged materials in water. It is important that the results provide a guide for the design of durable underwater superoleophobic surfaces, and the development of superoleophobic materials in many potential applications such as the oil-repellent and the oil/water separation. Additionally, the nanosecond laser technology is simple, cost-effective and suitable for the large-area and mass fabrication of mechanically durable underwater superoleophobic metal materials.
Modeling and validation of spectral BRDF on material surface of space target
NASA Astrophysics Data System (ADS)
Hou, Qingyu; Zhi, Xiyang; Zhang, Huili; Zhang, Wei
2014-11-01
The modeling and the validation methods of the spectral BRDF on the material surface of space target were presented. First, the microscopic characteristics of the space targets' material surface were analyzed based on fiber-optic spectrometer using to measure the direction reflectivity of the typical materials surface. To determine the material surface of space target is isotropic, atomic force microscopy was used to measure the material surface structure of space target and obtain Gaussian distribution model of microscopic surface element height. Then, the spectral BRDF model based on that the characteristics of the material surface were isotropic and the surface micro-facet with the Gaussian distribution which we obtained was constructed. The model characterizes smooth and rough surface well for describing the material surface of the space target appropriately. Finally, a spectral BRDF measurement platform in a laboratory was set up, which contains tungsten halogen lamp lighting system, fiber optic spectrometer detection system and measuring mechanical systems with controlling the entire experimental measurement and collecting measurement data by computers automatically. Yellow thermal control material and solar cell were measured with the spectral BRDF, which showed the relationship between the reflection angle and BRDF values at three wavelengths in 380nm, 550nm, 780nm, and the difference between theoretical model values and the measured data was evaluated by relative RMS error. Data analysis shows that the relative RMS error is less than 6%, which verified the correctness of the spectral BRDF model.
Numerical modeling on carbon fiber composite material in Gaussian beam laser based on ANSYS
NASA Astrophysics Data System (ADS)
Luo, Ji-jun; Hou, Su-xia; Xu, Jun; Yang, Wei-jun; Zhao, Yun-fang
2014-02-01
Based on the heat transfer theory and finite element method, the macroscopic ablation model of Gaussian beam laser irradiated surface is built and the value of temperature field and thermal ablation development is calculated and analyzed rationally by using finite element software of ANSYS. Calculation results show that the ablating form of the materials in different irritation is of diversity. The laser irradiated surface is a camber surface rather than a flat surface, which is on the lowest point and owns the highest power density. Research shows that the higher laser power density absorbed by material surface, the faster the irritation surface regressed.
Surface treatment of alumina-based ceramics using combined laser sources
NASA Astrophysics Data System (ADS)
Triantafyllidis, D.; Li, L.; Stott, F. H.
2002-01-01
Alumina-based refractory materials are extensively used as linings in incinerators and furnaces. These materials are subject to molten salt corrosion and chemical degradation because of the existence of porosity and material inhomogeneity. Efforts to improve the performance of these materials have so far concentrated mainly on the optimisation of the manufacturing processes (e.g. producing denser refractory bricks) and in-service monitoring. Laser surface treatment has also been used to improve performance. The main problem identified with laser surface treatment is solidification cracking due to the generation of very large temperature gradients. The aim of this paper is to investigate the surface modification of alumina-based ceramics by using two combined laser sources in order to control the thermal gradients and cooling rates during processing so that crack formation can be eliminated. The material under investigation is 85% alumina refractory ceramic, used as lining material in incineration plants. The surface morphology and cross-section of the treated samples are analysed using optical and scanning electron microscopy (SEM) and compared with single laser beam treated samples.
Repairability of CAD/CAM high-density PMMA- and composite-based polymers.
Wiegand, Annette; Stucki, Lukas; Hoffmann, Robin; Attin, Thomas; Stawarczyk, Bogna
2015-11-01
The study aimed to analyse the shear bond strength of computer-aided design and computer-aided manufacturing (CAD/CAM) polymethyl methacrylate (PMMA)- and composite-based polymer materials repaired with a conventional methacrylate-based composite after different surface pretreatments. Each 48 specimens was prepared from six different CAD/CAM polymer materials (Ambarino high-class, artBloc Temp, CAD-Temp, Lava Ultimate, Telio CAD, Everest C-Temp) and a conventional dimethacrylate-based composite (Filtek Supreme XTE, control) and aged by thermal cycling (5000 cycles, 5-55 °C). The surfaces were left untreated or were pretreated by mechanical roughening, aluminium oxide air abrasion or silica coating/silanization (each subgroup n = 12). The surfaces were further conditioned with an etch&rinse adhesive (OptiBond FL) before the repair composite (Filtek Supreme XTE) was adhered to the surface. After further thermal cycling, shear bond strength was tested, and failure modes were assessed. Shear bond strength was statistically analysed by two- and one-way ANOVAs and Weibull statistics, failure mode by chi(2) test (p ≤ 0.05). Shear bond strength was highest for silica coating/silanization > aluminium oxide air abrasion = mechanical roughening > no surface pretreatment. Independently of the repair pretreatment, highest bond strength values were observed in the control group and for the composite-based Everest C-Temp and Ambarino high-class, while PMMA-based materials (artBloc Temp, CAD-Temp and Telio CAD) presented significantly lowest values. For all materials, repair without any surface pretreatment resulted in adhesive failures only, which mostly were reduced when surface pretreatment was performed. Repair of CAD/CAM high-density polymers requires surface pretreatment prior to adhesive and composite application. However, four out of six of the tested CAD/CAM materials did not achieve the repair bond strength of a conventional dimethacrylate-based composite. Repair of PMMA- and composite-based polymers can be achieved by surface pretreatment followed by application of an adhesive and a conventional methacrylate-based composite.
Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G
2013-12-01
This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.
Electrochemical and mechanical polishing and shaping method and system
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell E. (Inventor); Gubarev, Mikhail V. (Inventor); Jones, William David (Inventor); Ramsey, Brian D. (Inventor); Benson, Carl M. (Inventor)
2011-01-01
A method and system are provided for the shaping and polishing of the surface of a material selected from the group consisting of electrically semi-conductive materials and conductive materials. An electrically non-conductive polishing lap incorporates a conductive electrode such that, when the polishing lap is placed on the material's surface, the electrode is placed in spaced-apart juxtaposition with respect to the material's surface. A liquid electrolyte is disposed between the material's surface and the electrode. The electrolyte has an electrochemical stability constant such that cathodic material deposition on the electrode is not supported when a current flows through the electrode, the electrolyte and the material. As the polishing lap and the material surface experience relative movement, current flows through the electrode based on (i) adherence to Faraday's Law, and (ii) a pre-processing profile of the surface and a desired post-processing profile of the surface.
Method of producing catalytic material for fabricating nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seals, Roland D.; Menchhofer, Paul A.; Howe, Jane Y.
Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then bemore » exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.« less
Method of producing catalytic materials for fabricating nanostructures
Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei
2013-02-19
Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.
NASA Astrophysics Data System (ADS)
Chowdhury, D. P.; Pal, Sujit; Parthasarathy, R.; Mathur, P. K.; Kohli, A. K.; Limaye, P. K.
1998-09-01
Thin layer activation (TLA) technique has been developed in Zr based alloy materials, e.g., zircaloy II, using 40 MeV α-particles from Variable Energy Cyclotron Centre at Calcutta. A brief description of the methodology of TLA technique is presented to determine the surface wear. The sensitivity of the measurement of surface wear in zircaloy material is found to be 0.22±0.05 μm. The surface wear is determined by TLA technique in zircaloy material which is used in pressurised heavy water reactor and the values have been compared with that obtained by conventional technique for the analytical validation of the TLA technique.
Jeyapalan, Karthigeyan; Kumar, Jaya Krishna; Azhagarasan, N. S.
2015-01-01
Aims: The aim was to evaluate and compare the effects of three chemically different commercially available denture cleansing agents on the surface topography of two different denture base materials. Materials and Methods: Three chemically different denture cleansers (sodium perborate, 1% sodium hypochlorite, 0.2% chlorhexidine gluconate) were used on two denture base materials (acrylic resin and chrome cobalt alloy) and the changes were evaluated at 3 times intervals (56 h, 120 h, 240 h). Changes from baseline for surface roughness were recorded using a surface profilometer and standard error of the mean (SEM) both quantitatively and qualitatively, respectively. Qualitative surface analyses for all groups were done by SEM. Statistical Analysis Used: The values obtained were analyzed statistically using one-way ANOVA and paired t-test. Results: All three denture cleanser solutions showed no statistically significant surface changes on the acrylic resin portions at 56 h, 120 h, and 240 h of immersion. However, on the alloy portion changes were significant at the end of 120 h and 240 h. Conclusion: Of the three denture cleansers used in the study, none produced significant changes on the two denture base materials for the short duration of immersion, whereas changes were seen as the immersion periods were increased. PMID:26538915
Effect of Surface Nonequilibrium Thermochemistry in Simulation of Carbon Based Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kang; Gokcen, Tahir
2012-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver using finite-rate gas/surface interaction model provides time-accurate solutions for multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal Response and Ablation Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas momentum conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of gas/surface interaction chemistry between air and carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was a Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.
Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2012-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.
Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.
Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung
2016-04-29
Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.
Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter
2012-01-01
Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H(2)MoO(4)), which is based on molybdenum trioxide (MoO(3)). The modification of various materials (e.g. polymers, metals) with MoO(3) particles or sol-gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Copyright © 2011 Elsevier B.V. All rights reserved.
Rüttermann, Stefan; Beikler, Thomas; Janda, Ralf
2014-06-01
To investigate contact angle and surface free energy of experimental dental resin composites containing novel delivery systems of polymeric hollow beads and low-surface tension agents after chewing simulation test. A delivery system of novel polymeric hollow beads differently loaded with two low-surface tension agents was used in different amounts to modify commonly formulated experimental dental resin composites. The non-modified resin was used as standard. Surface roughness Ra, contact angle Θ, total surface free energy γS, its apolar γS(LW), polar γS(AB), Lewis acid γS(+) and base γS(-) terms were determined and the results prior to and after chewing simulation test were compared. Significance was p<0.05. After chewing simulation Ra increased, Θ decreased, Ra increased for two test materials and γS decreased or remained constant for the standard or the test materials after chewing simulation. Ra of one test material was higher than of the standard, Θ and γS of the test materials remained lower than of the standard and, indicating their highly hydrophobic character (Θ≈60-75°, γS≈30mJm(-2)). γS(LW), and γS(-) of the test materials were lower than of the standard. Some of the test materials had lower γS(AB) and γS(+) than of the standard. Delivery systems based on novel polymeric hollow beads highly loaded with low-surface tension agents were found to significantly increase contact angle and thus to reduce surface free energy of experimental dental resin composites prior to and after chewing simulation test. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Polymeric membrane materials for artificial organs.
Kawakami, Hiroyoshi
2008-01-01
Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.
Gundogdu, Mustafa; Yesil Duymus, Zeynep; Alkurt, Murat
2014-10-01
Adhesive failure between acrylic resin and resilient liner material is commonly encountered in clinical practice. The purpose of this study was to evaluate the effect of different surface treatments on the bond strength of 2 different resilient lining materials to an acrylic resin denture base. Ninety-six dumbbell-shaped specimens were fabricated from heat-polymerized acrylic resin, and 3 mm of the material was cut from the thin midsection. The specimens were divided into 6 groups according to their surface treatments: no surface treatment (control group), 36% phosphoric acid etching (acid group), erbium:yttrium-aluminum-garnet (Er:YAG) laser (laser group), airborne-particle abrasion with 50-μm Al2O3 particles (abrasion group), an acid+laser group, and an abrasion+laser group. The specimens in each group were divided into 2 subgroups according to the resilient lining material used: heat-polymerized silicone based resilient liner (Molloplast B) and autopolymerized silicone-based resilient liner (Ufi Gel P). After all of the specimens had been polymerized, they were stored in distilled water at 37°C for 1 week. A tensile bond strength test was then performed. Data were analyzed with a 2-way ANOVA, and the Sidak multiple comparison test was used to identify significant differences (α=.05). The effects of the surface treatments and resilient lining materials on the surface of the denture base resin were examined with scanning electron microscopy. The tensile bond strength was significantly different between Molloplast B and Ufi Gel P (P<.001). The specimens of the acid group had the highest tensile bond strength, whereas those of the abrasion group had the lowest tensile bond strength. The scanning electron microscopy observations showed that the application of surface treatments modified the surface of the denture base resin. Molloplast B exhibited significantly higher bond strength than Ufi Gel P. Altering the surface of the acrylic resin denture base with 36% phosphoric acid etching increased bond strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Laser ablation based fuel ignition
Early, J.W.; Lester, C.S.
1998-06-23
There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.
Laser ablation based fuel ignition
Early, James W.; Lester, Charles S.
1998-01-01
There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.
Findikoglu, Alp T [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM; Choi, Woong [Los Alamos, NM
2009-10-27
A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material; is provided, together with a semiconductor article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material, and, a top-layer of semiconductor material upon the buffer material layer.
Global Learning Spectral Archive- A new Way to deal with Unknown Urban Spectra -
NASA Astrophysics Data System (ADS)
Jilge, M.; Heiden, U.; Habermeyer, M.; Jürgens, C.
2015-12-01
Rapid urbanization processes and the need of identifying urban materials demand urban planners and the remote sensing community since years. Urban planners cannot overcome the issue of up-to-date information of urban materials due to time-intensive fieldwork. Hyperspectral remote sensing can facilitate this issue by interpreting spectral signals to provide information of occurring materials. However, the complexity of urban areas and the occurrence of diverse urban materials vary due to regional and cultural aspects as well as the size of a city, which makes identification of surface materials a challenging analysis task. For the various surface material identification approaches, spectral libraries containing pure material spectra are commonly used, which are derived from field, laboratory or the hyperspectral image itself. One of the requirements for successful image analysis is that all spectrally different surface materials are represented by the library. Currently, a universal library, applicable in every urban area worldwide and taking each spectral variability into account, is and will not be existent. In this study, the issue of unknown surface material spectra and the demand of an urban site-specific spectral library is tackled by the development of a learning spectral archive tool. Starting with an incomplete library of labelled image spectra from several German cities, surface materials of pure image pixels will be identified in a hyperspectral image based on a similarity measure (e.g. SID-SAM). Additionally, unknown image spectra of urban objects are identified based on an object- and spectral-based-rule set. The detected unknown surface material spectra are entered with additional metadata, such as regional occurrence into the existing spectral library and thus, are reusable for further studies. Our approach is suitable for pure surface material detection of urban hyperspectral images that is globally applicable by taking incompleteness into account. The generically development enables the implementation of different hyperspectral sensors.
Fluoroalkyl Polyhedral Oligomeric Silsesquioxane (F-POSS) Based Monomers and Polymers
2011-07-19
surface energies leading to the creation of superhydrophobic and oleophobic surfaces. (a) Mabry, J. M.; Vij, A.; Iacono, S. T.; Viers, b. D., Angew...for use a building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic surfaces
Anchored nanostructure materials and method of fabrication
Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei
2012-11-27
Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.
Foundations of low-temperature plasma enhanced materials synthesis and etching
NASA Astrophysics Data System (ADS)
Oehrlein, Gottlieb S.; Hamaguchi, Satoshi
2018-02-01
Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.
In vitro investigation of friction at the interface between bone and a surgical instrument.
Parekh, Jugal; Shepherd, Duncan E T; Hukins, David W L; Hingley, Carl; Maffulli, Nicola
2013-06-01
This study investigated the friction between surgical instruments and bone to aid improvements to instrument design. The bases of orthopaedic surgical instruments are usually made of metal, especially stainless steel. Silicone elastomer was chosen as an alternate biocompatible material, which would be compliant on the bone surface when used as the base of an instrument. The coefficient of static friction was calculated at the bone/material interface in the presence of a synthetic solution that had a comparable viscosity to that of blood, to assess the friction provided by each base material. Three types of silicone elastomers with different hardnesses (Shore A hardness 23, 50 and 77) and three distinct stainless steel surfaces (obtained by spark erosion, sand blasting and surface grinding) were used to assess the friction provided by the materials on slippery bone. The bone specimens were taken from the flattest region of the femoral shaft of a bovine femur; the outer surfaces of the specimens were kept intact. In general, the stainless steel surfaces exhibited higher values of coefficient of static friction, compared to the silicone elastomer samples. The stainless steel surface finished by spark erosion (surface roughness Ra = 8.9 ± 1.6 µm) had the highest coefficient value of 0.74 ± 0.04. The coefficient values for the silicone elastomer sample with the highest hardness (Dow Corning Silastic Q7-4780, Shore A hardness 77) was not significantly different to values provided by the stainless steel surface finished by sand blasting (surface roughness Ra = 2.2 ± 0.1 µm) or surface grinding (surface roughness Ra = 0.1 ± 0.0 µm). Based on the results of this study, it is concluded that silicone could be a potentially useful material for the design of bases of orthopaedic instruments that interface with bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.
2007-03-23
Surface features of tungsten carbide composites processed by bound abrasive deterministic microgrinding and magnetorheological finishing (MRF) were studied for five WC-Ni composites, including one binderless material. All the materials studied were nonmagnetic with different microstructures and mechanical properties. White-light interferometry, scanning electron microscopy, and atomic force microscopy were used to characterize the surfaces after various grinding steps, surface etching, and MRF spot-taking.
Salivary protein adsorption and Streptococccus gordonii adhesion to dental material surfaces.
Schweikl, Helmut; Hiller, Karl-Anton; Carl, Ulrich; Schweiger, Rainer; Eidt, Andreas; Ruhl, Stefan; Müller, Rainer; Schmalz, Gottfried
2013-10-01
The initial adhesion of microorganisms to clinically used dental biomaterials is influenced by physico-chemical parameters like hydrophobicity and pre-adsorption of salivary proteins. Here, polymethyl methacrylate (PMMA), polyethylene (PE), polytetrafluoroethylene (PTFE), silicone (Mucopren soft), silorane-based (Filtek Silorane) and methacrylate-based (Tetric EvoCeram) dental composites, a conventional glassionomer cement as well as cobalt-chromium-molybdenum (Co28Cr6Mo) and titanium (Ti6Al4V) were tested for adsorption of salivary proteins and adhesion of Streptococcus gordonii DL1. Wettability of material surfaces precoated with salivary proteins or left in phosphate-buffered saline was determined by the measurement of water contact angles. Amounts of adsorbed proteins were determined directly on material surfaces after biotinylation of amino groups and detection by horseradish peroxidase-conjugated avidin-D. The same technique was used to analyze for the binding of biotinylated bacteria to material surfaces. The highest amount of proteins (0.18μg/cm(2)) adsorbed to hydrophobic PTFE samples, and the lowest amount (0.025μg/cm(2)) was detected on silicone. The highest number of S. gordonii (3.2×10(4)CFU/mm(2)) adhered to the hydrophilic glassionomer cement surface coated with salivary proteins, and the lowest number (4×10(3)CFU/mm(2)) was found on the hydrophobic silorane-based composite. Hydrophobicity of pure material surfaces and the number of attached microorganisms were weakly negatively correlated. No such correlation between hydrophobicity and the number of bacteria was detected when surfaces were coated with salivary proteins. Functional groups added by the adsorption of specific salivary proteins to material surfaces are more relevant for initial bacterial adhesion than hydrophobicity as a physical property. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Xuesong; Li, Haiyan; Zhao, Fu
2017-07-01
Particle-fluid based surface generation process has already become one of the most important materials processing technology for many advanced materials such as optical crystal, ceramics and so on. Most of the particle-fluid based surface generation technology involves two key process: chemical reaction which is responsible for surface softening; physical behavior which is responsible for materials removal/deformation. Presently, researchers cannot give a reasonable explanation about the complex process in the particle-fluid based surface generation technology because of the small temporal-spatial scale and the concurrent influence of physical-chemical process. Molecular dynamics (MD) method has already been proved to be a promising approach for constructing effective model of atomic scale phenomenon and can serve as a predicting simulation tool in analyzing the complex surface generation mechanism and is employed in this research to study the essence of surface generation. The deformation and piles of water molecule is induced with the feeding of abrasive particle which justifies the property mutation of water at nanometer scale. There are little silica molecule aggregation or materials removal because the water-layer greatly reduce the strength of mechanical interaction between particle and materials surface and minimize the stress concentration. Furthermore, chemical effect is also observed at the interface: stable chemical bond is generated between water and silica which lead to the formation of silconl and the reaction rate changes with the amount of water molecules in the local environment. Novel ring structure is observed in the silica surface and it is justified to be favored of chemical reaction with water molecule. The siloxane bond formation process quickly strengthened across the interface with the feeding of abrasive particle because of the compressive stress resulted by the impacting behavior.
Methods for removing contaminant matter from a porous material
Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID
2010-11-16
Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.
Systems and strippable coatings for decontaminating structures that include porous material
Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID
2011-12-06
Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.
Dragonfly: Investigating the Surface Composition of Titan
NASA Technical Reports Server (NTRS)
Brinckerhoff, W. B.; Lawrence, D. J.; Barnes, J. W.; Lorenz, R. D.; Horst, S. M.; Zacny, K.; Freissinet, C.; Parsons, A. M.; Turtle, E. P.; Trainer, M. G.;
2018-01-01
Dragonfly is a rotorcraft lander mission, selected as a finalist in NASA's New Frontiers Program, that is designed to sample materials and determine the surface composition in different geologic settings on Titan. This revolutionary mission concept would explore diverse locations to characterize the habitability of Titan's environment, to investigate how far prebiotic chemistry has progressed, and to search for chemical signatures that could be indicative of water-based and/or hydrocarbon-based life. Here we describe Dragonfly's capabilities to determine the composition of a variety of surface units on Titan, from elemental components to complex organic molecules. The compositional investigation ncludes characterization of local surface environments and finely sampled materials. The Dragonfly flexible sampling approach can robustly accommodate materials from Titan's most intriguing surface environments.
Effect of biofilm formation, and biocorrosion on denture base fractures
Ergin, Alper; Ayyildiz, Simel; Cosgun, Erdal; Uzun, Gulay
2013-01-01
PURPOSE The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. MATERIALS AND METHODS Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (α=0.05). RESULTS Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P<.05); microorganisms diffused at least 52% of the denture base surface. The highest median quantitative biofilm value within all the denture base materials was obtained with P. aeruginosa on Lucitone 550. The type of denture base material did not alter the diffusion potential of the microorganisms significantly (P>.05). CONCLUSION All the tested microorganisms had destructive effect over the structure and composition of the denture base materials. PMID:23755339
Characterization of surface active materials derived from farm products
USDA-ARS?s Scientific Manuscript database
Surface active materials obtained by chemical modification of plant protein isolates (lupin, barley, oat), corn starches (dextrin, normal, high amylose, and waxy) and soybean oil (soybean oil based polysoaps, SOPS) were investigated for their surface and interfacial properties using axisymmetric dro...
The slip resistance of common footwear materials measured with two slipmeters.
Chang, W R; Matz, S
2001-12-01
The slip resistance of 16 commonly used footwear materials was measured with the Brungraber Mark II and the English XL on 3 floor surfaces under surface conditions of dry, wet, oily and oily wet. Three samples were used for each material combination and surface condition. The results of a one way ANOVA analysis indicated that the differences among different samples were statistically significant for a large number of material combinations and surface conditions. The results indicated that the ranking of materials based on their slip resistance values depends highly on the slipmeters, floor surfaces and surface conditions. For contaminated surfaces including wet, oily and oily wet surfaces, the slip resistance obtained with the English XL was usually higher than that measured with the Brungraber Mark II. The correlation coefficients between the slip resistance obtained with these two slipmeters calculated for different surface conditions indicated a strong correlation with statistical significance.
NASA Astrophysics Data System (ADS)
Khodorenko, V. N.; Anikeev, S. G.; Kokorev, O. V.; Yasenchuk, Yu. F.; Gunther, V. É.
2018-02-01
An investigation of structural characteristics and behavior of TiNi-based pore-permeable materials manufactured by the methods of selfpropagating high-temperature synthesis (SHS) at the initial synthesis temperatures T = 400 and 600°C is performed. It is shown that depending on the temperature regime, the resulting structure and properties of the material can differ. It is found out that the SHS-material produced at the initial synthesis temperature T = 400°C possesses the largest number of micropores in the pore wall surface structure due to a high phase inhomogeneity of the alloy. The regime of structure optimization of the resulting materials is described and the main stages of formation of the pore wall microporous surfaces are revealed. It is demonstrated that after optimization of the surface structure of a TiNi-based fine-pore alloy by its chemical etching, the fraction of micropores measuring in size less than 50 nm increased from 59 to 68%, while the number of pores larger than 1 μm increased twofold from 11 to 22%. In addition, peculiar features of interaction between certain cell cultures with the surface of the SHS-material manufactured at different initial synthesis temperatures are revealed. It is found out that the dynamics of the cell material integration depends on the pore wall surface morphology and dimensions of macropores.
Material identification based on electrostatic sensing technology
NASA Astrophysics Data System (ADS)
Liu, Kai; Chen, Xi; Li, Jingnan
2018-04-01
When the robot travels on the surface of different media, the uncertainty of the medium will seriously affect the autonomous action of the robot. In this paper, the distribution characteristics of multiple electrostatic charges on the surface of materials are detected, so as to improve the accuracy of the existing electrostatic signal material identification methods, which is of great significance to help the robot optimize the control algorithm. In this paper, based on the electrostatic signal material identification method proposed by predecessors, the multi-channel detection circuit is used to obtain the electrostatic charge distribution at different positions of the material surface, the weights are introduced into the eigenvalue matrix, and the weight distribution is optimized by the evolutionary algorithm, which makes the eigenvalue matrix more accurately reflect the surface charge distribution characteristics of the material. The matrix is used as the input of the k-Nearest Neighbor (kNN)classification algorithm to classify the dielectric materials. The experimental results show that the proposed method can significantly improve the recognition rate of the existing electrostatic signal material recognition methods.
Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen
2014-05-06
A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.
Roelofs, Andreas; Hong, Seungbum
2018-02-06
A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.
Jeyapalan, Karthigeyan; Kumar, Jaya Krishna; Azhagarasan, N S
2015-08-01
The aim was to evaluate and compare the effects of three chemically different commercially available denture cleansing agents on the surface topography of two different denture base materials. Three chemically different denture cleansers (sodium perborate, 1% sodium hypochlorite, 0.2% chlorhexidine gluconate) were used on two denture base materials (acrylic resin and chrome cobalt alloy) and the changes were evaluated at 3 times intervals (56 h, 120 h, 240 h). Changes from baseline for surface roughness were recorded using a surface profilometer and standard error of the mean (SEM) both quantitatively and qualitatively, respectively. Qualitative surface analyses for all groups were done by SEM. The values obtained were analyzed statistically using one-way ANOVA and paired t-test. All three denture cleanser solutions showed no statistically significant surface changes on the acrylic resin portions at 56 h, 120 h, and 240 h of immersion. However, on the alloy portion changes were significant at the end of 120 h and 240 h. Of the three denture cleansers used in the study, none produced significant changes on the two denture base materials for the short duration of immersion, whereas changes were seen as the immersion periods were increased.
Gad, Mohammed M; Rahoma, Ahmed; Al-Thobity, Ahmad M
2018-06-20
The current study evaluated the effects of autoclave polymerization both with and without glass fiber (GF) reinforcement on the surface roughness and hardness of acrylic denture base material. Ninety disc specimens (30×2.5 mm) were prepared from Vertex resin and divided according to polymerization techniques into a water bath, short and long autoclave polymerization groups. Tested groups were divided into three subgroups according to the GF concentration (0, 2.5, and 5 wt%). Profilometer and Vickers hardness tests were performed to measure surface roughness and hardness. ANOVA and Tukey-Kramer multiple comparison tests analyzed the results, and p≤0.05 was considered statistically significant. Autoclave polymerization significantly decreased the surface roughness and increased the hardness of acrylic resin without GF reinforcement (p<0.05). However, 5 wt% GF addition significantly increased surface roughness and decreased hardness of the autoclave polymerized denture base resin (p<0.05). Surface properties of Polymethyl methacrylate (PMMA) denture base material improved with autoclave polymerization and negatively affected with GFs addition.
Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces
NASA Technical Reports Server (NTRS)
Cross, Jon B.
1990-01-01
Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.
Gundogdu, Mustafa; Yanikoglu, Nuran; Bayindir, Funda; Ciftci, Hilal
2015-01-01
The purpose of the present study was to evaluate the effects of different repair resins and surface treatments on the repair strength of a polyamide denture base material. Polyamide resin specimens were prepared and divided into nine groups according to the surface treatments and repair materials. The flexural strengths were measured with a 3-point bending test. Data were analyzed with a 2-way analysis of variance, and the post-hoc Tukey test (α=0.05). The effects of the surface treatments on the surface of the polyamide resin were examined using scanning electron microscopy. The repair resins and surface treatments significantly affected the repair strength of the polyamide denture base material (p<0.05); however, no significant differences were observed interaction between the factors (p>0.05). The flexural strength of the specimens repaired with the polyamide resin was significantly higher than that of those repaired with the heat-polymerized and autopolymerizing acrylic resins.
Research of Adhesion Bonds Between Gas-Thermal Coating and Pre-Modified Base
NASA Astrophysics Data System (ADS)
Kovalevskaya, Z.; Zaitsev, K.; Klimenov, V.
2016-08-01
Nature of adhesive bonds between gas-thermal nickel alloy coating and carbon steel base was examined using laser profilometry, optical metallography, transmission and scanning electron microscopy. The steel surface was plastically pre-deformed by an ultrasonic tool. Proved that ultrasound pre-treatment modifies the steel surface. Increase of dislocation density and formation of sub micro-structure are base elements of surface modification. While using high-speed gas-flame, plasma and detonation modes of coatings, surface activation occurs and durable adhesion is formed. Ultrasonic pre-treatment of base material is effective when sprayed particles and base material interact through physical-chemical bond formation. Before applying high-speed gas flame and plasma sprayed coatings, authors recommend ultrasonic pretreatment, which creates periodic wavy topography with a stroke of 250 microns on the steel surface. Before applying detonation sprayed coatings, authors recommend ultrasound pretreatment that create modified surface with a uniform micro-topography.
NASA Astrophysics Data System (ADS)
Laursen, Christopher M.
A novel, proof-of-concept, switchable hydrophobic/hydrophilic structured surface targeted to assist in antifouling of materials in aqueous environments was created through the development of a multi-tiered platform. The understructure consists of a thermo-mechanically tailored acrylate based polymer patterned in a pillared array, which was then overlaid with spatially tailored hydrophobic/hydrophilic surface chemistry treatments. Development focused on the synthesis of a ternary acrylate system displaying proper thermo-mechanical behavior in submerged conditions for the understructure, creation of a sufficient soft molding technique, and methods to chemically alter water-surface wetting interactions. The final acrylate based polymer constituents were chosen based on expected low-toxicity and the ability to be photopolymerized, while the final system displayed appropriate mechanical toughness, water absorption, and material stiffness over a select temperature window. This was important as alteration in wettability characteristics relied upon a stark transition in the polymeric materials stiffness within a narrow temperature range. The material qualitatively displayed a more hydrophobic state with the pillared surface structures erect, and a more hydrophilic state with the pillars bent over.
NASA Astrophysics Data System (ADS)
Kostrubiec, Franciszek; Pawlak, Ryszard; Raczynski, Tomasz; Walczak, Maria
1994-09-01
Laser treatment of the surface of materials is of major importance for many fields technology. One of the latest and most significant methods of this treatment is laser alloying consisting of introducing foreign atoms into the metal surface layer during the reaction of laser radiation with the surface. This opens up vast possibilities for the modification of properties of such a layer (obtaining layers of increased microhardness, increased resistance to electroerosion in an electric arc, etc.). Conductivity of the material is a very important parameter in case of conductive materials used for electrical contacts. The paper presents the results of studies on change in electrical conductivity of the surface layer of metals alloyed with a laser. A comparative analysis of conductivity of base metal surface layers prior to and following laser treatment has been performed. Depending on the base metal and the alloying element, optical treatment parameters allowing a required change in the surface layer conductivity have been selected. A very important property of the contact material is its resistance to plastic strain. It affects the real value of contact surface coming into contact and, along with the material conductivity, determines contact resistance and the amount of heat generated in place of contact. These quantities are directly related to the initiation and the course of an arc discharge, hence they also affect resistance to electroerosion. The parameter that reflects plastic properties with loads concentrated on a small surface, as is the case with a reciprocal contact force of two real surfaces with their irregularities being in contact, is microhardness. In the paper, the results of investigations into microhardness of modified surface layers compared with base metal microhardness have been presented.
NASA Astrophysics Data System (ADS)
Loftfield, Nina; Kästner, Markus; Reithmeier, Eduard
2018-06-01
Local and global liquid transport properties correlate strongly with the morphology of porous materials. Therefore, by characterizing the porous network information is indirectly gained on the materials properties. Properties like the open-porosity are easily accessible with techniques like mercury porosimetry. However, the 3D image reconstruction, destructive or non-destructive, holds advantages like an accurate spatially resolved representation of the investigated material. Common 3D data acquisition is done by x-ray microtomography or a combination of focused ion beam based milling and scanning electron microscopy. In this work a reconstruction approach similar to the latter one is implemented. The porous network is reconstructed based on an alternating process of milling the surface by fly cutting and measuring the surface data with a confocal laser scanning microscope. This has the benefit of reconstructing the pore network on the basis of surface height data, measuring the structure boundaries directly. The stack of milled surface height data needs to be registered and the pore structure to be segmented. The segmented pore structure is connected throughout each height layer and afterwards meshed. The investigated materials are porous surface coatings of aluminum oxide for the usage in tribological pairings.
Evanescent Field Based Photoacoustics: Optical Property Evaluation at Surfaces
Goldschmidt, Benjamin S.; Rudy, Anna M.; Nowak, Charissa A.; Tsay, Yowting; Whiteside, Paul J. D.; Hunt, Heather K.
2016-01-01
Here, we present a protocol to estimate material and surface optical properties using the photoacoustic effect combined with total internal reflection. Optical property evaluation of thin films and the surfaces of bulk materials is an important step in understanding new optical material systems and their applications. The method presented can estimate thickness, refractive index, and use absorptive properties of materials for detection. This metrology system uses evanescent field-based photoacoustics (EFPA), a field of research based upon the interaction of an evanescent field with the photoacoustic effect. This interaction and its resulting family of techniques allow the technique to probe optical properties within a few hundred nanometers of the sample surface. This optical near field allows for the highly accurate estimation of material properties on the same scale as the field itself such as refractive index and film thickness. With the use of EFPA and its sub techniques such as total internal reflection photoacoustic spectroscopy (TIRPAS) and optical tunneling photoacoustic spectroscopy (OTPAS), it is possible to evaluate a material at the nanoscale in a consolidated instrument without the need for many instruments and experiments that may be cost prohibitive. PMID:27500652
Kim, Chaeeun; Park, Jun-Cheol; Choi, Sun Young; Kim, Yonghun; Seo, Seung-Young; Park, Tae-Eon; Kwon, Se-Hun; Cho, Byungjin; Ahn, Ji-Hoon
2018-04-01
2D layered materials with sensitive surfaces are promising materials for use in chemical sensing devices, owing to their extremely large surface-to-volume ratios. However, most chemical sensors based on 2D materials are used in the form of laterally defined active channels, in which the active area is limited to the actual device dimensions. Therefore, a novel approach for fabricating self-formed active-channel devices is proposed based on 2D semiconductor materials with very large surface areas, and their potential gas sensing ability is examined. First, the vertical growth phenomenon of SnS 2 nanocrystals is investigated with large surface area via metal-assisted growth using prepatterned metal electrodes, and then self-formed active-channel devices are suggested without additional pattering through the selective synthesis of SnS 2 nanosheets on prepatterned metal electrodes. The self-formed active-channel device exhibits extremely high response values (>2000% at 10 ppm) for NO 2 along with excellent NO 2 selectivity. Moreover, the NO 2 gas response of the gas sensing device with vertically self-formed SnS 2 nanosheets is more than two orders of magnitude higher than that of a similar exfoliated SnS 2 -based device. These results indicate that the facile device fabrication method would be applicable to various systems in which surface area plays an important role. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami.
Ariga, Katsuhiko; Mori, Taizo; Nakanishi, Waka; Hill, Jonathan P
2017-09-13
The investigation of molecules and materials at interfaces is critical for the accumulation of new scientific insights and technological advances in the chemical and physical sciences. Immobilization on solid surfaces permits the investigation of different properties of functional molecules or materials with high sensitivity and high spatial resolution. Liquid surfaces also present important media for physicochemical innovation and insight based on their great flexibility and dynamicity, rapid diffusion of molecular components for mixing and rearrangements, as well as drastic spatial variation in the prevailing dielectric environment. Therefore, a comparative discussion of the relative merits of the properties of materials when positioned at solid or liquid surfaces would be informative regarding present-to-future developments of surface-based technologies. In this perspective article, recent research examples of nanoarchitectonics, molecular machines, DNA nanotechnology, and DNA origami are compared with respect to the type of surface used, i.e. solid surfaces vs. liquid surfaces, for future perspectives of interfacial physics and chemistry.
Computational design of surfaces, nanostructures and optoelectronic materials
NASA Astrophysics Data System (ADS)
Choudhary, Kamal
Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of the materials to ensure that no spurious phases had a lower cohesive energy. Thirdly, lanthanide doped and co-doped Y3Al5O 12 were examined using density functional theory (DFT) with semi-local and local functional. Theoretical results were compared and validated with experimental data and new co-doped materials with high efficiency were predicted. Finally, Transition element doped CH3NH3PbI3 were studied with DFT for validation of the model with experimental data and replacement materials for toxic Pb were predicted.
NASA Astrophysics Data System (ADS)
Kamgang, J. O.; Naitali, M.; Herry, J.-M.; Bellon-Fontaine, M.-N.; Brisset, J.-L.; Briandet, R.
2009-04-01
This study addressed the effects of treatment with gliding discharge plasma on the surface properties of solid materials, as well as the consequences concerning adherence of a model bacterium. As evaluated by contact angles with selected liquids, plasma treatment caused an increase in surface hydrophilicity and in the Lewis acid-base components of the surface energy of all materials tested. These modifications were more marked for low density polyethylene and stainless steel than for polytetrafluoroethylene. After treatment, the hydrophilicity of the materials remained relatively stable for at least 20 days. Moreover, analysis of the topography of the materials by atomic force microscopy revealed that the roughness of both polymers was reduced by glidarc plasma treatment. As a result of all these modifications, solid substrates were activated towards micro-organisms and the adherence of S. epidermidis, a negatively charged Lewis-base and mildly hydrophilic strain selected as the model, was increased in almost all the cases tested.
Enhancement of surface durability of space materials and structures in LEO environment
NASA Astrophysics Data System (ADS)
Gudimenko, Y.; Ng, R.; Kleiman, J. I.; Iskanderova, Z. A.; Tennyson, R. C.; Hughes, P. C.; Milligan, D.; Grigorevski, A.; Shuiski, M.; Kiseleva, L.; Edwards, D.; Finckenor, M.
2003-09-01
Results of on-going program that involves surface modification treatments of thin polymer films and various organic-based thermal control coatings by an innovative Photosil surface modification technology for space durability improvement are presented, as well as results of ground-based testing in an oxygen plasma asher and in fast atomic oxygen (FAO) beam facility. In addition, independent ground-based FAO + VUV test results from NASA Marshall Space Flight Center (MSFC) are also presented. Recent results are presented to further improve the AO durability of conductive thermal control paints, never previously treated by the Photosil process. The thermal control coatings evaluated in this program represent existing commercially available space-approved materials and experimental coatings, which are still under development. Functional properties and performance characteristics, such as AO stability, thermal optical properties, surface resistivity, and outgassing characteristics of pristine and treated materials were also verified. FAO+VUV exposure tests results revealed that some of the successfully treated materials did not show any mass loss or surface morphology change, thus indicating good protection from the severe oxidative environment. A few complementary surface analysis techniques, such as X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) have been used to examine the composition and structure of the protective surface-modified layer.
Strain-based control of crystal anisotropy for perovskite oxides on semiconductor-based material
McKee, Rodney Allen; Walker, Frederick Joseph
2000-01-01
A crystalline structure and a semiconductor device includes a substrate of a semiconductor-based material and a thin film of an anisotropic crystalline material epitaxially arranged upon the surface of the substrate so that the thin film couples to the underlying substrate and so that the geometries of substantially all of the unit cells of the thin film are arranged in a predisposed orientation relative to the substrate surface. The predisposition of the geometries of the unit cells of the thin film is responsible for a predisposed orientation of a directional-dependent quality, such as the dipole moment, of the unit cells. The predisposed orientation of the unit cell geometries are influenced by either a stressed or strained condition of the lattice at the interface between the thin film material and the substrate surface.
Ion beam texturing of surfaces
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1979-01-01
Textured surfaces, typically with conical structures, have been produced previously by simultaneously etching a surface and seeding that surface with another material. A theory based on surface diffusion predicts a variation in cone spacing with surface temperature, as well as a critical temperature below which cones will not form. Substantial agreement with theory has been found for several combinations of seed and surface materials, including one with a high sputter yield seed on a low sputter yield surface (gold on aluminum). Coning with this last combination was predicted by the theory for a sufficiently mobile seed material. The existence of a minimum temperature for the formation of cones should also be important to those interested in ion-beam machining smooth surfaces. Elements contained in the environmental contaminants or in the sputtered alloys or compounds may serve as seed material.
NASA Astrophysics Data System (ADS)
Chow, H. M.; Yang, L. D.; Lin, Y. C.; Lin, C. L.
2017-12-01
In this paper, the effects of material removal rate and abrasive grain protrusion on the metal-based diamond grinding wheel were studied to find the optimal parameters for adding powder and wire discharge. In addition, this kind of electric discharge method to add powder on the metal-based diamond grinding wheel on line after dressing and truing will be applied on tungsten carbide to study the grinding material removal rate, grinding wheel wear, surface roughness, and surface micro-hardness.
Effect of biofilm formation, and biocorrosion on denture base fractures.
Sahin, Cem; Ergin, Alper; Ayyildiz, Simel; Cosgun, Erdal; Uzun, Gulay
2013-05-01
The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (α=0.05). Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P<.05); microorganisms diffused at least 52% of the denture base surface. The highest median quantitative biofilm value within all the denture base materials was obtained with P. aeruginosa on Lucitone 550. The type of denture base material did not alter the diffusion potential of the microorganisms significantly (P>.05). All the tested microorganisms had destructive effect over the structure and composition of the denture base materials.
USDA-ARS?s Scientific Manuscript database
This study investigated the surface properties of the semi-synthetic enteric coating materials for potential colon- targeted bioactive delivery. The enteric coating materials were produced by combining nanoscale resistant starch, pectin, and carboxymethylcellulose. The surface properties of the co...
Surface physics-materials science research possibilities on a lunar base
NASA Astrophysics Data System (ADS)
Ignatiev, A.
1990-03-01
The benefits of experimental investigations are discussed in terms of the vacuum environment and low-gravity conditions which can be made possible by a lunar base. The proposed experiments address the interaction of UV and cosmic radiation with the atomic surfaces and bulk properties of materials, the study of microclusters, and the development of epitaxial films in a lunar environment. The interaction of low- and high-energy charged particles and radiation with materials can potentially be studied to analyze the use of the materials in space.
Locating Materials with Nuclear Quadrupole Moments within Surface Coil Array Area
2015-08-11
location and dimension of the material can determined based on the nuclear quadrupole resonance ( NQR ) signal strength from the surface coil in the array...28.1MHz NQR frequency from potassium chlorate (PC) sample at room temperature. The PC sample will be in different locations parallel to the surface...using the experimental results from the dual surface coil array. 15. SUBJECT TERMS NQR , potassium chlorate, surface coil, surface probe, decoupling
Development of barrier coatings for cellulosic-based materials by cold plasma methods
NASA Astrophysics Data System (ADS)
Denes, Agnes Reka
Cellulose-based materials are ideal candidates for future industries that need to be based on environmentally safe technologies and renewable resources. Wood represents an important raw material and its application as construction material is well established. Cellophane is one of the most important cellulosic material and it is widely used as packaging material in the food industry. Outdoor exposure of wood causes a combination of physical and chemical degradation processes due to the combined effects of sunlight, moisture, fungi, and bacteria. Cold-plasma-induced surface modifications are an attractive way for tailoring the characteristics of lignocellulosic substrates to prevent weathering degradation. Plasma-polymerized hexamethyldisiloxane (PPHMDSO) was deposited onto wood surfaces to create water repellent characteristics. The presence of a crosslinked macromolecular structure was detected. The plasma coated samples exhibited very high water contact angle values indicating the existence of hydrophobic surfaces. Reflective and electromagnetic radiation-absorbent substances were incorporated with a high-molecular-weight polydimethylsiloxane polymer in liquid phase and deposited as thin layers on wood surfaces. The macromolecular films, containing the dispersed materials, were then converted into a three dimensional solid state network by exposure to a oxygen-plasma. It was demonstrated that both UV-absorbent and reflectant components incorporated into the plasma-generated PDMSO matrix protected the wood from weathering degradation. Reduced oxidation and less degradation was observed after simulated weathering. High water contact angle values indicated a strong hydrophobic character of the oxygen plasma-treated PDMSO-coated samples. Plasma-enhanced surface modifications and coatings were employed to create water-vapor barrier layers on cellophane substrate surfaces. HMDSO was selected as a plasma gas and oxygen was used to ablate amorphous regions. Oxygen plasma treated cellophane and oxygen plasma treated and PPHMDSO coated cellophane surfaces were comparatively analyzed and the corresponding surface wettability characteristics were evaluated. The plasma generated surface topographies controlled the morphology of the PPHMDSO layers. Higher temperature HMDSO plasma-state environments lead to insoluble, crosslinked layers. Continuous and pulsed Csb2Fsb6 plasmas were also used for surface modification and excellent surface fluorination was achieved under the pulsed plasma conditions.
Inorganic resins for clinical use of .sup.213Bi generators
DePaoli, David W [Knoxville, TN; Hu, Michael Z [Knoxville, TN; Mirzadeh, Saed [Knoxville, TN; Clavier, John W [Elizabethton, TN
2011-03-29
Applicant's invention is a radionuclide generator resin material for radiochemical separation of daughter radionuclides, particularly .sup.213Bi, from a solution of parental radionuclides, the resin material capable of providing clinical quantities of .sup.213Bi of at least 20-mCi, wherein the resin material comprises a silica-based structure having at least one bifunctional ligand covalently attached to the surface of the silica-based structure. The bifunctional ligand comprises a chemical group having desirable surface functionality to enable the covalent attachment of the bifunctional ligand thereon the surface of the structure and the bifunctional ligand further comprises a second chemical group capable of binding and holding the parental radionuclides on the resin material while allowing the daughter radionuclides to elute off the resin material. The bifunctional ligand has a carbon chain with a limited number of carbons to maintain radiation stability of the resin material.
Design, development and applications of novel techniques for studying surface mechanical properties
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1989-01-01
Research is reviewed for the adhesion, friction, and micromechanical properties of materials and examples of the results presented. The ceramic and metallic materials studied include silicon carbide, aluminum oxide, and iron-base amorphous alloys. The design and operation of a torsion balance adapted for study of adhesion from the Cavendish balance are discussed first. The pull-off force (adhesion) and shear force (friction) required to break the interfacial junctions between contacting surfaces of the materials were examined at various temperatures in a vacuum. The surface chemistry of the materials was analyzed by X-ray photoelectron spectroscopy. Properties and environmental conditions of the surface regions which affect adhesion and friction-such as surface segregation, composition, crystal structure, surface chemistry, and temperature were also studied.
Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui
2014-07-15
A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.
Effect of sealer coating and storage methods on the surface roughness of soft liners.
Usta Kutlu, Ilknur; Yanikoğlu, Nuran Dinckal; Kul, Esra; Duymuş, Zeynep Yesïl; Sağsöz, Nurdan Polat
2016-03-01
A soft lining is applied under a removable prosthesis for various reasons. The porosity of the lining material may increase colonization by microorganisms and cause tissue inflammation. The purpose of this in vitro study was to evaluate the effect of sealer coating on the surface roughness of soft lining materials under 4 different conditions. A total of 125 specimens were prepared. One high-temperature silicone-based soft lining material and 2 room-temperature-polymerized soft lining materials (1 silicone-based and 1 methacrylate-based) were used. Twenty-five specimens of each room-temperature soft lining material were coated with 2 layers of surface sealer. Additionally, 5 specimens of each material were stored in either distilled water, Coca-Cola, denture cleanser, saliva, or air. The surface roughness was measured at baseline and after 1, 7, 14, and 28 days. Surface roughness values were analyzed with repeated measures analysis of variance, and the Bonferroni multiple comparison test was performed using time-dependent groups and storage methods. In the time-dependent groups, methacrylate-based sealer-coated soft liners exhibited a significant increase in roughness (1.74-2.09 μm, P<.001), and silicone-based sealer-coated soft liners exhibited a decrease in roughness, but it was not significant (2.16-2.02 μm, P>.05). Therefore, the sealer coating was not effective in reducing surface roughness. Among the time-dependent storage methods, the denture cleanser exhibited an almost significant increase in roughness (1.83-1.99 μm, P=.054). Coca-Cola and artificial saliva did not show a significant difference (P>.05). However, a significant decrease in roughness was found with distilled water (P=.02) and air (P<.001). Statistically significant differences in surface roughness were found among the different types of soft liners. The sealer coating had no significant effect, and denture cleanser slightly increased the surface roughness. Contrary to expectations, the roughness did not increase in all groups over time. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Neme, A L; Frazier, K B; Roeder, L B; Debner, T L
2002-01-01
Many polishing protocols have been evaluated in vitro for their effect on the surface roughness of restorative materials. These results have been useful in establishing protocols for in vivo application. However, limited research has focused on the subsequent care and maintenance of esthetic restorations following their placement. This investigation evaluated the effect of five polishing protocols that could be implemented at recall on the surface roughness of five direct esthetic restorative materials. Specimens (n=25) measuring 8 mm diameter x 3 mm thick were fabricated in an acrylic mold using five light-cured resin-based materials (hybrid composite, microfilled composite, packable composite, compomer and resin-modified glass ionomer). After photopolymerization, all specimens were polished with Sof-Lex Disks to produce an initial (baseline) surface finish. All specimens were then polished with one of five prophylactic protocols (Butler medium paste, Butler coarse paste, OneGloss, SuperBuff or OneGloss & SuperBuff). The average surface roughness of each treated specimen was determined from three measurements with a profilometer (Surface 1). Next, all specimens were brushed 60,000 times at 1.5 Hz using a brush-head force of 2 N on a Manly V-8 cross-brushing machine in a 50:50 (w/w) slurry of toothpaste and water. The surface roughness of each specimen was measured after brushing (Surface 2) followed by re-polishing with one of five protocols, then final surface roughness values were determined (Surface 3). The data were analyzed using repeated measures ANOVA. Significant differences (p=0.05) in surface roughness were observed among restorative materials and polishing protocols. The microfilled and hybrid resin composite yielded significantly rougher surfaces than the other three materials following tooth brushing. Prophylactic polishing protocols can be used to restore a smooth surface on resin-based esthetic restorative materials following simulated tooth brushing.
Design and mechanisms of antifouling materials for surface plasmon resonance sensors.
Liu, Boshi; Liu, Xia; Shi, Se; Huang, Renliang; Su, Rongxin; Qi, Wei; He, Zhimin
2016-08-01
Surface plasmon resonance (SPR) biosensors have many possible applications, but are limited by sensor chip surface fouling, which blocks immobilization and specific binding by the recognizer elements. Therefore, there is a pressing need for the development of antifouling surfaces. In this paper, the mechanisms of antifouling materials were firstly discussed, including both theories (hydration and steric hindrance) and factors influencing antifouling effects (molecular structures and self-assembled monolayer (SAM) architectures, surface charges, molecular hydrophilicity, and grafting thickness and density). Then, the most recent advances in antifouling materials applied on SPR biosensors were systematically reviewed, together with the grafting strategies, antifouling capacity, as well as their merits and demerits. These materials included, but not limited to, zwitterionic compounds, polyethylene glycol-based, and polysaccharide-based materials. Finally, the prospective research directions in the development of SPR antifouling materials were discussed. Surface plasmon resonance (SPR) is a powerful tool in monitoring biomolecular interactions. The principle of SPR biosensors is the conversion of refractive index change caused by molecular binding into resonant spectral shifts. However, the fouling on the surface of SPR gold chips is ubiquitous and troublesome. It limits the application of SPR biosensors by blocking recognition element immobilization and specific binding. Hence, we write this paper to review the antifouling mechanisms and the recent advances of the design of antifouling materials that can improve the accuracy and sensitivity of SPR biosensors. To our knowledge, this is the first review focusing on the antifouling materials that were applied or had potential to be applied on SPR biosensors. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Jun; Gong, Yadong; Wang, Jinsheng
2013-11-01
The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 μm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5×107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.
Discriminating electromagnetic radiation based on angle of incidence
Hamam, Rafif E.; Bermel, Peter; Celanovic, Ivan; Soljacic, Marin; Yeng, Adrian Y. X.; Ghebrebrhan, Michael; Joannopoulos, John D.
2015-06-16
The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence. In some embodiments, one domain of the photonic material can include an isotropic dielectric function, while another domain of the photonic material can include an anisotropic dielectric function. In some instances, one domain of the photonic material can include an isotropic magnetic permeability, while another domain of the photonic material can include an anisotropic magnetic permeability. In some embodiments, non-photonic materials (e.g., materials with relatively large scale features) can be used to selectively absorb incoming electromagnetic radiation based on angle of incidence.
Li, Yifeng; Zhang, Wenqiang; Zheng, Yun; Chen, Jing; Yu, Bo; Chen, Yan; Liu, Meilin
2017-10-16
Solid oxide cell (SOC) based energy conversion systems have the potential to become the cleanest and most efficient systems for reversible conversion between electricity and chemical fuels due to their high efficiency, low emission, and excellent fuel flexibility. Broad implementation of this technology is however hindered by the lack of high-performance electrode materials. While many perovskite-based materials have shown remarkable promise as electrodes for SOCs, cation enrichment or segregation near the surface or interfaces is often observed, which greatly impacts not only electrode kinetics but also their durability and operational lifespan. Since the chemical and structural variations associated with surface enrichment or segregation are typically confined to the nanoscale, advanced experimental and computational tools are required to probe the detailed composition, structure, and nanostructure of these near-surface regions in real time with high spatial and temporal resolutions. In this review article, an overview of the recent progress made in this area is presented, highlighting the thermodynamic driving forces, kinetics, and various configurations of surface enrichment and segregation in several widely studied perovskite-based material systems. A profound understanding of the correlation between the surface nanostructure and the electro-catalytic activity and stability of the electrodes is then emphasized, which is vital to achieving the rational design of more efficient SOC electrode materials with excellent durability. Furthermore, the methodology and mechanistic understanding of the surface processes are applicable to other materials systems in a wide range of applications, including thermo-chemical photo-assisted splitting of H 2 O/CO 2 and metal-air batteries.
Chromium(II) Metal–Organic Polyhedra as Highly Porous Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jinhee; Perry, Zachary; Chen, Ying-Pin
2017-08-10
Herein we report for the first time the synthesis of Cr(II)-based metal–organic polyhedra (MOPs) and the characterization of their porosities. Unlike the isostructural Cu(II)- or Mo(II)-based MOPs, Cr(II)-based MOPs show unusually high gas uptakes and surface areas. The combination of comparatively robust dichromium paddlewheel units (Cr 2 units), cage symmetries, and packing motifs enable these materials to achieve Brunauer–Emmett–Teller surface areas of up to 1000 m 2/g. Reducing the aggregation of the Cr(II)-based MOPs upon activation makes their pores more accessible than their Cu(II) or Mo(II) counterparts. Further comparisons of surface areas on a molar (m2/mol cage) rather than gravimetricmore » (m 2/g) basis is proposed as a rational method of comparing members of a family of related molecular materials.« less
Surface functionalized mesoporous material and method of making same
Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA; Fryxell, Glen E [Kennewick, WA
2001-12-04
According to the present invention, an organized assembly of functional molecules with specific interfacial functionality (functional group(s)) is attached to available surfaces including within mesopores of a mesoporous material. The method of the present invention avoids the standard base soak that would digest the walls between the mesopores by boiling the mesoporous material in water for surface preparation then removing all but one or two layers of water molecules on the internal surface of a pore. Suitable functional molecule precursor is then applied to permeate the hydrated pores and the precursor then undergoes condensation to form the functional molecules on the interior surface(s) of the pore(s).
Programmable thermal emissivity structures based on bioinspired self-shape materials
NASA Astrophysics Data System (ADS)
Athanasopoulos, N.; Siakavellas, N. J.
2015-12-01
Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.
Programmable thermal emissivity structures based on bioinspired self-shape materials
Athanasopoulos, N.; Siakavellas, N. J.
2015-01-01
Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable – and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (εEff_H/εEff_L) equal to 28. PMID:26635316
Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Cui, Yi; Cheng, Qian-Yi; Wu, Haiping; Wei, Zhixiang; Han, Bao-Hang
2013-08-01
The synthesis of graphene oxide (GO)-based benzimidazole-crosslinked network (GOBIN) materials is presented. These materials are prepared by the covalent crosslinking of GO sheets using a condensation reaction between the carboxylic acid moieties on the GO surface and the o-aminophenyl end groups of 3,3'-diaminobenzidine (or 1,2,4,5-benzenetetraamine tetrahydrochloride). An efficient one-pot catalyst- and template-free synthesis was performed. The obtained porous GO-based materials possess a Brunauer-Emmett-Teller specific surface area ranging from 260 to 920 m2 g-1. Electrochemical testing indicates that the GOBIN materials display a specific capacitance up to 370 F g-1 at a current density of 0.1 A g-1 and about 90% of the original capacitance is retained after 5000 cycles at a current density of 3 A g-1. Therefore, GOBIN materials can be employed as promising electrode materials for high-performance supercapacitors with outstanding cycling stability. Furthermore, owing to their significantly high specific surface area, these materials also show hydrogen uptake (up to 1.24 wt%, at 77 K and 1.0 bar) and carbon dioxide capture (up to 14.2 wt%, at 273 K and 1.0 bar) properties. As a result, these GO-based porous materials improve both the supercapacitor performance and gas sorption property, which demonstrate an excellent performance in the practical application of energy storage.The synthesis of graphene oxide (GO)-based benzimidazole-crosslinked network (GOBIN) materials is presented. These materials are prepared by the covalent crosslinking of GO sheets using a condensation reaction between the carboxylic acid moieties on the GO surface and the o-aminophenyl end groups of 3,3'-diaminobenzidine (or 1,2,4,5-benzenetetraamine tetrahydrochloride). An efficient one-pot catalyst- and template-free synthesis was performed. The obtained porous GO-based materials possess a Brunauer-Emmett-Teller specific surface area ranging from 260 to 920 m2 g-1. Electrochemical testing indicates that the GOBIN materials display a specific capacitance up to 370 F g-1 at a current density of 0.1 A g-1 and about 90% of the original capacitance is retained after 5000 cycles at a current density of 3 A g-1. Therefore, GOBIN materials can be employed as promising electrode materials for high-performance supercapacitors with outstanding cycling stability. Furthermore, owing to their significantly high specific surface area, these materials also show hydrogen uptake (up to 1.24 wt%, at 77 K and 1.0 bar) and carbon dioxide capture (up to 14.2 wt%, at 273 K and 1.0 bar) properties. As a result, these GO-based porous materials improve both the supercapacitor performance and gas sorption property, which demonstrate an excellent performance in the practical application of energy storage. Electronic supplementary information (ESI) available: Detailed methods of preparation of GOBINPPA, SEM images, IR spectra, TGA, nitrogen adsorption-desorption isotherms, pore size distribution, gravimetric hydrogen adsorption, carbon dioxide adsorption isotherms, and virial analysis of the adsorption data for GOBIN materials. See DOI: 10.1039/c3nr01480k
In situ evaluation of a new silorane-based composite resin's bioadhesion properties.
Claro-Pereira, Diogo; Sampaio-Maia, Benedita; Ferreira, Carla; Rodrigues, Andreia; Melo, Luís F; Vasconcelos, Mário R
2011-12-01
The aim of the present study was to compare, in situ, the initial dental plaque formation on a recently developed silorane-based composite resin, Filtek Silorane, and on a widely used methacrylate-based composite resin, Synergy D6, and to relate possible differences to surface free energy, hydrophobicity and type of organic matrix. Discs of Filtek Silorane and Synergy D6 were prepared and polished equally in order to attain the same surface roughness. Water, formamide and 1-bromonaphthalene contact angles were determined and the surface free energy and the hydrophobicity of the materials calculated. Two discs of each material were mounted in individual oral splints and exposed to the oral cavity of 20 participants for 4h. After this period the microbial adhesion to both materials' surface was measured by two different approaches, the DAPI staining and the plate count. Statistical analysis was performed using non-parametric tests. The surface roughness (R(a) parameter) was similar between the two materials and lower than 0.2μm. Mean water and formamide contact angles were significantly higher for Filtek Silorane, which presented significantly lower surface free energy and greater degree of hydrophobicity in comparison to Synergy D6. The bioadhesion potential evaluated by either DAPI staining or plate count did not differ between the two materials. In contrast to previous in vitro studies, the present in situ study found no statistically significant differences with respect to bacterial adhesion between Filtek Silorane and Synergy D6, despite the differences found for surface free energy and hydrophobicity. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Hydroxylation of organic polymer surface: method and application.
Yang, Peng; Yang, Wantai
2014-03-26
It may be hardly believable that inert C-H bonds on a polymeric material surface could be quickly and efficiently transformed into C-OH by a simple and mild way. Thanks to the approaches developed recently, it is now possible to transform surface H atoms of a polymeric substrate into monolayer OH groups by a simple/mild photochemical reaction. Herein the method and application of this small-molecular interfacial chemistry is highlighted. The existence of hydroxyl groups on material surfaces not only determines the physical and chemical properties of materials but also provides effective reaction sites for postsynthetic sequential modification to fulfill the requirements of various applications. However, organic synthetic materials based on petroleum, especially polyolefins comprise mainly C and H atoms and thus present serious surface problems due to low surface energy and inertness in reactivity. These limitations make it challenging to perform postsynthetic surface sequential chemical derivatization toward enhanced functionalities and properties and also cause serious interfacial problems when bonding or integrating polymer substrates with natural or inorganic materials. Polymer surface hydroxylation based on direct conversion of C-H bonds on polymer surfaces is thus of significant importance for academic and practical industrial applications. Although highly active research results have reported on small-molecular C-H bond activation in solution (thus homogeneous), most of them, featuring the use of a variety of transition metals as catalysts, present a slow reaction rate, a low atom economy and an obvious environmental pollution. In sharp contrast to these conventional C-H activation strategies, the present Spotlight describes a universal confined photocatalytic oxidation (CPO) system that is able to directly convert polymer surface C-H bonds to C-OSO3(-) and, subsequently, to C-OH through a simple hydrolysis. Generally speaking, these newly implanted hydroxyl groups preserve their own reactivity toward other complementary compounds, thus creating a novel base with distinct surface properties. Thanks to this functionalized platform, a wide range of organic, inorganic and metal materials have been attached to conventional organic polymer substrates through the rational engineering of surface molecular templates from small functional groups to macromolecules. It is expected that the proposed novel CPO method and its versatile usages in advanced material applications will offer new opportunities for a variety of scientific communities, especially for those working on surface/interface modulation.
Shur, Jagdeep; Pitchayajittipong, Chonladda; Rogueda, Philippe; Price, Robert
2013-08-01
Influence of air-jet micronization, post-micronization conditioning and storage on the surface properties of budesonide in dry-powder inhaler formulations was investigated. Crystalline budesonide was air jet-micronized and conditioned using organic vapor. Particle engineering was also used to fabricate respirable particles of budesonide. Surface imaging by atomic force microscopy suggested that micronized material possessed process-induced surface disorder, which relaxed upon conditioning with organic vapor. Particle engineered material was devoid of such surface disorder. Surface interfacial properties of all batches were different and correlated to in vitro fine particle delivery. The surface properties and in vitro performance of the conditioned material changed upon storage of the budesonide at 44% relative humidity and 25°C, while the micronized and particle-engineered material remained stable. These data suggest that processing conditions of budesonide affected the surface properties of the material, which was demonstrated to have direct affect on dry-powder inhaler formulation performance.
Understanding interactions in the adsorption of gaseous organic compounds to indoor materials.
Ongwandee, Maneerat; Chatsuvan, Thabtim; Suksawas Na Ayudhya, Wichitsawat; Morris, John
2017-02-01
We studied adsorption of organic compounds to a wide range of indoor materials, including plastics, gypsum board, carpet, and many others, under various relative humidity conditions by applying a conceptual model of the free energy of interfacial interactions of both van der Waals and Lewis acid-base (e-donor/acceptor) types. Data used for the analyses were partitioning coefficients of adsorbates between surface and gas phase obtained from three sources: our sorption experiments and two other published studies. Target organic compounds included apolars, monopolars, and bipolars. We established correlations of partitioning coefficients of adsorbates for a considered surface with the corresponding hexadecane/air partitioning coefficients of the adsorbates which are used as representative of a van der Waals descriptor instead of vapor pressure. The logarithmic adsorption coefficients of the apolars and weak bases, e.g., aliphatics and aromatics, to indoor materials linearly correlates well with the logarithmic hexadecane/air partitioning coefficients regardless of the surface polarity. The surface polarity in terms of e-donor/acceptor interactions becomes important for adsorption of the strong bases and bipolars, e.g., amines, phenols, and alcohols, to unpainted gypsum board. Under dry or humid conditions, the adsorption to flat plastic materials still linearly correlates well with the van der Waals interactions of the adsorbates, but no correlations were observed for the adsorption to fleecy or plush materials, e.g., carpet. Adsorption of highly bipolar compounds, e.g., phenol and isopropanol, is strongly affected by humidity, attributed to Lewis acid-base interactions with modified surfaces.
Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants
Uddin, M S; Hall, Colin; Murphy, Peter
2015-01-01
Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches are required to leverage the benefit of Mg-based alloys. Hybrid treatments combining innovative biomimetic coating and mechanical processing would be regarded as a potentially promising way to tackle the corrosion problem. Synergetic cutting-burnishing integrated with cryogenic cooling may be another encouraging approach in this regard. More studies focusing on rigorous testing, evaluation and characterisation are needed to assess the efficacy of the methods. PMID:27877829
Microbial specificity of metallic surfaces exposed to ambient seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaidi, B.R.; Bard, R.F.; Tosteson, T.R.
1984-09-01
High-molecular-weight materials associated with the extracellular matrix and film found on titanium and aluminum surfaces after exposure to flowing coastal seawater were isolated. This material was purified by hydroxylapatite chromatography and subsequently employed to produce antibodies in the toad, Bufo marinus. The antibodies were immobilized on a solid support and employed to isolate adhesion-enhancing, high-molecular-weight materials from the laboratory culture media of bacterial strains recovered from the respective metallic surfaces during the course of their exposure to seawater. The adhesion-enhancing materials produced by the surface-associated bacterial strains were immunologically related to the extracellular biofouling matrix material found on the surfacesmore » from which these bacteria were isolated. The surface selectivity of these bacterial strains appeared to be based on the specificity of the interaction between adhesion-enhancing macromolecules produced by these bacteria and the surfaces in question. 30 references, 6 tables.« less
Ultra precision and reliable bonding method
NASA Technical Reports Server (NTRS)
Gwo, Dz-Hung (Inventor)
2001-01-01
The bonding of two materials through hydroxide-catalyzed hydration/dehydration is achieved at room temperature by applying hydroxide ions to at least one of the two bonding surfaces and by placing the surfaces sufficiently close to each other to form a chemical bond between them. The surfaces may be placed sufficiently close to each other by simply placing one surface on top of the other. A silicate material may also be used as a filling material to help fill gaps between the surfaces caused by surface figure mismatches. A powder of a silica-based or silica-containing material may also be used as an additional filling material. The hydroxide-catalyzed bonding method forms bonds which are not only as precise and transparent as optical contact bonds, but also as strong and reliable as high-temperature frit bonds. The hydroxide-catalyzed bonding method is also simple and inexpensive.
METHOD FOR SOLDERING NORMALLY NON-SOLDERABLE ARTICLES
McGuire, J.C.
1959-11-24
Methods are presented for coating and joining materials which are considered difficult to solder by utilizing an abrasive wheel and applying a bar of a suitable coating material, such as Wood's metal, to the rotating wheel to fill the cavities of the abrasive wheel and load the wheel with the coating material. The surface of the base material is then rubbed against the loaded rotating wheel, thereby coating the surface with the soft coating metal. The coating is a cohesive bonded layer and holds the base metal as tenaciously as a solder holds to easily solderable metals.
Surface protection coating material for controlling the decay of major construction stone
NASA Astrophysics Data System (ADS)
Arun, T.; Ray, D. K.; Gupta, V. P.; Panda, S. S.; Sahoo, P. K.; Ghosh, Jaydip; Sengupta, Pranesh; Satyam, P. V.
2017-05-01
Degradation of the building stones are creating instability in the old building and monuments which is to be protected. To investigate the characteristics of such a stones used for the construction in eastern India, we have collected the khondalite stones. The microstructural and elemental composition analysis of the khondalite stones are analyzed by using SEM, EDX and PIXE trace elemental analysis. We have prepared surface protection coating material with graphene oxide and cobalt ferrite as a base material along with other residuals. The prepared coating materials is coated on the galvanized iron substrate for further characterization. The surface morphology characteristics of the coating material is analyzed by SEM and AFM. The corrosion resistance characteristics of the prepared coating material is studied by the electrochemical impedance spectroscopy. The results suggests that the prepared coating material can be used as a surface protection materials to control the self-destruction of khondalite stones.
Zemtsova, Elena
2014-01-01
We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology. PMID:24695459
Zemtsova, Elena; Yurchuk, Denis; Smirnov, Vladimir
2014-01-01
We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1-50 nm. This material can be represented as the material type "frame in the frame" that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology.
Biological responses to M13 bacteriophage modified titanium surfaces in vitro.
Sun, Yuhua; Li, Yiting; Wu, Baohua; Wang, Jianxin; Lu, Xiong; Qu, Shuxin; Weng, Jie; Feng, Bo
2017-08-01
Phage-based materials have showed great potential in tissue engineering application. However, it is unknown what inflammation response will happen to this kind of materials. This work is to explore the biological responses to M13 bacteriophage (phage) modified titanium surfaces in vitro from the aspects of their interaction with macrophages, osteoblasts and mineralization behavior. Pretreated Ti surface, Ti surfaces with noncrosslinked phage film (APP) and crosslinked phage film (APPG) were compared. Phage films could limit the macrophage adhesion and activity due to inducing adherent-cell apoptosis. The initial inflammatory activity (24h) caused by phage films was relatively high with more production of TNF-α, but in the later stage (7-10days) inflammatory response was reduced with lower TNF-α, IL-6 and higher IL-10. In addition, phage films improved osteoblast adhesion, differentiation, and hydroapatite (HA)-forming via a combination of topographical and biochemcial cues. The noncrosslinked phage film displayed the best immunomodulatory property, osteogenic activity and HA mineralization ability. This work provides better understanding of inflammatory and osteogenetic activity of phage-based materials and contributes to their future application in tissue engineering. In vivo, the bone and immune cells share a common microenvironment, and are being affected by similar cytokines, signaling molecules, transcription factors and membrane receptors. Ideal implants should cause positive biological response, including adequate and appropriate inflammatory reaction, well-balanced bone formation and absorption. Phage-based materials have showed great potential in tissue engineering application. However, at present it is unknown what inflammation response will happen to this kind of materials. A good understanding of the immune response possibly induced by phage-based materials is needed. This work studied the osteoimmunomodulation property of phage films on titanium surface, involving inflammatory response, osteogenic activity and biomineralization ability. It provides more understanding of the phage-based materials and contributes to their future application in tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors.
Cui, Yi; Cheng, Qian-Yi; Wu, Haiping; Wei, Zhixiang; Han, Bao-Hang
2013-09-21
The synthesis of graphene oxide (GO)-based benzimidazole-crosslinked network (GOBIN) materials is presented. These materials are prepared by the covalent crosslinking of GO sheets using a condensation reaction between the carboxylic acid moieties on the GO surface and the o-aminophenyl end groups of 3,3'-diaminobenzidine (or 1,2,4,5-benzenetetraamine tetrahydrochloride). An efficient one-pot catalyst- and template-free synthesis was performed. The obtained porous GO-based materials possess a Brunauer-Emmett-Teller specific surface area ranging from 260 to 920 m(2) g(-1). Electrochemical testing indicates that the GOBIN materials display a specific capacitance up to 370 F g(-1) at a current density of 0.1 A g(-1) and about 90% of the original capacitance is retained after 5000 cycles at a current density of 3 A g(-1). Therefore, GOBIN materials can be employed as promising electrode materials for high-performance supercapacitors with outstanding cycling stability. Furthermore, owing to their significantly high specific surface area, these materials also show hydrogen uptake (up to 1.24 wt%, at 77 K and 1.0 bar) and carbon dioxide capture (up to 14.2 wt%, at 273 K and 1.0 bar) properties. As a result, these GO-based porous materials improve both the supercapacitor performance and gas sorption property, which demonstrate an excellent performance in the practical application of energy storage.
Sañudo-Fontaneda, Luis A; Charlesworth, Susanne M; Castro-Fresno, Daniel; Andres-Valeri, Valerio C A; Rodriguez-Hernandez, Jorge
2014-01-01
Pervious pavements have become one of the most used sustainable urban drainage system (SUDS) techniques in car parks. This research paper presents the results of monitoring water quality from several experimental car park areas designed and constructed in Spain with bays made of interlocking concrete block pavement, porous asphalt, polymer-modified porous concrete and reinforced grass with plastic and concrete cells. Moreover, two different sub-base materials were used (limestone aggregates and basic oxygen furnace slag). This study therefore encompasses the majority of the materials used as permeable surfaces and sub-base layers all over the world. Effluent from the test bays was monitored for dissolved oxygen, pH, electric conductivity, total suspended solids, turbidity and total petroleum hydrocarbons in order to analyze the behaviour shown by each combination of surface and sub-base materials. In addition, permeability tests were undertaken in all car parks using the 'Laboratorio Caminos Santander' permeameter and the Cantabrian Portable Infiltrometer. All results are presented together with the influence of surface and sub-base materials on water quality indicators using bivariate correlation statistical analysis at a confidence level of 95%. The polymer-modified porous concrete surface course in combination with limestone aggregate sub-base presented the best performance.
The effect of milling and postmilling procedures on the surface roughness of CAD/CAM materials.
Mota, Eduardo Gonçalves; Smidt, Laura Nunes; Fracasso, Lisiane Martins; Burnett, Luiz Henrique; Spohr, Ana Maria
2017-11-12
The aim of this study was to evaluate the surface roughness and analyze the surface topography of five different CAD/CAM ceramics and one CAD/CAM composite resin for CEREC after milling and postmilling procedures. Blocks of the ceramics Mark II, IPS Empress CAD, IPS e.max CAD, Suprinity and Enamic, and blocks of the composite resin Lava Ultimate were milled at CEREC MCXL. Ten flat samples of each material were obtained. The surface roughness (Ra) test was performed before and after milling, crystallization, polishing, and glaze when indicated, followed by SEM and AFM analysis. Data were submitted to one-way ANOVA with repeated measures and the Tukey HSD test (α = 0.05). The milling step significantly increased the roughness of all the tested materials (P < .05). Lithium-based ceramics (IPS e.max CAD and Suprinity) were more suitable to roughness than the other tested materials (P < .05). The polishing methods were able to reduce roughness to baseline values, except for lithium-based ceramics. Glaze reduced significantly the roughness of lithium-based ceramics without a difference from the baseline. SEM and AFM images revealed that glazed surfaces are smoother than polished surfaces. All hard-milling CAD/CAM materials, that is, fully sintered, should be only hand polished. The glaze step can be suppressed resulting in time saving. However, the glaze step in soft-milling lithium disilicate is imperative. © 2017 Wiley Periodicals, Inc.
Ion Exchange Formation via Sulfonated Bicomponent Nonwovens
NASA Astrophysics Data System (ADS)
Stoughton, Hannah L.
For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.
Recent progress in graphene-material-based optical sensors.
Deng, Xianghua; Tang, Hao; Jiang, Jianhui
2014-11-01
Graphene material has been widely used for optical sensors owing to its excellent properties, including high-energy transfer efficiency, large surface area, and great biocompatibility. Different analytes such as nucleic acids, proteins, and small molecules can be detected by graphene-material-based optical sensors. This review provides a comprehensive discussion of graphene-material-based optical sensors focusing on detection mechanisms and biosensor designs. Challenges and future perspectives for graphene-material-based optical sensors are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullin, I.Sh.; Bragin, V.E.; Bykanov, A.N.
Gas discharge plasma modification of polymer materials and metals is one of the known physical approaches for improving of materials biocompatibility in ophthalmology and surgery. The surface treatment in RF discharges can be effectively realized in the discharge afterglow and in the discharge region itself too. This modification method is more convenient and produces more uniform surfaces in comparison with other discharge types. The carried out experiments and published up to now results show that interaction of UV radiation, fluxes of ions, electrons and metastable particles with material`s surface changes chemical composition and surface structure. The exerting of these agentsmore » on the sample surface produces the following effects. There are processes of physical and plasma-chemical surface etching producing effective surface cleaning of different types of contaminations. It may be surface contaminations by hydrocarbons because of preliminary surface contacts with biological or physical bodies. It may be surface contaminations caused by characteristic properties of chemical technology too. There is a surface layer with thickness from some angstroms up to few hundreds of angstroms. The chemical content and structure of this layer is distinguished from the bulk polymer properties. The presence of such {open_quotes}technological{close_quotes} contaminations produces the layer of material substantially differing from the base polymer. The basic layer physical and chemical properties for example, gas permeation rate may substantially differ from the base polymer. Attempts to clean the surface from these contaminations by chemical methods (solutions) have not been successful and produced contaminations of more deep polymer layers. So the plasma cleaning is the most profitable method of polymer treatment for removing the surface contaminations. The improving of wettability occurs during this stage of treatment.« less
NASA Astrophysics Data System (ADS)
Kirovskaya, I. A.; Mironova, E. V.; Ushakov, O. V.; Nor, P. E.; Yureva, A. V.; Matyash, Yu I.
2018-01-01
A method for determining the hydrogen index of the surfaces isoelectric state (pHiso) at various gases pressures -possible components of the surrounding and technological media has been developed. With its use, changes in pH of binary and more complex semiconductors-components of the new system-ZnSe-CdS under the influence of nitrogen dioxide-have been found. The limiting sensitivity of surfaces - minimum PNO2, causing a change in pH has been estimated. The most active components of ZnSe-CdS system, recommended as materials for measuring cells of NO2, have been revealed. The relationship between the changing patterns with the composition of surface (acid-base) and bulk (in particular, theoretical calculated crystal density) properties has been established, allowing to find the most effective materials for sensor technology and for semiconductor analysis.
Modeling the microstructure of surface by applying BRDF function
NASA Astrophysics Data System (ADS)
Plachta, Kamil
2017-06-01
The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.
NASA Astrophysics Data System (ADS)
Park, Jang-Hoon; Kim, Ju-Myung; Lee, Chang Kee; Lee, Sang-Young
2014-10-01
Understanding and control of interfacial phenomena between electrode material and liquid electrolytes are of major scientific importance for boosting development of high-performance lithium ion batteries with reliable electrochemical/safety attributes. Here, as an innovative surface engineering approach to address the interfacial issues, a new concept of mixed ion/electron-conductive soft nanomatter-based conformal surface modification of the cathode material is presented. The soft nanomatter is comprised of an electron conductive carbonaceous (C) substance embedded in an ion conductive polyimide (PI) nanothin compliant film. In addition to its structural uniqueness, the newly proposed surface modification benefits from a simple fabrication process. The PI/carbon soft nanomatter is directly synthesized on LiCoO2 surface via one-pot thermal treatment of polyamic acid (=PI precursor) and sucrose (=carbon source) mixture, where the LiCoO2 powders are chosen as a model system to explore the feasibility of this surface engineering strategy. The resulting PI/carbon coating layer facilitates electronic conduction and also suppresses unwanted side reactions arising from the cathode material-liquid electrolyte interface. These synergistic coating effects of the multifunctional PI/carbon soft nanomatter significantly improve high-voltage cell performance and also mitigate interfacial exothermic reaction between cathode material and liquid electrolyte.
NASA Astrophysics Data System (ADS)
Ziegler, Alan D.; Sutherland, Ross A.
2006-01-01
This study evaluated the effectiveness of two application rates of a coral-derived surfacing material for both traffic and nontraffic road conditions using simulated rainfall (110-120 mm h-1 for 30-90 min) on 0.75-m (wide) × 5.0-m (long) plots of similar slope (roughly 0.1 m m-1). The coral is a locally available material that has been applied to unpaved roads surfaces on Schoffield Barracks, Oahu, Hawaii (USA), where this experiment was conducted. The simulations show that compared with a bare control plot, the coral-based surface application rates of 80 and 160 kg m-2 (equivalent to only 10- and 20-mm thicknesses) reduced road sediment production by 75% and 95%, respectively, for nontraffic conditions. However, after two passes of the research vehicle during wet conditions, sediment production rates for the two coral treatments were not significantly different from those on the bare road plots. The overall effectiveness of the coral-derived surfacing material is unsatisfactory, primarily because the on-road surface thickness associated with the application rates tested was too small. These rates were selected to bracket those applied to training roads in the study area. Furthermore, the composition of the coral-based material does not facilitate the development of a sealed, erosion-resistant surface. When applied at the low rates tested, the coral material breaks down under normal traffic conditions, thereby losing its ability to counter shearing forces exerted by overland flow on long hillslopes where erosion measures are most needed. These simulations, combined with observations on roads in the study area, indicate that this material is not an appropriate road surfacing material for the site—at least for the low application rates examined. These results are preliminary; extended testing of higher applications rates at the hillslope scale under natural climate and traffic conditions is needed to better judge the effectiveness of this material over time.
Ziegler, Alan D; Sutherland, Ross A
2006-01-01
This study evaluated the effectiveness of two application rates of a coral-derived surfacing material for both traffic and nontraffic road conditions using simulated rainfall (110-120 mm h(-1) for 30-90 min) on 0.75-m (wide) x 5.0-m (long) plots of similar slope (roughly 0.1 m m(-1)). The coral is a locally available material that has been applied to unpaved roads surfaces on Schoffield Barracks, Oahu, Hawaii (USA), where this experiment was conducted. The simulations show that compared with a bare control plot, the coral-based surface application rates of 80 and 160 kg m(-2) (equivalent to only 10- and 20-mm thicknesses) reduced road sediment production by 75% and 95%, respectively, for nontraffic conditions. However, after two passes of the research vehicle during wet conditions, sediment production rates for the two coral treatments were not significantly different from those on the bare road plots. The overall effectiveness of the coral-derived surfacing material is unsatisfactory, primarily because the on-road surface thickness associated with the application rates tested was too small. These rates were selected to bracket those applied to training roads in the study area. Furthermore, the composition of the coral-based material does not facilitate the development of a sealed, erosion-resistant surface. When applied at the low rates tested, the coral material breaks down under normal traffic conditions, thereby losing its ability to counter shearing forces exerted by overland flow on long hillslopes where erosion measures are most needed. These simulations, combined with observations on roads in the study area, indicate that this material is not an appropriate road surfacing material for the site-at least for the low application rates examined. These results are preliminary; extended testing of higher applications rates at the hillslope scale under natural climate and traffic conditions is needed to better judge the effectiveness of this material over time.
Control method and system for use when growing thin-films on semiconductor-based materials
McKee, Rodney A.; Walker, Frederick J.
2001-01-01
A process and system for use during the growth of a thin film upon the surface of a substrate by exposing the substrate surface to vaporized material in a high vacuum (HV) facility involves the directing of an electron beam generally toward the surface of the substrate as the substrate is exposed to vaporized material so that electrons are diffracted from the substrate surface by the beam and the monitoring of the pattern of electrons diffracted from the substrate surface as vaporized material settles upon the substrate surface. When the monitored pattern achieves a condition indicative of the desired condition of the thin film being grown upon the substrate, the exposure of the substrate to the vaporized materials is shut off or otherwise adjusted. To facilitate the adjustment of the crystallographic orientation of the film relative to the electron beam, the system includes a mechanism for altering the orientation of the surface of the substrate relative to the electron beam.
NASA Astrophysics Data System (ADS)
Gupta, Mousumi; Chatterjee, Somenath
2018-04-01
Surface texture is an important issue to realize the nature (crest and trough) of surfaces. Atomic force microscopy (AFM) image is a key analysis for surface topography. However, in nano-scale, the nature (i.e., deflection or crack) as well as quantification (i.e., height or depth) of deposited layers is essential information for material scientist. In this paper, a gradient-based K-means algorithm is used to differentiate the layered surfaces depending on their color contrast of as-obtained from AFM images. A transformation using wavelet decomposition is initiated to extract the information about deflection or crack on the material surfaces from the same images. Z-axis depth analysis from wavelet coefficients provides information about the crack present in the material. Using the above method corresponding surface information for the material is obtained. In addition, the Gaussian filter is applied to remove the unwanted lines, which occurred during AFM scanning. Few known samples are taken as input, and validity of the above approaches is shown.
Choi, Woochol J; Kaur, Harjinder; Robinovitch, Stephen N
2014-04-01
Distal radius fractures are common on playgrounds. Yet current guidelines for the selection of playground surface materials are based only on protection against fall-related head injuries. We conducted "torso release" experiments to determine how common playground surface materials affect impact force applied to the hand during upper limb fall arrests. Trials were acquired for falls onto a rigid surface, and onto five common playground surface materials: engineered wood fiber, gravel, mulch, rubber tile, and sand. Measures were acquired for arm angles of 20 and 40 degrees from the vertical. Playground surface materials influenced the peak resultant and vertical force (P<.001), but not the peak horizontal force (P=.159). When compared with the rigid condition, peak resultant force was reduced 17% by sand (from 1039 to 864 N), 16% by gravel, 7% by mulch, 5% by engineered wood fiber, and 2% by rubber tile. The best performing surface provided only a 17% reduction in peak resultant force. These results help to explain the lack of convincing evidence from clinical studies on the effectiveness of playground surface materials in preventing distal radius fractures during playground falls, and highlight the need to develop playground surface materials that provide improved protection against these injuries.
Theoretical study on the electronic and optical properties of bulk and surface (001) InxGa1-xAs
NASA Astrophysics Data System (ADS)
Liu, XueFei; Ding, Zhao; Luo, ZiJiang; Zhou, Xun; Wei, JieMin; Wang, Yi; Guo, Xiang; Lang, QiZhi
2018-05-01
The optical properties of surface and bulk InxGa1-xAs materials are compared systematically first time in this paper. The band structures, density of states and optical properties including dielectric function, reflectivity, absorption coefficient, loss function and refractive index of bulk and surface InxGa1-xAs materials are investigated by first-principles based on plane-wave pseudo-potentials method within the LDA approximation. The results agree well with the available theoretical and experimental studies and indicate that the electronic and optical properties of bulk and surface InxGa1-xAs materials are much different, and the results show that the considered optical properties of the both materials vary with increasing indium composition in an opposite way. The calculations show that the optical properties of surface In0.75Ga0.25As material are unexpected to be far from the other two indium compositions of surface InxGa1-xAs materials while the optical properties of bulk InxGa1-xAs materials vary with increasing indium composition in an expected regular way.
Shen, Jianfeng; Wu, Jingjie; Wang, Man; Dong, Pei; Xu, Jingxuan; Li, Xiaoguang; Zhang, Xiang; Yuan, Junhua; Wang, Xifan; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M
2016-05-01
A proper design of direct liquid phase exfoliation (LPE) for 2D materials as graphene, MoS2 , WS2 , h-BN, Bi2 Se3 , MoSe2 , SnS2 , and TaS2 with common cosolvents is carried out based on considering the polar and dispersive components of surface tensions of various cosolvents and 2D materials. It has been found that the exfoliation efficiency is enhanced by matching the ratio of surface tension components of cosolvents to that of the targeted 2D materials, based on which common cosolvents composed of IPA/water, THF/water, and acetone/water can be designed for sufficient LPE process. In this context, the library of low-toxic and low-cost solvents with low boiling points for LPE is infinitely enlarged when extending to common cosolvents. Polymer-based composites reinforced with a series of different 2D materials are compared with each other. It is demonstrated that the incorporation of cosolvents-exfoliated 2D materials can substantially improve the mechanical and thermal properties of polymer matrices. Typically, with the addition of 0.5 wt% of such 2D material as MoS2 nanosheets, the tensile strength and Young's modulus increased up to 74.85% and 136.97%, respectively. The different enhancement effect of 2D materials is corresponded to the intrinsic properties and LPE capacity of 2D materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Machinability of nickel based alloys using electrical discharge machining process
NASA Astrophysics Data System (ADS)
Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.
2018-04-01
The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.
NASA Technical Reports Server (NTRS)
Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.
2005-01-01
Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.
Novel robust cellulose-based foam with pH and light dual-response for oil recovery
NASA Astrophysics Data System (ADS)
Wang, Qian; Meng, Guihua; Wu, Jianning; Wang, Yixi; Liu, Zhiyong; Guo, Xuhong
2018-05-01
We fabricated pH and light dual-responsive adsorption materials which could induce the transition of surface wettability between hydrophobicity and hydrophilicity by using ATRP. The structure and morphology of adsorption materials were confirmed by ATR-FTIR, XPS, TGA and SEM. It showed that the modified cellulose (CE)-based foam was hydrophobic, which can adsorb a range of oils and organic solvents in water under pH = 7.0 or visible light irradiation (λ > 500 nm). Meanwhile, the wettability of robust CE-based foam can convert hydrophobicity into hydrophilicity and underwater oleophobicity under pH = 3.0 or UV irradiation (λ = 365 nm), giving rise to release oils and organic solvents. Most important of all, the adsorption and desorption processes of the modified CE-based foam could be switched by external stimuli. Furthermore, the modified CE-based foam was not damaged and still retained original performance after reversible cycle repeated for many times with variation of surface wettability. In short, it indicates that CE-based foam materials with switchable surface wettability are new responsive absorbent materials and have owned potential application in the treatment of oil recovery.
Novel robust cellulose-based foam with pH and light dual-response for oil recovery
NASA Astrophysics Data System (ADS)
Wang, Qian; Meng, Guihua; Wu, Jianning; Wang, Yixi; Liu, Zhiyong; Guo, Xuhong
2018-06-01
We fabricated pH and light dual-responsive adsorption materials which could induce the transition of surface wettability between hydrophobicity and hydrophilicity by using ATRP. The structure and morphology of adsorption materials were confirmed by ATR-FTIR, XPS, TGA and SEM. It showed that the modified cellulose (CE)-based foam was hydrophobic, which can adsorb a range of oils and organic solvents in water under pH = 7.0 or visible light irradiation ( λ > 500 nm). Meanwhile, the wettability of robust CE-based foam can convert hydrophobicity into hydrophilicity and underwater oleophobicity under pH = 3.0 or UV irradiation ( λ = 365 nm), giving rise to release oils and organic solvents. Most important of all, the adsorption and desorption processes of the modified CE-based foam could be switched by external stimuli. Furthermore, the modified CE-based foam was not damaged and still retained original performance after reversible cycle repeated for many times with variation of surface wettability. In short, it indicates that CE-based foam materials with switchable surface wettability are new responsive absorbent materials and have owned potential application in the treatment of oil recovery.
Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics.
Wang, Z F; Liu, Feng
2015-07-10
Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1/3 monolayer halogen coverage. The sp(3) dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (∼10(6) m/s) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.
Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics
NASA Astrophysics Data System (ADS)
Wang, Z. F.; Liu, Feng
2015-07-01
Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1 /3 monolayer halogen coverage. The s p3 dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (˜106 m /s ) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.
Investigation on Effect of Material Hardness in High Speed CNC End Milling Process.
Dhandapani, N V; Thangarasu, V S; Sureshkannan, G
2015-01-01
This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.
Investigation on Effect of Material Hardness in High Speed CNC End Milling Process
Dhandapani, N. V.; Thangarasu, V. S.; Sureshkannan, G.
2015-01-01
This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results. PMID:26881267
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rappe, Andrew
This research project explored the catalytic properties of complex surfaces of functional materials. The PI used first-principles density functional theory (DFT) calculations to explore a tightly integrated set of properties. The physical properties of complex functional materials that influence surface chemistry were explored, including bulk and surface electric dipoles, and surface conductivity. The energetic, compositional, electronic, and chemical properties of the surfaces of these materials were explored in detail, and connections between material properties and chemical reactivity were established. This project led to 28 publications, including Nat. Comm., JACS, 3 PRL, 7 PRB, 2 ACS Nano, 2 Nano Lett., 4more » JPCL, 2 JCP, Chem. Mater., ACS Appl. Mater. Interfaces, Phys. Rev. Appl., and a U.S. Patent on surface catalysts. The key accomplishments in this project involved work in six coordinated areas: pioneering ways to control bulk dipoles in order to dynamically affect catalysis, exploring novel ways of bringing charge to the surface for redox catalysis, nonstoichiometric surfaces offering new sites for heterogeneous catalysis, illustrating how surface catalysis responds to applied pressure, catalytic growth of carbon-based materials, and new computational methods allowing more accurate exploration of molecule-surface interactions« less
NASA Technical Reports Server (NTRS)
Street, K. W. Jr.; Kobrick, R. L.; Klaus, D. M.
2011-01-01
A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ significantly.
Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)
NASA Astrophysics Data System (ADS)
Allain, Jean Paul; Taylor, Chase N.
2012-05-01
The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.
da Silva, Joaquim; Takahashi, Jessica; Nuňez, Juliana; Consani, Rafael; Mesquita, Marcelo
2012-09-01
To compare the effects of different ageing methods on the permanent deformation of two permanent soft liners. The materials selected were auto-polymerising acrylic resin and silicone-based reliners. Sealer coating was also evaluated. Sixty specimens of each reliner were manufactured (12.7 mm diameter and 19 mm length). Specimens were randomly distributed into 12 groups (n = 10) and submitted to one of the accelerated ageing processes. Permanent deformation tests were conducted with a mechanical device described within the American Dental Association specification number 18 with a compressive load of 750 gf applied for 30 s. All data were submitted for statistical analysis. Mann-Whitney test compared the effect of the surface sealer on each material and the permanent deformation of the materials in the same ageing group (p = 0.05). Kruskal-Wallis and Dunn tests compared all ageing groups of each material (p = 0.05). The silicone-based reliner presented a lower permanent deformation than the acrylic resin-based reliner, regardless of the ageing procedure. The surface sealer coating was effective only for the thermocycled silicone group and the accelerated ageing processes affected only the permanent deformation of the acrylic resin-based material. The silicone-based reliner presented superior elastic properties and the thermocycling was more effective in ageing the materials. © 2010 The Gerodontology Society and John Wiley & Sons A/S.
A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors
NASA Astrophysics Data System (ADS)
Mathew, Ribu; Ravi Sankar, A.
2018-06-01
In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.[Figure not available: see fulltext.
Nanocellulose-Based Materials for Water Purification
Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P.
2017-01-01
Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted. PMID:28336891
Corrosion Performance of Friction Stir Linear Lap Welded AM60B Joints
NASA Astrophysics Data System (ADS)
Kish, J. R.; Birbilis, N.; McNally, E. M.; Glover, C. F.; Zhang, X.; McDermid, J. R.; Williams, G.
2017-11-01
A corrosion investigation of friction stir linear lap welded AM60B joints used to fabricate an Mg alloy-intensive automotive front end sub-assembly was performed. The stir zone exhibited a slightly refined grain size and significant break-up and re-distribution of the divorced Mg17Al12 (β-phase) relative to the base material. Exposures in NaCl (aq) environments revealed that the stir zone was more susceptible to localized corrosion than the base material. Scanning vibrating electrode technique measurements revealed differential galvanic activity across the joint. Anodic activity was confined to the stir zone surface and involved initiation and lateral propagation of localized filaments. Cathodic activity was initially confined to the base material surface, but was rapidly modified to include the cathodically-activated corrosion products in the filament wake. Site-specific surface analyses revealed that the corrosion observed across the welded joint was likely linked to variations in Al distribution across the surface film/metal interface.
Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan; Yablokova, Ganna
2017-02-01
In this work, we present material chemistry in the hydrothermal synthesis of new complex structure materials based on various dosage ratios of Fe and Ce (1:0, 2:1, 1:1, 1:2, 0:1), characterize them by the relevant methods that allow characterization of both crystalline and amorphous phases and correlate their structure/surface properties with the adsorptive performance of the five toxic anions. The applied synthesis conditions resulted in the formation of different compounds of Fe and Ce components. The Fe-component was dominated by various phases of Fe hydrous oxides, whereas the Ce-component was composed of various phases of Ce carbonates. The presence of two metal salts in raw materials resulted in the formation of a mesoporous structure and averaged the surface area compared to one metal-based material. The surface of all Fe-Ce composites was abundant in Fe component phases. Two-metal systems showed stronger anion removal performance than one-metal materials. The best adsorption was demonstrated by Fe-Ce based materials that had low crystallinity, that were rich in phases and that exhibited surfaces were abundant in greater number of surface functional groups. Notably, Fe extended fine structures simulated by EXAFS in these better adsorbents were rich from oscillations from both heavy and light atoms. This work provides new insights on the structure of composite inorganic materials useful to develop their applications in adsorption and catalysis. It also presents new inorganic anion exchangers with very high removal potential to fluoride and arsenate. Copyright © 2016 Elsevier Inc. All rights reserved.
Traveling wave ultrasonic motor using polymer-based vibrator
NASA Astrophysics Data System (ADS)
Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro
2016-01-01
With the characteristics of low density, low elastic modulus, and low mechanical loss, poly(phenylene sulfide) (PPS) is a promising material for fabricating lightweight ultrasonic motors (USMs). For the first time, we used PPS to fabricate an annular elastomer with teeth and glued a piece of piezoelectric-ceramic annular disk to the bottom of the elastomer to form a vibrator. To explore for a material suitable for the rotor surface coming in contact with the PPS-based vibrator, several disk-shaped rotors made of different materials were fabricated to form traveling wave USMs. The polymer-based USM rotates successfully as the conventional metal-based USMs. The experimental results show that the USM with the aluminum rotor has the largest torque, which indicates that aluminum is the most suitable for the rotor surface among the tested materials.
Polysaccharide-based antibiofilm surfaces.
Junter, Guy-Alain; Thébault, Pascal; Lebrun, Laurent
2016-01-01
Surface treatment by natural or modified polysaccharide polymers is a promising means to fight against implant-associated biofilm infections. The present review focuses on polysaccharide-based coatings that have been proposed over the last ten years to impede biofilm formation on material surfaces exposed to bacterial contamination. Anti-adhesive and bactericidal coatings are considered. Besides classical hydrophilic coatings based on hyaluronic acid and heparin, the promising anti-adhesive properties of the algal polysaccharide ulvan are underlined. Surface functionalization by antimicrobial chitosan and derivatives is extensively surveyed, in particular chitosan association with other polysaccharides in layer-by-layer assemblies to form both anti-adhesive and bactericidal coatings. Bacterial contamination of surfaces, leading to biofilm formation, is a major problem in fields as diverse as medicine, first, but also food and cosmetics. Many prophylactic strategies have emerged to try to eliminate or reduce bacterial adhesion and biofilm formation on surfaces of materials exposed to bacterial contamination, in particular implant materials. Polysaccharides are widely distributed in nature. A number of these natural polymers display antibiofilm properties. Hence, surface treatment by natural or modified polysaccharides is a promising means to fight against implant-associated biofilm infections. The present manuscript is an in-depth look at polysaccharide-based antibiofilm surfaces that have been proposed over the last ten years. This review, which is a novelty compared to published literature, will bring well documented and updated information to readers of Acta Biomaterialia. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Nascimento, Marcelle M.; Gordan, Valeria V.; Qvist, Vibeke; Litaker, Mark S.; Rindal, D. Brad; Williams, O.D.; Fellows, Jeffrey L.; Ritchie, Lloyd K.; Mjör, Ivar A.; McClelland, Jocelyn; Gilbert, Gregg H.
2010-01-01
Objective To identify and quantify the reasons for placing restorations on unrestored permanent tooth surfaces and the dental materials used by Dental Practice-Based Research Network (DPBRN; www.DentalPBRN.org) dentists. Methods A total of 229 DPBRN practitioner-investigators collected data on 9,890 consecutive restorations from 5,810 patients. Information included: (1) reasons for restoring; (2) tooth and surfaces restored; and (3) restorative materials employed. Results Primary caries (85%) and non-carious defects (15%), which included abrasion/ abfraction/ erosion lesions and tooth fracture, were the main reasons for placement of restorations. Restorations due to caries were frequently placed on occlusal surfaces (49%), followed by distal, mesial, buccal/facial, lingual/palatal, and incisal surfaces. Amalgam was used for 46% of the molar and 45% of the premolar restorations. Directly placed resin-based composite (RBC) was used for 48% of the molar, 49% of the premolar, and 92% of the anterior restorations. Conclusion Dental caries on occlusal and proximal surfaces of molar teeth are the main reasons for placing restorations on previously unrestored tooth surfaces by DPBRN practitioner-investigators. RBC is the material most commonly used for occlusal and anterior restorations. Amalgam remains the material of choice to restore proximal caries in posterior teeth, although there are significant differences by DPBRN region. PMID:20354094
NASA Astrophysics Data System (ADS)
Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank
2016-12-01
Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a ;solid; solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.
Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials
NASA Astrophysics Data System (ADS)
Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun
2016-06-01
Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.
Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.
Li, Wenchen; Liu, Qingsheng; Liu, Lingyun
2014-01-01
A group of five amino acid containing zwitterionic vinyl monomers, based on serine, lysine, ornithine, glutamic acid, and aspartic acid, respectively, were proposed and developed for potential antifouling applications. Their polymer brushes were grafted on gold chips by surface-initiated photoiniferter-mediated polymerization. We then compared their performance in resisting protein adsorption from full human serum and plasma. All five polymers can reduce protein adsorption by more than 90% compared to the unmodified gold. The ornithine-based and aspartic acid-based poly(methacrylamide) can most strongly resist protein adsorption from serum and plasma, compared to the other three. The ability of surfaces to suppress bacterial adhesion is another criterion in evaluating antifouling properties of materials. Our results show that the five polymer-grafted surfaces can significantly suppress Escherichia coli K12 adhesion to 99% compared to the bare gold surface. The zwitterionic structure of amino acids, with homogenously distributed and balanced positive and negative charges, is responsible for the outstanding antifouling properties. Considering multiple potential applications (e.g. medical devices and drug delivery) of the antifouling materials, we further systematically evaluated the cytotoxicity of both monomers and polymer nanogels for all five materials at various concentrations. Very low cytotoxicity was observed for all tested amino acid-based monomers and nanogels, which is comparable or even lower than the traditional and some newly developed antifouling materials, which might be related to the biomimetic nature of amino acids.
Asteroid surface mineralogy: Evidence from earth-based telescope observations
NASA Technical Reports Server (NTRS)
Mccord, T. B.
1978-01-01
The interpretation of asteroid reflectance spectrophotometry in terms of mineralogical types gives inferred mineral assemblages for about 60 asteroids. Asteroid surface materials are compared with similar materials that make up many meteorites. The absence of asteroids with spectra that match identically the ordinary chondrites is noted.
Impact of initial surface parameters on the final quality of laser micro-polished surfaces
NASA Astrophysics Data System (ADS)
Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.
2012-03-01
Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.
Virus-based surface patterning of biological molecules, probes, and inorganic materials.
Ahn, Suji; Jeon, Seongho; Kwak, Eun-A; Kim, Jong-Man; Jaworski, Justyn
2014-10-01
An essential requirement for continued technological advancement in many areas of biology, physics, chemistry, and materials science is the growing need to generate custom patterned materials. Building from recent achievements in the site-specific modification of virus for covalent surface tethering, we show in this work that stable 2D virus patterns can be generated in custom geometries over large area glass surfaces to yield templates of biological, biochemical, and inorganic materials in high density. As a nanomaterial building block, filamentous viruses have been extensively used in recent years to produce materials with interesting properties, owing to their ease of genetic and chemical modification. By utilizing un-natural amino acids generated at specific locations on the filamentous fd bacteriophage protein coat, surface immobilization is carried out on APTES patterned glass resulting in precise geometries of covalently linked virus material. This technique facilitated the surface display of a high density of virus that were labeled with biomolecules, fluorescent probes, and gold nanoparticles, thereby opening the possibility of integrating virus as functional components for surface engineering. Copyright © 2014 Elsevier B.V. All rights reserved.
Methods and systems for monitoring a solid-liquid interface
Stoddard, Nathan G [Gettysburg, PA; Clark, Roger F [Frederick, MD
2011-10-04
Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material; providing sound energy to the surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on L=(2m-1)v.sub.s/4f, where f is the frequency where the disturbance has an amplitude maximum, v.sub.s is the speed of sound in the material, and m is a positive integer (1, 2, 3, . . . ).
Effect of surface etching and electrodeposition of copper on nitinol
NASA Astrophysics Data System (ADS)
Ramos-Moore, E.; Rosenkranz, A.; Matamala, L. F.; Videla, A.; Durán, A.; Ramos-Grez, J.
2017-10-01
Nitinol-based materials are very promising for medical and dental applications since those materials can combine shape memory, corrosion resistance, biocompatibility and antibacterial properties. In particular, surface modifications and coating deposition can be used to tailor and to unify those properties. We report preliminary results on the study of the effect of surface etching and electrodeposition of Copper on Nitinol using optical, chemical and thermal techniques. The results show that surface etching enhances the surface roughness of Nitinol, induces the formation of Copper-based compounds at the Nitinol-Copper interface, reduces the austenitic-martensitic transformations enthalpies and reduces the Copper coating roughness. Further studies are needed in order to highlight the influence of the electrodeposited Copper on the memory shape properties of NiTi.
Ebert, Thomas; Elsner, Laura; Hirschfelder, Ursula; Hanke, Sebastian
2016-03-01
The purpose of this work was to analyze surfaces consisting of different restorative materials for shear bond strength (SBS) and failure patterns of metal and ceramic brackets. Bonding involved the use of a universal primer (Monobond® Plus, Ivoclar Vivadent). Six restorative materials were tested, including one composite resin (Clearfil Majesty™ Posterior, Kuraray Noritake Dental), one glass-ceramic material (IPS Empress® Esthetic, Ivoclar Vivadent), one oxide-ceramic material (CORiTEC Zr transpa Disc, imes-icore), two base-metal alloys (remanium® star, Dentaurum; Colado® CC, Ivoclar Vivadent), and one palladium-based alloy (Callisto® 75 Pd, Ivoclar Vivadent). Bovine incisors served as controls. Both metal and ceramic brackets (discovery®/discovery® pearl; Dentaurum) were bonded to the restorative surfaces after sandblasting and pretreatment with Monobond® Plus. A setup modified from DIN 13990-2 was used for SBS testing and adhesive remnant index (ARI)-based analysis of failure patterns. The metal brackets showed the highest mean SBS values on the glass-ceramic material (68.61 N/mm(2)) and the composite resin (67.58 N/mm(2)) and the lowest mean SBS on one of the base-metal alloys (Colado® CC; 14.01 N/mm(2)). The ceramic brackets showed the highest mean SBS on the glass-ceramic material (63.36 N/mm(2)) and the lowest mean SBS on the palladium-based alloy (38.48 N/mm(2)). Significant differences between the metal and ceramic brackets were observed in terms of both SBS values and ARI scores (p < 0.05). Under both bracket types, fractures of the composite-resin and the glass-ceramic samples were observed upon debonding. Opaque restorative materials under metal brackets were found to involve undercuring of the adhesive. Monobond® Plus succeeded in generating high bond strengths of both bracket types on all restorative surfaces. Given our observations of cohesive fracture (including cases of surface avulsion) of the composite-resin and the glass-ceramic samples, we recommend against using these material combinations in clinical practice.
Solares, Santiago D
2016-01-01
Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surface as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single- and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. A multifrequency AFM simulation tool based on the above sample model is provided as supporting information.
Detecting Unknown Artificial Urban Surface Materials Based on Spectral Dissimilarity Analysis.
Jilge, Marianne; Heiden, Uta; Habermeyer, Martin; Mende, André; Juergens, Carsten
2017-08-08
High resolution imaging spectroscopy data have been recognised as a valuable data resource for augmenting detailed material inventories that serve as input for various urban applications. Image-specific urban spectral libraries are successfully used in urban imaging spectroscopy studies. However, the regional- and sensor-specific transferability of such libraries is limited due to the wide range of different surface materials. With the developed methodology, incomplete urban spectral libraries can be utilised by assuming that unknown surface material spectra are dissimilar to the known spectra in a basic spectral library (BSL). The similarity measure SID-SCA (Spectral Information Divergence-Spectral Correlation Angle) is applied to detect image-specific unknown urban surfaces while avoiding spectral mixtures. These detected unknown materials are categorised into distinct and identifiable material classes based on their spectral and spatial metrics. Experimental results demonstrate a successful redetection of material classes that had been previously erased in order to simulate an incomplete BSL. Additionally, completely new materials e.g., solar panels were identified in the data. It is further shown that the level of incompleteness of the BSL and the defined dissimilarity threshold are decisive for the detection of unknown material classes and the degree of spectral intra-class variability. A detailed accuracy assessment of the pre-classification results, aiming to separate natural and artificial materials, demonstrates spectral confusions between spectrally similar materials utilizing SID-SCA. However, most spectral confusions occur between natural or artificial materials which are not affecting the overall aim. The dissimilarity analysis overcomes the limitations of working with incomplete urban spectral libraries and enables the generation of image-specific training databases.
Detecting Unknown Artificial Urban Surface Materials Based on Spectral Dissimilarity Analysis
Jilge, Marianne; Heiden, Uta; Habermeyer, Martin; Mende, André; Juergens, Carsten
2017-01-01
High resolution imaging spectroscopy data have been recognised as a valuable data resource for augmenting detailed material inventories that serve as input for various urban applications. Image-specific urban spectral libraries are successfully used in urban imaging spectroscopy studies. However, the regional- and sensor-specific transferability of such libraries is limited due to the wide range of different surface materials. With the developed methodology, incomplete urban spectral libraries can be utilised by assuming that unknown surface material spectra are dissimilar to the known spectra in a basic spectral library (BSL). The similarity measure SID-SCA (Spectral Information Divergence-Spectral Correlation Angle) is applied to detect image-specific unknown urban surfaces while avoiding spectral mixtures. These detected unknown materials are categorised into distinct and identifiable material classes based on their spectral and spatial metrics. Experimental results demonstrate a successful redetection of material classes that had been previously erased in order to simulate an incomplete BSL. Additionally, completely new materials e.g., solar panels were identified in the data. It is further shown that the level of incompleteness of the BSL and the defined dissimilarity threshold are decisive for the detection of unknown material classes and the degree of spectral intra-class variability. A detailed accuracy assessment of the pre-classification results, aiming to separate natural and artificial materials, demonstrates spectral confusions between spectrally similar materials utilizing SID-SCA. However, most spectral confusions occur between natural or artificial materials which are not affecting the overall aim. The dissimilarity analysis overcomes the limitations of working with incomplete urban spectral libraries and enables the generation of image-specific training databases. PMID:28786947
Confined catalysis under two-dimensional materials
Li, Haobo; Xiao, Jianping; Bao, Xinhe
2017-01-01
Confined microenvironments formed in heterogeneous catalysts have recently been recognized as equally important as catalytically active sites. Understanding the fundamentals of confined catalysis has become an important topic in heterogeneous catalysis. Well-defined 2D space between a catalyst surface and a 2D material overlayer provides an ideal microenvironment to explore the confined catalysis experimentally and theoretically. Using density functional theory calculations, we reveal that adsorption of atoms and molecules on a Pt(111) surface always has been weakened under monolayer graphene, which is attributed to the geometric constraint and confinement field in the 2D space between the graphene overlayer and the Pt(111) surface. A similar result has been found on Pt(110) and Pt(100) surfaces covered with graphene. The microenvironment created by coating a catalyst surface with 2D material overlayer can be used to modulate surface reactivity, which has been illustrated by optimizing oxygen reduction reaction activity on Pt(111) covered by various 2D materials. We demonstrate a concept of confined catalysis under 2D cover based on a weak van der Waals interaction between 2D material overlayers and underlying catalyst surfaces. PMID:28533413
Stieghorst, Jan; Majaura, Daniel; Wevering, Hendrik; Doll, Theodor
2016-03-01
The direct fabrication of silicone-rubber-based individually shaped active neural implants requires high-speed-curing systems in order to prevent extensive spreading of the viscous silicone rubber materials during vulcanization. Therefore, an infrared-laser-based test setup was developed to cure the silicone rubber materials rapidly and to evaluate the resulting spreading in relation to its initial viscosity, the absorbed infrared radiation, and the surface tensions of the fabrication bed's material. Different low-adhesion materials (polyimide, Parylene-C, polytetrafluoroethylene, and fluorinated ethylenepropylene) were used as bed materials to reduce the spreading of the silicone rubber materials by means of their well-known weak surface tensions. Further, O2-plasma treatment was performed on the bed materials to reduce the surface tensions. To calculate the absorbed radiation, the emittance of the laser was measured, and the absorptances of the materials were investigated with Fourier transform infrared spectroscopy in attenuated total reflection mode. A minimum silicone rubber spreading of 3.24% was achieved after 2 s curing time, indicating the potential usability of the presented high-speed-curing process for the direct fabrication of thermal-curing silicone rubbers.
Du, Yanqiu; Li, Chunming; Jin, Jing; Li, Chao; Jiang, Wei
2018-01-01
Amino acid-based P(acryloyl-6-aminocaproic acid) (PAACA) brushes were fabricated on polyisobutylene (PIB) surface combined with plasma pre-treatment and UV-induced grafting polymerization to construct an antifouling and functional material. The hydrophilicity and hemocompatibility of PIB were largely improved by surface modification of AACA, which were confirmed by water contact angle and platelet adhesion, respectively. PAACA brushes were precisely located onto the surface of PIB to create a patterned PIB-g-PAACA structure, and then the carboxyl groups on PAACA was activated to immobilize functional protein-Concanavalin A (Con A). The obtained Con A-coupled microdomains could further capture erythrocytes. This method developed a platform on commercial PIB surface via amino acid-based polymer brushes which had a promising application in drug delivery and disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Aqueous gating of van der Waals materials on bilayer nanopaper.
Bao, Wenzhong; Fang, Zhiqiang; Wan, Jiayu; Dai, Jiaqi; Zhu, Hongli; Han, Xiaogang; Yang, Xiaofeng; Preston, Colin; Hu, Liangbing
2014-10-28
In this work, we report transistors made of van der Waals materials on a mesoporous paper with a smooth nanoscale surface. The aqueous transistor has a novel planar structure with source, drain, and gate electrodes on the same surface of the paper, while the mesoporous paper is used as an electrolyte reservoir. These transistors are enabled by an all-cellulose paper with nanofibrillated cellulose (NFC) on the top surface that leads to an excellent surface smoothness, while the rest of the microsized cellulose fibers can absorb electrolyte effectively. Based on two-dimensional van der Waals materials, including MoS2 and graphene, we demonstrate high-performance transistors with a large on-off ratio and low subthreshold swing. Such planar transistors with absorbed electrolyte gating can be used as sensors integrated with other components to form paper microfluidic systems. This study is significant for future paper-based electronics and biosensors.
Derivation of mechanical characteristics for Ni/Au intermetallic surface with SAC305 solder
NASA Astrophysics Data System (ADS)
Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong
2013-03-01
Many surface finish methods are used to connect a substrate with the electric components of IT products in the micro-packaging process, and various types of lead-free solder have been developed as alternative materials to lead-based solder to reduce environmental contamination. However, there has been little research on the mechanical properties of the inter-metallic surface which is generated in the bumping process between the lead-free solder and surface films such as Ni/Au. The present work is to derive the material properties of a Ni/Au inter-metallic surface with SAC305 solder. A series of indentation tests were carried out by changing four nano-scale indentation depths and two strain rates. Also, a reverse algorithm method was adopted to determine the elastic-plastic stress-strain curve based on the load-displacement curve from the indentation test data. As a result of the material characterization effort, the mean elastic modulus, yield strength and strain hardening exponent of IMC with Ni/Au finish were determined.
Implicit Coupling Approach for Simulation of Charring Carbon Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2013-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption
NASA Astrophysics Data System (ADS)
Nezafati, Marjan
Magnesium-based (Mg and/or Mg alloys) materials possess many advantageous physicochemical/biological characteristics such as good biocompatibility and similarity of the mechanical properties to the human bone tissue, which renders this material a promising candidate for the biomedical and implant applications. One of the most attractive features of Mg-based materials is the degradability in the physiological environment. With the burst of research on the biodegradable materials for the healthcare device applications, Mg and its alloys attracted a strong attention in the bioengineering field in recent years. However, the major limitation of applying Mg-based materials to biomedical applications is the fast degradation/corrosion rate with regards to the healing process time-span. In the present thesis, an atomistic model employing the density-functional theory (DFT) has been developed to study the hydrolysis process by understanding the influences of commonly used alloying elements (zinc (Zn), calcium (Ca), aluminum (Al), and yttrium (Y)) and the crystallographic orientation of the dissolution surfaces (basal (0001), prism (1010), and pyramidal (1011) planes) on the corrosion behavior. These parameters are known to strongly impact the initial hydrolysis phenomena of Mg-based materials. To develop the atomistic computational model, we have implemented the Dmol3 software package in conjunction with PBE (Perdew, Burke and Ernzerhof) correlation energy functional in the GGA (generalized gradient approximation) scheme. Throughout the thesis, we performed three sets of calculations, i) surface energy, ii) dissolution potential, and iii) water adsorption computations, to examine the hydrolysis mechanism and the subsequent corrosion/degradation of Mg/Mg alloys. The total energy changes of various Mg-based systems in different conditions for these surface energies, dissolution behavior, and tendency of the system for adsorbing the water molecule were quantified. The results obtained from the atomistic model showed that these structural/compositional parameters (i.e., different types of alloying elements and surface planes) can considerably impact the stability of surfaces that are in contact with the corrosion media. The dissolution potential change computation predicted that Al can prevent the dissolution of Mg atoms from the surface of Mg-Al systems. In addition, it was found that the trend of water adsorption phenomena with different alloying elements/planes can be well-explained by the stability of corrosion surface.
Directed surface attachment of nanomaterials via coiled-coil-driven self-assembly
NASA Astrophysics Data System (ADS)
White, Simon J.; Johnson, Steven; Szymonik, Michal; Wardingley, Richard A.; Pye, Douglas; Davies, A. Giles; Wälti, Christoph; Stockley, Peter G.
2012-12-01
Numerous nanoscale devices and materials have been fabricated in recent years using a variety of biological scaffolds. However, the interfacing of these devices and materials into existing circuits and ordered arrays has proved problematic. Here, we describe a simple solution to this problem using self-assembly of the peptide coiled-coil heterodimer ACID:BASE to immobilize M13 bacteriophage particles to specific locations on a patterned gold surface. Surface plasmon resonance demonstrated that free ACID peptides will assemble onto a surface derivatized with BASE. We then displayed the ACID peptide on the pIX coat protein of M13 and showed that these phage particles permit formation of the coiled-coil resulting in specific surface attachment. The ACID:immobilized BASE affinities appear to be similar for free peptide and phage-displayed ACID. Finally, we fabricated two gold electrodes, separated by a 200 nm gap, coated one of them with BASE and showed that this allows localization of the M13:ACID onto the functionalized electrode.
The influence of polishing techniques on pre-polymerized CAD\\CAM acrylic resin denture bases
Alammari, Manal Rahma
2017-01-01
Background Lately, computer-aided design and computer-aided manufacturing (CAD/CAM) has broadly been successfully employed in dentistry. The CAD/CAM systems have recently become commercially available for fabrication of complete dentures, and are considered as an alternative technique to conventionally processed acrylic resin bases. However, they have not yet been fully investigated. Objective The purpose of this study was to inspect the effects of mechanical polishing and chemical polishing on the surface roughness (Ra) and contact angle (wettability) of heat-cured, auto-cured and CAD/CAM denture base acrylic resins. Methods This study was conducted at the Advanced Dental Research Laboratory Center of King Abdulaziz University from March to June 2017. Three denture base materials were selected: heat cure poly-methylmethacrylate resin, thermoplastic (polyamide resin) and (CAD\\CAM) denture base resin. Sixty specimens were prepared and divided into three groups, twenty in each. Each group was divided according to the polishing techniques into (Mech P) and (Chem P), ten specimens in each; surface roughness and wettability were investigated. Data were analyzed by SPSS version 22, using one-way ANOVA and Pearson coefficient. Results One-way analysis of variance (ANOVA) and post hoc tests were used for comparing the surface roughness values between three groups which revealed a statistical significant difference between them (p1<0.001). Heat-cured denture base material of (Group I) in both methods, showed the highest mean surface roughness value (2.44±0.07, 2.72±0.09, Mech P and Chem P respectively); while CAD\\CAM denture base material (group III) showed the least mean values (1.08±0.23, 1.39±0.31, Mech P and Chem P respectively). CAD/CAM showed the least contact angle in both polishing methods, which were statistically significant at 5% level (p=0.034 and p<0.001). Conclusion Mechanical polishing produced lower surface roughness of CAD\\CAM denture base resin with superior smooth surface compared to chemical polishing. Mechanical polishing is considered the best effective polishing technique. CAD/CAM denture base material should be considered as the material of choice for complete denture construction in the near future, especially for older dental patients with changed salivary functions, because of its wettability. PMID:29238483
The influence of polishing techniques on pre-polymerized CAD\\CAM acrylic resin denture bases.
Alammari, Manal Rahma
2017-10-01
Lately, computer-aided design and computer-aided manufacturing (CAD/CAM) has broadly been successfully employed in dentistry. The CAD/CAM systems have recently become commercially available for fabrication of complete dentures, and are considered as an alternative technique to conventionally processed acrylic resin bases. However, they have not yet been fully investigated. The purpose of this study was to inspect the effects of mechanical polishing and chemical polishing on the surface roughness (Ra) and contact angle (wettability) of heat-cured, auto-cured and CAD/CAM denture base acrylic resins. This study was conducted at the Advanced Dental Research Laboratory Center of King Abdulaziz University from March to June 2017. Three denture base materials were selected: heat cure poly-methylmethacrylate resin, thermoplastic (polyamide resin) and (CAD\\CAM) denture base resin. Sixty specimens were prepared and divided into three groups, twenty in each. Each group was divided according to the polishing techniques into (Mech P) and (Chem P), ten specimens in each; surface roughness and wettability were investigated. Data were analyzed by SPSS version 22, using one-way ANOVA and Pearson coefficient. One-way analysis of variance (ANOVA) and post hoc tests were used for comparing the surface roughness values between three groups which revealed a statistical significant difference between them (p 1 <0.001). Heat-cured denture base material of (Group I) in both methods, showed the highest mean surface roughness value (2.44±0.07, 2.72±0.09, Mech P and Chem P respectively); while CAD\\CAM denture base material (group III) showed the least mean values (1.08±0.23, 1.39±0.31, Mech P and Chem P respectively). CAD/CAM showed the least contact angle in both polishing methods, which were statistically significant at 5% level (p=0.034 and p<0.001). Mechanical polishing produced lower surface roughness of CAD\\CAM denture base resin with superior smooth surface compared to chemical polishing. Mechanical polishing is considered the best effective polishing technique. CAD/CAM denture base material should be considered as the material of choice for complete denture construction in the near future, especially for older dental patients with changed salivary functions, because of its wettability.
The color metamerism evaluation of paint based on ocean spectrum
NASA Astrophysics Data System (ADS)
Chen, Zhongwei; Huang, Hao; Liao, Ningfang
2018-03-01
The surface color of the sea is affected by many factors and will be different the due to the material difference in the sea. And the difference will be reflected in the ocean spectrum. If the paint materials of a ship can simulate the ocean surface color and the ocean spectrum at the same time. This will minimize the metamerism. In this paper, the method of metamerism is used to evaluate paint based on ocean spectrum, so that the color of the material affected by the light source will be reflected in the metamerism index.
NASA Astrophysics Data System (ADS)
Henocq, Pierre
2017-06-01
In cement-based materials, radionuclide uptake is mainly controlled by calcium silicate hydrates (C-S-H). This work presents an approach for defining a unique set of parameters of a surface complexation model describing the sorption behavior of alkali ions on the C-S-H surface. Alkali sorption processes are modeled using the CD-MUSIC function integrated in the Phreeqc V.3.0.6 geochemical code. Parameterization of the model was performed based on (1) retention, (2) zeta potential, and (3) solubility experimental data from the literature. This paper shows an application of this model to sodium ions. It was shown that retention, i.e. surface interactions, and solubility are closely related, and a consistent sorption model for radionuclides in cement-based materials requires a coupled surface interaction/chemical equilibrium model. In case of C-S-H with low calcium-to-silicon ratios, sorption of sodium ions on the C-S-H surface strongly influences the chemical equilibrium of the C-S-H + NaCl system by significantly increasing the aqueous calcium concentration. The close relationship between sorption and chemical equilibrium was successfully illustrated by modeling the effect of the solid-to-liquid ratio on the calcium content in solution in the case of C-S-H + NaCl systems.
Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure
Fernández, Victoria; Khayet, Mohamed
2015-01-01
Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study. PMID:26217362
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killian, D.E.; Yoon, K.K.
1996-12-01
Flaws on the inside surface of cladded reactor vessels are often analyzed by modelling the carbon steel base metal without consideration of a layer of stainless steel cladding material, thus ignoring the effects of this bimetallic discontinuity. Adding cladding material to the inside surface of a finite element model of a vessel raises concerns regarding adequate mesh refinement in the vicinity of the base metal/cladding interface. This paper presents results of three-dimensional linear stress analysis that has been performed to obtain stress intensity factors for clad and unclad reactor vessels subjected to internal pressure loading. The study concentrates on semi-ellipticalmore » longitudinal surface flaws with a 6 to 1 length-to-depth ratio and flaw depths of 1/8 and 1/4 of the base metal thickness. Various meshing schemes are evaluated for modelling the crack front profile, with particular emphasis on the region near the inside surface and at the base metal/cladding interface. The shape of the crack front profile through the cladding layer and the number of finite elements used to discretize the cladding thickness are found to have a significant influence on typical fracture mechanic measures of the crack tip stress fields. Results suggest that the stress intensity factor at the inner surface of a cladded vessel may be affected as much by the finite element mesh near the surface as by the material discontinuity between the two parts of the structure.« less
Zhang, Zheng; Chen, Shengfu; Jiang, Shaoyi
2006-12-01
We introduce a dual-functional biocompatible material based on zwitterionic poly(carboxybetaine methacrylate) (polyCBMA), which not only highly resists protein adsorption/cell adhesion, but also has abundant functional groups convenient for the immobilization of biological ligands, such as proteins. The dual-functional properties are unique to carboxybetaine moieties and are not found in other nonfouling moieties such as ethylene glycol, phosphobetaine, and sulfobetaine. The unique properties are demonstrated in this work by grafting a polyCBMA polymer onto a surface or by preparing a polyCBMA-based hydrogel. PolyCBMA brushes with a thickness of 10-15 nm were grafted on a gold surface using the surface-initiated atom transfer radical polymerization method. Protein adsorption was analyzed using a surface plasmon resonance sensor. The surface grafted with polyCBMA very largely prevented the nonspecific adsorption of three test proteins, that is, fibrinogen, lysozyme, and human chorionic gonadotropin (hCG). The immobilization of anti-hCG on the surface resulted in the specific binding of hCG while maintaining a high resistance to nonspecific protein adsorption. Transparent polyCBMA-based hydrogel disks were decorated with immobilized fibronectin. Aortic endothelial cells did not bind to the polyCBMA controls, but appeared to adhere well and spread on the fibronectin-modified surface. With their dual functionality and biomimetic nature, polyCBMA-based materials are very promising for their applications in medical diagnostics, biomaterials/tissue engineering, and drug delivery.
NASA Astrophysics Data System (ADS)
Hwang, Sooyeon; Kim, Se Young; Chung, Kyung Yoon; Stach, Eric A.; Kim, Seung Min; Chang, Wonyoung
2016-09-01
We take advantage of scanning transmission electron microscopy and electron energy loss spectroscopy to investigate the changes in near-surface electronic structure and quantify the degree of local degradation of Ni-based cathode materials with the layered structure (LiNi0.8Mn0.1Co0.1O2 and LiNi0.4Mn0.3Co0.3O2) after 20 cycles of delithiation and lithiation. Reduction of transition metals occurs in the near-surface region of cathode materials: Mn is the major element to be reduced in the case of relatively Mn-rich composition, while reduction of Ni ions is dominant in Ni-rich materials. The valences of Ni and Mn ions are complementary, i.e., when one is reduced, the other is oxidized in order to maintain charge neutrality. The depth of degradation zone is found to be much deeper in Ni-rich materials. This comparative analysis provides important insights needed for the devising of new cathode materials with high capacity as well as long lifetime.
Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros
2014-09-16
The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based materials are biocompatible. On the basis of these results, the fibrous and porous KCC-1-based nanomaterials can be said to be more suitable to carry, transport, and deliver DNAs and genes than cylindrical porous nanomaterials such as MCM-41.
The effect of gypsum products and separating materials on the typography of denture base materials.
Firtell, D N; Walsh, J F; Elahi, J M
1980-09-01
The typography of polymethyl methacrylate processed against various gypsum products coated with various separating materials was studied under an SEM. Tinfoil and two commercial tin foil substitutes were used as separating material during processing, and the surfaces of the resulting acrylic resin forms were studied for topographical differences. Tinfoil and alpha 2 hemihydrates produced the smoothest surfaces. As a practical solution, a good quality tinfoil substitute and alpha 1 hemihydrate could be used when processing polymethyl methacrylate resin.
Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures
Müller, Frank A.; Kunz, Clemens; Gräf, Stephan
2016-01-01
Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces. PMID:28773596
Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures.
Müller, Frank A; Kunz, Clemens; Gräf, Stephan
2016-06-15
Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.
Modeling surface backgrounds from radon progeny plate-out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumpilly, G.; Guiseppe, V. E.; Snyder, N.
2013-08-08
The next generation low-background detectors operating deep underground aim for unprecedented low levels of radioactive backgrounds. The surface deposition and subsequent implantation of radon progeny in detector materials will be a source of energetic background events. We investigate Monte Carlo and model-based simulations to understand the surface implantation profile of radon progeny. Depending on the material and region of interest of a rare event search, these partial energy depositions can be problematic. Motivated by the use of Ge crystals for the detection of neutrinoless double-beta decay, we wish to understand the detector response of surface backgrounds from radon progeny. Wemore » look at the simulation of surface decays using a validated implantation distribution based on nuclear recoils and a realistic surface texture. Results of the simulations and measured α spectra are presented.« less
Oxidation processes in magneto-optic and related materials
NASA Technical Reports Server (NTRS)
Lee, Paul A.; Armstrong, Neal R.; Danzinger, James L.; England, Craig D.
1992-01-01
The surface oxidation processes of thin films of magneto-optic materials, such as the rare-earth transition metal alloys have been studied, starting in ultrahigh vacuum environments, using surface analysis techniques, as a way of modeling the oxidation processes which occur at the base of a defect in an overcoated material, at the instant of exposure to ambient environments. Materials examined have included FeTbCo alloys, as well as those same materials with low percentages of added elements, such a Ta, and their reactivities to both O2 and H2O compared with materials such as thin Fe films coated with ultrathin adlayers of Ti. The surface oxidation pathways for these materials is reviewed, and XPS data presented which indicates the type of oxides formed, and a critical region of Ta concentration which provides optimum protection.
Hydrophobic Materials Based on Salts of Di(2-ethylhexyl)phosphoric Acid
NASA Astrophysics Data System (ADS)
Kizim, N. F.; Golubina, E. N.
2018-03-01
Interfacial formations of material based on metals di(2-ethylhexyl)phosphates of various metals exhibit hydrophobic properties. The contact angle of the surface, modified by the interfacial formations materials, could reach up to 140° depending on the nature of the solvent, the metal salt, the number of applications.
Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors.
Ma, Yanfeng; Chang, Huicong; Zhang, Miao; Chen, Yongsheng
2015-09-23
Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, have attracted much attention due to the combination of the rapid charge-discharge and long cycle life of supercapacitors and the high energy-storage capacity of lithium-ion batteries. Thus, LIHSs are expected to become the ultimate power source for hybrid and all-electric vehicles in the near future. As an electrode material, graphene has many advantages, including high surface area and porous structure, high electric conductivity, and high chemical and thermal stability, etc. Compared with other electrode materials, such as activated carbon, graphite, and metal oxides, graphene-based materials with 3D open frameworks show higher effective specific surface area, better control of channels, and higher conductivity, which make them better candidates for LIHS applications. Here, the latest advances in electrode materials for LIHSs are briefly summarized, with an emphasis on graphene-based electrode materials (including 3D graphene networks) for LIHS applications. An outlook is also presented to highlight some future directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Royston, Thomas J.; Dai, Zoujun; Chaunsali, Rajesh; Liu, Yifei; Peng, Ying; Magin, Richard L.
2011-01-01
Previous studies of the first author and others have focused on low audible frequency (<1 kHz) shear and surface wave motion in and on a viscoelastic material comprised of or representative of soft biological tissue. A specific case considered has been surface (Rayleigh) wave motion caused by a circular disk located on the surface and oscillating normal to it. Different approaches to identifying the type and coefficients of a viscoelastic model of the material based on these measurements have been proposed. One approach has been to optimize coefficients in an assumed viscoelastic model type to match measurements of the frequency-dependent Rayleigh wave speed. Another approach has been to optimize coefficients in an assumed viscoelastic model type to match the complex-valued frequency response function (FRF) between the excitation location and points at known radial distances from it. In the present article, the relative merits of these approaches are explored theoretically, computationally, and experimentally. It is concluded that matching the complex-valued FRF may provide a better estimate of the viscoelastic model type and parameter values; though, as the studies herein show, there are inherent limitations to identifying viscoelastic properties based on surface wave measurements. PMID:22225067
Comparative Evaluation of Vacuum-based Surface Sampling ...
Journal Article Following a biological contamination incident, collection of surface samples is necessary to determine the extent and level of contamination, and to deem an area safe for reentry upon decontamination. Current sampling strategies targeting Bacillus anthracis spores prescribe vacuum-based methods for rough and/or porous surfaces. In this study, four commonly-used B. anthracis spore sampling devices (vacuum socks, 37 mm 0.8 µm MCE filter cassettes, 37 mm 0.3 µm PTFE filter cassettes, and 3MTM forensic filters) were comparatively evaluated for their ability to recover surface-associated spores. The vacuum sock device was evaluated at two sampling speeds (slow and fast), resulting in five total methods evaluated. Aerosolized spores (~105 cm-2) of a surrogate Bacillus species (Bacillus atrophaeus) were allowed to settle onto three material types (concrete, carpet, and upholstery). Ten replicate samples were collected using each vacuum method, from each of the three material types. In addition, stainless steel (i.e., nonporous) surfaces inoculated simultaneously were sampled with pre-moistened wipes. Recoveries from wipes of steel surfaces were utilized to verify the inoculum, and to normalize vacuum-based recoveries across trials. Recovery (CFU cm-2) and relative recovery (vacuum recovery/wipe recovery) were determined for each method and material type. Relative recoveries were compared by one-way and three-way ANOVA. Data analysis by one-
Electrolytic decontamination of conductive materials for hazardous waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wedman, D.E.; Martinez, H.E.; Nelson, T.O.
1996-12-31
Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodiummore » nitrate concentrations of 200 g L{sup -1} and higher. Stirring was also observed to increase the uniformity of the stripping process.« less
Chemical modification of nanocrystal surfaces
Alivisatos, A. Paul; Owen, Jonathan
2013-05-07
A method is disclosed. The method includes obtaining a precursor nanoparticle comprising a base material and a first ligand attached to the base material, and reacting the precursor nanoparticle with a reactant comprising a silicon bond, thereby removing the first ligand.
Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear
NASA Astrophysics Data System (ADS)
Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.
2018-01-01
The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.
Porwal, Anand; Khandelwal, Meenakshi; Punia, Vikas; Sharma, Vivek
2017-01-01
Aim: The purpose of this study was to evaluate the effect of different denture cleansers on the color stability, surface hardness, and roughness of different denture base resins. Materials and Methods: Three denture base resin materials (conventional heat cure resin, high impact resin, and polyamide denture base resin) were immersed for 180 days in commercially available two denture cleansers (sodium perborate and sodium hypochlorite). Color, surface roughness, and hardness were measured for each sample before and after immersion procedure. Statistical Analysis: One-way analysis of variance and Tukey's post hoc honestly significant difference test were used to evaluate color, surface roughness, and hardness data before and after immersion in denture cleanser (α =0.05). Results: All denture base resins tested exhibited a change in color, surface roughness, and hardness to some degree in both denture cleansers. Polyamides resin immersed in sodium perborate showed a maximum change in color after immersion for 180 days. Conventional heat cure resin immersed in sodium hypochlorite showed a maximum change in surface roughness and conventional heat cure immersed in sodium perborate showed a maximum change in hardness. Conclusion: Color changes of all denture base resins were within the clinically accepted range for color difference. Surface roughness change of conventional heat cure resin was not within the clinically accepted range of surface roughness. The choice of denture cleanser for different denture base resins should be based on the chemistry of resin and cleanser, denture cleanser concentration, and duration of immersion. PMID:28216847
Lunar In Situ Materials-Based Surface Structure Technology Development Efforts at NASA/MSFC
NASA Technical Reports Server (NTRS)
Fiske, M. R.; McGregor, W.; Pope, R.; McLemore, C. A.; Kaul, R.; Smithers, G.; Ethridge, E.; Toutanji, H.
2007-01-01
For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them, including habitats, laboratories, berms, radiation shielding for surface reactors, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Surface Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and lessons learned will be presented, along with recommendations for future activities.
NASA Astrophysics Data System (ADS)
Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Ding, Cong; Sun, Guodong
2016-08-01
Relationships between material hardness, turning parameters (spindle speed and feed rate) and surface parameters (surface roughness Ra, fractal dimension D and characteristic roughness τ∗) are studied and modeled using response surface methodology (RSM). The experiments are carried out on a CNC lathe for six carbon steel material AISI 1010, AISI 1020, AISI 1030, AISI 1045, AISI 1050 and AISI 1060. The profile of turned surface and the surface roughness value are measured by a JB-5C profilometer. Based on the profile data, D and τ∗ are computed through the root-mean-square method. The analysis of variance (ANOVA) reveals that spindle speed is the most significant factors affecting Ra, while material hardness is the most dominant parameter affecting τ∗. Material hardness and spindle speed have the same influence on D. Feed rate has less effect on three surface parameters than spindle speed and material hardness. The second-order models of RSM are established for estimating Ra, D and τ∗. The validity of the developed models is approximately 80%. The response surfaces show that a surface with small Ra and large D and τ∗ can be obtained by selecting a high speed and a large hardness material. According to the established models, Ra, D and τ∗ of six carbon steels surfaces can be predicted under cutting conditions studied in this paper. The results have an instructive meaning to estimate the surface quality before turning.
Topologically nontrivial electronic states in CaSn3
NASA Astrophysics Data System (ADS)
Gupta, Sunny; Juneja, Rinkle; Shinde, Ravindra; Singh, Abhishek K.
2017-06-01
Based on the first-principles calculations, we theoretically propose topologically non-trivial states in a recently experimentally discovered superconducting material CaSn3. When the spin-orbit coupling (SOC) is ignored, the material is a host to three-dimensional topological nodal-line semimetal states. Drumhead like surface states protected by the coexistence of time-reversal and mirror symmetry emerge within the two-dimensional regions of the surface Brillouin zone connecting the nodal lines. When SOC is included, unexpectedly, each nodal line evolves into two Weyl nodes (W1 and W2) in this centrosymmetric material. Berry curvature calculations show that these nodes occur in a pair and act as either a source or a sink of Berry flux. This material also has unique surface states in the form of Fermi arcs, which unlike other known Weyl semimetals forms closed loops of surface states on the Fermi surface. Our theoretical realization of topologically non-trivial states in a superconducting material paves the way towards unraveling the interconnection between topological physics and superconductivity.
NASA Technical Reports Server (NTRS)
Ceamanos, Xavier; Doute, S.; Fernando, J.; Pinet, P.; Lyapustin, A.
2013-01-01
This article addresses the correction for aerosol effects in near-simultaneous multiangle observations acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter. In the targeted mode, CRISM senses the surface of Mars using 11 viewing angles, which allow it to provide unique information on the scattering properties of surface materials. In order to retrieve these data, however, appropriate strategies must be used to compensate the signal sensed by CRISM for aerosol contribution. This correction is particularly challenging as the photometric curve of these suspended particles is often correlated with the also anisotropic photometric curve of materials at the surface. This article puts forward an innovative radiative transfer based method named Multi-angle Approach for Retrieval of Surface Reflectance from CRISM Observations (MARS-ReCO). The proposed method retrieves photometric curves of surface materials in reflectance units after removing aerosol contribution. MARS-ReCO represents a substantial improvement regarding previous techniques as it takes into consideration the anisotropy of the surface, thus providing more realistic surface products. Furthermore, MARS-ReCO is fast and provides error bars on the retrieved surface reflectance. The validity and accuracy of MARS-ReCO is explored in a sensitivity analysis based on realistic synthetic data. According to experiments, MARS-ReCO provides accurate results (up to 10 reflectance error) under favorable acquisition conditions. In the companion article, photometric properties of Martian materials are retrieved using MARS-ReCO and validated using in situ measurements acquired during the Mars Exploration Rovers mission.
Bruck, R; Melnik, E; Muellner, P; Hainberger, R; Lämmerhofer, M
2011-05-15
We report the development of a Mach-Zehnder interferometer biosensor based on a high index contrast polymer material system and the demonstration of label-free online measurement of biotin-streptavidin binding on the sensor surface. The surface of the polyimide waveguide core layer was functionalized with 3-mercaptopropyl trimethoxy silane and malemide tagged biotin. Several concentrations of Chromeon 642-streptavidin dissolved in phosphate buffered saline solution were rinsed over the functionalized sensor surface by means of a fluidic system and the biotin-streptavidin binding process was observed in the output signal of the interferometer at a wavelength of 1310 nm. Despite the large wavelength and the comparatively low surface sensitivity of the sensor system due to the low index contrast in polymer material systems compared to inorganic material systems, we were able to resolve streptavidin concentrations of down to 0.1 μg/ml. The polymer-based optical sensor design is fully compatible with cost-efficient mass production technologies such as injection molding and spin coating, which makes it an attractive alternative to inorganic optical sensors. Copyright © 2011 Elsevier B.V. All rights reserved.
Qin, Yaxin; Li, Guiying; Gao, Yanpeng; Zhang, Lizhi; Ok, Yong Sik; An, Taicheng
2018-06-15
With the increased concentrations and kinds of refractory organic contaminants (ROCs) in aquatic environments, many previous reviews systematically summarized the applications of carbon-based materials in the adsorption and catalytic degradation of ROCs for their economically viable and environmentally friendly behavior. Interestingly, recent studies indicated that carbon-based materials in natural environment can also mediate the transformation of ROCs directly or indirectly due to their abundant persistent free radicals (PFRs). Understanding the formation mechanisms of PFRs in carbo-based materials and their interactions with ROCs is essential to develop their further applications in environment remediation. However, there is no comprehensive review so far about the direct and indirect removal of ROCs mediated by PFRs in amorphous, porous and crystalline carbon-based materials. The review aims to evaluate the formation mechanisms of PFRs in carbon-based materials synthesized through pyrolysis and hydrothermal carbonization processes. The influence of synthesis conditions (temperature and time) and carbon sources on the types as well as the concentrations of PFRs in carbon-based materials are also discussed. In particular, the effects of metals on the concentrations and types of PFRs in carbon-based materials are highlighted because they are considered as the catalysts for the formation of PFRs. The formation mechanisms of reactive species and the further transformation mechanisms of ROCs are briefly summarized, and the surface properties of carbon-based materials including surface area, types and number of functional groups, etc. are found to be the key parameters controlling their activities. However, due to diversity and complexity of carbon-based materials, the exact relationships between the activities of carbon-based materials and PFRs are still uncertain. Finally, the existing problems and current challenges for the ROCs transformation with carbon-based materials are also pointed out. Copyright © 2018 Elsevier Ltd. All rights reserved.
Studies of Itokawa's Surface Exposure by Measurements of Cosmic-ray Produced Nuclides
NASA Technical Reports Server (NTRS)
Caffee, M. W.; Nishiizumi, K.; Tsuchiyama, A.; Uesugi, M.; Zolensky, M. E.
2014-01-01
We plan to investigate the evolutionary history of surface materials from 25143 Itokawa, the Hayabusa samples. Our studies are based on the measurement of nuclides produced in asteroidal surface materials by cosmic rays. Cosmogenic radionuclides are used to determine the duration and nature of the exposure of materials to energetic particles. Our goals are to understand both the fundamental processes on the asteroidal surface and the evolutionary history of its surface materials. They are also key to understanding the history of Itokawa's surface and asteroid-meteoroid evolutionary dynamics. To achieve our key goals, in particular reconstructing the evolutionary histories of the asteroidal surface, we proposed: (1) characterizing Itokawa particles using SXCT, SXRD, and FE-SEM without modification of the sample; (2) embedding each particle in acrylic resin, then slicing a small corner with an ultra-microtome and examining it using super-STEM and SIMS for characterizing surface morphology, space weathering, and oxygen three-isotope analysis; and finally (3) measuring small amounts of cosmogenic radionuclides (104-105 atoms) in Hayabusa samples by AMS. However, we have to modify our plan due to unexpected situation.
NASA Astrophysics Data System (ADS)
Corrales Ureña, Yendry Regina; Lisboa-Filho, Paulo Noronha; Szardenings, Michael; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Rischka, Klaus
2016-11-01
A robust procedure for the surface bio-functionalization of carbon surfaces was developed. It consists on the modification of carbon materials in contact with an aqueous suspension of the enzyme laccase from Trametes versicolor and the lyophilization agent maltodextrin, with the pH value adjusted close to the isoelectric point of the enzyme. We report in-situ investigations applying Quartz Crystal Microbalance with Dissipation (QCM-D) for carbon-coated sensor surfaces and, moreover, ex-situ measurements with static contact angle measurements, X-ray Photoelectron Spectroscopy (XPS) and Scanning Force Microscopy (SFM) for smooth Highly Oriented Pyrolytic Graphite (HOPG) substrates, for contact times between the enzyme formulation and the carbon material surface ranging from 20 s to 24 h. QCM-D studies reveals the formation of rigid layer of biomaterial, a few nanometers thin, which shows a strongly improved wettability of the substrate surface upon contact angle measurements. Following spectroscopic characterization, these layers are composed of mixtures of laccase and maltodextrin. The formation of these adsorbates is attributed to attractive interactions between laccase, the maltodextrin-based lyophilization agent and the hydrophobic carbon surfaces; a short-term contact between the aqueous laccase mixture suspension and HOPG surfaces is shown to merely result in de-wetting patterns influencing the results of contact angle measurements. The new enzyme-based surface modification of carbon-based materials is suggested to be applicable for the improvement of not only the wettability of low energy substrate surfaces with fluid formulations like coatings or adhesives, but also their adhesion in contact with hardened polymers.
Assessment of dynamic surface leaching of monolithic surface road materials.
Paulus, Hélène; Schick, Joachim; Poirier, Jean-Eric
2016-07-01
Construction materials have to satisfy, among others, health and environment requirements. To check the environmental compatibility of road construction materials, release of hazardous substances into water must be assessed. Literature mostly describes the leaching behaviour of recycled aggregates for potential use in base or sub-base layers of roads. But little is known about the release of soluble substances by materials mixed with binders and compacted for intended use on road surface. In the present study, we thus performed a diffusion test with sequential renewal of water during a 64 day period according to CEN/TS 16637-2 specifications, on asphalt concretes and hydraulically bound monoliths, two common surface road materials. It is shown that release of dangerous substances is limited in these hydrodynamic conditions. It was particularly true for asphalt concrete leachates where no metallic trace element, sulphate, chloride or fluoride ion could be quantified. This is because of the low hydraulic conductivity and the low polarity of the petroleum hydrocarbon binder of these specimens. For hydraulically bound materials around 20,000 mg/m(2) of sulphate diffused from the monoliths. It is one order of magnitude higher than chloride diffusion and two orders of magnitude higher than fluoride release. No metallic trace element, except small quantities of copper in the last eluate could be quantified. No adverse effect is to be expected for human and environmental health from the leachates of these compacted surface road construction materials, because all the measured parameters were below EU (Council Directive 98/83/EC) or WHO guidelines for drinking water standards. Copyright © 2016 Elsevier Ltd. All rights reserved.
Plug Repairs of Marine Glass Fiber / Vinyl Ester Laminates Subjected to Uniaxial Tension
2009-06-01
Material characteristics of glass fiber / vinyl ester composites used in naval surface ships 1.1.1.2 Construction of surface ship hulls with FRP...Piping - Ventilation ducts - Deck gratings 1.1.1.1 Material characteristics of glass fiber / vinyl ester composites used in naval surface ships The...that polysester-based composites do [15, 24]. Typical processing methods for vinyl ester composites are hand lay-up, Resin Transfer Molding (RTM
A PARAMETRIC STUDY OF BCS RF SURFACE IMPEDANCE WITH MAGNETIC FIELD USING THE XIAO CODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reece, Charles E.; Xiao, Binping
2013-09-01
A recent new analysis of field-dependent BCS rf surface impedance based on moving Cooper pairs has been presented.[1] Using this analysis coded in Mathematica TM, survey calculations have been completed which examine the sensitivities of this surface impedance to variation of the BCS material parameters and temperature. The results present a refined description of the "best theoretical" performance available to potential applications with corresponding materials.
NASA Astrophysics Data System (ADS)
Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut
2016-03-01
Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.
Abrasion resistant track shoe grouser
Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A
2013-04-23
A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.
NASA Astrophysics Data System (ADS)
Nordheim, T.; Paranicas, C.; Hand, K. P.
2017-12-01
Jupiter's moon Europa is embedded deep within the Jovian magnetosphere and is thus exposed to bombardment by charged particles, from thermal plasma to more energetic particles at radiation belt energies. In particular, energetic charged particles are capable of affecting the uppermost layer of surface material on Europa, in some cases down to depths of several meters (Johnson et al., 2004; Paranicas et al., 2009, 2002). Examples of radiation-induced surface alteration include sputtering, radiolysis and grain sintering; processes that are capable of significantly altering the physical properties of surface material. Radiolysis of surface ices containing sulfur-bearing contaminants from Io has been invoked as a possible explanation for hydrated sulfuric acid detected on Europa's surface (Carlson et al., 2002, 1999) and radiolytic production of oxidants represents a potential source of energy for life that could reside within Europa's sub-surface ocean (Chyba, 2000; Hand et al., 2007; Johnson et al., 2003; Vance et al., 2016). Accurate knowledge of Europa's surface radiation environment is essential to the interpretation of space and Earth-based observations of Europa's surface and exosphere. Furthermore, future landed missions may seek to sample endogenic material emplaced on Europa's surface to investigate its chemical composition and to search for biosignatures contained within. Such material would likely be sampled from the shallow sub-surface, and thus, it becomes crucial to know to which degree this material is expected to have been radiation processed.Here we will present modeling results of energetic electron and proton bombardment of Europa's surface, including interactions between these particles and surface material. In addition, we will present predictions for biosignature destruction at different geographical locations and burial depths and discuss the implications of these results for surface sampling by future missions to Europa's surface.
Serrano, Kate A; Martyny, John W; Kofford, Shalece; Contreras, John R; Van Dyke, Mike V
2012-01-01
This study was designed to determine how easily methamphetamine can be removed from clothing and building materials, utilizing different cleaning materials and methods. The study also addressed the penetration of methamphetamine into drywall and the ability of paints to encapsulate the methamphetamine on drywall. Clothing and building materials were contaminated in a stainless steel chamber by aerosolizing methamphetamine in a beaker heater. The amount of methamphetamine surface contamination was determined by sampling a grid pattern on the material prior to attempting to clean the materials. After cleaning, the materials were again sampled, and the degree of decontamination noted. We found that household clothing and response gear worn by first responders was easily decontaminated using a household detergent in a household washing machine. A single wash removed over 95% of the methamphetamine from these materials. The study also indicated that methamphetamine-contaminated, smooth non-porous surfaces can be easily cleaned to below detectable levels using only mild cleaners. More porous surfaces such as plywood and drywall were unlikely to be decontaminated to below regulatory levels even with three washes using a mild cleaner. This may be due to methamphetamine penetration into the paint on these surfaces. Evaluation of methamphetamine contamination on drywall indicated that approximately 40% of the methamphetamine was removed using a wipe, while another 60% remained in the paint layer. Stronger cleaners such as those with active ingredients including sodium hypochlorite or quaternary ammonia and commercial decontamination agents were more effective than mild detergent-based cleaners and may reduce methamphetamine contamination to below regulatory levels. Results from the encapsulation studies indicate that sprayed on oil-based paint will encapsulate methamphetamine on drywall and plywood surfaces up to 4.5 months, while latex paints were less effective.
Chen, Mingjun; Liu, Henan; Cheng, Jian; Yu, Bo; Fang, Zhen
2017-07-01
In order to achieve the deterministic finishing of optical components with concave surfaces of a curvature radius less than 10 mm, a novel magnetorheological finishing (MRF) process using a small ball-end permanent-magnet polishing head with a diameter of 4 mm is introduced. The characteristics of material removal in the proposed MRF process are studied. The model of the material removal function for the proposed MRF process is established based on the three-dimensional hydrodynamics analysis and Preston's equation. The shear stress on the workpiece surface is calculated by means of resolving the presented mathematical model using a numerical solution method. The analysis result reveals that the material removal in the proposed MRF process shows a positive dependence on shear stress. Experimental research is conducted to investigate the effect of processing parameters on the material removal rate and improve the surface accuracy of a typical rotational symmetrical optical component. The experimental results show that the surface accuracy of the finished component of K9 glass material has been improved to 0.14 μm (PV) from the initial 0.8 μm (PV), and the finished surface roughness Ra is 0.0024 μm. It indicates that the proposed MRF process can be used to achieve the deterministic removal of surface material and perform the nanofinishing of small curvature radius concave surfaces.
Tangible display systems: bringing virtual surfaces into the real world
NASA Astrophysics Data System (ADS)
Ferwerda, James A.
2012-03-01
We are developing tangible display systems that enable natural interaction with virtual surfaces. Tangible display systems are based on modern mobile devices that incorporate electronic image displays, graphics hardware, tracking systems, and digital cameras. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of surfaces with complex textures and material properties illuminated by environment-mapped lighting, can be rendered to the screen at interactive rates. Tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. In this way, tangible displays allow virtual surfaces to be observed and manipulated as naturally as real ones, with the added benefit that surface geometry and material properties can be modified in real-time. We demonstrate the utility of tangible display systems in four application areas: material appearance research; computer-aided appearance design; enhanced access to digital library and museum collections; and new tools for digital artists.
Chemical, Mineralogical, and Physical Properties of Martian Dust and Soil
NASA Technical Reports Server (NTRS)
Ming, D. W.; Morris, R. V.
2017-01-01
Global and regional dust storms on Mars have been observed from Earth-based telescopes, Mars orbiters, and surface rovers and landers. Dust storms can be global and regional. Dust is material that is suspended into the atmosphere by winds and has a particle size of 1-3 micrometer. Planetary scientist refer to loose unconsolidated materials at the surface as "soil." The term ''soil'' is used here to denote any loose, unconsolidated material that can be distinguished from rocks, bedrock, or strongly cohesive sediments. No implication for the presence or absence of organic materials or living matter is intended. Soil contains local and regional materials mixed with the globally distributed dust by aeolian processes. Loose, unconsolidated surface materials (dust and soil) may pose challenges for human exploration on Mars. Dust will no doubt adhere to spacesuits, vehicles, habitats, and other surface systems. What will be the impacts on human activity? The objective of this paper is to review the chemical, mineralogical, and physical properties of the martian dust and soil.
Bajwa, Navroop Kaur; Pathak, Anuradha
2014-01-01
Context. An in vitro study carried out to evaluate and compare the effect of Cola drink on surface roughness of esthetic restorative materials. Purpose. To compare the effect of different immersion regimes in a Cola drink on surface roughness of esthetic restorative materials. Method. Two hundred samples were grouped into 4 equal groups of 50 samples each: Group I: conventional glass ionomer, Group II: resin modified glass ionomer, Group III: polyacid-modified resin composite, Group IV: Composite resin. Each group was further subdivided into 5 subgroups of 10 samples each. Subgroup A (Control Subgroup). Samples were kept immersed in artificial saliva. Subgroup B. Samples were immersed in Cola drink once a day. Subgroup C. Samples were immersed in Cola drink, 3 times a day. Subgroup D. Samples were immersed in Cola drink 5 times a day. Subgroup E. Samples were immersed in Cola drink 10 times a day. Each immersion lasted 5 minutes. The immersion protocol was repeated for 7 days. Results. Maximum surface roughness was seen in Group I conventional glass ionomer cement, followed by Group II resin modified glass ionomer, Group III polyacid modified resin composite, and Group IV composite resin samples. Conclusion. Resistance to change in surface roughness is more in resin based restorative materials as compared to glass ionomer based materials.
Bajwa, Navroop Kaur; Pathak, Anuradha
2014-01-01
Context. An in vitro study carried out to evaluate and compare the effect of Cola drink on surface roughness of esthetic restorative materials. Purpose. To compare the effect of different immersion regimes in a Cola drink on surface roughness of esthetic restorative materials. Method. Two hundred samples were grouped into 4 equal groups of 50 samples each: Group I: conventional glass ionomer, Group II: resin modified glass ionomer, Group III: polyacid-modified resin composite, Group IV: Composite resin. Each group was further subdivided into 5 subgroups of 10 samples each. Subgroup A (Control Subgroup). Samples were kept immersed in artificial saliva. Subgroup B. Samples were immersed in Cola drink once a day. Subgroup C. Samples were immersed in Cola drink, 3 times a day. Subgroup D. Samples were immersed in Cola drink 5 times a day. Subgroup E. Samples were immersed in Cola drink 10 times a day. Each immersion lasted 5 minutes. The immersion protocol was repeated for 7 days. Results. Maximum surface roughness was seen in Group I conventional glass ionomer cement, followed by Group II resin modified glass ionomer, Group III polyacid modified resin composite, and Group IV composite resin samples. Conclusion. Resistance to change in surface roughness is more in resin based restorative materials as compared to glass ionomer based materials. PMID:25006464
NASA Technical Reports Server (NTRS)
Yon, S. A.; Pieters, C. M.
1988-01-01
The nature of the interactions of visible and NIR radiation with the surfaces of rock and mineral samples was investigated by measuring the reflectance and the polarization properties of scattered and reflected light for slab samples of obsidian and fine-grained basalt, prepared to controlled surface roughness. It is shown that the degree to which radiation can penetrate a surface and then scatter back out, an essential criterion for mineralogic determinations based on reflectance spectra, depends not only upon the composition of the material, but also on its physical condition such as sample grain size and surface roughness. Comparison of the experimentally measured reflectance and polarization from smooth and rough slab materials with the predicted models indicates that single Fresnel reflections are responsible for the largest part of the reflected intensity resulting from interactions with the surfaces of dielectric materials; multiple Fresnel reflections are much less important for such surfaces.
Gurbuz, Ayhan; Ozkan, Pelin; Yilmaz, Kerem; Yilmaz, Burak; Durkan, Rukiye
2013-01-01
Oxygenating agents like carbamide peroxide or H(2) O(2) are commonly used whitening agents. They have varying influence on the color and surface roughness of resin-based restorative materials and teeth. The aim of this study was to evaluate the effect of an at-home peroxide whitening agent applied through a whitening strip on the color and surface roughness of a nanofilled composite resin and an ormocer-based resin. Disc-shaped (2 mm thick, 10 mm diameter) nanofilled resin composite (n = 10) and ormocer (n = 10) specimens were prepared. All specimens were treated with a whitening strip. Whitening procedures were performed applying a 6.5% hydrogen peroxide whitening strip (Crest White Strips Professional) for 30 minutes twice each day for a period of 21 consecutive days. During the test intervals, the specimens were rinsed under running distilled water for 1 minute to remove the whitening agents and immersed in 37°C distilled water until the next treatment. Surface roughness and color of the specimens were measured with a profilometer and a colorimeter, respectively, before and after whitening. Color changes were calculated (ΔE) using L*, a*, and b* coordinates. Repeated measures of variance analysis and Duncan test were used for statistical evaluation (α= 0.05). The average surface roughness of composite increased from 1.4 Ra to 2.0 Ra, and from 0.8 Ra to 0.9 Ra for the ormocer material; however, these changes in roughness after whitening were not significant (p > 0.05). Also, when two materials were compared, the surface roughness of restorative materials was not different before and after whitening (p > 0.05). L* and b* values for each material changed significantly after whitening (p < 0.05). ΔE values (before/after whitening) calculated for composite (11.9) and ormocer (16.1) were not significantly different from each other (p > 0.05). The tested whitening agent did not affect the surface roughness of either resin-based restorative material. Both materials became brighter after whitening. The behavior of the materials in the yellow/blue axis was opposite to each other after whitening. Each material had clinically unacceptable color change after whitening (ΔE > 5.5); however, the magnitude of the color change of materials was similar (p > 0.05). According to the results of this study, with the use of materials tested, patients should be advised that existing composite restorations may bleach along with the natural teeth, and replacement of these restorations after whitening may not be required. © 2012 by the American College of Prosthodontists.
Duan, Yichen; Pirolli, Laurent; Teplyakov, Andrew V.
2016-01-01
The poisoning of H2S sensing material based on the mixture of acid-treated carbon nanotubes, CuO and SnO2 was investigated by exposing the material to high doses of H2S (1% in volume) and following the changes spectroscopically. The presence of metal sulfides (CuS and SnS2), sulfates and thiols was confirmed on the surface of this material as the result of H2S poisoning. Further study revealed that leaving this material in air for extended period of time led to reoxidation of metal sulfides back to metal oxides. The formation of thiols and sulfates directly on carbon nanotubes is not reversible under these conditions; however, the extent of the overall surface reaction in this case is substantially lower than that for the composite material. PMID:27812240
Duan, Yichen; Pirolli, Laurent; Teplyakov, Andrew V
2016-11-01
The poisoning of H 2 S sensing material based on the mixture of acid-treated carbon nanotubes, CuO and SnO 2 was investigated by exposing the material to high doses of H 2 S (1% in volume) and following the changes spectroscopically. The presence of metal sulfides (CuS and SnS 2 ), sulfates and thiols was confirmed on the surface of this material as the result of H 2 S poisoning. Further study revealed that leaving this material in air for extended period of time led to reoxidation of metal sulfides back to metal oxides. The formation of thiols and sulfates directly on carbon nanotubes is not reversible under these conditions; however, the extent of the overall surface reaction in this case is substantially lower than that for the composite material.
Fabrication of polydimethylsiloxane (PDMS) - based multielectrode array for neural interface.
Kim, Jun-Min; Oh, Da-Rong; Sanchez, Joaquin; Kim, Shang-Hyub; Seo, Jong-Mo
2013-01-01
Flexible multielectrode arrays (MEAs) are being developed with various materials, and polyimide has been widely used due to the conveniece of process. Polyimide is developed in the form of photoresist. And this enable precise and reproducible fabrication. PDMS is another good candidate for MEA base material, but it has poor surface energy and etching property. In this paper, we proposed a better fabrication process that could modify PDMS surface for a long time and open the site of electrode and pad efficiently without PDMS etching.
Process of welding gamma prime-strengthened nickel-base superalloys
Speigel, Lyle B.; White, Raymond Alan; Murphy, John Thomas; Nowak, Daniel Anthony
2003-11-25
A process for welding superalloys, and particularly articles formed of gamma prime-strengthened nickel-base superalloys whose chemistries and/or microstructures differ. The process entails forming the faying surface of at least one of the articles to have a cladding layer of a filler material. The filler material may have a composition that is different from both of the articles, or the same as one of the articles. The cladding layer is machined to promote mating of the faying surfaces, after which the faying surfaces are mated and the articles welded together. After cooling, the welded assembly is free of thermally-induced cracks.
Methods and systems for monitoring a solid-liquid interface
Stoddard, Nathan G.; Clark, Roger F.; Kary, Tim
2010-07-20
Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material that is parallel with the liquid surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on.times. ##EQU00001## where g is the gravitational constant, w is the horizontal width of the liquid, and f is the at least one frequency.
Degrazia, Felipe Weidenbach; Leitune, Vicente Castelo Branco; Takimi, Antonio Shigueaki; Collares, Fabrício Mezzomo; Sauro, Salvatore
2016-09-01
This study aimed to assess the degree of conversion, microhardness, solvent degradation, contact angle, surface free energy and bioactivity (e.g., mineral precipitation) of experimental resin-based materials containing, pure or triclosan-encapsulated, aluminosilicate-(halloysite) nanotubes. An experimental resin blend was prepared using bis-GMA/TEGDMA, 75/25wt% (control). Halloysite nanotubes (HNT) doped with or without triclosan (TCN) were first analyzed using transmission electron microscopy (TEM). HNT or HNT/TCN fillers were incorporated into the resin blend at different concentrations (5, 10, and 20wt%). Seven experimental resins were created and the degree of conversion, microhardness, solvent degradation and contact angle were assessed. Bioactive mineral precipitation induced by the experimental resins was evaluated through Raman spectroscopy and SEM-EDX. TEM showed a clear presence of TCN particles inside the tubular lumen and along the outer surfaces of the halloysite nanotubes. The degree of conversion, surface free energy, microhardness, and mineral deposition of polymers increased with higher amount of HNTs. Conversely, the higher the amount (20wt%) of TCN-loaded HNTs the lower the microhardness of the experimental resins. The incorporation of pure or TCN-loaded aluminosilicate-(halloysite) nanotubes into resin-based materials increase the bioactivity of such experimental restorative materials and promotes mineral deposition. Therefore, innovative resin-based materials containing functional halloysite-nanotube fillers may represent a valuable alternative for therapeutic minimally invasive treatments. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther
2017-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.
NASA Astrophysics Data System (ADS)
Rahrig, M.; Drewello, R.; Lazzeri, A.
2018-05-01
Monitoring is an essential requirement for the planning, assessment and evaluation of conservation measures. It should be based on a standardized and reproducible observation of the historical surface. For many areas and materials suitable methods for long-term monitoring already exist. But hardly any non-destructive testing methods have been used to test new materials for conservation of damaged stone surfaces. The Nano-Cathedral project, funded by the European Union's Horizon 2020 research and innovation program, is developing new materials and technologies for preserving damaged stone surfaces of built heritage. The prototypes developed are adjusted to the needs and problems of a total of six major cultural monuments in Europe. In addition to the testing of the materials under controlled laboratory conditions, the products have been applied to trial areas on the original stone surfaces. For a location-independent standardized assessment of surface changes of the entire trial areas a monitoring method based on opto-technical, non-contact and non-destructive testing methods has been developed. This method involves a three-dimensional measurement of the surface topography using Structured-Light-Scanning and the analysis of the surfaces in different light ranges using high resolution VIS photography, as well as UV-A-fluorescence photography and reflected near-field IR photography. The paper will show the workflow of this methodology, including a detailed description of the equipment used data processing and the advantages for monitoring highly valuable stone surfaces. Alongside the theoretical discussion, the results of two measuring campaigns on trial areas of the Nano-Cathedral project will be shown.
Biodegradable soy protein isolate-based materials: a review.
Song, Fei; Tang, Dao-Lu; Wang, Xiu-Li; Wang, Yu-Zhong
2011-10-10
Recently, there is an increasing interest of using bio-based polymers instead of conventional petroleum-based polymers to fabricate biodegradable materials. Soy protein isolate (SPI), a protein with reproducible resource, good biocompatibility, biodegradability, and processability, has a significant potential in the food industry, agriculture, bioscience, and biotechnology. Up to now, several technologies have been applied to prepare SPI-based materials with equivalent or superior physical and mechanical properties compared with petroleum-based materials. The aim of this review is focused on discussion of the advantages and limitations of native SPI as well as the bulk and surface modification strategies for SPI. Moreover, some applications of SPI-based materials, especially for food preservation and packaging technology, were discussed.
Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review
Schmitt, Katrin; Oehse, Kerstin; Sulz, Gerd; Hoffmann, Christian
2008-01-01
Evanescent field sensors based on waveguide surfaces play an important role where high sensitivity is required. Particularly tantalum pentoxide (Ta2O5) is a suitable material for thin-film waveguides due to its high refractive index and low attenuation. Many label-free biosensor systems such as grating couplers and interferometric sensors as well as fluorescence-based systems benefit from this waveguide material leading to extremely high sensitivity. Some biosensor systems based on Ta2O5 waveguides already took the step into commercialization. This report reviews the various detection systems in terms of limit of detection, the applications, and the suitable surface chemistry. PMID:27879731
Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation
Boyan, B.D.; Cheng, A.; Olivares-Navarrete, R.; Schwartz, Z.
2016-01-01
Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration. PMID:26927483
NASA Astrophysics Data System (ADS)
Loebl, Andrew James
Next-generation lithium-ion batteries to meet consumer demands and new applications require the development of new electrode materials. Electrospinning of polymers is a simple and effective method to create one-dimensional, self-supporting materials, with no inactive components after pyrolysis. Composites of these nanofibers and high-capacity lithium materials have been demonstrated to possess superior reversible capacity than state-of-the-art commercial anodes. Despite impressive reversible discharge capacities polyacrylonitrile-based composites are not ready for adoption in commercial applications. These materials suffer from irreversible losses of Li to formation on the electrode of the solid electrolyte interphase during the first charge of the cell. This thesis work has taken two approaches to engineer high-performing nanofiber-based electrodes. First, the chemistry at the interface of the electrode and the electrolyte has been changed by depositing new surfaces. Attempts to create a graphitic fiber surface via plasma enhanced chemical vapor deposition did not result in an improvement of the irreversible losses. However, the experiments did demonstrate the growth of large surface area carbon nanowalls on the pyrolyzed electrospun fibers, creating a material which could serve as a substrate in catalysis or as an electrode for composite ultra-capacitors. Additionally, passivation surfaces were deposited by atomic layer deposition and molecular layer deposition. These new surfaces were employed to reduce the irreversible consumption of lithium by moving the charge transfer reaction to the interface of the carbon and the new material. The removal the lithium from the solvent prior to charge transfer limits the irreversible reduction of solvent by metallic lithium. Alumina films grown by atomic layer deposition reduced lithium losses to the solid electrolyte interphase by up to 42% for twenty deposition cycles. This large improvement in irreversible capacity resulted in a nearly 50% reduction in reversible lithium storage. Thinner coatings of alumina had a less dramatic effect on both the irreversible capacity losses and the reversible discharge capacity. A coating of ten cycles of alumina at a temperature of 150 °C resulted in a 17% reduction in irreversible capacity with negligible impact on the reversible capacity. Hybrid aluminum-organic films grown by molecular layer deposition also reduced irreversible lithium losses. The largest reduction was 23% for electrodes coated with 40 cycles of the alucone material. For all thicknesses studied these hybrid films delivered less improvement than the alumina grown by atomic layer deposition, with poor reversible lithium storage capacity available at high charging and discharging currents. Second, polyacrylonitrile has served as the precursor for electrospun composite electrodes because of its ease of processing and well-known carbonization process. Polyimides represent a family of polymers for which the material properties can be tailored by careful monomer selection. These polymers were used as the non-woven matrix to create materials capable of delivering a larger percentage of their maximum reversible capacities at high currents when compared to polyacrylonitrile-based electrodes. These materials had a more graphitic structure based on Raman spectroscopy, and resulted in lower irreversible capacity losses than polyacrylonitrile-based fibers for fibers based on pyromellitic dianhydride and p-phenylene diamine.
Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials
NASA Astrophysics Data System (ADS)
Hejazi, Vahid
Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental data are collected in terms of oleophobicity especially when underwater applications are of interest. We develop models for four-phase rough interface of underwater oleophobicity and develop a novel approach to predict the CA of organic liquid on the rough surfaces immersed in water. We investigate wetting transition on a patterned surface in underwater systems, using a phase field model. We demonstrated that roughening on an immersed solid surface can drive the transition from Wenzel to Cassie-Baxter state. This discovery improves our understanding of underwater systems and their surface interactions during the wetting phenomenon and can be applied for the development of underwater oil-repellent materials which are of interest for various applications in the water industry, and marine devices. In chapter five, we experimentally and theoretically investigate the icephobicity of composite materials. A novel comprehensive definition of icephobicity, broad enough to cover a variety of situations including low adhesion strength, delayed ice crystallization, and bouncing is determined. Wetting behavior and ice adhesion properties of various samples are theoretically and experimentally compared. We conclude superhydrophobic surfaces are not necessarily icephobic. The models are tested against the experimental data to verify the good agreement between them. The models can be used for the design of novel superhydrophobic, oleophobic, omniphobic and icephobic composite materials. Finally we conclude that creating surface micro/nanostructures using mechanical abrasion or chemical etching as well as applying low energy materials are the most simple, inexpensive, and durable techniques to create superhydrophobic, oleophobic, and icephobic materials.
Preliminary Results on the Surface of a New Fe-Based Metallic Material after “In Vivo” Maintaining
NASA Astrophysics Data System (ADS)
Săndulache, F.; Stanciu, S.; Cimpoeşu, N.; Stanciu, T.; Cimpoeșu, R.; Enache, A.; Baciu, R.
2017-06-01
Abstract A new Fe-based alloy was obtained using UltraCast melting equipment. The alloy, after mechanical processing, was implanted in five rabbit specimens (with respect for the “in-bone” procedure). After 30 days of implantation the samples were recovered and analyzed by weight and surface state meanings. Scanning electron microscopy technique was used to determine the new compounds morphology from the metallic surface and X-ray dispersive energy spectroscopy for chemical analyze results. A bond between the metallic material and biological material of the bone was observed through increasing of sample weight and by SEM images. After the first set of tests, as the samples were extracted and biologically cleaned, the samples were ultrasonically cleaned and re-analyzed in order to establish the stability of the chemical compounds.
NASA Astrophysics Data System (ADS)
Triebel, W.; Mühlig, C.; Kufert, S.
2005-10-01
Precise absorption measurements of bulk materials and coatings upon pulsed ArF laser irradiation are presented using a compact experimental setup based on the laser induced deflection technique (LID). For absorption measurements of bulk materials the influence of pure bulk and pure surface absorption on the temperature and refractive index profile and thus for the probe beam deflection is analyzed in detail. The separation of bulk and surface absorption via the commonly used variation of the sample thickness is carried out for fused silica and calcium fluoride. The experimental results show that for the given surface polishing quality the bulk absorption coefficient of fused silica can be obtained by investigating only one sample. To avoid the drawback of different bulk and surface properties amongst a thickness series, we propose a strategy based on the LID technique to generally obtain surface and bulk absorption separately by investigating only one sample. Apart from measuring bulk absorption coefficients the LID technique is applied to determine the absorption of highly reflecting (HR) coatings on CaF2 substrates. Beside the measuring strategy the experimental results of a AlF3/LaF3 based HR coating are presented. In order to investigate a larger variety of coatings, including high transmitting coatings, a general measuring strategy based on the LID technique is proposed.
Li, Baoyin; Fan, Kun; Ma, Xin; Liu, Yang; Chen, Teng; Cheng, Zheng; Wang, Xu; Jiang, Jiaxing; Liu, Xiangyang
2016-09-15
A mild, operationally simple and controllable protocol for preparing graphene-based porous materials is essential to achieve a good pore-design development. In this paper, graphene-based porous materials with tunable surface area were constructed by the intercalation of fluorinated graphene (FG) based on the reaction of reactive CF bonds attached to graphene sheets with various amine-terminated molecules. In the porous materials, graphene sheets are like building blocks, and the diamines covalently grafted onto graphene framework act as pillars. Various diamines are successfully grafted onto graphene sheets, but the grafting ratio of diamines and reduction degree of FG differ greatly and depend on the chemical reactivity of diamines. Pillared diamine molecules chemically anchor at one end and are capable of undergoing a different reaction on the other end, resulting in three different conformations of graphene derivatives. Nitrogen sorption isotherms revealed that the surface area and pore distribution of the obtained porous materials depend heavily on the size and structure of diamine pillars. CO2 uptake capacity characterization showed that ethylenediamine intercalated FG achieved a high CO2 uptake density of 18.0 CO2 molecules per nm(2) at 0°C and 1.1bars, and high adsorption heat, up to 46.1kJmol(-1) at zero coverage. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Jesse, Stephen; Yu, Pu
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Bekaert, J; Bignardi, L; Aperis, A; van Abswoude, P; Mattevi, C; Gorovikov, S; Petaccia, L; Goldoni, A; Partoens, B; Oppeneer, P M; Peeters, F M; Milošević, M V; Rudolf, P; Cepek, C
2017-10-31
Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB 2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like σ- and π-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as ~30 K for merely six monolayers thick MgB 2 . These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.
Balke, Nina; Jesse, Stephen; Yu, Pu; ...
2016-09-15
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Single Wall Carbon Nanotube-Based Structural Health Sensing Materials
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Ingram, JoAnne L.; Jordan, Jeffrey D.; Wincheski, Russell A.; Smits, Jan M.; Williams, Phillip A.
2004-01-01
Single wall carbon nanotube (SWCNT)-based materials represent the future aerospace vehicle construction material of choice based primarily on predicted strength-to-weight advantages and inherent multifunctionality. The multifunctionality of SWCNTs arises from the ability of the nanotubes to be either metallic or semi-conducting based on their chirality. Furthermore, simply changing the environment around a SWCNT can change its conducting behavior. This phenomenon is being exploited to create sensors capable of measuring several parameters related to vehicle structural health (i.e. strain, pressure, temperature, etc.) The structural health monitor is constructed using conventional electron-beam lithographic and photolithographic techniques to place specific electrode patterns on a surface. SWCNTs are then deposited between the electrodes using a dielectrophoretic alignment technique. Prototypes have been constructed on both silicon and polyimide substrates, demonstrating that surface-mountable and multifunctional devices based on SWCNTs can be realized.
The effect of mechano-chemical treatment on structural properties of the drawn TiNi-based alloy wire
NASA Astrophysics Data System (ADS)
Anikeev, Sergey; Hodorenko, Valentina; Gunther, Victor; Chekalkin, Timofey; Kang, Ji-hoon; Kang, Seung-baik
2018-01-01
The rapid development of biomedical materials with the advanced functional characteristics is a challenging task because of the growing demands for better material properties in-clinically employed. Modern medical devices that can be implanted into humans have evolved steadily by replacing TiNi-based alloys for titanium and stainless steel. In this study, the effect of the mechano-chemical treatment on structural properties of the matrix and surface layer of the drawn TiNi-based alloy wire was assessed. A range of samples have been prepared using different drawing and etching procedures. It is clear from the results obtained that the fabricated samples show a composite structure comprising the complex matrix and textured oxycarbonitride spitted surface layer. The suggested method of surface treatment is a concept to increase the surface roughness for the enhanced bio-performance and better in vivo integration.
Adhesion of Blood Plasma Proteins and Platelet-rich Plasma on l-Valine-Based Poly(ester urea).
Childers, Erin P; Peterson, Gregory I; Ellenberger, Alex B; Domino, Karen; Seifert, Gabrielle V; Becker, Matthew L
2016-10-10
The competitive absorption of blood plasma components including fibrinogen (FG), bovine serum albumin (BSA), and platelet-rich plasma (PRP) on l-valine-based poly(ester urea) (PEU) surfaces were investigated. Using four different PEU polymers, possessing compositionally dependent trends in thermal, mechanical, and critical surface tension measurements, water uptake studies were carried out to determine in vitro behavior of the materials. Quartz crystal microbalance (QCM) measurements were used to quantify the adsorption characteristics of PRP onto PEU thin films by coating the surfaces initially with FG or BSA. Pretreatment of the PEU surfaces with FG inhibited the adsorption of PRP and BSA decreased the absorption 4-fold. In vitro studies demonstrated that cells cultured on l-valine-based PEU thin films allowed attachment and spreading of rat aortic cells. These measurements will be critical toward efforts to use this new class of materials in blood-contacting biomaterials applications.
Progress in standoff surface contaminant detector platform
NASA Astrophysics Data System (ADS)
Dupuis, Julia R.; Giblin, Jay; Dixon, John; Hensley, Joel; Mansur, David; Marinelli, William J.
2017-05-01
Progress towards the development of a longwave infrared quantum cascade laser (QLC) based standoff surface contaminant detection platform is presented. The detection platform utilizes reflectance spectroscopy with application to optically thick and thin materials including solid and liquid phase chemical warfare agents, toxic industrial chemicals and materials, and explosives. The platform employs an ensemble of broadband QCLs with a spectrally selective detector to interrogate target surfaces at 10s of m standoff. A version of the Adaptive Cosine Estimator (ACE) featuring class based screening is used for detection and discrimination in high clutter environments. Detection limits approaching 0.1 μg/cm2 are projected through speckle reduction methods enabling detector noise limited performance. The design, build, and validation of a breadboard version of the QCL-based surface contaminant detector are discussed. Functional test results specific to the QCL illuminator are presented with specific emphasis on speckle reduction.
Mechanism and modulation of terahertz generation from a semimetal - graphite
Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li
2016-01-01
Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism - surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices. PMID:26972818
Mechanism and modulation of terahertz generation from a semimetal--graphite.
Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li
2016-03-14
Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism--surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices.
Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics
NASA Technical Reports Server (NTRS)
Knoll, Thomas E.; Blizard, Kent; Jayaraj, K.; Rubin, Leslie S.
1994-01-01
Dielectric materials based on innovative Liquid Crystal Polymers (LCP's) have been used to fabricate surface mount printed wiring boards (PWB's) with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology has resulted in self reinforcing material with balanced in-plane mechanical properties. In addition, LCP's possess excellent electrical properties, including a low dielectric constant (less than 2.9) and very low moisture absorption (less than 0.02%). LCP-based multilayer boards processed with conventional drilling and plating processes show improved performance over other materials because they eliminate the surface flatness problems of glass or aramid reinforcements. Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. The material is ideally suited for MCM-L and PCMCIA applications fabricated with very thin dielectric layers of the liquid crystal polymer.
van der Merwe, M M; Bandosz, T J
2005-02-01
A study of the reason for the early ignition of coconut-based impregnated carbon in comparison with the peat-based impregnated carbon was conducted. The surface features of carbons were evaluated using various physicochemical methods. The metal analysis of the initial carbon indicated that the content of potassium was higher in the coconut-based carbon. The surface functional group analysis revealed the presence of similar surface species; however, the peat-based carbon was more acidic in its chemical nature. Since the oxygen content was higher in the peat-based carbon, the early ignition of the coconut-based material was attributed to its higher affinity to chemisorb oxygen, which leads to exothermic effects. This conclusion was confirmed by performing oxidation of coconut-based carbon prior to impregnation. This process increased the ignition temperature for Cu/Cr impregnated coconut-based material from 186 to 289 degrees C and for the Cu/Zn/Mo impregnated carbon from 235 to 324 degrees C.
Surface Lewis acid-base properties of polymers measured by inverse gas chromatography.
Shi, Baoli; Zhang, Qianru; Jia, Lina; Liu, Yang; Li, Bin
2007-05-18
Surface Lewis acid-base properties are significant for polymers materials. The acid constant, K(a) and base constant, K(b) of many polymers were characterized by some researchers with inverse gas chromatography (IGC) in recent years. In this paper, the surface acid-base constants, K(a) and K(b) of 20 kinds of polymers measured by IGC in recent years are summarized and discussed, including seven polymers characterized in this work. After plotting K(b) versus K(a), it is found that the polymers can be encircled by a triangle. They scatter in two regions of the triangle. Four polymers exist in region I. K(b)/K(a) of the polymers in region I are 1.4-2.1. The other polymers exist in region II. Most of the polymers are relative basic materials.
An OSEE Based Portable Surface Contamination Monitor
NASA Technical Reports Server (NTRS)
Perey, Daniel F.
1997-01-01
Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique based on the principle of Optically Stimulated Electron Emission (OSEE) has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it's non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be output to an external computer for archiving or analysis.
Arsenic Adsorption from Water Using Graphene-Based Materials as Adsorbents: a Critical Review
NASA Astrophysics Data System (ADS)
Yang, Xuetong; Xia, Ling; Song, Shaoxian
2017-07-01
Adsorption is widely applied to remove arsenic from water. This paper reviewed and compared the recent progresses on the arsenic removal by adsorption using two-dimensional and three-dimensional graphene-based materials as adsorbents. Functional graphene sheet achieved the largest As(III) adsorption capacity of 138.79mg/g, while Mg-Al LDH/GO2 showed the largest As(V) adsorption capacity of 183.11mg/g. Parameters including pH, temperature, co-existing ions and loaded metal or metal oxide affected the adsorption process. The adsorption mechanisms of graphene-based materials for As(III) and As(V) could be explained by surface complexation and the electrostatic attraction, respectively. Future works are suggested to focus on regenerating of two-dimensional graphene-based adsorbents and developing the three-dimensional with large specific surface area and better adsorption performance.
NASA Astrophysics Data System (ADS)
Dror, I.; Merom Jacov, O.; Berkowitz, B.
2010-12-01
A new composite material based on deposition of nanosized zero valent iron (ZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix is presented. Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with ZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nanosized ZVI by preventing agglomeration of iron particles, thus increasing their active surface area. The porous structure of the diatomite matrix allows high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material and in turn faster rates of remediation. The ability of the material to degrade or transform rapidly and completely a large spectrum of water pollutants will be demonstrated, based on results from two field site experiments where polluted groundwater containing a mixture of industrial and agricultural persistent pollutants was treated. In addition a set of laboratory experiments using individual contaminant solutions to analyze chemical transformations under controlled conditions will be presented.
Chouchane, Karim; Vendrely, Charlotte; Amari, Myriam; Moreaux, Katie; Bruckert, Franz; Weidenhaupt, Marianne
2015-08-20
Soluble proteins are constantly in contact with material or cellular surfaces, which can trigger their aggregation and therefore have a serious impact on the development of stable therapeutic proteins. In contact with hydrophobic material surfaces, human insulin aggregates readily into amyloid fibers. The kinetics of this aggregation can be accelerated by small peptides, forming stable beta-sheets on hydrophobic surfaces. Using a series of (LK)nL peptides with varying length, we show that these peptides, at low, substoichiometric concentrations, have a positive, cooperative effect on insulin aggregation. This effect is based on a cooperative adsorption of (LK)nL peptides at hydrophobic surfaces, where they form complexes that help the formation of aggregation nuclei. At higher concentrations, they interfere with the formation of an aggregative nucleus. These effects are strictly dependent on the their adsorption on hydrophobic material surfaces and highlight the importance of the impact of materials on protein stability. (LK)nL peptides prove to be valuable tools to investigate the mechanism of HI aggregation nuclei formation on hydrophobic surfaces.
Characterization of holding brake friction pad surface after pin-on-plate wear test
NASA Astrophysics Data System (ADS)
Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.
2018-03-01
This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different materials’ surfaces have been characterized after wear from data obtained with a focus variation 3D microscope. A new surface characterization approach with plateau identification is proposed, using the number of plateau on the surface, equivalent diameter, length and breadth as measurands. The identification method is based on determining and imposing ISO 27158-2 lower plateau limit (LPL) in material probability curves; and on applying a combined criterion of height segmentation threshold and equivalent diameter threshold. The method determines the criterion thresholds for each material since LPL appears typical by material. The proposed method has allowed quantifying the surface topography at two different levels of wear. An expanded measurement uncertainty of 3.5 µm for plateau dimensions in the range 50–2000 µm and one of 0.15 µm for plateau heights up to 10 µm have been documented.
Optical Limiting Materials Based on Gold Nanoparticles
2014-04-30
of the electromagnetic spectrum. 2. Functionalization of the surface of the gold nanoparticles with selected organic and inorganic materials, with...F. A Review of Optical Limiting Mechanisms and Devices Using Organics, Fullerenes , Semiconductors and Other Materials. Prog. Quant. Electr. 1993
NASA Astrophysics Data System (ADS)
Chamerski, Kordian; Stopa, Marcin; Jelen, Piotr; Lesniak, Magdalena; Sitarz, Maciej; Filipecki, Jacek
2018-03-01
Silicone oil is the one of the artificial materials used in vitreoretinal surgery for retinal detachment treatment. Since the silicone oil is sometimes applied along with intraocular lens (IOL) implantation the direct influence of silicone oil on the artificial implant should be taken into account. Presented study was performed in order to determine the time-dependent impact of silicone oil on hydrogel based ophthalmic materials. Two kinds of IOLs based on hydroxyethyl 2-methacrylate (HEMA) hydrogel material were immersed in silicone oil based on linear poly(dimethylsiloxane) (PDMS). Incubation in oil medium was performed in 37 °C for 1, 3 and 6 months. After appropriate period of the incubation samples were examined by means of FTIR-ATR method as the technique of surface study as well as Positron Annihilation Lifetime Spectroscopy (PALS) as the method of internal structure investigation. Results obtained during the study revealed that silicone oil is not capable to penetrate the internal structure of investigated materials and its impact has come down to interaction with the samples surfaces only.
Dopamine-assisted co-deposition: An emerging and promising strategy for surface modification.
Qiu, Wen-Ze; Yang, Hao-Cheng; Xu, Zhi-Kang
2018-04-27
Mussel-inspired chemistry based on polydopamine (PDA) deposition has been developed as a facile and universal method for the surface modification of various materials. However, the inherent shortcomings of PDA coatings still impede their practical applications in the development of functional materials. In this review, we introduce the recent progress in the emerging dopamine-assisted co-deposition as a one-step strategy for functionalizing PDA-based coatings, and improving them in the aspects of deposition rate, morphology uniformity, surface wettability and chemical stability. The co-deposition mechanisms are categorized and discussed according to the interactions of dopamine or PDA with the introduced co-component. We also emphasize the influence of these interactions on the properties of the resultant PDA-based coatings. Meanwhile, we conclude the representative potential applications of those dopamine-assisted co-deposited coatings in material science, especially including separation membranes and biomaterials. Finally, some important issues and perspectives for theoretical study and applications are briefly discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Diffractive optical element in materials testing
NASA Astrophysics Data System (ADS)
Silvennoinen, Raimo V. J.; Peiponen, Kai-Erik
1998-09-01
The object of this paper is to present a sensor based on diffractive optics that can be applied for the materials testing. The present sensor, which is based on the use of a computer-generated hologram (CGH) exploits the holographic imagery. The CGH-sensor was introduced for inspection of surface roughness and flatness of metal surfaces. The results drawn out by the present sensor are observed to be in accordance with the experimental data. Together with the double exposure holographic interferometry (DEHI) and digital electronic speckle pattern interferometry (DSPI) in elasticity inspection, the sensor was applied for the investigations of surface quality of opaque fragile materials, which are pharmaceutical compacts. The optical surface quality was observed to be related to the porosity of the pharmaceutical tablets. The CGH-sensor was also applied for investigations of optical quality of thin films as PLZT ceramics and coating of pharmaceutical compacts. The surfaces of PLZT samples showed fluctuations in optical curvature, and wedgeness for all the cases studied. For pharmaceutical compacts, the optical signals were observed to depend to a great extent on the optical constants of the coatings and the substrates, and in addition to the surface porosity under the coating.
NASA Astrophysics Data System (ADS)
Wang, Ziyang; Fiorini, Paolo; Leonov, Vladimir; Van Hoof, Chris
2009-09-01
This paper presents the material characterization methods, characterization results and the optimization scheme for polycrystalline Si70%Ge30% (poly-SiGe) from the perspective of its application in a surface micromachined thermopile. Due to its comparative advantages, such as lower thermal conductivity and ease of processing, over other materials, poly-SiGe is chosen to fabricate a surface micromachined thermopile and eventually a wearable thermoelectric generator (TEG) to be used on a human body. To enable optimal design of advanced thermocouple microstructures, poly-SiGe sample materials prepared by two different techniques, namely low-pressure chemical vapor deposition (LPCVD) with in situ doping and rapid thermal chemical vapor deposition (RTCVD) with ion implantation, have been characterized. Relevant material properties, including electrical resistivity, Seebeck coefficient, thermal conductivity and specific contact resistance, have been reported. For the determination of thermal conductivity, a novel surface-micromachined test structure based on the Seebeck effect is designed, fabricated and measured. Compared to the traditional test structures, it is more advantageous for sample materials with a relatively large Seebeck coefficient, such as poly-SiGe. Based on the characterization results, a further optimization scheme is suggested to allow independent respective optimization of the figure of merit and the specific contact resistance.
Characterizing Metal-Based Nanoparticles in Surface Water by Single-Particle ICPMS
Engineered metal-based nanomaterials are being used in increasing quantities in consumer and industrial products. These materials may be introduced into surface waters by a variety of paths depending on usage, and will be superimposed on concentrations of other particles containi...
Meyers, Steven R; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B; Grinstaff, Mark W; Kenan, Daniel J
2009-01-01
Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remain limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, "Interfacial Biomaterials" (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture.
A spatial-temporal method for assessing the energy balance dynamics of partially sealed surfaces.
NASA Astrophysics Data System (ADS)
Pipkins, Kyle; Kleinschmit, Birgit; Wessolek, Gerd
2017-04-01
The effects of different types of sealed surfaces on the surface energy balance have been well-studied in the past. However, these field studies typically aggregate these surfaces into continuous units. The proposed method seeks to disaggregate such surfaces into paving and seam areas using spatial methods, and to consider the temperature dynamics under wet and dry conditions between these two components. This experimental work is undertaken using a thermal camera to record a time series of images over two lysimeters with differing levels of surface sealing. The images are subsequently decomposed into component materials using object-based image analysis and compared on the basis of both the surface materials as well as the spatial configuration of materials. Finally, a surface energy balance method is used to estimate evaporation rates from the surfaces, both separately for the different surface components as well as using the total surface mean. Results are validated using the output of the weighing lysimeter. Our findings will determine whether the explicitly spatial method is an improvement over the mean aggregate method.
NASA Technical Reports Server (NTRS)
Mccord, T. B.; Adams, J. B.
1977-01-01
Recent evidence suggests that the way that the surfaces of the solar system objects reflect solar radiation is controlled by the composition and mineralogy of the surface materials. The way sunlight is reflected from the surface as a function of wavelength, i.e., the spectral reflectance, is the most important property. Laboratory efforts to use ground-based optical telescope measurements to determine the composition of the surfaces of the solar system objects are reviewed.
Surface Conduction in III-V Semiconductor Infrared Detector Materials
NASA Astrophysics Data System (ADS)
Sidor, Daniel Evan
III-V semiconductors are increasingly used to produce high performance infrared photodetectors; however a significant challenge inherent to working with these materials is presented by unintended electrical conduction pathways that form along their surfaces. Resulting leakage currents contribute to system noise and are ineffectively mitigated by device cooling, and therefore limit ultimate performance. When the mechanism of surface conduction is understood, the unipolar barrier device architecture offers a potential solution. III-V bulk unipolar barrier detectors that effectively suppress surface leakage have approached the performance of the best II-VI pn-based structures. This thesis begins with a review of empirically determined Schottky barrier heights and uses this information to present a simple model of semiconductor surface conductivity. The model is validated through measurements of degenerate n-type surface conductivity on InAs pn junctions, and non-degenerate surface conductivity on GaSb pn junctions. It is then extended, along with design principles inspired by the InAs-based nBn detector, to create a flat-band pn-based unipolar barrier detector possessing a conductive surface but free of detrimental surface leakage current. Consideration is then given to the relative success of these and related bulk detectors in suppressing surface leakage when compared to analogous superlattice-based designs, and general limitations of unipolar barriers in suppressing surface leakage are proposed. Finally, refinements to the molecular beam epitaxy crystal growth techniques used to produce InAs-based unipolar barrier heterostructure devices are discussed. Improvements leading to III-V device performance well within an order of magnitude of the state-of-the-art are demonstrated.
Zhang, Long; Zhang, Fan; Yang, Xi; Long, Guankui; Wu, Yingpeng; Zhang, Tengfei; Leng, Kai; Huang, Yi; Ma, Yanfeng; Yu, Ao; Chen, Yongsheng
2013-01-01
Until now, few sp2 carbon materials simultaneously exhibit superior performance for specific surface area (SSA) and electrical conductivity at bulk state. Thus, it is extremely important to make such materials at bulk scale with those two outstanding properties combined together. Here, we present a simple and green but very efficient approach using two standard and simple industry steps to make such three-dimensional graphene-based porous materials at the bulk scale, with ultrahigh SSA (3523 m2/g) and excellent bulk conductivity. We conclude that these materials consist of mainly defected/wrinkled single layer graphene sheets in the dimensional size of a few nanometers, with at least some covalent bond between each other. The outstanding properties of these materials are demonstrated by their superior supercapacitor performance in ionic liquid with specific capacitance and energy density of 231 F/g and 98 Wh/kg, respectively, so far the best reported capacitance performance for all bulk carbon materials. PMID:23474952
Subramanian, Ramesh
2001-01-01
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base columnar thermal barrier coating (20) on the alloy surface, where a heat resistant ceramic oxide sheath material (32' or 34') covers the columns (28), and the sheath material is the reaction product of a precursor ceramic oxide sheath material and the base thermal barrier coating material.
Li, Longxiang; Xue, Donglin; Deng, Weijie; Wang, Xu; Bai, Yang; Zhang, Feng; Zhang, Xuejun
2017-11-10
In deterministic computer-controlled optical surfacing, accurate dwell time execution by computer numeric control machines is crucial in guaranteeing a high-convergence ratio for the optical surface error. It is necessary to consider the machine dynamics limitations in the numerical dwell time algorithms. In this paper, these constraints on dwell time distribution are analyzed, and a model of the equal extra material removal is established. A positive dwell time algorithm with minimum equal extra material removal is developed. Results of simulations based on deterministic magnetorheological finishing demonstrate the necessity of considering machine dynamics performance and illustrate the validity of the proposed algorithm. Indeed, the algorithm effectively facilitates the determinacy of sub-aperture optical surfacing processes.
Method and Apparatus for Obtaining a Precision Thickness in Semiconductor and Other Wafers
NASA Technical Reports Server (NTRS)
Okojie, Robert S. (Inventor)
2002-01-01
A method and apparatus for processing a wafer comprising a material selected from an electrical semiconducting material and an electrical insulating material is presented. The wafer has opposed generally planar front and rear sides and a peripheral edge, wherein said wafer is pressed against a pad in the presence of a slurry to reduce its thickness. The thickness of the wafer is controlled by first forming a recess such as a dimple on the rear side of the wafer. A first electrical conducting strip extends from a first electrical connection means to the base surface of the recess to the second electrical connector. The first electrical conducting strip overlies the base surface of the recess. There is also a second electrical conductor with an electrical potential source between the first electrical connector and the second electrical connector to form. In combination with the first electrical conducting strip, the second electrical conductor forms a closed electrical circuit, and an electrical current flows through the closed electrical circuit. From the front side of the wafer the initial thickness of the wafer is reduced by lapping until the base surface of the recess is reached. The conductive strip is at least partially removed from the base surface to automatically stop the lapping procedure and thereby achieve the desired thickness.
NASA Astrophysics Data System (ADS)
Kim, Min-Uk; Kim, Do-Hyang; Han, Seung-hee; Fleury, Eric; Seok, Hyun-Kwang; Cha, Pil-Ryung; Kim, Yu-Chan
2011-04-01
Ni-based amorphous alloys with surface modification by carbon ion implantation are proposed as an alternative bipolar plate material for polymer electrolyte membrane fuel cells (PEMFCs). Both Ni60Nb20Ti10Zr10 alloys with and without carbon ion implantation have corrosion resistance as good as graphite as well as much lower contact resistance than 316L stainless steel in the PEMFC environment. The formation of conductive surface carbide due to carbon ion implantation results in a decrease in the contact resistance to a level comparable to that of graphite. This combination of excellent properties indicates that carbon ion implanted Ni-based amorphous alloys can be potential candidate materials for bipolar plates in PEMFCs.
NASA Astrophysics Data System (ADS)
Jang, Dawoon; Lee, Seungjun; Shin, Yunseok; Ohn, Saerom; Park, Sunghee; Lim, Donggyu; Park, Gilsoo; Park, Sungjin
2017-12-01
The generation of molecular active species on the surface of nano-materials has become promising routes to produce efficient electrocatalysts. Development of cost-effective catalysts with high performances for oxygen reduction reaction (ORR) is an important challenge for fuel cell and metal-air battery applications. In this work, we report a novel hybrid produced by room-temperature solution processes using Ni-based organometallic molecules and N-doped graphene-based materials. Chemical and structural characterizations reveal that Ni-containing species are well-dispersed on the surface of graphene network as molecular entity. The hybrid shows excellent electrocatalytic performances for ORR in basic medium with an onset potential of 0.87 V (vs. RHE), superior durability and good methanol tolerance.
Saka, Cafer
2018-01-02
The use of carbon materials for many applications is due to the unique diversity of structures and properties ranging from chemical bonds between the carbon atoms of the materials to nanostructures, crystallite alignment, and microstructures. Carbon nanotubes and other nanoscale carbonaceous materials draw much attention due to their physical and chemical properties, such as high strength, high resistance to corrosion, electrical and thermal conductivity, stability and a qualified adsorbent. Carbon-based nanomaterials, which have a relatively large specific area and layered structure, can be used as an adsorbent for efficient removal of organic and inorganic contaminants. However, one of the biggest obstacles to the development of carbon-based nanomaterials adsorbents is insolubility and the lack of functional groups on the surface. There are several approaches to introduce functional groups on carbon nanotubes. One of these approaches, plasma applications, now has an important place in the creation of surface functional groups as a flexible, fast, and environmentally friendly method. This review focuses on recent information concerning the surface functionalization and modification of plasma treated carbon nanotube. This review considers the surface properties, advantages, and disadvantages of plasma-applied carbon nanotubes. It also examines the reaction mechanisms involved in the functional groups on the surface.
Incompressible material point method for free surface flow
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhang, Xiong; Sze, Kam Yim; Lian, Yanping; Liu, Yan
2017-02-01
To overcome the shortcomings of the weakly compressible material point method (WCMPM) for modeling the free surface flow problems, an incompressible material point method (iMPM) is proposed based on operator splitting technique which splits the solution of momentum equation into two steps. An intermediate velocity field is first obtained by solving the momentum equations ignoring the pressure gradient term, and then the intermediate velocity field is corrected by the pressure term to obtain a divergence-free velocity field. A level set function which represents the signed distance to free surface is used to track the free surface and apply the pressure boundary conditions. Moreover, an hourglass damping is introduced to suppress the spurious velocity modes which are caused by the discretization of the cell center velocity divergence from the grid vertexes velocities when solving pressure Poisson equations. Numerical examples including dam break, oscillation of a cubic liquid drop and a droplet impact into deep pool show that the proposed incompressible material point method is much more accurate and efficient than the weakly compressible material point method in solving free surface flow problems.
Dastmalchi, Babak; Tassin, Philippe; Koschny, Thomas; ...
2015-09-21
Surface-plasmon polaritons are electromagnetic waves propagating on the surface of a metal. Thanks to subwavelength confinement, they can concentrate optical energy on the micrometer or even nanometer scale, enabling new applications in bio-sensing, optical interconnects, and nonlinear optics, where small footprint and strong field concentration are essential. The major obstacle in developing plasmonic applications is dissipative loss, which limits the propagation length of surface plasmons and broadens the bandwidth of surface-plasmon resonances. Here, a new analysis of plasmonic materials and geometries is presented which fully considers the tradeoff between propagation length and degree of confinement. It is based on amore » two-dimensional analysis of two independent figures of merit and the analysis is applied to relevant plasmonic materials, e.g., noble metals, aluminum, silicon carbide, doped semiconductors, graphene, etc. Furthermore, the analysis provides guidance on how to improve the performance of any particular plasmonic application and substantially eases the selection of the plasmonic material.« less
Compact ion chamber based neutron detector
Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.
2015-10-27
A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chianelli, R.
2005-01-12
Development of synchrotron techniques for the determination of the structure of disordered, amorphous and surface materials has exploded over the past twenty years due to the increasing availability of high flux synchrotron radiation and the continuing development of increasingly powerful synchrotron techniques. These techniques are available to materials scientists who are not necessarily synchrotron scientists through interaction with effective user communities that exist at synchrotrons such as the Stanford Synchrotron Radiation Laboratory (SSRL). In this article we review the application of multiple synchrotron characterization techniques to two classes of materials defined as ''surface compounds.'' One class of surface compounds aremore » materials like MoS{sub 2-x}C{sub x} that are widely used petroleum catalysts used to improve the environmental properties of transportation fuels. These compounds may be viewed as ''sulfide supported carbides'' in their catalytically active states. The second class of ''surface compounds'' is the ''Maya Blue'' pigments that are based on technology created by the ancient Maya. These compounds are organic/inorganic ''surface complexes'' consisting of the dye indigo and palygorskite, a common clay. The identification of both surface compounds relies on the application of synchrotron techniques as described in this report.« less
Laser-based microstructuring of materials surfaces using low-cost microlens arrays
NASA Astrophysics Data System (ADS)
Nieto, Daniel; Vara, G.; Diez, J. A.; O`Connor, Gerard M.; Arines, Justo; Gómez-Reino, C.; Flores-Arias, M.
2012-03-01
Since frictional interactions in microscopically small components are becoming increasingly important for the development of new products for all modern technology, we present a laser-based technique for micro-patterning surfaces of materials using low-cost microlens arrays. The microlens used were fabricated on soda-lime glass using a laser direct-write technique, followed by a thermal treatment into an oven. By combining laser direct-write and the thermal treatment it was possible to obtain high quality elements using a low cost infrared laser widely implemented in industry which makes this technique attractive in comparison with other more expensive methods. The main advantage of using microlens arrays for micropatterning surfaces is the possibility of fabricating a large number of identical structures simultaneously, leading to a highly efficient process. In order to study the capabilities of the microlens fabricated for microstructuring materials, identical structures and arrays of holes were fabricated over a variety of materials, such us, stainless steel, polymer and ceramic. The minimum diameter of the individual microstructure generated at surface is 5 μm. Different nanosecond lasers operating at Infrared, Green and UV were used. The topography and morphology of the elements obtained were determined using a confocal microscope SENSOFAR 2300 Plμ.
NASA Astrophysics Data System (ADS)
Bouligand, Claire; Coutant, Olivier; Glen, Jonathan M. G.
2016-07-01
In this study, we present the analysis and interpretation of a new ground magnetic survey acquired at the Soufrière volcano on Guadeloupe Island. Observed short-wavelength magnetic anomalies are compared to those predicted assuming a constant magnetization within the sub-surface. The good correlation between modeled and observed data over the summit of the dome indicates that the shallow sub-surface displays relatively constant and high magnetization intensity. In contrast, the poor correlation at the base of the dome suggests that the underlying material is non- to weakly-magnetic, consistent with what is expected for a talus comprised of randomly oriented and highly altered and weathered boulders. The new survey also reveals a dipole anomaly that is not accounted for by a constant magnetization in the sub-surface and suggests the existence of material with decreased magnetization beneath the Soufrière lava dome. We construct simple models to constrain its dimensions and propose that this body corresponds to hydrothermally altered material within and below the dome. The very large inferred volume for such material may have implications on the stability of the dome.
Harper, Bryan J.; Clendaniel, Alicea; Sinche, Federico; Way, Daniel; Hughes, Michael; Schardt, Jenna; Simonsen, John; Stefaniak, Aleksandr B.
2016-01-01
Cellulose is an abundant and renewable resource currently being investigated for utility in nanomaterial form for various promising applications ranging from medical and pharmaceutical uses to mechanical reinforcement and biofuels. The utility of nanocellulose and wide implementation ensures increasing exposure to humans and the environment as nanocellulose-based technologies advance. Here, we investigate how differences in aspect ratio and changes to surface chemistry, as well as synthesis methods, influence the biocompatibility of nanocellulose materials using the embryonic zebrafish. Investigations into the toxicity of neutral, cationic and anionic surface functionalities revealed that surface chemistry had a minimal influence on the overall toxicity of nanocellulose materials. Higher aspect ratio cellulose nanofibers produced by mechanical homogenization were, in some cases, more toxic than other cellulose-based nanofibers or nanocrystals produced by chemical synthesis methods. Using fluorescently labeled nanocellulose we were able to show that nanocellulose uptake did occur in embryonic zebrafish during development. We conclude that the benign nature of nanocellulose materials makes them an ideal platform to systematically investigate the inherent surface features driving nanomaterial toxicity in order to create safer design principles for engineered nanoparticles. PMID:27468180
[Design of plant leaf bionic camouflage materials based on spectral analysis].
Yang, Yu-Jie; Liu, Zhi-Ming; Hu, Bi-Ru; Wu, Wen-Jian
2011-06-01
The influence of structure parameters and contents of plant leaves on their reflectance spectra was analyzed using the PROSPECT model. The result showed that the bionic camouflage materials should be provided with coarse surface and spongy inner structure, the refractive index of main content must be close to that of plant leaves, the contents of materials should contain chlorophyll and water, and the content of C-H bond must be strictly controlled. Based on the analysis above, a novel camouflage material, which was constituted by coarse transparent waterproof surface, chlorophyll, water and spongy material, was designed. The result of verifiable experiment showed that the reflectance spectra of camouflage material exhibited the same characteristics as those of plant leaves. The similarity coefficient of reflectance spectrum of the camouflage material and camphor leaves was 0.988 1, and the characteristics of camouflage material did not change after sunlight treatment for three months. The bionic camouflage material, who exhibited a high spectral similarity with plant leaves and a good weather resistance, will be an available method for reconnaissance of hyperspectral imaging hopefully.
A novel carbon electrode material for highly improved EDLC performance.
Fang, Baizeng; Binder, Leo
2006-04-20
Porous materials, developed by grafting functional groups through chemical surface modification with a surfactant, represent an innovative concept in energy storage. This work reports, in detail, the first practical realization of a novel carbon electrode based on grafting of vinyltrimethoxysilane (vtmos) functional group for energy storage in electric double layer capacitor (EDLC). Surface modification with surfactant vtmos enhances the hydrophobisation of activated carbon and the affinity toward propylene carbonate (PC) solvent, which improves the wettability of activated carbon in the electrolyte solution based on PC solvent, resulting in not only a lower resistance to the transport of electrolyte ions within micropores of activated carbon but also more usable surface area for the formation of electric double layer, and accordingly, higher specific capacitance, energy density, and power capability available from the capacitor based on modified carbon. Especially, the effects from surface modification become superior at higher discharge rate, at which much better EDLC performance (i.e., much higher energy density and power capability) has been achieved by the modified carbon, suggesting that the modified carbon is a novel and very promising electrode material of EDLC for large current applications where both high energy density and power capability are required.
Nelson, Andrew P; Farha, Omar K; Mulfort, Karen L; Hupp, Joseph T
2009-01-21
Careful processing of four representative metal-organic framework (MOF) materials with liquid and supercritical carbon dioxide (ScD) leads to substantial, or in some cases spectacular (up to 1200%), increases in gas-accessible surface area. Maximization of surface area is key to the optimization of MOFs for many potential applications. Preliminary evidence points to inhibition of mesopore collapse, and therefore micropore accessibility, as the basis for the extraordinarily efficacious outcome of ScD-based activation.
Portable spotter for fluorescent contaminants on surfaces
Schuresko, Daniel D.
1980-01-01
A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.
Cured composite materials for reactive metal battery electrolytes
Harrup, Mason K.; Stewart, Frederick F.; Peterson, Eric S.
2006-03-07
A solid molecular composite polymer-based electrolyte is made for batteries, wherein silicate compositing produces a electrolytic polymer with a semi-rigid silicate condensate framework, and then mechanical-stabilization by radiation of the outer surface of the composited material is done to form a durable and non-tacky texture on the electrolyte. The preferred ultraviolet radiation produces this desirable outer surface by creating a thin, shallow skin of crosslinked polymer on the composite material. Preferably, a short-duration of low-medium range ultraviolet radiation is used to crosslink the polymers only a short distance into the polymer, so that the properties of the bulk of the polymer and the bulk of the molecular composite material remain unchanged, but the tough and stable skin formed on the outer surface lends durability and processability to the entire composite material product.
Microbiological destruction of composite polymeric materials in soils
NASA Astrophysics Data System (ADS)
Legonkova, O. A.; Selitskaya, O. V.
2009-01-01
Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.
Characterization of CdTe and (CdZn)Te detectors with different metal contacts
NASA Astrophysics Data System (ADS)
Pekárek, J.; Belas, E.; Grill, R.; Uxa, Å.; James, R. B.
2013-09-01
In the present work we studied an influence of different types of surface etching and surface passivation of high resistivity CdZnTe-based semiconductor detector material. The aim was to find the optimal conditions to improve the properties of metal-semiconductor contact. The main effort was to reduce the leakage current and thus get better X-ray and gamma-ray spectrum, i.e. to create a detector operating at room temperature based on this semiconductor material with sufficient energy resolution and the maximum charge collection efficiency. Individual surface treatments were characterized by I-V characteristics, spectral analysis and by determination of the profile of the internal electric field.
Activated alumina preparation and characterization: The review on recent advancement
NASA Astrophysics Data System (ADS)
Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.
2018-03-01
Aluminum and aluminum based material are significant industrial materials synthesis because of their abandonment, low weight and high-quality corrosion resistance. The most advances in aluminum processing are the ability to synthesize it's under suitable chemical composition and conditions, a porous structure can be formed on the surface. Activated alumina particles (AAP) synthesized by the electrochemically process from aluminum have gained serious attention, inexpensive material that can be employed for water filtration due to its active surface. Thus, the paper present a review study based on recent progress and advances in synthesizing activated alumina, various techniques currently being used in preparing activated alumina and its characteristics are studied and summarized
Kadhim, Abdulhadi; Salim, Evan T; Fayadh, Saeed M; Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar
2014-01-01
Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solares, Santiago D.
Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surfacemore » as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single-and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. As a result, a multifrequency AFM simulation tool based on the above sample model is provided as supporting information.« less
Solares, Santiago D.
2016-04-15
Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surfacemore » as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single-and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. As a result, a multifrequency AFM simulation tool based on the above sample model is provided as supporting information.« less
Some wear studies on aircraft brake systems
NASA Technical Reports Server (NTRS)
Ho, T. L.
1975-01-01
An initial investigation of worn surfaces in friction pads and steel rotors used in current aircraft brakes was carried out using electron microprobe and X-ray diffraction analysis. It consists of the topographical study and the analysis of chemical element distribution. Based upon this initial examination, two approaches, microscopic and macroscopic have been conducted to interpret and formulate the wear mechanism of the aircraft brake materials. Microscopically, the wear particles were examined. The initiation and growth of surface cracks and the oxidation were emphasized in this investigation. Macroscopically, it has been found that, for the current copper based brake material sliding against 17-22 AS steel in a caliper brake, the surface temperature raised due to frictional heat is nonlinearly proportional to the load applied and slide time with speed at 1750 rpm. The wear of brake materials is then proportional to this temperature and is also a function of the melting temperature for copper.
Friction properties of biological functional materials: PVDF membranes.
Chen, Long; Di, Changan; Chen, Xuguang; Li, Zhengzhi; Luo, Jia
2017-01-02
Touch is produced by sensations that include approaching, sliding, pressing, and temperature. This concept has become a target of research in biotechnology, especially in the field of bionic biology. This study measured sliding and pressing with traditional tactile sensors in order to improve a machine operator's judgment of surface roughness. Based on the theory of acoustic emission, this study combined polyvinylidene fluoride (PVDF) with a sonic transducer to produce tactile sensors that can detect surface roughness. Friction between PVDF films and experimental materials generated tiny acoustic signals that were transferred into electrical signals through a sonic transducer. The characteristics of the acoustic signals for the various materials were then analyzed. The results suggest that this device can effectively distinguish among different objects based on roughness. Tactile sensors designed using this principle and structure function very similarly to the human body in recognizing the surface of an object.
Zhong, Zhuangmin; Sha, Qing'e; Zheng, Junyu; Yuan, Zibing; Gao, Zongjiang; Ou, Jiamin; Zheng, Zhuoyun; Li, Cheng; Huang, Zhijiong
2017-04-01
Accurate depiction of VOCs emission characteristics is essential for the formulation of VOCs control strategies. As one of the continuous efforts in improving VOCs emission characterization in the Pearl River Delta (PRD) region, this study targeted on surface coating industry, the most important VOCs emission sources in the PRD. Sectors in analysis included shipbuilding coating, wood furniture coating, metal surface coating, plastic surface coating, automobile coating and fabric surface coating. Sector-based field measurement was conducted to characterize VOCs emission factors and source profiles in the PRD. It was found that the raw material-based VOCs emission factors for these six sectors ranged from 0.34 to 0.58kg VOCs per kg of raw materials (kg·kg -1 ) while the emission factors based on the production yield varied from 0.59kg to 13.72t VOCs for each production manufactured. VOCs emission factors of surface coating industry were therefore preferably calculated based on raw materials with low uncertainties. Source profiles differed greatly among different sectors. Aromatic was the largest group for shipbuilding coating, wood furniture coating, metal surface coating and automobile coating while the oxygenated VOCs (OVOCs) were the most abundant in the plastic and fabric surface coating sectors. The major species of aromatic VOCs in each of these six sectors were similar, mainly toluene and m/p-xylene, while the OVOCs varied among the different sectors. VOCs profiles in the three processes of auto industry, i.e., auto coating, auto drying and auto repairing, also showed large variations. The major species in these sectors in the PRD were similar with other places but the proportions of individual compounds were different. Some special components were also detected in the PRD region. This study highlighted the importance of updating local source profiles in a comprehensive and timely manner. Copyright © 2016 Elsevier B.V. All rights reserved.
Tactile Perception of Roughness and Hardness to Discriminate Materials by Friction-Induced Vibration
Zhao, Xuezeng
2017-01-01
The human fingertip is an exquisitely powerful bio-tactile sensor in perceiving different materials based on various highly-sensitive mechanoreceptors distributed all over the skin. The tactile perception of surface roughness and material hardness can be estimated by skin vibrations generated during a fingertip stroking of a surface instead of being maintained in a static position. Moreover, reciprocating sliding with increasing velocities and pressures are two common behaviors in humans to discriminate different materials, but the question remains as to what the correlation of the sliding velocity and normal load on the tactile perceptions of surface roughness and hardness is for material discrimination. In order to investigate this correlation, a finger-inspired crossed-I beam structure tactile tester has been designed to mimic the anthropic tactile discrimination behaviors. A novel method of characterizing the fast Fourier transform integral (FFT) slope of the vibration acceleration signal generated from fingertip rubbing on surfaces at increasing sliding velocity and normal load, respectively, are defined as kv and kw, and is proposed to discriminate the surface roughness and hardness of different materials. Over eight types of materials were tested, and they proved the capability and advantages of this high tactile-discriminating method. Our study may find applications in investigating humanoid robot perceptual abilities. PMID:29182538
Surface modification: advantages, techniques, and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.
2000-03-01
Adequate performance of materials at elevated temperatures is a potential problem in many systems within the chemical, petroleum, process, and power-generating industries. Degradation of materials occurs because of interaction between the structural material and the exposure environment. These interactions are generally undesired chemical reactions that can lead to accelerated wastage and alter the functional requirements and/or structural integrity of the materials. Therefore, material selection for high-temperature applications must be based not only on a material strength properties but also on resistance to the complex environments prevalent in the anticipated exposure environment. As plants become larger, the satisfactory performance and reliabilitymore » of components play a greater role in plant availability and economics. However, system designers are becoming increasingly concerned with finding the least expensive material that will satisfactorily perform the design function for the desired service life. This present paper addresses the benefits of surface modification and identified several criteria for selection and application of modified surfaces in the power sector. A brief review is presented on potential methods for modification of surfaces, with the emphasis on coatings. In the final section of the paper, several examples address the requirements of different energy systems and surface modification avenues that have been applied to resolve the issues.« less
Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.
Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T
2010-04-01
Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.
Relationship of wood surface energy to surface composition
Feipeng P. Liu; Timothy G. Rials; John Simonsen
1998-01-01
The wood cell wall is composed of cellulose, lignin, hemicelluloses, and extractives. Thus, the surface energy of the wood material must be some combination of the surface energies of these components. The influence of extractives on wood surface chemistry can be important in diverse industrial applications, such as coating, pulping, and wood-based composites. In this...
Materials and Manufacturing Technology Directorate Thermal Sciences and Materials Branch (Overview)
2010-09-01
Molecular Mechanics for thermo-mechanical response Materials Characterization • CNT modified durable thermal interface ( DTI ) • MEMS-based RTD micro...stabilization. Surface Characterization by Atomic Force Microscopy: Probing Thermal, Electrical, and Mechanical Properties Heater Current Path Anchor Leg 50 µm
NASA Astrophysics Data System (ADS)
Yu, Yingtian; Krishnan, N. M. Anoop; Smedskjaer, Morten M.; Sant, Gaurav; Bauchy, Mathieu
2018-02-01
The surface reactivity and hydrophilicity of silicate materials are key properties for various industrial applications. However, the structural origin of their affinity for water remains unclear. Here, based on reactive molecular dynamics simulations of a series of artificial glassy silica surfaces annealed at various temperatures and subsequently exposed to water, we show that silica exhibits a hydrophilic-to-hydrophobic transition driven by its silanol surface density. By applying topological constraint theory, we show that the surface reactivity and hydrophilic/hydrophobic character of silica are controlled by the atomic topology of its surface. This suggests that novel silicate materials with tailored reactivity and hydrophilicity could be developed through the topological nanoengineering of their surface.
The effect of cleaning substances on the surface of denture base material.
Žilinskas, Juozas; Junevičius, Jonas; Česaitis, Kęstutis; Junevičiūtė, Gabrielė
2013-12-11
The aim of this study was to evaluate the effect of substances used for hygienic cleaning of dentures on the surface of the denture base material. Meliodent Heat Cure (Heraeus-Kulzer, Germany) heat-polymerized acrylic resin was used to produce plates with all the characteristics of removable denture bases (subsequently, "plates"). Oral-B Complete toothbrushes of various brush head types were fixed to a device that imitated tooth brushing movements; table salt and baking soda (frequently used by patients to improve tooth brushing results), toothpaste ("Colgate Total"), and water were also applied. Changes in plate surfaces were monitored by measuring surface reflection alterations on spectrometry. Measurements were conducted before the cleaning and at 2 and 6 hours after cleaning. No statistically significant differences were found between the 3 test series. All 3 plates used in the study underwent statistically significant (p<0.05 changed)--the reflection became poorer. The plates were most affected by the medium-bristle toothbrush with baking soda--the total reflection reduction was 4.82 ± 0.1%; among toothbrushes with toothpaste, the hard-type toothbrush had the greatest reflection-reducing effect--4.6 ± 0.05%, while the toothbrush with table salt inflicted the least damage (3.5 ± 0.16%) due to the presence of rounded crystals between the bristles and the resin surface. Toothbrushes with water had a uniform negative effect on the plate surface - 3.8 9 ± 0.07%. All substances used by the patients caused surface abrasion of the denture base material, which reduced the reflection; a hard toothbrush with toothpaste had the greatest abrasive effect, while soft toothbrushes inflicted the least damage.
Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate
NASA Astrophysics Data System (ADS)
Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki
2014-08-01
Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.
NASA Astrophysics Data System (ADS)
Zhong, Xianyun; Hou, Xi; Yang, Jinshan
2016-09-01
Nickel is the unique material in the X-ray telescopes. And it has the typical soft material characteristics with low hardness high surface damage and low stability of thermal. The traditional fabrication techniques are exposed to lots of problems, including great surface scratches, high sub-surface damage and poor surface roughness and so on. The current fabrication technology for the nickel aspheric mainly adopt the single point diamond turning(SPDT), which has lots of advantages such as high efficiency, ultra-precision surface figure, low sub-surface damage and so on. But the residual surface texture of SPDT will cause great scattering losses and fall far short from the requirement in the X-ray applications. This paper mainly investigates the magnetorheological finishing (MRF) techniques for the super-smooth processing on the nickel optics. Through the study of the MRF polishing techniques, we obtained the ideal super-smooth polishing technique based on the self-controlled MRF-fluid NS-1, and finished the high-precision surface figure lower than RMS λ/80 (λ=632.8nm) and super-smooth roughness lower than Ra 0.3nm on the plane reflector and roughness lower than Ra 0.4nm on the convex cone. The studying of the MRF techniques makes a great effort to the state-of-the-art nickel material processing level for the X-ray optical systems applications.
Moon manned missions radiation safety analysis
NASA Astrophysics Data System (ADS)
Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.
An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process has been realized through minimization of mass along all phases of a mission scenario, in terms of time frame (dates, transfer time length and trajectory, radiation environment), equipment (vehicles, in terms of shape, volume, onboard material choice, size and structure), location (if in space, on the surface, inside or outside a certain habitats), crew characteristics (number, gender, age, tasks) and performance required (spacecraft and habitat volumes), radiation exposure annual and career limit constraint (from NCRP 132), and implementation of the ALARA principle (shelter from the occurrence of Solar Particle Events). On the lunar surface the most important contribution to radiation exposure is given by background Galactic Cosmic Rays (GCR) particles, mostly protons, alpha particles, and some heavy ions, and by locally induced particles, mostly neutrons, created by the interaction between GCR and surface material and emerging from below the surface due to backscattering processes. In this environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with long-term shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in full detail (e.g., shape, thickness, materials, etc) with considerations of various shielding strategies. In this first analysis all the shape considered are cylindrical or composed of combination of cylinders. Moreover, a radiation safety analysis of more future possible habitats like lava tubes has been also performed.
Super-Hydrophobic Surface Prepared by Lanthanide Oxide Ceramic Deposition Through PS-PVD Process
NASA Astrophysics Data System (ADS)
Li, Jie; Li, Cheng-Xin; Chen, Qing-Yu; Gao, Jiu-Tao; Wang, Jun; Yang, Guan-Jun; Li, Chang-Jiu
2017-02-01
Super-hydrophobic surface has received widespread attention in recent years. Both the surface morphology and chemical composition have significant impact on hydrophobic performance. A novel super-hydrophobic surface based on plasma spray-vapor deposition was introduced in the present paper. Samaria-doped ceria, which has been proved as an intrinsic hydrophobic material, was used as feedstock material. Additionally, in order to investigate the influence of surface free energy on the hydrophobicity, chemical modification by low surface free energy materials including stearic acid and 1,1,2,2-tetrahydroperfluorodecyltrimethoxysilane (FAS) was used on coating surface. Scanning electron microscopy and Fourier transform infrared spectroscopy were employed to characterize the coating surface. The results show that the obtained surface has a hierarchical structure composed by island-like structures agglomerated with angular-like sub-micrometer-sized particles. Moreover, with the surface free energy decreases, the hydrophobic property of the surface improves gradually. The water contact angle of the as-sprayed coating surface increases from 110° to 148° after modification by stearic acid and up to 154° by FAS. Furthermore, the resultant surface with super-hydrophobicity exhibits an excellent stability.
Influence of bases on hydrothermal synthesis of titanate nanostructures
NASA Astrophysics Data System (ADS)
Sikhwivhilu, Lucky M.; Sinha Ray, Suprakas; Coville, Neil J.
2009-03-01
A hydrothermal treatment of titanium dioxide (TiO2) with various bases (i.e., LiOH, NaOH, KOH, and NH4OH) was used to prepare materials with unique morphologies, relatively small crystallite sizes, and large specific surface areas. The experimental results show that the formation of TiO2 is largely dependent on the type, strength and concentration of a base. The effect of the nature of the base used and the concentration of the base on the formation of nanostructures were investigated using X-ray diffraction, Raman spectroscopy, transmission and scanning electron microscopy, as well as surface area measurements. Sodium hydroxide (NaOH) and potassium hydroxide (KOH) were both used to transform the morphology of starting TiO2 material.
Material Characterization of Microsphere-Based Scaffolds with Encapsulated Raw Materials
Sridharan, BanuPriya; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.
2016-01-01
“Raw materials,” or materials capable of serving both as building blocks and as signals, which are often but not always natural materials, are taking center stage in biomaterials for contemporary regenerative medicine. In osteochondral tissue engineering, a field leveraging the underlying bone to facilitate cartilage regeneration, common raw materials include chondroitin sulfate (CS) for cartilage and β-tricalcium phosphate (TCP) for bone. Building on our previous work with gradient scaffolds based on microspheres, here we delved deeper into the characterization of individual components. In the current study, the release of CS and TCP from poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds was evaluated over a time period of 4 weeks. Raw material encapsulated groups were compared to ‘blank’ groups and evaluated for surface topology, molecular weight, and mechanical performance as a function of time. The CS group may have led to increased surface porosity, and the addition of CS improved the mechanical performance of the scaffold. The finding that CS was completely released into the surrounding media by 4 weeks has a significant impact on future in vivo studies, given rapid bioavailability. The addition of TCP seemed to contribute to the rough external appearance of the scaffold. The current study provides an introduction to degradation patterns of homogenous raw material encapsulated scaffolds, providing characterization data to advance the field of microsphere-based scaffolds in tissue engineering. PMID:27040236
Graphene-based materials for tissue engineering.
Shin, Su Ryon; Li, Yi-Chen; Jang, Hae Lin; Khoshakhlagh, Parastoo; Akbari, Mohsen; Nasajpour, Amir; Zhang, Yu Shrike; Tamayol, Ali; Khademhosseini, Ali
2016-10-01
Graphene and its chemical derivatives have been a pivotal new class of nanomaterials and a model system for quantum behavior. The material's excellent electrical conductivity, biocompatibility, surface area and thermal properties are of much interest to the scientific community. Two-dimensional graphene materials have been widely used in various biomedical research areas such as bioelectronics, imaging, drug delivery, and tissue engineering. In this review, we will highlight the recent applications of graphene-based materials in tissue engineering and regenerative medicine. In particular, we will discuss the application of graphene-based materials in cardiac, neural, bone, cartilage, skeletal muscle, and skin/adipose tissue engineering. We will also discuss the potential risk factors of graphene-based materials in tissue engineering. In conclusion, we will outline the opportunities in the usage of graphene-based materials for clinical applications. Published by Elsevier B.V.
Hossam, A. Eid; Rafi, A. Togoo; Ahmed, A Saleh; Sumanth, Phani CR
2013-01-01
Background: This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities. Materials & Methods: Nanofilled, hybrid, silorane and flowable composites were tested. Forty extracted teeth served as specimen and were divided into 4 groups of 10 specimens, with each group receiving a different treatment and were examined by a Field emission scanning electron microscope. Bacterial suspension was then added to the pellicle-coated specimens, and then bacterial adhesion was analyzed by using image analyzing program. Results: Flowable and silorane-based composites showed considerably smoother surfaces and lesser bacterial count in comparison to other types, proving that bacterial adhesion is directly proportional to surface roughness. Conclusion: The use of ultrasonic scalers affects the surfaces of composite restorative materials. Routine periodontal scaling should be carried out very carefully, and polishing of the scaled surfaces may overcome the alterations in roughness, thus preventing secondary caries, surface staining, plaque accumulation and subsequent periodontal inflammation. How to cite this article: Eid H A, Togoo R A, Saleh A A, Sumanth C R. Surface Topography of Composite Restorative Materials following Ultrasonic Scaling and its Impact on Bacterial Plaque Accumulation. An In-Vitro SEM Study. J Int Oral Health 2013; 5(3):13-19. PMID:24155597
Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method
ERIC Educational Resources Information Center
Saini, Vipin K.; Pires, Joao
2012-01-01
Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…
Sezen, Meltem; Bakan, Feray
2015-12-01
Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.
Cellulose-Based Biomimetics and Their Applications.
Almeida, Ana P C; Canejo, João P; Fernandes, Susete N; Echeverria, Coro; Almeida, Pedro L; Godinho, Maria H
2018-05-01
Nature has been producing cellulose since long before man walked the surface of the earth. Millions of years of natural design and testing have resulted in cellulose-based structures that are an inspiration for the production of synthetic materials based on cellulose with properties that can mimic natural designs, functions, and properties. Here, five sections describe cellulose-based materials with characteristics that are inspired by gratings that exist on the petals of the plants, structurally colored materials, helical filaments produced by plants, water-responsive materials in plants, and environmental stimuli-responsive tissues found in insects and plants. The synthetic cellulose-based materials described herein are in the form of fibers and films. Fascinating multifunctional materials are prepared from cellulose-based liquid crystals and from composite cellulosic materials that combine functionality with structural performance. Future and recent applications are outlined. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An algorithm-based topographical biomaterials library to instruct cell fate
Unadkat, Hemant V.; Hulsman, Marc; Cornelissen, Kamiel; Papenburg, Bernke J.; Truckenmüller, Roman K.; Carpenter, Anne E.; Wessling, Matthias; Post, Gerhard F.; Uetz, Marc; Reinders, Marcel J. T.; Stamatialis, Dimitrios; van Blitterswijk, Clemens A.; de Boer, Jan
2011-01-01
It is increasingly recognized that material surface topography is able to evoke specific cellular responses, endowing materials with instructive properties that were formerly reserved for growth factors. This opens the window to improve upon, in a cost-effective manner, biological performance of any surface used in the human body. Unfortunately, the interplay between surface topographies and cell behavior is complex and still incompletely understood. Rational approaches to search for bioactive surfaces will therefore omit previously unperceived interactions. Hence, in the present study, we use mathematical algorithms to design nonbiased, random surface features and produce chips of poly(lactic acid) with 2,176 different topographies. With human mesenchymal stromal cells (hMSCs) grown on the chips and using high-content imaging, we reveal unique, formerly unknown, surface topographies that are able to induce MSC proliferation or osteogenic differentiation. Moreover, we correlate parameters of the mathematical algorithms to cellular responses, which yield novel design criteria for these particular parameters. In conclusion, we demonstrate that randomized libraries of surface topographies can be broadly applied to unravel the interplay between cells and surface topography and to find improved material surfaces. PMID:21949368
Protective Surfacing for Playgrounds.
ERIC Educational Resources Information Center
Frost, Joe L.
Noting that 90 percent of serious playground injuries result from falls to hard surfaces, this paper reviews the advantages and disadvantages of various playground surfacing materials in terms of cost, climate, durability, aesthetics, and play value. Findings are based on the personal experience of the author, government documents, laboratory…
Comparison of time-dependent changes in the surface hardness of different composite resins
Ozcan, Suat; Yikilgan, Ihsan; Uctasli, Mine Betul; Bala, Oya; Kurklu, Zeliha Gonca Bek
2013-01-01
Objective: The aim of this study was to evaluate the change in surface hardness of silorane-based composite resin (Filtek Silorane) in time and compare the results with the surface hardness of two methacrylate-based resins (Filtek Supreme and Majesty Posterior). Materials and Methods: From each composite material, 18 wheel-shaped samples (5-mm diameter and 2-mm depth) were prepared. Top and bottom surface hardness of these samples was measured using a Vicker's hardness tester. The samples were then stored at 37°C and 100% humidity. After 24 h and 7, 30 and 90 days, the top and bottom surface hardness of the samples was measured. In each measurement, the rate between the hardness of the top and bottom surfaces were recorded as the hardness rate. Statistical analysis was performed by one-way analysis of variance, multiple comparisons by Tukey's test and binary comparisons by t-test with a significance level of P = 0.05. Results: The highest hardness values were obtained from each two surfaces of Majesty Posterior and the lowest from Filtek Silorane. Both the top and bottom surface hardness of the methacrylate based composite resins was high and there was a statistically significant difference between the top and bottom hardness values of only the silorane-based composite, Filtek Silorane (P < 0.05). The lowest was obtained with Filtek Silorane. The hardness values of all test groups increased after 24 h (P < 0.05). Conclusion: Although silorane-based composite resin Filtek Silorane showed adequate hardness ratio, the use of incremental technic during application is more important than methacrylate based composites. PMID:24966724
Surface tension models for a multi-material ALE code with AMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wangyi; Koniges, Alice; Gott, Kevin
A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less
Surface tension models for a multi-material ALE code with AMR
Liu, Wangyi; Koniges, Alice; Gott, Kevin; ...
2017-06-01
A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less
Functionalization of graphene for efficient energy conversion and storage.
Dai, Liming
2013-01-15
As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious application of these site-selective reactions to graphene sheets has opened up a rich field of graphene-based energy materials with enhanced performance in energy conversion and storage. These results reveal the versatility of surface functionalization for making sophisticated graphene materials for energy applications. Even though many covalent and noncovalent functionalization methods have already been reported, vast opportunities remain for developing novel graphene materials for highly efficient energy conversion and storage systems.
Novel cavitation fluid jet polishing process based on negative pressure effects.
Chen, Fengjun; Wang, Hui; Tang, Yu; Yin, Shaohui; Huang, Shuai; Zhang, Guanghua
2018-04-01
Traditional abrasive fluid jet polishing (FJP) is limited by its high-pressure equipment, unstable material removal rate, and applicability to ultra-smooth surfaces because of the evident air turbulence, fluid expansion, and a large polishing spot in high-pressure FJP. This paper presents a novel cavitation fluid jet polishing (CFJP) method and process based on FJP technology. It can implement high-efficiency polishing on small-scale surfaces in a low-pressure environment. CFJP uses the purposely designed polishing equipment with a sealed chamber, which can generate a cavitation effect in negative pressure environment. Moreover, the collapse of cavitation bubbles can spray out a high-energy microjet and shock wave to enhance the material removal. Its feasibility is verified through researching the flow behavior and the cavitation results of the negative pressure cavitation machining of pure water in reversing suction flow. The mechanism is analyzed through a computational fluid dynamics simulation. Thus, its cavitation and surface removal mechanisms in the vertical CFJP and inclined CFJP are studied. A series of polishing experiments on different materials and polishing parameters are conducted to validate its polishing performance compared with FJP. The maximum removal depth increases, and surface roughness gradually decreases with increasing negative outlet pressures. The surface becomes smooth with the increase of polishing time. The experimental results confirm that the CFJP process can realize a high material removal rate and smooth surface with low energy consumption in the low-pressure environment, together with compatible surface roughness to FJP. Copyright © 2017 Elsevier B.V. All rights reserved.
Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.
Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian
2018-01-17
Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.
NASA Astrophysics Data System (ADS)
Psakhie, S. G.; Lotkov, A. I.; Meisner, L. L.; Meisner, S. N.; Matveeva, V. A.
2013-02-01
The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by aqueous solutions of NaCl (artificial body fluid) and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ˜3400 and ˜6000 h, respectively (for the artificial plasma solution, a nearly 20-fold decrease in the Ni concentration is observed.)
Cross-cutting High Surface Area Graphene-based Frameworks with Controlled Pore Structure/Dopants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaillard, J.
The goal of this project is to enhance the performance of graphene-based materials by manufacturing specific 3D architectures. The materials have global applications regarding fuel cell catalysts, gas adsorbents, supercapacitor/battery electrodes, ion (e.g., actinide) capture, gas separation, oil adsorption, and catalysis. This research focuses on hydrogen storage for hydrogen fuel cell vehicles with a potential transformational impact on hydrogen adsorbents that exhibit high gravimetric and volumetric density, a clean energy application sought by the Department of Energy. The development of an adsorbent material would enable broad commercial opportunities in hydrogen-fueled vehicles, promote new advanced nanomanufacturing scale-up, and open other opportunitiesmore » at Savannah River National Laboratory to utilize a high surface area material that is robust, chemically stable, and radiation resistant.« less
van Manen, Teunis; Janbaz, Shahram
2017-01-01
Materials and devices with advanced functionalities often need to combine complex 3D shapes with functionality-inducing surface features. Precisely controlled bio-nanopatterns, printed electronic components, and sensors/actuators are all examples of such surface features. However, the vast majority of the refined technologies that are currently available for creating functional surface features work only on flat surfaces. Here we present initially flat constructs that upon triggering by high temperatures change their shape to a pre-programmed 3D shape, thereby enabling the combination of surface-related functionalities with complex 3D shapes. A number of shape-shifting materials have been proposed during the last few years based on various types of advanced technologies. The proposed techniques often require multiple fabrication steps and special materials, while being limited in terms of the 3D shapes they could achieve. The approach presented here is a single-step printing process that requires only a hobbyist 3D printer and inexpensive off-the-shelf materials. It also lends itself to a host of design strategies based on self-folding origami, instability-driven pop-up, and ‘sequential’ shape-shifting to unprecedentedly expand the space of achievable 3D shapes. This combination of simplicity and versatility is a key to widespread applications. PMID:29308207
Kojic, M; Milosevic, M; Kojic, N; Kim, K; Ferrari, M; Ziemys, A
2014-02-01
Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts.
Kojic, M.; Milosevic, M.; Kojic, N.; Kim, K.; Ferrari, M.; Ziemys, A.
2014-01-01
Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts. PMID:24578582
Surface design methodology - challenge the steel
NASA Astrophysics Data System (ADS)
Bergman, M.; Rosen, B.-G.; Eriksson, L.; Anderberg, C.
2014-03-01
The way a product or material is experienced by its user could be different depending on the scenario. It is also well known that different materials and surfaces are used for different purposes. When optimizing materials and surface roughness for a certain something with the intention to improve a product, it is important to obtain not only the physical requirements, but also the user experience and expectations. Laws and requirements of the materials and the surface function, but also the conservative way of thinking about materials and colours characterize the design of medical equipment. The purpose of this paper is to link the technical- and customer requirements of current materials and surface textures in medical environments. By focusing on parts of the theory of Kansei Engineering, improvements of the companys' products are possible. The idea is to find correlations between desired experience or "feeling" for a product, -customer requirements, functional requirements, and product geometrical properties -design parameters, to be implemented on new improved products. To be able to find new materials with the same (or better) technical requirements but a higher level of user stimulation, the current material (stainless steel) and its surface (brushed textures) was used as a reference. The usage of focus groups of experts at the manufacturer lead to a selection of twelve possible new materials for investigation in the project. In collaboration with the topical company for this project, three new materials that fulfil the requirements -easy to clean and anti-bacterial came to be in focus for further investigation in regard to a new design of a washer-disinfector for medical equipment using the Kansei based Clean ability approach CAA.
Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A
2015-03-01
In this study, the influence of surface morphology, reagent ions and surface restructuring effects on atmospheric pressure laser desorption/ionization (LDI) for small molecules after laser irradiation of palladium self-assembled nanoparticular (Pd-NP) structures has been systematically studied. The dominant role of surface morphology during the LDI process, which was previously shown for silicon-based substrates, has not been investigated for metal-based substrates before. In our experiments, we demonstrated that both the presence of reagent ions and surface reorganization effects--in particular, melting--during laser irradiation was required for LDI activity of the substrate. The synthesized Pd nanostructures with diameters ranging from 60 to 180 nm started to melt at similar temperatures, viz. 890-898 K. These materials exhibited different LDI efficiencies, however, with Pd-NP materials being the most effective surface in our experiments. Pd nanostructures of diameters >400-800 nm started to melt at higher temperatures, >1000 K, making such targets more resistant to laser irradiation, with subsequent loss of LDI activity. Our data demonstrated that both melting of the surface structures and the presence of reagent ions were essential for efficient LDI of the investigated low molecular weight compounds. This dependence of LDI on melting points was exploited further to improve the performance of Pd-NP-based sampling targets. For example, adding sodium hypophosphite as reducing agent to Pd electrolyte solutions during synthesis lowered the melting points of the Pd-NP materials and subsequently gave reduced laser fluence requirements for LDI. Copyright © 2015 John Wiley & Sons, Ltd.
Guo, Ying; Lippitz, Andreas; Saftien, Paul; Unger, Wolfgang E S; Kemnitz, Erhard
2015-03-21
Sol-gel prepared ternary FeF3-MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3-MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3-CaF2 and FeF3-SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties.
SU-F-T-671: Effects of Collimator Material On Proton Minibeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E; Sandison, G; Cao, N
2016-06-15
Purpose: To investigate the dosimetric effects of collimator material on spatially modulated proton minibeams (pMBRT). Methods: pMBRT holds promise to exhibit shallow depth normal-tissue sparing effects similar to synchrotron based microbeams while also retaining potential for uniform dose distributions for tumor targets. TOPAS Monte Carlo simulations were performed for a 5cm thick multislit collimator with 0.3mm slits and 1mm center-to-center spacing for a 50.5MeV proton minibeam while varying collimator material between brass, tungsten, and iron. The collimator was placed both “flush” at the water phantom surface and at 5cm distance to investigate the effects on surface dose, peak-to-valley-dose-ratio (PVDR) andmore » neutron contribution. Results: For flush placement, the neutron dose at the phantom surface for the tungsten collimator was approximately 20% higher than for brass and iron. This was not reflected in the overall surface dose, which was comparable for all materials due to the relatively low neutron contribution of <0.1%. When the collimator was retracted, the overall neutron contribution was essentially identical for all three collimators. Surface dose dropped by ∼40% for all collimator materials with air gap compared to being flush with the phantom surface. This surface dose reduction was at the cost of increase in valley dose for all collimator materials due to increased angular divergence of the mini-beams at the surface and their consequent geometric penumbra at depth. When the collimator was placed at distance from the phantom surface the PVDR decreased. The peak-to-entrance-dose ratio was highest for the iron collimator with 5cm air gap. Conclusion: The dosimetric difference between the collimator materials is minimal despite the relatively higher neutron contribution at the phantom surface for the tungsten collimator when placed flush. The air gap between the collimator and phantom surface strongly influences all dosimetry parameters due to the influence of scatter on the narrow spatial modulation.« less
Guo, Shaolong; Zhang, Feihu; Zhang, Yong; Luan, Dianrong
2014-01-01
Through the polishing experiments of potassium dihydrogen phosphate (KDP) crystals based on deliquescent action, the effect of several major factors, including crystal's initial surface state, polishing time, and revolution of polishing plate, on material removal was researched. Under certain experimental conditions, the rules of material removal were reached, and experimental results are discussed, which lays the foundation for popularization and application of polishing technology for KDP crystals based on deliquescent action.
Band Formation and Ocean-Surface Interaction on Europa and Ganymede
NASA Astrophysics Data System (ADS)
Howell, Samuel M.; Pappalardo, Robert T.
2018-05-01
Geologic activity in the outer H2O ice shells of Europa and Ganymede, Galilean moons of Jupiter, may facilitate material exchange between global water oceans and the icy surface, fundamentally affecting potential habitability and the future search for life. Spacecraft imagery reveals surfaces rich with tectonic bands, predominantly attributed to the extension of brittle ice overlaying a convecting ice layer. However, the details of band-forming processes and links to potential ocean-surface exchange have remained elusive. We simulate ice shell faulting and convection with two-dimensional numerical models and track the movement of "fossil" ocean material frozen into the base of the ice shell and deformed through geologic time. We find that distinct band types form within a spectrum of extensional terrains correlated to lithosphere strength, governed by lithosphere thickness and cohesion. Furthermore, we find that smooth bands formed in weak lithosphere promote exposure of fossil ocean material at the surface.
Prevention of bacterial adhesion to zwitterionic biocompatible mesoporous glasses.
Sánchez-Salcedo, Sandra; García, Ana; Vallet-Regí, María
2017-07-15
Novel materials, based on Mesoporous Bioactive Glasses (MBGs) in the ternary system SiO 2 -CaO-P 2 O 5 , decorated with (3-aminopropyl)triethoxysilane (APTES) and subsequently with amino acid Lysine (Lys), by post-grafting method on the external surface of the glasses (named MBG-NH 2 and MBG-Lys), are reported. The surface functionalization with organic groups did not damage the mesoporous network and their structural and textural properties were also preserved despite the high solubility of MBG matrices. The incorporation of Lys confers a zwitterionic nature to these MBG materials due to the presence of adjacent amine and carboxylic groups in the external surface. At physiologic pH, this coexistence of basic amine and carboxilic acid groups from anchored Lys provided zero surface charge named zwitterionic effect. This behaviour could give rise to potential applications of antibacterial adhesion. Therefore, in order to assess the influence of zwitterionic nature in in vitro bacterial adhesion, studies were carried out with Staphylococcus aureus. It was demonstrated that the efficient interaction of these zwitterionic pairs onto the MBG surfaces reduced bacterial adhesion up to 99.9% compared to bare MBGs. In order to test the suitability of zwitterionic MBGs materials as bone grafts, their cytocompatibility was investigated in vitro with MC3T3-E1 preosteoblasts. These findings suggested that the proposed surface functionalization strategy provided MBG materials with notable antibacterial adhesion properties, hence making these materials promising candidates for local bone infection therapy. The present research work is focused in finding a preventive treatment of bone infection based on Mesoporous Bioactive Glasses (MBGs) with antibacterial adhesion properties obtained by zwitterionic surface modification. MBGs exhibit unique nanostructural, textural and bioactive characteristics. The novelty and originality of this manuscript is based on the design and optimization of a straightforward functionalization method capable of providing MBGs with zwitterionic surfaces that are able to inhibit bacterial adhesion without affecting their cytocompatibility. This new characteristic enhanced the MBG properties to avoid the bacterial adherence onto the implant surfaces for bone tissue engineering applications. Subsequently, it could help to decrease the infection rates after implantation surgery, which represents one of the most serious complications associated to surgical treatments of bone diseases and fractures. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Meyers, Steven R.; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B.; Grinstaff, Mark W.; Kenan, Daniel J.
2013-01-01
Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remains limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, “Interfacial Biomaterials” (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture. PMID:18929406
NASA Technical Reports Server (NTRS)
Perey, D. F.
1996-01-01
Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique, based on the principle of Optically Stimulated Electron Emission (OSEE), has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it is non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be sent to an external computer for archiving or analysis.
In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components
Subramanian, Ramesh
2001-01-01
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base, planar-grained thermal barrier layer (28) applied by air plasma spraying on the alloy surface, where a heat resistant ceramic oxide overlay material (32') covers the bottom thermal barrier coating (28), and the overlay material is the reaction product of the precursor ceramic oxide overlay material (32) and the base thermal barrier coating material (28).
Space station protective coating development
NASA Technical Reports Server (NTRS)
Pippin, H. G.; Hill, S. G.
1989-01-01
A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.
Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.
Chinga-Carrasco, Gary; Syverud, Kristin
2014-09-01
Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels
Syverud, Kristin
2014-01-01
Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. PMID:24713295
Leonardi, Natalia M; Tesán, Fiorella C; Zubillaga, Marcela B; Salgueiro, María J
2014-12-01
In accord with as-low-as-reasonably-achievable and good-manufacturing-practice concepts, the present study evaluated the efficiency of radioactivity decontamination of materials commonly used in laboratory surfaces and whether solvent spills on these materials affect the findings. Four materials were evaluated: stainless steel, a surface comprising one-third acrylic resin and two-thirds natural minerals, an epoxy cover, and vinyl-based multipurpose flooring. Radioactive material was eluted from a (99)Mo/(99m)Tc generator, and samples of the surfaces were control-contaminated with 37 MBq (100 μL) of this eluate. The same procedure was repeated with samples of surfaces previously treated with 4 solvents: methanol, methyl ethyl ketone, acetone, and ethanol. The wet radioactive contamination was allowed to dry and then was removed with cotton swabs soaked in soapy water. The effectiveness of decontamination was defined as the percentage of activity removed per cotton swab, and the efficacy of decontamination was defined as the total percentage of activity removed, which was obtained by summing the percentages of activity in all the swabs required to complete the decontamination. Decontamination using our protocol was most effective and most efficacious for stainless steel and multipurpose flooring. Moreover, treatment with common organic solvents seemed not to affect the decontamination of these surfaces. Decontamination of the other two materials was less efficient and was interfered with by the organic solvents; there was also great variability in the overall results obtained for these other two materials. In expanding our laboratory, it is possible for us to select those surface materials on which our decontamination protocol works best. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Gaburro, Nicola; Marchioro, Giacomo; Daffara, Claudia
2017-07-01
Surface metrology of artworks requires the design of suitable devices for in-situ non-destructive measurement together with reliable procedures for an effective analysis of such non-engineered variegate objects. To advance the state-of-the-art it has been implemented a versatile optical micro-profilometry taking advantage of the adapt- ability of conoscopic holography sensors, able to operate with irregular shapes and composite materials (diffusive, specular, and polychrome) of artworks. The scanning technique is used to obtain wide field and high spatially resolved areal profilometry. The prototype has a modular scheme based on a set of conoscopic sensors, extending the typical design based on a scanning stage and a single probe with a limited bandwidth, thus allowing the collection of heights data from surface with different scales and materials with variegate optical response. The system was optimized by characterizing the quality of the measurement with the probes triggered in continuous scanning modality. The results obtained on examples of cultural heritage objects (2D paintings, 3D height-relief) and materials (pictorial, metallic) demonstrate the versatility of the implemented device.
NASA Astrophysics Data System (ADS)
Chu, Fuqiang; Wu, Xiaomin
2016-05-01
Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.
Influence of the Cutting Conditions in the Surface Finishing of Turned Pieces of Titanium Alloys
NASA Astrophysics Data System (ADS)
Huerta, M.; Arroyo, P.; Sánchez Carrilero, M.; Álvarez, M.; Salguero, J.; Marcos, M.
2009-11-01
Titanium is a material that, despite its high cost, is increasingly being introduced in the aerospace industry due to both, its weight, its mechanical properties and its corrosion potential, very close to that of carbon fiber based composite material. This fact allows using Ti to form Fiber Metal Laminates Machining operations are usually used in the manufacturing processes of Ti based aerospace structural elements. These elements must be machined under high surface finish requirements. Previous works have shown the relationship between the surface roughness and the tool changes in the first instants of turning processes. From these results, new tests have been performed in an aeronautical factory, in order to analyse roughness in final pieces.
NASA Astrophysics Data System (ADS)
Zha, B. L.; Shi, Y. A.; Wang, J. J.; Su, Q. D.
2018-01-01
Self-designed oxygen-kerosene ablation system was employed to study the ablation characteristics of silicone rubber based thermal insulation materials under the condition of boron oxide particles erosion. The ablation test was designed with a mass fraction of 1.69% boron oxide particles and particles-free, the microstructure and elemental analysis of the specimens before and after ablation were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersion Spectrum (EDS). Experiment results show that the average mass ablation rate of the materials was 0.0099 g•s-1 and the average ablation rate was -0.025 mm•s-1 under the condition of pure gas phase ablation; and the average mass ablation rate of the multiphase ablation test group was 0.1775 g•s-1, whose average ablation rate was 0.437 mm•s-1 during the ablation process, the boron oxide particles would adhere a molten layer on the flame contact surface of the specimen, which covering the pores on the material surface, blocking the infiltration channel for the oxidizing component and slowing down the oxidation loss rate of the material below the surface, but because the particles erosion was the main reason for material depletion, the combined effect of the above both led to the upward material ablation rates of Silicone Rubber.
Wei, Dongning; Li, Bingyu; Huang, Hongli; Luo, Lin; Zhang, Jiachao; Yang, Yuan; Guo, Jiajun; Tang, Lin; Zeng, Guangming; Zhou, Yaoyu
2018-04-01
Nowadays, agricultural contamination is becoming more and more serious due to the rapid growth of agricultural industry, which discharged antibiotics, pesticides or toxic metals into farmlands. A large number of researchers have applied biochar-based functional materials to the treatment of agricultural wastewater contamination. Meanwhile, biochar has also proved to be a very promising and effective technology in water purification field due to its various beneficial properties (e.g., cost effective, high specific surface area, and surface reactive groups). The focus of this review is to highlight the fabrication methods and application of biochar-based functional materials with the removal of different agricultural contaminants, and discuss the underlying mechanisms. However, the application of biochar-based functional materials is currently under its infancy, with the main hindrance is identified as the gap between laboratory scale and field application, immaturity of engineered biochar production technologies, and lack of quality standards. In order to fill these knowledge gaps, more efforts should be made to pay for the relevant research in future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.
2018-01-01
The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in corrosive environments.
Elena, Poverenov; Miri, Klein
2018-05-16
Different synthetic strategies for the formation of contact active antimicrobial materials utilizing covalent linkage of quaternary ammonium compounds (QACs) were reviewed. There is a demand to find methods that will prevent bacterial fouling without the release of antimicrobial agents, because biocides cause environment pollution and promote the development of bacteria resistance mechanisms. The contact active antimicrobial surfaces may provide a useful tool for this purpose. The covalent surface grafting of QACs seems to be a feasible and promising approach for the formation of safe and effective antimicrobial materials that could be utilized for medical devices, food industry, water treatment systems and other applications. This manuscript reviews covalent attachment of QACs to form contact active antimicrobial materials based on glass, metals, synthetic and natural polymers. The review emphasizes the description of different synthetic methods that are used for the covalent linkage. Direct covalent linkage of QACs to the material surfaces, a linkage via auxiliary nanoparticles (NPs), or spacers, controlled radical polymerization techniques and a linkage to pre-activated surfaces are discussed. The physico-chemical properties and biological activity of the modified surfaces are also described. This review does not cover non-covalent grafting of QACs and incorporation of QACs into a bulk material. Copyright © 2018 Elsevier B.V. All rights reserved.
Functionalization of polydimethylsiloxane membranes to be used in the production of voice prostheses
NASA Astrophysics Data System (ADS)
Ferreira, Paula; Carvalho, Álvaro; Ruivo Correia, Tiago; Paiva Antunes, Bernardo; Joaquim Correia, Ilídio; Alves, Patrícia
2013-10-01
The voice is produced by the vibration of vocal cords which are located in the larynx. Therefore, one of the major consequences for patients subjected to laryngectomy is losing their voice. In these cases, a synthetic one-way valve set (voice prosthesis) can be implanted in order to allow restoration of speech. Most voice prostheses are produced with silicone-based materials such as polydimethylsiloxane (PDMS). This material has excellent properties, such as optical transparency, chemical and biological inertness, non-toxicity, permeability to gases and excellent mechanical resistance that are fundamental for its application in the biomedical field. However, PDMS is very hydrophobic and this property causes protein adsorption which is followed by microbial adhesion and biofilm formation. To overcome these problems, surface modification of materials has been proposed in this study. A commercial silicone elastomer, SylgardTM 184 was used to prepare membranes whose surface was modified by grafting 2-hydroxyethylmethacrylate and methacrylic acid by low-pressure plasma treatment. The hydrophilicity, hydrophobic recovery and surface energy of the produced materials were determined. Furthermore, the cytotoxicity and antibacterial activity of the materials were also assessed. The results obtained revealed that the PDMS surface modification performed did not affect the material's biocompatibility, but decreased their hydrophobic character and bacterial adhesion and growth on its surface.
Material properties that predict preservative uptake for silicone hydrogel contact lenses.
Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B
2012-11-01
To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubisztal, J., E-mail: julian.kubisztal@us.edu.pl
A new approach to numerical analysis of maps of material surface has been proposed and discussed in detail. It was concluded that the roughness factor RF and the root mean square roughness S{sub q} show a saturation effect with increasing size of the analysed maps what allows determining the optimal map dimension representative of the examined material. A quantitative method of determining predominant direction of the surface texture based on the power spectral density function is also proposed and discussed. The elaborated method was applied in surface analysis of Ni + Mo composite coatings. It was shown that co-deposition ofmore » molybdenum particles in nickel matrix leads to an increase in surface roughness. In addition, a decrease in size of the embedded Mo particles in Ni matrix causes an increase of both the surface roughness and the surface texture. It was also stated that the relation between the roughness factor and the double layer capacitance C{sub dl} of the studied coatings is linear and allows determining the double layer capacitance of the smooth nickel electrode. - Highlights: •Optimization of the procedure for the scanning of the material surface •Quantitative determination of the surface roughness and texture intensity •Proposition of the parameter describing privileged direction of the surface texture •Determination of the double layer capacitance of the smooth electrode.« less
The effects of different types of investments on the alpha-case layer of titanium castings.
Guilin, Yu; Nan, Li; Yousheng, Li; Yining, Wang
2007-03-01
Different types of investments affect the formation of the alpha-case (alpha-case) layer on titanium castings. This alpha-case layer may possibly alter the mechanical properties of cast titanium, which may influence the fabrication of removable and fixed prostheses. The formation mechanism for the alpha-case layer is not clear. The aim of this study was to evaluate the effect of 3 types of investments on the microstructure, composition, and microhardness of the alpha-case layer on titanium castings. Fifteen wax columns with a diameter of 5 mm and a length of 40 mm were divided into 3 groups of 5 patterns each. Patterns were invested using 3 types of investment materials, respectively, and were cast in pure titanium. The 3 types of materials tested were SiO(2)-, Al(2)O(3)-, and MgO-based investments. All specimens were sectioned and prepared for metallographic observation. The microstructure and composition of the surface reaction layer of titanium castings were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The surface microhardness (VHN) for all specimens was measured using a hardness testing machine, and a mean value for each group was calculated. The alpha-case layer on titanium castings invested with SiO(2)-, Al(2)O(3)-, and MgO-based investments consisted of 3 layers-namely, the oxide layer, alloy layer, and hardening layer. In this study, the oxide layer and alloy layer were called the reaction layer. The thickness of the reaction layer for titanium castings using SiO(2)-, Al(2)O(3)-, and MgO-based investments was approximately 80 microm, 50 microm, and 14 microm, respectively. The surface microhardness of titanium castings made with SiO(2)-based investments was the highest, and that with MgO-based investments was the lowest. The type of investment affects the microstructure and microhardness of the alpha-case layer of titanium castings. Based on the thickness of the surface reaction layer and the surface microhardness of titanium castings, MgO-based investment materials may be the best choice for casting these materials.
Uppal, Mudit; Ganesh, Arathi; Balagopal, Suresh; Kaur, Gurleen
2013-07-01
To evaluate the effect of three polishing protocols that could be implemented at recall on the surface roughness of two direct esthetic restorative materials. Specimens (n = 40) measuring 8 mm (length) × 5 mm (width) × 4 mm (height) were fabricated in an acrylic mold using two light-cured resin-based materials (microfilled composite and microhybrid composite). After photopolymerization, all specimens were finished and polished with one of three polishing protocols (Enhance, One Gloss, and Sof-Lex polishing systems). The average surface roughness of each treated specimen was determined using 3D optical profilometer. Next all specimens were brushed 60,000 times with nylon bristles at 7200 rpm using crosshead brushing device with equal parts of toothpaste and water used as abrasive medium. The surface roughness of each specimen was measured after brushing followed by repolishing with one of three polishing protocols, and then, the final surface roughness values were determined. The data were analyzed using one-way and two-factor analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD). Significant difference (P < 0.05) in surface roughness was observed. Simulated brushing following initial polishing procedure significantly roughened the surface of restorative material (P < 0.05). Polishing protocols can be used to restore a smooth surface on esthetic restorative materials following simulated tooth brushing.
Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef
2015-01-01
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ. PMID:28793645
Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef
2015-11-03
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.
Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment.
Hirata, Mizuho; Kawasaki, Naohito; Nakamura, Takeo; Matsumoto, Kazuoki; Kabayama, Mineaki; Tamura, Takamichi; Tanada, Seiki
2002-10-01
Organic wastes have been burned for reclamation. However, they have to be recycled and reused for industrial sustainable development. Carbonaceous materials were produced from coffee grounds by microwave treatment. There are many phenolic hydroxyl and carboxyl groups on the surface of carbonaceous materials. The base consumption of the carbonaceous materials was larger than that of the commercially activated carbon. The carbonaceous materials produced from coffee grounds were applied to the adsorbates for the removal of basic dyes (methylene blue and gentian violet) in wastewater. This result indicated that the adsorption of dyes depended upon the surface polar groups on the carbonaceous materials. Moreover, the Freundlich constants of isotherms for the adsorption of methylene blue and gentian violet onto the carbonaceous materials produced from coffee grounds were greater than those for adsorption onto activated carbon or ceramic activated carbon. The interaction was greatest between the surface or porosity of the carbonaceous materials and methylene blue and gentian violet. The microwave treatment would be useful for the carbonization of organic wastes to save energy.
Sheet-like chiro-optical material designs based C(Y) surfaces
NASA Astrophysics Data System (ADS)
Saba, M.; Robisch, A.-L.; Thiel, M.; Hess, O.; Schroeder-Turk, Gerd E.
2017-04-01
A spatial structure for which mirror reflection cannot be represented by rotations and translations is chiral. For photonic crystals and metamaterials, chirality implies the possibility of circular dichroism, that is, that the propagation of left-circularly polarized light may differ from that of right-circularly polarized light. Here we draw attention to chiral sheet- or surface-like geometries based on chiral triply-periodic minimal surfaces. Specifically we analyse two photonic crystal designs based on the C(Y) minimal surface, by band structure analysis and by scattering matrix calculations of the reflection coefficient, for high-dielectric contrasts.
NASA Astrophysics Data System (ADS)
Toommee, S.; Pratumpong, P.
2018-06-01
Zeolite was successfully modified by conventional synthetic route. Polyethylene glycol was employed for surface modification of zeolite. The surface of zeolite exhibited therefore hydrophobic properties. Less than 5 wt% of modified zeolites with uniform size and shape were integrated into polypropylene matrix. Mechanical properties of composite exhibited the similar trend compare to neat polypropylene. Oxygen transmission rate and water vapor transmission rate were evaluated and it exhibited the strong potential to be a good candidate material in active packaging.
Effects of Laser and Shot Peening on Fatigue Crack Growth in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Hatamleh, Omar; Forman, Royce; Lyons, Jed
2006-01-01
The effects of laser, and shot peening on the fatigue life of Friction Stir Welds (FSW) have been investigated. The surface roughness resulting from various peening techniques was assessed, and the fracture surfaces microstructure was characterized. Laser peening resulted in an increase in fatigue life approximately 60%, while shot peening resulted in 10% increase when compared to the unpeened material. The surface roughness of shot peening was significantly higher compared to the base material, while specimens processed with laser peening were relatively smooth.
Storage containers for radioactive material
Groh, Edward F.; Cassidy, Dale A.; Dates, Leon R.
1981-01-01
A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or
Catalyst for hydrotreating carbonaceous liquids
Berg, Lloyd; McCandless, Frank P.; Ramer, Ronald J.
1982-01-01
A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.
The design and implementation of photoacoustic based laser warning receiver for harsh environments
NASA Astrophysics Data System (ADS)
El-Sherif, Ashraf F.; Ayoub, H. S.; El-Sharkawy, Yasser H.; Gomaa, Walid; Hassan, H. H.
2018-01-01
This paper discusses the implementation of new type of laser warning receiver (LWR) system, based on the detection of photoacoustic signals, induced by high power infrared laser designators pulses on target's surfaces. This system appends conventional optoelectronic based LWR to decrease the false alarm rate (FAR) in harsh environments, where ambient conditions are expected to obstruct optical LWR. To improve the sensitivity of the photoacoustic based LWR system, some metallic and polymeric target shielding materials were studied, in order to cover a friendly civil structure, vehicle or a maritime entity with a low cost large area acoustic detector array shield. A thermographic investigation of target surface material- laser reaction, signal processing and system configuration and functional analysis are also presented.
NASA Astrophysics Data System (ADS)
Zhu, Yichao; Wei, Yihai; Guo, Xu
2017-12-01
In the present paper, the well-established Gurtin-Murdoch theory of surface elasticity (Gurtin and Murdoch, 1975, 1978) is revisited from an orbital-free density functional theory (OFDFT) perspective by taking the boundary layer into consideration. Our analysis indicates that firstly, the quantities introduced in the Gurtin-Murdoch theory of surface elasticity can all find their explicit expressions in the derived OFDFT-based theoretical model. Secondly, the derived expression for surface energy density captures a competition between the surface normal derivatives of the electron density and the electrostatic potential, which well rationalises the onset of signed elastic constants that are observed both experimentally and computationally. Thirdly, the established model naturally yields an inversely linear relationship between the materials surface stiffness and its size, which conforms to relevant findings in literature. Since the proposed OFDFT-based model is established under arbitrarily imposed boundary condition of electron density, electrostatic potential and external load, it also has the potential of being used to investigate the electro-mechanical behaviour of nanoscale materials manifesting surface effect.
NASA Astrophysics Data System (ADS)
Basilevsky, A. T.; Mall, U.; Keller, H. U.; Skorov, Yu. V.; Hviid, S. F.; Mottola, S.; Krasilnikov, S. S.; Dabrowski, B.
2017-03-01
This paper is based on geologic analysis of the surface morphology of nucleus of the Jupiter family comet 67P. This comet was visited by the ESA mission Rosetta, which escorted the comet since May 2014 till the end of September 2016 and studied it by 11 instruments of the mission orbiter and 10 instruments of the lander. The nucleus is 4 km in diameter, has a bilobate shape with the smaller (Head) and larger (Body) lobes, and the narrow neck between them. For the analysis, primarily images taken by the Rosetta Navigation camera (NavCam) were used and then complemented by selected images from the ROLIS and OSIRIS cameras. Two major types of the nucleus material are distinguished by us and other researchers: 1) the consolidated nucleus material and 2) the loose material, a kind of cometary regolith, covering the nucleus consolidated material. On the surface of the consolidated material rather long (up to hundreds meters) straight lineaments are distinguishable. They probably correspond to fractures and in some cases to strata. Their presence suggests that the consolidated material is rather compact and lacks voids larger than tens of meters across. Surfaces of consolidated nucleus material typically show knobby appearance at the scales from tens of meters and meters to centimeters and millimeters. This suggests that this material is grainy, consisting of more and less resistant (to surface weathering) ;particles; on the scale of the visible knobs. The geometric analysis of steep slopes based on the nucleus shape model allowed us to estimate a tensile, shear and compressive strength of the consolidated material. It was shown that the 67P consolidated nucleus material is very fragile, and taking into account the scale effect one can conclude that it is as fragile as fresh fallen snow and maybe even more fragile. In addition, estimates of the compressive strength of the surface material were considered at the sites of the first and the last contacts of the Philae lander with the surface. Observations also showed evidence of various downslope and lateral movements of rather large material masses (landslide? avalanche?) as well as boulders and ;fines;, which are driven primarily by gravity and then by the acquired inertia, but in some cases a material transport by dust-gas jets/outbursts could play a role. The latter could also be responsible for formation of the eolian-type ripples.
Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan
2015-04-28
Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.
Critical aspects in the production of periodically ordered mesoporous titania thin films
NASA Astrophysics Data System (ADS)
Soler-Illia, Galo J. A. A.; Angelomé, Paula C.; Fuertes, M. Cecilia; Grosso, David; Boissiere, Cedric
2012-03-01
Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials features such as pore size and geometry, surface functionality and wall structure. Even if a certain control of these characteristics has been provided by the methods reported so far, the needs for the next generation of MTTF require a deeper insight in the physical and chemical processes taking place in their preparation and processing. This article presents a critical discussion of these aspects. This discussion is essential to evolve from know-how to sound knowledge, aiming at a rational materials design of these fascinating systems.Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials features such as pore size and geometry, surface functionality and wall structure. Even if a certain control of these characteristics has been provided by the methods reported so far, the needs for the next generation of MTTF require a deeper insight in the physical and chemical processes taking place in their preparation and processing. This article presents a critical discussion of these aspects. This discussion is essential to evolve from know-how to sound knowledge, aiming at a rational materials design of these fascinating systems. Dedicated to Clément Sanchez, on the first anniversary of his appointment to the Hybrid Materials Chair of the Collège de France.
Grinthal, Alison; Aizenberg, Joanna
2013-10-14
Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design andmore » fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions-able to operate in harsh, changing environments-not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. In conclusion, with nearly unlimited design possibilities and unmatched interfacial properties, liquid materials-as long-term stable interfaces yet in their fully liquid state-may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.« less
Excitation of surface electromagnetic waves in a graphene-based Bragg grating
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901
Excitation of surface electromagnetic waves in a graphene-based Bragg grating.
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.
Laser Micro and Nano Processing of Metals , Ceramics , and Polymers
NASA Astrophysics Data System (ADS)
Pfleging, Wilhelm; Kohler, Robert; Südmeyer, Isabelle; Rohde, Magnus
Laser -based material processing is well investigated for structuring , modification , and bonding of metals , ceramics , glasses, and polymers . Especially for material processing on micrometer, and nanometer scale laser-assisted processes will very likely become more prevalent as lasers offer more cost-effective solutions for advanced material research, and application. Laser ablation , and surface modification are suitable for direct patterning of materials and their surface properties. Lasers allow rapid prototyping and small-batch manufacturing . They can also be used to pattern moving substrates, permitting fly-processing of large areas at reasonable speed. Different types of laser processes such as ablation, modification, and welding can be successfully combined in order to enable a high grade of bulk and surface functionality. Ultraviolet lasers favored for precise and debris-free patterns can be generated without the need for masks, resist materials, or chemicals. Machining of materials, for faster operation, thermally driven laser processes using NIR and IR laser radiation, could be increasingly attractive for a real rapid manufacturing.
Polarimetric scattering behavior of materials at terahertz frequencies
NASA Astrophysics Data System (ADS)
DiGiovanni, David Anthony
Terahertz spectroscopic techniques have long been used to characterize the electromagnetic behavior of materials for use in radar, astronomy, and remote sensing applications. Spectroscopic information is valuable, but additional information about materials is present in the polarization of the scattered radiation. This thesis has investigated the polarimetric scattering behavior of various rough dielectric and metallic materials from 100 GHz to 1.55 THz. Common building materials and terrain, such as sand, gravel, soil, concrete, and roofing shingles, were studied. In order to obtain a better understanding of basic rough surface scattering phenomenology in this region of the spectrum, roughened metal and plastic samples were studied as well. The scattering behavior of these materials was studied as a function of incident angle, roughness, frequency, and polarization. Theoretical scattering models were used to compare measured results to theoretical predictions. Good agreement was observed between scattering measurements and theoretical predictions based on the small perturbation theory for the roughened metal surfaces. However, a substantial disagreement was observed for the rough dielectric surfaces and is discussed.
Huang, Lu; Tian, Mengkun; Wu, Dong; ...
2017-11-24
In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lu; Tian, Mengkun; Wu, Dong
In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less
Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
Kim, Philseok; Wong, Tak-Sing; Alvarenga, Jack; Kreder, Michael J; Adorno-Martinez, Wilmer E; Aizenberg, Joanna
2012-08-28
Ice-repellent coatings can have significant impact on global energy savings and improving safety in many infrastructures, transportation, and cooling systems. Recent efforts for developing ice-phobic surfaces have been mostly devoted to utilizing lotus-leaf-inspired superhydrophobic surfaces, yet these surfaces fail in high-humidity conditions due to water condensation and frost formation and even lead to increased ice adhesion due to a large surface area. We report a radically different type of ice-repellent material based on slippery, liquid-infused porous surfaces (SLIPS), where a stable, ultrasmooth, low-hysteresis lubricant overlayer is maintained by infusing a water-immiscible liquid into a nanostructured surface chemically functionalized to have a high affinity to the infiltrated liquid and lock it in place. We develop a direct fabrication method of SLIPS on industrially relevant metals, particularly aluminum, one of the most widely used lightweight structural materials. We demonstrate that SLIPS-coated Al surfaces not only suppress ice/frost accretion by effectively removing condensed moisture but also exhibit at least an order of magnitude lower ice adhesion than state-of-the-art materials. On the basis of a theoretical analysis followed by extensive icing/deicing experiments, we discuss special advantages of SLIPS as ice-repellent surfaces: highly reduced sliding droplet sizes resulting from the extremely low contact angle hysteresis. We show that our surfaces remain essentially frost-free in which any conventional materials accumulate ice. These results indicate that SLIPS is a promising candidate for developing robust anti-icing materials for broad applications, such as refrigeration, aviation, roofs, wires, outdoor signs, railings, and wind turbines.
Cougnon, Charles; Boisard, Séverine; Cador, Olivier; Dias, Marylène; Levillain, Eric; Breton, Tony
2013-05-18
A TEMPO derivative was covalently grafted onto carbon and gold surfaces via the diazonium chemistry. The acid-dependent redox properties of the nitroxyl group were exploited to elaborate electro-switchable magnetic surfaces. ESR characterization demonstrated the reversible and permanent magnetic character of the material.
Diamond-Based Supercapacitors: Realization and Properties.
Gao, Fang; Nebel, Christoph E
2016-10-26
In this Spotlight on Applications, we describe our recent progress on the fabrication of surface-enlarged boron-doped polycrystalline diamond electrodes, and evaluate their performance in supercapacitor applications. We begin with a discussion of the fabrication methods of porous diamond materials. The diamond surface enlargement starts with a top-down plasma etching method. Although the extra surface area provided by surface roughening or nanostructuring provides good outcome for sensing applications, a capacitance value <1 mF cm -2 or a surface-enlargement factor <100 fail to meet the requirement of a practical supercapacitor. Driven by the need for large surface areas, we recently focused on the tempated-growth method. We worked on both supported and free-standing porous diamond materials to enhance the areal capacitance to the "mF cm -2 " range. With our newly developed free-standing diamond paper, areal capacitance can be multiplied by stacking multilayers of the electrode material. Finally, considering the fact that there is no real diamond-based supercapacitor device up to now, we fabricated the first prototype pouch-cell device based on the free-standing diamond paper to evaluate its performance. The results reveal that the diamond paper is suitable for operation in high potential windows (up to 2.5 V) in aqueous electrolyte with a capacitance of 0.688 mF cm -2 per layer of paper (or 0.645 F g -1 ). Impedance spectroscopy revealed that the operation frequency of the device exceeds 30 Hz. Because of the large potential window and the ability to work at high frequency, the specific power of the device reached 1 × 10 5 W kg -1 . In the end, we made estimations on the future target performance of diamond supercapacitors based on the existing information.
Studies of Surface Charging of Polymers by Indirect Triboelectrification
NASA Astrophysics Data System (ADS)
Mantovani, James; Calle, Carlos; Groop, Ellen; Buehler, Martin
2001-03-01
Charge is known to develop on the surface of an insulating polymer by frictional charging through direct physical contact with another material. We will present results of recent triboelectrification studies of polymer surfaces that utilized an indirect method of frictional charging. This method first involves placing a grounded thin metal foil in stationary contact over the polymer surface. The exposed metal foil is then rubbed with the surface of the material that generates the triboelectric charge. Data is presented for five types of polymers: fiberglass/epoxy, polycarbonate (Lexan), polytetraflouroethylene (Teflon), Rulon J, and polymethylmethacrylate (PMMA, Lucite). The amount of charge that develops on an insulator's surface is measured using the MECA Electrometer, which was developed jointly by NASA Kennedy Space Center and the Jet Propulsion Laboratory to study the electrostatic properties of soil on the surface of Mars. Even though the insulator's surface is electrically shielded from the rubbing material by the grounded metal foil, charge measurements obtained by the MECA Electrometer after the metal foil is separated from the insulator's surface reveal that the insulator's surface does accumulate charge by indirect frictional charging. A possible explanation of the observations will be presented based on a simple contact barrier model.
Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir
2013-08-07
A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material was packed into a standard syringe (0.5 mL) to enhance the ease of use of the sol-gel material and for the elimination of additional mixing and separation procedures during the adsorption, washing and elution steps of the enrichment procedure. It was found that up to 28 phosphopeptides in milk digest were easily detectable by MALDI-MS at femtomole levels (around 20 fmol) using the microextraction syringe within less than one minute.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-01-01
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-04-06
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
An overview of the applications of graphene-based materials in supercapacitors.
Huang, Yi; Liang, Jiajie; Chen, Yongsheng
2012-06-25
Due to their unique 2D structure and outstanding intrinsic physical properties, such as extraordinarily high electrical conductivity and large surface area, graphene-based materials exhibit great potential for application in supercapacitors. In this review, the progress made so far for their applications in supercapacitors is reviewed, including electrochemical double-layer capacitors, pseudo-capacitors, and asymmetric supercapacitors. Compared with traditional electrode materials, graphene-based materials show some novel characteristics and mechanisms in the process of energy storage and release. Several key issues for improving the structure of graphene-based materials and for achieving better capacitor performance, along with the current outlook for the field, are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene-based smart materials
NASA Astrophysics Data System (ADS)
Yu, Xiaowen; Cheng, Huhu; Zhang, Miao; Zhao, Yang; Qu, Liangti; Shi, Gaoquan
2017-09-01
The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or 'smart' materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications.
Kadhim, Abdulhadi; Salim, Evan T.; Fayadh, Saeed M.; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar
2014-01-01
Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm2; t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated. PMID:24737973
Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Bansal, Narottam P.; Lee, Kang N.; Miller, Robert A.
2001-01-01
Thermal barrier and environmental barrier coatings (TBC's and EBC's) have been developed to protect metallic and Si-based ceramic components in gas turbine engines from high temperature attack. Zirconia-yttria based oxides and (Ba,Sr)Al2Si2O8(BSAS)/mullite based silicates have been used as the coating materials. In this study, thermal conductivity values of zirconia-yttria- and BSAS/mullite-based coating materials were determined at high temperatures using a steady-state laser heat flux technique. During the laser conductivity test, the specimen surface was heated by delivering uniformly distributed heat flux from a high power laser. One-dimensional steady-state heating was achieved by using thin disk specimen configuration (25.4 mm diam and 2 to 4 mm thickness) and the appropriate backside air-cooling. The temperature gradient across the specimen thickness was carefully measured by two surface and backside pyrometers. The thermal conductivity values were thus determined as a function of temperature based on the 1-D heat transfer equation. The radiation heat loss and laser absorption corrections of the materials were considered in the conductivity measurements. The effects of specimen porosity and sintering on measured conductivity values were also evaluated.
Li, Dali; Zou, Jiaojuan; Xie, Ruizhen; Wang, Zhihua; Tang, Bin
2018-01-01
Surface texture (ST) has been confirmed as an effective and economical surface treatment technique that can be applied to a great range of materials and presents growing interests in various engineering fields. Ti6Al4V which is the most frequently and successfully used titanium alloy has long been restricted in tribological-related operations due to the shortcomings of low surface hardness, high friction coefficient, and poor abrasive wear resistance. Ti6Al4V has benefited from surface texture-based surface treatments over the last decade. This review begins with a brief introduction, analysis approaches, and processing methods of surface texture. The specific applications of the surface texture-based surface treatments for improving surface performance of Ti6Al4V are thoroughly reviewed from the point of view of tribology and biology. PMID:29587358
High-Voltage Isolation Transformer
NASA Technical Reports Server (NTRS)
Clatterbuck, C. H.; Ruitberg, A. P.
1985-01-01
Arcing and field-included surface erosion reduced by electrostatic shields around windings and ferromagnetic core of 80-kilovolt isolation transformer. Fabricated from high-resistivity polyurethane-based material brushed on critical surfaces, shields maintained at approximately half potential difference of windings.
Mei, May L.; So, Sam Y. C.; Li, Hao; Chu, Chun-Hung
2015-01-01
This study concerned the effect of heat treatment during setting on the physical properties of four resin-based provisional restorative materials: Duralay (polymethyl methacrylate), Trim II (polyethyl methacrylate), Luxatemp (bis-acrylic composite), and Protemp 4 (bis-acrylic composite). Specimens were prepared at 23, 37, or 60 °C for evaluation of flexural strength, surface roughness, color change and marginal discrepancy. Flexural strength was determined by a three-point bending test. Surface profile was studied using atomic force microscopy. Color change was evaluated by comparing the color of the materials before and after placement in coffee. A travelling microscope helped prepare standardized crowns for assessment of marginal discrepancy. Flexural strength of all tested materials cured at 23 °C or 37 °C did not significantly change. The surface roughness and marginal discrepancy of the materials increased at 60 °C curing temperature. Marginal discrepancies, color stability, and other physical properties of materials cured at 23 °C or 37 °C did not significantly change. Flexural strength of certain provisional materials cured at 60 °C increased, but there was also an increase in surface roughness and marginal discrepancy. PMID:28788031
Borgatti, Francesco; Torelli, Piero; Brucale, Marco; Gentili, Denis; Panaccione, Giancarlo; Castan Guerrero, Celia; Schäfer, Bernhard; Ruben, Mario; Cavallini, Massimiliano
2018-03-27
We investigate the solvatochromic effect of a Fe-based spin-crossover (SCO) compound via ambient pressure soft X-ray absorption spectroscopy (AP-XAS) and atomic force microscopy (AFM). AP-XAS provides the direct evidence of the spin configuration for the Fe(II) 3d states of the SCO material upon in situ exposure to specific gas or vapor mixtures; concurrent changes in nanoscale topography and mechanical characteristics are revealed via AFM imaging and AFM-based force spectroscopy, respectively. We find that exposing the SCO material to gaseous helium promotes an effective decrease of the transition temperature of its surface layers, while the exposure to methanol vapor causes opposite surfacial and bulk solvatochromic effects. Surfacial solvatochromism is accompanied by a dramatic reduction of the surface layers stiffness. We propose a rationalization of the observed effects based on interfacial dehydration and solvation phenomena.
Thin Hydrogel Films for Optical Biosensor Applications
Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich
2012-01-01
Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962
Bulk and Thin film Properties of Nanoparticle-based Ionic Materials
NASA Astrophysics Data System (ADS)
Fang, Jason
2008-03-01
Nanoparticle-based ionic materials (NIMS) offer exciting opportunities for research at the forefront of science and engineering. NIMS are hybrid particles comprised of a charged oligomeric corona attached to hard, inorganic nanoparticle cores. Because of their hybrid nature, physical properties --rheological, optical, electrical, thermal - of NIMS can be tailored over an unusually wide range by varying geometric and chemical characteristics of the core and canopy and thermodynamic variables such as temperature and volume fraction. On one end of the spectrum are materials with a high core content, which display properties similar to crystalline solids, stiff waxes, and gels. At the opposite extreme are systems that spontaneously form particle-based fluids characterized by transport properties remarkably similar to simple liquids. In this poster I will present our efforts to synthesize NIMS and discuss their bulk and surface properties. In particular I will discuss our work on preparing smart surfaces using NIMS.
Lamboy, Jorge A.; Arter, Jessica A.; Knopp, Kristeene A.; Der, Denise; Overstreet, Cathie M.; Palermo, Edmund; Urakami, Hiromitsu; Yu, Ting-Bin; Tezgel, Ozgul; Tew, Gregory; Guan, Zhibin; Kuroda, Kenichi; Weiss, Gregory A.
2011-01-01
M13 phage have provided scaffolds for nanostructure synthesis based upon self-assembled inorganic and hard materials interacting with phage-displayed peptides. Additionally, phage display has been used to identify binders to plastic, TiO2, and other surfaces. However, synthesis of phage-based materials through the hybridization of soft materials with the phage surface remains unexplored. Here, we present an efficient “phage wrapping” strategy for the facile synthesis of phage coated with soluble, cationic polymers. Polymers bearing high positive charge densities demonstrated the most effective phage wrapping, as shown by assays for blocking non-specific binding of the anionic phage coat to a high pI target protein. The results establish the functional group requirements for hybridizing phage with soft materials, and solve a major problem in phage display – non-specific binding by the phage to high pI target proteins. PMID:19856910
Incorporating Rich Mesoporosity into a Ceria-Based Catalyst via Mechanochemistry
Zhan, Wangcheng; Yang, Shize; Zhang, Pengfei; ...
2017-08-15
Ceria-based materials possessing mesoporous structures afford higher activity than the corresponding bulk materials in CO oxidation and other catalytic applications, because of the wide pore channel and high surface area. The development of a direct, template-free, and scalable technology for directing porosity inside ceriabased materials is highly welcome. Here in this paper, a family of mesoporous transition-metaldoped ceria catalysts with specific surface areas up to 122 m 2 g -1 is constructed by mechanochemical grinding. No templates, additives, or solvents are needed in this process, while the mechanochemistry-mediated restructuring and the decomposing of the organic group led to plentiful mesopores.more » Interestingly, the copper species are evenly dispersed in the ceria matrix at the atomic scale, as observed in high resolution scanning transmission electron microscopy in high angle annular dark field. The copper-doped ceria materials show good activity in the CO oxidation.« less
NASA Astrophysics Data System (ADS)
Moser, K.; Bergmann, B.; Diemert, J.; Elsner, P.
2014-05-01
In this paper two promising ways to improve the material characteristics of PLA and PHB-V are presented by showing their positive effects on mechanical, optical, and thermal properties. The optimization is achieved by increasing the crystallization from the melt of the polymer chains and the other by means of a reinforcement of the matrices by bio-based materials. In the case of crystallization specific nucleating agents and optimized process parameters promote optimized crystallization conditions and lead particularly in toughness to significant improvements. In addition to crystallization the introduction of cellulose-based reinforcing materials is also a good alternative to improve the ductility of a biopolymer matrix considerably. Due to their polar surface structure cellulose fibres are favouring a very good interaction to the also polar biopolymers. In addition, the polar surfaces of both materials results in very homogeneous dispersion within the compound.
Lamboy, Jorge A; Arter, Jessica A; Knopp, Kristeene A; Der, Denise; Overstreet, Cathie M; Palermo, Edmund F; Urakami, Hiromitsu; Yu, Ting-Bin; Tezgel, Ozgul; Tew, Gregory N; Guan, Zhibin; Kuroda, Kenichi; Weiss, Gregory A
2009-11-18
M13 phage have provided scaffolds for nanostructure synthesis based upon self-assembled inorganic and hard materials interacting with phage-displayed peptides. Additionally, phage display has been used to identify binders to plastic, TiO(2), and other surfaces. However, synthesis of phage-based materials through the hybridization of soft materials with the phage surface remains unexplored. Here, we present an efficient "phage wrapping" strategy for the facile synthesis of phage coated with soluble, cationic polymers. Polymers bearing high positive charge densities demonstrated the most effective phage wrapping, as shown by assays for blocking nonspecific binding of the anionic phage coat to a high pI target protein. The results establish the functional group requirements for hybridizing phage with soft materials and solve a major problem in phage display-nonspecific binding by the phage to high pI target proteins.
Linking Surface and Subsurface Processes: Implications for Seismic Hazards in Southern California
NASA Astrophysics Data System (ADS)
Lin, J. C.; Moon, S.; Yong, A.; Meng, L.; Martin, A. J.; Davis, P. M.
2017-12-01
Earth's surface and subsurface processes such as bedrock weathering, soil production, and river incision can influence and be influenced by spatial variations in the mechanical strength of surface material. Mechanically weakened rocks tend to have reduced seismic velocity, which can result in larger ground-motion amplification and greater potential for earthquake-induced damages. However, the influence and extent of surface and subsurface processes on the mechanical strength of surface material and seismic site conditions in southern California remain unclear. In this study, we examine whether physics-based models of surface and subsurface processes can explain the spatial variability and non-linearity of near-surface seismic velocity in southern California. We use geophysical measurements (Yong et al., 2013; Ancheta et al., 2014), consisting of shear-wave velocity (Vs) tomography data, Vs profiles, and the time-averaged Vs in the upper 30 m of the crust (Vs30) to infer lateral and vertical variations of surface material properties. Then, we compare Vs30 values with geologic and topographic attributes such as rock type, slope, elevation, and local relief, as well as metrics for surface processes such as soil production and bedrock weathering from topographic stress, frost cracking, chemical reactions, and vegetation presence. Results from this study will improve our understanding of physical processes that control subsurface material properties and their influences on local variability in seismic site conditions.
Why the dish makes a difference: quantitative comparison of polystyrene culture surfaces.
Zeiger, Adam S; Hinton, Benjamin; Van Vliet, Krystyn J
2013-07-01
There is wide anecdotal recognition that biological cell viability and behavior can vary significantly as a function of the source of commercial tissue culture polystyrene (TCPS) culture vessels to which those cells adhere. However, this marked material dependency is typically resolved by selecting and then consistently using the same manufacturer's product - following protocol - rather than by investigating the material properties that may be responsible for such experimental variation. Here, we quantified several physical properties of TCPS surfaces obtained from a wide range of commercial sources and processing steps, through the use of atomic force microscopy (AFM)-based imaging and analysis, goniometry and protein adsorption quantification. We identify qualitative differences in surface features, as well as quantitative differences in surface roughness and wettability that cannot be attributed solely to differences in surface chemistry. We also find significant differences in cell morphology and proliferation among cells cultured on different TCPS surfaces, and resolve a correlation between nanoscale surface roughness and cell proliferation rate for both cell types considered. Interestingly, AFM images of living adherent cells on these nanotextured surfaces demonstrate direct interactions between cellular protrusions and topographically distinct features. These results illustrate and quantify the significant differences in material surface properties among these ubiquitous materials, allowing us to better understand why the dish can make a difference in biological experiments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Miroshnichenko, I. P.; Parinov, I. A.
2017-06-01
It is proposed the computational-experimental ground of newly developed optical device for contactless measurement of small spatial displacements of control object surfaces based on the use of new methods of laser interferometry. The proposed device allows one to register linear and angular components of the small displacements of control object surfaces during the diagnosis of the condition of structural materials for forced elements of goods under exploring by using acoustic non-destructive testing methods. The described results are the most suitable for application in the process of high-precision measurements of small linear and angular displacements of control object surfaces during experimental research, the evaluation and diagnosis of the state of construction materials for forced elements of goods, the study of fast wave propagation in layered constructions of complex shape, manufactured of anisotropic composite materials, the study of damage processes in modern construction materials in mechanical engineering, shipbuilding, aviation, instrumentation, power engineering, etc.
Triple-Stimuli-Responsive Ferrocene-Containing PEGs in Water and on the Surface.
Alkan, Arda; Steinmetz, Christian; Landfester, Katharina; Wurm, Frederik R
2015-12-02
Triple-stimuli-responsive PEG-based materials are prepared by living anionic ring-opening copolymerization of ethylene oxide and vinyl ferrocenyl glycidyl ether and subsequent thiol-ene postpolymerization modification with cysteamine. The hydrophilicity of these materials can be tuned by three stimuli: (i) temperature (depending on the comonomer ratio), (ii) oxidation state of iron centers in the ferrocene moieties, and (iii) pH-value (through amino groups), both in aqueous solution and at the interface after covalent attachment to a glass surface. In such materials, the cloud point temperatures are adjustable in solution by changing oxidation state and/or pH. On the surface, the contact angle increases with increasing pH and temperature and after oxidation, making these smart surfaces interesting for catalytic applications. Also, their redox response can be switched by temperature and pH, making this material useful for catalysis and electrochemistry applications. Exemplarily, the temperature-dependent catalysis of the chemiluminescence of luminol (a typical blood analysis tool in forensics) was investigated with these polymers.
NASA Astrophysics Data System (ADS)
Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice
2017-10-01
Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.
Chinbe, Hiroyuki; Yoneyama, Takeshi; Watanabe, Tetsuyou; Miyashita, Katsuyoshi; Nakada, Mitsutoshi
2018-01-01
Development and evaluation of an effective attachment device for a bilateral brain tumor resection robotic surgery system based on the sensory performance of the human index finger in order to precisely detect gripping- and pulling-force feedback. First, a basic test was conducted to investigate the performance of the human index finger in the gripping- and pulling-force feedback system. Based on the test result, a new finger-attachment device was designed and constructed. Then, discrimination tests were conducted to assess the pulling force and the feedback on the hardness of the gripped material. The results of the basic test show the application of pulling force on the side surface of the finger has an advantage to distinguish the pulling force when the gripping force is applied on the finger-touching surface. Based on this result, a finger-attachment device that applies a gripping force on the finger surface and pulling force on the side surface of the finger was developed. By conducting a discrimination test to assess the hardness of the gripped material, an operator can distinguish whether the gripped material is harder or softer than a normal brain tissue. This will help in confirming whether the gripped material is a tumor. By conducting a discrimination test to assess the pulling force, an operator can distinguish the pulling-force resistance when attempting to pull off the soft material. Pulling-force feedback may help avoid the breaking of blood pipes when they are trapped in the gripper or attached to the gripped tissue. The finger-attachment device that was developed for detecting gripping- and pulling-force feedback may play an important role in the development of future neurosurgery robotic systems for precise and safe resection of brain tumors.
Updating the planetary time scale: focus on Mars
Tanaka, Kenneth L.; Quantin-Nataf, Cathy
2013-01-01
Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.
Fabrication of phonon-based metamaterial structures using focused ion beam patterning
NASA Astrophysics Data System (ADS)
Bassim, Nabil D.; Giles, Alexander J.; Ocola, Leonidas E.; Caldwell, Joshua D.
2018-02-01
The focused ion beam (FIB) is a powerful tool for rapid prototyping and machining of functional nanodevices. It is employed regularly to fabricate test metamaterial structures but, to date, has been unsuccessful in fabricating metamaterial structures with features at the nanoscale that rely on surface phonons as opposed to surface plasmons because of the crystalline damage that occurs with the collision cascade associated with ion sputtering. In this study, we employ a simple technique of protecting the crystalline substrate in single-crystal 4H-SiC to design surface phonon polariton-based optical resonance structures. By coating the material surface with a thin film of chromium, we have placed a material of high sputter resistance on the surface, which essentially absorbs the energy in the beam tails. When the beam ultimately punches through the Cr film, the hard walls in the film have the effect of channeling the beam to create smooth sidewalls. This demonstration opens the possibility of further rapid-prototyping of metamaterials using FIB.
Ab initio study of perovskite type oxide materials for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin
2011-12-01
Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen exchange rates, and key OR energetics of the SOFC cathode perovskites, can be described by a single descriptor, either the bulk O p-band or the bulk oxygen vacancy formation energy. These simple descriptors will further enable first-principles optimization/design of new SOFC cathodes.
Structural and morphological study of Fe-doped Bi-based superconductor
NASA Astrophysics Data System (ADS)
Singh, Yadunath; Kumar, Rohitash
2018-05-01
In the present work, we report the study of iron-doped Bi-based superconductor sample with stoichiometric composition of Bi2Sr2Can-1(Cu1-x Fex)3O2n+4 where n=3 and x = 0.7. This sample was prepared by grinding the precursor oxides in the Ball mill for 6 hours continuous at the rate of 400 rpm for a proper mixing and to obtain the required grain size. Then the solid-state reaction method was used to prepare the sample. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray fluorescence analysis (EDX) were performed for determination of the crystal structure, surface morphology and trace the material elements of samples, respectively. The surface microscopy data were collected over a selected area of the surface of the material and a two-dimensional image generated that displays spatial variations in properties including chemical characterization and orientation of materials.
Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.
Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane
2016-03-14
Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.
Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors
Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane
2016-01-01
Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910
Barker, Stacey G [Idaho Falls, ID
2010-01-05
A tire deflation device includes (1) a component having a plurality of bores, (2) a plurality of spikes removably insertable into the plurality of bores and (3) a keeper within each among the plurality of bores, the keeper being configured to contact a sidewall surface of a spike among the plurality of spikes and to exert force upon the sidewall surface. In an embodiment, the tire deflation device includes (a) a component including a bore in a material, the bore including a receiving region, a sidewall surface and a base surface, (b) a channel extending from the sidewall surface into the material, (c) a keeper having a first section housed within the channel and a second section which extends past the sidewall surface into the receiving region, and (d) a spike removably insertable into the bore.
Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments
NASA Astrophysics Data System (ADS)
Muratore, C.; Voevodin, A. A.
2009-08-01
Adaptive nanocomposite coating materials that automatically and reversibly adjust their surface composition and morphology via multiple mechanisms are a promising development for the reduction of friction and wear over broad ranges of ambient conditions encountered in aerospace applications, such as cycling of temperature and atmospheric composition. Materials selection for these composites is based on extensive study of interactions occurring between solid lubricants and their surroundings, especially with novel in situ surface characterization techniques used to identify adaptive behavior on size scales ranging from 10-10 to 10-4 m. Recent insights on operative solid-lubricant mechanisms and their dependency upon the ambient environment are reviewed as a basis for a discussion of the state of the art in solid-lubricant materials.
BiOBr@SiO2 flower-like nanospheres chemically-bonded on cement-based materials for photocatalysis
NASA Astrophysics Data System (ADS)
Wang, Dan; Hou, Pengkun; Yang, Ping; Cheng, Xin
2018-02-01
Endowment of photocatalytic property on the surface of concrete structure can contribute to the self-cleaning of the structure and purification of the polluted environment. We developed a nano-structured BiOBr@SiO2 photocatalyst and innovatively used for surface-treatment of cement-based materials with the hope of attaining the photocatalytic property in visible-light region and surface modification/densification performances. The SiO2 layer on the flower-like BiOBr@SiO2 helps to maintain a stable distribution of the photocatalyst, as well as achieving a chemical bonding between the coating and the cement matrix. Results showed that the color fading rate of during the degradation of Rhodamine B dye of the BiOBr-cem sample is 2 times higher compared with the commonly studied C, N-TiO2-cem sample. The photo-degradation rates of samples BiOBr-cem and BiOBr@SiO2-cem are 93 and 81% within 150 min, respectively, while sample BiOBr@SiO2-cem reveals a denser and smoother surface after curing for 28 days and pore-filling effect at size within 0.01-0.2 μm when compared with untreated samples. Moreover, additional C-S-H gel can be formed due to the pozzolanic reaction between BiOBr@SiO2 and the hardened cement matrix. Both advantages of the BiOBr@SiO2 favor its application for surface-treatment of hardened cement-based material to acquire an improved surface quality, as well as durable photocatalytic functionality.
Surface relief model for photopolymers without cover plating.
Gallego, S; Márquez, A; Ortuño, M; Francés, J; Marini, S; Beléndez, A; Pascual, I
2011-05-23
Relief surface changes provide interesting possibilities for storing diffractive optical elements on photopolymers and are an important source of information to characterize and understand the material behaviour. In this paper we present a 3-dimensional model based on direct measurements of parameters to predict the relief structures generated on the material. This model is successfully applied to different photopolymers with different values of monomer diffusion. The importance of monomer diffusion in depth is also discussed.
NASA Astrophysics Data System (ADS)
Santillan, Julius Joseph; Shichiri, Motoharu; Itani, Toshiro
2016-03-01
This work focuses on the application of a high speed atomic force microscope (HS-AFM) for the in situ visualization / quantification of the resist dissolution process. This technique, as reported in the past, has provided useful pointers on the formation of resist patterns during dissolution. This paper discusses about an investigation made on the quantification of what we refer to as "dissolution unit size" or the basic units of patterning material dissolution. This was done through the establishment of an originally developed analysis method which extracts the difference between two succeeding temporal states of the material film surface (images) to indicate the amount of change occurring in the material film at a specific span of time. Preliminary experiments with actual patterning materials were done using a positive-tone EUV model resist composed only of polyhydroxystyrene (PHS)-based polymer with a molecular weight of 2,500 and a polydispersity index of 1.2. In the absence of a protecting group, the material was utilized at a 50nm film thickness with post application bake of 90°C/60s. The resulting film is soluble in the alkali-based developer even without exposure. Results have shown that the dissolution components (dissolution unit size) of the PHS-based material are not of fixed size. Instead, it was found that aside from one constantly dissolving unit size, another, much larger dissolution unit size trend also occurs during material dissolution. The presence of this larger dissolution unit size suggests an occurrence of "polymer clustering". Such polymer clustering was not significantly present during the initial stages of dissolution (near the original film surface) but becomes more persistently obvious after the dissolution process reaches a certain film thickness below the initial surface.
Manganese oxide-based materials as electrochemical supercapacitor electrodes.
Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G
2011-03-01
Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).
Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup
2016-01-01
This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.
Porous graphene materials for water remediation.
Niu, Zhiqiang; Liu, Lili; Zhang, Li; Chen, Xiaodong
2014-09-10
Water remediation has been a critical issue over the past decades due to the expansion of wastewater discharge to the environment. Currently, a variety of functional materials have been successfully prepared for water remediation applications. Among them, graphene is an attractive candidate due to its high specific surface area, tunable surface behavior, and high strength. This Concept paper summarizes the design strategy of porous graphene materials and their applications in water remediation, such as the cleanup of oil, removal of heavy metal ions, and elimination of water soluble organic contaminants. The progress made so far will guide further development in structure design strategy of porous materials based on graphene and exploration of such materials in environmental remediation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Material influence on hot spot distribution in the nanoparticle heterodimer on film
NASA Astrophysics Data System (ADS)
Chen, Fang; Huang, Yingzhou; Wei, Hua; Wang, Shuxia; Zeng, Xiping; Cao, Wenbin; Wen, Weijia
2018-04-01
The metal nanoparticle aggregated on film, as an effective plasma enhancement pathway, has been widely used in various surface plasmon-related fields. In this study, the hot spots on the metal nanoparticle dimer composed of different materials (Agsbnd Au, Agsbnd Pd, and Agsbnd Cu) on metal (Au) film were investigated with finite element method. Based on the results, the hot spot distribution affected by the material can be confirmed by the electric field distribution of the metal nanoparticle dimer on the film. The aggregation effects of Au and Ag nanoparticles in Ausbnd Ag dimer system are not significant. However, for the Pdsbnd Ag dimer system, the hot spot aggregation effect is slightly larger than that of the Pd nanoparticle under the Ag nanoparticle. Besides, the non-uniform hot spots would bring about the light focusing phenomenon that the light intensity under Ag nanoparticle is almost 100 times greater than that under Cu nanoparticle in Agsbnd Cu dimer system. These results were further confirmed by the surface charge distribution, and analyzed based on the plasmonic hybridization theory. The data about the nanoparticle dimer on the dielectric (Si) film demonstrate the importance of induced image charges on the film surface in such a light focusing phenomenon. Our findings can enhance the understanding of the surface plasmon coupling in different materials, which may have great application prospects in surface plasmon-related fields, such as SERS, plasmonic enhanced solar cell, and plasmonic sensoring, etc.
Method for smoothing the surface of a protective coating
Sangeeta, D.; Johnson, Curtis Alan; Nelson, Warren Arthur
2001-01-01
A method for smoothing the surface of a ceramic-based protective coating which exhibits roughness is disclosed. The method includes the steps of applying a ceramic-based slurry or gel coating to the protective coating surface; heating the slurry/gel coating to remove volatile material; and then further heating the slurry/gel coating to cure the coating and bond it to the underlying protective coating. The slurry/gel coating is often based on yttria-stabilized zirconia, and precursors of an oxide matrix. Related articles of manufacture are also described.
NASA Astrophysics Data System (ADS)
Jianxiu, Su; Xiqu, Chen; Jiaxi, Du; Renke, Kang
2010-05-01
Distribution forms of abrasives in the chemical mechanical polishing (CMP) process are analyzed based on experimental results. Then the relationships between the wafer, the abrasive and the polishing pad are analyzed based on kinematics and contact mechanics. According to the track length of abrasives on the wafer surface, the relationships between the material removal rate and the polishing velocity are obtained. The analysis results are in accord with the experimental results. The conclusion provides a theoretical guide for further understanding the material removal mechanism of wafers in CMP.
Topological insulators double perovskites: A2TePoO6 (A = Ca, Sr, Ba)
NASA Astrophysics Data System (ADS)
Lee, Po-Han; Zhou, Jian; Pi, Shu-Ting; Wang, Yin-Kuo
2017-12-01
Based on first-principle calculations and direct density functional theory calculations of surface bands, we predict a new class of three-dimensional (3D) Z2 topological insulators (TIs) with larger bulk bandgaps up to 0.4 eV in double perovskite materials A2TePoO6 (A = Ca, Sr, and Ba). The larger nontrivial gaps are induced by the symmetry-protected band contact along with band inversion occurring in the absence of spin-orbit coupling (SOC) making the SOC more effective than conventional TIs. The proposed materials are chemically inert and more robust to surface perturbations due to its intrinsic protection layer. This study provides the double perovskite material as a rich platform to design new TI-based electronic devices.
Carbon nanotubes grown on bulk materials and methods for fabrication
Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN
2011-11-08
Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.
Luksiene, Z; Buchovec, I; Paskeviciute, E
2010-11-01
This study was focused on the possibility to inactivate food-borne pathogen Bacillus cereus by Na-chlorophyllin (Na-Chl)-based photosensitization in vitro and after attachment to the surface of packaging material. Bacillus cereus in vitro or attached to the packaging was incubated with Na-Chl (7·5×10(-8) to 7·5×10(-5) mol l(-1) ) for 2-60min in phosphate buffer saline. Photosensitization was performed by illuminating cells under a light with a λ of 400nm and an energy density of 20mW cm(-2) . The illumination time varied 0-5min and subsequently the total energy dose was 0-6J cm(-2) . The results show that B. cereus vegetative cells in vitro or attached to the surface of packaging after incubation with 7·5×10(-7) mol l(-1) Na-Chl and following illumination were inactivated by 7log. The photoinactivation of B. cereus spores in vitro by 4log required higher (7·5×10(-6) mol l(-1) ) Na-Chl concentration. Decontamination of packaging material from attached spores by photosensitization reached 5log at 7·5×10(-5) mol l(-1) Na-Chl concentration. Comparative analysis of different packaging decontamination treatments indicates that washing with water can diminish pathogen population on the surface by <1log, 100ppm Na-hypochlorite reduces the pathogens about 1·7log and 200ppm Na-hypochlorite by 2·2log. Meanwhile, Na-Chl-based photosensitization reduces bacteria on the surface by 4·2 orders of magnitude. Food-borne pathogen B. cereus could be effectively inactivated (7log) by Na-Chl-based photosensitization in vitro and on the surface of packaging material. Spores are more resistant than vegetative cells to photosensitization-based inactivation. Comparison of different surface decontamination treatments indicates that Na-Chl-based photosensitization is much more effective antibacterial tool than washing with water or 200ppm Na-hypochlorite. Our data support the idea that Na-Chl-based photosensitization has great potential for future application as an environment-friendly, nonthermal surface decontamination technique. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.
Recent advances on polyoxometalate-based molecular and composite materials.
Song, Yu-Fei; Tsunashima, Ryo
2012-11-21
Polyoxometalates (POMs) are a subset of metal oxides with unique physical and chemical properties, which can be reliably modified through various techniques and methods to develop sophisticated materials and devices. In parallel with the large number of new crystal structures reported in the literature, the application of these POMs towards multifunctional materials has attracted considerable attention. This critical review summarizes recent progress on POM-based molecular and composite materials, and particularly highlights the emerging areas that are closely related to surface, electronic, energy, environment, life science, etc. (171 references).
Novel hybrid materials for preparation of bone tissue engineering scaffolds.
Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Łatkiewicz, Anna; Nowakowska, Maria
2015-09-01
The organic-inorganic hybrid systems based on biopolymer hydrogels with dispersed silica nanoparticles were obtained and characterized in terms of their physicochemical properties, cytocompatibility and bioactivity. The hybrid materials were prepared in a form of collagen and collagen-chitosan sols to which the silica nanoparticles of two different sizes were incorporated. The ability of these materials to undergo in situ gelation under physiological temperature was assessed by microviscosity and gelation time determination based on steady-state fluorescence anisotropy measurements. The effect of silica nanoparticles addition on the physicochemical properties (surface wettability, swellability) of hybrid materials was analyzed and compared with those characteristic for pristine collagen and collagen-chitosan hydrogels. Biological studies indicate that surface wettability determined in terms of contact angle for all of the hybrids prepared is optimal and thus can provide satisfactory adhesion of fibroblasts. Cytotoxicity test results showed high metabolic activity of mouse as well as human fibroblast cell lines cultured on hybrid materials. The composition of hybrids was optimized in terms of concentration of silica nanoparticles. The effect of silica on the formation of bone-like mineral structures on exposition to simulated body fluid was determined. SEM images revealed mineral phase formation not only at the surfaces but also in the whole volumes of all hybrid materials developed suggesting their usefulness for bone tissue engineering. EDS and FTIR analyses indicated that these mineral phases consist of apatite-like structures.
Submicron Surface-Patterned Fibers and Textiles
2016-11-04
These authors contributed equally Keywords: grating, fiber, polymer , patterning, textile Distribution A: approved for public release...requirements. Second, textile materials are primarily polymer -based, while most surface-patterning techniques have been developed for silicon...Alternative substrates, especially flexible polymers , remain challenging to pattern [25,26] due to the highly specific surface chemistry of different
Improving material removal determinacy based on the compensation of tool influence function
NASA Astrophysics Data System (ADS)
Zhong, Bo; Chen, Xian-hua; Deng, Wen-hui; Zhao, Shi-jie; Zheng, Nan
2018-03-01
In the process of computer-controlled optical surfacing (CCOS), the key of correcting the surface error of optical components is to ensure the consistency between the simulated tool influence function and the actual tool influence function (TIF). The existing removal model usually adopts the fixed-point TIF to remove the material with the planning path and velocity, and it considers that the polishing process is linear and time invariant. However, in the actual polishing process, the TIF is a function related to the feed speed. In this paper, the relationship between the actual TIF and the feed speed (i.e. the compensation relationship between static removal and dynamic removal) is determined by experimental method. Then, the existing removal model is modified based on the compensation relationship, to improve the conformity between simulated and actual processing. Finally, the surface error modification correction test are carried out. The results show that the fitting degree of the simulated surface and the experimental surface is better than 88%, and the surface correction accuracy can be better than 1/10 λ (Λ=632.8nm).
NASA Astrophysics Data System (ADS)
Nyaguly, E.; Craştiu, I.; Deac, S.; Gozman-Pop, C.; Drăgănescu, G.; Bereteu, L.
2018-01-01
Most of the surface coatings are based on the synthetic polymers, which are substances composed from very large molecules that form tough, flexible, adhesive films when applied to surfaces. The other components of surface coverings materials are pigments that provide colour, opacity, gloss and other properties. Surface coatings are two-phase composite materials: constitute a polymer matrix on the one side, and on the other side of the pigments and additives dispersed in the matrix. Their role is not only aesthetically but also to ensure anticorrosive protection or even improve some mechanical properties of coated surfaces. In this paper it will follow, starting from the mechanical properties of the substrate, the metallic sheet in general, to determine the new properties of the assembly of substrate and the two coating layers, also the determination of mechanical properties of the layers. From the analysis of vibroacoustic signals obtained by the impulse excitation of the sample, one can determine the elasticity modulus. These results come to validate the results based on finite element analysis (FEA) of the same samples.
The effect of different surface materials on runoff quality in permeable pavement systems.
Li, Haiyan; Li, Zhifei; Zhang, Xiaoran; Li, Zhuorong; Liu, Dongqing; Li, Tanghu; Zhang, Ziyang
2017-09-01
To investigate the effect of different permeable pavement surface materials on the removal of pollutants from urban storm-runoff, six commonly surface materials (porous asphalt, porous concrete, cement brick, ceramic brick, sand base brick, and shale brick) were selected in this study and the research was carried out by column experiments. Except the concentrations of total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (NH 4 -N), nitrate nitrogen (NO 3 -N), total nitrogen (TN), and total phosphorus (TP) in the influent and effluent that were measured, the removal mechanism of pollutants was discussed further. The results indicate that the surface materials influence the removal efficiency of pollutants greatly and have different effects on certain pollutant. Furthermore, the physical interception and adsorption would be the main mechanism for the removal of pollutants from runoff. For example, for all surface materials, the average removal efficiency of TSS is nearly about 90.0% because of physical interception. Due to the amount of iron oxide, the removal efficiency of COD, NO 3 -N, and TN of shale brick was 88.2, 35.1, and 17.5%, respectively. NH 4 -N and TN can be easily removed by porous asphalt due to the high content of organic matter. By lacking of useful adsorption sites, all the surface materials had little effect on the removal of TP from runoff. This research could offer useful guidelines for the better design of permeable pavement system and promote the insight into the removal mechanism of pollutants in permeable pavement system. Graphical abstract Different types of materials for the different types of pollutants in the runoff purification capacity were significantly different, overall, shale brick and porous asphalt Shale bricks and porous asphalt have a better purification effect according to the six kinds of materials.
How accelerated biological aging can affect solar reflective polymeric based building materials
NASA Astrophysics Data System (ADS)
Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.
2017-11-01
Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.
Characteristics of shear damage for 60Sn-40Pb solder material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, H.E.; Chow, C.L.; Wei, Y.
This paper presents an investigation of the development of a continuum damage model capable of accurately analyzing shear damage in 60Sn-40Pb solder material. Based on the theory of damage mechanics, an internal state variable known as the damage variable is introduced to characterize material degradation caused by the change of material microstructures under load. A damage surface in stress space is proposed to quantify damage initiation and its successive expanding surfaces to represent damage hardening. With the aid of irreversible thermodynamics, the damage-coupled constitutive equations and the damage evolution equations are established. A failure criterion is proposed based on themore » accumulation of overall damage in the material. The damage model is implemented in a general purpose finite element program ABAQUS through its user-defined material subroutine UMAT. The program is applied to predict shear deformation in a notched specimen. The predicted failure mode and maximum load agree well with those measured experimentally. The effect of finite element meshing on the numerical results is also examined and discussed.« less
Zell, Zachary A; Isa, Lucio; Ilg, Patrick; Leal, L Gary; Squires, Todd M
2014-01-14
The self-assembly of polymer-based surfactants and nanoparticles on fluid-fluid interfaces is central to many applications, including dispersion stabilization, creation of novel 2D materials, and surface patterning. Very often these processes involve compressing interfacial monolayers of particles or polymers to obtain a desired material microstructure. At high surface pressures, however, even highly interfacially active objects can desorb from the interface. Methods of directly measuring the energy which keeps the polymer or particles bound to the interface (adsorption/desorption energies) are therefore of high interest for these processes. Moreover, though a geometric description linking adsorption energy and wetting properties through the definition of a contact angle can be established for rigid nano- or microparticles, such a description breaks down for deformable or aggregating objects. Here, we demonstrate a technique to quantify desorption energies directly, by comparing surface pressure-density compression measurements using a Wilhelmy plate and a custom-microfabricated deflection tensiometer. We focus on poly(ethylene oxide)-based polymers and nanoparticles. For PEO-based homo- and copolymers, the adsorption energy of PEO chains scales linearly with molecular weight and can be tuned by changing the subphase composition. Moreover, the desorption surface pressure of PEO-stabilized nanoparticles corresponds to the saturation surface pressure for spontaneously adsorbed monolayers, yielding trapping energies of ∼10(3) k(B)T.
Graphene-Based Materials for Biosensors: A Review
Suvarnaphaet, Phitsini; Pechprasarn, Suejit
2017-01-01
The advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.e., graphene oxide (GO), reduced graphene oxide (RGO) and graphene quantum dot (GQD). The biosensing mechanisms based on the utilization of the charge interactions with biomolecules and/or nanoparticle interactions and sensing platforms are also discussed, and the importance of surface functionalization in recent up-to-date biosensors for biological and medical applications. PMID:28934118
Investigation of the surface morphology of biocompatible chitosan-based hydrogels and xerogels
NASA Astrophysics Data System (ADS)
Zhuravleva, Yulia Yu.; Malinkina, Olga N.; Shipovskaya, Anna B.
2018-04-01
Our biocompatible hydrogel systems obtained by the sol-gel technqiue and based on chitosan and silicon polyolates are promising for medical and biological applications. The surface microrelief of these sol-gel materials (hydrogels and xerogels) based on chitosan and silicon tetraglycerolate was explored by AFM and SEM. A significant influence of the component ratio in the mixed system on the morphology and surface profile of the hydrogels and xerogels prepared therefrom was established. An increased content of the structure-forming component (chitosan) in the system was shown to increase the roughness scale of the hydrogel surface and to promote the porosity of the xerogel structure.
A data base of geologic field spectra
NASA Technical Reports Server (NTRS)
Kahle, A. B.; Goetz, A. F. H.; Paley, H. N.; Alley, R. E.; Abbott, E. A.
1981-01-01
It is noted that field samples measured in the laboratory do not always present an accurate picture of the ground surface sensed by airborne or spaceborne instruments because of the heterogeneous nature of most surfaces and because samples are disturbed and surface characteristics changed by collection and handling. The development of new remote sensing instruments relies on the analysis of surface materials in their natural state. The existence of thousands of Portable Field Reflectance Spectrometer (PFRS) spectra has necessitated a single, all-inclusive data base that permits greatly simplified searching and sorting procedures and facilitates further statistical analyses. The data base developed at JPL for cataloging geologic field spectra is discussed.
The electrical discharge machining of ceramics
NASA Astrophysics Data System (ADS)
Trueman, Christopher Stuart
This study introduces the concept of developing a novel and rapid rough-machining methodology for spark eroding suitable ceramic compositions based on material removal by thermal shock induced spalling, as opposed to conventional melting mechanisms. The principal materials studied were TiB2 dispersion toughened SiC, and Syalon501 - a commercially available TiN toughened sialon ceramic specifically designed for spark erosion. A preliminary study was also carried out on a range of SiC:B4C composites. Machinability and material performance were assessed where appropriate using machining parameters, material removal rate tests, surface analysis, four-point flexure testing, and tool wear. The machining technologies which supported the different mechanisms of material removal were identified, and each mechanism investigated by analysis of captured debris and sectioning of the workpiece. The SiC:B4C composites were found to be spark erodible only with B4C levels above 50% (by mass), and material removal was found to be solely by melting mechanisms. A SiC:TiB2 composition with the addition of 26.5% TiB2 (by mass) was found to be more machinable than a composition with 10% TiB2 (by mass), achieving greater material removal rates owing to its higher electrical conductivity. An in-depth study of the latter (10%TiB2) SiC composition and Syalon501 revealed surprisingly robust materials. Under conventional sparking (no arcing), material was removed by combined dissociation, melting and evaporation. Syalon501 in particular behaved with a high degree of predictability, and neither material could be made to spall under conventional sparking. However, by imposing conditions which deliberately induced arcing, both compositions spalled large flakes of material (up to several hundred microns across) in the localised region of the arc-strike. Examination of captured debris and fracture facets of the spall interface revealed the existence of small "penny cracks", each characterised by the presence of a dispersed particle (of greater thermal expansion) at its centre acting as a stress- raising nucleation point under the intense thermal loading of arcing. Sub-surface cracks in the near horizontal and near-vertical planes were discovered in line with published models based on the application of a hot-spot to brittle material, and evidence of discrete crack propagation under the thermally punctuated pulses of successive sparking was identified. Similar sub-surface cracking was also confirmed in Syalon501 which had been subjected to arcing. Sectioning of the workpiece revealed shallow sub-surface cracks which followed the profile of the machined surface in the near-horizontal plane, and which often limited the extent of near-vertical cracking to the layer of material above the crack, thereby offering the potential for a reliable and fast "planning" technique in which material would be removed in shallow layers. This research has shown that the possibility exists for increased material removal rates and improved process efficiency under a spalling-based machining regime, in which layers of material are released by thermal-shock induced fracture caused by arcing. The viability of developing a new rough-machining technology for ceramics, in which material is "planed" away prior to fine surface finishing by conventional spark erosion has, therefore, been successfully demonstrated.
QCL-based standoff and proximal chemical detectors
NASA Astrophysics Data System (ADS)
Dupuis, Julia R.; Hensley, Joel; Cosofret, Bogdan R.; Konno, Daisei; Mulhall, Phillip; Schmit, Thomas; Chang, Shing; Allen, Mark; Marinelli, William J.
2016-05-01
The development of two longwave infrared quantum cascade laser (QCL) based surface contaminant detection platforms supporting government programs will be discussed. The detection platforms utilize reflectance spectroscopy with application to optically thick and thin materials including solid and liquid phase chemical warfare agents, toxic industrial chemicals and materials, and explosives. Operation at standoff (10s of m) and proximal (1 m) ranges will be reviewed with consideration given to the spectral signatures contained in the specular and diffusely reflected components of the signal. The platforms comprise two variants: Variant 1 employs a spectrally tunable QCL source with a broadband imaging detector, and Variant 2 employs an ensemble of broadband QCLs with a spectrally selective detector. Each variant employs a version of the Adaptive Cosine Estimator for detection and discrimination in high clutter environments. Detection limits of 5 μg/cm2 have been achieved through speckle reduction methods enabling detector noise limited performance. Design considerations for QCL-based standoff and proximal surface contaminant detectors are discussed with specific emphasis on speckle-mitigated and detector noise limited performance sufficient for accurate detection and discrimination regardless of the surface coverage morphology or underlying surface reflectivity. Prototype sensors and developmental test results will be reviewed for a range of application scenarios. Future development and transition plans for the QCL-based surface detector platforms are discussed.
Graphene and graphene-based materials for energy storage applications.
Zhu, Jixin; Yang, Dan; Yin, Zongyou; Yan, Qingyu; Zhang, Hua
2014-09-10
With the increased demand in energy resources, great efforts have been devoted to developing advanced energy storage and conversion systems. Graphene and graphene-based materials have attracted great attention owing to their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage systems. This Review summarizes the recent progress in graphene and graphene-based materials for four energy storage systems, i.e., lithium-ion batteries, supercapacitors, lithium-sulfur batteries and lithium-air batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lakhera, Nishant
Several types of insects and animals such as spiders and geckos are inherently able to climb along vertical walls and ceilings. This remarkable switchable adhesive behavior has been attributed to the fibrillar structures on their feet, with size ranging from few nanometers to a few micrometers depending on the species. Several studies have attempted to create synthetic micro-patterned surfaces trying to imitate this adhesive behavior seen in nature. The experimental procedures are scattered, with sole purpose of trying to increase adhesion, thereby making direct comparison between studies very difficult. There is a lack of fundamental understanding on adhesion of patterned surfaces. The influence of critical parameters like material modulus, glass transition temperature, viscoelastic effects, temperature and water absorption on adhesion is not fully explored and characterized. These parameters are expected to have a decisive influence on adhesion behavior of the polymer. Previous studies have utilized conventional "off-the-shelf" materials like epoxy, polyurethanes etc. It is however, impossible to change the material modulus, glass transition temperature etc. of these polymer systems without changing the base constituents itself, thereby explaining the gaps in the current research landscape. The purpose of this study was to use acrylate shape-memory polymers (SMPs) for their ability to be tailored to specific mechanical properties by control of polymer chemistry, without changing the base constituents. Polymer networks with tailorable glass transition, material modulus, water absorption etc. were developed and adhesion studies were performed to investigate the influence of temperature, viscoelastic effects, material modulus on the adhesion behavior of flat acrylate polymer surfaces. The knowledge base gained from these studies was utilized to better understand the fundamental mechanisms associated with adhesion behavior of patterned acrylate surfaces. Thermally induced switchable adhesion and water induced switchable adhesion of patterned acrylate surfaces was investigated. The viscoelastic energy dissipation occurring during the detachment phase was shown to dramatically increase adhesion under both thermally induced and water induced conditions. This effect was most pre-dominant at the glass transition temperature of the material. Increase in pre-load force and unloading velocity were also shown to increase the adhesive capability of the patterned acrylate SMPs.
Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal
2015-07-01
This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05. Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.
Selective cell response on natural polymer bio-interfaces textured by femtosecond laser
NASA Astrophysics Data System (ADS)
Daskalova, A.; Trifonov, A.; Bliznakova, I.; Nathala, C.; Ajami, A.; Husinsky, W.; Declercq, H.; Buchvarov, I.
2018-02-01
This study reports on the evaluation of laser processed natural polymer-chitosan, which is under consideration as a biointerface used for temporary applications as skin and cartilage substitutes. It is employed for tissue engineering purposes, since it possesses a significant degree of biocompatibility and biodegradability. Chitosan-based thin films were processed by femtosecond laser radiation to enhance the surface properties of the material. Various geometry patterns were produced on polymer surfaces and employed to examine cellular adhesion and orientation. The topography of the modified zones was observed using scanning electron microscopy and confocal microscopy. Test of the material cytotoxicity was performed by evaluating the life/dead cell correlation. The obtained results showed that texturing with femtosecond laser pulses is appropriate method to initiate a predefined cellular response. Formation of surface modifications in the form of foams with an expansion of the material was created under laser irradiation with a number of applied laser pulses from N = 1-5. It is shown that irradiation with N > 5 results in disturbance of microfoam. Material characterization reveals a decrease in water contact angle values after laser irradiation of chitosan films. Consequently, changes in surface roughness of chitosan thin-film surface result in its functionalization. Cultivation of MC3T3 and ATMSC cells show cell orientational migration concerning different surface patterning. The influence of various pulse durations (varying from τ = 30-500 fs) over biofilms surface was examined regarding the evolution of surface morphology. The goal of this study was to define the optimal laser conditions (laser energy, number of applied pulses, and pulse duration) to alter surface wettability properties and porosity to improve material performance. The acquired set of results indicate the way to tune the surface properties to optimize cell-interface interaction.
Gonçalves, Juliana P L; Shaikh, Afnan Q; Reitzig, Manuela; Kovalenko, Daria A; Michael, Jan; Beutner, René; Cuniberti, Gianaurelio; Scharnweber, Dieter; Opitz, Jörg
2014-01-01
Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an adsorption and immobilization of modified nanodiamonds on titanium; where aminosilanized nanodiamonds coupled with O-phosphorylethanolamine show a homogeneous interaction with the titanium substrate.
Hossam, A Eid; Rafi, A Togoo; Ahmed, A Saleh; Sumanth, Phani Cr
2013-06-01
This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities. Nanofilled, hybrid, silorane and flowable composites were tested. Forty extracted teeth served as specimen and were divided into 4 groups of 10 specimens, with each group receiving a different treatment and were examined by a Field emission scanning electron microscope. Bacterial suspension was then added to the pellicle-coated specimens, and then bacterial adhesion was analyzed by using image analyzing program. Flowable and silorane-based composites showed considerably smoother surfaces and lesser bacterial count in comparison to other types, proving that bacterial adhesion is directly proportional to surface roughness. The use of ultrasonic scalers affects the surfaces of composite restorative materials. Routine periodontal scaling should be carried out very carefully, and polishing of the scaled surfaces may overcome the alterations in roughness, thus preventing secondary caries, surface staining, plaque accumulation and subsequent periodontal inflammation. How to cite this article: Eid H A, Togoo R A, Saleh A A, Sumanth C R. Surface Topography of Composite Restorative Materials following Ultrasonic Scaling and its Impact on Bacterial Plaque Accumulation. An In-Vitro SEM Study. J Int Oral Health 2013; 5(3):13-19.
Controlling mechanisms of metals release form cement-based waste form in acetic acid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Kuang Ye.
1991-01-01
The purpose of this dissertation is to identify the individual leaching mechanisms of metals by knowing the pH profile within the leached specimen and the physical and chemical properties of the leached material. Leaching of cement-based waste form in acetic acid solutions with different acidic strengths has been investigated in this work. The pH profile along the acid penetration route in the cement-based waste form was identified by various pH color indicators. The pH in the surface altered layer varies from 5.0 to 6.0, which is very close to the pH in the bulk leachate. A reacting zone, where themore » pH abruptly changes from 6 to 12, sharply divides the altered surface layer from the remaining unleached waste form or kernel. Leaching of metals is controlled by the acidity available in the leachant. Dissolution of alkaline materials leaves a silica-rich layer on the surface of the cement-based waste form. This surface layer exhibits different properties than those of the unleached material. The surface layer has a higher water content, is lighter weight, and is soft and friable. Furthermore, the abundant silicate content on the solid surface detains portion of the leached metals, while they are moving through the leached layer into bulk solution. The leaching of metals is a consequence of acid penetration. The distance from the solid/solution interface to the front of the leaching boundary can be regarded as the depth of leaching zone, where the metals dissolve and diffuse out of the waste form. The metal ions diffuse through the leached layer may be retarded on the solid surface by the pH-dependent adsorption reactions. It is found that the leaching process through the leached layer is diffusion-controlled for calcium and cadmium, whereas diffusion and adsorption occur simultaneously in the leached layer for lead and arsenic.« less
Method for improving performance of high temperature superconductors within a magnetic field
Wang, Haiyan; Foltyn, Stephen R.; Maiorov, Boris A.; Civale, Leonardo
2010-01-05
The present invention provides articles including a base substrate including a layer of an oriented cubic oxide material having a rock-salt-like structure layer thereon; and, a buffer layer upon the oriented cubic oxide material having a rock-salt-like structure layer, the buffer layer having an outwardly facing surface with a surface morphology including particulate outgrowths of from 10 nm to 500 run in size at the surface, such particulate outgrowths serving as flux pinning centers whereby the article maintains higher performance within magnetic fields than similar articles without the necessary density of such outgrowths.
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1985-01-01
An ultrasonic levitation device operable in both ordinary ground-based as well as in potential space-borne laboratories is described together with its various applications in the fields of fluid dynamics, material science, and light scattering. Some of the phenomena which can be studied by this instrument include surface waves on freely suspended liquids, the variations of the surface tension with temperature and contamination, the deep undercooling of materials with the temperature variations of their density and viscosity, and finally some of the optical diffraction properties of transparent substances.
Recent advances in engineering topography mediated antibacterial surfaces
Hasan, Jafar
2015-01-01
The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria–material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces. PMID:26372264
Recent advances in engineering topography mediated antibacterial surfaces
NASA Astrophysics Data System (ADS)
Hasan, Jafar; Chatterjee, Kaushik
2015-09-01
The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.
NASA Astrophysics Data System (ADS)
Aarva, Anja; Laurila, Tomi; Caro, Miguel A.
2017-06-01
In this work, we study the adsorption characteristics of dopamine (DA), ascorbic acid (AA), and dopaminequinone (DAox) on carbonaceous electrodes. Our goal is to obtain a better understanding of the adsorption behavior of these analytes in order to promote the development of new carbon-based electrode materials for sensitive and selective detection of dopamine in vivo. Here we employ density functional theory-based simulations to reach a level of detail that cannot be achieved experimentally. To get a broader understanding of carbonaceous surfaces with different morphological characteristics, we compare three materials: graphene, diamond, and amorphous carbon (a-C). Effects of solvation on adsorption characteristics are taken into account via a continuum solvent model. Potential changes that take place during electrochemical measurements, such as cyclic voltammetry, can also alter the adsorption behavior. In this study, we have utilized doping as an indirect method to simulate these changes by shifting the work function of the electrode material. We demonstrate that sp2- and sp3-rich materials, as well as a-C, respond markedly different to doping. Also the adsorption behavior of the molecules studied here differs depending on the surface material and the change in the surface potential. In all cases, adsorption is spontaneous, but covalent bonding is not detected in vacuum. The aqueous medium has a large effect on the adsorption behavior of DAox, which reaches its highest adsorption energy on diamond when the potential is shifted to more negative values. In all cases, inclusion of the solvent enhances the charge transfer between the slab and DAox. Largest differences in adsorption energy between DA and AA are obtained on graphene. Gaining better understanding of the behavior of the different forms of carbon when used as electrode materials provides a means to rationalize the observed complex phenomena taking place at the electrodes during electrochemical oxidation/reduction of these biomolecules.
Particulate-free porous silicon networks for efficient capacitive deionization water desalination
Metke, Thomas; Westover, Andrew S.; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L.
2016-01-01
Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon – a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes. PMID:27101809
Particulate-free porous silicon networks for efficient capacitive deionization water desalination.
Metke, Thomas; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L
2016-04-22
Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon - a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula
2011-05-01
Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the false negative rate (FNR). The FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method.more » A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not FNR (which left a major gap in available information). Quantifying the FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The testing was performed by SNL and is now completed. The study investigated the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and FNR. The experimental design involves 16 test runs, performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) were tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations were very low and presented challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and FNR over the full range of concentrations of interest. In each run, there were 10 test coupons of each of the three surface materials. A positive control sample was generated at the same time as each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and FNR-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the FNR for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting FNR-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in FNR and RE predictions made with the fitted equations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula
2010-12-16
Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the probability of correct detection (PCD) (or equivalently the false negative rate FNR = 1 - PCD). The PCD/FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5)more » sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not PCD/FNR (which left a major gap in available information). Quantifying the PCD/FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in PCD/FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The study will investigate the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and PCD/FNR. The experimental design involves 16 test runs, to be performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) will be tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations will be very low and may present challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and PCD/FNR over the full range of concentrations of interest. In each run, there will be 10 test coupons of each of the three surface materials. A positive control sample will be generated prior to each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and PCD-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the PCD for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting PCD-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in PCD and RE predictions made with the fitted equations.« less
The influence of surface finishing methods on touch-sensitive reactions
NASA Astrophysics Data System (ADS)
Kukhta, M. S.; Sokolov, A. P.; Krauinsh, P. Y.; Kozlova, A. D.; Bouchard, C.
2017-02-01
This paper describes the modern technological development trends in jewelry design. In the jewelry industry, new trends, associated with the introduction of updated non-traditional materials and finishing techniques, are appearing. The existing information-oriented society enhances the visual aesthetics of new jewelry forms, decoration techniques (depth and surface), synthesis of different materials, which, all in all, reveal a bias towards positive effects of visual design. Today, the jewelry industry includes not only traditional techniques, but also such improved techniques as computer-assisted design, 3D-prototyping and other alternatives to produce an updated level of jewelry material processing. The authors present the specific features of ornamental pattern designing, decoration types (depth and surface) and comparative analysis of different approaches in surface finishing. Identifying the appearance or the effect of jewelry is based on proposed evaluation criteria, providing an advanced visual aesthetics basis is predicated on touch-sensitive responses.
NASA Technical Reports Server (NTRS)
Cour-Palais, Burton G.
1989-01-01
The long-term effects of the orbital debris and micrometeoroid environments on materials that are current candidates for use on space vehicles are discussed. In addition, the limits of laboratory testing to determine these effects are defined and the need for space-based data is delineated. The impact effects discussed are divided into primary and secondary surfaces. Primary surfaces are those that are subject to erosion, pitting, the degradation and delamination of optical coatings, perforation of atomic oxygen erosion barriers, vapor coating of optics and the production of secondary ejecta particles. Secondary surfaces are those that are affected by the result of the perforation of primary surfaces, for example, vapor deposition on electronic components and other sensitive equipment, and the production of fragments with damage potential to internal pressurized elements. The material properties and applications that are required to prevent or lessen the effects described, are defined.
Li, Xiaolu; Liang, Yu
2015-05-20
Analysis of light detection and ranging (LiDAR) intensity data to extract surface features is of great interest in remote sensing research. One potential application of LiDAR intensity data is target classification. A new bidirectional reflectance distribution function (BRDF) model is derived for target characterization of rough and smooth surfaces. Based on the geometry of our coaxial full-waveform LiDAR system, the integration method is improved through coordinate transformation to establish the relationship between the BRDF model and intensity data of LiDAR. A series of experiments using typical urban building materials are implemented to validate the proposed BRDF model and integration method. The fitting results show that three parameters extracted from the proposed BRDF model can distinguish the urban building materials from perspectives of roughness, specular reflectance, and diffuse reflectance. A comprehensive analysis of these parameters will help characterize surface features in a physically rigorous manner.
Controlled nanostructrures formation by ultra fast laser pulses for color marking.
Dusser, B; Sagan, Z; Soder, H; Faure, N; Colombier, J P; Jourlin, M; Audouard, E
2010-02-01
Precise nanostructuration of surface and the subsequent upgrades in material properties is a strong outcome of ultra fast laser irradiations. Material characteristics can be designed on mesoscopic scales, carrying new optical properties. We demonstrate in this work, the possibility of achieving material modifications using ultra short pulses, via polarization dependent structures generation, that can generate specific color patterns. These oriented nanostructures created on the metal surface, called ripples, are typically smaller than the laser wavelength and in the range of visible spectrum. In this way, a complex colorization process of the material, involving imprinting, calibration and reading, has been performed to associate a priori defined colors. This new method based on the control of the laser-driven nanostructure orientation allows cumulating high quantity of information in a minimal surface, proposing new applications for laser marking and new types of identifying codes.
Propagation of elastic wave in nanoporous material with distributed cylindrical nanoholes
NASA Astrophysics Data System (ADS)
Qiang, FangWei; Wei, PeiJun; Liu, XiQiang
2013-08-01
The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the surface stress effects and to derive the nontraditional boundary condition on the surface of nanoholes. The plane wave expansion method is used to obtain the scattering waves from the single nanohole. The multiple scattering effects are taken into consideration by summing the scattered waves from all scatterers and performing the configuration averaging of random distributed scatterers. The effective propagation constants of coherent waves along with the associated dynamic effective elastic modulus are numerically evaluated. The influences of surface stress are discussed based on the numerical results.
Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift
Alharbi, Raed; Irannejad, Mehrdad; Yavuz, Mustafa
2017-01-01
Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene) enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local) sensitivity than a regular surface plasmon resonance (SPR) sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit) at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection. PMID:28106850
Minimizing residues and strain in 2D materials transferred from PDMS.
Jain, Achint; Bharadwaj, Palash; Heeg, Sebastian; Parzefall, Markus; Taniguchi, Takashi; Watanabe, Kenji; Novotny, Lukas
2018-06-29
Integrating layered two-dimensional (2D) materials into 3D heterostructures offers opportunities for novel material functionalities and applications in electronics and photonics. In order to build the highest quality heterostructures, it is crucial to preserve the cleanliness and morphology of 2D material surfaces that come in contact with polymers such as PDMS during transfer. Here we report that substantial residues and up to ∼0.22% compressive strain can be present in monolayer MoS 2 transferred using PDMS. We show that a UV-ozone pre-cleaning of the PDMS surface before exfoliation significantly reduces organic residues on transferred MoS 2 flakes. An additional 200 ◦ C vacuum anneal after transfer efficiently removes interfacial bubbles and wrinkles as well as accumulated strain, thereby restoring the surface morphology of transferred flakes to their native state. Our recipe is important for building clean heterostructures of 2D materials and increasing the reproducibility and reliability of devices based on them.
NASA Astrophysics Data System (ADS)
Fang, Yuanbin; Sha, Hongwei; Yu, Yunmin; Chen, Bing
2018-03-01
Material composition, hardness and wear properties of the throw-out plate improved are analysed on a road milling machine. At the same time, analyse the tissue and performance of Fe based alloy named Fe60 cladding layer using the plasma surfacing method. And the original and improved throw-out plates are analysed throwing material effect by the dynamic analysis. Then the throw-out plate samples are verified. The results show that Fe60 powder is selected as surface strengthening material. By the improved structure, the hardness of the throw-out plate increases from 14.6HRC to 57.5HRC, and the wear resistance increases from 0.452g-1 to 16.393g-1. At the same time, it increases from 3263 to 3433 to fall into the collecting material number of milling machine. It provides important guidance for structure design and process design of the milling machine throw-out plate.
Minimizing residues and strain in 2D materials transferred from PDMS
NASA Astrophysics Data System (ADS)
Jain, Achint; Bharadwaj, Palash; Heeg, Sebastian; Parzefall, Markus; Taniguchi, Takashi; Watanabe, Kenji; Novotny, Lukas
2018-06-01
Integrating layered two-dimensional (2D) materials into 3D heterostructures offers opportunities for novel material functionalities and applications in electronics and photonics. In order to build the highest quality heterostructures, it is crucial to preserve the cleanliness and morphology of 2D material surfaces that come in contact with polymers such as PDMS during transfer. Here we report that substantial residues and up to ∼0.22% compressive strain can be present in monolayer MoS2 transferred using PDMS. We show that a UV-ozone pre-cleaning of the PDMS surface before exfoliation significantly reduces organic residues on transferred MoS2 flakes. An additional 200 ◦C vacuum anneal after transfer efficiently removes interfacial bubbles and wrinkles as well as accumulated strain, thereby restoring the surface morphology of transferred flakes to their native state. Our recipe is important for building clean heterostructures of 2D materials and increasing the reproducibility and reliability of devices based on them.
A differential CDM model for fatigue of unidirectional metal matrix composites
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1992-01-01
A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.
Surface-modified nanoparticles as anti-biofilm filler for dental polymers
Zaltsman, Nathan; Ionescu, Andrei C.; Weiss, Ervin I.; Brambilla, Eugenio; Beyth, Shaul
2017-01-01
The objective of the study was to synthesis silica nanoparticles modified with (i) a tertiary amine bearing two t-cinnamaldehyde substituents or (ii) dimethyl-octyl ammonium, alongside the well-studied quaternary ammonium polyethyleneimine nanoparticles. These were to be evaluated for their chemical and mechanical properties, as well for antibacterial and antibiofilm activity. Samples were incorporated in commercial dental resin material and the degree of monomer conversion, mechanical strength, and water contact angle were tested to characterize the effect of the nanoparticles on resin material. Antibacterial activity was evaluated with the direct contact test and the biofilm inhibition test against Streptococcus mutans. Addition of cinnamaldehyde-modified particles preserved the degree of conversion and compressive strength of the base material and increased surface hydrophobicity. Quaternary ammonium functional groups led to a decrease in the degree of conversion and to low compressive strength, without altering the hydrophilic nature of the base material. In the direct contact test and the anti-biofilm test, the polyethyleneimine particles exhibited the strongest antibacterial effect. The cinnamaldehyde-modified particles displayed antibiofilm activity, silica particles with quaternary ammonium were ineffective. Immobilization of t-cinnamaldehyde onto a solid surface via amine linkers provided a better alternative to the well-known quaternary ammonium bactericides. PMID:29244848
NASA Astrophysics Data System (ADS)
Schulze, Martin H.; Heuer, Henning
2012-04-01
Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.
Quantification of Shape, Angularity, and Surface texture of Base Course Materials
DOT National Transportation Integrated Search
1998-01-01
A state-of-the-art review was conducted to determine existing test methods for characterizing the shape, angularity, and surface texture of coarse aggregates. The review found direct methods used by geologists to determine these characteristics. Thes...
NASA Astrophysics Data System (ADS)
Wati, Elvis; Meukam, Pierre; Damfeu, Jean Claude
2017-12-01
Uninsulated concrete block walls commonly found in tropical region have to be retrofitted to save energy. The thickness of insulation layer used can be reduced with the help of modified laterite based bricks layer (with the considerably lower thermal conductivity than that of concrete block layer) during the retrofit building fabrics. The aim of this study is to determine the optimum location and distribution of different materials. The investigation is carried out under steady periodic conditions under the climatic conditions of Garoua in Cameroon using a Simulink model constructed from H-Tools (the library of Simulink models). Results showed that for the continuous air-conditioned space, the best wall configuration from the maximum time lag, minimum decrement factor and peak cooling transmission load perspective, is dividing the insulation layer into two layers and placing one at the exterior surface and the other layer between the two different massive layers with the modified laterite based bricks layer at the interior surface. For intermittent cooling space, the best wall configuration from the minimum energy consumption depends on total insulation thickness. For the total insulation thickness less than 8 cm approximately, the best wall configuration is placing the half layer of insulation material at the interior surface and the other half between the two different massive layers with the modified earthen material at the exterior surface. Results also showed that, the optimum insulation thickness calculated from the yearly cooling transmission (estimated only during the occupied period) and some economic considerations slightly depends on the location of that insulation.
NASA Technical Reports Server (NTRS)
Hofmann, Douglas (Inventor)
2015-01-01
Systems and methods in accordance with embodiments of the invention implement layers of metallic glass-based materials. In one embodiment, a method of fabricating a layer of metallic glass includes: applying a coating layer of liquid phase metallic glass to an object, the coating layer being applied in a sufficient quantity such that the surface tension of the liquid phase metallic glass causes the coating layer to have a smooth surface; where the metallic glass has a critical cooling rate less than 1000 K/s; and cooling the coating layer of liquid phase metallic glass to form a layer of solid phase metallic glass.
Immediate impact on the rim zone of cement based materials due to chemical attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwotzer, M., E-mail: matthias.schwotzer@kit.edu; Scherer, T.; Gerdes, A.
2015-01-15
Cement based materials are in their widespread application fields exposed to various aqueous environments. This can lead to serious chemical changes affecting the durability of the materials. In particular in the context of service life prediction a detailed knowledge of the reaction mechanisms is a necessary base for the evaluation of the aggressivity of an aqueous medium and this is deduced commonly from long term investigations. However, these processes start immediately at the material/water-interface, when a cementitious system comes into contact with an aqueous solution, altering here the chemical composition and microstructure. This rim zone represents the first hurdle thatmore » has to be overcome by an attacking aqueous solution. Therefore, the properties of the surface near area should be closely associated with the further course of deterioration processes by reactive transport. In this context short term exposure experiments with hardened cement paste over 4 and 48 h have been carried out with demineralized water, hard tap water and different sulfate solutions. In order to investigate immediate changes in the near-surface region, depth profile cuts have been performed on the cement paste samples by means of focused ion beam preparation techniques. A scanning beam of Gallium ions is applied to cut a sharp edge in the cement paste surface, providing insights into the composition and microstructure of the upper ten to hundred microns. Electron microscopic investigations on such a section of the rim zone, together with surface sensitive X-ray diffraction accompanied by a detailed characterization of the bulk composition confirm that the properties of the material/water interface are of relevance for the durability of cement based systems in contact with aqueous solutions. In this manner, focused ion beam investigations constitute auspicious tools to contribute to a more sophisticated understanding of the reaction mechanisms. - Highlights: • The chemical stability is related to the properties of material/water interface. • Properties of the rim zone readjust quickly, triggered by hydrochemical conditions. • Durability research can be improved by combining FIB techniques and common analytics.« less
2012-02-01
release; distribution unlimited. See additional restrictions described on inside pages STINFO COPY AIR FORCE RESEARCH...LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE...AFRL/RXLP) Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson Air Force Base, OH 45433-7750 Air Force
Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak
2012-09-01
The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.
Hirayama, Yo; Oda, Shigeto; Wakabayashi, Kiyohito; Sadahiro, Tomohito; Nakamura, Masataka; Watanabe, Eizo; Tateishi, Yoshihisa
2011-01-01
We sought to identify the most relevant hemofilter for cytokine removal based on the mechanisms of filtration and adsorption. Ascites were filtered using four types of hemofilters composed of different membrane materials (polymethyl methacrylate, PMMA, cellulose triacetate, CTA, or polysulfone, PS) and different surface areas (1.0 or 2.1 m(2)) to investigate the rate of interleukin-6 (IL-6) filtration. Next, ascites were perfused through each hemofilter without obtaining a filtrate to study each filter's adsorptive capability. The PMMA hemofilters resulted in a marginal observed IL-6 filtration rates, whereas the CTA and PS hemofilters resulted in highly effective IL-6 filtration. Regarding the IL-6 adsorptive capabilities of the filters, the PMMA hemofilter with a large surface area showed the highest level of IL-6 clearance. The present findings suggest that when cytokine removal based on filtration is desired, CTA or PS hemofilters should be selected. When IL-6 removal based on adsorption is desired, a PMMA hemofilter with a large surface area should be selected. Copyright © 2010 S. Karger AG, Basel.
1986-03-01
mean-square (rms) have been measured on fused quartz and Zerodur surfaces polished by manufacturers of ring- laser gyros. The measurements were made...Sizes and Percent Crystallinity of Laser Gyro Materials. Crystallite Crystallinity, Material size, :-100 A ±10 vol% Zerodur 800 79 Quartz 500 53...Based on t data presented in this rel ort, Cervit, Zerodur , and RLA 559,122 from Corning Glass Works have acceptable material properties for laser
Pashkuleva, I; Marques, A P; Vaz, F; Reis, R L
2005-01-01
The surface modification of three starch based polymeric biomaterials, using a KMnO4/HNO3 oxidizing system, and the effect of that modification on the osteoblastic cell adhesion has been investigated. The rationale of this work is as follows--starch based polymers have been proposed for use as tissue engineering scaffolds in several publications. It is known that in biodegradable systems it is quite difficult to have both cell adhesion and proliferation. Starch based polymers have shown to perform better than poly-lactic acid based materials but there is still room for improvement. This particular work is aimed at enhancing cell adhesion and proliferation on the surface of several starch based polymer blends that are being proposed as tissue engineering scaffolds. The surface of the polymeric biomaterials was chemically modified using a KMnO4/HNO3 system. This treatment resulted in more hydrophilic surfaces, which was confirmed by contact angle measurements. The effect of the treatment on the bioactivity of the surface modified biomaterials was also studied. The bioactivity tests, performed in simulated body fluid after biomimetic coating, showed that a dense film of calcium phosphate was formed after 30 days. Finally, human osteoblast-like cells were cultured on unmodified (control) and modified materials in order to observe the effect of the presence of higher numbers of polar groups on the adhesion and proliferation of those cells. Two of the modified polymers presented changes in the adhesion behavior and a significant increase in the proliferation rate kinetics when compared to the unmodified controls.
NASA Technical Reports Server (NTRS)
Chang, T. S.
1974-01-01
A numerical scheme using the method of characteristics to calculate the flow properties and pressures behind decaying shock waves for materials under hypervelocity impact is developed. Time-consuming double interpolation subroutines are replaced by a technique based on orthogonal polynomial least square surface fits. Typical calculated results are given and compared with the double interpolation results. The complete computer program is included.
NASA Astrophysics Data System (ADS)
Iskanderova, Zelina; Kleiman, Jacob I.; Tennyson, Rod C.
2009-01-01
Space flight data, collected and published by NASA Glenn Research Center (GRC) team for a set of pristine polymeric materials selected, compiled, and tested in two LEO flight experiments at the International Space Station, as part of the "Materials International Space Station Experiment" (MISSE), has been used for comparison with previously developed atomic oxygen erosion predictive models. The same set of materials was used for a ground-based fast atomic beam (FAO) experimental erosion study at ITL/UTIAS, where the FAO exposure was performed mostly at a standard fluence of 2×1020 cm-2, with the results collected in a database for the development of a prototype of predictive software. A comparison of MISSE-1 flight data with two predictive correlations has shown good agreement, confirming the developed approach to polymers erosion resistance forecast that might be used also for newly developed or untested in space polymeric materials. A number of surface-modified thin film space polymers, treated by two ITL-developed and patented surface modification technologies, Implantox™ [5] and Photosil™ [6], have been also included in MISSE flight experiment. The results from those MISSE samples have shown full protection of AO-sensitive main space-related hydrocarbon polymers, such as Kapton HN, back-metalized Kapton H and Kapton E, and Mylar, when treated by Implantox™ surface modification technology and significant erosion resistance enhancement up to full protection by Photosil™ treatment.
The interaction of NO2 with BaO: from cooperative adsorption to Ba(NO3)2 formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Cheol-Woo W.; Kwak, Ja Hun; Szanyi, Janos
2007-10-25
The effect of water on the morphology of BaO/Al2O3-based NOx storage materials was investigated using Fourier transform infrared spectroscopy, temperature programmed desorption, and time-resolved synchrotron X-ray diffraction techniques. The results of this multi-spectroscopy study reveal that, in the presence of water, surface Ba-nitrates convert to bulk nitrates, and water facilitates the formation of large Ba(NO3)2 particles. The conversion of surface to bulk Ba-nitrates is completely reversible, i.e. after the removal of water from the storage material a significant fraction of the bulk nitrates re-convert to surface nitrates. NO2 exposure of a H2O-containing (wet) BaO/Al2O3 sample results in the formation ofmore » nitrites and bulk nitrates exclusively, i.e. no surface nitrates form. After further exposure to NO2, the nitrites completely convert to bulk nitrates. The amount of NOx taken up by the storage material is, however, essentially unaffected by the presence of water, regardless of whether the water was dosed prior to or after NO2 exposure. Based on the results of this study we are now able to explain most of the observations reported in the literature on the effect of water on NOx uptake on similar storage materials.« less
NASA Astrophysics Data System (ADS)
Reitberger, Thomas; Hoffmann, Gerd-Albert; Wolfer, Tim; Overmeyer, Ludger; Franke, Joerg
2016-09-01
The optical data transfer is considered as the future of signal transfer due to its various advantages compared to conventional copper-based technologies. The Aerosol Jet Printing (AJP) technology offers the opportunity to print materials with high viscosities, such as liquid transparent polymer adhesives (epoxy resins), on almost any possible substrate material and even in third dimension. This paper introduces a new flexible and comparatively cost-effective way of generating polymer optical waveguides through AJP. Furthermore, the conditioning of the substrate material and the printing process of planar waveguides are presented. In the first step, two lines with hydrophobic behavior are applied on foil material (PMMA, PVC, PI) by using a flexographic printing machine. These silicone based patterns containing functional polymer form barriers for the core material due to their low surface energy after curing. In the second step, the core material (liquid polymer, varnish) is printed between the barrier lines. Because of the hydrophobic behavior of the lines, the contact angle between the substrate surface and the liquid core material is increased which yields to higher aspect ratio. The distance between the barrier lines is at least 100 μm, which defines the width of the waveguide. The minimum height of the core shall be 50 μm. After UV-curing of the core polymer, the cladding material is printed on the top. This is also applied by using the AJP technology. Various tests were performed to achieve the optimal surface properties for adequate adhesion and machine process parameters.
Simulation insight into the cytochrome c adsorption on graphene and graphene oxide surfaces
NASA Astrophysics Data System (ADS)
Zhao, Daohui; Li, Libo; Zhou, Jian
2018-01-01
Graphene-based materials might serve as an ideal platform for the regulation and promotion of metalloprotein electron transfer (ET); however, the underpinning mechanism at the molecular level has not yet been fully revealed. The orientation of cytochrome c (Cyt c) on surfaces is vital for ET. In this work, the orientation of Cyt c on graphene and graphene oxide (GO) surfaces, as well as the dominant driving forces, the conformational change and the ET pathways were investigated by molecular dynamics simulations. The results show that Cyt c is adsorbed onto the GO surface mainly through lysine residues; whereas hydrophobic interaction contributes to the Cyt c adsorption on graphene surface. There is no significant conformational change of Cyt c upon adsorption. The heme plane of Cyt c tends to be horizontally oriented and far away from the graphene surface, which is not conducive to ET. On the GO surface, the heme plane is slightly deviated from the normal direction to the surface and the axial ligand Met80 is much closer to the surface, which facilitates the ET. These findings shed some light on the ET mechanism of Cyt c on graphene-based materials and provide guidance for the development of bionic electronic devices.
Synthesis of graphene and related two-dimensional materials for bioelectronics devices.
Zhang, Tao; Liu, Jilun; Wang, Cheng; Leng, Xuanye; Xiao, Yao; Fu, Lei
2017-03-15
In recent years, graphene and related two-dimensional (2D) materials have emerged as exotic materials in nearly every fields of fundamental science and applied engineering. The latest progress has shown that these 2D materials could have a profound impact on bioelectronics devices. For the construction of these bioelectronics devices, these 2D materials were generally synthesized by the processes of exfoliation and chemical vapor deposition. In particular, the macrostructures of these 2D materials have also been realized by these two processes, which have shown great potentials in the self-supported and special-purpose biosensors. Due to the high specific surface area, subtle electron properties, abundant surface atoms of these 2D materials, the as-constructed bioelectronics devices have exhibited enhanced performance in the sensing of small biomolecules, heavy metals, pH, protein and DNA. The aim of this review article is to provide a comprehensive scientific progress in the synthesis of 2D materials for the construction of five typical bioelectronics devices (electrochemical biosensors, FET-based biosensors, piezoelectric devices, electrochemiluminescence devices and supercapacitors) and to overview the present status and future perspective of the applications of these bioelectronics devices based on 2D materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Accelerated Degradation Behavior and Cytocompatibility of Pure Iron Treated with Sandblasting.
Zhou, Juncen; Yang, Yuyun; Alonso Frank, Micael; Detsch, Rainer; Boccaccini, Aldo R; Virtanen, Sannakaisa
2016-10-12
Fe-based materials are of interest for use in biodegradable implants. However, their corrosion rate in the biological environment may be too slow for the targeted applications. In this work, sandblasting is applied as a successful surface treatment for increasing the degradation rate of pure iron in simulated body fluid. Two sandblasting surfaces with different roughness present various surface morphologies but similar degradation products. Electrochemistry tests revealed that sandblasted samples have a higher corrosion rate compared to that of bare iron, and even more noteworthy, the degradation rate of sandblasted samples remains significantly higher during long-term immersion tests. On the basis of our experimental results, the most plausible reasons behind the fast degradation rate are the special properties of sandblasted surfaces, including the change of surface composition (for the early stage), high roughness (occluded surface sites), and high density of dislocations. Furthermore, the cytocompatibility was studied on sandblasting surfaces using human osteoblast-like cells (MG-63) by indirect and direct contact methods. Results revealed that sandblasting treatment brings no adverse effect to the growth of MG-63 cells. This work demonstrates the significant potential of sandblasting for controlling the degradation behavior of iron-based materials for biomedical applications.
Laser modification of macroscopic properties of metal surface layer
NASA Astrophysics Data System (ADS)
Kostrubiec, Franciszek
1995-03-01
Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.
NASA Astrophysics Data System (ADS)
Jough, Fooad Karimi Ghaleh; Şensoy, Serhan
2016-12-01
Different performance levels may be obtained for sideway collapse evaluation of steel moment frames depending on the evaluation procedure used to handle uncertainties. In this article, the process of representing modelling uncertainties, record to record (RTR) variations and cognitive uncertainties for moment resisting steel frames of various heights is discussed in detail. RTR uncertainty is used by incremental dynamic analysis (IDA), modelling uncertainties are considered through backbone curves and hysteresis loops of component, and cognitive uncertainty is presented in three levels of material quality. IDA is used to evaluate RTR uncertainty based on strong ground motion records selected by the k-means algorithm, which is favoured over Monte Carlo selection due to its time saving appeal. Analytical equations of the Response Surface Method are obtained through IDA results by the Cuckoo algorithm, which predicts the mean and standard deviation of the collapse fragility curve. The Takagi-Sugeno-Kang model is used to represent material quality based on the response surface coefficients. Finally, collapse fragility curves with the various sources of uncertainties mentioned are derived through a large number of material quality values and meta variables inferred by the Takagi-Sugeno-Kang fuzzy model based on response surface method coefficients. It is concluded that a better risk management strategy in countries where material quality control is weak, is to account for cognitive uncertainties in fragility curves and the mean annual frequency.
Martínez-Calderon, M; Manso-Silván, M; Rodríguez, A; Gómez-Aranzadi, M; García-Ruiz, J P; Olaizola, S M; Martín-Palma, R J
2016-11-02
The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials.
Martínez-Calderon, M.; Manso-Silván, M.; Rodríguez, A.; Gómez-Aranzadi, M.; García-Ruiz, J. P.; Olaizola, S. M.; Martín-Palma, R. J.
2016-01-01
The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials. PMID:27805063
Photochromic amorphous molecular materials and their applications
NASA Astrophysics Data System (ADS)
Shirota, Yasuhiko; Utsumi, Hisayuki; Ujike, Toshiki; Yoshikawa, Satoru; Moriwaki, Kazuyuki; Nagahama, Daisuke; Nakano, Hideyuki
2003-01-01
Two novel classes of photochromic amorphous molecular materials based on azobenzene and dithienylethene were designed and synthesized. They were found to readily form amorphous glasses with well-defined glass-transition temperatures when the melt samples were cooled on standing in air and to exhibit photochromism in their amorphous films as well as in solution. Photochromic properties of these materials are discussed in relation to their molecular structures. Surface relief grating was formed on the amorphous films of azobenzene-based photochromic amorphous molecular materials by irradiation with two coherent Ar + laser beams. Dual image was formed at the same location of the films of dithienylethene-based photochromic amorphous molecular materials by irradiation with two linearly polarized light beams perpendicular to each other.
Roughness Effects on Fretting Fatigue
NASA Astrophysics Data System (ADS)
Yue, Tongyan; Abdel Wahab, Magd
2017-05-01
Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.
Guan, Cao; Wang, John
2016-10-01
Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.
2016-01-01
Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution‐based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed. PMID:27840793
Accuracy and speed of material categorization in real-world images.
Sharan, Lavanya; Rosenholtz, Ruth; Adelson, Edward H
2014-08-13
It is easy to visually distinguish a ceramic knife from one made of steel, a leather jacket from one made of denim, and a plush toy from one made of plastic. Most studies of material appearance have focused on the estimation of specific material properties such as albedo or surface gloss, and as a consequence, almost nothing is known about how we recognize material categories like leather or plastic. We have studied judgments of high-level material categories with a diverse set of real-world photographs, and we have shown (Sharan, 2009) that observers can categorize materials reliably and quickly. Performance on our tasks cannot be explained by simple differences in color, surface shape, or texture. Nor can the results be explained by observers merely performing shape-based object recognition. Rather, we argue that fast and accurate material categorization is a distinct, basic ability of the visual system. © 2014 ARVO.
Accuracy and speed of material categorization in real-world images
Sharan, Lavanya; Rosenholtz, Ruth; Adelson, Edward H.
2014-01-01
It is easy to visually distinguish a ceramic knife from one made of steel, a leather jacket from one made of denim, and a plush toy from one made of plastic. Most studies of material appearance have focused on the estimation of specific material properties such as albedo or surface gloss, and as a consequence, almost nothing is known about how we recognize material categories like leather or plastic. We have studied judgments of high-level material categories with a diverse set of real-world photographs, and we have shown (Sharan, 2009) that observers can categorize materials reliably and quickly. Performance on our tasks cannot be explained by simple differences in color, surface shape, or texture. Nor can the results be explained by observers merely performing shape-based object recognition. Rather, we argue that fast and accurate material categorization is a distinct, basic ability of the visual system. PMID:25122216
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa
2018-06-01
Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.
NASA Astrophysics Data System (ADS)
Siantar, Edwin
The demand for hydrogen as a clean energy carrier has increased greatly. The Cu-Cl cycle is a promising thermochemical cycle that is currently being developed to be the large-scale method of hydrogen production. The lifetime of materials for the pipes transporting molten CuCl is an important parameter for an economic design of a commercial thermochemical Cu-Cl hydrogen plant. This research is an examination of candidate materials following an immersion test in molten CuCl at 500 °C for 100 h. Two alloys, Ni based super-alloy (Inconel 625) and super austenitic stainless steel (AL6XN) were selected as the base metal. There were two types of coating applied to improve the corrosion resistance of the base metals during molten CuCl exposure. A metallic of Diamalloy 4006 and two ceramic of yttria stabilized zirconia and alumina coatings were applied to the base metal using thermal spray methods. An immersion apparatus was designed and constructed to perform an immersion test that has a condition similar to those in a hydrogen plant. After the immersion test, the materials were evaluated using an electrochemical method in combination with ex-situ surface analysis. The surface condition including elemental composition, film structure and resistivity of the materials were examined and compared. The majority of the coatings were damaged and fell off. Cracks were found in the original coated specimens indicating the sample geometry may have affected the integrity of the sprayed coating. When the coating cracked, it provided a pathway for the molten CuCl to go under the coating and react with the surface underneath the coating. Copper deposits and iron chloride that were found on the sample surfaces suggest that there were corrosion reactions that involved the metal dissolution and reduction of copper during immersion test. The results also suggest that Inconel 625 performed better than stainless steel AL6XN. Both Diamalloy 4006 and YSZ (ZrO2 18TiO2 10Y2O3) coatings seemed to provide better protection to the underlying base metal than alumina (Al2O3 3TiO2) coating.
Articles including thin film monolayers and multilayers
Li, DeQuan; Swanson, Basil I.
1995-01-01
Articles of manufacture including: (a) a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, (b) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, and a metal species attached to the multidentate ligand, (c) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, and a multifunctional organic ligand attached to the metal species, and (d) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, a multifunctional organic ligand attached to the metal species, and a second metal species attached to the multifunctional organic ligand, are provided, such articles useful in detecting the presence of a selected target species, as nonliear optical materials, or as scavengers for selected target species.
Dehydration kinetics of shocked serpentine
NASA Technical Reports Server (NTRS)
Tyburczy, James A.; Ahrens, Thomas J.
1988-01-01
Experimental rates of dehydration of shocked and unshocked serpentine were determined using a differential scanning calorimetric technique. Dehydration rates in shocked serpentine are enhanced by orders of magnitude over corresponding rates in unshocked material, even though the impact experiments were carried out under conditions that inhibited direct impact-induced devolatilization. Extrapolation to temperatures of the Martian surface indicates that dehydration of shocked material would occur 20 to 30 orders of magnitude more rapidly than for unshocked serpentine. The results indicate that impacted planetary surfaces and associated atmospheres would reach chemical equilibrium much more quickly than calculations based on unshocked material would indicate, even during the earliest, coldest stages of accretion. Furthermore, it is suggested that chemical weathering of shocked planetary surfaces by solid-gas reactions would be sufficiently rapid that true equilibrium mineral assemblages should form.
Wang, Xu; Zhang, Xuejun
2009-02-10
This paper is based on a microinteraction principle of fabricating a RB-SiC material with a fixed abrasive. The influence of the depth formed on a RB-SiC workpiece by a diamond abrasive on the material removal rate and the surface roughness of an optical component are quantitatively discussed. A mathematical model of the material removal rate and the simulation results of the surface roughness are achieved. In spite of some small difference between the experimental results and the theoretical anticipation, which is predictable, the actual removal rate matches the theoretical prediction very well. The fixed abrasive technology's characteristic of easy prediction is of great significance in the optical fabrication industry, so this brand-new fixed abrasive technology has wide application possibilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witman, Matthew; Ling, Sanliang; Boyd, Peter
Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. Here, we hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area canmore » yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.« less
Witman, Matthew; Ling, Sanliang; Boyd, Peter; Barthel, Senja; Haranczyk, Maciej; Slater, Ben; Smit, Berend
2018-02-28
Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. We hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area can yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.
2018-01-01
Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. We hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area can yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal–organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc. PMID:29532024
Witman, Matthew; Ling, Sanliang; Boyd, Peter; ...
2018-02-06
Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. Here, we hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area canmore » yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.« less
NASA Technical Reports Server (NTRS)
Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.
2010-01-01
A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume displacement metrics are systematically defined by normalizing the overall surface profile to statistically denote the area of relevance, termed the Zone of Interaction (ZOI). From this baseline, depth of the trough and height of the ploughed material are factored into the overall deformation assessment. Proof of concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that now allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. A quantified understanding of fundamental particle-material interaction is critical to anticipating how well components can withstand prolonged use in highly abrasive environments, specifically for our intended applications on the surface of the Moon and other planets or asteroids, as well as in similarly demanding, harsh terrestrial settings
Speckle photography during dynamic impact of an energetic material using laser-induced fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asay, B.W.; Laabs, G.W.; Henson, B.F.
1997-08-01
Laser and white light speckle photography have been used to observe surface displacement in a number of materials and over a varied range of strain rates. However, each suffers from limitations. We have developed a novel application of speckle photography in very difficult environments by using laser-induced fluorescence to generate the speckle pattern. This permits confinement of the free surface without undue degradation of the correlation upon which speckle methods are based. We have applied this method to measure the surface displacement of a reactive material during dynamic deformation at moderate strain rates. Conventional methods were tried but were unsuccessful,more » necessitating a novel approach. To the best of our knowledge, neither high-speed laser nor white light speckle photography has been performed using energetic materials. These measurements are very difficult because of the low material strength (yield strength {approximately}8{endash}80 MPa), and because significant out-of-plane motion and surface disruption occur during fracture, and early during the deformation process. We report results from experiments in which these major problems have been overcome. {copyright} {ital 1997 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chun-Long; Zuckermann, Ronald N.; DeYoreo, James J.
The exquisite self-assembly of proteins and peptides in nature into highly ordered functional materials has inspired innovative approaches to biomimetic materials design and synthesis. Here we report the assembly of peptoids—a class of highly stable sequence-defined synthetic polymers—into biomimetic materials on mica surfaces. The assembling 12-mer peptoid contains alternating acidic and aromatic residues, and the presence of Ca2+ cations creates peptoid-peptoid and peptoid-mica interactions that drive assembly. In situ atomic force microscopy (AFM) shows that peptoids first assemble into discrete nanoparticles, these particles then transform into hexagonally-patterned nanoribbons on mica surfaces. AFM-based dynamic force spectroscopy (DFS) studies show that peptoid-micamore » interactions are much stronger than peptoidpeptoid interactions in the presence of Ca2+, illuminating the physical parameters that drive peptoid assembly. We further demonstrate the display of functional groups at the N-terminus of assembling peptoid sequence to produce biomimetic materials with similar hierarchical structures. This research demonstrates that surface-directed peptoid assembly can be used as a robust platform to develop biomimetic coating materials for applications.« less
Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites.
Gao, Honghong; Qiang, Tao
2017-06-07
Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure-property relationships of composite materials from a new perspective.
Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites
Gao, Honghong; Qiang, Tao
2017-01-01
Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure–property relationships of composite materials from a new perspective. PMID:28772983
NASA Astrophysics Data System (ADS)
Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.
2017-05-01
During the last decades, femtosecond laser irradiation of materials has led to the emergence of various applications based on functionalization of surfaces at the nano- and microscale. Via inducing a periodic modification on material surfaces (band gap modification, nanostructure formation, crystallization or amorphization), optical and mechanical properties can be tailored, thus turning femtosecond laser to a key technology for development of nanophotonics, bionanoengineering, and nanomechanics. Although modification of semiconductor surfaces with femtosecond laser pulses has been studied for more than two decades, the dynamics of coupling of intense laser light with excited matter remains incompletely understood. In particular, swift formation of a transient overdense electron-hole plasma dynamically modifies optical properties in the material surface layer and induces large gradients of hot charge carriers, resulting in ultrafast charge-transport phenomena. In this work, the dynamics of ultrafast laser excitation of a semiconductor material is studied theoretically on the example of silicon. A special attention is paid to the electron-hole pair dynamics, taking into account ambipolar diffusion effects. The results are compared with previously developed simulation models, and a discussion of the role of charge-carrier dynamics in localization of material modification is provided.
NASA Astrophysics Data System (ADS)
Blackburn, Simon
In this thesis, the electronic structure of different kinds of superconductors is explored with the density functional theory. A brief explanation of this theory is done in the introduction. The Hubbard model is also presented as it can be used to solve shortcomings of the theory in some materials such as cuprates. The blend of the two theories is the DFT+U which is used to describe materials with strongly correlated electrons. Afterward, a paper describing the electron-phonon coupling in the superconductor NbC1- xNx is presented. Results from this work show the role of the Fermi surface in the electron pairing mechanism leading to superconductivity. Based on these results, a model is developed explaining how the critical temperature is influenced by the change in frequency of the vibration modes. Then, quantum oscillation results based on a detailed analysis of Fermi surfaces, allowing a direct comparison with experimental data, are presented within two papers. The first one is about a material in the iron pnictide family, the LaFe2P2. Our calculations show that the Fermi surface of this material is different from the superconducting doped BaFe2As2 which explains why this material shows no sign of superconductivity. The second paper is about the heavy fermion system YbCoIn5. To do this, a new efficient method to calculate de Haas-van Alphen frequencies is developed. Finally, a paper on superconducting YBa2Cu3O6.5 is presented. Using DFT+U, the role of various magnetic orders on the Fermi surface are studied. The results allow a better understanding of the measured quantum oscillations in this material.
Nonlinear friction dynamics on polymer surface under accelerated movement
NASA Astrophysics Data System (ADS)
Aita, Yuuki; Asanuma, Natsumi; Takahashi, Akira; Mayama, Hiroyuki; Nonomura, Yoshimune
2017-04-01
Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE) resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction) and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.
Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Goekcen, Tahir
2015-01-01
Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.
Detection and drug delivery from superhydrophobic materials
NASA Astrophysics Data System (ADS)
Falde, Eric John
The wetting of a rough material is controlled by surface chemistry and morphology, the liquid phase, solutes, and surfactants that affect the surface tension with the gas phase, and environmental conditions such as temperature and pressure. Materials with high (>150°) apparent contact angles are known as superhydrophobic and are very resistant to wetting. However, in complex biological mixtures eventually protein adsorbs, fouling the surface and facilitating wetting on time scales from seconds to months. The work here uses the partially-wetted (Cassie-Baxter) to fully-wetted (Wenzel) state transition to control drug delivery and to perform surfactant detection via surface tension using hydrophobic and superhydrophobic materials. First there is an overview of the physics of the non-wetting state and the transition to wetting. Then there is a review of how wetting can be controlled by outside stimuli and applications of these materials. Next there is work presented on controlling drug release using superhydrophobic materials with controlled wetting rates, with both in vitro and in vivo results. Then there is work on developing a sensor based on this wetting state transition and its applications toward detecting solute levels in biological fluids for point-of-care diagnosis. Finally, there is work presented on using these sensors for detecting the alcohol content in wine and spirits.
On Critical States, Rupture States and Interlocking Strength of Granular Materials.
Szalwinski, Chris M
2017-07-27
The Mohr-Coulomb theory of strength identifies cohesion and internal friction as the two principal contributions to the shear strength of a granular material. The contribution of cohesion in over-compacted granular materials has been challenged and replacing cohesion with interlocking has been proposed. A theory of rupture strength that includes interlocking is derived herein. The physics-chemistry concept of critical state is elaborated to accommodate granular materials, based on empirical definitions established in the fields of soil mechanics and bulk solids' flow. A surface in state space, called the critical compaction surface, separates over-compacted states from lightly compacted states. The intersection of this surface with the Mohr-Coulomb envelope forms the critical state surface for a granular material. The rupture strength of an over-compacted granular material is expressed as the sum of cohesion, internal friction and interlocking strength. Interlocking strength is the shear strength contribution due to over-compaction and vanishes at critical state. The theory allows migrations from one critical state to another. Changes in specific volume during such migrations are related to changes in mean-normal effective stress and uncoupled from changes in shearing strain. The theory is reviewed with respect to two established research programs and underlying assumptions are identified.
Formation of a deposit on workpiece surface in polishing nonmetallic materials
NASA Astrophysics Data System (ADS)
Filatov, Yu. D.; Monteil, G.; Sidorko, V. I.; Filatov, O. Y.
2013-05-01
During the last decades in the theory of machining nonmetallic materials some serious advances have been achieved in the field of applying fundamental scientific approaches to the grinding and polishing technologies for high-quality precision surfaces of electronic components, optical systems, and decorative articles made of natural and synthetic stone [1-9]. These achievements include a cluster model of material removal in polishing dielectric workpieces [1-3, 6-7] and a physical-statistical model of formation of debris (wear) particles and removal thereof from a workpiece surface [8-10]. The aforesaid models made it possible to calculate, without recourse to Preston's linear law, the removal rate in polishing nonmetallic materials and the wear intensity for bound-abrasive tools. Equally important for the investigation of the workpiece surface generation mechanism and formation of debris particles are the kinetic functions of surface roughness and reflectance of glass and quartz workpiece surfaces, which have been established directly in the course of polishing. During the in situ inspection of a workpiece surface by laser ellipsometry [11] and reflectometry [12] it was found out that the periodic change of the light reflection coefficient of a workpiece surface being polished is attributed to the formation of fragments of a deposit consisting of work material particles (debris particles) and tool wear particles [13, 14]. The subsequent studies of the mechanism of interaction between the debris particles and wear particles in the tool-workpiece contact zone, which were carried out based on classical concepts [15, 16], yielded some unexpected results. It was demonstrated that electrically charged debris and wear particles, which are located in the coolant-filled gap between a tool and a workpiece, move by closed circular trajectories enclosed in spheres measuring less than one fifth of the gap thickness. This implies that the probability of the debris and wear particles reaching the tool and workpiece surfaces and, especially, getting localized on the surfaces is extremely low, which contradicts the results of experimental examination of these surfaces. Based on the quantum-mechanical description of the process of scattering of the debris and wear particles that are as small as 3-4 nm in the tool-workpiece contact zone, the mechanism of formation of a workpiece microrelief and the mechanism of formation of a debris-particle deposit on the tool surface were clarified [17-21]. However, the mechanism of formation of the deposit fragments and their discrete arrangement on the workpiece surface in the process of polishing with a bound-abrasive tool has not been studied yet.
Complex use of waste in wastewater and circulating water treatment from oil in heat power stations
NASA Astrophysics Data System (ADS)
Nikolaeva, L. A.; Iskhakova, R. Ya.
2017-06-01
Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows efficient wastewater treatment from oil as well as reduction of anthropogenic pressure on the environment and economic costs of the station for nature protection measures.
Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy
Kajihara, Yutaro; Takenouchi, Yoshihisa; Tanaka, Takuo; Suzuki, Shiro; Minami, Hiroyuki
2016-01-01
PURPOSE The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys. PMID:26949481
Chung, Sung Hee; Min, Junhong
2009-07-01
Polydimethylsiloxane (PDMS) surface consisting irregular pattern was investigated to develop cell-based biochip using PDMS. PDMS surface was modified with nano- and micro-combined patterns using surface deformation technology. Hydrophobicity of nano-patterned PDMS surface was sustained. Nevertheless it has irregular patterns consisting of micro- and nano-patterns. According to atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscopy results by immunostaining method, human mammary epithelial cells (HMEC) adhered well on irregularly patterned surface without any reagents such as gelatin and collagen, compared to commercial culture dish. It implies PDMS material can be utilized as template for cell-based biochip without any reagents.
A survey of surface structures and subsurface developments for lunar bases
NASA Technical Reports Server (NTRS)
Hypes, Warren D.; Wright, Robert L.
1990-01-01
Concepts proposed for lunar-base structures and shelters include those fabricated on earth, fabricated locally using lunar materials, and developed from subsurface features. Early bases may rely on evolutionary growth using Space Station modules and nodes covered with regolith for protection against thermal and radiative stresses. Expandable/inflatable shelters used alone on the surface or in conjunction with subselene (beneath the lunar surface) features and spent portions of the Space Shuttle's fuel tanks offer early alternatives. More mature lunar bases may need larger volumes provided by erectable buildings, hybrid inflatable/rigid spheres, modular concrete buildings using locally derived cement, or larger subselene developments.
McCord, T.B.; Hansen, G.B.; Clark, R.N.; Martin, P.D.; Hibbitts, C.A.; Fanale, F.P.; Granahan, J.C.; Segura, M.; Matson, D.L.; Johnson, T.V.; Carlson, R.W.; Smythe, W.D.; Danielson, G.E.
1998-01-01
We present evidence for several non-ice constituents in the surface material of the icy Galilean satellites, using the reflectance spectra returned by the Galileo near infrared mapping spectrometer (NIMS) experiment. Five new absorption features are described at 3.4, 3.88, 4.05, 4.25, and 4.57 ??m for Callisto and Ganymede, and some seem to exist for Europa as well. The four absorption bands strong enough to be mapped on Callisto and Ganymede are each spatially distributed in different ways, indicating different materials are responsible for each absorption. The spatial distributions are correlated at the local level in complex ways with surface features and in some cases show global patterns. Suggested candidate spectrally active groups, perhaps within larger molecules, producing the five absorptions include C-H, S-H, SO2, CO2, and C???N. Organic material like tholins are candidates for the 4.57- and 3.4-??m features. We suggest, based on spectroscopic evidence, that CO2 is present as a form which does not allow rotational modes and that SO2 is present neither as a frost nor a free gas. The CO2, SO2, and perhaps cyanogen (4.57 ??m) may be present as very small collections of molecules within the crystal structure, perhaps following models for radiation damage and/or for comet and interstellar grain formation at low temperatures. Some of the dark material on these surfaces may be created by radiation damage of the CO2 and other carbon-bearing species and the formation of graphite. These spectra suggest a complex chemistry within the surface materials and an important role for non-ice materials in the evolution of the satellite surfaces. Copyright 1998 by the American Geophysical Union.
Zhou, San Ling; Zhou, Jun; Watanabe, Shigeru; Watanabe, Koji; Wen, Ling Ying; Xuan, Kun
2012-03-01
This study was conducted to compare the remineralization effects of five regimens on the loss of fluorescence intensity, surface microhardness, roughness and microstructure of bovine enamel after remineralization. We hope that these results can provide some basis for the clinical application of these materials. One hundred bovine incisors were prepared and divided into the following five groups, which were treated with distinct dental materials: (1) Clinpro™ XT varnish (CV), (2) F-varnish (FV), (3) Tooth Mousse (TM), (4) Fuji III LC(®) light-cured glass ionomer pit and fissure sealant (FJ) and (5) Base Cement(®) glass polyalkenoate cement (BC). Subsequently, they were detected using four different methods: quantitative light-induced fluorescence, microhardness, surface 3D topography and scanning electron microscopy (SEM). The loss of fluorescence intensity of CV, BC and FJ groups showed significant decreases after remineralization (p<0.05). The microhardness values of the BC group were significantly higher than those of the other groups (p<0.05) after 6 weeks of remineralization. The CV group's surface roughness was significantly lower than those of the other groups after 6 weeks of remineralization (p<0.05). Regarding microstructure values, the FV group showed many round particles deposited in the bovine enamel after remineralization. However, the other four groups mainly showed needle-like crystals. Glass ionomer cement (GIC)-based dental materials can promote more remineralization of the artificial enamel lesions than can NaF-based dental materials. Resin-modified GIC materials (e.g., CV and FJ) have the potential for more controlled and sustained release of remineralized agents. The effect of TM requires further study. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bilek, M. M. M.; Newton-McGee, K.; McKenzie, D. R.; McCulloch, D. G.
2006-01-01
Plasma processes for the synthesis of new materials as thin films have enabled the production of a wide variety of new materials. These include meta-stable phases, which are not readily found in nature, and more recently, materials with structure on the nanoscale. Study of plasma synthesis processes at the fundamental level has revealed that ion energy, depositing flux and growth surface temperature are the critical parameters affecting the microstructure and the properties of the thin film materials formed. In this paper, we focus on the role of ion flux and impact energy in the creation of thin films with nanoscale structure in the form of multilayers. We describe three synthesis strategies, based on the extraction of ions from plasma sources and involving modulation of ion flux and ion energy. The microstructure, intrinsic stress and physical properties of the multilayered samples synthesized are studied and related back to the conditions at the growth surface during deposition. When energetic ions of a non-condensing species are used, it is possible to place active groups on the surfaces of materials such as polymers. These active groups can then be used as bonding sites in subsequent chemical attachment of proteins or other macromolecules. If the energy of the non-condensing ions is increased to a few keV then modified layers buried under the surface can be produced. Here we describe a method by which the aging effect, which is often observed in plasma surface modifications on polymers, can be reduced and even eliminated using high energy ion bombardment.
Effect of Atomic Oxygen Exposure on Surface Resistivity Change of Spacecraft Insulator Material
NASA Astrophysics Data System (ADS)
Mundari, Noor Danish Ahrar; Khan, Arifur Rahman; Chiga, Masaru; Okumura, Teppei; Masui, Hirokazu; Iwata, Minoru; Toyoda, Kazuhiro; Cho, Mengu
Spacecraft surface charging can lead to arcing and a loss of electricity generation capability in solar panels or even loss of a satellite. The charging problem may be further aggravated by atomic oxygen (AO) exposure in Low Earth orbits, which modifies the surface of materials like polyimide, Teflon, anti-reflective coatings, cover glass etc, used on satellite surfaces, affecting materials properties, such as resistivity, secondary electron emissivity and photo emission, which govern the charging behavior. These properties are crucial input parameters for spacecraft charging analysis. To study the AO exposure effect on charging governing properties, an atomic oxygen exposure facility based on laser detonation of oxygen was built. The facility produces AO with a peak velocity value around 10-12km/s and a higher flux than that existing in orbit. After exposing the polyimide test material to the equivalent of 10 years of AO fluence at an altitude of 700-800 km, surface charging properties like surface resistivity and volume resistivity were measured. The measurement was performed in a vacuum using the charge storage decay method at room temperature, which is considered the most appropriate for measuring resistivity for space applications. The results show that the surface resistivity increases and the volume resistivity remains almost the same for the AO exposure fluence of 5.4×1018 atoms cm-2.
Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating
Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan
2016-01-01
All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage. PMID:26978367
NASA Astrophysics Data System (ADS)
Cuzzi, Jeffrey N.; Chambers, Lindsey B.; Hendrix, Amanda R.
2017-06-01
Remote observations of the surfaces of airless planetary objects are fundamental to inferring the physical structure and compositional makeup of the surface material. A number of forward models have been developed to reproduce the photometric behavior of these surfaces, based on specific, assumed structural properties such as macroscopic roughness and associated shadowing. Most work of this type is applied to geometric albedos, which are affected by complicated effects near zero phase angle that represent only a tiny fraction of the net energy reflected by the object. Other applications include parameter fits to resolved portions of some planetary surface as viewed over a range of geometries. The spherical albedo of the entire object (when it can be determined) captures the net energy balance of the particle more robustly than the geometric albedo. In most treatments involving spherical albedos, spherical albedos and particle phase functions are often treated as if they are independent, neglecting the effects of roughness. In this paper we take a different approach. We note that whatever function captures the phase angle dependence of the brightness of a realistic rough, shadowed, flat surface element relative to that of a smooth granular surface of the same material, it is manifested directly in both the integral phase function and the spherical albedo of the object. We suggest that, where broad phase angle coverage is possible, spherical albedos may be easily corrected for the effects of shadowing using observed (or assumed) phase functions, and then modeled more robustly using smooth-surface regolith radiative transfer models without further imposed (forward-modeled) shadowing corrections. Our approach attributes observed "powerlaw" phase functions of various slope (and "linear" ranges of magnitude-vs.-phase angle) to shadowing, as have others, and goes in to suggest that regolith-model-based inferences of composition based on shadow-uncorrected spherical albedos overestimate the amount of absorbing material contained in the regolith.
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; Chambers, Lindsey B.; Hendrix, Amanda R.
2016-01-01
Remote observations of the surfaces of airless planetary objects are fundamental to inferring the physical structure and compositional makeup of the surface material. A number of forward models have been developed to reproduce the photometric behavior of these surfaces, based on specific, assumed structural properties such as macroscopic roughness and associated shadowing. Most work of this type is applied to geometric albedos, which are affected by complicated effects near zero phase angle that represent only a tiny fraction of the net energy reflected by the object. Other applications include parameter fits to resolved portions of some planetary surface as viewed over a range of geometries. The spherical albedo of the entire object (when it can be determined) captures the net energy balance of the particle more robustly than the geometric albedo. In most treatments involving spherical albedos, spherical albedos and particle phase functions are often treated as if they are independent, neglecting the effects of roughness. In this paper we take a different approach. We note that whatever function captures the phase angle dependence of the brightness of a realistic rough, shadowed, flat surface element relative to that of a smooth granular surface of the same material, it is manifested directly in both the integral phase function and the spherical albedo of the object. We suggest that, where broad phase angle coverage is possible, spherical albedos may be easily corrected for the effects of shadowing using observed (or assumed) phase functions, and then modeled more robustly using smooth-surface regolith radiative transfer models without further imposed (forward-modeled) shadowing corrections. Our approach attributes observed "power law" phase functions of various slope (and "linear" ranges of magnitude-vs.-phase angle) to shadowing, as have others, and goes on to suggest that regolith-model-based inferences of composition based on shadow-uncorrected spherical albedos overestimate the amount of absorbing material contained in the regolith.
Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity
NASA Astrophysics Data System (ADS)
Liu, Liping; Yu, Miao; Lin, Hao; Foty, Ramsey
2017-01-01
Measuring mechanical properties of cells or cell aggregates has proven to be an involved process due to their geometrical and structural complexity. Past measurements are based on material models that completely neglect the elasticity of either the surface membrane or the interior bulk. In this work, we consider general material models to account for both surface and bulk viscoelasticity. The boundary value problems are formulated for deformations and relaxations of a closed viscoelastic surface coupled with viscoelastic media inside and outside of the surface. The linearized surface elasticity models are derived for the constant surface tension model and the Helfrich-Canham bending model for coupling with the bulk viscoelasticity. For quasi-spherical surfaces, explicit solutions are obtained for the deformation, stress-strain and relaxation behaviors under a variety of loading conditions. These solutions can be applied to extract the intrinsic surface and bulk viscoelastic properties of biological cells or cell aggregates in the indentation, electro-deformation and relaxation experiments.
Hardy, John G; Pfaff, André; Leal-Egaña, Aldo; Müller, Axel H E; Scheibel, Thomas R
2014-07-01
Silk protein-based materials are promising biomaterials for application as tissue scaffolds, due to their processability, biocompatibility, and biodegradability. The preparation of films composed of an engineered spider silk protein (eADF4(C16)) and their functionalization with glycopolymers are described. The glycopolymers bind proteins found in the extracellular matrix, providing a biomimetic coating on the films that improves cell adhesion to the surfaces of engineered spider silk films. Such silk-based materials have potential as coatings for degradable implantable devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Awad, Mohamed Moustafa; Alqahtani, H; Al-Mudahi, A; Murayshed, M S; Alrahlah, A; Bhandi, Shilpa H
2017-07-01
To review the adhesive bonding to different computer-aided design/computer-aided manufacturing (CAD/CAM) esthetic restorative materials. The use of CAD/CAM esthetic restorative materials has gained popularity in recent years. Several CAD/ CAM esthetic restorative materials are commercially available. Adhesive bonding is a major determinant of success of CAD/ CAM restorations. Review result: An account of the currently available bonding strategies are discussed with their rationale in various CAD/ CAM materials. Different surface treatment methods as well as adhesion promoters can be used to achieve reliable bonding of CAD/CAM restorative materials. Selection of bonding strategy to such material is determined based on its composition. Further evidence is required to evaluate the effect of new surface treatment methods, such as nonthermal atmospheric plasma and self-etching ceramic primer on bonding to different dental ceramics. An understanding of the currently available bonding strategies to CA/CAM materials can help the clinician to select the most indicated system for each category of materials.
Direct laser writing of microstructures on optically opaque and reflective surfaces
NASA Astrophysics Data System (ADS)
Rekštytė, S.; Jonavičius, T.; Malinauskas, M.
2014-02-01
Direct laser writing (DLW) based on ultra-localized polymerization is an efficient way to produce three-dimensional (3D) micro/nano-structures for diverse applications in science and industry. It is attractive for its flexibility to materialize CAD models out of wide spectrum of materials on the desired substrates. In case of direct laser lithography, photo-crosslinking can be achieved by tightly focusing ultrashort laser pulses to a photo- or thermo-polymers. Selectively exposing material to laser radiation allows creating fully 3D structures with submicrometer spatial resolution. In this paper we present DLW results of hybrid organic-inorganic material SZ2080 on optically opaque and reflective surfaces, such as silicon and various metals (Cr, Ti, Au). Our studies prove that one can precisely fabricate 2D and 3D structures with lower than 1 μm spatial resolution even on glossy or rough surfaces (surface roughness rms 0.068-0.670 μm) using sample translation velocities of up to 1 mm/s. Using femtosecond high pulse repetition rate laser, sample translation velocity can reach over 1 mm/s ensuring repeatable submicrometer structuring resolution.
Oxygen atom reaction with shuttle materials at orbital altitudes
NASA Technical Reports Server (NTRS)
Leger, L. J.
1982-01-01
Surfaces of materials used in the space shuttle orbiter payload bay and exposed during STS-1 through STS-3 were examined after flight. Paints and polymers, in particular Kapton used on the television camera thermal blanket, showed significant change. Generally, the change was a loss of surface gloss on the polymer with apparent aging on the paint surfaces. The Kapton surfaces showed the greatest change, and postflight analyses showed mass loss of 4.8 percent on STS-2 and 35 percent on STS-3 for most heavily affected surfaces. Strong shadow patterns were evident. The greatest mass loss was measured on surfaces which were exposed to solar radiation in conjunction with exposure in the vehicle velocity vector. A mechanism which involves the interaction of atomic oxygen with organic polymer surfaces is proposed. Atomic oxygen is the major ambient species at low orbital altitudes and presents a flux of 8 x 10 to the 14th power atoms/cu cm sec for reaction. Correlation of the expected mass loss based on ground-based oxygen atom/polymer reaction rates shows lower mass loss of the Kapton than measured. Consideration of solar heating effects on reaction rates as well as the high oxygen atom energy due to the orbiter's orbital velocity brings the predicted and measured mass loss in surprisingly good agreement. Flight sample surface morphology comparison with ground based Kapton/oxygen atom exposures provides additional support for the oxygen interaction mechanism.
LDEF Materials Workshop 1991, part 1
NASA Technical Reports Server (NTRS)
Stein, Bland A. (Compiler); Young, Philip R. (Compiler)
1992-01-01
The workshop comprised a series of technical sessions on materials themes, followed by theme panel meetings. Themes included materials, environmental parameters, and data bases; contamination; thermal control and protective coatings and surface treatments; polymers and films; polymer matrix composites; metals, ceramics, and optical materials; lubricants adhesives, seals, fasteners, solar cells, and batteries. This report contains most of the papers presented at the technical sessions. It also contains theme panel reports and visual aids. This document continues the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) pursuit of its charter to investigate the effects of LEO exposure on materials which where not originally planned to be test specimens and to integrate this information with data generated by principal investigators into an LDEF materials data base.